
ReFrame: A Framework for Writing Regression Tests for HPC Systems
5th EasyBuild User Meeting
Barcelona, Spain

Vasileios Karakasis, CSCS

January 30, 2020

reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

Why regression testing?

◾ The HPC software stack is highly complex and very sensitive to changes.

◾ How can we ensure that the user experience is unaffected after an upgrade
or after an “innocent” change in the system configuration?

◾ How testing of such complex systems can be made sustainable?
– Consistency
– Maintainability
– Automation

5th EasyBuild User Meeting – Barcelona, Spain ∣ 2

Background

◾ CSCS had a shell-script based regression testing suite
– Tests very tightly coupled to system details
– Lots of code replication across tests
– 15K lines of test code and low coverage

◾ Simple changes required significant team effort

◾ Fixing even simple bugs was a tedious task

5th EasyBuild User Meeting – Barcelona, Spain ∣ 3

What is ReFrame?

An HPC testing framework that…

◾ allows writing portable HPC
regression tests in Python,
◾ abstracts away the system
interaction details,
◾ lets users focus solely on the logic
of their test,
◾ provides a runtime for running
efficiently the regression tests.

5th EasyBuild User Meeting – Barcelona, Spain ∣ 4

Who is using ReFrame or is curious about it?

5th EasyBuild User Meeting – Barcelona, Spain ∣ 5

Design Goals

◾ Productivity

◾ Portability

◾ Speed and Ease of Use

◾ Robustness

5th EasyBuild User Meeting – Barcelona, Spain ∣ 6

Key Features

◾ Support for cycling through programming environments and system partitions
◾ Support for different WLMs, parallel job launchers and modules systems
◾ Support for sanity and performance tests
◾ Support for test factories
◾ Support for container runtimes (new in v2.20)
◾ Support for test dependencies (new in v2.21)
◾ Concurrent execution of regression tests
◾ Progress and result reports
◾ Performance logging with support for Syslog and Graylog
◾ Clean internal APIs that allow the easy extension of the framework’s functionality

5th EasyBuild User Meeting – Barcelona, Spain ∣ 7

ReFrame’s Architecture

RegressionTest	API

System	abstractions Environment	abstractions

WLMs Parallel
launchers Build	systems Environment

modules

O/S

ReFrame	Runtime

ReFrame	Frontend

@rfm.simple_test
class	MyTest(rfm.RegressionTest):reframe	<options>	-r

5th EasyBuild User Meeting – Barcelona, Spain ∣ 8

How ReFrame Executes the Tests
All tests go through a well-defined pipeline.

Setup Build Run Sanity Perf. Cleanup

The regression test pipeline

SE BU RU SA PE CLIdling SE BU RU SA PE CLIdling

Serial execution policy

SE BU RU SA PE CLSE BU RU SE BU RU SA PE CL SA PE CL

Asynchronous execution policy

5th EasyBuild User Meeting – Barcelona, Spain ∣ 9

How ReFrame Executes the Tests
All tests go through a well-defined pipeline.

Setup Build Run Sanity Perf. Cleanup

The regression test pipeline

SE BU RU SA PE CLIdling SE BU RU SA PE CLIdling

Serial execution policy

SE BU RU SA PE CLSE BU RU SE BU RU SA PE CL SA PE CL

Asynchronous execution policy

5th EasyBuild User Meeting – Barcelona, Spain ∣ 9

How ReFrame Executes the Tests
All tests go through a well-defined pipeline.

Setup Build Run Sanity Perf. Cleanup

The regression test pipeline

SE BU RU SA PE CLIdling SE BU RU SA PE CLIdling

Serial execution policy

SE BU RU SA PE CLSE BU RU SE BU RU SA PE CL SA PE CL

Asynchronous execution policy

5th EasyBuild User Meeting – Barcelona, Spain ∣ 9

Configuring ReFrame

1. Systems
– Hostname patterns that will let ReFrame recognize this system
– Modules system used
– Define system’s virtual partitions

2. Virtual partitions
– Job scheduler and parallel job launcher
– How access to this partition is granted
– The programming environments to be tested on this partition

