
EUPILOT: towards an All-
European RISC-V-based HPC

demonstrator

Miquel Pericàs
Dept. Computer Science and Engineering

Chalmers University of Technology

9th EasyBuild User Meeting, 23-25 April 2024 @ Umeå, Sweden

Agenda

• RISC-V and the EU

• The EUPILOT project

• Some research around RISC-V

• Towards RISC-V based HPC

2

RISC-V in a nutshell

• RISC-V is an open instruction set architecture (ISA) gaining
momentum in the tech industry.

• An ISA essentially acts as the language a processor understands
o x86, ARM are other well-known ISAs

• Open in this context means the design is freely available for anyone
to use and modify.

• Several advantages
ono royalties
ocustomization
o shared SW ecosystem (if you adhere to the standards)
o great community!

3

Why is the EU interested in RISC-V?
• EU has interest in:

odevelopment of an autochthonous HPC industry
oneed to increase HPC capacity + development of skills
oopen-source hardware, to complete the stack (below the kernel

still closed)

• Why RISC-V?
oOnly option for Europe to try to regain position in computing

▪ x86, ARM are under control of non-EU entities
oRISC-V as "language" for academia to communicate ideas to industry

• Note that RISC-V is an open standard, not same as open source
Hardware!

Panel on EU & RISC-V in RISC-V Summit Europe 2023
https://www.youtube.com/watch?app=desktop&v=7cLaO-MFY2s&ab_channel=RISC-VInternational 4

https://www.youtube.com/watch?app=desktop&v=7cLaO-MFY2s&ab_channel=RISC-VInternational

EuroHPC and RISC-V strategy

• EuroHPC Joint Undertaking https://eurohpc-ju.europa.eu/index_en
o "EuroHPC JU is a joint initiative between the EU, European countries and private

partners to develop a World Class Supercomputing Ecosystem in Europe."

• Funds big supercomputers, open for use by researchers
oe.g. LUMI in Finland, Top #5 supercomputer 530 PetaFLOPS (peak)

• EuroHPC R&I projects in which Chalmers participates
oEuropean Processor Initiative (2019-2026)

▪ Goal: building ARM host processor and RISC-V based accelerator (EPAC)
oDevelopment of pilots: EUPILOT and EUPEX (2021-)

▪ EUPILOT focus on RISC-V accelerator for HPC (focus of this presentation)
oeProcessor (2021-)

▪ Developing RISC-V processor with extensions for HPC and Bioinformatics
5

https://eurohpc-ju.europa.eu/index_en

© Filippo Mantovani, IAS seminar, April 2023. https://www.fz-juelich.de/en/ias/jsc/news/events/2023/ias-seminar-filippo-mantovani/jsc-sdv-intro/@@download/file
6

https://www.fz-juelich.de/en/ias/jsc/news/events/2023/ias-seminar-filippo-mantovani/jsc-sdv-intro/@@download/file

© Filippo Mantovani, IAS seminar, April 2023. https://www.fz-juelich.de/en/ias/jsc/news/events/2023/ias-seminar-filippo-mantovani/jsc-sdv-intro/@@download/file
7

https://www.fz-juelich.de/en/ias/jsc/news/events/2023/ias-seminar-filippo-mantovani/jsc-sdv-intro/@@download/file

The European PILOT project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No.101034126. The JU receives
support from the European Union’s Horizon 2020 research and innovation programme and Spain, Italy, Switzerland, Germany, France, Greece, Sweden, Croatia and Turkey. www.eupilot.eu

The European PILOT

Based on slides by Carlos Puchol – Barcelona Supercomputing Center – January 18, 2024

Project Overview

http://www.eupilot.eu/

9 - RP1

19 Partners

Academia + Research Institutions

Industrial Partners

9

10 - RP1

❑ Demonstrate a European pre-exascale accelerator platform

❑Design, validate, build and deploy a fully-integrated accelerator platform
❑Maximize use of European technology & assets
❑Stimulate European collaboration, enable future exascale systems
❑SW/HW co-design for improved performance and energy efficiency
❑Further extend open source into hardware for HPC
❑Leverage open source and the RISC-V ISA

❑ Strengthen European digital autonomy and supply chain

Objectives

10

11 - RP1

Top Level View

11

12 - RP1

EUPILOT System Architecture

Host System
(EUPEX/SiPearl, Fujitsu, Intel, AMD, ..)

