
The BLIS Framework

Field G. Van Zee
Science of High-Performance Computing

The University of Texas at Austin

6th EasyBuild User Meeting

January 27, 2021

 3

What is BLIS?

• BLAS-like Library Instantiation Software

• BLIS is a framework for

– Quickly instantiating high-performance BLAS-like
libraries

• “Why ‘BLAS-like’?”…

– For now, just assume BLAS-like = BLAS

What is BLAS?

• Basic Linear Algebra Subprograms

– Level 1: vector-vector [Lawson et al. 1979]

– Level 2: matrix-vector [Dongarra et al. 1988]

– Level 3: matrix-matrix [Dongarra et al. 1990]

• Why are BLAS important?

 4

Why are BLAS important?

• BLAS constitute the “bottom of the food
chain” for most dense linear algebra
applications, as well as other libraries
– LAPACK, libflame, MATLAB, PETSc, etc.

• The idea is simple:
– if the BLAS interface is “standardized”, and

– if an optimized implementation exists for your
architecture

– then higher-level applications can portably access
high performance

 5

More about the BLAS

• level-1 operations
– i?amax: find index of element with largest absolute

value

– ?asum: compute absolute sum

– ?axpy: scale vector and accumulate

– ?copy: copy vector

– ?dot: compute dot (inner) product

– ?nrm2: compute vector 2-norm

– ?scal: apply a scalar to a vector

– ?swap: swap two vectors

 6

More about the BLAS

• level-2 operations
– ?gemv: general matrix-vector multiply

– ?ger: general rank-1 update

– ?hemv: Hermitian matrix-vector multiply

– ?her: Hermitian rank-1 update

– ?her2: Hermitian rank-2 update

– ?symv: symmetric matrix-vector multiply

– ?syr: symmetric rank-1 update

– ?syr2: symmetric rank-2 update

– ?trmv: triangular matrix-vector multiply

– ?trsv: triangular solve (with one right-hand side)

 7

More about the BLAS

• level-3 operations
– ?gemm: general matrix multiply

– ?hemm: Hermitian matrix multiply

– ?herk : Hermitian rank-k update

– ?her2k : Hermitian rank-2k update

– ?symm: symmetric matrix multiply

– ?syrk: symmetric rank-k update

– ?syr2k: symmetric rank-2k update

– ?trmm: triangular matrix multiply

– ?trsm: triangular solve (with multiple right-hand sides)

 8

More about the BLAS

• Plenty of BLAS implementations available

– Vendor

• MKL (Intel), cuBLAS (NVIDIA), ARMPL (ARM), ESSL
(IBM), Accelerate (Apple), etc.

– Open source

• netlib, OpenBLAS, Eigen, BLASFEO, libxsmm, ATLAS, etc.

• So why do we need BLIS?

 9

Why do we need BLIS?

• Actually, there are two questions

– Why do we need BLIS?

– Why should we want BLIS?

• (Even if we don’t need it)

• Let’s look at the first question

 10

Why do we need BLIS?

• The BLAS interface is limiting for some
applications

– Not surprising – it was finalized 30 years ago!

• How exactly is the BLAS interface limiting?

 11

 12

Limitations of BLAS interface

• Interface only allows column-major storage

 13

Limitations of BLAS interface

• Interface only allows column-major storage

– We also want row-major storage

 14

Limitations of BLAS interface

• Interface only allows column-major storage

– We also want row-major storage and general stride
storage

15

Limitations of BLAS interface

• Interface only allows column-major storage

– We also want row-major storage and general stride
storage

– Further yet, we want to support computation on
operands of mixed storage formats. Example:

• 𝐶 ≔ 𝐶 + 𝐴𝐵

 where A is column-stored, B is row-stored, and C has
general stride.

+=

Limitations of BLAS interface

• Why do we need general stride storage?

 16

Limitations of BLAS interface

• Why do we need general stride storage?

• Example: three-dimensional tensor

 17

Limitations of BLAS interface

• Why do we need general stride storage?

• Example: three-dimensional tensor

– How do we take an arbitrary slice?

18

Limitations of BLAS interface

• Why do we need general stride storage?

