
HPC on OpenStack
the good, the bad and the ugly

Ümit Seren Github: @timeu
HPC Engineer at the Vienna BioCenter Twitter: @timeu_s

5th EasyBuild User Meeting - Jan 30th, 2020 - Barcelona

The “Cloudster” and How we’re Building it!

Shamelessly stolen from
Damien François Talk --
“The convergence of HPC
and BigData
What does it mean for
HPC sysadmins?” -
FOSDEM 2019

Who Are We ?
● Part of Cloud Platform Engineering Team at molecular biology research

institutes (IMP, IMBA,GMI) located in Vienna, Austria at the Vienna Bio
Center.

● Tasked with delivery and operations of IT infrastructure for ~ 40 research
groups (~ 500 scientists).

● IT department delivers full stack of services from workstations, networking,
application hosting and development (among many others).

● Part of IT infrastructure is delivery of HPC services for our campus

● 14 People in total for everything.

Vienna BioCenter Computing Profile
● Computing infrastructure almost exclusively dedicated to bioinformatics

(genomics, image processing, cryo electron microscopy, etc.)

● Almost all applications are data exploration, analysis and data processing, no
simulation workloads

● Have all machinery for data acquisition on site (sequencers, microscopes,
etc.)

● Operating and running several compute clusters for batch computing and
several compute clusters for stateful applications (web apps, databases, etc.)

What We Had Before
● Siloed islands of infrastructure

● Cant talk to other islands, can’t
access data from other island (or
difficult logistics for users)

● Nightmare to manage

● No central automation across all
resources easily possible

Meet the CLIP Project
● OpenStack was chosen to be evaluated further as platform for this

● Setup a project “CLIP” (Cloud Infrastructure Project) and formed project team
(4.0 FTE) with a multi phase approach to delivery of the project.

● Goal is to implement not only a new HPC platform but a software defined
datacenter strategy based on OpenStack and deliver HPC services on top of
this platform

● Delivered in multiple phases

What We’re Aiming At

CLIP Cloud Architecture Hardware
● Heterogeneous nodes

(high core count, high
clock, large memory,
GPU accelerated,
NVME)

● ~ 200 compute nodes
and ~ 7700 Intel
SkyLake cores

● 100GbE SDN RDMA
capable Ethernet and
some nodes with 2x or
4x ports

● ~ 250TB NVMe IO
Nodes ~ 200Gbyte/s

Analysis

Tasks Performed within “CLIP”

POC Deployment ProductionP
la

n
A

ct
ua

l

Analysis POC Deployment Production

Basic
understanding

Small scale

Deeper understanding
Deployment, tooling, operations &

benchmarking

Production deployment
Cloud & Slurm payload

Interactive Application
JupyerHub, Rstudio

Interactive
applications on HPC
systems” by Erich
Birngruber at 16:00

Dez.
2017

Feb.
2018

Oct.
2018

Jan.
2019

Jan.
2019

Jul.
2019

2 months 8 months 4 months

since 6 months12 months 10 months

Deploying and Operating the Cloud

Deploying the Cloud - TripleO (OoO)
● TripleO (OoO): Openstack on

OpenStack

● Undercloud: single node
deployment of OpenStack.

○ Deploys the Overcloud

● Overcloud: HA deployment of
OpenStack.

○ Cloud for Payload

● Installation with GUI or CLI ?

Deploying the Cloud - Should we use the GUI ?

Deploying the Cloud - Should we use the GUI ?

Deploying the Cloud - Code as Infra & GitOps !
● Web GUI does not scale

○ → Disable the Web UI and deploy
from the CLI

● TripleO internally uses heat to drive
puppet that drives ansible ¯_(ツ)_/¯

● Use ansible to drive the TripleO
installer and rest of infra

● Entire end-2-end deployment from
code

Bastion
VM

Overcloud
dev/staging & prod

Undercloud
dev/staging & prod

1. Deploy undercloud

clip-stack
yaml & ansible

2. Deploy overcloud

clip-uc-prepare
ansible

Undercloud
dev/staging & prod
Undercloud

dev/staging & prod

Overcloud
dev/staging & prod
Overcloud
dev/staging & prod

3. Configure overcloud

Deploying the Cloud - Pitfalls and Solutions!
● TripleO is slow because Heat → Puppet → Ansible !!