EAS

HIB

PCIe

EAM

EAM

EAM

EAM

EAM

EAM

EAM

EAM
UBB

C2C
Network

CXL/PCIe

QSFP

EUPILOT
Accelerator

System

12

13 - RP1

EUPILOT Accelerator Chips

VEC
Accelerator

Atrevido +
RVV1.0 VPU

MLS
Accelerator

Sparta

Uncore

12nm GF 12LPP
process

Uncore

45~50* mm2

~40* mm2

* subject to budget constraints

14 - RP1

Software Stack

14

15 - RP1

VEC
❑ 16-tile area budget of ~46mm2

❑ Each VPU has 8x FPUs
❑ 2x FLOPs for FMA
❑ 64-bit ops
❑ Target at 1.5GHz
❑ 16x8x2x1.5 = 384 GFLOPs/chip
❑ w/RISC-V cores: 432 GFLOPs/chip

~3.5 TFLOPs/EAS (64-bit)

EUPILOT Peak Performance Projections*

MLS
❑ Mid-area budget of ~35mm2

❑ 2 Groups, 6 clusters
❑ Of (8+1) cores = total 108x FPUs
❑ 8-bit FP ops
❑ Target at 1GHz
❑ ~768 GFLOPs/chip

~6.1 TFLOPs/EAS (8-bit)

* subject to budget constraints

© Filippo Mantovani, IAS seminar, April 2023. https://www.fz-juelich.de/en/ias/jsc/news/events/2023/ias-seminar-filippo-mantovani/jsc-sdv-intro/@@download/file

Software Development Vehicles in EPI/EUPILOT

16

https://www.fz-juelich.de/en/ias/jsc/news/events/2023/ias-seminar-filippo-mantovani/jsc-sdv-intro/@@download/file

17 - RP1

▪ Software side
▪ Inference on VEC: vectorized convolutions
▪ OpenMP runtime for VEC: vectorization of barriers and reductions
▪ SYCL for RISC-V

▪ Hardware side
▪ Cache coherence, both intra-chip, and inter-chip, based on AMBA CHI
▪ Some Co-Design

▪ Next Slides
▪ Overview of some of our R&D activities in EPI/EUPILOT

Chalmers' RISC-V tasks in EPI/EUPILOT

17

RISC-V Vector Extension

• Why vector?
o Decode 1 instruction, execute N operations
o Higher Performance and Energy Efficiency

• RISC-V Vector Extension (RVV) 1.0 ratified Nov 2021
o EPAC/VEC RISC-VV implements very long vectors (16384b, := 256 DP)

▪ In principle, longer vectors can lead to higher efficiency

• Supports Vector Length Agnostic (VLA) programming style
o Vector ISA is decoupled from Vector Length, unlike e.g. x86 (AVX2, AVX512)
o Single code supports different vector lengths but may be less performance than VLS

(Vector Length Specific) code generation. Note: RVV supports both styles

• Can we use Long Vector RISC-VV accelerators as an alternative to GPGPUs?
18

RISC-V Vector Programming
• Assembly (most control, least productive)

o Very low level, no compiler support
o Could be JIT (just in time): Similar to assembly, but can leverage runtime information

• Intrinsics
o Compiler builtins that mirror ISA instructions

▪ Can use variable names
▪ Compiler handles register allocation

o EPI developed an initial set of RVV builtins (e.g. __builtin_epi_vsetvl(n - i, __epi_e32, __epi_m8))
o RVV now has a set of standard intrinsics (e.g.vsetvl_e32m8(n - i))

▪ Frozen, pending ratification
▪ Implementation in GCC, LLVM ongoing

• "simd" clauses
o #pragma omp simd

• Autovectorization (least control, most productive)
o Work in progress (EPI/EUPILOT focus is on LLVM)

19

Inference on VEC: CNNs

Inference via Convolutional Neural Network (CNNs)
require high throughput and low latency

Vector processors can offer

⚫ low latency

⚫ high performance

⚫ energy efficiency

Can we use long vector architectures (eg RVV)?

