
11

Providing A Unified User
Environment for Canada’s National

Advanced Computing Centers

Maxime Boissonneault, Bart Oldeman, Ryan Taylor
on behalf of

Compute Canada Research Support National Team

Presentation outline

● Compute Canada, where we were, where we are
● Software installation : Goal and design overview
● Tools used :

○ CVMFS
○ Nix, EasyBuild
○ Lmod
○ Python and Anaconda

● Monitoring, demo, documentation
● Summary

2

What is Compute Canada ?

3

Compute Canada : the people

4

All research
disciplines
supported

Free access for any
researcher at a
Canadian institution

● 4 regional consortia
● 35 member institutions
● ～200 technical staff
● ～15,000 user accounts

○ 20% growth per year

Before 2015

● Around 30 Compute Canada sites hosting
hardware

● Over 50 clusters or other hardware resources
● All configured differently

5

Software Installation and Distribution:
Then

6

• Typically was:
• on local cluster filesystem
• maybe documented
• probably not automated
• probably not standardized

• Repeat for each compiler,
software version,
instruction set extension

• That’s just on one cluster

In 2015

● New funding to deploy larger infrastructure
● Consolidation of sites hosting equipment
● Shift in focus toward unification of user experience

7

5 major national systems
 ～15 legacy systems
200K cores, 22 PF
70 PB disk, 180 PB tape

System Type Network Production

Arbutus Cloud 10 GbE 2016 H2

Cedar General OPA 2017 H1

Graham General EDR IB 2017 H1

Niagara Large MPI EDR IB 2018 H1

Béluga General EDR IB 2019 H1

Compute Canada : the hardware

National teams

9

National teams

● Research Support National Team (RSNT)
● CVMFS National Team
● Monitoring National Team
● Network National Team
● Scheduler National Team
● Storage National Team
● Cloud National Team

What is the Research Support National Team

● Mandates
○ Helpdesk
○ Documentation
○ Software installation

● Scope
○ Post 2015 systems
○ Existing and future national services (cloud, Globus, etc.)

Who is the RSNT ?
● Lead

○ Maxime Boissonneault (Calcul Québec)
● Helpdesk

○ Sergiy Khan (ACENET), Abdellatif Daghrach (HPC4Health)
● Documentation

○ Ross Dickson (ACENET), Daniel Stubbs (Calcul Québec),
Nikolai Sergueev (Calcul Québec)

● Software installation
○ Bart Oldeman (Calcul Québec), Charles Coulombe (Calcul Québec), Doug Roberts

(SHARCNET) + 45 other staff with publishing permissions
● Representatives

○ Belaid Moa (WestGrid), Ata Roudgar (WestGrid),
Pawel Pomorski (SHARCNET), Paul Preney (SHARCNET),
Sergey Mashchenko (SHARCNET), Ramses van Zon (SciNet), Hartmut Schmider (CAC)

Software environment

13

Goal

14

Users should be presented with an interface that is
as consistent and easy to use as possible across
all sites. It should also offer optimal performance.

1. All software should be accessible on every site, reliably and performantly.
2. Software should be independent from the underlying OS stack.
3. Software installation should be tracked and reproducible via automation.
4. The user interface should make it easy to use a large and evolving

software stack.

What this means
All new Compute Canada sites
1. Need a distribution mechanism

a. CVMFS : CERN Virtual Machine File System

Consistency
2. Independent of the OS (Ubuntu, CentOS, Fedora, etc.)

a. Nix
3. Automated installation (humans are not so consistent)

a. EasyBuild

Easy to use
4. Needs a module interface that scale well

a. Lmod with a hierarchical structure

CERN Virtual Machine
Filesystem (CVMFS)

The distribution mechanism

16

CVMFS National Team
● Members

○ Ryan Taylor (lead)
○ Michel Barrette
○ Sergey Chelsky
○ Kuang Chung Chen
○ Leslie Groer
○ Mark Hahn
○ Jean-Francois Landry
○ Simon Nderitu

● Deployment & operation of CVMFS infrastructure
● Support & coordination for CVMFS client access at sites
● Scope: distribution of widely-used content (not just software)

○ data sets, container images, ...

CVMFS

● Distributed file system optimized for scalable software delivery
○ originally used for High Energy Physics software from CERN

● Clients mount read-only POSIX file system via FUSE with HTTP transport
● Transparent deduplication, chunking and compression
● Clients pull files on demand, with aggressive caching

○ Minimized use of disk storage and network bandwidth
● Highly reliable: redundant servers, transparent failover
● Atomic updates. Publish once, automatically available everywhere
● https://cernvm.cern.ch/portal/filesystem
● https://cvmfs.readthedocs.io/en/stable/

https://cernvm.cern.ch/portal/filesystem
https://cvmfs.readthedocs.io/en/stable/

CVMFS content delivery

(caching proxies)

Design overview

20

Software: design overview

Nix layer: GNU libc, autotools, make, bash, cat, ls, awk, grep, etc.
module nixpkgs/16.09 => $EBROOTNIXPKGS=
/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/16.09

Easybuild-generated modules around Nix profiles (mostly deprecated):
GCC, Eclipse, Qt+Perl+Python no longer
/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/[a-z]*

Gray area: Slurm, Lustre client libraries, IB/OmniPath/InfiniPath client libraries (all dependencies
of OpenMPI). In Nix layer, but can be overridden using PATH & LD_LIBRARY_PATH.

