
1

Todd Gamblin

Advanced Technology Office
Lawrence Livermore National Laboratory

What’s new in Spack?
Easybuild User Meeting 2021

2

• Spack automates the build and installation of scientific software

• Packages are parameterized, so that users can easily tweak and tune configuration

• Ease of use of mainstream tools, with flexibility needed for HPC

• In addition to CLI, Spack also:
• Generates (but does not require) modules
• Allows conda/virtualenv-like environments
• Provides many devops features (CI, container generation, more)

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

3

Spack is used worldwide!

Recently surpassed 5,200 software packages
Recently surpassed 730 contributors

4

The Spack community continues to grow steadily

Broke 3,400 monthly
active users this year

Spack

Easybuild

*as measured by
active users on our
readthedocs site

5

One month of Spack development is pretty busy!

6

• In November 2015, LLNL provided most of
the contributions to Spack

• Since then, we’ve gone from 300 to over
5,000 packages

• Most packages are from external
contributors!

• Many contributions in core, as well.

• We are committed to sustaining Spack’s
open source ecosystem!

Contributions to Spack continue to grow!

7

Spack is used on the fastest supercomputers in the world

Includes the current top 3:
1. Fugaku at RIKEN (Fujitsu ARM a64fx)
2. Summit at ORNL (Power9/Volta)
3. Sierra at LLNL (Power9/Volta)

8

• Spack will be used to build software for the three
upcoming U.S. exascale systems

• ECP has built the Extreme Scale Scientific Software Stack
(E4S) with Spack – more at https://e4s.io

• Spack will be integral to upcoming ECP testing efforts.

Spack is critical for ECP’s mission to create a
robust, capable exascale software ecosystem.

https://e4s.io

Spack is the most depended-upon
project in ECP

https://e4s.io/

9

• First widely distributed Spack Survey
– Sent to all of Slack (900+ users)
– All of Spack mailing list, ECP mailing list

• Got 169 responses!

• Takeaways:
– People like Spack and its community!
– Docs and package stability need the

most work
– Concretizer features and dev features are

the most wanted improvements

Spack User Survey 2020

A writeup of the results is here:

https://spack.io/spack-user-survey-2020
Article also has links to the full survey data.

10

The Spack community is targeting a diverse range of GPUs
and over 50% are targeting AMD
A detailed writeup of the results is at https://spack.io/spack-user-survey-2020/

Spack community is ~36% ECP
GPU and compiler needs of ECP are more diverse

than the broader Spack community.

https://spack.io/spack-user-survey-2020/

11

We have seen an increase in industry contributions to Spack

§ Fujitsu and RIKEN have contributed a huge number of packages
for ARM/a64fx support on Fugaku

§ AMD has contributed ROCm packages and compiler support
— 55+ PRs mostly from AMD, also others
— ROCm, HIP, aocc packages are all in Spack now

§ Intel contributing oneapi support and compiler licenses for our
build farm

§ NVIDIA contributing NVHPC compiler support and other features

§ ARM and Linaro members contributing ARM support
— 400+ pull requests for ARM support from various companies

§ AWS is collaborating with us on our build farm, making optimized
binaries for ParallelCluster
— Joint Spack tutorial in July with AWS had 125+ participants

12

• Each expression is a spec for a particular configuration
– Each clause adds a constraint to the spec
– Constraints are optional – specify only what you need.
– Customize install on the command line!

• Spec syntax is recursive
– Full control over the combinatorial build space

Spack provides a spec syntax to describe customized installations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=zen2 set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information

13

Spack packages are templates
They use a simple Python DSL to define how to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(same spec syntax)

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle

transport proxy/mini app.
"""

homepage = "https://computation.llnl.gov/projects/co-design/kripke"
url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.’)
variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when='+mpi’)
depends_on('cmake@3.0:', type='build’)

def cmake_args(self):
return [

'-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
'-DENABLE_MPI=%s' % ('+mpi’ in self.spec),

]

def install(self, spec, prefix):
Kripke does not provide install target, so we have to copy
things into place.
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.

