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What is BLIS? 

• BLAS-like Library Instantiation Software 

• BLIS is a framework for 

– Quickly instantiating high-performance BLAS-like 
libraries 

• “Why ‘BLAS-like’?”… 

– For now, just assume BLAS-like = BLAS 

 



What is BLAS? 

• Basic Linear Algebra Subprograms 

– Level 1: vector-vector [Lawson et al. 1979] 

– Level 2: matrix-vector [Dongarra et al. 1988] 

– Level 3: matrix-matrix [Dongarra et al. 1990] 

• Why are BLAS important? 
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Why are BLAS important? 

• BLAS constitute the “bottom of the food 
chain” for most dense linear algebra 
applications, as well as other libraries 
– LAPACK, libflame, MATLAB, PETSc, etc. 

• The idea is simple: 
– if the BLAS interface is “standardized”, and 

– if an optimized implementation exists for your 
architecture 

– then higher-level applications can portably access 
high performance 
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More about the BLAS 

• level-1 operations 
– i?amax: find index of element with largest absolute 

value 

– ?asum: compute absolute sum 

– ?axpy: scale vector and accumulate 

– ?copy: copy vector 

– ?dot: compute dot (inner) product 

– ?nrm2: compute vector 2-norm 

– ?scal: apply a scalar to a vector 

– ?swap: swap two vectors 
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More about the BLAS 

• level-2 operations 
– ?gemv: general matrix-vector multiply 

– ?ger: general rank-1 update 

– ?hemv: Hermitian matrix-vector multiply 

– ?her: Hermitian rank-1 update 

– ?her2: Hermitian rank-2 update 

– ?symv: symmetric matrix-vector multiply 

– ?syr: symmetric rank-1 update 

– ?syr2: symmetric rank-2 update 

– ?trmv: triangular matrix-vector multiply 

– ?trsv: triangular solve (with one right-hand side) 

 

 

           7 



More about the BLAS 

• level-3 operations 
– ?gemm: general matrix multiply 

– ?hemm: Hermitian matrix multiply 

– ?herk : Hermitian rank-k update 

– ?her2k : Hermitian rank-2k update 

– ?symm: symmetric matrix multiply 

– ?syrk: symmetric rank-k update 

– ?syr2k: symmetric rank-2k update 

– ?trmm: triangular matrix multiply 

– ?trsm: triangular solve (with multiple right-hand sides) 
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More about the BLAS 

• Plenty of BLAS implementations available 

– Vendor 

• MKL (Intel), cuBLAS (NVIDIA), ARMPL (ARM), ESSL 
(IBM), Accelerate (Apple), etc. 

– Open source 

• netlib, OpenBLAS, Eigen, BLASFEO, libxsmm, ATLAS, etc. 

• So why do we need BLIS? 
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Why do we need BLIS? 

• Actually, there are two questions 

– Why do we need BLIS? 

– Why should we want BLIS? 

• (Even if we don’t need it) 

• Let’s look at the first question 
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Why do we need BLIS? 

• The BLAS interface is limiting for some 
applications 

– Not surprising – it was finalized 30 years ago! 

• How exactly is the BLAS interface limiting? 
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Limitations of BLAS interface 

• Interface only allows column-major storage 
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Limitations of BLAS interface 

• Interface only allows column-major storage 

– We also want row-major storage 
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Limitations of BLAS interface 

• Interface only allows column-major storage 

– We also want row-major storage and general stride 
storage 
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Limitations of BLAS interface 

• Interface only allows column-major storage 

– We also want row-major storage and general stride 
storage 

– Further yet, we want to support computation on 
operands of mixed storage formats. Example: 

• 𝐶 ≔ 𝐶 + 𝐴𝐵 

 where A is column-stored, B is row-stored, and C has 
general stride. 
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Limitations of BLAS interface 

• Why do we need general stride storage? 
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Limitations of BLAS interface 

• Why do we need general stride storage? 

• Example: three-dimensional tensor 
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Limitations of BLAS interface 

• Why do we need general stride storage? 

• Example: three-dimensional tensor 

– How do we take an arbitrary slice? 
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Limitations of BLAS interface 

• Why do we need general stride storage? 