Image credit: https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/

Sonia Rani Gupta, Nikela Papadopoulou, and Miquel Pericàs. 2023. Challenges and Opportunities in the Co-
design of Convolutions and RISC-V Vector Processors. In Proceedings of the SC '23 Workshops of The
International Conference on High Performance Computing, Network, Storage, and Analysis (SC-W '23).

20

https://circuitdigest.com/article/understanding-risc-v-architecture-and-why-it-could-be-a-replacement-for-arm

Objective

Algorithmic Optimizations

• Port a Winograd algorithm previously optimized for ARM-SVE to RVV by leveraging
the available EPI RISC-V intrinsics

o Identify challenges and propose potential solutions

• Goal to utilize the vector unit and vector registers effectively

Hardware Parameters Tuning

• Vector unit: how long should vector lengths be?

• Caches: how large should caches be for different vector lengths?

21

Tools

• Network models:

• YOLOv3: 75 convolutional layers out of 107.

• VGG16: 13 convolutional layers out of 16

• Implemented in Darknet framework

• Algorithmic implementation

• NNPACK library for Winograd implementation

• Hardware Exploration:

• RISC-V Vector Extension: Gem5 Simulator*

• Compiler

• RISC-V LLVM/Clang toolchain from the European Processor Initiative (EPI)

*Gem5 Simulator – plctlab. 2022. plct-gem5 (https://github.com/plctlab/plct-gem5/), supports v1.0 “V” extension with max VL of 4096 bits

22

https://github.com/plctlab/plct-gem5/

Winograd: initial ARM-SVE implementation

Transformations:

• 8x8 tile from one channel (NNPACK)

• Inter-tile Parallelism across the channels**

• Similarly, 32 channels to utilize 4096-bit VL

1 row of 8x8 tile from 4 channels

Tuple multiplication

• Increase tuple size to 32 with 4 elements in each
block to utilize longer vector length.

F(6x6,3x3) -> m+r-1 x m+r-1 tile

[m= output, r =kernel]

6x6 output and 3x3 kernel size = 8x8 Tile
**Sonia Rani Gupta, Nikela Papadopoulou, and Miquel Pericas. 2023. Accelerating CNN
inference on long vector architectures via co-design. In 2023 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 145–155.

23

Challenge #1: Tuple Multiplication

• Operation: Load Quadword elements
in a vector and replicate:

• No specialized RVV Instruction

• We test two alternatives

• Implementation 1: Indexed Load

• Implementation 2: Slideup instructions

Implementation 1

Implementation 2

Quadword elements

Implementation 2 with slideup is ~2.3X faster than

implementation 1 with indexed load.

Having specialized instruction likely to be faster,

and reduce register pressure.
24

Challenge #2: Transformations –
Transpose four vectors

Potential RVV extension: vector transpose of 4 vectors, eliminates need for extra memory operations

• Operation: Transpose of 4 vectors in all
transformations

• Again, no RVV instruction is available.

• EPI custom extension provides transpose with
2 vectors.

• We tested two alternatives:

⚫ Implementation 1: unit-strided store followed by
Indexed load

⚫ Implementation 2: Strided store followed by unit-
strided load

No significant difference in performance with both implementations

Example for transposing 4 vector registers having elements
from 1 channel

25

Challenge #3: Transformations –
Passing register references

Problem: Cannot pass references to vector registers as parameters to a procedure

• require intermediate vector registers to store the intermediate vector data.

