
Shahzeb Siddiqui
HPC Consultant/Software Integration Specialist
Lawrence Berkeley National Laboratory

Buildtest: Testing Framework
for HPC Systems

6th Easybuild User Meeting
Jan 29th, 2021

https://buildtest.readthedocs.io/

http://hpcbuildtest.slack.com/

https://github.com/buildtesters/buildtest

https://buildtest.readthedocs.io/
http://hpcbuildtest.slack.com/
https://github.com/buildtesters/buildtest

What is buildtest

• Buildtest is a HPC Testing Framework for
acceptance and regression testing for HPC
system.

• Tests are written in YAML that is validated with
JSON schema.

• Buildtest automates test creation and
execution of test

• Target Audience: HPC Staff
• Buildtest is not

– Replacement for build tools like make, cmake, autoconf
– software build framework (easybuild, spack, nix, guix)

YAML and JSON Schema

• We picked YAML as choice for writing test
configuration given its ease of use and widely used in
many open source projects such as Travis, Ansible,
Gitlab CI, GitHub workflows, Kubernetes, Docker
Compose.

• JSON Schema is a vocabulary that annotates and
validates JSON documents.

• JSON and YAML are represented as a dict in python
which makes it easy to convert between each data
format. We write JSON Schemas to help validate tests
that are written in YAML.

• Buildtest adopts the versioned based schema used in
Docker compose to help continue schema
development while retaining backward compatibility
with previous versions.

Schemas
• The schema development is implemented independent to buildtest. The schemas

and docs are hosted at https://buildtesters.github.io/buildtest/
• We run regression test against example YAML files for each schema to ensure

schemas are written in accordance to desired YAML construct.

• We automate JSON Schema documentation using adobe/jsonschema2md into
Markdown pages and publish schema and documentation to GitHub pages

• Schemas are versioned to allow development to schemas and its YAML structure.

https://buildtesters.github.io/buildtest/
https://github.com/adobe/jsonschema2md

Command Line Usage

Command Description

buildtest build –b <FILE> Build from a single file

buildtest build –b <DIR> Build all buildspecs in directory

buildtest build –b <FILE> -b <DIR> Build from a file and directory

buildtest build –-tags <TAGNAME> Build all buildspecs with tag <TAGNAME> from buildspec
cache

buildtest build –b <FILE> -b <DIR> --tags <TAGNAME> Build buildspec by file, directory and tag

buildtest build –b <dir> -x <file> –x <dir> Build buildspec by directory and exclude a file and directory

buildtest build –executor <EXECUTORNAME> Build all tests with executor <EXECUTORNAME> from
buildspec cache

Build by Buildspec

List of Discovered buildspecs

JSON Schema for
validating buildspec

Name of Test

Unique Test ID

State of test, can
be PASS or FAIL

Generated Test

Building By Tags

General Pipeline

• For every discovered buildspecs, buildtest will do the following:
– Parse: Validates buildspec with JSON Schema
– Build: Generates testscript from YAML
– Run: Executes tests via local or batch executor
– Gather Results: Write output/error file and get return code
– Update Report: Update report file with test results including any

metadata

Buildspec Validation Process

• Every buildspec is
validated by global
schema and a
subschema defined by
type field.

• Buildtest will skip any
buildspecs that fails
validation.

Name of Test

Schema Type
Description of Test

Name of Executor

Tag Name

Script

Declaration of tests
Schema Version

Buildspec Structure

Control build stages

• For development of buildspec, you
may want to build test without running
it. This can be done via –stage
option.

• With –stage=parse we can stop after
the Parse stage that’s useful if you
want to validate buildspec.

• We can also stop after build phase
using –stage=build which can be
used if you want to inspect generated
script

Return Code Matching

• The returncode field can be used to customize how test is passed, by default a
returncode 0 is a PASS

• The returncode can be a a single number or a list of returncodes to match

Customize Shell

• The shell property can be used
to customize shell and shell
options that are passed to test.

• The default shell is /bin/bash

Python Shell

• The run property can be used for writing shell commands or it can be used for
writing python scripts.