○ Update takes ~ 60 minutes even for simple config change

● Customize using ansible instead ? Unfortunately not robust :-(

○ Stack update (scale down/up) will overwrite our changes

○ → services can be down

● → Let’s compromise: Use both

○ Iterate with ansible → Use TripleO for final configuration

● Ansible everywhere else !

○ Network, Moving nodes between environments, etc

Operating the Cloud - Package Management
● 3 environments & infra as code: reproducibility and testing of upgrades

● What about software versions ? → Satellite/Foreman to the rescue !

● Software Lifecycle environments ⟷ Openstack environments

Operating the Cloud - Package Management
1. Create Content Views (contains RPM repos and containers)

2. Publish new versions of Content Views

3. Test in dev/staging and roll them forward to production

Operating the Cloud - Tracking Bugs in OS
● How to keep track of bugs in OpenStack ?
● → Track bugs, workaround and the status in JIRA project (CRE)

Deploying and operating the Cloud - Summary
Lessons learned and pitfalls of OpenStack/Tripleo:

● OpenStack and TripleO are complex piece of software
○ Dev/staging environment & package management

● Upgrades can break the cloud in unexpected ways.
○ OSP11 (non-containerized) → OSP12 (containerized)

● Containers are no free lunch
○ Container build pipeline for customizations

● TripleO is a supported out of the box installer for common cloud configurations
○ Exotic configurations are challenging

● “Flying blind through clouds is dangerous”:
○ Continuous performance and regression testing

● Infra as code (end to end) way to go
○ Requires discipline (proper PR reviews) and release management

Cloud Verification & Performance Testing

Cloud verification & Performance Testing
● How can we make sure and

monitor that the cloud works
during operations ?

● We leverage OpenStack’s own
tempest testing suite to run
verification against our deployed
cloud.

● First smoke test (~ 128 tests)
and if this is successful run full
test (~ 3000 tests) against the
cloud.

Cloud verification & Performance Testing
● How can we make sure and

monitor that the cloud works
during operations ?

● We leverage OpenStack’s own
tempest testing suite to run
verification against our deployed
cloud.

● First smoke test (~ 128 tests)
and if this is successful run full
test (~ 3000 tests) against the
cloud.

Cloud verification & Performance Testing
● Ok, the Cloud works but what

about performance ? How can we
make sure that OS performs
when upgrading software
packages etc ?

● We plan to use Browbeat to run
Rally (control plane
performance/stress testing),
Shaker (network stress test) and
PerfkitBenchmarker (payload
performance) tests on a regular
basis or before and after software
upgrades or configuration
changes

Cloud verification & Performance Testing
● Ok, the Cloud works but what

about performance ? How can we
make sure that OS performs
when upgrading software
packages etc ?

● We plan to use Browbeat to run
Rally (control plane
performance/stress testing),
Shaker (network stress test) and
PerfkitBenchmarker (payload
performance) tests on a regular
basis or before and after software
upgrades or configuration
changes

Cloud verification & Performance Testing
● Ok, the Cloud works but what

about performance ? How can we
make sure that OS performs
when upgrading software
packages etc ?

● We plan to use Browbeat to run
Rally (control plane
performance/stress testing),
Shaker (network stress test) and
PerfkitBenchmarker (payload
performance) tests on a regular
basis or before and after software
upgrades or configuration
changes

Cloud verification & Performance Testing
● Grafana and Kibana dashboard can show

more than individual rally graphs:
● Browbeat can show differences between

settings or software versions:

Scrolling through Browbeat 22 documents...