• +require ~30 lines of code at 6 places in the input transformation kernel.

• Problems:

• Register spilling

• Less Programmability

• Potential Workaround: Macros can improve programmability, but it will still be required
to have intermediate registers. Hence the problem of register spilling will remain

Being able to pass references to vector registers would improve programmability and reduce the
chances of register spilling

26

VGG16: Analysis

VGG16:

• 3x3 kernel size with stride 1: Winograd

• All the layers use Winograd algorithmic optimizations

Comparison with im2col+GEMM:

⚫ 2048 bits VL and an L2 cache of 1MB modeled with gem5

⚫ 1.2x performance improvement compared to the pure im2col+GEMM approach.

⚫ Similar performance compared to our optimized ARM-SVE implementation (on gem5)

27

HW Design Space: VGG16

Impact of Vector lengths:

• No scalability beyond 2048-bit.

• No significant difference in the
number of instructions from 2048-bit
to 4096-bit vector lengths

Impact of L2 caches from 1MB to

64MB:

• ~1.3X performance improvement

• No performance improvement
beyond 64MB L2 cache

2K vector length with 64MB caches can provide up to ~1.8x speedup

Current work: Integration of RVV Winograd, im2col and Direct Conv into
oneDNN. Potential contribution to EUPILOT Software Stack.

Impact of vector lengths and L2 cache size with Winograd on RISC-VV@gem5 for VGG16.

~1.4X

28

oneDNN

- Open-source performance library designed to accelerate deep learning

applications

o https://github.com/oneapi-src/oneDNN

- Optimized for Intel Architecture

- Available for Intel, AMD, ARM, IBM power, z/Architecture, RISC-V

- Provides highly optimized implementations for standard routines such as

convolution, batch normalization, and pooling operations

- We are integrating optimized implementations of im2col/gemm and Winograd

o Work-in-progress. No results yet

29

https://github.com/oneapi-src/oneDNN

RVJIT

BSC developed a RISC-V JIT for oneDNN. Pushes code to

be executed later

Example:
void vadd_vv(vr_t vd, vr_t vs1, vr_t vs2,
vmask_t vm = vmask::unmasked) {

push(rvj_vadd_vv(vd, vs1, vs2, vm));}

Pushes vadd.vv vd, vs2, vs1, vm # Vector-vector
integer addition

Following:

https://github.com/riscv/riscv-v-spec/blob/master/v-

spec.adoc

https://github.com/riscv/riscv-opcodes/blob/master/rv_v

- Need to keep track of

registers manually

- Creating assembly

code versions of

functions

+ Easy to extend and

add instructions to JIT

+ Enables runtime

optimizations
30

https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc
https://github.com/riscv/riscv-opcodes/blob/master/rv_v

Adding instructions to the JIT

Find instructions in specifications

Look up opcodes

void vmand_mm(vr_t vd, vr_t vs1, vr_t vs2) {

 push(rvj_vmand_mm(vd, vs1, vs2));

 }

rvj_instr rvj_vmand_mm(REGV vd, REGV vs1, REGV

vs2) {

 return opMVV(vd, vs1, vs2, 0x19,

rvj_unmasked);

}

Add instruction to be used by program

Implement Instruction with opcode

31

RVJIT code example usage: for loop

const gpr_t channel = tmp.pick();

 const gpr_t channel_end = tmp.pick();

 load_constant(channel, 0);

 load_constant(channel_end, channels_col);

 L("channels");

 //for (c = 0; c < channels_col; ++c)

 // Channel loop

 addi(channel, channel, 1);

 blt(channel, channel_end, "channels");