14

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

mpileaks@2.3
%gcc@4.7.3
=linux-ppc64

mpich@3.0.4
%gcc@4.7.3
=linux-ppc64

callpath@1.0
%gcc@a4.7.3+debug

=linux-ppc64

dyninst@8.1.2
%gcc@4.7.3
=linux-ppc64

libelf@0.8.11
%gcc@4.7.3
=linux-ppc64

libdwarf@20130729
%gcc@4.7.3
=linux-ppc64

Abstract, normalized spec
with some dependencies.

mpileaks

mpi

callpath@1.0
+debug

dyninst

libelf@0.8.11

libdwarf

N
orm

alize

Concretize Store

spec:
- mpileaks:

arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
variants: {}
version: '1.0'

- adept-utils:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies:
boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
mpich: aa4ar6ifj23yijqmdabeakpejcli72t3

hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
variants: {}
version: 1.0.1

- boost:
arch: linux-x86_64
compiler:
name: gcc
version: 4.9.2

dependencies: {}
hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
variants: {}
version: 1.59.0

...

spec.yaml

Detailed provenance is stored
with the installed package

15

opt
!"" spack

#"" darwin-mojave-skylake
$!"" clang-10.0.0-apple
$ #"" bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
$ #"" python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
$ #"" sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
$!"" zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
#"" darwin-mojave-x86_64
$!"" clang-10.0.0-apple
$!"" coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

§ Each unique dependency graph is a
unique configuration.

§ Each configuration in a unique directory.
— Multiple configurations of the same

package can coexist.

§ Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

§ Installed packages automatically find
dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set

LD_LIBRARY_PATH
— Things work the way you built them

Spack handles combinatorial software complexity

mpileaks

mpi

callpath dyninst

libdwarf

libelf

Installation Layout

Dependency DAG

opt
!"" spack

#"" darwin-mojave-skylake
$!"" clang-10.0.0-apple
$ #"" bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
$ #"" python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
$ #"" sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
$ #"" xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
$!"" zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
#"" darwin-mojave-x86_64
$!"" clang-10.0.0-apple
$!"" coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

Hash

16

• spack.yaml describes project requirements

• spack.lock describes exactly what versions/configurations were
installed, allows them to be reproduced.

• Can also be used to maintain configuration together with Spack
packages.
– E.g., versioning your own local software stack with consistent

compilers/MPI implementations
– Allows developers and site support engineers to easily version

Spack configurations in a repository

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

install build
project

spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

17

Spack can generate multi-stage container build recipes

spack containerize

▪ Any Spack environment can be
bundled into a container image
— Optional container section allows

finer-grained customization

▪ Generated Dockerfile uses multi-
stage builds to minimize size of final
image
— Strips binaries
— Removes unneeded build deps with

spack gc

▪ Can also generate Singularity recipes

▪ Originally included in Spack v0.14,
updated for v0.16 to support arbitrary
base images (OS distros)

18

• Allow users to easily express large cross-products
of builds
– All the packages needed for a facility
– Generate modules tailored to the site
– Generate a directory layout to browse the packages

• Build on the environments workflow
– Manifest + lockfile
– Lockfile enables reproducibility

• Relocatable binaries allow the same binary to be used
in a stack, regular install, or container build.
– Difference is how the user interacts with the stack
– Single-PATH stack vs. modules.

Spack stacks are combinatorial environments
for facility deployments

19

• Builds on Spack environments
– Support auto-generating GitLab CI jobs
– Can run in a Kube cluster or on bare metal runners at an HPC site
– Sends progress to CDash

Spack has GitLab CI integration to automate
package build pipelines

20

E4S is ECP’s curated, Spack-based software distribution

• E4S is just a set of Spack packages
– 60+ packages (297 including dependencies)
– Growing to include all of ST and more

• Users can install E4S packages:
– In their home directory
– In a container

• Facilities can install E4S packages:
– On bare metal
– In a container

• Users and facilities can choose parts they want
– spack install only the packages you want
– Or just edit the list of packages (and configurations) you

want in a spack.yaml file Actual E4S manifest (spack.yaml) for OLCF Ascent

More on E4S at https://e4s.io

https://e4s.io/

21

E4S team has built a binary cache with over
27,000 Spack binary packages

• Built for multiple OS’s, architectures

• E4S team is working with ECP projects to
accelerate their build pipelines

• Improved performance of cloud CI for one
project by 10-100x
– Previously, builds took too long for free cloud CI
– Project can now iterate faster using

Spack/E4S binaries

• We are rapidly building out binary build
capabilities for Spack
– Aim to have optimized binaries for most

platforms in Frontier/El Capitan timeframe

https://oaciss.uoregon.edu/e4s/inventory.html

22

`

We are expanding our CI builds to include every pull request!

