< @ cscs
Centro Svi: di Calcolo Scientifi ..
. Swr;:suNavtif:a'losune:c?l:nuﬁ:;}:smrs m zZUuric h

T /11
=W

ReFrame: A Framework for Writing Regression Tests for HPC Systems

5th EasyBuild User Meeting

Barcelona, Spain @ reframe@cscsch

https://reframe-hpc.readthedocs.io
Vasileios Karakasis, CSCS) https//github.com/eth-cscs/reframe

4% https://reframe-slack.herokuapp.com
January 30, 2020

reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

Why regression testing? @

= The HPC software stack is highly complex and very sensitive to changes.

= How can we ensure that the user experience is unaffected after an upgrade
or after an “innocent” change in the system configuration?

= How testing of such complex systems can be made sustainable?
- Consistency
- Maintainability
- Automation

39
<¥® cscs sth EasyBuild User Meeting - Barcelona, Spain | 2 ETHziirich

Background @

= (CSCS had a shell-script based regression testing suite

- Tests very tightly coupled to system details
- Lots of code replication across tests
- 15K lines of test code and low coverage

= Simple changes required significant team effort

= Fixing even simple bugs was a tedious task

39
<¥® cscs 5th EasyBuild User Meeting - Barcelona, Spain | 3 ETHziirich

What is ReFrame?

An HPC testing framework that..

= allows writing portable HPC
regression tests in Python,

= abstracts away the system
interaction details,

= lets users focus solely on the logic
of their test,

= provides a runtime for running
efficiently the regression tests.

<@, CscCs

Reframe

Understanding The
Sanity Functions

Running ReFrame

ReFrame

Reference Guide

Sanity Functi

s5th EasyBuild User Meeting - Barcelona, Spain | 4

% incognite @ @

Reframe v2.21-dev1

Docs » Welcome to ReFrame © View on GitHub

Next®

Welcome to ReFrame

ReFrame is a new framework for writing regression tests for HPC systems. The goal of this
framework is to abstract the system, separating
the logic of a regression test from the low-level details, which pertain to the system
configuration and setup. This allows users to write easily portable regression tests, focusing

only on the functionality.

Regression tests in ReFrame are simple Python classes that specify the basic parameters of
the test. The framework will load the test and will send it down a well-defined pipeline that
will take care of its execution. The stages of this pipeline take care of all the system
interaction details, such as itching, compilation,

job status query, sanity checking and performance assessment,

ReFrame also offers a high-level and flexible abstraction for writing sanity and performance
checks g tests, without having the details of
files, P and testi alues for

Witing system regression tests in a high-level modern programming language, like Python,
poses a great advantage in organizing and maintaining the tests. Users can create their own
ile tests at the same time and they can

t &
also customize them in a simple and expressive way.

ETHziirich

Who is using ReFrame or is curious about it? @

3 I

1 T 29
% cscs .
@ 5th EasyBuild User Meeting - Barcelona, Spain | 5 ETHziirich

Design Goals @

Productivity

Portability

Speed and Ease of Use

Robustness

39
<Fe® Cscs 5th EasyBuild User Meeting - Barcelona, Spain | 6 ETHziirich

Key Features @

= Support for cycling through programming environments and system partitions

= Support for different WLMs, parallel job launchers and modules systems

= Support for sanity and performance tests

= Support for test factories

= Support for container runtimes (new in v2.20)

= Support for test dependencies (new in v2.21)

= Concurrent execution of regression tests

= Progress and result reports

= Performance logging with support for Syslog and Graylog

= Clean internal APIs that allow the easy extension of the framework’s functionality

39
<¥® cscs 5th EasyBuild User Meeting - Barcelona, Spain | 7 ETHziirich

I

ReFrame’s Architecture

@rfm.simple_test
reframe <options> -r class MyTest(rfm.RegressionTest):

ReFrame Frontend RegressionTest API
ReFrame Runtime

System abstractions Environment abstractions

Parallel : Environment
Build systems
launchers modules

sth EasyBuild User Meeting - Barcelona, Spain | 8 ETHziirich

$°,
\\).0 cscs

How ReFrame Executes the Tests @

All tests go through a well-defined pipeline.

The regression test pipeline

9
‘?.. cscs sth EasyBuild User Meeting - Barcelona, Spain | 9 ETHziirich

How ReFrame Executes the Tests Ei

All tests go through a well-defined pipeline.

