What's new in Spack?
Easybuild User Meeting 2021

Todd Gamblin

Advanced Technology Office
Lawrence Livermore National Laboratory

TR U.S. DEPARTMENT OF Office of

g. @) EN ERGY Science

Spack enables Software distribution for HPC

« Spack automates the build and installation of scientific software

« Packages are parameterized, so that users can easily tweak and tune configuration

No installation required: clone and go

$ git clone https://github.com/spack/spack
$ spack install hdf5

Simple syntax enables complex installs

$ spack install hdf5@1.10.5 $ spack install hdf5@1.10.5 cppflags="-03 —g3"

$ spack install hdf5@1.10.5 %clang@6.0 $ spack install hdf5@1.10.5 target=haswell

$ spack install hdf5@1.10.5 +threadssafe $ spack install hdf5@1.10.5 +mpi “mpich@3.2 .
github.com/spack/spack

 Ease of use of mainstream tools, with flexibility needed for HPC

* In addition to CLI, Spack also:
« Generates (but does not require) modules
« Allows conda/virtualenv-like environments
« Provides many devops features (Cl, container generation, more)

—
\\ EXASCALE
COMPUTING
\ PROJECT

Spack is used worldwide!

A
DY

Recently surpassed 5,200 software packages
Recently surpassed 730 contributors

@

The Spack community continues to grow steadily

Active Users @ B sAavE 4, EXPORT < SHARE (& INSIGHTS *as measured by
active users on our
O All Users + Add Segment Aug 1, 2017~ Jan 27,2021 readthedocs site
100.00% Users

Active Users

v 1 Day Active Users v" 7 Day Active Users v' 14 Day Active Users v 28 Day Active Users

Broke 3,400 monthly

4,000 / active users this year

2,000 | WA\"”H\\ , . Spack

e P//\//—\ J/V\'\ N vf/ v \ [H
N A SONY . s U mmmm Easybuild

l/"*’”\/‘\f"\u’\q/“"\fl%w\/\ﬁﬂ

/| \/
NN WIS ANV AW VWY VWA WAA VWA WYYV INTAA, ..Rniu’liinnnﬂ:i:i;im;ﬂnuﬂ:“iiﬂﬁmﬂ;iﬂmﬂﬂgf ARV ..l"\. . "““ y " “ v ‘l l‘l’., kY A"
2018 2019 2020 2021
1 Day Active Users 7 Day Active Users 14 Day Active Users 28 Day Active Users

242 1,017 1,802 2,985

% of Total: 100.00% (242) % of Total: 100.00% (1,017) % of Total: 100.00% (1,802) % of Total: 100.00% (2,985)

One month of Spack development is pretty busy!

October 9, 2020 — November 9, 2020 Period: 1 month ~

Overview

570 Active Pull Requests 176 Active Issues
- 504 {166 (3102 074
Merged Pull Requests Open Pull Requests Closed Issues New Issues

develop and 669 commits to all branches. On develop, 774 files
have changed and there have been 25,151 additions and

80
Excluding merges, 153 authors have pushed 504 commits to 60
5,294 deletions.

$= 504 Pull requests merged by 132 people

S \
E\(g\)l':’ CoveLTNG

Contributions to Spack continue to grow!

LOC over time in core by org

80000 A
LLNL I Heidelberg I RIT
70000 A EPFL = FAU B TAMU-CC
Kitware NERSC I Max Planck
60000 A ANL/UIUC HZDR s SNL
I Fermilab Hamburg I Cardiff
50000 1 mmm unknown ORNL lowa State
B ANL BB NASA-GISS EEE Other
40000 -
30000 |
20000 |
o e
0 T T — T T 4|=|—
<) v &) © A % &) o ~
& & N & & & & N Q
» » 0% D 0% D D » D
LOC over time in packages by org
140000 - LLNL E LANL B Hamburg
ANL/UIUC B ANL B Heidelberg
120000 1 lowa State RIT B ORNL
unknown CERN mm Kirchhoff
100000 1w 1owa 3vGeomatics BB HZDR
I HiSilicon FAU Genentech
80000 | mmm EPFL m RIKEN EEE Other
60000 -
40000 A
20000 -
0 T T T
” ™)
& & &
» D D

ECP

EXASCALE
COMPUTING
PROJECT

In November 2015, LLNL provided most of
the contributions to Spack

Since then, we've gone from 300 to over
5,000 packages

Most packages are from external
contributors!

Many contributions in core, as well.

