The BLIS Framework

Field G. Van Zee

Science of High-Performance Computing
The University of Texas at Austin

6" EasyBuild User Meeting
January 27, 2021

What is BLIS?

* BLAS-like Library Instantiation Software

e BLIS is a framework for

— Quickly instantiating high-performance BLAS-like
libraries

 “Why ‘BLAS-like’?”...
— For now, just assume BLAS-like = BLAS

What is BLAS?

e Basic Linear Algebra Subprograms

— Level 1: vector-vector
— Level 2: matrix-vector

— Level 3: matrix-matrix

Lawson et al. 1979]
[Dongarra et al. 1988]

[Dongarra et al. 1990]

* Why are BLAS important?

Why are BLAS important?

* BLAS constitute the “bottom of the food
chain” for most dense linear algebra
applications, as well as other libraries

— LAPACK, 1ibflame, MATLAB, PETSc, etc.

* The idea is simple:
— if the BLAS interface is “standardized”, and
— if an optimized implementation exists for your
architecture

— then higher-level applications can portably access
high performance

More about the BLAS

* level-1 operations

— i?7amax: find index of element with largest absolute
value

— ?asum: compute absolute sum

— ?axpy: scale vector and accumulate
— ?copy: copy vector

— ?dot: compute dot (inner) product
— ?nrm2: compute vector 2-norm

— ?scal: apply a scalar to a vector

— ?swap: swap two vectors

More about the BLAS

* level-2 operations
— ?gemv: general matrix-vector multiply
— ?ger: general rank-1 update
— ?hemv: Hermitian matrix-vector multiply
— ?her: Hermitian rank-1 update
— ?her2: Hermitian rank-2 update
— ?symv: symmetric matrix-vector multiply
— ?syr: symmetric rank-1 update
— ?syr2: symmetric rank-2 update
— ?trmv: triangular matrix-vector multiply
— ?trsv: triangular solve (with one right-hand side)

More about the BLAS

* level-3 operations
— ?gemm: general matrix multiply
— ?hemm: Hermitian matrix multiply
— ?herk : Hermitian rank-k update
— ?her2k : Hermitian rank-2k update
— ?symm: symmetric matrix multiply
— ?syrk: symmetric rank-k update
— ?syr2k: symmetric rank-2k update
— ?trmm: triangular matrix multiply
— ?trsm: triangular solve (with multiple right-hand sides)

More about the BLAS

* Plenty of BLAS implementations available

— Vendor

 MKL (Intel), cuBLAS (NVIDIA), ARMPL (ARM), ESSL
(IBM), Accelerate (Apple), etc.

— Open source
* netlib, OpenBLAS, Eigen, BLASFEOQ, libxsmm, ATLAS, etc.

 So why do we need BLIS?

Why do we need BLIS?

e Actually, there are two questions
— Why do we need BLIS?

— Why should we want BLIS?
e (Even if we don’t need it)

* Let’s look at the first question

Why do we need BLIS?

 The BLAS interface is limiting for some
applications

— Not surprising — it was finalized 30 years ago!

* How exactly is the BLAS interface limiting?

Limitations of BLAS interface

* Interface only allows column-major storage

12

Limitations of BLAS interface

* Interface only allows column-major storage

— We also want row-major storage

13

Limitations of BLAS interface

* Interface only allows column-major storage

— We also want row-major storage and general stride
storage

—————
-
-

—————
-
-

—————
-
-

—————
-
-

—————
-
-

—————
-
-

14

Limitations of BLAS interface

* Interface only allows column-major storage

— We also want row-major storage and general stride
storage

— Further yet, we want to support computation on
operands of mixed storage formats. Example:
«C:=C+AB
where A is column-stored, B is row-stored, and C has
general stride.

15

Limitations of BLAS interface

* Why do we need general stride storage?

Limitations of BLAS interface

* Why do we need general stride storage?
 Example: three-dimensional tensor

17

Limitations of BLAS interface

* Why do we need general stride storage?

 Example: three-dimensional tensor
— How do we take an arbitrary slice?

18

Limitations of BLAS interface

* Why do we need general stride storage?

 Example: three-dimensional tensor
— How do we take an arbitrary slice?

* It may be non-contiguous in both dimensions

Non-contiguous elements

IS
—

Limitations of BLAS interface

* Incomplete support for complex operations

— Vector conjugation, matrix “conjugation without
transposition” options are missing from BLAS

Examples:
—-y:=y+ ax
—y =y + Ax
—C:=C+AB
—C:=C+ AAT
—B:=1LB
—-B:=L"'B

axpy
gemv

gemy, gemm
her, herk
trmy, trmm
trsv, trsm

Limitations of BLAS interface

* BLAS API is opaque

— No uniform way to access lower-level kernels

 Why would one want access to these kernels?
Some possibilities:
— Optimize operations in higher-level libraries or
applications

— Implement new BLAS-like operations (without
“reinventing the wheel”)

— Conduct research or measurements on the kernels
themselves

Limitations of BLAS interface

* Operation support has not changed in three
decades

— BLAST Technical Forum attempted to ratify some
Improvements

— Revisions largely ignored by implementors. Why?
* Best guess: No official reference implementation

Why do we need BLIS?