The regression test pipeline

oo - DODOOE - Do

Serial execution policy

9
\?0. cscs sth EasyBuild User Meeting - Barcelona, Spain | 9 ETHziirich

How ReFrame Executes the Tests

All tests go through a well-defined pipeline.

m“

The regression test pipeline

Serial execution policy

CODEEECOD RERCC

I

ﬂ
H

Asynchronous execution policy

A
\?0. cscs 5th EasyBuild User Meeting - Barcelona, Spain | 9

ETHziirich

Configuring ReFrame @

1. Systems
- Hostname patterns that will let ReFrame recognize this system
- Modules system used
- Define system’s virtual partitions
2. Virtual partitions
- Job scheduler and parallel job launcher
- How access to this partition is granted
- The programming environments to be tested on this partition
3. Programming environments (toolchains)
- Environment modules to load
- Environment variables to set

https://github.com/eth-cscs/reframe/blob/master/config/cscs.py

39
<¥® cscs 5th EasyBuild User Meeting - Barcelona, Spain | 10 ETHziirich

https://github.com/eth-cscs/reframe/blob/master/config/cscs.py

Writing a Regression Test in ReFrame

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class Example3Test(rfm.RegressionTest):
def __init__ (self):
self.descr = 'Matrix-vector multiplication example_ with MPI+OpenMP'
self.valid_systems = ['daint:gpu', 'daint:mc']
self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu', 'PrgEnv-intel'
self.sourcepath = 'example matrix vector multiplication mpi_openmp.c'
self.build_system = 'SingleSource'
self.executable opts = ['1024', '10']
self.prgenv_flags = {'PrgEnv-cray': ['-homp'],
'PrgEnv-gnu’' : ['-fopenmp'],
'PrgEnv-intel': ['-openmp'],
'PrgEnv-pgi': ['-mp'1}

'PrgEnv-pgi']

self.sanity patterns = sn.assert_found(r'time for,single matrix vector multiplication', self.stdout)

self.num tasks = 8

self.num tasks_per_node = 2

self.num cpus_per_task = 4

self.variables = {'OMP_NUM THREADS': str(self.num cpus_per_task)}
self.tags = {'tutorial'}

@rfm.run_before('compile')
def setflags(self):

self.build_system.cflags = self.prgenv_flags[self.current_environ.name]

22
\\‘0‘ cscs sth EasyBuild User Meeting - Barcelona, Spain | 1

ETHziirich

Writing a Performance Test in ReFrame Hi

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_ test
class Example7Test(rfm.RegressionTest):
def _ init_ (self):
self.descr = 'Matrix-vectorgmultiplication, (CUDA_ performance test)'
self.valid_systems = ['daint:gpu']
self.valid_prog_environs = ['PrgEnv-gnu', 'PrgEnv-cray', 'PrgEnv-pgi']
self.sourcepath = 'example matrix vector multiplication_ cuda.cu'
self.build_system = 'SingleSource'’
self.build_system.cxxflags = ['-03']
self.executable_opts = ['4096', '1000']
self.modules = ['cudatoolkit']
self.sanity patterns = sn.assert_found(r'time for single matrix, vector multiplication', self.stdout)
——self.perf_patterns = {
'perf': sn.extractsingle(r'Performance:\s+(?P<Gflops>\S+) Gflop/s', self.stdout, 'Gflops', float)

——self.reference = {
'daint:gpu': {
'perf': (50.0, -0.1, 0.1, 'Gflop/s'),
}

self.tags = {'tutorial'}

39
\?00 cscs sth EasyBuild User Meeting - Barcelona, Spain | 12 ETHziirich

Defining Test Dependencies

class BaseTest(rfm.RunOnlyRegressionTest):
def _ init_ (self):

self.valid_systems = ['*']
self.valid_prog environs =
self.sourcesdir = None
self.executable = 'echo'
self.count = sn.getattr(self, ' count')
self.sanity_patterns = sn.defer(True)
self.keep files = ['out.txt']

['*"]

self. count = int(type(self)._name_ [1:])

@rfm.run_before('run')
def write count(self):
self.executable_opts =
"> out.txt']

[str(self.count),

@rfm.simple_test
class TO(BaseTest):
pass

@rfm.simple_test
class T4 (BaseTest):
def _ init_ (self):
super()._ init_ ()
self.depends_on('T0")
self.sanity patterns = sn.assert_eq(self.count, 4)

@rfm.require_deps
def prepend_output(self, TO0):
with open(os.path.join(T0().stagedir,
self. count += int(fp.read())

‘out.txt')) as fp:

= Dependent tests can access all the resources of their parent tests
= Runtime takes care of the correct execution of the tests and the cleanup of their resources