We are committed to sustaining Spack’s
open source ecosystem!

Spack is critical for ECP’s mission to create a
robust, capable exascale software ecosystem.

Q4K Rino 8 ~ -
%) ENERG) ™ l‘y)l‘ 1)
0 et
https://eds.io

Dependents by Producer

EXASCAHALE COMPUTING PROJECT

« Spack will be used to build software for the three
upcoming U.S. exascale systems

« ECP has built the Extreme Scale Scientific Software Stack
(E4S) with Spack — more at hitps://e4s.io

» Spack will be integral to upcoming ECP testing efforts.

%
N
* I

-
&

; ¥ “n\\< o
I

& P

}I
‘-
B =
d I
i I i I m_ ﬂ B [I
> & L o & ot 2 ° & \ & & < ¢ *
\ ~N 3 X o D ? (= ?
ANV ¢ & & & & & & & ¢ 9
R Na A v . v
tical D Important Dependent ted Depend

@
A°
&

u Critical Dependents = Important Dependents mInterested Dependents

Spack is the most depended-upon
project in ECP

https://e4s.io/

Spack User Survey 2020

» First widely distributed Spack Survey
— Sent to all of Slack (900+ users)
— All of Spack mailing list, ECP mailing list Spack User Survey 2020
« Got 169 responses!
« Takeaways: o
— People like Spack and its community!
~ Docs and package stability need the
most Work Scientist/Researc her
— Concretizer features and dev features are | o 5o
the most wanted improvements 1 ”
60

A writeup of the results is here:

https://spack.io/spack-user-survey-2020

Article also has links to the full survey data.
EECP s

Questions

User Survey 2020

W 40

20

0
Spack documentation

Res

ponses

Spac

OK | Good [Excellent

Spack community

= I LRI O)

i & ®

Spack packages

Spack

The Spack community is targeting a diverse range of GPUs
and over 50% are targeting AMD

A detailed writeup of the results is at https://spack.io/spack-user-survey-2020/

Which GPUs do you expect to use with Spack in the next year? Which compilers do you expect to use with Spack in the next year?

gcc

LLVM

Intel Compilers

nvcc

NVIDIA Compilers (new PGI)
AMD hipclang

PGI

CCE (Cray Compilers)

Intel OneAPI / dpc++

Are you part of the U.S. Exascale Computing Project (ECP)?

NVIDIA

AMD

.
R

AMD aocc
XL
Intel . All armclang mm Al
Al | ECP Fujitsu Compilers = ECP
m ECP } NAG
0 20 40 60 80 100 (') 2'0 4'0 6I0 8I0 160

Percent of respondents Percent of respondents

Spack community is ~36% ECP
P Hniyt ° GPU and compiler needs of ECP are more diverse

than the broader Spack community.

—
\\ EXASCARLE
) COMPUTING
\ PROJECT
A

https://spack.io/spack-user-survey-2020/

We have seen an increase in industry contributions to Spack

= Fujitsu and RIKEN have contributed a huge number of packages FUﬁTSU

for ARM/a64fx support on Fugaku AMDH

AMD has contributed ROCm packages and compiler support

— 55+ PRs mostly from AMD, also others o ®
— ROCm, HIP, aocc packages are all in Spack now <Z (l n tEI

Intel contributing oneapi support and compiler licenses for our

build farm
o _ NVIDIA.
= NVIDIA contributing NVHPC compiler support and other features q r m
= ARM and Linaro members contributing ARM support -
— 400+ pull requests for ARM support from various companies LI narO

AWS is collaborating with us on our build farm, making optimized h

binaries for ParallelCluster
— Joint Spack tutorial in July with AWS had 125+ participants

dW$S

Spack provides a spec syntax to describe customized installations

$ spack install mpileaks unconstrained

$ spack install mpileaks@3.3 @ custom version

$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler

$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option

$ spack install mpileaks@3.3 cppflags="-03 —g3" set compiler flags

$ spack install mpileaks@3.3 target=zenZ set target microarchitecture
$ spack install mpileaks@3.3 Ampich@3.2 %gcc@4.9.3 A dependency information

« Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional — specify only what you need.
— Customize install on the command line!