• Example: three-dimensional tensor

– How do we take an arbitrary slice?
• It may be non-contiguous in both dimensions

19

Non-contiguous elements

20

Limitations of BLAS interface

• Incomplete support for complex operations
– Vector conjugation, matrix “conjugation without

transposition” options are missing from BLAS

Examples:

– 𝑦 ≔ 𝑦 + 𝛼𝑥 axpy

– 𝑦 ≔ 𝑦 + 𝐴𝑥 gemv

– 𝐶 ≔ 𝐶 + 𝐴 𝐵 gemv, gemm

– 𝐶 ≔ 𝐶 + 𝐴 𝐴𝑇 her, herk

– 𝐵 ≔ 𝐿 𝐵 trmv, trmm

– 𝐵 ≔ 𝐿 −1𝐵 trsv, trsm

 21

Limitations of BLAS interface

• BLAS API is opaque
– No uniform way to access lower-level kernels

• Why would one want access to these kernels?
Some possibilities:
– Optimize operations in higher-level libraries or

applications

– Implement new BLAS-like operations (without
“reinventing the wheel”)

– Conduct research or measurements on the kernels
themselves

 22

Limitations of BLAS interface

• Operation support has not changed in three
decades

– BLAST Technical Forum attempted to ratify some
improvements

– Revisions largely ignored by implementors. Why?

• Best guess: No official reference implementation

Why do we need BLIS?

• So why does any of this mean we need BLIS?

– The BLAS API is static and cannot be improved

– We can’t gain access to a better interface by
building a better BLAS – we need something else
altogether

– This was one of the primary motivations for
developing BLIS

23

Why do we need BLIS?

• BLIS addresses the BLAS’ interface issues
– Independent row and column stride properties

allow flexible matrix storage

– Any input operand can be conjugated

– Experts can directly call lower-level packing,
computation kernels

– Operation support can grow over time, as needed
• Hence why BLIS is “BLAS-like”

 24

Why do we need BLIS?

• BLIS addresses the BLAS’ interface issues
– Independent row and column stride properties

allow flexible matrix storage

– Any input operand can be conjugated

– Experts can directly call lower-level packing,
computation kernels

– Operation support can grow over time, as needed
• Hence why BLIS is “BLAS-like”

• This is why BLIS needs to exist
– i.e., These features are largely absent from other

BLAS implementations

 25

Why should we want BLIS?

• What if I don’t need any of these features
unique to BLIS?

– You still might want to use BLIS!

 26

Why should we want BLIS?

• What if I don’t need any of these features
unique to BLIS?

– You still might want to use BLIS!

• If you’re an end-user

– Improved APIs

– You can still use BLAS (or CBLAS) compatibility layer

• If you’re a developer

– BLIS makes it easier to implement high-
performance BLAS libraries on new hardware

 27

Why should we want BLIS?

• So how does BLIS make it easier to implement high-
performance BLAS?

– Let’s first look at general matrix-matrix multiplication
(gemm) as implemented by Kazushige Goto in GotoBLAS

• [Goto and van de Geijn 2008]

– Note: This same approach was inherited into OpenBLAS

 28

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mC

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

Update Cij

mR

5th loop around micro-kernel

Goto Algorithm

• Built atop Goto’s “inner
kernel”
– Three loops around a tiny

outer product

– Written entirely in assembly
language

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mC

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

Update Cij

mR

5th loop around micro-kernel

Goto Algorithm

• Built atop Goto’s “inner
kernel”
– Three loops around a tiny

outer product

– Written entirely in assembly
language

• Drawbacks
– Cannot always recycle gemm

inner kernel for other level-3
operations

– Difficult to read: three loops in
~5000 lines!

– Edge cases handled explicitly

– Can’t parallelize within
assembly region

Goto Algorithm: Recycling Kernels

• Why can’t we always recycle the Goto inner
kernel?

– It has to do with differences between the level-3
operations

31

Goto Algorithm: Recycling Kernels

• Needs at least two special inner kernels

– Variants for lower- and upper-stored matrix A move in
opposite directions

– Inner-most loop bound varies as a function middle loop’s
current iteration (index) for blocks that intersect diagonal

 32

+=

• Example: Triangular matrix multiplication (trmm)

Goto Algorithm: Assembly Footprint

• Three loops encoded in assembly language
– With lots of unrolling

– And edge case handling

– It gets complicated in a hurry!
2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mR

1

+=

+= 1

nR

kC

nR Ai

~
Bp

~
Ci

kC

Update Cij

mR

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mR

1

+=

+= 1

nR

kC

nR Ai

~
Bp

~
Ci

kC

Update Cij

mR

Goto Algorithm: Edge Cases

• What are kernel edge cases?