* So why does any of this mean we need BLIS?
— The BLAS API is static and cannot be improved

— We can’t gain access to a better interface by
building a better BLAS — we need something else
altogether

— This was one of the primary motivations for
developing BLIS

Why do we need BLIS?

e BLIS addresses the BLAS’ interface issues

— Independent row and column stride properties
allow flexible matrix storage

— Any input operand can be conjugated

— Experts can directly call lower-level packing,
computation kernels

— Operation support can grow over time, as needed
* Hence why BLIS is “BLAS-like”

Why do we need BLIS?

e BLIS addresses the BLAS’ interface issues

— Independent row and column stride properties
allow flexible matrix storage

— Any input operand can be conjugated

— Experts can directly call lower-level packing,
computation kernels

— Operation support can grow over time, as needed
* Hence why BLIS is “BLAS-like”

* This is why BLIS needs to exist

— i.e., These features are largely absent from other
BLAS implementations

Why should we want BLIS?

* What if | don’t need any of these features
unique to BLIS?

— You still might want to use BLIS!

Why should we want BLIS?

* What if | don’t need any of these features
unique to BLIS?

— You still might want to use BLIS!
* |f you’re an end-user

— Improved APIs

— You can still use BLAS (or CBLAS) compatibility layer
* |f you're a developer

— BLIS makes it easier to implement high-
performance BLAS libraries on new hardware

Why should we want BLIS?

* So how does BLIS make it easier to implement high-
performance BLAS?

— Let’s first look at general matrix-matrix multiplication
(gemm) as implemented by Kazushige Goto in GotoBLAS
e [Goto and van de Geijn 2008]

— Note: This same approach was inherited into OpenBLAS

Goto Algorithm

Built atop Goto’s “inner

I”

kerne

— Three loops around a tiny

outer product

— Written entirely in assembly

language

5th [oop around micro-kernel

4 N
Ne Nc
I—‘—\ l—‘—l
G 4= A B;
s 4t Joop around micro-kernel ~
kc‘[Bp E—
CJ' += Ap
_’_l
Ke -
Pack B, — B,
3 |oop around micro-kernel

C]»mC mc+ A =N
+=

24 |oop around micro-kernel
C, A A4

m [AA] [Z
+= WA %%

~ 1%tloop around microkernel

tme [WAAIA g}

Ng

—

Update C; E
E]

+=
micro-kernel
+=

([T

]
1

r1

[main memory
[L3 cache
[L2 cache
[L1 cache
[registers

Goto Algorithm

Drawbacks

— Cannot always recycle gemm
inner kernel for other level-3

operations

— Difficult to read: three loops in

~5000 lines!

— Edge cases handled explicitly

— Can’t parallelize within
assembly region

5th [oop around micro-kernel

4 N
Ne Nc
— —_—
G 4= A B;
s 4t Joop around micro-kernel ~
kc{ B, (m—
C; += Ap
_’_l
Ke -
Pack B, — B,
3 |oop around micro-kernel
C } me me 1 Al B, <
+=
Pack A, — A,

24 |oop around micro-kernel
C, A A4

me | A
+= W4

~ 1%tloop around microkernel

([T

]
1

= i
Fme VA
+= (WA ke
Update C; W4
micro-kernel
]
+=

r1

[main memory
[L3 cache
[L2 cache
[L1 cache
[registers

Goto Algorithm: Recycling Kernels

 Why can’t we always recycle the Goto inner
kernel?

— It has to do with differences between the level-3
operations

Goto Algorithm: Recycling Kernels

 Example: Triangular matrix multiplication (trmm)

* Needs at least two special inner kernels

— Variants for lower- and upper-stored matrix A move in
opposite directions

— Inner-most loop bound varies as a function middle loop’s
current iteration (index) for blocks that intersect diagonal

32

Goto Algorithm: Assembly Footprint

* Three loops encoded in assembly language
— With lots of unrolling
— And edge case handling
— It gets complicated in a hurry!

=}
([]}e®
3
1
\N\N\N\I\

+

I
(LTI
1

Goto Algorithm: Edge Cases

 What are kernel edge cases?

— Inner kernels have a “fundamental size” (MR x NR)
based on register allocation and data
rearrangement (packing)

24 |oop around micro-kernel
— Examples -1 h

_ 7
n
N
me | (A4
° MR — 6 =
VA
e T
L] NR = 8 ~ 1%tloop around microkdfne | ;;
Ng ~
Wl |z
VA K
Update Cij MM/'M
micro-kernel
- [—J main memor Y
B Il E = Gen
+= v — @ L2 cache
- 1 —] [L1 cache
— [registers

Goto Algorithm: Edge Cases

 What are kernel edge cases?

— For each of the outer two loops, the inner kernel
must handle “leftover” matrix blocks

Possible edge cases
highlighted in red

———— 2" loop arou$d micro-kernel

v

N
J

— Ci
1stloop d microkernel
Nr
—=
}me
+=
Update C;
+=

C T
INNNNNN <z

Goto Algorithm: Edge Cases

 What does this mean for the assembly kernel?

— Lots of extra logic after each loop to handle
specific edge case sizes

6x8

Goto Algorithm: Edge Cases

 What does this mean for the assembly kernel?

— Lots of extra logic after each loop to handle
specific edge case sizes

6x8 6x4 6x2 6x1

Goto Algorithm: Edge Cases

 What does this mean for the assembly kernel?

