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What is BLIS?

* BLAS-like Library Instantiation Software

e BLIS is a framework for

— Quickly instantiating high-performance BLAS-like
libraries

 “Why ‘BLAS-like’?”...
— For now, just assume BLAS-like = BLAS



What is BLAS?

e Basic Linear Algebra Subprograms

— Level 1: vector-vector
— Level 2: matrix-vector

— Level 3: matrix-matrix

Lawson et al. 1979]
[Dongarra et al. 1988]

[Dongarra et al. 1990]

* Why are BLAS important?



Why are BLAS important?

* BLAS constitute the “bottom of the food
chain” for most dense linear algebra
applications, as well as other libraries

— LAPACK, 1ibflame, MATLAB, PETSc, etc.

* The idea is simple:
— if the BLAS interface is “standardized”, and
— if an optimized implementation exists for your
architecture

— then higher-level applications can portably access
high performance



More about the BLAS

* level-1 operations

— i?7amax: find index of element with largest absolute
value

— ?asum: compute absolute sum

— ?axpy: scale vector and accumulate
— ?copy: copy vector

— ?dot: compute dot (inner) product
— ?nrm2: compute vector 2-norm

— ?scal: apply a scalar to a vector

— ?swap: swap two vectors



More about the BLAS

* level-2 operations
— ?gemv: general matrix-vector multiply
— ?ger: general rank-1 update
— ?hemv: Hermitian matrix-vector multiply
— ?her: Hermitian rank-1 update
— ?her2: Hermitian rank-2 update
— ?symv: symmetric matrix-vector multiply
— ?syr: symmetric rank-1 update
— ?syr2: symmetric rank-2 update
— ?trmv: triangular matrix-vector multiply
— ?trsv: triangular solve (with one right-hand side)



More about the BLAS

* level-3 operations
— ?gemm: general matrix multiply
— ?hemm: Hermitian matrix multiply
— ?herk : Hermitian rank-k update
— ?her2k : Hermitian rank-2k update
— ?symm: symmetric matrix multiply
— ?syrk: symmetric rank-k update
— ?syr2k: symmetric rank-2k update
— ?trmm: triangular matrix multiply
— ?trsm: triangular solve (with multiple right-hand sides)



More about the BLAS

* Plenty of BLAS implementations available

— Vendor

 MKL (Intel), cuBLAS (NVIDIA), ARMPL (ARM), ESSL
(IBM), Accelerate (Apple), etc.

— Open source
* netlib, OpenBLAS, Eigen, BLASFEOQ, libxsmm, ATLAS, etc.

 So why do we need BLIS?



Why do we need BLIS?

e Actually, there are two questions
— Why do we need BLIS?

— Why should we want BLIS?
e (Even if we don’t need it)

* Let’s look at the first question



Why do we need BLIS?

 The BLAS interface is limiting for some
applications

— Not surprising — it was finalized 30 years ago!

* How exactly is the BLAS interface limiting?



Limitations of BLAS interface

* Interface only allows column-major storage
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Limitations of BLAS interface

* Interface only allows column-major storage

— We also want row-major storage
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Limitations of BLAS interface

* Interface only allows column-major storage

— We also want row-major storage and general stride
storage
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Limitations of BLAS interface

* Interface only allows column-major storage

— We also want row-major storage and general stride
storage

— Further yet, we want to support computation on
operands of mixed storage formats. Example:
«C:=C+AB
where A is column-stored, B is row-stored, and C has
general stride.
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Limitations of BLAS interface

* Why do we need general stride storage?



Limitations of BLAS interface

* Why do we need general stride storage?
 Example: three-dimensional tensor
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Limitations of BLAS interface

* Why do we need general stride storage?

 Example: three-dimensional tensor
— How do we take an arbitrary slice?
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Limitations of BLAS interface

* Why do we need general stride storage?

 Example: three-dimensional tensor
— How do we take an arbitrary slice?