» Spec syntax is recursive
— Full control over the combinatorial build space

Spack packages are templates
They use a simple Python DSL to define how to build

Not shown: patches, resources, conflicts,

from spack import x

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle
transport proxy/mini app.

homepage = "https://computation.llnl.gov/projects/co-design/kripke"

url = "https://computation.llnl.gov/projects/co—-design/download/kripke—openmp-1.1.tar.gz"
version(‘1.2.3"', sha256='3f7f2eef@d1ba5825780d626741eb0b3f0262096048d7ec4794d2a7dfbe2b8ab"’)
version(‘1.2.2', sha256="'eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa®39a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8albc839ae8fb5f96d50224186601f55554a25f64a")
variant('mpi', default=True, description='Build with MPI.")

variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:"', type='build’)

def cmake_args(self):
return [
'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),
]

def install(self, spec, prefix):
Kripke does not provide install target, so we have to copy
things into place.
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

—

e

—
\\ EXASCALE
COMPUTING
\ PROJECT

other directives.

} Base package

(CMake support)

= [Metadata at the class level

} Versions
} Variants (build options)

Dependencies
(same spec syntax)

Install logic
in instance methods

Don't typically need install() for
(MakePackage, but we can work
around codes that don’t have it.

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ~callpath@l.0+debug ~libelf@0.8.11

@ oZI|eWION

mpileaks

\

callpath@l.o
+debug

e

mpi

dyninst

\

Concretize

libdwarf

/

libelf@0.8.11

Abstract, normalized spec

—

ECP

EXASCALE
COMPUTING
PROJECT

with some dependencies.

mpileaks@?2.3
%gcc@4.7.3
=linux-ppc64

\

callpath@l.0
%gcc@ad.7.3+debug
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=l1inux-ppc64

\

dyninst@8.1.2
%gcc@4.7.3
=l1inux-ppc64

N\

Store

libdwarf@20130729
%gcc@4.7.3
=l1inux-ppc64

/

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

Concrete spec is fully constrained
and can be passed to install.

User input: abstract spec with some constraints

spec.yaml

spec:
- mpileaks:
arch: 1linux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycejZmtrnrivvxy77
mpich: aa4ar6ifj23yijgmdabeakpejcli72t3
hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'
- adept-utils:
arch: 1linux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies:
boost: teesjv7ehpeSksspjim5dk43a7gnowlq
mpich: aa4ar6ifj23yijgmdabeakpejcli72t3
hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1
- boost:
arch: 1linux-x86_64
compiler:
name: gcc
version: 4.9.2
dependencies: {}
hash: teesjv7ehpeSksspjimSdk43a7gnowlq
variants: {}
version: 1.59.0

Detailed provenance is stored
with the installed package

Spack handles combinatorial software complexity

Dependency DAG

5

\

mpileaks

1 dyninst

callpath _—W

libdwarf

Installation Layout

libelf

opt
— spack

F— darwin-mojave-skylake
L— clang-10.0.0-apple

F— bzip2-1.0.8-

F— python-3.7.6-

— sqlite-3.30.1-

F— xz-5.2.4-

L— zlib-1.2.11-
darwin-mojave-x86_64
L— clang-10.0.0-apple

L— coreutils-8.29-

o e

Each unique dependency graph is a
unique configuration.

Each configuration in a unique directory.
— Multiple configurations of the same
package can coexist.

Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

Installed packages automatically find

dependencies

— Spack embeds RPATHSs in binaries.

— No need to use modules or set
LD_LIBRARY_PATH

— Things work the way you built them

Spack environments enable users to build customized stacks

from an abstract description

L Dependency

L i packages
[install } build
insta project

spack.yaml file with . Lockfile describes
names of required i exact versions installed

dependencies

v

» spack.yaml describes project requirements

» spack.lock describes exactly what versions/configurations were
installed, allows them to be reproduced.

» Can also be used to maintain configuration together with Spack
packages.

- E.g., versioning your own local software stack with consistent
compilers/MPI implementations

— Allows developers and site support engineers to easily version
Spack configurations in a repository

/i::~\
EC)P e

Simple spack.yaml file

spack:
include external configuration
include:
- ../special-config—-directory/
- ./config-file.yaml

add package specs to the “specs’ list
specs:

- hdf5

- libelf

— openmpi

Concrete spack.lock file (generated)

{
"concrete_specs": {
"6s63s02kstp3zyvjezglndmavy61l3nul": {
"hdf5": {
"version": "1.10.5",
"arch": {
"platform": "darwin",
"platform_os": "mojave",
"target": "x86_64"
h
"compiler": {
"name": "clang",
"version": "10.0.0-apple"
h
"namespace": "builtin",
"parameters": {
"cxx": false,
"debug": false,
"fortran": false,
"h1l": false,
"mpi": true,