3. Programming environments (toolchains)
– Environment modules to load
– Environment variables to set

https://github.com/eth-cscs/reframe/blob/master/config/cscs.py

5th EasyBuild User Meeting – Barcelona, Spain ∣ 10

https://github.com/eth-cscs/reframe/blob/master/config/cscs.py

Writing a Regression Test in ReFrame
import reframe as rfm

import reframe.utility.sanity as sn

@rfm.simple_test

class Example3Test(rfm.RegressionTest):

def __init__(self):

self.descr = 'Matrix-vector␣multiplication␣example␣with␣MPI+OpenMP'
self.valid_systems = ['daint:gpu', 'daint:mc']

self.valid_prog_environs = ['PrgEnv-cray', 'PrgEnv-gnu', 'PrgEnv-intel', 'PrgEnv-pgi']

self.sourcepath = 'example_matrix_vector_multiplication_mpi_openmp.c'

self.build_system = 'SingleSource'

self.executable_opts = ['1024', '10']

self.prgenv_flags = {'PrgEnv-cray': ['-homp'],

'PrgEnv-gnu': ['-fopenmp'],

'PrgEnv-intel': ['-openmp'],

'PrgEnv-pgi': ['-mp']}

self.sanity_patterns = sn.assert_found(r'time␣for␣single␣matrix␣vector␣multiplication', self.stdout)

self.num_tasks = 8

self.num_tasks_per_node = 2

self.num_cpus_per_task = 4

self.variables = {'OMP_NUM_THREADS': str(self.num_cpus_per_task)}

self.tags = {'tutorial'}

@rfm.run_before('compile')

def setflags(self):

self.build_system.cflags = self.prgenv_flags[self.current_environ.name]

5th EasyBuild User Meeting – Barcelona, Spain ∣ 11

Writing a Performance Test in ReFrame
import reframe as rfm

import reframe.utility.sanity as sn

@rfm.simple_test

class Example7Test(rfm.RegressionTest):

def __init__(self):

self.descr = 'Matrix-vector␣multiplication␣(CUDA␣performance␣test)'
self.valid_systems = ['daint:gpu']

self.valid_prog_environs = ['PrgEnv-gnu', 'PrgEnv-cray', 'PrgEnv-pgi']

self.sourcepath = 'example_matrix_vector_multiplication_cuda.cu'

self.build_system = 'SingleSource'

self.build_system.cxxflags = ['-O3']

self.executable_opts = ['4096', '1000']

self.modules = ['cudatoolkit']

self.sanity_patterns = sn.assert_found(r'time␣for␣single␣matrix␣vector␣multiplication', self.stdout)

Ð→self.perf_patterns = {

'perf': sn.extractsingle(r'Performance:\s+(?P<Gflops>\S+)␣Gflop/s', self.stdout, 'Gflops', float)

}

Ð→self.reference = {

'daint:gpu': {

'perf': (50.0, -0.1, 0.1, 'Gflop/s'),

}

}

self.tags = {'tutorial'}

5th EasyBuild User Meeting – Barcelona, Spain ∣ 12

Defining Test Dependencies

class BaseTest(rfm.RunOnlyRegressionTest):

def __init__(self):

self.valid_systems = ['*']

self.valid_prog_environs = ['*']

self.sourcesdir = None

self.executable = 'echo'

self.count = sn.getattr(self, '_count')

self.sanity_patterns = sn.defer(True)

self.keep_files = ['out.txt']

self._count = int(type(self).__name__[1:])

@rfm.run_before('run')

def write_count(self):

self.executable_opts = [str(self.count),

'>␣out.txt']

@rfm.simple_test

class T0(BaseTest):

pass

@rfm.simple_test

class T4(BaseTest):

def __init__(self):

super().__init__()

self.depends_on('T0')

self.sanity_patterns = sn.assert_eq(self.count, 4)

@rfm.require_deps

def prepend_output(self, T0):

with open(os.path.join(T0().stagedir, 'out.txt')) as fp:

self._count += int(fp.read())

◾ Dependent tests can access all the resources of their parent tests
◾ Runtime takes care of the correct execution of the tests and the cleanup of their resources
◾ Dependencies can be defined at the level of programming environment as well

5th EasyBuild User Meeting – Barcelona, Spain ∣ 13

Running ReFrame
Sample output with the asynchronous execution policy

[==========] Running 1 check(s)

[==========] Started on Sat Nov 16 20:33:11 2019

[----------] started processing Example7Test (Matrix-vector multiplication (CUDA performance test))

[RUN] Example7Test on daint:gpu using PrgEnv-cray

[RUN] Example7Test on daint:gpu using PrgEnv-gnu

[RUN] Example7Test on daint:gpu using PrgEnv-pgi

[----------] finished processing Example7Test (Matrix-vector multiplication (CUDA performance test))