• To enable python scripts use shell: python and one must use the python executor
• For more complex python scripts, it’s recommended one develops a python script

and invoke the python script using bash/sh shell.

Python Code

Scheduler Agnostic Configuration

• Buildtest provides a scheduler agnostic
configuration through batch field.

• The batch field implements a subset of
options supported by bsub, sbatch, and
qsub options that are shared between
LSF, Slurm and Cobalt.

Cray Burst Buffer and Data Warp Support

• Cray systems, we can access burst
buffers using BB and DW property.

• In this example we create a
persistent burst buffer named
databuffer of size 10GB with striped
access.

Compiler Selection and Compiler Defaults

• This test will be built using gcc@10.2.0 and gcc@9.3.0
• Compilers are defined in buildtest configuration, one can retrieve compilers using

buildtest config compilers

Source File

Compiler Schema

Start of Compiler Block
Select Compilers based on Regular Expression

Default Section for compilers organized by compiler groups
Default Section for gcc compilers

Set cflags
Set ldflags

Override Compiler Default

• Compiler defaults can be overridden via config
section. This is organized by named compilers
defined in buildtest setting.

• Buildtest will ignore compiler in config if it’s not
picked up in regular expression.

• In this example builtin_gcc will use default
cflags: -O1 while gcc@9.3.0 will use –O2 and
gcc@10.2.0 will use –O3

Multi Compiler Test
• This OpenMP reduction example is built with all gcc,

intel and cray modules.
• OpenMP support for gcc, intel and cray differ slightly

this is defined in compiler group.
• The default all defines configuration inherited by all

compiler groups, in this case all tests sets
environment OMP_NUM_THREADS to 4.

• Properties in all can be overridden at compiler group
or named compiler.

Filter and Format buildspec cache

• We can filter and format
buildspec cache using –filter and
–format option.

• The filter option expects a list of
key=value pair separated by
comma.

• To see list of all filter and format
fields we can use –helpfilter and
–helpformat option

Multi key filter is
evaluated as logical
AND.

Query Test Reports with Filter and Format Examples

• We provide access to test reports through CLI.
The reports are stored in JSON file for post-
processing.

• The buildtest report will display all test results
which can be queried with filter and format
options.

• The –filter option are passed as key=value pair
• Multiple filter arguments can be delimited by

comma separator and buildtest will treat multiple
filter argument as a logical AND operation

• The –format option alter the columns in the
report tables.

Cori Test Suite

Category Description

System Filesystem, mountpoint check, timezone, ping gpfs nodes, /etc/profile.d/ scripts, os release, ulimits, time
test

Filesystem gpfs, lustre, cvmfs, filesystem benchmarks

Network Ping nodes (login, dtn, gerty), ssh test on login nodes, nslookup, ssh host authentication, nameservers

Tools iris, sqs, jobstats, myquota

Slurm sinfo, scontrol, sacctmgr, squeue, ping slurm controller, partitions, esslurm

Jobs Hostname to all QOS, submit to esslurm, timeout, exit1, OOM, create burstbuffer, stage-in to burst
buffer, fail jobs on time-limit/max nodes by queues

Apps OpenACC, OpenMP, MPI, bupc, upc, Spack, darshan, gpuquery, MKL, STREAM, Serial Hello, shifter
pull image, shifter job, E4S Testsuite, Lmodule

Cori Test Suite: https://github.com/buildtesters/buildtest-cori

https://github.com/buildtesters/buildtest-cori

SSH, Ping and Uptime Test

E4S TestSuite on Cori

E4S Test Suite

• Extreme-scale Scientific Software Stack (E4S) is a collection
of spack packages built and tested on several platforms. E4S
is deployed as spack manifest (spack.yaml), containers, and
buildcache.

• The E4S Test Suite is a collection of tests to validate E4S
stack and increase test coverage for deployed stack.