+---+

Scenario | Action | conc.| times | 0b5ba58c | 2b177f3b | % Diff

+---+

create-list-router | neutron.create_router | 500 | 32 | 19.940 | 15.656 | -21.483

create-list-router | neutron.list_routers | 500 | 32 | 2.588 | 2.086 | -19.410

create-list-router | neutron.create_network| 500 | 32 | 3.294 | 2.366 | -28.177

create-list-router | neutron.create_subnet | 500 | 32 | 4.282 | 2.866 | -33.075

create-list-port | neutron.list_ports | 500 | 32 | 52.627 | 43.448 | -17.442

create-list-port | neutron.create_network| 500 | 32 | 4.025 | 2.771 | -31.165

create-list-port | neutron.create_port | 500 | 32 | 19.458 | 5.412 | -72.189

create-list-subnet | neutron.create_subnet | 500 | 32 | 11.366 | 4.809 | -57.689

create-list-subnet | neutron.create_network| 500 | 32 | 6.432 | 4.286 | -33.368

create-list-subnet | neutron.list_subnets | 500 | 32 | 10.627 | 7.522 | -29.221

create-list-network| neutron.list_networks | 500 | 32 | 15.154 | 13.073 | -13.736

create-list-network| neutron.create_network| 500 | 32 | 10.200 | 6.595 | -35.347

+---+

+---+

UUID | Version | Build | Number of runs

+---+

938dc451-d881-4f28-a6cb-ad502b177f3b | queens | 2018-03-20.2 | 1

6b50b6f7-acae-445a-ac53-78200b5ba58c | ocata | 2017-XX-XX.X | 3

+---+

Deploying the Payload

Deploying the Cloud - SLURM Cluster

● 2 step process:

○ OpenStack Heat to provision →
Ansible inventory

○ Ansible playbook/roles1 for config ->
SLURM cluster

● Satellite for package management

● Dev & staging env for testing → roll
over to production

● Deploy other complex systems
(Spark cluster, k8s, etc)

[1] - StackHPC ansible roles: https://github.com/stackhpc

clip-hpc
ansible

Overcloud
dev/staging & prod
Overcloud
dev/staging & prod
Overcloud
dev/staging & prod

1.
Ope

ns
tac

k A
PI

1. Heat

2. AnsibleScale Up/Down
& Reconfigure

Deploying the Cloud - Tunings for HPC
● Tuning, Tuning, Tuning required for excellent performance

Tuning Caveats / Downside

NUMA clean instances (KVM process
layout)

No live migrations
No mixing of different VM flavors

Static huge pages (KSM etc.) setup If not enough memory is left to hypervisor
→ swapping or host services get OOM.
No mixing of different VM flavors

Core isolation (isolcpus) Performance drop in virtual networking
performance → SR-IOV

PCI-E passthrough (GPUs, NVME) and
SR-IOV (NICs)

No live migrations and less features
compared to fully virtualized networking

Deploying the Cloud - Pitfalls and Issues
● Ansible is slow: Slurm playbook takes ~1 hour (clean 2nd run !)

○ Use tags for recurring day 2 operations (i.e new mount points, change of QOS, etc)

● Satellite 👍 for software versions but remove upstream Centos repos after install

● Some issues only hit under scale:
○ SDN scaling issues when provisioning more than 70 nodes. Workaround: scale in batches

● Isolation of environments ends with shared infra components especially when
tightly integrating with OpenStack

○ Update of DEV environment caused datacenter wide network outage (bug in SDN)

● Beware of unintended consequences of code changes
○ Triggered accidental re-deploy of payload because of single line change in heat template

HPC on OpenStack - Lessons Learned

● OpenStack is incredibly complex

● OpenStack is not a product. It is a
framework.

● You need 2-3 OpenStack environments
(development, staging, prod in our
case) to practice and understand
upgrades and updates.

● Scaling above certain amount of nodes
will be an issue

● Cloud networking is really hard
(especially in our case)

● Open source software with commercial
support

● OpenStack integrates well with existing
datacenter infrastructure

● API driven software defined datacenter

● Easily deploy multiple payloads side by
side like in a Cloud 😏

● Covers a wide range of use cases
ranging from virtualized & baremetal
HPC clusters to container orchestration
engines

Bad & Ugly Good

Thanks

Acknowledgements

HPC Team

Erich Birngruber
Petar Forai
Petar Jager
Ümit Seren