– Inner kernels have a “fundamental size” (MR x NR)
based on register allocation and data
rearrangement (packing)

– Examples

• MR = 6

• NR = 8

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mR

1

+=

+= 1

nR

kC

nR Ai

~
Bp

~
Ci

kC

Update Cij

mR

Goto Algorithm: Edge Cases

• What are kernel edge cases?

– For each of the outer two loops, the inner kernel
must handle “leftover” matrix blocks

Possible edge cases
highlighted in red

Goto Algorithm: Edge Cases

• What does this mean for the assembly kernel?

– Lots of extra logic after each loop to handle
specific edge case sizes

6x8

36

Goto Algorithm: Edge Cases

• What does this mean for the assembly kernel?

– Lots of extra logic after each loop to handle
specific edge case sizes

6x8 6x4 6x2 6x1

37

Goto Algorithm: Edge Cases

• What does this mean for the assembly kernel?

– Lots of extra logic after each loop to handle
specific edge case sizes

6x8

4x8

2x8

1x8

6x4 6x2 6x1

38

Goto Algorithm: Edge Cases

• What does this mean for the assembly kernel?

– Lots of extra logic after each loop to handle
specific edge case sizes

6x8

4x8

2x8

1x8

6x4

4x4

2x4

1x4

6x2

4x2

2x2

1x2

6x1

4x1

2x1

1x1 39

Goto Algorithm: Parallelization

• Inner kernel is an indivisible unit
– Multithreaded parallelism cannot be easily

encoded within either of the outer two loops

– Parallelism must instead be obtained at a higher
level 2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mR

1

+=

+= 1

nR

kC

nR Ai

~
Bp

~
Ci

kC

Update Cij

mR Can’t easily parallelize
this region

Why should we want BLIS?

• So how does BLIS make it easier to implement high-
performance BLAS?

– Now that we’ve looked at the software architecture for
level-3 operations in GotoBLAS, let’s look at the same for
BLIS

• [Van Zee and van de Geijn 2015]

 41

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mC

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

Update Cij

mR

5th loop around micro-kernel

BLIS Algorithm

• Isolates assembly region to a
smaller “micro-kernel”
– One loop around a tiny outer

product

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mC

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

Update Cij

mR

5th loop around micro-kernel

BLIS Algorithm

• Isolates assembly region to a
smaller “micro-kernel”
– One loop around a tiny outer

product

• Confers several benefits
over Goto’s inner kernel
– Micro-kernel is more easily

recycled between level-3
inner kernels

– Requires fewer lines of
assembly

– Allows edge cases to be
handled portably

– Exposes more opportunities
for parallelism

BLIS Algorithm: Recycling Kernels

• BLIS exposes the outer two loops of the inner kernel
– These two outer loops were previously buried in assembly

– Key observation: Virtually all of the differences between level-3
operations’ inner kernels reside in these two loops

– These loops (“macro-kernels”) in BLIS are written in C99 for each of
the level-3 operations

micro-kernel

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mR

1

+=

+= 1

nR

kC

nR Ai

~
Bp

~
Ci

kC

Update Cij

mR

macro-kernel +
call to micro-kernel

BLIS Algorithm: Assembly Footprint

• BLIS exposes the outer two loops of the inner kernel
– Inner-most loop of macro-kernel simply calls micro-kernel

– So the micro-kernel now consists of only one loop and no edge cases
for MR, NR

– This shrinks its size down from ≈5000 lines to ≈2000 lines

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mR

1

+=

+= 1

nR

kC

nR Ai

~
Bp

~
Ci

kC

Update Cij

mR

≈ 2000 lines of assembly

≈ 200 lines of C99

BLIS Algorithm: Edge Cases

• Wait, if edge cases aren’t handled in the microkernel,
then how are they handled?