= Dependencies can be defined at the level of programming environment as well

329
R X4 CscCs

s5th EasyBuild User Meeting - Barcelona, Spain | 13

ETHziirich

Running ReFrame Hi

Sample output with the asynchronous execution policy

Running 1 check(s)
Started on Sat Nov 16 20:33:11 2019

[-————————-] started processing Example7Test (Matrix-vector multiplication (CUDA performance test))

[RUN] Example7Test on daint:gpu using PrgEnv-cray
[RUN] Example7Test on daint:gpu using PrgEnv-gnu
[RUN] Example7Test on daint:gpu using PrgEnv-pgi

finished processing Example7Test (Matrix-vector multiplication (CUDA performance test))

[-—————————] waiting for spawned checks to finish

[OK] Example7Test on daint:gpu using PrgEnv-cray
[OK] Example7Test on daint:gpu using PrgEnv-gnu

[OK] Example7Test on daint:gpu using PrgEnv-pgi

[-————————=] all spawned checks have finished

Ran 3 test case(s) from 1 check(s) (0 failure(s))
Finished on Sat Nov 16 20:33:25 2019

9
<Fe® Cscs 5th EasyBuild User Meeting - Barcelona, Spain | 14 ETHziirich

Running ReFrame Hi

Sample failure

&,

e

X

Running 1 check(s)
Started on Thu Jan 30 00:34:17 2020

started processing Example7Test (Matrix-vector multiplication (CUDA performance test))

[RUN] Example7Test on daint:gpu using PrgEnv-gnu

finished processing Example7Test (Matrix-vector multiplication (CUDA performance test))

waiting for spawned checks to finish
Example7Test on daint:gpu using PrgEnv-gnu
all spawned checks have finished

i<l
>
=
=]

] Ran 1 test case(s) from 1 check(s) (1 failure(s))
Finished on Thu Jan 30 00:34:25 2020

SUMMARY OF FAILURES

FAILURE INFO for Example7Test

* ok kK kK ok

System partition: daint:gpu

Environment: PrgEnv-gnu

Stage directory: /users/karakasv/Devel/reframe/stage/daint/gpu/PrgEnv-gnu/Example7Test

Node list: nid00000

Job type: batch job (id=905395)

Maintainers: ['you-can-type-your-email-here']

Failing phase: performance

Reason: performance error: failed to meet reference: perf=50.050688, expected 70.0 (1=63.0, u=77.0)

9
‘0

CscCs

s5th EasyBuild User Meeting - Barcelona, Spain | 15 ETHziirich

Running ReFrame @
Performance logging
= Every time a performance test is run, ReFrame can log its performance
through several channels:
- Normal files
- Syslog
- Graylog

= Log format is fully configurable SR Gpwamrs

39
<¥® cscs 5th EasyBuild User Meeting - Barcelona, Spain | 16 ETHziirich

ReFrame @ CSCS @
Tests and production setup

Several test categories identified by tags:
= Cray PE tests: only PE functionality

= Production tests: entire HPC software stack
Elasti . .
Test gea:rclf] = Maintenance tests: selection of tests for

repository running before/after maintenance sessions

ReFrame

repository

= Benchmarks

\ j
pull puH PizDaint MM popoo = 534 tests in total (90 test files)
\ Graylog

Scheduled \ogln

dail
B Jenkins et PizKesch =mg ReFrame

l

Notify roster on failure

“. cscs 5th EasyBuild User Meeting - Barcelona, Spain | 17 ETHziirich

ReFrame @ CSCS @

Tests and production setup
Several test categories identified by tags:
= Cray PE tests: only PE functionality
= Production tests: entire HPC software stack

Elastic . :
Test Seerh = Maintenance tests: selection of tests for

repository running before/after maintenance sessions

ReFrame

repository

= Benchmarks

\ j
pul puH pizDaint NS = 534 tests in total (90 test files)
\ Graylog

Scheduled \ogln

daily Experiences from Piz Daint’s upgrade to CLE7:

Jenkins SemlRliess Pz Kesch mmg ReFrame
= Enabling ReFrame as early as possible on the

l TDS has streamlined the upgrade process.

= Revealed several regressions in the
Notify roster on failure programming environment that needed to
be fixed.

= Builds confidence when finally everything is
GREEN.