E4S spack.yaml
configuration

GitLab CI builds (changed) packages
• On every pull request
• On every release branch
• Different compilers (Intel soon!)

spack ci

Spack Contributions
on GitHub

gitlab.spack.io

• New security support contributions from forks
– Sandboxed build caches for test builds
– Authoritative builds on mainline only after approved merge

Pipelines running in
AWS

Pipelines at LLNL
(in progress)

Pipelines at U. Oregon
(in progress)

23

Major new features:
1. New Concretizer (experimental)
2. spack test (experimental)
3. spack develop
4. Parallel environment builds
5. Custom base images for spack containerize
6. spack external find support

• now finds 15 common packages (including perl, MPI, others)
7. Support for aocc, nvhpc, and oneapi compilers

§ 5,050 packages (Over 1,500 added since 0.13.1 a year ago)

§ Full release notes: https://github.com/spack/spack/releases/tag/v0.16.0

Spack v0.16.0 was released in November

https://github.com/spack/spack/releases/tag/v0.16.0

24

Spack’s concretizer has gotten pretty complicated

• Current implementation is ad-hoc:
– Traverse the DAG

– Evaluate conditions, add dependencies

– Fill in defaults from many sources

– Repeat until DAG doesn’t change

• Issues:
– Limited support for backtracking causes some

graphs to resolve incorrectly

– Some constraints are strictly ordered

– Lots of conditional complexity

• Design doesn’t scale to all the criteria
– Hard to add new features/logic

– Can be slow

Concretizer

Command Line

Environments

Local config

Defaults

Package
repositories

Sources for constraints

25

• New concretizer leverages Clingo (see potassco.org)

• Clingo is an Answer Set Programming (ASP) solver
– ASP looks like Prolog; leverages SAT solvers for speed/correctness
– ASP program has 2 parts:

1. Large list of facts generated from our package repositories and config
– 20,000 – 30,000 facts is typical – includes dependencies, options, etc.

2. Small logic program (~700 lines), including constraints and optimization criteria

• New algorithm on the Spack side is conceptually simpler:
– Generate facts for all possible dependencies, send to logic program
– Optimization criteria express preferences more clearly
– Build a DAG from the results

• New concretizer solves many specs that current concretizer can’t
– Backtracking is a huge win – many issues resolved
– Currently requires user to install clingo with Spack
– Solver will be automatically installed from public binaries in 0.17.0

The new concretizer is finally here!

Some facts for the HDF5 package

26

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
"""GNU libsigsegv is a library for handling page faults in user mode."""

... spack package contents ...

extra_install_tests = ‘tests/.libs’

def test(self):
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dir.join(‘smoke_test.c’)

self.run_test(
'cc’, [

'-I%s' % self.prefix.include,
'-L%s' % self.prefix.lib, '-lsigsegv’,
smoke_test_c,
'-o', 'smoke_test'

]
purpose='check linking’)

self.run_test(
‘smoke_test’, [], data_dir.join('smoke_test.out’),
purpose=‘run built smoke test’)

self.run_test('sigsegv1': ['Test passed’], purpose='check sigsegv1 output’)
self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

spack test: write tests directly in Spack packages,
so that they can evolve with the software

Tests are part of a regular Spack recipe class

Easily save source code from the package

User just defines a test() method

Retrieve saved source.
Link a simple executable.

Spack ensures that cc is a compatible compiler

Run the built smoke test and verify output

Run programs installed with package

27

• Spack has has had compiler
detection for a while
– Finds compilers in your PATH
– Registers them for use

• We can find any package now
– Package defines:

• possible command names
• how to query the command

– Spack searches for known
commands and adds them to
configuration

• Community can easily enable tools
to be set up rapidly

spack external find (new in v0.15, updated for 0.16)

Logic for finding external
installations in package.py

packages.yamlconfiguration

28

• Developer features so far have focused on
single packages (spack dev-build, etc.)