6x8

4x8

2x8

1x8

6x4

4x4

2x4

1x4

6x2

4x2

2x2

1x2

6x1

4x1

2x1

1x1 46

BLIS Algorithm: Edge Cases

• BLIS handles edge cases differently than the Goto
approach
– BLIS requires that the kernel developer implement only

the (full-sized) micro-kernel

6x8

4x8

2x8

1x8

6x4

4x4

2x4

1x4

6x2

4x2

2x2

1x2

6x1

4x1

2x1

1x1 47

BLIS Algorithm: Edge Cases

• When an edge case is encountered in a level-3 operation
– BLIS copies matrix C to temporary memory, zero-fills edges,

computes on temporary, then copies back to C

Step 1 Copy

+=

Zero fill

Copy

Step 2

Step 3

Edge micro-panels
already zero-filled
during packing

C

C

48

BLIS Algorithm: Edge Cases

• This does come with a small performance penalty
– First, the copies and zero-filling are not free
– Second, the micro-kernel must perform extra computations with

zeros, and does not get any credit for doing so
– Manifests as a “saw tooth” pattern in performance graphs

• So why do we do this?
– We think this trade-off between performance and productivity is

worth it

+=

49

BLIS Algorithm: Parallelization

• BLIS macro-/micro-kernel design exposes additional
opportunities for parallelism
– Previously, Goto inner kernel was smallest unit of computation
– Parallelism was typically extracted at higher (coarser grain) levels
– Now we can parallelize at lower (finer grain) levels

• Tends to produce smoother results and better load balancing
• [Smith et al. 2014]

50

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mR

1

+=

+= 1

nR

kC

nR Ai

~
Bp

~
Ci

kC

Update Cij

mR

We can now easily parallelize
these loops

BLIS Algorithm: Micro-kernel

+=

KC NR

MR

NR

C A

B

How is the micro-kernel typically implemented?

51

C

 Typical micro-kernel loop iteration
– Load column of packed A

– Load row of packed B

– Compute outer product

– Update C (kept in registers)

 52

+=

KC NR

MR

NR

α1

α2

α3

α0

β1 β0 β2 β3 γ00

γ10

γ20

γ30

γ01

γ11

γ21

γ31

γ02

γ12

γ22

γ32

γ03

γ13

γ23

γ33

+=

A

B

BLIS Algorithm: Micro-kernel

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mC

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

Update Cij

mR

5th loop around micro-kernel

BLIS Blocksizes

• BTW: How are cache
and register
blocksizes chosen?

• BTW: How are cache
and register
blocksizes chosen?

– Empirical search?

• [Whaley 1998]

BLIS Blocksizes
4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mC

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

Update Cij

mR

5th loop around micro-kernel

• BTW: How are cache
and register
blocksizes chosen?

– Empirical search?

• [Whaley 1998]

– Analytical model is
sufficient

• [Low et al. 2016]

BLIS Blocksizes
4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mC

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

Update Cij

mR

5th loop around micro-kernel

BLIS Algorithm

• What about packing?

– BLIS unifies packing for three different matrix structures
into one interface

• General matrices

• Symmetric/Hermitian matrices

• Triangular matrices

– Highly-parameterized and reusable for variety of
parameter cases

• e.g. side/uplo/trans parameters, matrix storage formats

– How?
• Short answer: Separate row, column strides go a long way!

• Let’s review and summarize
 56

Benefits of BLIS

• BLIS…
– Factors out as much complexity as possible from

performance-sensitive kernel code, leaving only the micro-
kernel

– Significantly reduces the size and complexity of the kernels
that must be optimized to achieve high performance

– Provides generic, portable instances of factored codes
(macro-kernels) as well as the higher-level blocked
algorithms

– Provides all packing functionality (no modification
required)

 57

BLIS performance

• Okay, enough talk. Show me high performance!

• Results gathered on AMD Epyc 7742 “Rome” Zen2 server
– Before I show you full results, let’s review how to interpret each

graph

BLIS performance

• Okay, enough talk. Show me high performance!

• Results gathered on AMD Epyc 7742 “Rome” Zen2 server
– x-axis shows problem size (all dimensions equal)

– y-axis shows GFLOPS (top of graph = theoretical peak performance)

– We compare BLIS to other BLAS implementations
provided by

• OpenBLAS 0.3.10

• Eigen 3.3.90

• Intel MKL 2020 Update 3

BLIS performance

• Okay, enough talk. Show me high performance!