Spack can generate multi-stage container build recipes

spack:
specs:
- gromacs+mpi
- mpich

container:

RUN

Select the format of the rec
singularity or anything else
format: docker

Select from a valid list of
base:

image: "centos:7"

spack: develop

Whether or not to strip bina
strip: true

Additional system packages t
os_packages:
- libgomp

Extra instructions
extra_instructions:

final: |
echo 'export PS1="\[$(tput bol

Labels for the image
labels:
app: 'gromacs"
mpi: "mpich"

ECP

EXASCALE
COMPUTING
PROJECT

l

Build stage with Spack pre-installed and ready to be used
FROM spack/centos7:latest as builder

What we want to install and how we want to install it
is specified in a manifest file (spack.yaml)
RUN mkdir /opt/spack-environment \

& (echo "spack:" \

&& echo " specs:"™ \

& echo " - gromacs+mpi" \

& echo " - mpich" \

& echo " concretization: together" \

& echo " config:" \

& echo " install_tree: /opt/software" \

& echo " view: /opt/view") > /opt/spack-environment/spack.yaml

Install the software, remove unecessary deps
RUN cd /opt/spack-environment && spack install && spack gc -y

Strip all the binaries
RUN find -L /opt/view/x —type f —exec readlink —f '{}' \;
xargs file -i | \
grep 'charset=binary' | \
grep 'x-executable\|x-archive\|x-sharedlib' | \
awk -F: '{print $1}' | xargs strip -s

I\

Modifications to the environment that are necessary to run

- Any Spack environment can be

bundled into a container image

— Optional container section allows
finer-grained customization

- Generated Dockerfile uses multi-
stage builds to minimize size of final
image

— Strips binaries

RUN cd /opt/spack-environment && \
spack env activate --sh -d . >> /etc/profile.d/z10_spack_environment.sh

Bare 0S image to run the installed executables
FROM centos:7

COPY ——from=builder /opt/spack-environment /opt/spack-environment
COPY ——from=builder /opt/software /opt/software
COPY ——from=builder /opt/view /opt/view

-y & yum install -y epel-release && yum update -y
-y libgomp \
cache/yum && yum clean all

‘export PS1="\[$(tput bold)\1\[$(tput setaf 1)\][gromacs]\[$(tput setaf 2)\1\u\[$(tpu

spack contatir

— Removes unneeded build deps with
spack gc

= Can also generate Singularity recipes

= Originally included in Spack v0.14,
updated for v0.16 to support arbitrary
base images (OS distros)

erize

Spack stacks are combinatorial environments
for facility deployments

spack:

definitions: Allow users to easily express large cross-products
compilers: Of bUlIdS
[%gcc@5.4.0, %clang@3.8, %intel@18.0.0] -
mpis: — All the packages needed for a facility
[*mvapich2@2.2, “mvapich2@2.3, “openmpi@3.1.3]]]
packages: — Generate modules tailored to the site
- nalu
— hdf5 — Generate a directory layout to browse the packages
- hypre
- trilinos . .
_ peisi * Build on the environments workflow
S — Manifest + lockfile
specs: . T
cartesian product of the lists above - LOCkflIe enabIeS reprOdUCIblllty
matrix:
- {i‘c’g;g‘ﬁ:ii] Relocatable binaries allow the same binary to be used
- [$mpis] in a stack, regular install, or container build.
modules: — Difference is how the user interacts with the stack
lmod:
core_compilers: [gcc@5.4.0] — Slngle-PATH stack vs. modules.
hierarchy: [mpi, lapack]
hash_length: 0

—
ECP ===

Spack has GitLab Cl integration to automate
package build pipelines " D eaduinear.o

- compilers:
- '%gcc@5.5.0"
- oses:

 Builds on Spack environments - os=ubuntu18. 04

- os=centos7

— Support auto-generating GitLab CI jobs specs:

- matrix:
— Can run in a Kube cluster or on bare metal runners at an HPC site - {ii';f,:]ﬂers]
- [$ 1
— Sends progress to CDash mirrors:
cloud_gitlab: https://mirror.spack.io
gitlab-ci:

bioeline Job mappings:
ipeline Jobs 123
- spack-cloud-ubuntu:
Stage-0 Stage-1 Stage-2 Stage-3 match:
- os=ubuntul8.04
@ diffutils 3.6 gc... © @ bzip2 1.0.6 gcc... © @ boost1.69.0g.. © @ gdbm 1.181gc... © runner-attributes:
tags:
@ diffutils 3.6 gc... © @ bzip2 1.0.6 gcc... © @ boost1.69.0g.. © @ gdbm 1.181gc... © - spac k-k8s
image: spack/spack_builder_ubuntu_18.04
gsl 2.5 gcc@5.... O libxml22.9.8g.. © libtool 2.4.6 gc... © libpciaccess 0.... © - - -
© © © © - spack-cloud-centos:
@ gsl 2.5 gcc@5.... © @ libxml22.98g.. © @ libtool 2.4.6 gc... © @ libpciaccess 0.... © match:
- os=centos?
(@) libiconv 115 gc... © (¥mar418gec.. © (D readline 7.0 gc.. © (©) sqlite 3.26.0 g... runner-attributes:
tags:
(@ libiconv 115 gc... © (Wmara18gec.. © (Dreadline 7.0 gc.. © (¥) sqlite 3.26.0 g... - spack-k8s
image: spack/spack_builder_centos_7
@ libsigsegv 2.11.. © @ ncurses 6.1gc... © cdash:
@Iibsigsegv 21.. Q @ncurses 6.1gc.. © bUlld—g roup: Release TEStlng

url: https://cdash.spack.io
project: Spack
site: Spack AWS Gitlab Instance

P =2 WKitware

E4S is ECP’s curated, Spack-based software distribution

spack:
specs:
- openpmd-api - adios - gotcha
- py-libensemble”~python@3.7.3 — darshan-runtime - caliper
- - - hypre - darshan-util - papi
° E4S j t t f Sp k p k g - mfem - veloc - py-jupyterhub
IS us a se o ac ac a es - trilinos@12.14.1+dtk+intrepid2+shards - scr - zfp
- sundials - parallel-netcdf - sz
_ 1 H H - strumpack - qthreads — libnrm
60+ packages (297 including dependencies) L R i
. . - superlq - bo}t - ninja
— Growing to include all of ST and more o - J ohkos wermels
- hdf5 - kokkos+openmp #- aml
- adios2 - openmpi #- unifyfs
H . - dyninst - umpire #- flecsi+cinch
 Users can install E4S packages: - tbaue o~ potse
- tau - globalarrays #- faodel
. . - hpctoolkit
— In their home directory packages
QU
. providers:
— In a container mpi: [spectrun-npi]
target: [ppc64le]
cuda:
Crea e . buildable: false
» Facilities can install E4S packages: versson el 2e
cuda@10.1.243: cuda/10.1.243
O b t | spectrum-mpi:
- n are me a buildable: false
version:
H - 10.3.1.2
- In a Contalner modules:
spectrum-mpi@10.3.1.2: spectrum-mpi/10.3.1.2-20200121
config:
° misc_cache: $spack/cache

Users and facilities can choose parts they want bui_stage: sspack/bui-stage

install_tree: $spack/$padding:512

- spack install only the packages you want view: false

concretization: separately|

— Or just edit the list of packages (and configurations) you
want in a spack.yaml file Actual E4S manifest (spack.yaml) for OLCF Ascent

COMPUTING
PROJECT

E\(E\\,P More on E4S at https://eds.io

https://e4s.io/

E4S team has built a binary cache with over

27,000 Spack binary packages

 Built for multiple OS’s, architectures

» E4S team is working with ECP projects to
accelerate their build pipelines

» Improved performance of cloud CI for one
project by 10-100x

— Previously, builds took too long for free cloud ClI
— Project can now iterate faster using
Spack/E4S binaries

* We are rapidly building out binary build
capabilities for Spack

— Aim to have optimized binaries for most
platforms in Frontier/El Capitan timeframe

—
E(CP 225

<

® ® T3 https:/joaciss.uoregon.edufes: X +

C @& oaciss.uoregon.edu/e4s/inventory.html %) @ s e BT ¢ v E @

B [binaries 5 AWS DC © EOR |[B Pricer B Solvers [E5 links-to-read @ IM

E4S Build Cache for Spack 0.16.0

To use this build cache, just add it to your Spack

aps » B © @ o ¥ in

spack mirror add E4S https://cache e4s.io
weet https://oaciss uoregon edu/eds/eds.pub
spack gpg trust eds.pub
Click on one of the packages below to see a list of all available variants.
@® All Architectures O PPC64LE O X86_64
@ All Operating Systems O Centos 7 O Centos8 O RHEL7 O RHEL8 O Ubuntu 18.04 O Ubuntu 20.04
Last updated: 12-15-2020 14:22 PST