— Lots of extra logic after each loop to handle

specific edge case sizes

6x8

6x4

6x2

4x8

2X8

1x8

6x1

38

Goto Algorithm: Edge Cases

 What does this mean for the assembly kernel?

— Lots of extra logic after each loop to handle

specific edge case sizes

6x8 6x4 6x2 6x1
4x8 4x4 4x2 4x1
2X8 2Xx4 2x2 2x1
I | | | | | O
1x8 1x4 1x2 1x1

39

Goto Algorithm: Parallelization

* Inner kernel is an indivisible unit

— Multithreaded parallelism cannot be easily

encoded within either of the outer two loops

— Parallelism must instead be obtained at a higher

A
NN <2

|eve| — ———— 2"oop around micro-kernel

ZE c A
m{ VA
+= WA
WA

ke

~ 1loop around microkernel
_“&}

, .] m (WA
Can’t easily parallelize — @ - Vs
this region Update C; VA

micro-kernel
] (T
+=]

Why should we want BLIS?

* So how does BLIS make it easier to implement high-
performance BLAS?

— Now that we’ve looked at the software architecture for
level-3 operations in GotoBLAS, let’s look at the same for
BLIS

e [Van Zee and van de Geijn 2015]

BLIS Algorithm

Isolates assembly region to a
smaller “micro-kernel”

— One loop around a tiny outer
product

- 5th loop around micro-kernel

~
Nc Ne
I—‘—\ l—‘—l
G += A B;
- 4t Joop around micro-kernel ~
kc{ B, (m—
G, += Ap
_’_l
Ke -
Pack B, — B,
- 3" |oop around micro-kernel —
Ci]» me me <| A §p Q—J
+=
Pack A; — A
~—— 2"]oop around micro-kernel {} N
n ~ n =%
— G A — Bp
m{ VA
+= WA
WA
ke T
~ 1%tloop around microkernel i
Ng <45
— ~
Fme W4
= (W4 ke
Update Cij W4
t micro-kernel
— 1 main memory
= M B = cche
+= v — [L2 cache
- 1 — @ L1 cache
— [registers
>)
& =

BLIS Algorithm

 Confers several benefits
over Goto’s inner kernel

Micro-kernel is more easily
recycled between level-3
inner kernels

Requires fewer lines of
assembly

Allows edge cases to be
handled portably

Exposes more opportunities
for parallelism

- 5th loop around micro-kernel

~
Ne Nc
’—l—\ ,—l—|
G 4= A B;
s 4t Joop around micro-kernel ~
kc{ B, (m—
C; += Ap
_’_l
Ke -
Pack B, — B,
- 3 loop around micro-kernel —
C } me M { A §p Qﬂ
+=
Pack A, — A,
~—— 2"]oop around micro-kernel {} N
n ~ n =3
= Ci A — Bp
m{ VA
+= WA
WA
< on
~ 1%tloop around microkernel i
Nr vi .
— v
Fme WA
+= (WA ke
Update Cj W4
t micro-kernel
— 1 main memory
RLE M B = s
+= ks — 3 L2 cache
- 1 — [L1 cache
— [registers
N _J
=)

BLIS Algorithm: Recycling Kernels

e BLIS exposes the outer two loops of the inner kernel

— These two outer loops were previously buried in assembly

— Key observation: Virtually all of the differences between level-3
operations’ inner kernels reside in these two loops

— These loops (“macro-kernels”) in BLIS are written in C99 for each of

the level-3 operations

macro-kernel + _
call to micro-kernel

micro-kernel —

—

—

—

Ng
l_‘_\

Ci

— ———— 2"oop around micro-kernel

+=

~ 1%tloop around microkernel

Update C;

me | A

n

%

:

Nr
l_‘_\
Fme

+=

[]
+=

A
NN <2

-

micro-kernel

(LT

[
[N

[main memory
[L3 cache
[L2 cache
[L1 cache
[registers

BLIS Algorithm: Assembly Footprint

e BLIS exposes the outer two loops of the inner kernel

— Inner-most loop of macro-kernel simply calls micro-kernel

— So the micro-kernel now consists of only one loop and no edge cases
for MR, NR

— This shrinks its size down from =5000 lines to =2000 lines

— ———— 2"oop around micro-kernel

,—ntR—\ Ci 'E‘l i Bp

—
m{ VA
+= WA
WA
= 200 |IneS Of C99) ~ 1tloop around microkernel !

Ng <
— v
Fme 4444 4%]
= Wk ke
Update C; W4

— micro-kernel

. n I
~ 2000 lines of assembly — +=]

[main memory
[L3 cache
[L2 cache
[L1 cache
[registers

r1

BLIS Algorithm: Edge Cases

* Wait, if edge cases aren’t handled in the microkernel,
then how are they handled?

6x8

BLIS Algorithm: Edge Cases

e BLIS handles edge cases differently than the Goto
approach

— BLIS requires that the kernel developer implement only
the (full-sized) micro-kernel

6x8

BLIS Algorithm: Edge Cases

* When an edge case is encountered in a level-3 operation

— BLIS copies matrix C to temporary memory, zero-fills edges,
computes on temporary, then copies back to C

Step 1

Step 2

Step 3

Copy

Zero fill

Copy

Edge micro-panels
already zero-filled
during packing

48

BLIS Algorithm: Edge Cases

 This does come with a small performance penalty
— First, the copies and zero-filling are not free

— Second, the micro-kernel must perform extra computations with
zeros, and does not get any credit for doing so

— Manifests as a “saw tooth” pattern in performance graphs
* So why do we do this?

