
EASYBUILD @
SURFSARA
Caspar van Leeuwen
HPC advisor
SURFsara

1

SURF(sara)

Dutch national supercomputing center

Supercomputing

Clustercomputing

Scientific visualization

Data services

High performance cloud

2

Overview

History / motivation

EasyBuild

Jenkins

ReFrame

Xalt

Remaining challenges

3

Swiss army knife for maintaining a software environment
Discovered @ CSCS site presentation, 3rd EasyBuild User meeting

A bit of history…

Pre-EasyBuild era @ SURFsara

Hand-crafted bash installation scripts (some
template)

Hand-made modulefiles

4

A bit of history…

Issues

Installation scripts: what is happening where (and
why)? Where do I bump the version?

Modulefiles for various versions of software X are all
different…

Different software environment @ cluster (Lisa) &
supercomputer (Cartesius)

“Incomplete” environment: software X only built
with compiler A; software Y only with compiler B;
only old installations of software Z available.

Overall: poor reproducibility, lots of work to update,
unclear which dependencies were used, etc

5

A bit of history…

Pre-ReFrame era @ SURFsara

Repository with some bash scripts

Issues

Test scripts are non-standard => difficult to read for
others

Modules loaded by test scripts need to be updated
every time

Results are not stored; performance was typically
not tested (just functionality)

6

EasyBuild @ SURFsara - timeline

November 2016: EasyBuild 3.0.0 released with RPATH support

Mid 2017: first (publicly available) installations @ SURFsara through EasyBuild

Start 2019: EasyBuild becomes the default installation method. Manual
installation only by rare exception!

7

What EasyBuild brings us …

A clean, ‘complete’ environment

We try to compile all ‘permutations’ of software versions, toolchains, suffixes etc.

Two toolchains: issues with intel + RHEL 7.41 in 2017 motivated us to always have a
fallback!

1 https://software.intel.com/en-us/articles/inconsistent-program-behavior-on-red-hat-enterprise-linux-74-if-
compiled-with-intel
8

[casparl@int2 ~]$ module av GROMACS
--------- /sw/arch/.../modulefiles/bio ---------
GROMACS/2019.3-foss-2018b GROMACS/2019.3-intel-2018b
GROMACS/2019.3-foss-2018b-CUDA-10.0.130 GROMACS/2019.3-intel-2018b-CUDA-10.0.130

What EasyBuild brings us …

An environment that is

… easy to create

We installed close to 600 modules in 2019

New colleague: “This is almost too easy. We shouldn’t tell anyone, or we’ll be out of a
job!”

… easy to update

Update policy: release complete new stack once per year

Profit from EasyConfigs contributed by the community, add the rest ourselves

9

[casparl@int2 ~]$ module av -l | grep -v '\-\-\-' | wc -l
582

What EasyBuild brings us …

Professional ‘home’ installations

User: ”I want X, but linked against Y”

Not common to all users

Prepare EasyConfig => local installation

Wrapper eblocalinstall: EASYBUILD_INSTALLPATH = ∼/.local/…

Automatically generated modulefiles for local installs

Users can easily share with direct colleagues

10

What EasyBuild brings us …

A community of fellow experts, with similar issues. Our community…

… prefers source builds

… performs optimized builds

As a result, we run into issues that others never encountered!

Search an installation error => regularly land on EB issue page
(and solution!)

11

What is Jenkins?

Designed for continuous integration. Typical usage:

Jenkins runs on a VM

Connects to local or remote workers (e.g. multiple HPC systems)

Jenkins pipeline file defines what should be tested and/or deployed (e.g. invoke eb
<easyconfig>)

“Normal CI”: Upon success, take some automatic decision (deploy in production,
merge to master branch, etc) - we don’t do this part J

12

13

Test new easyconfigs on all systems & all optimization architectures (triggered by commit)

Test build of production environment (triggered bi-weekly).

Build in production environment (2019 software stack, triggered manually).

Build in future production environment (2020 software stack, triggered manually).

14

15

Aggregated log for builds on all systems + architectures:

Current software installation workflow

16

Create
EasyConfig

eb_commit
_easyconf

Convenience script:
submit with structured

commit message

Jenkins
testpipeline

Add to
buildlist

Jenkins
production

pipeline

Available on Lisa &
Cartesius, multiple

optimizations

What Jenkins brings us …

Identical software stacks on our cluster (Lisa) and supercomputer (Cartesius)

Software availability should NOT be a factor in choosing the most suitable system for a
user

17

Lisa

Cartesius

Job to build full
software stack

What Jenkins brings us …

Regression pipeline provides (some) guarentee that we can reinstall software

If a system change breaks the installation process of an EasyConfig, we notice within 2
weeks

The 2-week window helps us nail down which change broke it.