* It may be non-contiguous in both dimensions

Non-contiguous elements

IS
—




Limitations of BLAS interface

* Incomplete support for complex operations

— Vector conjugation, matrix “conjugation without
transposition” options are missing from BLAS

Examples:
—-y:=y+ ax
—y =y + Ax
—C:=C+AB
—C:=C+ AAT
—B:=1LB
—-B:=L"'B

axpy
gemv

gemy, gemm
her, herk
trmy, trmm
trsv, trsm



Limitations of BLAS interface

* BLAS API is opaque

— No uniform way to access lower-level kernels

 Why would one want access to these kernels?
Some possibilities:
— Optimize operations in higher-level libraries or
applications

— Implement new BLAS-like operations (without
“reinventing the wheel”)

— Conduct research or measurements on the kernels
themselves



Limitations of BLAS interface

* Operation support has not changed in three
decades

— BLAST Technical Forum attempted to ratify some
Improvements

— Revisions largely ignored by implementors. Why?
* Best guess: No official reference implementation



Why do we need BLIS?

* So why does any of this mean we need BLIS?
— The BLAS API is static and cannot be improved

— We can’t gain access to a better interface by
building a better BLAS — we need something else
altogether

— This was one of the primary motivations for
developing BLIS



Why do we need BLIS?

e BLIS addresses the BLAS’ interface issues

— Independent row and column stride properties
allow flexible matrix storage

— Any input operand can be conjugated

— Experts can directly call lower-level packing,
computation kernels

— Operation support can grow over time, as needed
* Hence why BLIS is “BLAS-like”



Why do we need BLIS?

e BLIS addresses the BLAS’ interface issues

— Independent row and column stride properties
allow flexible matrix storage

— Any input operand can be conjugated

— Experts can directly call lower-level packing,
computation kernels

— Operation support can grow over time, as needed
* Hence why BLIS is “BLAS-like”

* This is why BLIS needs to exist

— i.e., These features are largely absent from other
BLAS implementations



Why should we want BLIS?

* What if | don’t need any of these features
unique to BLIS?

— You still might want to use BLIS!



Why should we want BLIS?

* What if | don’t need any of these features
unique to BLIS?

— You still might want to use BLIS!
* |f you’re an end-user

— Improved APIs

— You can still use BLAS (or CBLAS) compatibility layer
* |f you're a developer

— BLIS makes it easier to implement high-
performance BLAS libraries on new hardware



Why should we want BLIS?

* So how does BLIS make it easier to implement high-
performance BLAS?

— Let’s first look at general matrix-matrix multiplication
(gemm) as implemented by Kazushige Goto in GotoBLAS
e [Goto and van de Geijn 2008]

— Note: This same approach was inherited into OpenBLAS



Goto Algorithm

Built atop Goto’s “inner

I”

kerne

— Three loops around a tiny

outer product

— Written entirely in assembly

language
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Goto Algorithm

Drawbacks

— Cannot always recycle gemm
inner kernel for other level-3

operations

— Difficult to read: three loops in

~5000 lines!

— Edge cases handled explicitly

— Can’t parallelize within
assembly region
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Goto Algorithm: Recycling Kernels

 Why can’t we always recycle the Goto inner
kernel?

— It has to do with differences between the level-3
operations



Goto Algorithm: Recycling Kernels

 Example: Triangular matrix multiplication (trmm)

* Needs at least two special inner kernels

— Variants for lower- and upper-stored matrix A move in
opposite directions

— Inner-most loop bound varies as a function middle loop’s
current iteration (index) for blocks that intersect diagonal
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Goto Algorithm: Assembly Footprint

* Three loops encoded in assembly language
— With lots of unrolling
— And edge case handling
— It gets complicated in a hurry!
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Goto Algorithm: Edge Cases

 What are kernel edge cases?

— Inner kernels have a “fundamental size” (MR x NR)
based on register allocation and data
rearrangement (packing)
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Goto Algorithm: Edge Cases

 What are kernel edge cases?

— For each of the outer two loops, the inner kernel
must handle “leftover” matrix blocks

Possible edge cases
highlighted in red
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Goto Algorithm: Edge Cases

 What does this mean for the assembly kernel?

— Lots of extra logic after each loop to handle
specific edge case sizes

6x8




Goto Algorithm: Edge Cases

 What does this mean for the assembly kernel?

— Lots of extra logic after each loop to handle
specific edge case sizes

6x8 6x4 6x2 6x1




Goto Algorithm: Edge Cases

 What does this mean for the assembly kernel?

— Lots of extra logic after each loop to handle

specific edge case sizes

6x8

6x4

6x2

4x8

2X8

1x8

6x1
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Goto Algorithm: Edge Cases

 What does this mean for the assembly kernel?

