
Analyse, schatting en optimalisatie van de prestatie
van computersystemen met behulp van machine learning

Analysis, Estimation and Optimization
of Computer System Performance Using Machine Learning

Kenneth Hoste

Promotor: prof. dr. ir. L. Eeckhout
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2009 - 2010

ISBN 978-90-8578-373-2
NUR 980
Wettelijk depot: D/2010/10.500/49

Aan mijn vrouw Joke,
die me steeds blijven steunen is,

en onze zoon Senne,
opdat hij trots mag zijn op zijn papa.

Dankwoord

Een doctoraatsproefschrift is een werk van lange adem, dat onmoge-
lijk tot een goed einde kan gebracht worden zonder steun van familie,
vrienden en collega’s. Graag bedank ik iedereen die, direct of indirect,
bijgedragen heeft tot dit werk.

In het bijzonder wil ik mijn promotor prof. Lieven Eeckhout bedan-
ken voor het ondersteunen van mijn onderzoek, de hulp bij het schrij-
ven van artikels, het geven van goede raad en het delen van zijn pro-
fessionele ervaring. Dankzij zijn begeleiding is dit werk uitgegroeid
tot een volwaardig proefschrift. Daarnaast wil ik ook prof. Koen De
Bosschere bedanken om mij de kans te geven om mijn doctoraatson-
derzoek aan te vatten, alsook voor zijn suggesties bij het opstellen van
presentaties en de manier waarop hij mededoctoraatsstudenten en an-
dere collega’s weet te motiveren.

De andere leden van mijn examencommissie wil ik eveneens uit-
drukkelijk bedanken. Mijn dank gaat uit naar prof. Jan Van Campen-
hout, de voorzitter van de vakgroep ELIS waar ik mijn doctoraatson-
derzoek heb uitgevoerd, voor zijn kritische opmerkingen; prof. Peter
Dawyndt, die mijn werk vanuit een ander standpunt in detail heeft
bestudeerd; en prof. Hendrik Blockeel, voor de samenwerking en zijn
interessante opmerkingen en suggesties omtrent machine learning.

Furthermore, I would like to thank prof. David Kaeli to cordially accept the
invitation to be part of my PhD jury despite his busy schedule, for his critical
view on my work and his kind words of appreciation. Special thanks go out to
dr. Diego Novillo for being part of my PhD jury, taking the time to visit Ghent
and to attend the defense of this PhD dissertation, for answering my questions
on GCC and related topics, and for his thoughtful questions and suggestions
from an industry point of view. Thanks to both prof. Kaeli and dr. Novillo,
I feel like my hard work is appreciated and recognized internationally, giving
me great satisfaction and significantly boosting my self-confidence.

ii

Prof. Erik D’Hollander wil ik bedanken om mij in te lijven als be-
geleider voor het vak Compilers; hierdoor heb ik ook mijn didactische
vaardigheden verder kunnen ontwikkelen en werd mijn interesse voor
compilers verder aangewakkerd. Bedankt aan Andy Georges voor de
intense samenwerking – mede dankzij hem werden verschillende on-
derzoeksprojecten en artikels tot een goed einde gebracht. Op een in-
directe manier was hij ook verantwoordelijk voor mijn initiële interesse
in een doctoraat, waarvoor ik hem heel dankbaar ben.

Verder wil ik ook mijn andere collega’s en ex-collega’s bedanken
voor de aangename werksfeer en de geanimeerde discussies tijdens de
middagpauzes. Ik hoop dat ik jullie in de toekomst nog tegen het lijf
mag lopen.

Speciale dank gaat uit naar de beheerders van BEGrid (Stijn De
Smet, Bert De Vuyst en Muriel Dejonghe), en naar de beheerders van
de nieuwe rekeninfrastructuur aan de Universiteit Gent (en tevens mijn
toekomstige collega’s) Stijn De Weirdt en Tom Kuppens. Zij stonden
steeds klaar om mijn vaak lastige en dringende vragen te beantwoor-
den, en om oplossingen aan te bieden voor mijn noden qua rekentijd;
zonder hen zou het onmogelijk geweest zijn om de resultaten die in dit
proefschrift besproken worden te bekomen.

Het agentschap voor Innovatie door Wetenschap en Technologie
(IWT) wil ik bedanken voor het financieren van mijn onderzoek.