• Example: three-dimensional tensor 

– How do we take an arbitrary slice? 
• It may be non-contiguous in both dimensions 
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Non-contiguous elements 
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Limitations of BLAS interface 

• Incomplete support for complex operations 
– Vector conjugation, matrix “conjugation without 

transposition” options are missing from BLAS 

Examples: 

– 𝑦 ≔ 𝑦 +  𝛼𝑥    axpy 

– 𝑦 ≔ 𝑦 + 𝐴𝑥    gemv 

– 𝐶 ≔ 𝐶 + 𝐴 𝐵   gemv, gemm 

– 𝐶 ≔ 𝐶 + 𝐴 𝐴𝑇    her, herk 

– 𝐵 ≔ 𝐿 𝐵   trmv, trmm 

– 𝐵 ≔ 𝐿 −1𝐵   trsv, trsm 
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Limitations of BLAS interface 

• BLAS API is opaque 
– No uniform way to access lower-level kernels 

• Why would one want access to these kernels? 
Some possibilities: 
– Optimize operations in higher-level libraries or 

applications 

– Implement new BLAS-like operations (without 
“reinventing the wheel”) 

– Conduct research or measurements on the kernels 
themselves 
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Limitations of BLAS interface 

• Operation support has not changed in three 
decades 

– BLAST Technical Forum attempted to ratify some 
improvements 

– Revisions largely ignored by implementors. Why? 

• Best guess: No official reference implementation 



Why do we need BLIS? 

• So why does any of this mean we need BLIS? 

– The BLAS API is static and cannot be improved 

– We can’t gain access to a better interface by 
building a better BLAS – we need something else 
altogether 

– This was one of the primary motivations for 
developing BLIS 
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Why do we need BLIS? 

• BLIS addresses the BLAS’ interface issues 
– Independent row and column stride properties 

allow flexible matrix storage 

– Any input operand can be conjugated 

– Experts can directly call lower-level packing, 
computation kernels 

– Operation support can grow over time, as needed 
• Hence why BLIS is “BLAS-like” 
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Why do we need BLIS? 

• BLIS addresses the BLAS’ interface issues 
– Independent row and column stride properties 

allow flexible matrix storage 

– Any input operand can be conjugated 

– Experts can directly call lower-level packing, 
computation kernels 

– Operation support can grow over time, as needed 
• Hence why BLIS is “BLAS-like” 

• This is why BLIS needs to exist 
– i.e., These features are largely absent from other 

BLAS implementations 
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Why should we want BLIS? 

• What if I don’t need any of these features 
unique to BLIS? 

– You still might want to use BLIS! 
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Why should we want BLIS? 

• What if I don’t need any of these features 
unique to BLIS? 

– You still might want to use BLIS! 

• If you’re an end-user 

– Improved APIs 

– You can still use BLAS (or CBLAS) compatibility layer 

• If you’re a developer 

– BLIS makes it easier to implement high-
performance BLAS libraries on new hardware 
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Why should we want BLIS? 

• So how does BLIS make it easier to implement high-
performance BLAS? 

– Let’s first look at general matrix-matrix multiplication 
(gemm) as implemented by Kazushige Goto in GotoBLAS 

• [Goto and van de Geijn 2008] 

– Note: This same approach was inherited into OpenBLAS 
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Goto Algorithm 
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– Written entirely in assembly 
language 
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5th loop around micro-kernel 

Goto Algorithm 

• Built atop Goto’s “inner 
kernel” 
– Three loops around a tiny 

outer product 

– Written entirely in assembly 
language 

• Drawbacks 
– Cannot always recycle gemm 

inner kernel for other level-3 
operations 

– Difficult to read: three loops in 
~5000 lines! 

– Edge cases handled explicitly 

– Can’t parallelize within 
assembly region 

 



Goto Algorithm: Recycling Kernels 

• Why can’t we always recycle the Goto inner 
kernel? 

– It has to do with differences between the level-3 
operations 

31 



Goto Algorithm: Recycling Kernels 

• Needs at least two special inner kernels 

– Variants for lower- and upper-stored matrix A move in 
opposite directions 

– Inner-most loop bound varies as a function middle loop’s 
current iteration (index) for blocks that intersect diagonal 
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• Example: Triangular matrix multiplication (trmm) 



Goto Algorithm: Assembly Footprint 

• Three loops encoded in assembly language 
– With lots of unrolling 

– And edge case handling 

– It gets complicated in a hurry! 
2nd loop around micro-kernel 
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2nd loop around micro-kernel 
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Goto Algorithm: Edge Cases 

• What are kernel edge cases? 