32

RVJIT code example usage: intrinsic conversion

//Index calculation

vl(wcol, index, src_sew); // load

vmv_sx(OFFSET, w_offset); // broadcast

vmv_sx(PAD, pad_reg); //broadcast

vmv_sx(STRIDE, stride_reg); //broadcast

vmul_vv(intermediate1, STRIDE, wcol); // multiplication

vadd_vv(IMCOL, intermediate1, OFFSET); // addition

vmv_sx(WIDTHCOL, width_end); //broadcast

vmv_sx(INTER, intermediate); //broadcast

vmul_vv(intermediate2, INTER, WIDTHCOL); // multiplication

vadd_vv(colindex, intermediate2, wcol); // addition

vsub_vv(IMCOL, IMCOL, PAD); // subtract

EPI LLVM intrinsicsRVJIT code

33

L("vc32");

addi(tmp1, i, 3);

bge(tmp1, M_reg, "skip3");

addi(c_index, i, 3);

mul(c_index, c_index, ld_reg);

add(c_index, c_index, j);

mul(c_index, c_index, sew);

add(c_index, c_index, vdst);

vs(vc3, c_index, src_sew);

L("skip3");

L("vc22");

addi(tmp1, i, 2);

bge(tmp1, M_reg, "vc32");

addi(c_index, i, 2);

mul(c_index, c_index, ld_reg);

add(c_index, c_index, j);

mul(c_index, c_index, sew);

add(c_index, c_index, vdst);

vs(vc2, c_index, src_sew);

L("vc12");

addi(tmp1, i, 1);

bge(tmp1, M_reg, "vc22");

addi(c_index, i, 1);

mul(c_index, c_index, ld_reg);

add(c_index, c_index, j);

mul(c_index, c_index, sew);

add(c_index, c_index, vdst);

vs(vc1, c_index, src_sew);

if (i+1 < M) {__builtin_epi_vstore_2xf32(&C[(i+1)*ldc+j], vc1, gvl);}

if (i+2 < M) {__builtin_epi_vstore_2xf32(&C[(i+2)*ldc+j], vc2, gvl);}

if (i+3 < M) {__builtin_epi_vstore_2xf32(&C[(i+3)*ldc+j], vc3, gvl);}

RVJIT code example usage: Pseudo assembly

34

Vectorized Barrier and Reduction in LLVM
OpenMP Runtime

• Barrier and Reduction commonly used operations in

parallel programs

• Challenges

• Resources wait idle

• Overhead increases with increasing # of threads

• # of cores/node are expected to increase at

exascale

• Goals

• Low overhead barrier and reduction in OpenMP

• Utilize vector/simd unit to reduce overhead

LLVM OpenMP barrier and reduction overheads

using the EPCC benchmark on Intel KNL

Muhammad Nufail Farooqi and Miquel Pericàs. 2021. Vectorized Barrier and Reduction in LLVM
OpenMP Runtime. In OpenMP: Enabling Massive Node-Level Parallelism: 17th International Workshop
on OpenMP, IWOMP 2021, Bristol, UK, September 14–16, 2021 35

Vectorized Barrier in LLVM

• Data structure

• Shared array for each team of threads

• Shared array is initialized to 1

• Gather/Release -> see pseudocode

• Tree pattern with configurable branching

▪ shared array for each tree level

• Implemented using Intrinsics

• RISC-V Vector Extension

• Arm-SVE

• Intel AVX

• Similar approach for Reductions, except

that we also need to modify clang

Gather phase:
 vec_array[thread_id]=0;
 if(primary_thread){
 do {
 tmp_vec[1:VLEN]=0;
 for (i=0;i<nThreads;i+=VLEN) {

 tmp_vec |= vector_load(&vec_array[i],VLEN);}

 } while (tmp_vec);

Release phase:
 if(primary_thread){

 vec_array[1:nThreads]=1;
 } else {

 while(!vec_array[thread_id]);
 }

● VLEN is length of the vector unit

● nThreads are number of threads in a team

36

Evaluation

• OpenMP parallel, barrier and

reduction microbenchmarks

• Baseline is LLVM OpenMP’s default barrier

and reduction

• Performance studies using Intel KNL and

Fujitsu A64FX

• For RISC-V Vector Extensions, validated

functional correctness using qemu+vehave

(RISC-V vector emulator)