— Lots of extra logic after each loop to handle

specific edge case sizes

6x8 6x4 6x2 6x1
4x8 4x4 4x2 4x1
2X8 2Xx4 2x2 2x1
I | | | | | O
1x8 1x4 1x2 1x1
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Goto Algorithm: Parallelization

* Inner kernel is an indivisible unit

— Multithreaded parallelism cannot be easily

encoded within either of the outer two loops

— Parallelism must instead be obtained at a higher
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Why should we want BLIS?

* So how does BLIS make it easier to implement high-
performance BLAS?

— Now that we’ve looked at the software architecture for
level-3 operations in GotoBLAS, let’s look at the same for
BLIS

e [Van Zee and van de Geijn 2015]



BLIS Algorithm

Isolates assembly region to a
smaller “micro-kernel”

— One loop around a tiny outer
product

- 5th loop around micro-kernel
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BLIS Algorithm

 Confers several benefits
over Goto’s inner kernel

Micro-kernel is more easily
recycled between level-3
inner kernels

Requires fewer lines of
assembly

Allows edge cases to be
handled portably

Exposes more opportunities
for parallelism
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BLIS Algorithm: Recycling Kernels

e BLIS exposes the outer two loops of the inner kernel

— These two outer loops were previously buried in assembly

— Key observation: Virtually all of the differences between level-3
operations’ inner kernels reside in these two loops

— These loops (“macro-kernels”) in BLIS are written in C99 for each of

the level-3 operations
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BLIS Algorithm: Assembly Footprint

e BLIS exposes the outer two loops of the inner kernel

— Inner-most loop of macro-kernel simply calls micro-kernel

— So the micro-kernel now consists of only one loop and no edge cases
for MR, NR

— This shrinks its size down from =5000 lines to =2000 lines

— ———— 2"oop around micro-kernel
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BLIS Algorithm: Edge Cases

* Wait, if edge cases aren’t handled in the microkernel,
then how are they handled?

6x8




BLIS Algorithm: Edge Cases

e BLIS handles edge cases differently than the Goto
approach

— BLIS requires that the kernel developer implement only
the (full-sized) micro-kernel

6x8




BLIS Algorithm: Edge Cases

* When an edge case is encountered in a level-3 operation

— BLIS copies matrix C to temporary memory, zero-fills edges,
computes on temporary, then copies back to C

Step 1

Step 2

Step 3

Copy

Zero fill

Copy

Edge micro-panels
already zero-filled
during packing
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BLIS Algorithm: Edge Cases

 This does come with a small performance penalty
— First, the copies and zero-filling are not free

— Second, the micro-kernel must perform extra computations with
zeros, and does not get any credit for doing so

— Manifests as a “saw tooth” pattern in performance graphs
* So why do we do this?

— We think this trade-off between performance and productivity is
worth it
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BLIS Algorithm: Parallelization

* BLIS macro-/micro-kernel design exposes additional

opportunities for parallelism
— Previously, Goto inner kernel was smallest unit of computation
— Parallelism was typically extracted at higher (coarser grain) levels

— Now we can parallelize at lower (finer grain) levels
* Tends to produce smoother results and better load balancing

* [Smith et al. 2014]
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BLIS Algorithm: Micro-kernel

NR KF
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MR{. = | A
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How is the micro-kernel typically implemented?



NR

BLIS Algorithm: Micro-kernel

MR{I _

Yoo
Y10
Y20
Y30

Yo1
Y11
Y21
Y31

Yo2
Y12
Y22
Y32

Yo3
Y13
Y23
Y33

/

Typical micro-kernel loop iteration
— Load column of packed A
— Load row of packed B
— Compute outer product
— Update C (kept in registers)
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BLIS Blocksizes

e BTW: How are cache
and register
blocksizes chosen?
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BLIS Blocksizes

e BTW: How are cache
and register
blocksizes chosen?

— Empirical search?
* [Whaley 1998]
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BLIS Blocksizes S A

* BTW: How are cache N
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BLIS Algorithm

 What about packing?

— BLIS unifies packing for three different matrix structures
into one interface
* General matrices
* Symmetric/Hermitian matrices
* Triangular matrices

— Highly-parameterized and reusable for variety of
parameter cases
* e.g.side/uplo/trans parameters, matrix storage formats
— How?

e Short answer: Separate row, column strides go a long way!

e Let’s review and summarize



Benefits of BLIS

* BLIS...

