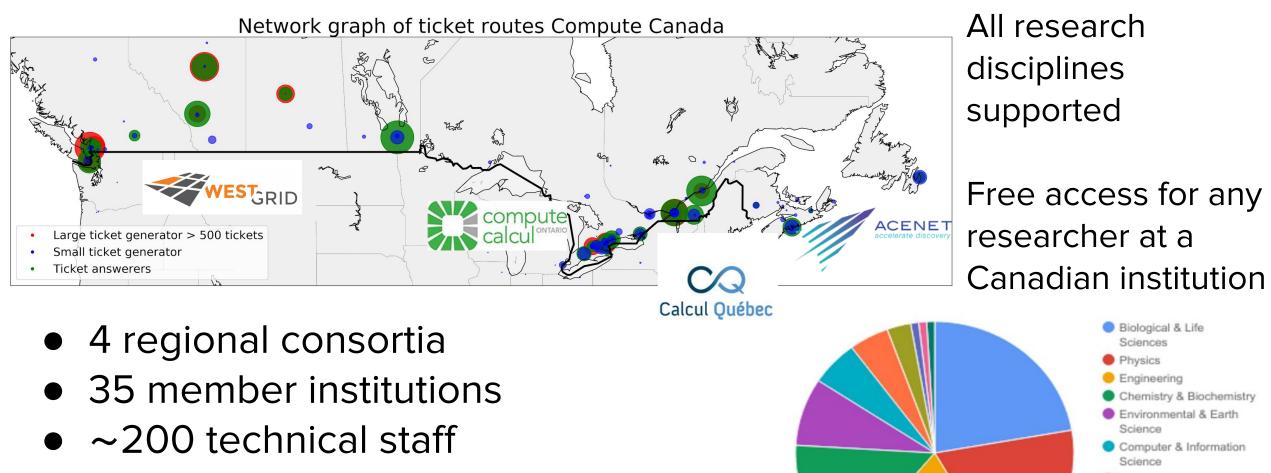
computecanada

EasyBuild site presentation: Compute Canada

Bart Oldeman, Maxime Boissonneault, Ryan Taylor on behalf of Compute Canada Research Support National Team


Presentation outline

- Compute Canada, where we were, where we are
- Software installation : Goal and design overview
- Tools used :
 - \circ CVMFS
 - Gentoo Nix, EasyBuild
 - \circ Lmod
 - Python
- Monitoring, demo, documentation
- Summary

What is Compute Canada?

Compute Canada : the people

Astronomy

Business
Social Science

Math & Statistics Humanities

- ~15,000 user accounts
 - \circ 20% growth per year

Compute Canada : the hardware

Goal

Users should be presented with an interface that is as **consistent** and **easy to use** as possible across **all sites**. It should also offer **optimal performance**.

- 1. All software should be accessible on every site, reliably and performantly.
- 2. Software should be independent from the underlying OS stack.
- 3. Software installation should be tracked and reproducible via automation.
- 4. The user interface should make it easy to use a large and evolving software stack.

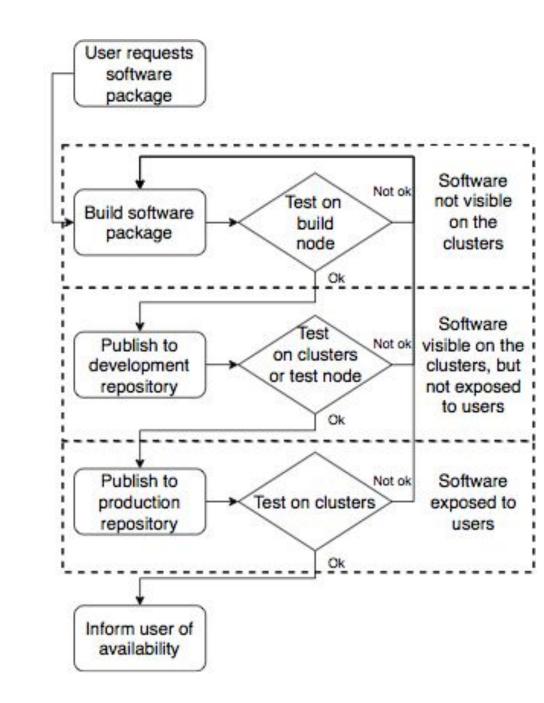
What this means

All new Compute Canada sites

- 1. Need a distribution mechanism
 - a. CVMFS : CERN Virtual Machine File System