– Inner kernels have a “fundamental size” (MR x NR) 
based on register allocation and data 
rearrangement (packing) 

– Examples 

• MR = 6 

• NR = 8 

 



2nd loop around micro-kernel 
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Goto Algorithm: Edge Cases 

• What are kernel edge cases? 

– For each of the outer two loops, the inner kernel 
must handle “leftover” matrix blocks 

Possible edge cases 
highlighted in red 



Goto Algorithm: Edge Cases 

• What does this mean for the assembly kernel? 

– Lots of extra logic after each loop to handle 
specific edge case sizes 

6x8 
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Goto Algorithm: Edge Cases 

• What does this mean for the assembly kernel? 

– Lots of extra logic after each loop to handle 
specific edge case sizes 

 

6x8 6x4 6x2 6x1 
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Goto Algorithm: Edge Cases 

• What does this mean for the assembly kernel? 

– Lots of extra logic after each loop to handle 
specific edge case sizes 
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Goto Algorithm: Edge Cases 

• What does this mean for the assembly kernel? 

– Lots of extra logic after each loop to handle 
specific edge case sizes 
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Goto Algorithm: Parallelization 

• Inner kernel is an indivisible unit 
– Multithreaded parallelism cannot be easily 

encoded within either of the outer two loops 

– Parallelism must instead be obtained at a higher 
level 2nd loop around micro-kernel 

1st loop around microkernel 
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Why should we want BLIS? 

• So how does BLIS make it easier to implement high-
performance BLAS? 

– Now that we’ve looked at the software architecture for 
level-3 operations in GotoBLAS, let’s look at the same for 
BLIS 

• [Van Zee and van de Geijn 2015] 
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5th loop around micro-kernel 

BLIS Algorithm 

• Isolates assembly region to a 
smaller “micro-kernel” 
– One loop around a tiny outer 

product 

 



4th loop around micro-kernel 
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5th loop around micro-kernel 

BLIS Algorithm 

• Isolates assembly region to a 
smaller “micro-kernel” 
– One loop around a tiny outer 

product 

• Confers several benefits 
over Goto’s inner kernel 
– Micro-kernel is more easily 

recycled between level-3 
inner kernels 

– Requires fewer lines of 
assembly 

– Allows edge cases to be 
handled portably 

– Exposes more opportunities 
for parallelism 

 



BLIS Algorithm: Recycling Kernels 

• BLIS exposes the outer two loops of the inner kernel 
– These two outer loops were previously buried in assembly 

– Key observation: Virtually all of the differences between level-3 
operations’ inner kernels reside in these two loops 

– These loops (“macro-kernels”) in BLIS are written in C99 for each of 
the level-3 operations 

 

 

micro-kernel 
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BLIS Algorithm: Assembly Footprint 

• BLIS exposes the outer two loops of the inner kernel 
– Inner-most loop of macro-kernel simply calls micro-kernel 

– So the micro-kernel now consists of only one loop and no edge cases 
for MR, NR 

– This shrinks its size down from ≈5000 lines to ≈2000 lines 

 

 

2nd loop around micro-kernel 
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BLIS Algorithm: Edge Cases 

• Wait, if edge cases aren’t handled in the microkernel, 
then how are they handled? 
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BLIS Algorithm: Edge Cases 

• BLIS handles edge cases differently than the Goto 
approach 
– BLIS requires that the kernel developer implement only 

the (full-sized) micro-kernel 
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BLIS Algorithm: Edge Cases 

• When an edge case is encountered in a level-3 operation 
– BLIS copies matrix C to temporary memory, zero-fills edges, 

computes on temporary, then copies back to C 
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BLIS Algorithm: Edge Cases 

• This does come with a small performance penalty 
– First, the copies and zero-filling are not free 
– Second, the micro-kernel must perform extra computations with 

zeros, and does not get any credit for doing so 
– Manifests as a “saw tooth” pattern in performance graphs 