• New spack develop feature enables
development environments
– Work on a code
– Develop multiple packages from its

dependencies
– Easily rebuild with changes

• Builds on spack envirnoments
– Required changes to the installation model for

dev packages
– dev packages don’t change paths with

configuration changes
– Allows devs to iterate on builds quickly

spack develop lets developers work on many packages at once

29

Under ECP, we are working to support the many exascale and pre-
exascale platforms

• v0.16 has much-needed support for new vendor compilers
– oneapi: Intel
– nvhpc: NVIDIA
– aocc: AMD

• Tammy Dahlgren leading initiative to use spack test to test
E4S on ECP early access systems
– We will be running continuous smoke tests for the ECP stack

• GPU integration across the stack will be an ongoing focus
– 3 GPUs: AMD, NVIDIA and Intel

30

• Using Cray Programming Environment’s MPI, libsci, etc.
currently requires a fair amount of configuration
– Users have to register externals and go through modules
– PrgEnvs make it hard to be precise about dependencies

• PE team has worked with us to develop a JSON format to
describe PE contents
– All packages and dependencies
– Build provenance (compilers, targets, etc.)
– Installation prefix
– Which RPM it came from (interesting for containers)

• We’ll be auto-detecting PE packages from this JSON
– No more manual setup for PE packages
– Manifest is included in current HPC/Cray PE releases
– Currently iterating w/HPE on bugfixes, adding Spack support

Roadmap: We are working with HPE/Cray on tighter PE integration

Cray PE JSON descriptor

31

• Sharing a Spack instance
– Many users want to be able to install Spack on a cluster and `module load spack`
– Installations in the Spack prefix are shared among users
– Users would spack install to their home directory by default.
– This requires us to move most state out of the Spack prefix

• Installations would go into ~/.spack/…

• Getting rid of configuration in ~/.spack
– While installations may move to the home directory, configuration there is causing issues
– User configuration is like an unwanted global (e.g., LD_LIBRARY_PATH 😬)

• Interferes with CI builds (many users will rm -rf ~/.spack to avoid it)
• Goes against a lot of our efforts for reproducibility
• Hard to manage this configuration between multiple machines

– Environments are a much better fit
• Make users keep configuration like this in an environment instead of a single config

Spack 0.17 Roadmap: permissions and directory structure

32

• We need deeper modeling of compilers to handle
compiler interoperability
– libstdc++, libc++ compatibility
– Compilers that depend on compilers
– Linking executables with multiple compilers

• First prototype is complete!
– We’ve done successful builds of some packages using

compilers as dependencies
– We need the new concretizer to move forward!

• Packages that depend on languages
– Depend on cxx@2011, cxx@2017, fortran@1995, etc
– Depend on openmp@4.5, other compiler features
– Model languages, openmp, cuda, etc. as virtuals

Spack 0.17 Roadmap: compilers as dependencies

1

intel@17

gcc@xxx

B

R

2

intel@16

B

gcc@4.9.3

R

L

Already-installed dep

Compiler-imposed dep

libstdc++

L
L

Compilers and runtime libs fully modeled
as dependencies

33

Human-generated constraints

LLNL recently kicked off a 3-year research project called BUILD

• Basic premise: humans can’t generate all the
compatibility constraints
– Version ranges, conflicts, in Spack packages not precise
– rely on maintainers to get right.

• BUILD aims to understand software compatibility
– Develop ABI compatibility models
– Extract ABI information from binaries using libabigail, dyninst
– Augment compatibility rules in solvers with ABI info
– Enable automatic and ABI-compatible reuse of system

binaries, foreign binary packages

• Past 10-20 years have brought enormous
improvements in solver technology
– CDCL algorithms, optimizing SMT and ASP solvers
– Time is right to attack packaging with better solving

• BUILD will integrate binary compatibility checks into
dependency solvers

mpileaks
version=v1

mpi
version=v2

callpath
version=v3

dyninst
version=v4

libelf
version=v5

libdwarf
version=v6

Resolved
ABI-compatible

Graph

Solver

B version v2, defines t2

f(t1) g(t1, t2)

h(t3) i(t1, t3)

Compatibility Models

More in our talk in the FOSDEM Dependency Management Devroom on Sunday!

34

Approved for public release