<u>Consistency</u>

- 2. Independent of the OS (Ubuntu, CentOS, Fedora, etc.)
 - a. Gentoo (used to be Nix)
- 3. Automated installation (humans are not so consistent)
 - a. EasyBuild


Easy to use

- 4. Needs a module interface that scale well
 - a. Lmod with a hierarchical structure

Typical process

- 1. User requests a software to be installed
- 2. Staff decides whether it should be installed globally or in the user's account
 - a. Globally (default route unless there is a reason not to)
 - b. User's account
 - i. Custom actions

Compute Canada Software Stack

700+ scientific applications

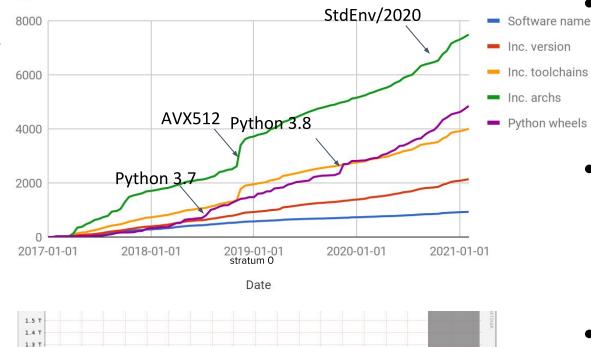
7,000+ permutations of version/arch/toolchain

Туре	Modules	
Al	5	
Bioinformatics	239	
Chemistry	63	
Data	19	
Geo/Earth	23	
Mathematics	82	
MPI libraries	7	
Physics	48	
Various tools	176	
Visualisation	28	
Misc	38	

1.2 Т 1.1 Т

1.0 T 0.9 T 0.8 T 0.7 T 0.6 T 0.5 T 0.4 T 0.3 T 0.2 T 0.1 T

Max Used


Cedar & Graham

Min: 33.870M Avg: 514.139G

(Cur: 781.363G Min: 104.842G Avg: 326.916G Max: 801.388G

Max: 946.6756

Number of software packages available through modules and python wheels

AVX512

b 2019

- Two major new clusters with
 Skylake CPUs
- Built new modules with AVX512 for most packages
- High deduplication
- Further details

Software: (simpler) design overview

Easybuild layer: modules for Intel, PGI, OpenMPI, CUDA, MKL, high-level applications. Multiple architectures (sse3, avx, avx2, avx512)

/cvmfs/soft.computecanada.ca/easybuild/{modules,software}/20172020

Easybuild-generated modules around Nix profiles (GONE): GCC, Eclipse, Qt+Perl+Python no longer

/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/[a z]*

Compatibility: Nix Gentoo Prefix layer: GNU libc, autotools, make, bash, cat, ls, awk, grep, etc. module nixpkgs/16.09 => \$NIXUSER_PROFILE=\$EBROOTNIXPKGS= /cvmfs/soft.computecanada.ca/nix/var/nix/profiles/16.09 module gentoo/2020 => \$EPREFIX= /cvmfs/soft.computecanada.ca/gentoo/2020, \$EBROOTGENTOO=\$EPREFIX/usr

Gray area: Slurm, Lustre client libraries, IB/OmniPath/InfiniPath client libraries (all dependencies of OpenMPI). In Gentoo layer, but can be overridden using PATH & LD_LIBRARY_PATH.

OS kernel, daemons, drivers, libcuda, anything privileged (e.g. the sudo command): always local. Some legally restricted software too (VASP)

Tools used : Nix Gentoo Prefix

- Package, dependency & environment management system
- Builds using bash-like "ebuilds".
- Used to provide dependencies for scientific applications
 e.g. glibc, libxml2 (in filter-deps), etc.
- Abstraction layer between the OS and the scientific software stack, using <u>nixpkgs/16.09</u> gentoo/2020 module
- Carries all* the dependencies of scientific software stack * Exceptions: drivers, kernel modules, etc.