• Results gathered on AMD Epyc 7742 “Rome” Zen2 server
– x-axis shows problem size (all dimensions equal)

– y-axis shows GFLOPS (top of graph = theoretical peak performance)

– We compare BLIS to other BLAS implementations
provided by

• OpenBLAS 0.3.10

• Eigen 3.3.90

• Intel MKL 2020 Update 3

– We do this for…
• a representative sample of level-3

operations

• on four floating-point datatypes
(s = float, d = double, c = single complex
z = double complex)

61

1 thread

Multithreading

• Loops eligible for
parallelism: 5th, 3rd 2nd, 1st
– Parallelize two or more

loops simultaneously
– Ideal loops to target

depend on which caches
are shared vs. private

• Controlled via
environment variables
– BLIS_JC_NT
– BLIS_IC_NT
– BLIS_JR_NT
– BLIS_IR_NT

• Can use either OpenMP
or POSIX threads

4th loop around micro-kernel

3rd loop around micro-kernel

2nd loop around micro-kernel

1st loop around microkernel

micro-kernel

nR

L3 cache
L2 cache
L1 cache
registers

main memory

+=

mC

mR

1

+=

+=

+=

+=

+=

nC nC

kC

kC

mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

Update Cij

mR

5th loop around micro-kernel JC loop

PC loop

IC loop

JR loop

IR loop

PR loop

BLIS multithreading

• Multithreaded performance in BLIS
– How does it compare to alternatives?

• OpenBLAS, Intel’s MKL, Eigen

– Note: y-axis now shows GFLOPS/core
• Top of graph still represents peak performance

– Test hardware
• AMD Epyc 7742 “Rome” Zen2 (2 sockets, 64 cores each)

63

jc4ic4jr4 (64t)

64

65

jc8ic4jr4 (128t)

Publications
• BLIS

– Van Zee and van de Geijn. “BLIS: A Framework for Rapid
Instantiation of BLAS Functionality” (ACM TOMS 2015)

– Van Zee et al. “The BLIS Framework: Experiments in Portability”
(ACM TOMS 2016)

– Smith et al. “Anatomy of Many-Threaded Matrix Multiplication”
(IPDPS 2014; in proceedings)

– Low et al. “Analytical Modeling is Enough for High-Performance
BLIS” (ACM TOMS 2016)

– Van Zee and Smith. “Implementing High-Performance Complex
Matrix Multiplication via the 3m and 4m Methods” (ACM TOMS
2017)

– Van Zee. “Implementing High-Performance Complex Matrix
Multiplication via the 1m Method” (SISC 2020)

– Van Zee et al. “Supporting Mixed-Domain Mixed-Precision
Matrix Multiplication within the BLIS Framework” (ACM TOMS;
to appear)

66

Publications
• BLIS spin-offs and related efforts by collaborators

– Devin A. Matthews. “High-Performance Tensor Contraction
Without Transposition.” (SISC 2015)

– Chenhan D. Yu, Jianyu Huang, Woody Austin, Bo Xiao, George
Biros. “Performance Optimization for the K Nearest-Neighbors
Kernel on x86 Architectures.” (SC 2015)

– Jianyu Huang, Tyler M. Smith, Greg M. Henry, Robert A. van de
Geijn. “Strassen’s Algorithm Reloaded.” (SC 2016)

– Jianyu Huang, Leslie Rice, Devin A. Matthews, Robert A. van de
Geijn. “Generating Families of Practical Fast Matrix
Multiplication Algorithms.” (IPDPS 2017)

– Jianyu Huang, Chenhan D. Yu, Robert A. van de Geijn.
“Strassen's algorithm reloaded for GPUs.” (TOMS 2020)

– Tyler M. Smith, Robert A. van de Geijn. “The MOMMS Family of
Matrix Multiplication Algorithms.” (arXiv 2019)

67

Investing Organizations

• NSF, 2012-present
– Award ACI-1148125/1340293: SI2-SSI: A Linear Algebra

Software Infrastructure for Sustained Innovation in
Computational Chemistry and other Sciences. (Funded June 1,
2012 - May 31, 2015.)

– Award CCF-1320112: SHF: Small: From Matrix Computations to
Tensor Computations. (Funded August 1, 2013 - July 31, 2016.)

– Award ACI-1550493: SI2-SSI: Sustaining Innovation in the Linear
Algebra Software Stack for Computational Chemistry and other
Sciences. (Funded July 15, 2016 – June 30, 2018.)

– Award CSSI-2003921: Collaborative Research: Frameworks:
Beyond BLAS: A Framework for Accelerating Computational and
Data Science. (Funded May 1, 2020 - April 30, 2023.)

68

Investing Organizations

• Industry (gifts, grants, and hardware), 2011-present

– Microsoft

– Texas Instruments

– Intel

– AMD

– HP Enterprise

– Oracle

– Huawei

– Facebook

– ARM

Takeaways

• BLIS is more than BLAS!