• So why do we do this? 
– We think this trade-off between performance and productivity is 

worth it 

+= 
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BLIS Algorithm: Parallelization 

• BLIS macro-/micro-kernel design exposes additional 
opportunities for parallelism 
– Previously, Goto inner kernel was smallest unit of computation 
– Parallelism was typically extracted at higher (coarser grain) levels 
– Now we can parallelize at lower (finer grain) levels 

• Tends to produce smoother results and better load balancing 
• [Smith et al. 2014] 
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BLIS Algorithm: Micro-kernel 
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C 

    Typical micro-kernel loop iteration 
– Load column of packed A 

– Load row of packed B 

– Compute outer product 

– Update C (kept in registers) 
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4th loop around micro-kernel 

3rd loop around micro-kernel 

2nd loop around micro-kernel 

1st loop around microkernel 

micro-kernel 

nR 

L3 cache 
L2 cache 
L1 cache 
registers 

main memory 

+= 

mC 

mR 

1 

+= 

+= 

+= 

+= 

+= 

nC nC 

kC 

kC 

mC 

1 

nR 

kC 

nR 

Pack Ai → Ai 

~ 

Pack Bp → Bp 

~ 

A Bj Cj 

Ap 

Ai 

Bp 

Cj 

Ai 

~ 
Bp 

~ 

Bp 

~ 
Ci 

Ci 

kC 

Update Cij  

mR 

5th loop around micro-kernel 

BLIS Blocksizes 

• BTW: How are cache 
and register 
blocksizes chosen? 



• BTW: How are cache 
and register 
blocksizes chosen? 

– Empirical search? 

• [Whaley 1998] 

BLIS Blocksizes 
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• BTW: How are cache 
and register 
blocksizes chosen? 

– Empirical search? 

• [Whaley 1998] 

– Analytical model is 
sufficient 

• [Low et al. 2016] 
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4th loop around micro-kernel 

3rd loop around micro-kernel 

2nd loop around micro-kernel 

1st loop around microkernel 

micro-kernel 

nR 

L3 cache 
L2 cache 
L1 cache 
registers 

main memory 

+= 

mC 

mR 

1 

+= 

+= 

+= 

+= 

+= 

nC nC 

kC 

kC 

mC 

1 

nR 

kC 

nR 

Pack Ai → Ai 

~ 

Pack Bp → Bp 

~ 

A Bj Cj 

Ap 

Ai 

Bp 

Cj 

Ai 

~ 
Bp 

~ 

Bp 

~ 
Ci 

Ci 

kC 

Update Cij  

mR 

5th loop around micro-kernel 



BLIS Algorithm 

• What about packing? 

– BLIS unifies packing for three different matrix structures 
into one interface 

• General matrices 

• Symmetric/Hermitian matrices 

• Triangular matrices 

– Highly-parameterized and reusable for variety of 
parameter cases 

• e.g. side/uplo/trans parameters, matrix storage formats 

– How? 
• Short answer: Separate row, column strides go a long way! 

• Let’s review and summarize 
           56 



Benefits of BLIS 

• BLIS… 
– Factors out as much complexity as possible from 

performance-sensitive kernel code, leaving only the micro-
kernel 

– Significantly reduces the size and complexity of the kernels 
that must be optimized to achieve high performance 

– Provides generic, portable instances of factored codes 
(macro-kernels) as well as the higher-level blocked 
algorithms 

– Provides all packing functionality (no modification 
required) 
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BLIS performance 

           

• Okay, enough talk. Show me high performance! 

• Results gathered on AMD Epyc 7742 “Rome” Zen2 server 
– Before I show you full results, let’s review how to interpret each 

graph 



BLIS performance 

           

• Okay, enough talk. Show me high performance! 

• Results gathered on AMD Epyc 7742 “Rome” Zen2 server 
– x-axis shows problem size (all dimensions equal) 

– y-axis shows GFLOPS (top of graph = theoretical peak performance) 

– We compare BLIS to other BLAS implementations                    
provided by 

• OpenBLAS 0.3.10 

• Eigen 3.3.90 

• Intel MKL 2020 Update 3 

 



BLIS performance 

           

• Okay, enough talk. Show me high performance! 