27435 Spack packages

adiak@0.1.1 adios2@2.50 adios2@2.6.0 adios@1.13.1 adlbx@0.92 adol-c@2.72 amg@1.2 aml@0.1.0 amrex@20.07 amrex@20.09 amrex@20.10 amrex@20.11

amrex@20.12 ant@1.100 ant@1.10.7 arborx@0.9-beta argobots@1.0 argobots@1.0rcl argobots@1.0rc2 arpack-ng@3.7.0 arpack-ng@3.8.0 develop

assimp@4.0.1 autoconf-archive@2019.01.06 autoconf@2.69 automake@1.16.1 automake@1.162 axl@0.1.1 axl@0.30 axom@0.3.3 axom@0.4.0 bash@5.0
bdftopef@1.0.5 berkeley-db@18.1.40 berkeley-db@6.2.32 binutils@2.31.1 binutils@2.32 binutils@2.33.1 binutils@2.34 bison@3.4.2 bison@3.64 bison@3.7.4
blaspp@2020.10.02 blt@0.3.6 blt@develop bmi@develop bolt@1.0 bolt@1.0rc2 bolt@1.0rc3 boost@1.70.0 boost@1.72.0 boost@1.73.0 boost@1.74.0
butterflypack@1.1.0 butterflypack@1.2.0 butterflypack@1.2.1 bzip2@1.0.8 c-blosc@1.17.0 caliper@2.0.1 caliper@2.2.0 caliper@2.3.0 caliper@24.0 camp@0.1.0

camtimers@master ~ catalyst@5.6.0 cinch@develop cinch@master cmake@3.13.4 ke@3.14.5 ke@3.14.7 ke@3.154 cmake@3.162 cmake@3.16.5

cmake@3.17.1 ke@3.17.3 ke@3.18.0 ke@3.18.1 cmake@3.18.4 ke@3.19.0 codar-c} h@develop comgr@3.9.0 conduit@develop conduit@master
coupler@master cpio@2.13 cuda@10.1.243 cuda@10.289 cuda@11.02 cuda@11.1.0 cuda@11.1.1 curl@7.63.0 curl@7.71.0 curl@7.720 curl@7.730 curl@7.74.0
darshan-runtime@3.1.7 darshan-runtime@3.1.8 darshan-runtime@3.2.1 darshan-util@3.1.7 darshan-util@3.1.8 darshan-util@3.2.1 diffutils@3.7 doxygen@1.8.15
dtcmp@1.1.0 dtemp@1.1.1 dyninst@10.1.0 dyninst@10.2.0 dyninst@10.2.1 effis@develop eigen@3.3.7 eigen@3.3.8 elfutils@0.177 elfutils@0.178 elfutils@0.179
elfutils@0.180 elfutils@0.181 elfutils@0.182 emacs@26.2 ember@1.0.0 environment-modules@4.3.1 er@0.0.3 examinimd@1.0 exmcutils@0.5.7 expat@2.2.10
expat@2.29 faodel@1.1906.1 fftw@3.3.8 findutils@4.60 flatcc@0.5.3 flecsi@1 flecsi@develop flecsi@master flex@2.64 flit@2.1.0 font-util@1.3.2
fontconfig@2.12.3 fontsproto@2.1.3 freetype@2.10.1 gasnet@2019.3.0 gasnet@2020.3.0 gcc@640 gec@7.30 gec@8.10 gdbm@1.18.1 geopm@1.0.0-rc2

gettext@0.20.1 gettext@0.20.2 gettext@0.21 ginkgo@1.2.0 ginkgo@1.3.0 git@221.0 git@2.28.0 git@2.29.0 glm@0.9.7.1 globalarrays@5.7 globalarrays@5.8

https://oaciss.uoregon.edu/e4s/inventory.html

We are expanding our Cl builds to include every pull request!

0 Spack Contributions
on GitHub

¢

J Pipelines running in
J AWS

Pipelines at LLNL
‘' (in progress)
\ 4

Pipelines at U. Oregon
(in progress)

<!.

,,,,,,

E4S spack.yaml GitLab CI builds (changed) packages

v @ ci/gitlab/gitlab.spack.io — Pipeline passed on GitLab ' configuration o On every pU” request .
* On every release branch
@ « Different compilers (Intel soon!)