• The main script test-all.sh can be run as standalone program
which will test everything or you can specify an argument to a
directory of tests to run. In example below we run the qthreads
test on Cori.

https://e4s-project.github.io/
https://github.com/E4S-Project/testsuite

Cori E4S Testing Strategy

• We have deployed E4S 20.10 release for Cori with up to 135 installed
specs see https://docs.nersc.gov/applications/e4s/ for more details

• We can leverage upstream E4S testsuite (https://github.com/E4S-
Project/testsuite) to validate the e4s stack since it provides majority of the
tests.

• E4S tests are integrated into Cori testsuite at
https://github.com/buildtesters/buildtest-cori/tree/master/e4s and run using
buildtest via gitlab pipeline.

• Next release of E4S on Cori will utilize spack test to run tests. However,
will want to develop site specific tests that utilize batch queue system.

• We can run all e4s tests using the e4s tags

https://docs.nersc.gov/applications/e4s/
https://github.com/E4S-Project/testsuite
https://github.com/buildtesters/buildtest-cori/tree/master/e4s

Custom Executor for e4s

• We have a custom executor slurm.e4s to run e4s stack through slurm
scheduler.

• The before_script that is sourced for all tests that utilize executor slurm.e4s
executor.

Cori E4S 20.10 Pipeline

Run Post Tests

Remove buildcache

Generate Pipeline via spack ci

Build E4S stack

Deploy Stack

Build all test with e4s tags

2020 Summary of Updates

• Introduce JSON Schema for validating buildspecs and buildtest configuration
• We publish JSON Schema, schema examples, and schema docs on GitHub pages at

https://buildtesters.github.io/buildtest/
• Remove buildtest module features into Lmodule project - https://github.com/buildtesters/lmodule
• Move regression tests from Travis to Github workflow
• Add batch queue support for Slurm, LSF and Cobalt
• Move github organization from https://github.com/HPC-buildtest/buildtest/ to

https://github.com/buildtesters/buildtest/
• Add gitlab CI checks to run regression test on Cori

https://buildtesters.github.io/buildtest/
https://github.com/buildtesters/lmodule
https://github.com/HPC-buildtest/buildtest/
https://github.com/buildtesters/buildtest/

Conclusion

• Buildtest is a testing framework to enable HPC sites to write acceptance tests. Users need basic understanding of YAML in
order to write buildspecs

• Buildtest is not a testsuite, facilities will need to develop tests applicable for their system. There are up to 100+ tests in
Cori testsuite: https://github.com/buildtesters/buildtest-cori to help other facilities to get started.

• For additional help please join Slack (self-invite): https://hpcbuildtest.herokuapp.com/ or post issue at
https://github.com/buildtesters/buildtest/issues

• References:
– Buildtest Docs: https://buildtest.readthedocs.io/en/latest/index.html
– Schema Docs: https://buildtesters.github.io/buildtest/
– GitHub: https://github.com/buildtesters/buildtest
– Installing buildtest: https://buildtest.readthedocs.io/en/latest/installing_buildtest.html
– Getting Started: https://buildtest.readthedocs.io/en/latest/getting_started.html
– Writing Buildspecs: https://buildtest.readthedocs.io/en/devel/writing_buildspecs.html
– References: https://buildtest.readthedocs.io/en/latest/references.html
– Slack Channel: http://hpcbuildtest.slack.com/
– API: https://buildtest.readthedocs.io/en/latest/api/index.html

https://github.com/buildtesters/buildtest-cori
https://hpcbuildtest.herokuapp.com/
https://github.com/buildtesters/buildtest/issues
https://buildtest.readthedocs.io/en/latest/index.html
https://buildtesters.github.io/buildtest/
https://github.com/buildtesters/buildtest
https://buildtest.readthedocs.io/en/latest/installing_buildtest.html
https://buildtest.readthedocs.io/en/latest/getting_started.html
https://buildtest.readthedocs.io/en/devel/writing_buildspecs.html
https://buildtest.readthedocs.io/en/latest/references.html
http://hpcbuildtest.slack.com/
https://buildtest.readthedocs.io/en/latest/api/index.html

Thank You