— Factors out as much complexity as possible from
performance-sensitive kernel code, leaving only the micro-
kernel

— Significantly reduces the size and complexity of the kernels
that must be optimized to achieve high performance

— Provides generic, portable instances of factored codes
(macro-kernels) as well as the higher-level blocked
algorithms

— Provides all packing functionality (no modification
required)



BLIS performance

* Okay, enough talk. Show me high performance!
* Results gathered on AMD Epyc 7742 “Rome” Zen2 server

— Before | show you full results, let’s review how to interpret each
graph



BLIS performance

* Okay, enough talk. Show me high performance!
* Results gathered on AMD Epyc 7742 “Rome” Zen2 server

— x-axis shows problem size (all dimensions equal)
— y-axis shows GFLOPS (top of graph = theoretical peak performance)
— We compare BLIS to other BLAS implementations

provided by dgemm
* OpenBLAS 0.3.10 0l ,
* Eigen 3.3.90 5
* Intel MKL 2020 Update 3 - 40 |
0O Jommemman
O 30 |
™
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BLIS performance

* Okay, enough talk. Show me high performance!
* Results gathered on AMD Epyc 7742 “Rome” Zen2 server

— x-axis shows problem size (all dimensions equal)

— y-axis shows GFLOPS (top of graph = theoretical peak performance)
— We compare BLIS to other BLAS implementations

provided by dgemm
* OpenBLAS 0.3.10 ,
* Eigen 3.3.90 50
* Intel MKL 2020 Update 3 - 40 |
— We do this for... % - _/‘""""
* arepresentative sample of level-3 —

operations

(520 | --- OpenBLAS

 on four floating-point datatypes 10 Eigen
(s = float, d = double, c = single complex — MKL
z = double complex) 0 ‘

1000 2000



1 thread
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Multithreading

* Loops eligible for

parallelism: 5th, 3rd 2nd st 3

— Parallelize two or more
loops simultaneously

— ldeal loops to target
depend on which caches
are shared vs. private

 Controlled via
environment variables
— BLIS JC NT
— BLIS IC NT
— BLIS JR NT
— BLIS IR NT

* (Can use either OpenMP
or POSIX threads
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BLIS multithreading

 Multithreaded performance in BLIS
— How does it compare to alternatives?
* OpenBLAS, Intel’s MKL, Eigen
— Note: y-axis now shows GFLOPS/core
* Top of graph still represents peak performance

— Test hardware
 AMD Epyc 7742 “Rome” Zen2 (2 sockets, 64 cores each)
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Publications

* BLIS

— Van Zee and van de Geijn. “BLIS: A Framework for Rapid
Instantiation of BLAS Functionality” (ACM TOMS 2015)

— Van Zee et al. “The BLIS Framework: Experiments in Portability”
(ACM TOMS 2016)

— Smith et al. “Anatomy of Many-Threaded Matrix Multiplication”
(IPDPS 2014; in proceedings)

— Low et al. “Analytical Modeling is Enough for High-Performance
BLIS” (ACM TOMS 2016)

— Van Zee and Smith. “Implementing High-Performance Complex
Matrix Multiplication via the 3m and 4m Methods” (ACM TOMS
2017)

— Van Zee. “Implementing High-Performance Complex Matrix
Multiplication via the 1m Method” (SISC 2020)

— Van Zee et al. “Supporting Mixed-Domain Mixed-Precision
Matrix Multiplication within the BLIS Framework” (ACM TOMS;
to appear)



Publications

* BLIS spin-offs and related efforts by collaborators

— Devin A. Matthews. “High-Performance Tensor Contraction
Without Transposition.” (SISC 2015)

— Chenhan D. Yu, Jianyu Huang, Woody Austin, Bo Xiao, George
Biros. “Performance Optimization for the K Nearest-Neighbors
Kernel on x86 Architectures.” (SC 2015)

— Jianyu Huang, Tyler M. Smith, Greg M. Henry, Robert A. van de
Geijn. “Strassen’s Algorithm Reloaded.” (SC 2016)