Features of new Gentoo Prefix layer

- Newer versions of almost everything to what was current May 2020 (Gentoo stable 20200504 plus overlay), feels like a Linux distribution upgrade.
- GNU libc: version 2.30 (up from 2.24 -- CentOS-7 has 2.17)
 - Needs at least Linux kernel 3.2: CentOS-6 (kernel 2.6.32) no longer qualifies.
 - CentOS-6 was EOL Nov 30, 2020 so is no longer important.
 - Optimized math functions (exp, log, pow, etc.); older glibc was extremely precise (0.5 ULP) but paid by switching to multi-precision arithmetic when needed. Now at 0.54 ULP but without slowdowns.

https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/update-on-gnu-performance

• Bash 5.0, Git 2.26.2, Vim 8.2, Emacs 26.2 etc, etc.

Why Gentoo instead of Nix?

Nix: symlink forest:

.../nix/var/nix/profiles/16.09 ->

.../nix/var/nix/profiles/16.09-523-link ->

.../nix/store/cj3f56cgpms7m9fjnbl9vjkmap5fzgsi-user-environment

.../nix/store/cj3f56cgpms7m9fjnbl9vjkmap5fzgsi-user-environment/bin/ls ->
.../nix/store/cn222k5axppndcfbqlckj57939d9h0h9-coreutils-8.25/bin/ls

We wrap Id so all rpaths in EB/user code point to \$NIXUSER_PROFILE/lib. Nix components can be upgraded, which changes the store hashes, and allows garbage collect / selective copying.

Sometimes that did not work:

- Python virtualenv: copies the python binary into the virtualenv with store rpaths embedded.
- Qmake: qmake -query QT_INSTALL_BINS /cvmfs/soft.computecanada.ca/nix/store/ vxwrgncd38s5prw8qx99rnsfz6lgph52-qtbase-5.6.1-1/bin

Gentoo Prefix : no symlinks, no store leak

EasyBuild-generated modules

- <u>https://docs.computecanada.ca/wiki/Standard_software_environments</u>
- module load StdEnv/2016.4, present default on Cedar and Graham
 - Nix + GCC 5.4 + Intel 2016.4 + Open MPI 2.1.1
- module load StdEnv/2018.3, present default on Béluga
 - Nix + GCC 7.3 + Intel 2018.3 + Open MPI 3.1.2
- module load StdEnv/2020 (-> iomkl-2020a + hooks), new default Apr'21
 - Gentoo + GCC 9.3 + Intel 2020.1 + Open MPI 4.0.3
- Multiple x86 architecture flavours: sse3, avx, avx2, avx512, except for "system" toolchain.
- Intel-compiled avx2 binaries are now "fat" binaries and can use avx512 instructions on Skylake+ processors for better performance.

EasyBuild-generated modules (continued)

- Many more modules are now at the "Core" level, compiled using GCCcore-9.3.0 with arch optimizations, e.g. R, Julia, bioinformatics tools. (anything not using MPI, Boost, Fortran, HDF5, FFTW, heavily vectorized)
- Collapsing to GCCcore to Core is possible by using backwards compatible GCC-10 libstdc++, libgfortran, etc from Gentoo layer at runtime.
- Intel MKL also at "Core" level (= all but MPI-FFTW), gcccoremkl toolchain
- Use of RPATH via linker (Id) wrapper to link against libraries from modules (not EB's RPATH support)
- Now uses old-style RPATH instead of RUNPATH, no longer overridable by LD_LIBRARY_PATH; RPATH inherited by run-time plugins.

Caveats of StdEnv/2020

- Fewer modules:
 - \circ about 560 vs 800 different software packages, but catching up.
 - We use module logs to avoid reinstalling software that was not really used
- Newer software is often pickier but still within the specifications:
 - E.g. Open MPI is pickier about tag numbers with UCX, correct memory for one-sided communication.
- Some unresolved issues:
 - $\circ~$ Parallel I/O with Open MPI.
 - Need to revalidate the hcoll library to speed up MPI collective communications on clusters with Mellanox IB: it was disabled in 2018.3 because of issues easily reproduced with mpi4py.
 - \circ VirtualGL.

Python extensions with multi_deps

- Heavy multi_deps usage:
 - If python support exists, we install with Python 3.6, 3.7, 3.8 (and sometimes 2.7)
 - Examples:
 - Boost, GEOS, QGIS, thrift, VTK, ParaView, arrow, NLopt, cram, OpenCV, ITK, RDKit,...
- Extensions in the main package
 - HDF5 includes h5py, tables
 - GDAL includes pygdal
 - Qt5 includes pyqt
 - PETSc includes petsc4py
 - mariadb includes mysql-connector-python, PyMySQL, and (Perl) DBD:mysql
 - PLUMED includes plumed (python)
 - PostgreSQL includes psycopg2
 - igraph includes python-igraph
 - Bullet includes pybullet
 - wxWidgets includes wxPython
 - o ...

