
Magic Castle

Terraforming the Cloud for HPC
Félix-Antoine Fortin, 6th EasyBuild User Meeting

Canada Digital Research Infrastructure

Education and Training in Compute Canada

● Over 150 workshops / year
● Most workshops use the

HPC software environment
● HPC clusters require an

account
● Account creation process

can take a few days

Could we replicate the HPC
environment for training?

Solution

Magic Castle

Open source project that instantiates a Compute Canada
cluster replica in any major cloud with Terraform and Puppet

● Create instances
○ Management nodes
○ Login nodes
○ Compute nodes

● Create volumes, network, network acls
● Create certificates, dns records, passwords
● Configuration done via input parameters

https://github.com/computecanada/magic_castle

https://github.com/computecanada/magic_castle

Terraform

● Tool for building,
changing, and versioning
infrastructure

● Infrastructure is
described using a
high-level configuration
syntax.

● Create resources that
can then be setup by a
config management tool.

● Config management tool
used for deploying,
configuring and managing
servers.

● Define configurations
for each host

● Continuously check
whether the required
configuration is in
place and is not altered

Puppet

Other Cloud HPC Cluster Projects

● AWS ParallelCluster [AWS]
● Cluster in the cloud [Ansible - AWS, GCP, Oracle]
● Elasticluster [AWS, GCP, OpenStack]
● Slurm on Google Platform [GCP]
● NVIDIA DeepOps [Ansible only]
● StackHPC Ansible Role OpenHPC [Ansible only]

https://github.com/aws/aws-parallelcluster
https://github.com/clusterinthecloud
https://github.com/elasticluster/elasticluster
https://github.com/SchedMD/slurm-gcp
https://github.com/NVIDIA/deepops
https://github.com/stackhpc/ansible-role-openhpc

Magic Castle Founding Guidelines

1. No custom command-line interface, Terraform is
the CLI

2. Manage configuration with Puppet to encourage
reuse of modules within Compute Canada

3. SELinux should always be enforced
4. Maintain an extensive user documentation

Overview of a Magic Castle Release

Magic Castle

provider*

main.tf

data.tf

variables.tf

output.tf

infrastructure.tf

cloud-init mgmt.yaml

puppet.yaml

provider.tf

*could be any in [aws, azure, gcp, openstack, ovh]

Infrastructure

Overview of a Magic Castle Release

Magic Castle

provider*

main.tf

data.tf

variables.tf

output.tf

infrastructure.tf

cloud-init mgmt.yaml

puppet.yaml

provider.tf

*could be any in [aws, azure, gcp, openstack, ovh]

Architecture

Architecture - login nodes

Architecture - management nodes

Architecture - compute nodes

Main Interface

Overview of a Magic Castle Release

Magic Castle

provider*

main.tf

data.tf

variables.tf

output.tf

infrastructure.tf

cloud-init mgmt.yaml

puppet.yaml

provider.tf

*could be any in [aws, azure, gcp, openstack, ovh]

Magic Castle Terraform Main Module

4 sections

1. Cloud provider selection
2. Infrastructure customization
3. Cloud Provider specifics inputs
4. DNS Configuration (optional)

MC Module - 1. source

source = "./provider"

 cluster_name = "eum21"
 domain = "computecanada.dev"
 image = "CentOS-7-x64-2020-03"
 nb_users = 100
 public_keys = [file("~/.ssh/id.pub")]

MC Module - 2.1 Infrastructure customization

MC Module - 2.2 Instance definition

instances = {
 mgmt = { type = "p4-6gb", count = 1 },
 login = { type = "p2-3gb", count = 1 },
 node = [
 { type = "p2-3gb", count = 1 },
]
 }

MC Module - 2.3 Storage definition

 storage = {
 type = "nfs"
 home_size = 100
 project_size = 50
 scratch_size = 50
 }

MC Module - 3. Cloud Provider Specific Inputs

Examples:

● OpenStack list of floating ips
● Google GPU attachment for compute nodes
● AWS / Azure / Google Cloud region

MC Module - 4. DNS Configuration (optional)

 source = "./dns/cloudflare"
 name = module.provider.cluster_name
 domain = module.provider.domain
 email = "you@example.com"
 public_ip = module.provider.ip
 rsa_public_key = module.provider.rsa_public_key
 sudoer_username = module.provider.sudoer_username

Apply Plan

$ terraform apply

Apply complete! Resources: 30 added, 0 changed, 0 destroyed.