— Jianyu Huang, Leslie Rice, Devin A. Matthews, Robert A. van de
Geijn. “Generating Families of Practical Fast Matrix
Multiplication Algorithms.” (IPDPS 2017)

— Jianyu Huang, Chenhan D. Yu, Robert A. van de Geijn.
“Strassen’s algorithm reloaded for GPUs.” (TOMS 2020)

— Tyler M. Smith, Robert A. van de Geijn. “The MOMMS Family of
Matrix Multiplication Algorithms.” (arXiv 2019)



Investing Organizations

* NSF, 2012-present

— Award ACI-1148125/1340293: SI2-SSI: A Linear Algebra
Software Infrastructure for Sustained Innovation in

Computational Chemistry and other Sciences. (Funded June 1,
2012 - May 31, 2015.)

— Award CCF-1320112: SHF: Small: From Matrix Computations to
Tensor Computations. (Funded August 1, 2013 - July 31, 2016.)

— Award ACI-1550493: S/2-5SI: Sustaining Innovation in the Linear
Algebra Software Stack for Computational Chemistry and other
Sciences. (Funded July 15, 2016 — June 30, 2018.)

— Award CSSI-2003921: Collaborative Research: Frameworks:
Beyond BLAS: A Framework for Accelerating Computational and
Data Science. (Funded May 1, 2020 - April 30, 2023.)



Investing Organizations

* Industry (gifts, grants, and hardware), 2011-present

— Microsoft . m M ft

— Texas Instruments @ = ICIOSO u
— Intel A h-

— HP Enterprise

— Oracle o

— Facebook b ® -- fGCEbOOk
— ARM
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Takeaways

e BLIS is more than BLAS!

e BLIS benefits basic end-users
— More flexible interface

* BLIS benefits developers

— Provides a portable framework and reduces amount of
code to be optimized and maintained

— Allows rapid instantiation to new hardware

— Contains infrastructure for implementing new operations



Takeaways

* BLIS benefits experts, SC/HPC Researchers
— Access to low-level routines/kernels
— Provides a platform for experimentation and prototyping
— Foundation for mixed-domain, mixed-precision operations

e BLIS benefits everyone
— BLIS facilitates high performance

— Reasonably compact, readable code
— Free / open source software — available under BSD license



Thank you!

e Questions?



Bonus Topics



BLIS multithreading

* Quadratic partitioning
— The topic: partitioning a submatrix for the
purposes of multithreaded parallelism

— The question: how to determine subpartition
dimensions
— For the following illustrative examples, assume:

* We want four ways of parallelism (four threads)

* We only partition in one dimension at a time



BLIS multithreading
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BLIS multithreading

w=n/4
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BLIS multithreading

* Quadratic partitioning
— Affects: herk, her2k, syrk, syr2k, trmm, trmm3
— Arbitrary quasi-trapezoids (trapezoid-oids?)
— Arbitrary diagonal offsets

— Lower- or upper-stored Hermitian/symmetric or
triangular matrices

— Partition along m or n dimension, forwards or
backwards
* This matters because of edge case placement
— Subpartitions must be multiples of “blocking factors”

(ie: register blocksizes), except the subpartition
containing edge case, if it exists



BLIS multithreading

* Quadratic partitioning
— How much does it matter? Let’s find out!

— Test hardware
* 3.6 GHz Intel Haswell (4 cores)

— Test operation
* Hermitian rank-k update: C .= C + AAH
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BLIS multithreading

herk, double—precision (4 threads)

——dherk_In BLIS (quadratic)

——-dherk_un BLIS (quadratic) |
——dherk_In BLIS (linear)
——-dherk_un BLIS (linear)

1000 2000 3000
problem size (m = k)

4000
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APIs

BLAS (Fortran-compatible)
CBLAS (C conventions + row-major support)

BLIS

— Object API, e.g. bli_gemm()

— Typed API, e.g. bli dgemm()