18

What Jenkins brings us …

Architecture-specific optimization

19

AVX
node

AVX2
node

Prefix = /sw/arch

Prefix = /sw/arch

Resolves to /hpc/arch/AVX

Resolves to /hpc/arch/AVX2

Job to build full
software stack

WARNING: setup only works if software is present in both prefixes. Otherwise, a module may be
loaded on one architecture, if the job lands on another, the installation is not available there

Modulefiles only refer to the
softlinks whenever they set a path.

What Jenkins brings us …

Architecture-specific optimization that is transparent to the user (no more
‘gromacs-avx’ or ‘gromacs-avx2’ modules!)

20

[casparl@tcn180 ~]$ module load GROMACS/2019.3-foss-2018b
[casparl@tcn180 ~]$ which gmx_mpi
/sw/arch/…/software/GROMACS/2019.3-foss-2018b/bin/gmx_mpi
[casparl@tcn180 ~]$ realpath $(which gmx_mpi)
/hpc/arch/AVX/…/software/GROMACS/2019.3-foss-2018b/bin/gmx_mpi

[casparl@tcn900 ~]$ module load GROMACS/2019.3-foss-2018b
[casparl@tcn900 ~]$ which gmx_mpi
/sw/arch/…/software/GROMACS/2019.3-foss-2018b/bin/gmx_mpi
[casparl@tcn900 ~]$ realpath $(which gmx_mpi)
/hpc/arch/AVX2/…/software/GROMACS/2019.3-foss-2018b/bin/gmx_mpi

AVX capable node =>

AVX2 capable node =>

What EasyBuild + Jenkins brings us …

Better ability to deprecate installations! Policy:

Install 1 complete stack per year

Support for 2 years

Deprecated in 3rd year

Removed (hidden) in 4th year

‘Meta-modules’

Module load 2019 => modules installed in 2019 become available

Confronts users with how old installation is that they are using!

21

https://userinfo.surfsara.nl/documentation/
software-policy-lisacartesius

https://userinfo.surfsara.nl/documentation/software-policy-lisacartesius

Why ReFrame

Software testing

Standardized test scripts => easy to read

ReFrame allows both performance and functionality tests

22

ReFrame @ SURFsara

Developed some tests

ReFrame can build & test, or test existing modules

Reframe allows module mapping

GROMACS => GROMACS/2019.3-foss-2018b

New module enviroment? Update mapping, not tests

Now defining a test suite, to run

Periodically

Before & after system upgrades (hardware, OS)

23

What ReFrame will bring us …

More professional, consistent testing before/after system upgrades

Insight in performance…

… between our systems

… between toolchains

… between old and new versions of software

24

Xalt

Tool to track software usage

Stores usage in an SQL database

Technical implementation: done

Challenges

Privacy issues: what do we need to put where? Anonimization/pseudononimize? Opt
in/opt out? How long can we keep what?

Documentation is a bit sparse on some topics (e.g. what additional info can I expect
when I set ‘--with-trackGPU=yes’)

25

What Xalt will bring us …

Which modules to keep supporting (yearly update)

Which software worth to spend time on (if installation fails, optimization, etc)

Which proprietary software is (not) worth to spend money on

Targetted communication to users (updates on certain modules; software alternatives;
bugs found in modules/software)

26

Remaining challenges / discussion starters

Do we need EasyBlock-specific documentation?

We have eb –ae <easyblock>, but we may need more. E.g. various EasyBlocks
automatically add --with-X=$EBROOTX. That is usually what you want, completely
invisible now (I now have to check PRs to figure out what happens & why).

Suggestion: give EasyBlocks a <docs> property that can be queried in a similar way to
eb –ae <easyblock>

27

Remaining challenges / discussion starters

Time from opening a PR until they are merged is sometimes very long.

Ok for 1 or 2 PRs, but it gets hard to keep track when jugling more. (what was I
working on? Is it waiting for me, or reviewer?)

Note sure if there is a solution (channel in EB slack specifically for quick interaction
with maintainer of the week?)

28

Remaining challenges / discussion starters

Some EasyConfigs do a make check or similar, most don’t

Should EasyBuild test installations? Or is it better to rely on e.g. ReFrame?

Is there an EasyBuild configuration to skip these for institutes that test installation
functionality externally (e.g. ReFrame)? If not: should there be?

29

Remaining challenges / discussion starters

When we write EasyConfigs for new toolchains, which versions should we use for
dependencies?

PRs are checked that deps match previous versions… Can we use the same tool
when developing?

Suggestion: can the core EasyBuild team nail down a version list in a way similar as
defining the toolchains as soon as a toolchain is released?

Could integrate well with the eb ---tweak deps = <file_with_deplist> option
proposed by Kenneth

30