Outputs:

admin_username = centos
guest_passwd = **redacted**
guest_usernames = user[01-10]
hostnames = [eum.computecanada.dev, login1.eum.computecanada.dev]
public_ip = [206.12.90.97]

Configuration management

Overview of a Magic Castle Release

Magic Castle

provider*

main.tf

data.tf

variables.tf

output.tf

infrastructure.tf

cloud-init mgmt.yaml

puppet.yaml

provider.tf

*could be any in [aws, azure, gcp, openstack, ovh]

Bootstrap Puppet

1. Inject data from TF

2. Upgrade CentOS

3. Install Puppet rpms

4. Configure Puppet

certificates

5. Setup host

configuration

login1

node1 node2

mgmt1

node3 node4 node5

node6

Configuration management with Puppet and Consul

Why Consul?

● Consul is a service mesh solution [... for] service
discovery, configuration [...]

● Services becoming online register in consul's
key-value store

● Combined with consul-template it generates Slurm
node configuration file (including automatic weight
computation)

● Used to gather compute node CPU architectures to
select a common set of modules (AVX2 vs AVX512)

NodeName=node1 CPUs=2 RealMemory=3006 Weight=1
NodeName=node2 CPUs=2 RealMemory=3006 Weight=1
NodeName=med-node1 CPUs=4 RealMemory=5965 Weight=2
NodeName=med-node2 CPUs=4 RealMemory=5965 Weight=2
NodeName=fat-node1 CPUs=4 RealMemory=15037 Weight=3
NodeName=fat-node2 CPUs=4 RealMemory=15037 Weight=3
NodeName=gpu-node1 CPUs=4 RealMemory=22093 Gres=gpu:1 Weight=4

Automatic Slurm node registration and weight computation

https://github.com/ComputeCanada/magic_castle-plugins

https://github.com/ComputeCanada/magic_castle-plugins

Software

Operating System

* future depends on Compute Canada

*

Batteries Included

● FreeIPA
○ Kerberos
○ BIND
○ 389 DS LDAP

● NFS
● Slurm
● Globus Endpoint
● JupyterHub
● LMOD
● noVNC Desktop
● singularity

Software Stack - CVMFS

● CernVM File System (CVMFS) provides a scalable,
reliable and low-maintenance software
distribution service;

● Compute Canada CVMFS repo:
○ 600+ scientific applications
○ 4,000+ permutations of

version/arch/toolchain
○ All compiled with EasyBuild

● EESSI available since release 9.2

https://docs.computecanada.ca/wiki/Available_software
https://github.com/easybuilders/easybuild-easyconfigs

User self-registration

JupyterHub Mokey

Web interface for user management

Dev. platform for JupyterHub use cases in HPC

jupyter-lmod pvserver-webproxy

https://github.com/cmd-ntrf/jupyter-lmod
https://github.com/cmd-ntrf/pvserver-webproxy

Dev. platform for JupyterHub in HPC

slurmformspawner puppet-jupyterhub

+

https://github.com/cmd-ntrf/slurmformspawner
https://github.com/computecanada/puppet-jupyterhub

MC-Hub

When Terraform is too difficult

Improving the workflow with MC Hub

41

What the user needs

Browser An
account

42

Creating a Magic Castle configuration
● Format

validation
● Quota validation

43

Verifying the quotas
Easily watch
quotas:

● Instance count
● RAM
● Virtual cores
● Volume count
● Volume storage
● Floating IPs

44

Confirming the Terraform configuration

45

Progress display

46

Workflow comparison for OpenStack

Magic Castle

Verify quotas manually Look at quota pie charts

Create a Magic Castle configuration file Fill in a web form

Read the documentation Less time reading documentation

MC Hub

47

Cluster management

Administrator viewUser's view

48

MC Hub Projects

1. Web front-end (Vue.js) and backend (Flask+Terraform) that
can create HPC cluster in OpenStack with Magic Castle.
https://github.com/ComputeCanada/mc-hub

2. A Docker Container containing the UI and backend
https://hub.docker.com/r/fredericfc/magic_castle-ui

3. Ansible playbook to deploy a SAML authenticated MC Hub
https://github.com/ComputeCanada/ansible-mc-hub

https://github.com/ComputeCanada/mc-hub
https://hub.docker.com/r/fredericfc/magic_castle-ui
https://github.com/ComputeCanada/ansible-mc-hub

Key Takeaways

1. Magic Castle is a mature project with a
rich ecosystem that replicates an HPC
cluster in the cloud with Terraform and
Puppet

2. Once deployed, MC Hub can be used by
anyone to deploy an HPC cluster on
OpenStack

Future directions and coming features

● OFED
● Lustre filesystem
● Compute instances automatic scaling
● Support external IdP

https://github.com/computecanada/magic_castle/issues

https://github.com/computecanada/magic_castle/issues