— Both offer basic + expert sub-interfaces

And all APIs can be called from C++



BLAS vs CBLAS interfaces

// BLAS
void dgemm_

(

)s

char*
char*
int*
int*
int*
double*
double*
double*
double*
double*

transa,
transb,
m,

n,

K,
alpha,
a, int*
b, int*
beta,
c, int*

lda,
1db,

ldc

// CBLAS

void cblas_dgemm

(

)s

enum CBLAS ORDER
enum CBLAS_ TRANSPOSE
enum CBLAS_TRANSPOSE

int
int
int
double

const double*
const double*

double
double*

m,

n,

K,
alpha,
a, int
b, int
beta,
c, int

order,
transa,
transb,

lda,
1db,

ldc



BLAS vs Typed BLIS Interfaces

// BLAS
void dgemm_

(

)s

char*
char*
int*
int*
int*
double*
double*
double*
double*
double*

transa,
transb,
m,

n,

K,
alpha,
a, int*
b, int*
beta,
c, int*

lda,
1db,

ldc

// Typed API (basic)
void bli dgemm

(

)5

trans_t
trans_t
dim_t

dim t

dim t

double*
double*
double*
double*
double*

transa,

transb,

m,

n,

K,

alpha,

a, inc_t rsa, inc_t csa,
b, inc_t rsb, inc_t csb,
beta,

c, inc_t rsc, inc_t csc



// Object API (basic)

Object vs Typed BLIS Interfaces

void bli_ gemm

(

)s

obj_t*
obj_t*
obj_t*
obj_t*
obj_t*

alpha,
a,

b,
beta,
C

// Typed API (basic)

(

)5

trans_t
trans_t
dim_t

dim t

dim t

double*
double*
double*
double*
double*

void bli dgemm

transa,

transb,

m,

n,

K,

alpha,

a, inc_t rsa, inc_t csa,
b, inc_t rsb, inc_t csb,
beta,

c, inc_t rsc, inc_t csc



Object vs Typed BLIS Interfaces

// Object API (expert) // Typed API (expert)
void bli gemm ex void bli dgemm ex
( (
obj _t* alpha, trans_t transa,
obj t* a, trans_t transb,
obj t* b, dim t m,
obj _t* beta, dim t n,
obj t* «c, dim t k,
cntx_t* cntx, double* alpha,
rntm_t* rntm double* a, inc_t rsa, inc_t csa,
) double* b, inc_t rsb, inc_t csb,

double* beta,
double* c, inc_t rsc, inc_t csc,
cntx_t* cntx,
rntm_t* rntm

)s



Implementation language

e BLIS is implemented in ISO C99
— “Why not Fortran?”

— Performance-critical kernels are expressed in
assembly code or intrinsics

— Thus, the higher-level framework could be
anything
e BLIS makes ample use of the C preprocessor
for source code templatization

— Write one cpp macro and invoke once per
datatype



Controlling Multithreading

e Reminder

— BLIS's gemm algorithm has five loops outside the
micro-kernel

— Four of these loops may be parallelized in BLIS
* JC
* PC (parallelism not yet enabled)
* |C
* JR
* [R
* PR (microkernel)



Controlling Multithreading

* Three methods of specifying multithreading

— Global specification via environment variables
 Affects all threads

— Global specification via runtime API
 Affects all threads

— Thread-local specification via runtime API
» Affects only the calling thread!
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Controlling Multithreading

* Global specification via environment variables
— Example:

# Use either the automatic way or manual way of requesting
# parallelism.

# Automatic way.
$ export BLIS NUM THREADS = 6

# Expert way.
$ export BLIS IC NT = 2; export BLIS JR NT = 3

// Call a level-3 operation (basic interface is enough).
// Typed API responds similarly.
bli gemm( &alpha, &a, &b, &beta, &c );
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Controlling Multithreading

* Global specification via runtime API
— Example:

// Use either the automatic way or manual way of requesting
// parallelism.

// Automatic way.
bli_thread_set_num_threads( 6 );

// Manual way.
bli thread set ways( 1, 1, 2, 3, 1 );

// Call a level-3 operation (basic interface is still enough).
// Typed API responds similarly.
bli gemm( &alpha, &a, &b, &beta, &c );

98



Controlling Multithreading

* Thread-local specification via runtime API
— Example:

// Declare and initialize a rntm_t object.
rntm_t rntm = BLIS RNTM INITIALIZER;

// Call ONE (not both) of the following to encode your

// parallelization into the rntm_t.

bli rntm_set num_threads( 6, &rntm ); // automatic way
bli rntm_set ways( 1, 1, 2, 3, 1, &ntm ); // manual way

// Call a level-3 operation via an expert interface and pass
// in your rntm_t. (NULL below requests default context.)