— We think this trade-off between performance and productivity is
worth it

49

BLIS Algorithm: Parallelization

* BLIS macro-/micro-kernel design exposes additional

opportunities for parallelism
— Previously, Goto inner kernel was smallest unit of computation
— Parallelism was typically extracted at higher (coarser grain) levels

— Now we can parallelize at lower (finer grain) levels
* Tends to produce smoother results and better load balancing

* [Smith et al. 2014]

We can now easily parallelize —
these loops

—

~—— 2"]oop around micro-kernel

Ng

+=

me | A

~ 1loop around microkernel
Nr

—
}me
+=
Update C;

[]
+=

O

micro-kernel

(LT

r1

[main memory
[L3 cache
[L2 cache
[L1 cache
[registers

BLIS Algorithm: Micro-kernel

NR KF

— ,
MR{. = | A

NR
—

How is the micro-kernel typically implemented?

NR

BLIS Algorithm: Micro-kernel

MR{I _

Yoo
Y10
Y20
Y30

Yo1
Y11
Y21
Y31

Yo2
Y12
Y22
Y32

Yo3
Y13
Y23
Y33

/

Typical micro-kernel loop iteration
— Load column of packed A
— Load row of packed B
— Compute outer product
— Update C (kept in registers)

52

BLIS Blocksizes

e BTW: How are cache
and register
blocksizes chosen?

5th [oop around micro-kernel ~
I Nc I I Ne I
C]- 4= A BJ.
Ve 4th loop around micro-kernel ~
Ke B, (m—
A
CJ' += P
l ke I -
Pack B, — B,
s 3 |oop around micro-kernel —
= [k =]
+=
Pack A; — A
2" loop around micro-kernel {} N
n ~ n ~
,_AR_ Ci Ai n—‘R—\ Bp
m{ VA
+= WA
i < i 5
i
%:l“
+1 [main memory
[L3 cache
[L2 cache
[L1 cache
[registers
& .
& =

BLIS Blocksizes

e BTW: How are cache
and register
blocksizes chosen?

— Empirical search?
* [Whaley 1998]

p around micro-kernel ~
’—I_rl‘(:—l_\
A BJ-
p around m el ~
Ke- B, (m—
—
Ap
Pack B, — §p
)
BP :

[main memory
[L3 cache
[L2 cache
[L1 cache
[registers

\\\
\\\

BLIS Blocksizes S A

* BTW: How are cache N
and register [T]

blocksizes chosen? |][k~ e«
—Empirical seareh? Pack — A

- [Whaley 1998] =1 { WXLWI ;
— Analytical model is - % %%%

sufficient [looparoundmierolfTE
* [Low et al. 2016]

BLIS Algorithm

 What about packing?

— BLIS unifies packing for three different matrix structures
into one interface
* General matrices
* Symmetric/Hermitian matrices
* Triangular matrices

— Highly-parameterized and reusable for variety of
parameter cases
* e.g.side/uplo/trans parameters, matrix storage formats
— How?

e Short answer: Separate row, column strides go a long way!

e Let’s review and summarize

Benefits of BLIS

* BLIS...

— Factors out as much complexity as possible from
performance-sensitive kernel code, leaving only the micro-
kernel

— Significantly reduces the size and complexity of the kernels
that must be optimized to achieve high performance

— Provides generic, portable instances of factored codes
(macro-kernels) as well as the higher-level blocked
algorithms

— Provides all packing functionality (no modification
required)

BLIS performance

* Okay, enough talk. Show me high performance!
* Results gathered on AMD Epyc 7742 “Rome” Zen2 server

— Before | show you full results, let’s review how to interpret each
graph

BLIS performance

* Okay, enough talk. Show me high performance!
* Results gathered on AMD Epyc 7742 “Rome” Zen2 server

— x-axis shows problem size (all dimensions equal)
— y-axis shows GFLOPS (top of graph = theoretical peak performance)
— We compare BLIS to other BLAS implementations

provided by dgemm
* OpenBLAS 0.3.10 0l ,
* Eigen 3.3.90 5
* Intel MKL 2020 Update 3 - 40 |
0O Jommemman
O 30 |
™
2l | == OpenBLAS
10+ igen
— MKL
0 .