• BLIS benefits basic end-users

– More flexible interface

• BLIS benefits developers

– Provides a portable framework and reduces amount of
code to be optimized and maintained

– Allows rapid instantiation to new hardware

– Contains infrastructure for implementing new operations

70

Takeaways

• BLIS benefits experts, SC/HPC Researchers

– Access to low-level routines/kernels

– Provides a platform for experimentation and prototyping

– Foundation for mixed-domain, mixed-precision operations

• BLIS benefits everyone

– BLIS facilitates high performance

– Reasonably compact, readable code

– Free / open source software – available under BSD license

71

Thank you!

• Questions?

72

Bonus Topics

73

BLIS multithreading

• Quadratic partitioning

– The topic: partitioning a submatrix for the
purposes of multithreaded parallelism

– The question: how to determine subpartition
dimensions

– For the following illustrative examples, assume:

• We want four ways of parallelism (four threads)

• We only partition in one dimension at a time

74

BLIS multithreading

n

m

75

BLIS multithreading

w ≈ n / 4

n

m

76

BLIS multithreading

n

n

77

BLIS multithreading

n

n

78
w ≈ n / 4

BLIS multithreading

n

n

79
w ≈ n / 4

BLIS multithreading

n

n

80

BLIS multithreading

n

n

w ≈ ? 81

BLIS multithreading

n

m

82

BLIS multithreading

n

m

w ≈ ? 83

BLIS multithreading

• Quadratic partitioning
– Affects: herk, her2k, syrk, syr2k, trmm, trmm3
– Arbitrary quasi-trapezoids (trapezoid-oids?)
– Arbitrary diagonal offsets
– Lower- or upper-stored Hermitian/symmetric or

triangular matrices
– Partition along m or n dimension, forwards or

backwards
• This matters because of edge case placement

– Subpartitions must be multiples of “blocking factors”
(ie: register blocksizes), except the subpartition
containing edge case, if it exists

84

BLIS multithreading

• Quadratic partitioning
– How much does it matter? Let’s find out!
– Test hardware

• 3.6 GHz Intel Haswell (4 cores)

– Test operation
• Hermitian rank-k update: 𝐶 ≔ 𝐶 + 𝐴𝐴𝐻

+=

85

BLIS multithreading

86

APIs

• BLAS (Fortran-compatible)

• CBLAS (C conventions + row-major support)

• BLIS

– Object API, e.g. bli_gemm()

– Typed API, e.g. bli_dgemm()

– Both offer basic + expert sub-interfaces

• And all APIs can be called from C++

87

BLAS vs CBLAS interfaces

// CBLAS
void cblas_dgemm
(
 enum CBLAS_ORDER order,
 enum CBLAS_TRANSPOSE transa,
 enum CBLAS_TRANSPOSE transb,
 int m,
 int n,
 int k,
 double alpha,
 const double* a, int lda,
 const double* b, int ldb,
 double beta,
 double* c, int ldc
);

88

// BLAS
void dgemm_
(
 char* transa,
 char* transb,
 int* m,
 int* n,
 int* k,
 double* alpha,
 double* a, int* lda,
 double* b, int* ldb,
 double* beta,
 double* c, int* ldc
);

BLAS vs Typed BLIS Interfaces

89

// BLAS
void dgemm_
(
 char* transa,
 char* transb,
 int* m,
 int* n,
 int* k,
 double* alpha,
 double* a, int* lda,
 double* b, int* ldb,
 double* beta,
 double* c, int* ldc
);

// Typed API (basic)
void bli_dgemm
(
 trans_t transa,
 trans_t transb,
 dim_t m,
 dim_t n,
 dim_t k,
 double* alpha,
 double* a, inc_t rsa, inc_t csa,
 double* b, inc_t rsb, inc_t csb,
 double* beta,
 double* c, inc_t rsc, inc_t csc
);

Object vs Typed BLIS Interfaces

90

// Typed API (basic)
void bli_dgemm
(
 trans_t transa,
 trans_t transb,
 dim_t m,
 dim_t n,
 dim_t k,
 double* alpha,
 double* a, inc_t rsa, inc_t csa,
 double* b, inc_t rsb, inc_t csb,
 double* beta,
 double* c, inc_t rsc, inc_t csc
);