// Typed API responds similarly.

bli gemm ex( &alpha, &a, &b, &beta, &c, NULL, &rntm );
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Controlling Multithreading

 For more details:
— docs/Multithreading.md



Thread Safety

e BLIS provides unconditional thread safety*

e What does this mean?

— BLIS always uses mechanisms provided by pthreads
API| to ensure synchronous access to globally-shared
data structures

— Independent of multithreading option

--enable-threading={pthreads|openmp}
* Works with OpenMP
* Works when multithreading is disabled entirely

*Under normal usage conditions.



The 1m Method

Goal: Reuse real-domain kernels to induce complex-domain
operations

— This would avoid the need for addition complex microkernels, which
tend to be more difficult to program in assembly code

)/61\
Vcl)1
Vf1

V1i1/

/
\

ard (—al ) [afd (—ak,]
00k |~ %o0 01Ny %01
PR PR

Xoo “00 do1 “01
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Solution: the 1m method [Van Zee 2020]

— A'is packed to micro-columns with real and imaginary elements
duplicated and swapped to next column (with imaginary negated)

— B is packed to micro-rows where imaginary elements are reordered to
next row

— Multiply A and B using normal real-domain microkernel

/

Boo
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o
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Small/skinny gemm

e Separate “sub-framework” intercepts these cases
— Multithreading, optional packing supported

small m

— |/

+=

small n

-0l

small k

small m, k

— [ R —

+=
small n, k
||

smallm, n
o —— |]

+=
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Mixed datatype gemm

e Consider simplified gemm (no scalars): C := C + AB
— Recall: BLAS requires A, B, and C to be stored as the same

datatype (precision and domain)
* single real, double real, single complex, double complex

— BLIS has a gemm implementation that lifts this constraint!

— Total number of possible cases to implement

* Assume each operand stored as one of t storage datatypes

Operation may be computed in one of t/2 precisions (two domains)
v — (E) 3t

In general: N = (2) t> = -

For BLIS (currently): N = G) 43 = 128

Notice that BLAS implements only 4 out of the 128



Hardware Support

AMD

— Bulldozer, Piledriver, Steamroller, Excavator, Zen,
Zen+, Zen2

Intel

— Core2, Sandy/Ivy Bridge, Haswell/Broadwell,
Skylake[X], KNL, Kaby/Coffee Lake, and beyond

IBM BlueGene/Q, Power9, Power10
ARM (v7a, v8a, SVE)



Build system features

Based on GNU build process

— configure; make; make install

Hardware detection

— Determines kernel and cache blocksize selections

— Happens at configure-time (slim libraries) or runtime (fat libraries)
Compiler flags set on a per-subconfiguration basis

— Flags may differ from haswell to skx to zen to zen2
Dynamically generated makefile fragments

— Shouldn’t have to edit a makefile just because | rename foo.c to
bar.c

Monolithic header generation

— All headers (=500) recursively inlined into blis.h
— Faster compilation time

— Easier to distribute build products



Testing

Unified testsuite
— correctness and performance, BLIS-only

netlib BLAS test drivers

— correctness, BLAS-only

Standalone (comparative) performance drivers
— BLIS vs OpenBLAS, MKL, Eigen (large and small)

— libxsmm, BLAFEO (small only)

Continuous integration
— Travis Cl (including Intel SDE), AppVeyor



OS Support

Debian/Ubuntu
Fedora/EPEL
Gentoo
OpenSUSE
GNU Guix

OS X

Windows
— clang via AppVeyor



User Statistics

* GitHub provides two-week rolling averages
— 120+ unique clones
— 600+ unique visitors

— This doesn’t count .zip file downloads or OS-specific
packages (e.g. Ubuntu installs)

— Nor does it count clones/downloads of AMD BLIS
* How many total users do we have?

— No idea!
— But we think it could be quite high



Community Support

Example code (tutorial)

Documentation

Performance graphs

— http://github.com/flame/blis/

Mailing lists

— https://groups.google.com/group/blis-devel
— https://groups.google.com/group/blis-discuss

GitHub issues
— https://github.com/flame/blis/issues
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What’s next?

e Future directions

— Support new datatypes
* bfloatl6, fpl6, intl6, etc.

— Refactor for more exotic expert usage
— Implement new operations
— Support new hardware (as it becomes available)



Thank you!

e Questions?