Python wheels

What are wheels?

<u>Wheels</u> are <u>the new standard</u> of Python distribution and are intended to replace eggs. Support is offered in $pip \ge 1.4$ and setuptools ≥ 0.8 .

Advantages of wheels

- 1. Faster installation for pure Python and native C extension packages.
- 2. Avoids arbitrary code execution for installation. (Avoids setup.py)
- 3. Installation of a C extension does not require a compiler on Linux, Windows or macOS.
- 4. Allows better caching for testing and continuous integration.
- 5. Creates .pyc files as part of installation to ensure they match the Python interpreter used.
- 6. More consistent installs across platforms and machines.

7. You can compile your own wheels, linking against your compiled libraries

Our supported wheels

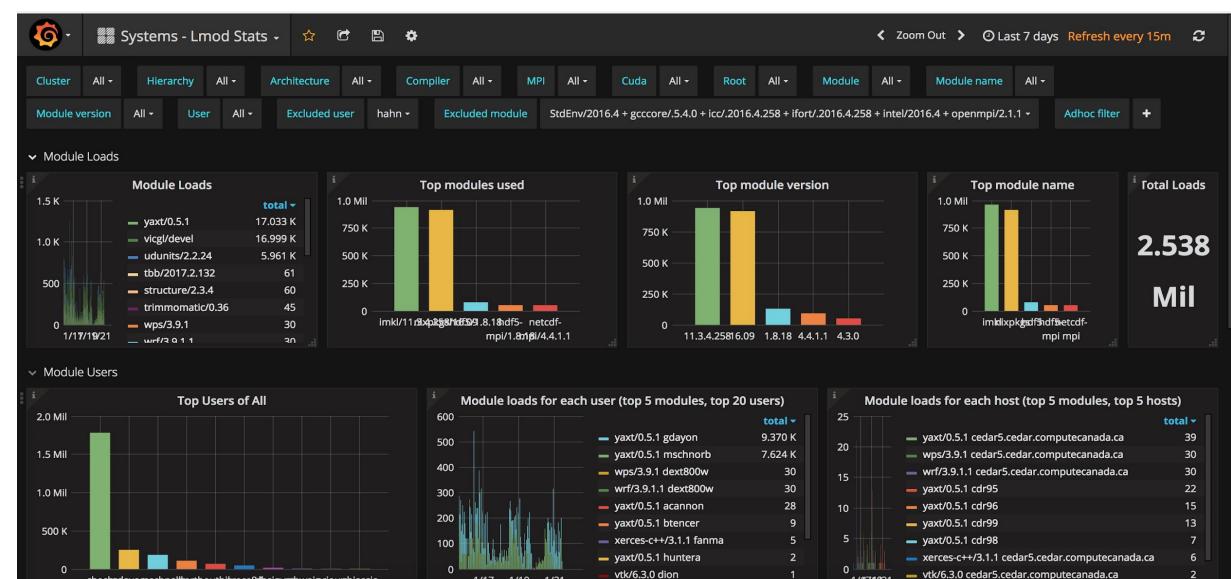
\$ ls /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/*/* | wc -w
8506

\$ avail_wheels tensorflow_cpu

. . .

name	version	build	python	arch
tensorflow_cpu	2.3.0	cp38	generic	
tensorflow_cpu	2.3.0	cp37	generic	
tensorflow_cpu	2.3.0	cp36	generic	
<pre>\$ avail_wheels</pre>	tensorflow_	gpu		

• <u>https://docs.computecanada.ca/wiki/Available_wheels</u>



What modules are our users using ?

- Every "module load" command is sent to syslogs
- Syslogs for all Compute Canada clusters are aggregated into an Elastic Search engine
- Grafana is used to produce dashboards of module usage

Module usage dashboard

2

Documentation, resources

- List of modules
 - <u>https://docs.computecanada.ca/wiki/Available_software</u>
- List of Python wheels
 - <u>https://docs.computecanada.ca/wiki/Available_wheels</u>
- Technical documentation
 - <u>https://github.com/ComputeCanada/software-stack/</u>

You can use this too

• Mounting our software stack

<u>https://docs.computecanada.ca/wiki/Accessing_CVMFS</u>

Questions ?