* New security support contributions from forks
— Sandboxed build caches for test builds
— Authoritative builds on mainline only after approved merge

¢ Kitware AWS

Spack v0.16.0 was released in November

Major new features:
1. New Concretizer (experimental)

spack test (experimental)
spack develop

Parallel environment builds
Custom base images for spack containerize

spack external find support
 now finds 15 common packages (including perl, MPI, others)

7. Support for aocc, nvhpc, and oneapi compilers

= 5,050 packages (Over 1,500 added since 0.13.1 a year ago)

= Full release notes: https://github.com/spack/spack/releases/tag/v0.16.0

https://github.com/spack/spack/releases/tag/v0.16.0

Spack’s concretizer has gotten pretty complicated

Sources for constraints « Current implementation is ad-hoc:

— Traverse the DAG

— Evaluate conditions, add dependencies

Command Line g

— Fill in defaults from many sources

Environments o — Repeat until DAG doesn’t change
) * Issues:
Local config gm .\u /‘ Concretizer — Limited support for backtracking causes some
A graphs to resolve incorrectly

— Some constraints are strictly ordered
Defaults — — Lots of conditional complexity

» Design doesn’t scale to all the criteria

Paclgag_e o — Hard to add new features/logic
repositories

— Can be slow

The new concretizer is finally here!

New concretizer leverages Clingo (see potassco.org)

Clingo is an Answer Set Programming (ASP) solver
— ASP looks like Prolog; leverages SAT solvers for speed/correctness
— ASP program has 2 parts:
1. Large list of facts generated from our package repositories and config

— 20,000 — 30,000 facts is typical — includes dependencies, options, etc.
2. Small logic program (~700 lines), including constraints and optimization criteria

New algorithm on the Spack side is conceptually simpler:
— Generate facts for all possible dependencies, send to logic program
— Optimization criteria express preferences more clearly
— Build a DAG from the results

New concretizer solves many specs that current concretizer can'’t
— Backtracking is a huge win — many issues resolved
— Currently requires user to install clingo with Spack
— Solver will be automatically installed from public binaries in 0.17.0

,—‘\\
\ EXASCALE
) COMPUTING
\ / PROJECT

0
1
2
3
4
5
6
7
8
9
1

Some facts for the HDF5 package

spack test: write tests directly in Spack packages,

so that they can evolve with the software

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
"""GNU libsigsegv 1s a library for handling page faults in user mode.

mmnon

... spack package contents ...
extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dir.join(‘smoke_test.c’)

self.run_test(
‘cc’, [
"-I%s' % self.prefix.include,
"-L%s' % self.prefix.lib, '-lsigsegv’,
smoke_test_c,

v Ll

-0', 'smoke_test'

]

purpose="check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegvl': ['Test passed’], purpose='check sigsegvl output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegvZ output’)

—
\\ EXASCALE
COMPUTING
\ PROJECT

Tests are part of a regular Spack recipe class

Easily save source code from the package

User just defines a test() method

Retrieve saved source.
Link a simple executable.

Spack ensures that cc is a compatible compiler

Run the built smoke test and verify output

Run programs installed with package

spack external find (new in v0.15, updated for 0.16)

class Cmake(Package):

age): » Spack has has had compiler
executables = ['cmake'] i)
detection for a while

— Finds compilers in your PATH
(os.path.b (p), p) f ' _in_prefi ;
) 0s.pa asename(p), p) for p in exes_in_prefix _ RGngterS them fOr use

if 'cmake' not in exe_to_path:
return None

@classmethod
def determine_spec_details(cls, prefix, exes_in_prefix):
exe_to_path = dict(

* We can find any package now
— Package defines:

cmake = spack.util.executable.Executable(exe_to_path['cmake'])
output = cmake('--version', output=str)
if output:
match = re.search(r'cmake.xversion\s+(\S+)', output)
if match:
version_str = match.group(1)
return Spec('cmake@{0}'.format(version_str))

e possible command names
* how to query the command

— Spack searches for known
commands and adds them to

Logic for finding external

: : : : configuration
installations in package . py e °
externals: « Community can easily enable tools

- spec: cmake@3.15.1
prefix: /usr/local

to be set up rapidly

= packages . yamlconfiguration
EL P &5

spack develop lets developers work on many packages at once

« Developer features so far have focused on spack env activate .
ingle packages (spack dev-build, etc.) spack add myapplication
singi€ p g p ’ . spack develop axom@0.4.0

spack develop mfem@4.2.0
 New spack develop feature enables

development environments
- Work on a code $ 1s

— Develop multiple packages from its spack.yaml axom/ mfem/
dependencies

— Easily rebuild with changes

$ cat spack.yaml

« Builds on spack envirnoments spack:
: : : specs:
— Required changes to the installation model for — myapplication # depends on axom, mfem

dev packages

develop:
— axom @0.4.0
— mfem @develop

— dev packages don’t change paths with
configuration changes

— Allows devs to iterate on builds quickly

Under ECP, we are working to support the many exascale and pre-
exascale platforms