• Results gathered on AMD Epyc 7742 “Rome” Zen2 server 
– x-axis shows problem size (all dimensions equal) 

– y-axis shows GFLOPS (top of graph = theoretical peak performance) 

– We compare BLIS to other BLAS implementations                    
provided by 

• OpenBLAS 0.3.10 

• Eigen 3.3.90 

• Intel MKL 2020 Update 3 

– We do this for… 
• a representative sample of level-3                                                                

operations 

• on four floating-point datatypes                                                                                 
(s = float, d = double, c = single complex                                                                   
z = double complex) 
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Multithreading 

• Loops eligible for 
parallelism: 5th, 3rd 2nd, 1st  
– Parallelize two or more 

loops simultaneously 
– Ideal loops to target 

depend on which caches 
are shared vs. private 

• Controlled via 
environment variables 
– BLIS_JC_NT 
– BLIS_IC_NT 
– BLIS_JR_NT 
– BLIS_IR_NT 

• Can use either OpenMP 
or POSIX threads 
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BLIS multithreading 

• Multithreaded performance in BLIS 
– How does it compare to alternatives? 

• OpenBLAS, Intel’s MKL, Eigen 

– Note: y-axis now shows GFLOPS/core 
• Top of graph still represents peak performance 

– Test hardware 
• AMD Epyc 7742 “Rome” Zen2 (2 sockets, 64 cores each) 
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jc4ic4jr4 (64t) 
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Publications 
• BLIS 

– Van Zee and van de Geijn. “BLIS: A Framework for Rapid 
Instantiation of BLAS Functionality” (ACM TOMS 2015) 

– Van Zee et al. “The BLIS Framework: Experiments in Portability” 
(ACM TOMS 2016) 

– Smith et al. “Anatomy of Many-Threaded Matrix Multiplication” 
(IPDPS 2014; in proceedings) 

– Low et al. “Analytical Modeling is Enough for High-Performance 
BLIS” (ACM TOMS 2016) 

– Van Zee and Smith. “Implementing High-Performance Complex 
Matrix Multiplication via the 3m and 4m Methods” (ACM TOMS 
2017) 

– Van Zee. “Implementing High-Performance Complex Matrix 
Multiplication via the 1m Method” (SISC 2020) 

– Van Zee et al. “Supporting Mixed-Domain Mixed-Precision 
Matrix Multiplication within the BLIS Framework” (ACM TOMS; 
to appear) 
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Publications 
• BLIS spin-offs and related efforts by collaborators 

– Devin A. Matthews. “High-Performance Tensor Contraction 
Without Transposition.” (SISC 2015) 

– Chenhan D. Yu, Jianyu Huang, Woody Austin, Bo Xiao, George 
Biros. “Performance Optimization for the K Nearest-Neighbors 
Kernel on x86 Architectures.” (SC 2015) 

– Jianyu Huang, Tyler M. Smith, Greg M. Henry, Robert A. van de 
Geijn. “Strassen’s Algorithm Reloaded.” (SC 2016) 

– Jianyu Huang, Leslie Rice, Devin A. Matthews, Robert A. van de 
Geijn. “Generating Families of Practical Fast Matrix 
Multiplication Algorithms.” (IPDPS 2017) 

– Jianyu Huang, Chenhan D. Yu, Robert A. van de Geijn.  
“Strassen's algorithm reloaded for GPUs.” (TOMS 2020) 

– Tyler M. Smith, Robert A. van de Geijn. “The MOMMS Family of 
Matrix Multiplication Algorithms.” (arXiv 2019) 
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Investing Organizations 

• NSF, 2012-present 
– Award ACI-1148125/1340293: SI2-SSI: A Linear Algebra 

Software Infrastructure for Sustained Innovation in 
Computational Chemistry and other Sciences. (Funded June 1, 
2012 - May 31, 2015.) 

– Award CCF-1320112: SHF: Small: From Matrix Computations to 
Tensor Computations. (Funded August 1, 2013 - July 31, 2016.) 

– Award ACI-1550493: SI2-SSI: Sustaining Innovation in the Linear 
Algebra Software Stack for Computational Chemistry and other 
Sciences. (Funded July 15, 2016 – June 30, 2018.) 