// Object API (basic)
void bli_gemm
(
 obj_t* alpha,
 obj_t* a,
 obj_t* b,
 obj_t* beta,
 obj_t* c
);

Object vs Typed BLIS Interfaces

91

// Typed API (expert)
void bli_dgemm_ex
(
 trans_t transa,
 trans_t transb,
 dim_t m,
 dim_t n,
 dim_t k,
 double* alpha,
 double* a, inc_t rsa, inc_t csa,
 double* b, inc_t rsb, inc_t csb,
 double* beta,
 double* c, inc_t rsc, inc_t csc,
 cntx_t* cntx,
 rntm_t* rntm
);

// Object API (expert)
void bli_gemm_ex
(
 obj_t* alpha,
 obj_t* a,
 obj_t* b,
 obj_t* beta,
 obj_t* c,
 cntx_t* cntx,
 rntm_t* rntm
);

Implementation language

• BLIS is implemented in ISO C99
– “Why not Fortran?”

– Performance-critical kernels are expressed in
assembly code or intrinsics

– Thus, the higher-level framework could be
anything

• BLIS makes ample use of the C preprocessor
for source code templatization
– Write one cpp macro and invoke once per

datatype

93

Controlling Multithreading

• Reminder
– BLIS’s gemm algorithm has five loops outside the

micro-kernel

– Four of these loops may be parallelized in BLIS
• JC

• PC (parallelism not yet enabled)

• IC

• JR

• IR

• PR (microkernel)

94

Controlling Multithreading

• Three methods of specifying multithreading

– Global specification via environment variables

• Affects all threads

– Global specification via runtime API

• Affects all threads

– Thread-local specification via runtime API

• Affects only the calling thread!

96

Controlling Multithreading

Use either the automatic way or manual way of requesting
parallelism.

Automatic way.
$ export BLIS_NUM_THREADS = 6

Expert way.
$ export BLIS_IC_NT = 2; export BLIS_JR_NT = 3

// Call a level-3 operation (basic interface is enough).
// Typed API responds similarly.
bli_gemm(&alpha, &a, &b, &beta, &c);

• Global specification via environment variables

– Example:

97

Controlling Multithreading

// Use either the automatic way or manual way of requesting
// parallelism.

// Automatic way.
bli_thread_set_num_threads(6);

// Manual way.
bli_thread_set_ways(1, 1, 2, 3, 1);

// Call a level-3 operation (basic interface is still enough).
// Typed API responds similarly.
bli_gemm(&alpha, &a, &b, &beta, &c);

• Global specification via runtime API

– Example:

98

Controlling Multithreading

// Declare and initialize a rntm_t object.
rntm_t rntm = BLIS_RNTM_INITIALIZER;

// Call ONE (not both) of the following to encode your
// parallelization into the rntm_t.
bli_rntm_set_num_threads(6, &rntm); // automatic way
bli_rntm_set_ways(1, 1, 2, 3, 1, &rntm); // manual way

// Call a level-3 operation via an expert interface and pass
// in your rntm_t. (NULL below requests default context.)
// Typed API responds similarly.
bli_gemm_ex(&alpha, &a, &b, &beta, &c, NULL, &rntm);

• Thread-local specification via runtime API

– Example:

99

Controlling Multithreading

• For more details:
– docs/Multithreading.md

100

Thread Safety

• BLIS provides unconditional thread safety*

• What does this mean?
– BLIS always uses mechanisms provided by pthreads

API to ensure synchronous access to globally-shared
data structures

– Independent of multithreading option
 --enable-threading={pthreads|openmp}

• Works with OpenMP

• Works when multithreading is disabled entirely

*Under normal usage conditions.
101

The 1m Method

• Goal: Reuse real-domain kernels to induce complex-domain
operations
– This would avoid the need for addition complex microkernels, which

tend to be more difficult to program in assembly code

• Solution: the 1m method [Van Zee 2020]
– A is packed to micro-columns with real and imaginary elements

duplicated and swapped to next column (with imaginary negated)
– B is packed to micro-rows where imaginary elements are reordered to