[----------] waiting for spawned checks to finish

[OK] Example7Test on daint:gpu using PrgEnv-cray

[OK] Example7Test on daint:gpu using PrgEnv-gnu

[OK] Example7Test on daint:gpu using PrgEnv-pgi

[----------] all spawned checks have finished

[PASSED] Ran 3 test case(s) from 1 check(s) (0 failure(s))

[==========] Finished on Sat Nov 16 20:33:25 2019

5th EasyBuild User Meeting – Barcelona, Spain ∣ 14

Running ReFrame
Sample failure

[==========] Running 1 check(s)

[==========] Started on Thu Jan 30 00:34:17 2020

[----------] started processing Example7Test (Matrix-vector multiplication (CUDA performance test))

[RUN] Example7Test on daint:gpu using PrgEnv-gnu

[----------] finished processing Example7Test (Matrix-vector multiplication (CUDA performance test))

[----------] waiting for spawned checks to finish

[FAIL] Example7Test on daint:gpu using PrgEnv-gnu

[----------] all spawned checks have finished

[FAILED] Ran 1 test case(s) from 1 check(s) (1 failure(s))

[==========] Finished on Thu Jan 30 00:34:25 2020

==

SUMMARY OF FAILURES

--

FAILURE INFO for Example7Test

* System partition: daint:gpu

* Environment: PrgEnv-gnu

* Stage directory: /users/karakasv/Devel/reframe/stage/daint/gpu/PrgEnv-gnu/Example7Test

* Node list: nid00000

* Job type: batch job (id=905395)

* Maintainers: ['you-can-type-your-email-here']

* Failing phase: performance

* Reason: performance error: failed to meet reference: perf=50.050688, expected 70.0 (l=63.0, u=77.0)

--

5th EasyBuild User Meeting – Barcelona, Spain ∣ 15

Running ReFrame
Performance logging

◾ Every time a performance test is run, ReFrame can log its performance
through several channels:

– Normal files
– Syslog
– Graylog

◾ Log format is fully configurable

5th EasyBuild User Meeting – Barcelona, Spain ∣ 16

ReFrame @ CSCS
Tests and production setup

ReFrame
repository

Jenkins

Test
repository

pull pull

login

Piz	Daint

Piz	Keschlogin

ReFrame

ReFrame

Notify	roster	on	failure

Graylog

Elastic
Search

Scheduled
daily

Several test categories identified by tags:
◾ Cray PE tests: only PE functionality
◾ Production tests: entire HPC software stack
◾ Maintenance tests: selection of tests for

running before/after maintenance sessions
◾ Benchmarks
◾ 534 tests in total (90 test files)

Experiences from Piz Daint’s upgrade to CLE7:
◾ Enabling ReFrame as early as possible on the

TDS has streamlined the upgrade process.
◾ Revealed several regressions in the

programming environment that needed to
be fixed.

◾ Builds confidence when finally everything is
GREEN.

5th EasyBuild User Meeting – Barcelona, Spain ∣ 17

ReFrame @ CSCS
Tests and production setup

ReFrame
repository

Jenkins

Test
repository

pull pull

login

Piz	Daint

Piz	Keschlogin

ReFrame

ReFrame

Notify	roster	on	failure

Graylog

Elastic
Search

Scheduled
daily

Several test categories identified by tags:
◾ Cray PE tests: only PE functionality
◾ Production tests: entire HPC software stack
◾ Maintenance tests: selection of tests for

running before/after maintenance sessions
◾ Benchmarks
◾ 534 tests in total (90 test files)

Experiences from Piz Daint’s upgrade to CLE7:
◾ Enabling ReFrame as early as possible on the

TDS has streamlined the upgrade process.
◾ Revealed several regressions in the

programming environment that needed to
be fixed.

◾ Builds confidence when finally everything is
GREEN.

5th EasyBuild User Meeting – Barcelona, Spain ∣ 17

ReFrame @ CSCS
Test suite

◾ HPC applications: Amber, CP2K, CPMD, QuantumEspresso, GROMACS, LAMMPS, NAMD,
OpenFoam, Paraview, TensorFlow

◾ Libraries: Boost, GridTools, HPX, HDF5, NetCDF, Magma, Scalapack, Trilinos, PETSc
◾ Programming environment: GPU, MPI, MPI+X functionality, OpenACC, CPU affinity
◾ Slurm functionality
◾ Performance and debugging tools
◾ I/O tests: IOR
◾ Microbenchmarks: CUDA, CPU, MPI
◾ Sarus container runtime checks
◾ OpenStack: S3 API