– Award CSSI-2003921: Collaborative Research: Frameworks: 
Beyond BLAS: A Framework for Accelerating Computational and 
Data Science. (Funded May 1, 2020 - April 30, 2023.) 
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Investing Organizations 

• Industry (gifts, grants, and hardware), 2011-present 

– Microsoft 

– Texas Instruments 

– Intel  

– AMD 

– HP Enterprise 

– Oracle 

– Huawei 

– Facebook 

– ARM 

 



Takeaways 

• BLIS is more than BLAS! 

• BLIS benefits basic end-users 

– More flexible interface 

• BLIS benefits developers 

– Provides a portable framework and reduces amount of 
code to be optimized and maintained 

– Allows rapid instantiation to new hardware 

– Contains infrastructure for implementing new operations 
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Takeaways 

• BLIS benefits experts, SC/HPC Researchers 

– Access to low-level routines/kernels 

– Provides a platform for experimentation and prototyping 

– Foundation for mixed-domain, mixed-precision operations 

• BLIS benefits everyone 

– BLIS facilitates high performance 

– Reasonably compact, readable code 

– Free / open source software – available under BSD license 
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Thank you! 

• Questions? 
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Bonus Topics 
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BLIS multithreading 

• Quadratic partitioning 

– The topic: partitioning a submatrix for the 
purposes of multithreaded parallelism 

– The question: how to determine subpartition 
dimensions 

– For the following illustrative examples, assume: 

• We want four ways of parallelism (four threads) 

• We only partition in one dimension at a time 
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BLIS multithreading 

n 

m 

75 



BLIS multithreading 

w ≈ n / 4 
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BLIS multithreading 

• Quadratic partitioning 
– Affects: herk, her2k, syrk, syr2k, trmm, trmm3 
– Arbitrary quasi-trapezoids (trapezoid-oids?) 
– Arbitrary diagonal offsets 
– Lower- or upper-stored Hermitian/symmetric or 

triangular matrices 
– Partition along m or n dimension, forwards or 

backwards 
• This matters because of edge case placement 

– Subpartitions must be multiples of “blocking factors” 
(ie: register blocksizes), except the subpartition 
containing edge case, if it exists 
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BLIS multithreading 

• Quadratic partitioning 
– How much does it matter? Let’s find out! 
– Test hardware 

• 3.6 GHz Intel Haswell (4 cores) 

– Test operation 
• Hermitian rank-k update:  𝐶 ≔ 𝐶 + 𝐴𝐴𝐻 

+= 
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BLIS multithreading 
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APIs 

• BLAS (Fortran-compatible) 

• CBLAS (C conventions + row-major support) 

• BLIS 

– Object API, e.g. bli_gemm() 

– Typed API, e.g. bli_dgemm() 

– Both offer basic + expert sub-interfaces 

• And all APIs can be called from C++ 
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BLAS vs CBLAS interfaces 

// CBLAS 
void cblas_dgemm 
( 
  enum CBLAS_ORDER     order, 
  enum CBLAS_TRANSPOSE transa, 
  enum CBLAS_TRANSPOSE transb,        
  int           m, 
  int           n, 
  int           k, 
  double        alpha, 
  const double* a, int lda, 
  const double* b, int ldb, 
  double        beta, 
  double*       c, int ldc 
); 

88 

// BLAS 
void dgemm_ 
( 
  char*   transa, 
  char*   transb, 
  int*    m, 
  int*    n, 
  int*    k, 
  double* alpha, 
  double* a, int* lda, 
  double* b, int* ldb, 
  double* beta, 
  double* c, int* ldc 
); 



BLAS vs Typed BLIS Interfaces 
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// BLAS 
void dgemm_ 
( 
  char*   transa, 
  char*   transb, 
  int*    m, 
  int*    n, 
  int*    k, 
  double* alpha, 
  double* a, int* lda, 
  double* b, int* ldb, 
  double* beta, 
  double* c, int* ldc 
); 

// Typed API (basic) 
void bli_dgemm 
( 
  trans_t transa, 
  trans_t transb, 
  dim_t   m, 
  dim_t   n, 
  dim_t   k, 
  double* alpha, 
  double* a, inc_t rsa, inc_t csa, 
  double* b, inc_t rsb, inc_t csb, 
  double* beta, 
  double* c, inc_t rsc, inc_t csc 
); 



