
11

Presentation outline

● Compute Canada, where we were, where we are
● Software installation : Goal and design overview
● Tools used :

○ CVMFS
○ Gentoo Nix, EasyBuild
○ Lmod
○ Python

● Monitoring, demo, documentation
● Summary

2

What is Compute Canada ?

3

Compute Canada : the people

4

●
●
● ～

● ～

○

～

Compute Canada : the hardware

What this means
All new Compute Canada sites
1. Need a distribution mechanism

a. CVMFS : CERN Virtual Machine File System

Consistency
2. Independent of the OS (Ubuntu, CentOS, Fedora, etc.)

a. Gentoo (used to be Nix)
3. Automated installation (humans are not so consistent)

a. EasyBuild

Easy to use
4. Needs a module interface that scale well

a. Lmod with a hierarchical structure

Typical process

1. User requests a software to be
installed

2. Staff decides whether it should be
installed globally or in the user’s
account
a. Globally (default route unless

there is a reason not to)
b. User’s account

i. Custom actions

Type Modules
AI 5
Bioinformatics 239
Chemistry 63
Data 19
Geo/Earth 23
Mathematics 82
MPI libraries 7
Physics 48
Various tools 176
Visualisation 28
Misc 38

https://indico.cern.ch/event/608592/contributions/2858287/
https://docs.computecanada.ca/wiki/Available_software
https://docs.computecanada.ca/wiki/Available_software

Software: (simpler) design overview

Compatibility: Nix Gentoo Prefix layer: GNU libc, autotools, make, bash, cat, ls, awk, grep, etc.
module nixpkgs/16.09 => $NIXUSER_PROFILE=$EBROOTNIXPKGS=
/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/16.09
module gentoo/2020 => $EPREFIX=
/cvmfs/soft.computecanada.ca/gentoo/2020, $EBROOTGENTOO=$EPREFIX/usr

Easybuild-generated modules around Nix profiles (GONE):
GCC, Eclipse, Qt+Perl+Python no longer
/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/[a-z]*

Gray area: Slurm, Lustre client libraries, IB/OmniPath/InfiniPath client libraries (all dependencies
of OpenMPI). In Gentoo layer, but can be overridden using PATH & LD_LIBRARY_PATH.

OS kernel, daemons, drivers, libcuda, anything privileged (e.g. the sudo command): always local.
Some legally restricted software too (VASP)

Easybuild layer: modules for Intel, PGI, OpenMPI, CUDA, MKL, high-level applications.
Multiple architectures (sse3, avx, avx2, avx512)
/cvmfs/soft.computecanada.ca/easybuild/{modules,software}/20172020

Tools used : Nix Gentoo Prefix

● Package, dependency & environment management system

● Builds using bash-like “ebuilds”.

● Used to provide dependencies for scientific applications
○ e.g. glibc, libxml2 (in filter-deps), etc.

● Abstraction layer between the OS and the scientific software stack, using
nixpkgs/16.09 gentoo/2020 module

● Carries all* the dependencies of scientific software stack
* Exceptions: drivers, kernel modules, etc.

X

Features of new Gentoo Prefix layer

● Newer versions of almost everything to what was current May 2020 (Gentoo
stable 20200504 plus overlay), feels like a Linux distribution upgrade.

● GNU libc: version 2.30 (up from 2.24 -- CentOS-7 has 2.17)
○ Needs at least Linux kernel 3.2: CentOS-6 (kernel 2.6.32) no longer qualifies.

■ CentOS-6 was EOL Nov 30, 2020 so is no longer important.

○ Optimized math functions (exp, log, pow, etc.); older glibc was extremely precise
(0.5 ULP) but paid by switching to multi-precision arithmetic when needed. Now at
0.54 ULP but without slowdowns.
(https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/update-on-gnu-performance)

● Bash 5.0, Git 2.26.2, Vim 8.2, Emacs 26.2 etc, etc.

X

https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/update-on-gnu-performance

Why Gentoo instead of Nix?
Nix: symlink forest:
.../nix/var/nix/profiles/16.09 ->

.../nix/var/nix/profiles/16.09-523-link ->

.../nix/store/cj3f56cgpms7m9fjnbl9vjkmap5fzgsi-user-environment

.../nix/store/cj3f56cgpms7m9fjnbl9vjkmap5fzgsi-user-environment/bin/ls ->

.../nix/store/cn222k5axppndcfbqlckj57939d9h0h9-coreutils-8.25/bin/ls

We wrap ld so all rpaths in EB/user code point to $NIXUSER_PROFILE/lib.
Nix components can be upgraded, which changes the store hashes, and allows garbage collect /
selective copying.