1000 2000

BLIS performance

* Okay, enough talk. Show me high performance!
* Results gathered on AMD Epyc 7742 “Rome” Zen2 server

— x-axis shows problem size (all dimensions equal)

— y-axis shows GFLOPS (top of graph = theoretical peak performance)
— We compare BLIS to other BLAS implementations

provided by dgemm
* OpenBLAS 0.3.10 ,
* Eigen 3.3.90 50
* Intel MKL 2020 Update 3 - 40 |
— We do this for... % - _/‘""""
* arepresentative sample of level-3 —

operations

(520 | --- OpenBLAS

 on four floating-point datatypes 10 Eigen
(s = float, d = double, c = single complex — MKL
z = double complex) 0 ‘

1000 2000

1 thread

100
80
60
40
20

GFLOPS

100
80
60
40
20

GFLOPS

50
40

GFLOPS

20
10

sgemm

1000 2000

dgemm

--- OpenBLAS
-~ Eigen
~—MKL

1000
cgemm

2000

1000 2000
m=n=Kk

100

e et e -

o 8888

o8 888

3

o8 88 8

oo B8888

8

g

o8 858388 coc8888 o 88588

o 8888

100
80
60
40 |f
20
0
1000 2000 1000 2000
dsyrk dtrmm
0
1000 2000 1000 2000
cherk ctrmm
100
B0
60 ||,
40
20 |
0
1000 2000 1000 2000
zherk ztrmm
0
1000 2000 1000 2000
m=n=k m=n=Kk

100 |
80 |
60 : |/
40 |
20

100 |

1000 2000

dtrsm

1000 2000

ctrsm

1000 2000

ztrsm

Multithreading

* Loops eligible for

parallelism: 5th, 3rd 2nd st 3

— Parallelize two or more
loops simultaneously

— ldeal loops to target
depend on which caches
are shared vs. private

 Controlled via
environment variables
— BLIS JC NT
— BLIS IC NT
— BLIS JR NT
— BLIS IR NT

* (Can use either OpenMP
or POSIX threads

JC |qop— 5th [oop around micro-kernel ~
Nc Ne
I—‘—\ l—‘—|
G 4= A B;
PC IQD-p— 4th Joop around micro-kernel ~
kc{ B, (m—
+= Ap
_’_l
Ke -
Pack B, — B,
IC |CIQP— 3" |oop around micro-kernel —
C } me me { A B, &
+=

JR IO OP 24 |oop around micro-kernel

Ng

AV

IR loo

AW}
NN

15t loop around microkernel

C T
N Ee—
_’_l
x~
(o]

PRI

[
[N

[main memory
[L3 cache
[L2 cache
[L1 cache
[registers

\\\
\\\

BLIS multithreading

 Multithreaded performance in BLIS
— How does it compare to alternatives?
* OpenBLAS, Intel’s MKL, Eigen
— Note: y-axis now shows GFLOPS/core
* Top of graph still represents peak performance

— Test hardware
 AMD Epyc 7742 “Rome” Zen2 (2 sockets, 64 cores each)

jcdicajra (64t)

sgemm

80

[o2]
L=

GFLOPS/core
[T -
[TR = |

[t

e TR
AN Wi

(=]

2000 4000

dgemm

GFLOPS/core
— [4%] L Fy
= = = L |

=

[ﬂ.‘l"" W
,.m.ﬁ'f".l WY

U
el
|'I!E"'i I :'.:?!,'Eﬁlg Py

2000 4000
cgemm

o @
[=T = |

GFLOPS/core
i S -
[= T = |

=]

2000 4000

zgemm

GFLOPS/core
[T o R =
[T o T s |

=
=

[=]

2000 4000
m=n=k

ssymm
a0
60
40
20
0
2000 4000
dsyrmm
40
30
20
Ao ALY
0 ﬁf{/
0
2000 4000
chemm
80
60
40
201 f AAAAA
0
2000 4000
zhemm
40

2000 4000
m=n=k

o 8 & 8 8

&

o 8 & 8 8

&

ssyrk strmm
80 _Bus
60 OpenBLAS

a"-
VS

2000 4000
dsyrk

2000 4000

dtrmm

40

2000 4000
cherk

2000 4000

ctrmm

a0
60
: 40 !
;ﬂw ﬁ S AL
2000 4000 2000 4000
zherk Ztrmm
40
30
20
. 10| A%
;;H___.,w% A /\,ﬂfﬂM
2000 4000 ’ 2000 4000
m=n=Kk m=n=Kk

807

40 |

BO |

40 |

strsm

2000 4000

dtrsm

2000 4000

ctrsm

2000 4000

ztrsm

2000 4000
m=n=k

64

jc8icajra (128t) sgemm

80

[+2]
(=]

GFLOPS/core
ma ey
(=] =]

o

GFLOPS/core
- (%] (] =Y
= = [==) = =

(o T » +
[=T = |

GFLOPS/core
Mma 4
= =

=

GFLOPS/core
(%] (] F=Y
(=] = []

[y
=

3000 6000

dgemm

3000 6000
cgemm

[i A
- il YA YD
-, ..1.!&.:'.'\; LN N

3000 6000

zgemm

[=]

3000 6000
m=n=k

o 8 & 8 8

5

SSymm

3000 6000
dsymm

1
AN

3000 6000

chemm

;ﬁi}&;ﬂhwww

3000 6000

zhemm

JMUW\PM AN

3000 6000
m=n=k

o 8 & 8 8

&

o 8 & 8 8

&

ssyrk strmm
80 _ BUS _
ama FE" I ﬂs
60| Eigen

40

20
IR i 0 fpep NI
3000 6000 3000 6000
dsyrk dtrmm
40

e e AN

3000 6000
cherk

3000 6000

ctrmm

80
60
40
20
2 A AIINAAAN
_.-:'—.'_H-‘FH 0
3000 6000 3000 6000
zherk ztrmm
40
30
20
10 L
r-""h L A 0 ',W*QNM?\'V
3000 6000 3000 6000
m=n=k m=n=Kk