Tenslote wil ik ook familie en vrienden van harte bedanken. Eerst
en vooral wil ik mijn vrouw Joke bedanken voor haar geduld, steun
en interesse in mijn onderzoek; ook in tijden waarin ik onterecht de
illusie wekte dat mijn werk belangrijker zou zijn dan mijn gezin is ze
steeds achter me blijven staan. Ook mijn 7 weken-oude zoontje Senne
wil ik bedanken, voor zijn glimlach en de vreugde die hij brengt in mijn
leven. Ik hoop van harte dat hij binnen enkele jaren trots zal zijn op zijn
papa. Verder wil ik mijn ouders en grootouders bedanken. Zij hebben
mij de kans gegeven om mijn studies aan te vangen, en zijn mij steeds
met de nodige gezonde nieuwsgierigheid blijven steunen. Ook mijn
schoonfamilie wil ik bedanken voor hun interesse en steun. Daarnaast
bedank ik ook vrienden en kennissen die indirect hebben bijgedragen
tot dit werk, alsook om mij met beide voeten op de grond te houden.

Mocht ik mensen vergeten zijn: ook jullie bedankt.

Kenneth Hoste
Gent, 30 augustus 2010

Examencommissie

Prof. Luc Taerwe, voorzitter
Decaan Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Jan Van Campenhout, secretaris
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Koen De Bosschere
Vakgroep ELIS, Faculteit Ingenieurswetenschappen
Universiteit Gent

Prof. Peter Dawyndt
Vakgroep TWI, Faculteit Wetenschappen
Universiteit Gent

Prof. Hendrik Blockeel
Departement Computerwetenschappen
Katholieke Universiteit Leuven

Prof. David Kaeli
Computer Architecture Research Laboratory
Northeastern University, Boston (USA)

Dr. Diego Novillo
Google Canada, Toronto (Canada)

iv

Samenvatting

Gedurende de laatste 40 jaar heeft het vakgebied van de computerwe-
tenschappen een verbazingwekkende vooruitgang geboekt. Terwijl de
vroegste microprocessors nog ontwikkeld werden met slechts een paar
duizend transistors, worden recente microprocessors geı̈mplementeerd
met miljarden transistors. Dit heeft een exponentiële toename in de
prestatie van dergelijke microprocessors teweeggebracht, door middel
van verschillende innovaties in microarchitecturaal en fysisch ontwerp.

Met deze toename in prestatie nam echter ook de complexiteit van
de microprocessors toe, net als de complexiteit van computersystemen
in hun geheel en de computerprogramma’s die er op uitgevoerd wor-
den. Door de introductie van verschillende abstractielagen wordt er-
voor gezorgd dat computeringenieurs zich kunnen concentreren op
één bepaald aspect van het systeem, zonder zich bijvoorbeeld zorgen
te moeten maken over hoe computerprogramma’s voor dat systeem
ontwikkeld zullen worden. Dit laat toe om zeer complexe doch goed
presterende systemen te bouwen.

Hoewel problemen veroorzaakt door de immense complexiteit van
hedendaagse computersystemen grotendeels vermeden worden door
middel van abstractielagen, vormt die complexiteit nog steeds een be-
perkende factor in sommige opzichten: het bemoeilijkt het redeneren
over de prestatie van microprocessors, het voorspellen van de prestatie
ervan gegeven de karakteristieken van een bepaalde werklast en het
optimaliseren van de prestatie die ze behalen voor een bepaalde groep
van computerprogramma’s. In dit proefschrift bestuderen we een aan-
tal problemen omtrent de prestatie van computersystemen, waarvoor
de oorzaak telkens teruggebracht kan worden tot de complexiteit van
hedendaagse computersystemen. Voor elk van deze problemen stellen
we een geschikte en efficiënte oplossing voor, gebruik makend van een
of meerdere machine learning-technieken.

vi SAMENVATTING

Een eerste probleem dat we bestuderen is het analyseren van het
tijdsvariërende gedrag van een verzameling programma’s. We tonen
aan dat de hardwareprestatietellermetrieken, die sterk verbonden zijn
met een bepaald hardwareplatform, niet geschikt zijn hiervoor en dat
uitgemiddelde programmakarakterisatie onvoldoende detail levert. Bij-
gevolg stellen we een verzameling microarchitectuuronafhankelijke pro-
grammakarakteristieken voor, die toelaten om het uitvoeringsgedrag
van computerprogramma’s te vatten. Gebruik makende van deze ka-
rakteristieken stellen we een praktische methodologie voor om het tijds-
variërende gedrag van programma’s te bestuderen. Deze methodolo-
gie maakt dankbaar gebruik van verschillende machine learning-tech-
nieken, waaronder k-means clusteren en Principale Componenten Ana-
lyse (PCA) om het meest voorkomende fasegedrag te extraheren en
een genetisch algoritme om de belangrijkste programmakarakteristie-
ken te identificeren. Door middel van kiviatdiagrammen stellen we het
meest voorkomende fasegedrag visueel voor, op een compacte doch
intuı̈tieve manier.