Check the “cscs-checks/” directory @ https://github.com/eth-cscs/reframe

5th EasyBuild User Meeting – Barcelona, Spain ∣ 18

https://github.com/eth-cscs/reframe

ReFrame @ Other Sites

◾ National Energy Research Scientific Computing Center, USA
– Software stack validation
– Performance testing and benchmarking
– Integration with Gitlab CI/CD solution developed within ECP
– V. Karakasis et al., “Enabling Continuous Testing of HPC Systems using ReFrame”,
HUST’19

◾ Ohio Supercomputing Center, USA
– Software stack validation
– Integration with CI/CD
– S. Khuvis et al., “A Continuous Integration-Based Framework for Software
Management”, PEARC’19

◾ PAWSEY (AUS), NIWA (NZ), SurfSARA (NL), ASML (NL) and many more
experimenting

5th EasyBuild User Meeting – Barcelona, Spain ∣ 19

Using ReFrame to Test EasyBuild (work-in-progress)

◾ A ReFrame test for each easyconfig file that will run EasyBuild to install it and check for
successful completion

◾ The dependency graph is generated on-the-fly by calling the EasyBuild API
◾ Use a parameterized ReFrame test with the dependency information and let ReFrame
generate all the easyconfig tests at once!

Call EasyBuild API to determine easyconfig deps and generate ec_tests

- Each element of ec_tests is a tuple of [name, ec['spec'], test_deps]

@rfm.parameterized_test(*ec_tests)

class EasyconfigTest(rfm.RunOnlyRegressionTest):

def __init__(self, name, ec_file, deps):

self.name = name

self.executable = 'eb'

self.executable_opts = [ec_file, '--force', '--module-only']

for dep in deps:

self.depends_on(dep)

...

Full code snippet: https://gist.github.com/boegel/22defbfae0bcc7a9b0b76d8e40040f94

5th EasyBuild User Meeting – Barcelona, Spain ∣ 20

https://gist.github.com/boegel/22defbfae0bcc7a9b0b76d8e40040f94

Using ReFrame to Test EasyBuild (work-in-progress)

◾ A ReFrame test for each easyconfig file that will run EasyBuild to install it and check for
successful completion

◾ The dependency graph is generated on-the-fly by calling the EasyBuild API
◾ Use a parameterized ReFrame test with the dependency information and let ReFrame
generate all the easyconfig tests at once!

Call EasyBuild API to determine easyconfig deps and generate ec_tests

- Each element of ec_tests is a tuple of [name, ec['spec'], test_deps]

@rfm.parameterized_test(*ec_tests)

class EasyconfigTest(rfm.RunOnlyRegressionTest):

def __init__(self, name, ec_file, deps):

self.name = name

self.executable = 'eb'

self.executable_opts = [ec_file, '--force', '--module-only']

for dep in deps:

self.depends_on(dep)

...

Full code snippet: https://gist.github.com/boegel/22defbfae0bcc7a9b0b76d8e40040f94

5th EasyBuild User Meeting – Barcelona, Spain ∣ 20

https://gist.github.com/boegel/22defbfae0bcc7a9b0b76d8e40040f94

ReFrame Roadmap for 2020
◾ Redesign the configuration component

– New configuration syntax with more control on the different aspects of the
framework

– Multiple configuration formats (JSON, YAML, Python)
– Enable configuration through environment variables

◾ Improve documentation
– Targeted tutorials for EasyBuild/Spack installations and Cray systems
– Advanced topics on writing tests

◾ Investigate ways of further facilitating the porting of tests to different
systems
◾ Bug fixes and user feature requests
◾ ReFrame 3.0

– https://github.com/eth-cscs/reframe/projects/15
– Regular development releases

5th EasyBuild User Meeting – Barcelona, Spain ∣ 21

https://github.com/eth-cscs/reframe/projects/15

Conclusions

ReFrame is a powerful tool that allows you to continuously test an HPC
environment without having to deal with the low-level system interaction details.
◾ High-level tests written in Python
◾ Portability across HPC system platforms
◾ Comprehensive reports and reproducible methods
◾ Easy integration with CI/CD workflows

– Bug reports, feature requests, help @ https://github.com/eth-cscs/reframe
– Sharing tests @ https://github.com/reframe-hpc

5th EasyBuild User Meeting – Barcelona, Spain ∣ 22

https://github.com/eth-cscs/reframe
https://github.com/reframe-hpc

Thank you for your attention
reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

reframe@cscs.ch
https://reframe-hpc.readthedocs.io
https://github.com/eth-cscs/reframe
https://reframe-slack.herokuapp.com