80 |

40 |
30 |
20 |
10 |

80 |

40 |

strsm

3000 6000

dtrsm

3000 6000

ctrsm

3000 6000

ztrsm

3000 6000
m=n=Kk

65

Publications

* BLIS

— Van Zee and van de Geijn. “BLIS: A Framework for Rapid
Instantiation of BLAS Functionality” (ACM TOMS 2015)

— Van Zee et al. “The BLIS Framework: Experiments in Portability”
(ACM TOMS 2016)

— Smith et al. “Anatomy of Many-Threaded Matrix Multiplication”
(IPDPS 2014; in proceedings)

— Low et al. “Analytical Modeling is Enough for High-Performance
BLIS” (ACM TOMS 2016)

— Van Zee and Smith. “Implementing High-Performance Complex
Matrix Multiplication via the 3m and 4m Methods” (ACM TOMS
2017)

— Van Zee. “Implementing High-Performance Complex Matrix
Multiplication via the 1m Method” (SISC 2020)

— Van Zee et al. “Supporting Mixed-Domain Mixed-Precision
Matrix Multiplication within the BLIS Framework” (ACM TOMS;
to appear)

Publications

* BLIS spin-offs and related efforts by collaborators

— Devin A. Matthews. “High-Performance Tensor Contraction
Without Transposition.” (SISC 2015)

— Chenhan D. Yu, Jianyu Huang, Woody Austin, Bo Xiao, George
Biros. “Performance Optimization for the K Nearest-Neighbors
Kernel on x86 Architectures.” (SC 2015)

— Jianyu Huang, Tyler M. Smith, Greg M. Henry, Robert A. van de
Geijn. “Strassen’s Algorithm Reloaded.” (SC 2016)

— Jianyu Huang, Leslie Rice, Devin A. Matthews, Robert A. van de
Geijn. “Generating Families of Practical Fast Matrix
Multiplication Algorithms.” (IPDPS 2017)

— Jianyu Huang, Chenhan D. Yu, Robert A. van de Geijn.
“Strassen’s algorithm reloaded for GPUs.” (TOMS 2020)

— Tyler M. Smith, Robert A. van de Geijn. “The MOMMS Family of
Matrix Multiplication Algorithms.” (arXiv 2019)

Investing Organizations

* NSF, 2012-present

— Award ACI-1148125/1340293: SI2-SSI: A Linear Algebra
Software Infrastructure for Sustained Innovation in

Computational Chemistry and other Sciences. (Funded June 1,
2012 - May 31, 2015.)

— Award CCF-1320112: SHF: Small: From Matrix Computations to
Tensor Computations. (Funded August 1, 2013 - July 31, 2016.)

— Award ACI-1550493: S/2-5SI: Sustaining Innovation in the Linear
Algebra Software Stack for Computational Chemistry and other
Sciences. (Funded July 15, 2016 — June 30, 2018.)

— Award CSSI-2003921: Collaborative Research: Frameworks:
Beyond BLAS: A Framework for Accelerating Computational and
Data Science. (Funded May 1, 2020 - April 30, 2023.)

Investing Organizations

* Industry (gifts, grants, and hardware), 2011-present

— Microsoft . m M ft

— Texas Instruments @ = ICIOSO u
— Intel A h-

— HP Enterprise

— Oracle o

— Facebook b ® -- fGCEbOOk
— ARM
(ﬁ] ODENINSTITUTE

FOR COMPUTATIONAL ENGINEERING & SCIENCES

Takeaways

e BLIS is more than BLAS!

e BLIS benefits basic end-users
— More flexible interface

* BLIS benefits developers

— Provides a portable framework and reduces amount of
code to be optimized and maintained

— Allows rapid instantiation to new hardware

— Contains infrastructure for implementing new operations

Takeaways

* BLIS benefits experts, SC/HPC Researchers
— Access to low-level routines/kernels
— Provides a platform for experimentation and prototyping
— Foundation for mixed-domain, mixed-precision operations

e BLIS benefits everyone
— BLIS facilitates high performance

— Reasonably compact, readable code
— Free / open source software — available under BSD license

Thank you!

e Questions?

Bonus Topics

BLIS multithreading

* Quadratic partitioning
— The topic: partitioning a submatrix for the
purposes of multithreaded parallelism

— The question: how to determine subpartition
dimensions
— For the following illustrative examples, assume:

* We want four ways of parallelism (four threads)

* We only partition in one dimension at a time

BLIS multithreading

n

BLIS multithreading

w=n/4

BLIS multithreading

BLIS multithreading

S

||
w=z=n/4

BLIS multithreading

BLIS multithreading

BLIS multithreading

=

BLIS multithreading

BLIS multithreading

=

BLIS multithreading

* Quadratic partitioning
— Affects: herk, her2k, syrk, syr2k, trmm, trmm3
— Arbitrary quasi-trapezoids (trapezoid-oids?)
— Arbitrary diagonal offsets

— Lower- or upper-stored Hermitian/symmetric or
triangular matrices

— Partition along m or n dimension, forwards or
backwards
* This matters because of edge case placement
— Subpartitions must be multiples of “blocking factors”

(ie: register blocksizes), except the subpartition
containing edge case, if it exists

BLIS multithreading

* Quadratic partitioning
— How much does it matter? Let’s find out!