Sometimes that did not work:
● Python virtualenv: copies the python binary into the virtualenv with store rpaths embedded.
● Qmake: qmake -query QT_INSTALL_BINS /cvmfs/soft.computecanada.ca/nix/store/

 vxwrgncd38s5prw8qx99rnsfz6lgph52-qtbase-5.6.1-1/bin

Gentoo Prefix : no symlinks, no store leak

X

EasyBuild-generated modules
● https://docs.computecanada.ca/wiki/Standard_software_environments

● module load StdEnv/2016.4, present default on Cedar and Graham
○ Nix + GCC 5.4 + Intel 2016.4 + Open MPI 2.1.1

● module load StdEnv/2018.3, present default on Béluga
○ Nix + GCC 7.3 + Intel 2018.3 + Open MPI 3.1.2

● module load StdEnv/2020 (-> iomkl-2020a + hooks), new default Apr’21
○ Gentoo + GCC 9.3 + Intel 2020.1 + Open MPI 4.0.3

● Multiple x86 architecture flavours: sse3, avx, avx2, avx512, except for

“system” toolchain.

● Intel-compiled avx2 binaries are now “fat” binaries and can use avx512

instructions on Skylake+ processors for better performance.

https://docs.computecanada.ca/wiki/Standard_software_environments

EasyBuild-generated modules (continued)
● Many more modules are now at the “Core” level, compiled using

GCCcore-9.3.0 with arch optimizations, e.g. R, Julia, bioinformatics tools.

(anything not using MPI, Boost, Fortran, HDF5, FFTW, heavily vectorized)

● Collapsing to GCCcore to Core is possible by using backwards compatible

GCC-10 libstdc++, libgfortran, etc from Gentoo layer at runtime.

● Intel MKL also at “Core” level (= all but MPI-FFTW), gcccoremkl toolchain

● Use of RPATH via linker (ld) wrapper to link against libraries from modules

(not EB’s RPATH support)

● Now uses old-style RPATH instead of RUNPATH, no longer overridable by

LD_LIBRARY_PATH; RPATH inherited by run-time plugins.

Caveats of StdEnv/2020
● Fewer modules:

○ about 560 vs 800 different software packages, but catching up.
■ We use module logs to avoid reinstalling software that was not really used

● Newer software is often pickier but still within the specifications:
○ E.g. Open MPI is pickier about tag numbers with UCX, correct memory for one-sided

communication.

● Some unresolved issues:
○ Parallel I/O with Open MPI.
○ Need to revalidate the hcoll library to speed up MPI collective communications on clusters with

Mellanox IB: it was disabled in 2018.3 because of issues easily reproduced with mpi4py.
○ VirtualGL.

● Heavy multi_deps usage:
○ If python support exists, we install with Python 3.6, 3.7, 3.8 (and sometimes 2.7)
○ Examples:

■ Boost, GEOS, QGIS, thrift, VTK, ParaView, arrow, NLopt, cram, OpenCV, ITK, RDKit,...
● Extensions in the main package

○ HDF5 includes h5py, tables
○ GDAL includes pygdal
○ Qt5 includes pyqt
○ PETSc includes petsc4py
○ mariadb includes mysql-connector-python, PyMySQL, and (Perl) DBD:mysql
○ PLUMED includes plumed (python)
○ PostgreSQL includes psycopg2
○ igraph includes python-igraph
○ Bullet includes pybullet
○ wxWidgets includes wxPython
○ ...

Python extensions with multi_deps

17

What are wheels?
Wheels are the new standard of Python distribution and are intended to replace
eggs. Support is offered in pip >= 1.4 and setuptools >= 0.8.

Advantages of wheels

1. Faster installation for pure Python and native C extension packages.
2. Avoids arbitrary code execution for installation. (Avoids setup.py)
3. Installation of a C extension does not require a compiler on Linux, Windows or macOS.
4. Allows better caching for testing and continuous integration.
5. Creates .pyc files as part of installation to ensure they match the Python interpreter used.
6. More consistent installs across platforms and machines.

You can compile your own wheels, linking against your compiled
libraries

Python wheels

https://pypi.org/project/wheel
https://www.python.org/dev/peps/pep-0427
https://pythonwheels.com/

Our supported wheels

$ ls /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/*/* | wc -w
8506
$ avail_wheels tensorflow_cpu
name version build python arch
-------------- --------- ------------- -------- ------
tensorflow_cpu 2.3.0 cp38 generic
tensorflow_cpu 2.3.0 cp37 generic
tensorflow_cpu 2.3.0 cp36 generic
$ avail_wheels tensorflow_gpu
...

● https://docs.computecanada.ca/wiki/Available_wheels

19

https://docs.computecanada.ca/wiki/Available_wheels

What modules are our users using ?

● Every “module load” command is sent to syslogs
● Syslogs for all Compute Canada clusters are aggregated into

an Elastic Search engine
● Grafana is used to produce dashboards of module usage

Module usage dashboard

https://grafana.computecanada.ca/dashboard/db/systems-lmod-stats

https://grafana.computecanada.ca/dashboard/db/systems-lmod-stats

● List of modules
○ https://docs.computecanada.ca/wiki/Available_software

● List of Python wheels
○ https://docs.computecanada.ca/wiki/Available_wheels

● Technical documentation
○ https://github.com/ComputeCanada/software-stack/

Documentation, resources

https://docs.computecanada.ca/wiki/Available_software
https://docs.computecanada.ca/wiki/Available_wheels
https://github.com/ComputeCanada/software-stack/

You can use this too

● Mounting our software stack
○ https://docs.computecanada.ca/wiki/Accessing_CVMFS

23

https://docs.computecanada.ca/wiki/Accessing_CVMFS