Object vs Typed BLIS Interfaces 
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// Typed API (basic) 
void bli_dgemm 
( 
  trans_t transa, 
  trans_t transb, 
  dim_t   m, 
  dim_t   n, 
  dim_t   k, 
  double* alpha, 
  double* a, inc_t rsa, inc_t csa, 
  double* b, inc_t rsb, inc_t csb, 
  double* beta, 
  double* c, inc_t rsc, inc_t csc 
); 

// Object API (basic) 
void bli_gemm 
( 
  obj_t*  alpha, 
  obj_t*  a, 
  obj_t*  b, 
  obj_t*  beta, 
  obj_t*  c 
); 



Object vs Typed BLIS Interfaces 

91 

// Typed API (expert) 
void bli_dgemm_ex 
( 
  trans_t transa, 
  trans_t transb, 
  dim_t   m, 
  dim_t   n, 
  dim_t   k, 
  double* alpha, 
  double* a, inc_t rsa, inc_t csa, 
  double* b, inc_t rsb, inc_t csb, 
  double* beta, 
  double* c, inc_t rsc, inc_t csc, 
  cntx_t* cntx, 
  rntm_t* rntm 
); 

// Object API (expert) 
void bli_gemm_ex 
( 
  obj_t*  alpha, 
  obj_t*  a, 
  obj_t*  b, 
  obj_t*  beta, 
  obj_t*  c, 
  cntx_t* cntx, 
  rntm_t* rntm 
); 



Implementation language 

• BLIS is implemented in ISO C99 
– “Why not Fortran?” 

– Performance-critical kernels are expressed in 
assembly code or intrinsics 

– Thus, the higher-level framework could be 
anything 

• BLIS makes ample use of the C preprocessor 
for source code templatization 
– Write one cpp macro and invoke once per 

datatype 
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Controlling Multithreading 

• Reminder 
– BLIS’s gemm algorithm has five loops outside the 

micro-kernel 

– Four of these loops may be parallelized in BLIS 
• JC 

• PC (parallelism not yet enabled) 

• IC 

• JR 

• IR 

• PR (microkernel) 
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Controlling Multithreading 

• Three methods of specifying multithreading 

– Global specification via environment variables 

• Affects all threads 

– Global specification via runtime API 

• Affects all threads 

– Thread-local specification via runtime API 

• Affects only the calling thread! 
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Controlling Multithreading 

# Use either the automatic way or manual way of requesting 
# parallelism. 
 
# Automatic way. 
$ export BLIS_NUM_THREADS = 6 
 
# Expert way. 
$ export BLIS_IC_NT = 2; export BLIS_JR_NT = 3 
 
// Call a level-3 operation (basic interface is enough). 
// Typed API responds similarly. 
bli_gemm( &alpha, &a, &b, &beta, &c ); 

• Global specification via environment variables 

– Example: 
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Controlling Multithreading 

// Use either the automatic way or manual way of requesting 
// parallelism. 
 
// Automatic way. 
bli_thread_set_num_threads( 6 ); 
 
// Manual way. 
bli_thread_set_ways( 1, 1, 2, 3, 1 ); 
 
// Call a level-3 operation (basic interface is still enough). 
// Typed API responds similarly. 
bli_gemm( &alpha, &a, &b, &beta, &c ); 

• Global specification via runtime API 

– Example: 
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Controlling Multithreading 

// Declare and initialize a rntm_t object. 
rntm_t rntm = BLIS_RNTM_INITIALIZER; 
 
// Call ONE (not both) of the following to encode your 
// parallelization into the rntm_t. 
bli_rntm_set_num_threads( 6, &rntm );       // automatic way 
bli_rntm_set_ways( 1, 1, 2, 3, 1, &rntm );  // manual way 
 
// Call a level-3 operation via an expert interface and pass 
// in your rntm_t. (NULL below requests default context.) 
// Typed API responds similarly. 
bli_gemm_ex( &alpha, &a, &b, &beta, &c, NULL, &rntm ); 

• Thread-local specification via runtime API 

– Example: 
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Controlling Multithreading 

• For more details: 
– docs/Multithreading.md 
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Thread Safety 