— Test hardware
* 3.6 GHz Intel Haswell (4 cores)

— Test operation
* Hermitian rank-k update: C .= C + AAH

85

GFLOPS/core
w N ol
°© o 9

N
o

BLIS multithreading

herk, double—precision (4 threads)

——dherk_In BLIS (quadratic)

——-dherk_un BLIS (quadratic) |
——dherk_In BLIS (linear)
——-dherk_un BLIS (linear)

1000 2000 3000
problem size (m = k)

4000

86

APIs

BLAS (Fortran-compatible)
CBLAS (C conventions + row-major support)

BLIS

— Object API, e.g. bli_gemm()

— Typed API, e.g. bli dgemm()

— Both offer basic + expert sub-interfaces

And all APIs can be called from C++

BLAS vs CBLAS interfaces

// BLAS
void dgemm_

(

)s

char*
char*
int*
int*
int*
double*
double*
double*
double*
double*

transa,
transb,
m,

n,

K,
alpha,
a, int*
b, int*
beta,
c, int*

lda,
1db,

ldc

// CBLAS

void cblas_dgemm

(

)s

enum CBLAS ORDER
enum CBLAS_ TRANSPOSE
enum CBLAS_TRANSPOSE

int
int
int
double

const double*
const double*

double
double*

m,

n,

K,
alpha,
a, int
b, int
beta,
c, int

order,
transa,
transb,

lda,
1db,

ldc

BLAS vs Typed BLIS Interfaces

// BLAS
void dgemm_

(

)s

char*
char*
int*
int*
int*
double*
double*
double*
double*
double*

transa,
transb,
m,

n,

K,
alpha,
a, int*
b, int*
beta,
c, int*

lda,
1db,

ldc

// Typed API (basic)
void bli dgemm

(

)5

trans_t
trans_t
dim_t

dim t

dim t

double*
double*
double*
double*
double*

transa,

transb,

m,

n,

K,

alpha,

a, inc_t rsa, inc_t csa,
b, inc_t rsb, inc_t csb,
beta,

c, inc_t rsc, inc_t csc

// Object API (basic)

Object vs Typed BLIS Interfaces

void bli_ gemm

(

)s

obj_t*
obj_t*
obj_t*
obj_t*
obj_t*

alpha,
a,

b,
beta,
C

// Typed API (basic)

(

)5

trans_t
trans_t
dim_t

dim t

dim t

double*
double*
double*
double*
double*

void bli dgemm

transa,

transb,

m,

n,

K,

alpha,

a, inc_t rsa, inc_t csa,
b, inc_t rsb, inc_t csb,
beta,

c, inc_t rsc, inc_t csc

Object vs Typed BLIS Interfaces

// Object API (expert) // Typed API (expert)
void bli gemm ex void bli dgemm ex
((
obj _t* alpha, trans_t transa,
obj t* a, trans_t transb,
obj t* b, dim t m,
obj _t* beta, dim t n,
obj t* «c, dim t k,
cntx_t* cntx, double* alpha,
rntm_t* rntm double* a, inc_t rsa, inc_t csa,
) double* b, inc_t rsb, inc_t csb,

double* beta,
double* c, inc_t rsc, inc_t csc,
cntx_t* cntx,
rntm_t* rntm

)s

Implementation language

e BLIS is implemented in ISO C99
— “Why not Fortran?”

— Performance-critical kernels are expressed in
assembly code or intrinsics

— Thus, the higher-level framework could be
anything
e BLIS makes ample use of the C preprocessor
for source code templatization

— Write one cpp macro and invoke once per
datatype

Controlling Multithreading

e Reminder

— BLIS's gemm algorithm has five loops outside the
micro-kernel

— Four of these loops may be parallelized in BLIS
* JC
* PC (parallelism not yet enabled)
* |C
* JR
* [R
* PR (microkernel)

Controlling Multithreading

* Three methods of specifying multithreading

— Global specification via environment variables
 Affects all threads

— Global specification via runtime API
 Affects all threads

— Thread-local specification via runtime API
» Affects only the calling thread!

96

Controlling Multithreading

* Global specification via environment variables
— Example:

Use either the automatic way or manual way of requesting
parallelism.

Automatic way.
$ export BLIS NUM THREADS = 6

Expert way.
$ export BLIS IC NT = 2; export BLIS JR NT = 3

// Call a level-3 operation (basic interface is enough).
// Typed API responds similarly.
bli gemm(&alpha, &a, &b, &beta, &c);

97

Controlling Multithreading

* Global specification via runtime API
— Example:

// Use either the automatic way or manual way of requesting
// parallelism.

// Automatic way.
bli_thread_set_num_threads(6);

// Manual way.
bli thread set ways(1, 1, 2, 3, 1);

// Call a level-3 operation (basic interface is still enough).
// Typed API responds similarly.
bli gemm(&alpha, &a, &b, &beta, &c);

98

Controlling Multithreading

* Thread-local specification via runtime API
— Example:

// Declare and initialize a rntm_t object.
rntm_t rntm = BLIS RNTM INITIALIZER;

// Call ONE (not both) of the following to encode your

// parallelization into the rntm_t.

bli rntm_set num_threads(6, &rntm); // automatic way
bli rntm_set ways(1, 1, 2, 3, 1, &ntm); // manual way

// Call a level-3 operation via an expert interface and pass
// in your rntm_t. (NULL below requests default context.)