next row
– Multiply A and B using normal real-domain microkernel

𝛾00
𝑟 𝛾01

𝑟

𝛾00
𝑖 𝛾01

𝑖

𝛾10
𝑟 𝛾11

𝑟

𝛾10
𝑖 𝛾11

𝑖

+=

𝛼00
𝑟 −𝛼00

𝑖 𝛼01
𝑟 −𝛼01

𝑖

𝛼00
𝑖 𝛼00

𝑟 𝛼01
𝑖 𝛼01

𝑟

𝛼10
𝑟 −𝛼10

𝑖 𝛼11
𝑟 −𝛼11

𝑖

𝛼10
𝑖 𝛼10

𝑟 𝛼11
𝑖 𝛼11

𝑟

𝛽00
𝑟 𝛽01

𝑟

𝛽00
𝑖 𝛽01

𝑖

𝛽10
𝑟 𝛽11

𝑟

𝛽10
𝑖 𝛽11

𝑖

102

Small/skinny gemm

• Separate “sub-framework” intercepts these cases

– Multithreading, optional packing supported

+=

+=

+= +=

+=

+=

small m

small n

small k

small m, k

small n, k

small m, n

103

Mixed datatype gemm

• Consider simplified gemm (no scalars): 𝐶 ∶= 𝐶 + 𝐴𝐵
– Recall: BLAS requires A, B, and C to be stored as the same

datatype (precision and domain)
• single real, double real, single complex, double complex

– BLIS has a gemm implementation that lifts this constraint!

– Total number of possible cases to implement
• Assume each operand stored as one of t storage datatypes

• Operation may be computed in one of t/2 precisions (two domains)

• In general: 𝑁 =
𝑡

2
𝑡3 =

𝑡4

2

• For BLIS (currently): 𝑁 =
4

2
43 = 128

• Notice that BLAS implements only 4 out of the 128

104

Hardware Support

• AMD

– Bulldozer, Piledriver, Steamroller, Excavator, Zen,
Zen+, Zen2

• Intel

– Core2, Sandy/Ivy Bridge, Haswell/Broadwell,
Skylake[X], KNL, Kaby/Coffee Lake, and beyond

• IBM BlueGene/Q, Power9, Power10

• ARM (v7a, v8a, SVE)

105

Build system features

• Based on GNU build process
– configure; make; make install

• Hardware detection
– Determines kernel and cache blocksize selections
– Happens at configure-time (slim libraries) or runtime (fat libraries)

• Compiler flags set on a per-subconfiguration basis
– Flags may differ from haswell to skx to zen to zen2

• Dynamically generated makefile fragments
– Shouldn’t have to edit a makefile just because I rename foo.c to

bar.c

• Monolithic header generation
– All headers (≈500) recursively inlined into blis.h
– Faster compilation time
– Easier to distribute build products

 106

Testing

• Unified testsuite
– correctness and performance, BLIS-only

• netlib BLAS test drivers
– correctness, BLAS-only

• Standalone (comparative) performance drivers
– BLIS vs OpenBLAS, MKL, Eigen (large and small)

– libxsmm, BLAFEO (small only)

• Continuous integration
– Travis CI (including Intel SDE), AppVeyor

107

OS Support

• Debian/Ubuntu

• Fedora/EPEL

• Gentoo

• OpenSUSE

• GNU Guix

• OS X

• Windows
– clang via AppVeyor

108

User Statistics

• GitHub provides two-week rolling averages
– 120+ unique clones

– 600+ unique visitors

– This doesn’t count .zip file downloads or OS-specific
packages (e.g. Ubuntu installs)

– Nor does it count clones/downloads of AMD BLIS

• How many total users do we have?
– No idea!

– But we think it could be quite high

109

Community Support

• Example code (tutorial)

• Documentation

• Performance graphs
– http://github.com/flame/blis/

• Mailing lists
– https://groups.google.com/group/blis-devel

– https://groups.google.com/group/blis-discuss

• GitHub issues
– https://github.com/flame/blis/issues

110

http://code.google.com/p/blis/
http://code.google.com/p/blis/
http://code.google.com/p/blis/
http://groups.google.com/group/blis-devel
http://groups.google.com/group/blis-devel
http://groups.google.com/group/blis-devel
http://groups.google.com/group/blis-devel
https://groups.google.com/group/blis-discuss
https://groups.google.com/group/blis-discuss
https://groups.google.com/group/blis-discuss
http://github.com/flame/blis/issues

What’s next?

• Future directions

– Support new datatypes

• bfloat16, fp16, int16, etc.

– Refactor for more exotic expert usage

– Implement new operations

– Support new hardware (as it becomes available)

111

Thank you!

• Questions?

112