• BLIS provides unconditional thread safety* 

• What does this mean? 
– BLIS always uses mechanisms provided by pthreads 

API to ensure synchronous access to globally-shared 
data structures 

– Independent of multithreading option 
 --enable-threading={pthreads|openmp} 

• Works with OpenMP 

• Works when multithreading is disabled entirely 

*Under normal usage conditions. 
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The 1m Method 

• Goal: Reuse real-domain kernels to induce complex-domain 
operations 
– This would avoid the need for addition complex microkernels, which 

tend to be more difficult to program in assembly code  

 
 
 
 
 

 
 

• Solution: the 1m method [Van Zee 2020] 
– A is packed to micro-columns with real and imaginary elements 

duplicated and swapped to next column (with imaginary negated) 
– B is packed to micro-rows where imaginary elements are reordered to 

next row 
– Multiply A and B using normal real-domain microkernel 
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Small/skinny gemm 

• Separate “sub-framework” intercepts these cases 

– Multithreading, optional packing supported 

+= 

+= 

+= += 

+= 

+= 

small m 

small n 

small k 

small m, k 

small n, k 

small m, n 
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Mixed datatype gemm 

• Consider simplified gemm (no scalars): 𝐶 ∶= 𝐶 + 𝐴𝐵 
– Recall: BLAS requires A, B, and C to be stored as the same 

datatype (precision and domain) 
• single real, double real, single complex, double complex 

– BLIS has a gemm implementation that lifts this constraint! 

– Total number of possible cases to implement 
• Assume each operand stored as one of t storage datatypes 

• Operation may be computed in one of t/2 precisions (two domains) 

• In general: 𝑁 =
𝑡

2
𝑡3 = 

𝑡4

2
 

• For BLIS (currently): 𝑁 =
4

2
43 = 128 

• Notice that BLAS implements only 4 out of the 128 
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Hardware Support 

• AMD 

– Bulldozer, Piledriver, Steamroller, Excavator, Zen, 
Zen+, Zen2 

• Intel 

– Core2, Sandy/Ivy Bridge, Haswell/Broadwell, 
Skylake[X], KNL, Kaby/Coffee Lake, and beyond 

• IBM BlueGene/Q, Power9, Power10 

• ARM (v7a, v8a, SVE) 
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Build system features 

• Based on GNU build process  
– configure; make; make install 

• Hardware detection 
– Determines kernel and cache blocksize selections 
– Happens at configure-time (slim libraries) or runtime (fat libraries) 

• Compiler flags set on a per-subconfiguration basis 
– Flags may differ from haswell to skx to zen to zen2 

• Dynamically generated makefile fragments 
– Shouldn’t have to edit a makefile just because I rename foo.c to 

bar.c 

• Monolithic header generation 
– All headers (≈500) recursively inlined into blis.h 
– Faster compilation time 
– Easier to distribute build products 
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Testing 

• Unified testsuite 
– correctness and performance, BLIS-only 

• netlib BLAS test drivers 
– correctness, BLAS-only 

• Standalone (comparative) performance drivers 
– BLIS vs OpenBLAS, MKL, Eigen (large and small) 

– libxsmm, BLAFEO (small only) 

• Continuous integration 
– Travis CI (including Intel SDE), AppVeyor 
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OS Support 

• Debian/Ubuntu 

• Fedora/EPEL 

• Gentoo 

• OpenSUSE 

• GNU Guix 

• OS X 

• Windows 
– clang via AppVeyor 
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User Statistics 

• GitHub provides two-week rolling averages 
– 120+ unique clones 

– 600+ unique visitors 

– This doesn’t count .zip file downloads or OS-specific 
packages (e.g. Ubuntu installs) 

– Nor does it count clones/downloads of AMD BLIS 

• How many total users do we have? 
– No idea!  

– But we think it could be quite high 

 
109 



Community Support 

• Example code (tutorial) 

• Documentation 

• Performance graphs 
– http://github.com/flame/blis/ 

• Mailing lists 
– https://groups.google.com/group/blis-devel 

– https://groups.google.com/group/blis-discuss 

• GitHub issues 
– https://github.com/flame/blis/issues 
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What’s next? 

• Future directions 

– Support new datatypes 

• bfloat16, fp16, int16, etc. 

– Refactor for more exotic expert usage 

– Implement new operations 

– Support new hardware (as it becomes available) 
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Thank you! 

• Questions? 
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