// Typed API responds similarly.

bli gemm ex(&alpha, &a, &b, &beta, &c, NULL, &rntm);

99

Controlling Multithreading

 For more details:
— docs/Multithreading.md

Thread Safety

e BLIS provides unconditional thread safety*

e What does this mean?

— BLIS always uses mechanisms provided by pthreads
API| to ensure synchronous access to globally-shared
data structures

— Independent of multithreading option

--enable-threading={pthreads|openmp}
* Works with OpenMP
* Works when multithreading is disabled entirely

*Under normal usage conditions.

The 1m Method

Goal: Reuse real-domain kernels to induce complex-domain
operations

— This would avoid the need for addition complex microkernels, which
tend to be more difficult to program in assembly code

)/61\
Vcl)1
Vf1

V1i1/

/
\

ard (—al) [afd (—ak,]
00k |~ %o0 01Ny %01
PR PR

Xoo “00 do1 “01
r] r [
diov |~ %X10| |H11f |~ 11
ai ,xar ai ’XC(T

L 104 _ 1OJ _ 114 _ 11J

\

Solution: the 1m method [Van Zee 2020]

— A'is packed to micro-columns with real and imaginary elements
duplicated and swapped to next column (with imaginary negated)

— B is packed to micro-rows where imaginary elements are reordered to
next row

— Multiply A and B using normal real-domain microkernel

/

Boo

Boa
o
:811

)

B,
(B0
\ B,

102

Small/skinny gemm

e Separate “sub-framework” intercepts these cases
— Multithreading, optional packing supported

small m

— |/

+=

small n

-0l

small k

small m, k

— [R —

+=
small n, k
||

smallm, n
o —— |]

+=

103

Mixed datatype gemm

e Consider simplified gemm (no scalars): C := C + AB
— Recall: BLAS requires A, B, and C to be stored as the same

datatype (precision and domain)
* single real, double real, single complex, double complex

— BLIS has a gemm implementation that lifts this constraint!

— Total number of possible cases to implement

* Assume each operand stored as one of t storage datatypes

Operation may be computed in one of t/2 precisions (two domains)
v — (E) 3t

In general: N = (2) t> = -

For BLIS (currently): N = G) 43 = 128

Notice that BLAS implements only 4 out of the 128

Hardware Support

AMD

— Bulldozer, Piledriver, Steamroller, Excavator, Zen,
Zen+, Zen2

Intel

— Core2, Sandy/Ivy Bridge, Haswell/Broadwell,
Skylake[X], KNL, Kaby/Coffee Lake, and beyond

IBM BlueGene/Q, Power9, Power10
ARM (v7a, v8a, SVE)

Build system features

Based on GNU build process

— configure; make; make install

Hardware detection

— Determines kernel and cache blocksize selections

— Happens at configure-time (slim libraries) or runtime (fat libraries)
Compiler flags set on a per-subconfiguration basis

— Flags may differ from haswell to skx to zen to zen2
Dynamically generated makefile fragments

— Shouldn’t have to edit a makefile just because | rename foo.c to
bar.c

Monolithic header generation

— All headers (=500) recursively inlined into blis.h
— Faster compilation time

— Easier to distribute build products

Testing

Unified testsuite
— correctness and performance, BLIS-only

netlib BLAS test drivers

— correctness, BLAS-only

Standalone (comparative) performance drivers
— BLIS vs OpenBLAS, MKL, Eigen (large and small)

— libxsmm, BLAFEO (small only)

Continuous integration
— Travis Cl (including Intel SDE), AppVeyor

OS Support

Debian/Ubuntu
Fedora/EPEL
Gentoo
OpenSUSE
GNU Guix

OS X

Windows
— clang via AppVeyor

User Statistics

* GitHub provides two-week rolling averages
— 120+ unique clones
— 600+ unique visitors

— This doesn’t count .zip file downloads or OS-specific
packages (e.g. Ubuntu installs)

— Nor does it count clones/downloads of AMD BLIS
* How many total users do we have?

— No idea!
— But we think it could be quite high

Community Support

Example code (tutorial)

Documentation

Performance graphs

— http://github.com/flame/blis/

Mailing lists

— https://groups.google.com/group/blis-devel
— https://groups.google.com/group/blis-discuss

GitHub issues
— https://github.com/flame/blis/issues

110

http://code.google.com/p/blis/
http://code.google.com/p/blis/
http://code.google.com/p/blis/
http://groups.google.com/group/blis-devel
http://groups.google.com/group/blis-devel
http://groups.google.com/group/blis-devel
http://groups.google.com/group/blis-devel
https://groups.google.com/group/blis-discuss
https://groups.google.com/group/blis-discuss
https://groups.google.com/group/blis-discuss
http://github.com/flame/blis/issues

What’s next?

e Future directions

— Support new datatypes
* bfloatl6, fpl6, intl6, etc.

— Refactor for more exotic expert usage
— Implement new operations
— Support new hardware (as it becomes available)

Thank you!

e Questions?

