
Automate Module Testing
with Lmodule

Shahzeb Siddiqui
HPC Consultant/Software Integration Specialist
Lawrence Berkeley National Laboratory
6th Easybuild User Meeting
Jan 29th, 2021

https://lmodule.readthedocs.io/

https://github.com/buildtesters/lmodule

http://hpcbuildtest.slack.com/

https://lmodule.readthedocs.io/
https://github.com/buildtesters/lmodule
http://hpcbuildtest.slack.com/

User Survey

● According to 3rd Easybuild User Survey (slide 30) the survey
indicates 59% have more than 500+ modules deployed in
production.

● Automate module testing for production stack will help increase
confidence of software stack and reduce incoming user tickets

https://users.ugent.be/~kehoste/eum20/eum20_00_state_of_the_union.pdf

What is Lmodule

● Lmodule is a Python API for module
system for automating module load
test for software stack

● This project grew out of buildtest
and it was deprecated in v0.8.0 and
now a standalone Python API
available for rest of community.

● Lmodule uses spider tool from
Lmod to get all modules

● To install Lmodule run pip install
lmodule or see Installation Guide

https://buildtest.readthedocs.io/
https://lmod.readthedocs.io/en/latest/136_spider.html
https://lmodule.readthedocs.io/en/latest/installation.html

Lmodule overview

● Currently there are three main classes in Lmodule:
• Module – Implements the features found in module
command
• Spider – Use Lmod spider to query software stack
• ModuleLoadTest – Automate module load test of
software stack

Module

● You can pass module names as a string or list to the Module class
and use get_command to retrieve the module command

● You can test the modules using test_modules and it will return an
exit code

● You can use is_avail method to check if module is available. This
runs module is-avail in backend

Tweak Module purge behavior

● You can pass in purge and force parameters to Module class which
tweaks behavior of module command. By default, we run module
purge but this can be disabled if purge=False is passed.

● To force purge modules, pass force=True this assumes purge is
enabled, but if purge=False then force will be ignored

Module Collection Support

● Lmodule supports module collections including
○ Save modules in collection (module save)
○ Show modules for a given collection (module describe)
○ Get module collection (module restore <collection>)
○ Test module collection

● You can use the save() method to save modules into default collection, its equivalent to running
module save

● Alternately, you can save modules into a collection name by passing name of collection into the
save method.

● In example below we save GCCcore/8.3.0 and zlib modules into collection gcc_zlib, in backend
its loading the modules and running module save gcc_zlib

Show and Test Module Collections

● The describe method can be used to show contents of module
collection. If no argument is specified it shows default collection.

● We can use get_collection to retrieve module restore command for
a given module collection and use test_collection to test the
collection. The test_collection will return an exit code (0, 1) which
can be used to detect test faulty user collection.

Spider

● Lmodule can leverage Lmod spider tool to query module stack.
● Lmodule supports the following features with Spider class
○ Get unique software
○ Get Module Trees
○ Retrieve all Module Names
○ Retrieve Parent Modules
○ Get all versions of particular software

https://lmod.readthedocs.io/en/latest/136_spider.html

Get Unique Names

● The Spider class can be called without any argument and it will
search all modules in MODULEPATH.

● The get_names will retrieve unique modules reported by Spider.
● Alternately, we can filter spider output by module tree by passing

root of module tree as argument to Spider class

Filter modules with Spider

● The get_modules can be used to filter modules
by name, this can be used to test a subset of
modules.

● We can pass a list of module names to
get_modules which will filter out all modules
except for ones provided. This can used to find
all modules for a given name

● In this example we use Spider class to retrieve
all modules and filter by cuda and gcc modules
then we test each module

Module File

Spider Content

● The Spider class runs $LMOD_DIR/spider –o spider-json $MODULEPATH and
loads the JSON content and parses the structure to extract meaningful data

● The spider content has changed between Lmod version 6 and 7. This is based on
Lmod 8.2.10 on Ascent

Module Name

Module Full Canonical Name

Module Version
Parent Modules

ModuleLoadTest

● The ModuleLoadTest class is only compatible with Lmod since it relies on
spider which aims to automate module load test

● The current features includes:
○ Test all modules by MODULEPATH (default behavior)
○ Test all modules by specific tree
○ Tweak module purge behavior during test
○ Filter modules by name and full canonical name
○ Set threshold to stop after X number of tests
○ Test modules in login shell

ModuleLoadTest

● To get started you can import the class via

● To test all modules set by MODULEPATH just call the
class

Tweak Purge Behavior

● We can tweak purge behavior during module test using
purge=[True|False]

● The debug parameter will show the command executed
along with return code of test. By default debug is
disabled

Test modules in Login Shell

● By default all modules are tested in subshell, however
we can test each module in login shell using the
login=True

● This can be useful when testing modules in clean
environment.

Filtering Modules

● You can filter modules during test, this can be set by passing name
argument to ModuleLoadTest. The name field takes a list of module names
and Lmodule will test all module entries (all versions) found by spider

● In this example, we can test all cuda modules from a module tree as
follows

Lmodule for environment modules

• Environment modules added support for parsing modules in json format in v4.5 see
https://modules.readthedocs.io/en/latest/MIGRATING.html#json-format-output.

• This was inspired by issue #303 in order to test modules for entire stack

• You can automate module testing for environment-modules using Module class this
required some bit of work.

• For full source see sourcefile

https://modules.readthedocs.io/en/latest/MIGRATING.html
https://github.com/cea-hpc/modules/issues/303
https://github.com/buildtesters/lmodule/blob/master/examples/environmentmodules_moduleloadtest.py

Lmodule Test
• We leverage Lmodule to automate module testing with buildtest
• In this example, we declare one test per module tree at Cori.
• We check output to see if we have a 100% pass rate

• In this test, we notice test moduletest_craype_modulefiles fails because
module perftools-lite/7.0.6 failed because perftools-base must be loaded

https://lmodule.readthedocs.io/en/latest/
https://buildtest.readthedocs.io/

Known Issue – Invalid Module Names

• In environment-modules version 3.x
loading an unknown module will return a 0
exit code. This behavior is not present in
environment-modules 4.x and Lmod

Conclusion

• Modules are the primary interface between users software stack, therefore it’s
important HPC sites test their software stack through module load testing.

• The first release v0.1.0 was available on Mar 25, 2020
• For further assistance join post your issue at

https://github.com/buildtesters/lmodule/issues or join slack at #lmodule workspace
• References:

• Docs: https://lmodule.readthedocs.io/
• Examples: https://lmodule.readthedocs.io/en/latest/examples.html
• GitHub: https://github.com/buildtesters/lmodule
• PyPI: https://pypi.org/project/lmodule/
• Slack: http://hpcbuildtest.slack.com/

https://github.com/buildtesters/lmodule/releases/tag/v0.1.0
https://github.com/buildtesters/lmodule/issues
https://hpcbuildtest.herokuapp.com/
https://lmodule.readthedocs.io/
https://lmodule.readthedocs.io/en/latest/examples.html
https://github.com/buildtesters/lmodule
https://pypi.org/project/lmodule/
http://hpcbuildtest.slack.com/