37

Performance Results

● Use Intel KNL as proxy: supports 512-bit

vectors, 64 cores w/ 4x HW multithreading

● Performance: trade-off between false

sharing and on-chip memory traffic

● Best performance achieved when max

branching factor is used (=linear pattern)

● Max 2.2x speedup on Intel KNL for 128

threads

● Next: evaluate barriers and reductions

performance on EUPILOT prototype (FPGA

with multiple cores and vector units)

Performance of vectorized barrier and reduction with

varying padding for barrier flags and reduction array (256

Threads on Intel KNL with snc4 cluster mode)
38

Some thoughts on the road ahead for RISC-V based HPC

• Quite some progress has been made, but there is still more work
• Need progress at all levels of the stack

oHigh Performance RISC-V based systems
oFuture RISC-V ISA extensions
o Toolchain/Libraries readiness
oWhat else?

• Getting started with RISC-V

39

RISC-V HPC Systems
• Today, few commercial RISC-V chips target HPC
• T-head C920, targeting v0.7.1 vector spec, only "independently evaluated"

board out there (*)
o Sophon SG2042 includes 64x C920 cores
o Requires custom-made gcc compiler for vectorization

• But: there are many products on the horizon!
o Tenstorrent (Tensix AI, Ascalon RISC-V Core)
o Ventana Micro (Veyron V2)
o Esperanto Technologies (ET-Minion, ET-Maxion)
o Semidynamics (Atrevido, Custom Tensor Instructions)
o InspireSemi (Thunderbird Compute Accelerator)
o Probably many more
o All of them support RVV-1.0 Spec, should offer good interoperability!

▪ How about Performance portability?

(*) https://arxiv.org/pdf/2309.00381.pdf
40

http://(*)(https:/arxiv.org/pdf/2309.00381.pdf

RISC-V HPC specs
• RISC-V Vector extension continues to be developed
• Topics that are under discussion in the Vector SIG

❑Subsetting of the existing vector Spec (particularly for embedded devices)

❑Self-contained vector instructions (more arch. registers, multiple mask regs, direct encoding of properties)
❑Sparsity support
❑GPU-like capabilities (streaming, control flow divergence, large register files)

• Beyond vectors, Matrix extensions are critical for AI workloads, also HPC
❑Two specs are currently being developed

▪ Integrated Matrix Extension
▪ Attached Matrix Extension

• Performance Events:
❑Current Zihpm extension provides programmable performance events (But: implementation specific)
❑Performance events TG has been setup to standardize a set of performance events 41

Software Toolchains
• Rich SW ecosystem needs to be ported and optimized for RISC-V
• In EPI/EUPILOT we are working on several toolchains

❑LLVM (C/C++/Fortran), autovectorization, OpenMP, MPI, SLURM, DaCe, oneDNN, BLIS, FFT, SYCL, Linux, ...

• RISE (RISC-V Software Ecosystem) Project (https://riseproject.dev/)
❑What: Collaborative effort led by industry to accelerate the development of open-source SW for the RISC-V

architecture
❑Compilers: GCC, LLVM
❑System Libraries: OpenSSL, BoringSSL, glibc, bionic, zlib, OpenBLAS, SLEEF
❑Kernel and Virtualization: Linux, KVM
❑Language Runtimes: Java, Python, Go, .NET, Android RT, Javascript
❑Linux Distro Integration: Debian, Fedora, Ubuntu, GRUB
❑Debug and Profiling: GDB, Valgrind, AddressSanitizer
❑Simulators/Emulators: QEMU
❑System Firmware: TianoCore UEFI, U-Boot, Coreboot, TF-M

42

https://riseproject.dev/

Software porting is not trivial

• GPU-like acceleration
❑Applications written in CUDA will need to be rewritten to make use of RVV
❑Alt: develop a path to target CUDA via other interfaces such as SYCL, hand tuning will still be

required.
❑RVV is not a GPU!