* v0.16 has much-needed support for new vendor compilers
— oneapi: Intel
— nvhpc: NVIDIA
- aocc: AMD

« Tammy Dahlgren leading initiative to use spack test to test
E4S on ECP early access systems

— We will be running continuous smoke tests for the ECP stack

EXASCALE COMPUTING PROJECT

 GPU integration across the stack will be an ongoing focus
- 3 GPUs: AMD, NVIDIA and Intel

Roadmap: We are working with HPE/Cray on tighter PE integration

* Using Cray Programming Environment’s MPI, libsci, etc.
currently requires a fair amount of conflguratlon

— Users have to register externals and go through modules
— PrgEnvs make it hard to be precise about dependencies

 PE team has worked with us to develop a JSON format to
describe PE contents

— All packages and dependencies

— Build provenance (compilers, targets, etc.)

— Installation prefix

— Which RPM it came from (interesting for containers)

v 14uwf63n417tuwf rdygfxmmit7yus54",

« We’'ll be auto-detecting PE packages from this JSON Cil e
— No more manual setup for PE packages
— Manifest is included in current HPC/Cray PE releases
— Currently iterating w/HPE on bugfixes, adding Spack support

"prefix": "/opt/cray/pe/netcdf-hdf5parallel/4.7.4.0/cce/90",
"rpm": "cray-netcdf-4.7.4.0-crayclang90-202007092040.ac3e2015515ab-0.sles15.x86_64.rpm",
"hash": "hsm5hatcfepabhbfynpu2iv6cxfiod7i"

b

= (C\\F’ Cray PE JSON descriptor

Spack 0.17 Roadmap: permissions and directory structure

« Sharing a Spack instance
— Many users want to be able to install Spack on a cluster and "'module load spack’
— Installations in the Spack prefix are shared among users
— Users would spack 1install to their home directory by default.

— This requires us to move most state out of the Spack prefix
« |nstallations would go into ~/.spack/...

» Getting rid of configuration in ~/.spack
— While installations may move to the home directory, configuration there is causing issues
— User configuration is like an unwanted global (e.g., LD_LIBRARY_PATH €)
« Interferes with Cl builds (many users will rm -rf ~/.spack to avoid it)
» Goes against a lot of our efforts for reproducibility
« Hard to manage this configuration between multiple machines
— Environments are a much better fit
« Make users keep configuration like this in an environment instead of a single config

Spack 0.17 Roadmap: compilers as dependencies

« We need deeper modeling of compilers to handle
compiler interoperability

— libstdc++, libc++ compatibility
— Compilers that depend on compilers
— Linking executables with multiple compilers

* First prototype is complete!

— We've done successful builds of some packages using
compilers as dependencies

— We need the new concretizer to move forward!

 Packages that depend on languages
— Depend on cxx@2011, cxx@2017, fortran@1995, etc
— Depend on openmp@4.5, other compiler features
— Model languages, openmp, cuda, etc. as virtuals

O Already-installed dep

7’
a 7 Compiler-imposed dep

Compilers and runtime libs fully modeled
as dependencies

LLNL recently kicked off a 3-year research project called BUILD

Basic premise: humans can’t generate all the Human-generated constraints ~ Compatibility Models
compatibility constraints

— Version ranges, conflicts, in Spack packages not precise

f(t1) g(t1, t2)
- rely on maintainers to get right. i v

B version v2, defines t2

A

BUILD aims to understand software compatibility
— Develop ABI compatibility models
- Extract ABI information from binaries using libabigail, dyninst
— Augment compatibility rules in solvers with ABI info

— Enable automatic and ABIl-compatible reuse of system
binaries, foreign binary packages

h(t3) i(t1, t3)

A

Past 10-20 years have brought enormous
improvements in solver technology

— CDCL algorithms, optimizing SMT and ASP solvers

— Time is right to attack packaging with better solving Resolved.
ABIl-compatible
BUILD will integrate binary compatibility checks into Graph

dependency solvers

More in our talk in the FOSDEM Dependency Management Devroom on Sunday!

Approved for public release

=R U.S. DEPARTMENT OF Office of

—— s 5 2
ECP & I VA3 (U/ENERGY | science