OS kernel, daemons, drivers, libcuda, anything privileged (e.g. the sudo command): always local.
Some legally restricted software too (VASP)

Easybuild layer: modules for Intel, PGI, OpenMPI, CUDA, MKL, high-level applications.
Multiple architectures (sse3, avx, avx2, avx512)
/cvmfs/soft.computecanada.ca/easybuild/{modules,software}/2017

Nix and EasyBuild, conceptually

● Builds are performed through “recipes”
● Recipes are stored on Git. Compute Canada has its own fork of the repos :

○ Nixpkgs
○ Easybuild:

■ framework (high level Python scripts)
■ easyblocks

● is it configure; make; make install, cmake, custom? (Python
scripts)

■ easyconfigs
● what are the configure parameters? (configuration files)

https://github.com/ComputeCanada/nixpkgs
https://github.com/ComputeCanada/easybuild-framework
https://github.com/ComputeCanada/easybuild-easyblocks
https://github.com/ComputeCanada/easybuild-easyconfigs

Nix:
The Compatibility Layer

23

Tools used : Nix

● Package, dependency & environment management system

● Deterministic builds using functional package language

● Used to provide dependencies for scientific applications
○ e.g. glibc, libxml2, etc.

● Abstraction layer between the OS and the scientific software stack, using
nixpkgs/16.09 module

● Carries all* the dependencies of scientific software stack
* Exceptions: drivers, kernel modules, etc.

EasyBuild :
The advanced research

computing layer

25

Tools used : EasyBuild

● Build and installation framework for scientific applications

● Automation, configuration, logging, testing of builds

● Automatically commit recipes to git, update documentation

● Automatically generates module files

● Can batch build dependencies in parallel

● Thousands of community recipes

● Used for OpenMPI, GROMACS, NAMD, CUDA, etc.

Typical process

1. User requests a software to be
installed

2. Staff decides whether it should be
installed globally or in the user’s
account
a. Globally (default route unless

there is a reason not to)
b. User’s account

i. Custom actions

Compute Canada CVMFS - CernVM Workshop 2019

Compute Canada Software Stack

28

• Two major new
clusters with
Skylake CPUs

• Built new modules
with AVX512 for
most packages

• High deduplication
• Further details

stratum 0

Type Modules
AI 5
Bioinformatics 239
Chemistry 63
Data 19
Geo/Earth 23
Mathematics 82
MPI libraries 7
Physics 48
Various tools 176
Visualisation 28
Misc 38

AVX512

AVX512

Available
software

600+ scientific applications

4,000+ permutations of
version/arch/toolchain

600GB

Béluga

Cedar & Graham

Python 3.8

Python 3.7

https://indico.cern.ch/event/608592/contributions/2858287/
https://docs.computecanada.ca/wiki/Available_software
https://docs.computecanada.ca/wiki/Available_software

Supported licensed packages
MATLAB VASP GAUSSIAN

ADF LS-DYNA COMSOL

Materials Studio FDTD Lumerical ANSYS Suite

Star-CCM+ DL Poly4 CPMD

ORCA Abaqus Allinea

CellRanger deMon2k Cfour

https://docs.computecanada.ca/wiki/Matlab
https://docs.computecanada.ca/wiki/VASP
http://docs.computecanada.ca/wiki/Gaussian
https://docs.computecanada.ca/wiki/ADF
https://docs.computecanada.ca/wiki/COMSOL
https://docs.computecanada.ca/wiki/Materials_Studio
https://docs.computecanada.ca/wiki/FDTD_Solutions
https://docs.computecanada.ca/wiki/ANSYS
https://docs.computecanada.ca/wiki/Star-CCM%2B
https://docs.computecanada.ca/wiki/CPMD
https://docs.computecanada.ca/wiki/ORCA
https://docs.computecanada.ca/wiki/Abaqus
https://docs.computecanada.ca/wiki/ARM_software
https://docs.computecanada.ca/wiki/CFOUR

How do you present 4000+ options to users without overwhelming
them ?

User interface

30

LMOD
• User interface to list/load/unload and search environment modules
• Easy way to dynamically change software environment
• Hierarchical module tree, packages only visible once their dependencies

are loaded
• core
• architecture (sse3, avx, avx2, avx512)

• core - compiler
• core - compiler - MPI
• core - compiler - CUDA

• core - compiler - CUDA - MPI

31

Python vs Anaconda

32

Python vs Anaconda

● Python is bad at packaging
○ Anaconda fixes that

Python vs Anaconda

● Python is bad at packaging
○ Anaconda fixes that

● Really ??

Python vs Anaconda

● Python is bad at packaging
○ Anaconda fixes that

● Really ??