• Extracting long vectors is very algorithm-dependent
❑EPI/EUPILOT developing long vector RVV implementation (256 DP words)!
❑Most existing codes are not be able to make use very long vectors
❑Need to research compiler support for long vectors
❑+ research algorithmic transformations to expose the required parallelism

43

Getting started with RISC-V
• Boards: https://www.riscfive.com/risc-v-development-boards/
• EPI SDVs are also available to be used

In the absence of HW:
• Spike: Functional simulator considered as golden reference for RISC-V ISA

• Quick EMUlator (QEMU): dynamic binary translation (host ISA-> target ISA), execution on
target hardware model

• System mode: boot OS, run application as part of OS
• User mode: no OS, run application directly

• If performance evaluation is required:
• Gem5 (state-of-the-art): modular system architecture research platform to model complete systems

(hardware, OS, application software). Support RVV since Dec 23 (v23.1)

44

https://www.riscfive.com/risc-v-development-boards/

Conclusions
• RISC-V + HPC has seen a lot of work and progress on all fronts:

• EPI/EUPILOT developing RVV multicore systems + SW toolchain
• Community working on HW, SW toolchain and ecosystem, ISA extensions

• RVV is a big step ahead, but we need:
• More "HPC-like" boards to play with, and better performance tools
• RISC-V HPC hardware needs to focus on stable specs (RISC-V profiles)
• Specific challenges

▪ autovectorizers to extract long vectors
▪ reworked algorithms to expose more vector parallelism
▪ CUDA to RISC-V conversion strategies
▪ A converged/frozen spec for matrix engines

45

Acknowledgements
• CHART: Chalmers Heterogeneous

Architectures and Runtimes Team

•Master Program in High Performance
Computer Systems
ohttps://www.chalmers.se/en/education/fin

d-masters-programme/high-performance-
computer-systems-msc/

46

https://www.chalmers.se/en/education/find-masters-programme/high-performance-computer-systems-msc/
https://www.chalmers.se/en/education/find-masters-programme/high-performance-computer-systems-msc/
https://www.chalmers.se/en/education/find-masters-programme/high-performance-computer-systems-msc/

THANK YOU

47

	Slide 1: EUPILOT: towards an All-European RISC-V-based HPC demonstrator
	Slide 2: Agenda
	Slide 3: RISC-V in a nutshell
	Slide 4: Why is the EU interested in RISC-V?
	Slide 5: EuroHPC and RISC-V strategy
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Software Development Vehicles in EPI/EUPILOT
	Slide 17
	Slide 18: RISC-V Vector Extension
	Slide 19: RISC-V Vector Programming
	Slide 20: Inference on VEC: CNNs
	Slide 21: Objective
	Slide 22: Tools
	Slide 23: Winograd: initial ARM-SVE implementation
	Slide 24: Challenge #1: Tuple Multiplication
	Slide 25: Challenge #2: Transformations – Transpose four vectors
	Slide 26: Challenge #3: Transformations – Passing register references
	Slide 27: VGG16: Analysis
	Slide 28: HW Design Space: VGG16
	Slide 29: oneDNN
	Slide 30: RVJIT
	Slide 31: Adding instructions to the JIT
	Slide 32: RVJIT code example usage: for loop
	Slide 33: RVJIT code example usage: intrinsic conversion
	Slide 34: RVJIT code example usage: Pseudo assembly
	Slide 35: Vectorized Barrier and Reduction in LLVM OpenMP Runtime
	Slide 36: Vectorized Barrier in LLVM
	Slide 37: Evaluation
	Slide 38: Performance Results
	Slide 39: Some thoughts on the road ahead for RISC-V based HPC
	Slide 40: RISC-V HPC Systems
	Slide 41: RISC-V HPC specs
	Slide 42: Software Toolchains
	Slide 43: Software porting is not trivial
	Slide 44: Getting started with RISC-V
	Slide 45: Conclusions
	Slide 46: Acknowledgements
	Slide 47: THANK YOU
	Slide 48