9
‘\)0. cscs 5th EasyBuild User Meeting - Barcelona, Spain | 17 ETHziirich

ReFrame @ CSCS @I

Test suite

= HPC applications: Amber, CP2K, CPMD, QuantumEspresso, GROMACS, LAMMPS, NAMD,
OpenFoam, Paraview, TensorFlow

= Libraries: Boost, GridTools, HPX, HDF5, NetCDF, Magma, Scalapack, Trilinos, PETSc
= Programming environment: GPU, MPI, MPI+X functionality, OpenACC, CPU affinity
= Slurm functionality
= Performance and debugging tools
= |/O tests: IOR
= Microbenchmarks: CUDA, CPU, MPI
= Sarus container runtime checks
= OpenStack: S3 API
Check the “cscs-checks/” directory @ https://github.com/eth-cscs/reframe

39
<¥® cscs 5th EasyBuild User Meeting - Barcelona, Spain | 18 ETHziirich

https://github.com/eth-cscs/reframe

ReFrame @ Other Sites @

= National Energy Research Scientific Computing Center, USA
- Software stack validation
- Performance testing and benchmarking

- Integration with Gitlab CI/CD solution developed within ECP
- V. Karakasis et al., “Enabling Continuous Testing of HPC Systems using ReFrame”,

HUST19
= Ohio Supercomputing Center, USA
- Software stack validation
- Integration with CI/CD

- S. Khuvis et al,, “A Continuous Integration-Based Framework for Software
Management”, PEARC19

= PAWSEY (AUS), NIWA (N2), SurfSARA (NL), ASML (NL) and many more
experimenting

39
<¥® cscs 5th EasyBuild User Meeting - Barcelona, Spain | 19 ETHziirich

Using ReFrame to Test EasyBuild (work-in-progress) @

= A ReFrame test for each easyconfig file that will run EasyBuild to install it and check for
successful completion

39
<F® Cscs 5th EasyBuild User Meeting - Barcelona, Spain | 20 ETHziirich

https://gist.github.com/boegel/22defbfae0bcc7a9b0b76d8e40040f94

Using ReFrame to Test EasyBuild (work-in-progress) @

= A ReFrame test for each easyconfig file that will run EasyBuild to install it and check for
successful completion

= The dependency graph is generated on-the-fly by calling the EasyBuild API

= Use a parameterized ReFrame test with the dependency information and let ReFrame
generate all the easyconfig tests at once!

Call EasyBuild API to determine easyconfig deps and generate ec tests
- Each element of ec tests is a tuple of [name, ec['spec'], test deps]
@rfm.parameterized_test(*ec_tests)
class EasyconfigTest(rfm.RunOnlyRegressionTest):
def _ init_ (self, name, ec_file, deps):
self.name = name
self.executable = 'eb'
self.executable_opts = [ec_file, '--force', '--module-only']
for dep in deps:
self.depends_on(dep)
oo

Full code snippet: https://gist.github.com/boegel/22defbfaeobcc7a9bob76d8e40040f94

9
<¥® cscs 5th EasyBuild User Meeting - Barcelona, Spain | 20 ETHziirich

https://gist.github.com/boegel/22defbfae0bcc7a9b0b76d8e40040f94

ReFrame Roadmap for 2020 @

= Redesign the configuration component
- New configuration syntax with more control on the different aspects of the
framework
- Multiple configuration formats (JSON, YAML, Python)
- Enable configuration through environment variables
Improve documentation
- Targeted tutorials for EasyBuild/Spack installations and Cray systems
- Advanced topics on writing tests
Investigate ways of further facilitating the porting of tests to different
systems
Bug fixes and user feature requests
ReFrame 3.0
- https://github.com/eth-cscs/reframe/projects/15

- Regular development releases
sth EasyBuild User Meeting - Barcelona, Spain | 21 ETHziirich

3.9
R X4 CscCs

https://github.com/eth-cscs/reframe/projects/15

Conclusions @

ReFrame is a powerful tool that allows you to continuously test an HPC
environment without having to deal with the low-level system interaction details.

= High-level tests written in Python

Portability across HPC system platforms

Comprehensive reports and reproducible methods

Easy integration with CI/CD workflows

Bug reports, feature requests, help @ https://github.com/eth-cscs/reframe
Sharing tests @ https://github.com/reframe-hpc

3.9
<¥® cscs sth EasyBuild User Meeting - Barcelona, Spain | 22 ETHziirich

https://github.com/eth-cscs/reframe
https://github.com/reframe-hpc

@& _ cscs

(Centro Svizzero di Calcolo Scientifico
. Swiss National Supercomputing Centre

Thank you for your attention

ETHziirich

M\l Bnantic £l -
TVICE) 5P S0 Gk (.

E=T+V'= H £

reframe@cscs.ch

https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe

https://reframe-slack.herokuapp.com

reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