○ conda install gcc
○ conda install openmpi
○ conda install cudatoolkit

Python vs Anaconda

● Python is bad at packaging
○ Anaconda fixes that

● Really ??

○ conda install gcc
○ conda install openmpi
○ conda install cudatoolkit

Duplicating software
Can’t possibly be optimized
for the hardware

What are wheels?
Wheels are the new standard of Python distribution and are intended to replace
eggs. Support is offered in pip >= 1.4 and setuptools >= 0.8.

Advantages of wheels

1. Faster installation for pure Python and native C extension packages.
2. Avoids arbitrary code execution for installation. (Avoids setup.py)
3. Installation of a C extension does not require a compiler on Linux, Windows or macOS.
4. Allows better caching for testing and continuous integration.
5. Creates .pyc files as part of installation to ensure they match the Python interpreter used.
6. More consistent installs across platforms and machines.

You can compile your own wheels, linking against your compiled
libraries

Python wheels

https://pypi.org/project/wheel
https://www.python.org/dev/peps/pep-0427
https://pythonwheels.com/

Our supported wheels

[mboisson@build-node ~]$ ls
/cvmfs/soft.computecanada.ca/custom/python/wheelhouse/*/* | wc -w

3013
[mboisson@build-node ~]$ avail_wheels tensorflow_cpu
name version build python arch
-------------- --------- ------------- -------- ------
tensorflow_cpu 2.0.0 computecanada cp37 avx2
[mboisson@build-node ~]$ avail_wheels tensorflow_gpu
name version build python arch
-------------- --------- ------------- -------- ------
tensorflow_gpu 2.0.0 computecanada cp37 avx2

● https://docs.computecanada.ca/wiki/Available_wheels
38

https://docs.computecanada.ca/wiki/Available_wheels

“remember that anacondas are heavier and bulkier
while pythons are longer and more agile”

http://www.differencebetween.net/science/nature/difference-between-python-and-anaconda

Python vs Anaconda

39

http://www.differencebetween.net/science/nature/difference-between-python-and-anaconda

Module usage tracking

40

What modules are our users using ?

● Every “module load” command is sent to syslogs
● Syslogs for all Compute Canada clusters are aggregated into

an Elastic Search engine
● Grafana is used to produce dashboards of module usage

Module usage dashboard

https://grafana.computecanada.ca/dashboard/db/systems-lmod-stats

https://grafana.computecanada.ca/dashboard/db/systems-lmod-stats

Documentation

43

● List of modules
○ https://docs.computecanada.ca/wiki/Available_software

● List of Python wheels
○ https://docs.computecanada.ca/wiki/Available_wheels

Documentation

https://docs.computecanada.ca/wiki/Available_software
https://docs.computecanada.ca/wiki/Available_wheels

Demo

45

Cluster stack on Windows ?!

46

Without reinstalling
packages
Without X11 forwarding
Without sshfs

47

This is not a remote server, this is my laptop

This is not X11 forwarding from our cluster, this is fast

This is Windows 10 (with WSL2 and Ubuntu)

You can use this too

● Mounting our software stack *
○ https://docs.computecanada.ca/wiki/Accessing_CVMFS

48

https://docs.computecanada.ca/wiki/Accessing_CVMFS

So what now ? Is it actually used ?

● In operation on all national systems since 2017
● Now being adopted

○ legacy systems
○ new local systems from our member institutions (not CC

systems)
○ some advanced end users (for CICD of their code)

● Magic Castle (CC cluster in the cloud)
○ FOSDEM session :

https://fosdem.org/2020/schedule/event/magic_castle/

https://fosdem.org/2020/schedule/event/magic_castle/

● 2020 software stack (WIP)
○ Will rely on Gentoo Prefix instead of Nix for the

compatibility layer
○ Will require kernel >3.x (instead of >2.6.32)
○ May compile fat binaries

● Distribution of datasets
● Distribution of container images
● Better customization for non-Compute Canada systems

Future work

● Integration of ReFrame (WIP)
○ https://reframe-hpc.readthedocs.io/

● Integration of XALT
○ https://xalt.readthedocs.io/en/latest/

● Integration of Mii
○ https://github.com/codeandkey/mii

Future work

https://reframe-hpc.readthedocs.io/
https://xalt.readthedocs.io/en/latest/
https://github.com/codeandkey/mii

Software Installation and Distribution:
Then

52

• Typically was:
• on local cluster filesystem
• maybe documented
• probably not automated
• probably not standardized

• Repeat for each compiler,
software version,
instruction set extension

• That’s just on one cluster

Software Installation and Distribution: Now

53

• One unified stack distributed to all national systems
• Simple and consistent user interface
• All builds are fully reproducible, recorded, automated using

recipes in a standardized framework

• Mass recompilation for new architecture or
MPI version is CPU-bound
• e.g. 48 hours to rebuild full stack with AVX, SSE3

for legacy cluster support (using 56 cores)
• AVX512 rebuild took a few days

• More details on Nix & Easybuild

https://docs.google.com/presentation/d/1LbbC7sbTQ7PWa5DzsScQziyjjvqLje_1Lvg9dj0od4k/

Questions ?

54