Hoewel vandaag het verzamelen van prestatiedata voor computer-
systemen relatief eenvoudig is, blijft het verwerven van inzicht vaak
problematisch, of althans niet triviaal. Daarom stellen we het Processor
Performance Visualizer-raamwerk voor, om prestatietrends te extrahe-
ren uit ruwe prestatiedata. Door dit te combineren met microarchi-
tectuuronafhankelijke programmakarakteristieken, kunnen we op een
snelle en eenvoudige manier de prestatietrends die in een dataset aan-
wezig zijn herkennen en interpreteren. We ondersteunen deze stelling
door de voorgestelde methodologie toe te passen op de prestatiedata
die beschikbaar is voor de SPEC CPU2000 en CPU2006 benchmark sui-
tes, wat resulteert in verscheidene interessante inzichten omtrent de
relatieve prestatie van bestaande commerciële computersystemen.

Een probleem eigen aan prestatie-evaluatie en benchmarking is het
anticiperen van de prestatie van computersystemen voor een bepaald
programma waarin men geı̈nteresseerd is. Doorgaans vertrouwt men
bij het rangschikken van computersystemen op de gemiddelde pres-
tatie voor een groep van benchmarks, eventueel rekening houdende
met het applicatiedomein waartoe het programma behoort en enkele
hoog-niveauheuristieken, zoals of het programma rekenintensief of ge-
heugenintensief is, het aandeel van berekeningen met gehele getallen
en reële getallen, enz. Vermits deze manier van werken vaak aanlei-
ding geeft tot onnauwkeurige prestatieschattingen, stellen we een me-
thodologie voor die prestatieschatting mogelijk maakt op basis van mi-

vii

croarchitectuuronafhankelijke programmakarakteristieken en een com-
binatie van verschillende machine learning-technieken, in het bijzon-
der een genetisch algoritme en k-nearest-neighbors. Na het quantifi-
ceren van de relevantie van elke programmakarakteristiek met betrek-
king tot de prestatieverschillen voor een groep van benchmarks, krijgt
elke programmakarakteristiek op een overeenkomstige manier een ge-
wicht toegekend. Om dan de prestatie voor een bepaald computer-
programma te schatten, wordt een gewogen gemiddelde berekend van
de prestatiemetrieken van de benchmarks met het meest gelijkaardige
programmagedrag. Door middel van de SPEC CPU benchmarkpro-
gramma’s en een kruisvalidatie-evaluatie, tonen we aan dat ons raam-
werk tot betere rangschikkingen van computersystemen leidt in verge-
lijking met die op basis van gemiddelde prestatie.

Naast het analyseren en voorspellen van de prestatie van compu-
tersystemen, gaan we ook na hoe het specialiseren van systeemsoft-
ware op een automatische manier kan gebeuren. Statische compilers
bieden meestal een aantal optimalisatieniveaus aan die elk op zich een
afweging maken tussen een aantal metrieken, zoals compilatietijd, co-
degrootte en codekwaliteit. Heden ten dage zoeken compilerontwikke-
laars hun toevlucht tot hun ervaring en eenvoudige heuristieken bij het
samenstellen van deze optimalisatieniveaus, wat resulteert in een tijd-
rovend en arbeidsintensief proces. Bovendien vereist dit proces diep-
gaande kennis over het grote aantal mogelijk op elkaar inwerkende
compileroptimalisaties. Om dit probleem aan te pakken stellen we
COLE voor, een raamwerk dat vertrouwt op een evolutionair zoekalgo-
ritme om automatisch compileroptimalisatieniveaus samen te stellen,
voor een bepaalde verzameling van computerprogramma’s en een be-
paald hardwareplatform. Door middel van de GNU Compiler Collec-
tion (GCC) software en de SPEC CPU benchmarks tonen we aan dat het
raamwerk veel beter presteert dan willekeurig zoeken en dat de verkre-
gen optimalisatieniveaus betere afwegingen voorstellen dan handma-
tig samengestelde niveaus. We stellen experimentele resultaten voor
die aantonen dat het specialiseren van bepaalde optimalisatieniveaus
voor een bepaald hardwareplatform en een bepaalde verzameling van
programma’s belangrijk is om goede afwegingen te verkrijgen. Daar-
naast analyseren we de samenstelling van de niveaus om interessante
inzichten te verkrijgen omtrent het nut van individuele compileropti-
malisaties.

We gaan ook na hoe een Just-In-Time-compiler of JIT-compiler ge-
specialiseerd kan worden voor een bepaald hardwareplatform en een

viii SAMENVATTING

bepaalde verzameling van computerprogramma’s. Deze taak vormt
een grotere uitdaging dan het samenstellen van individuele optimali-
satieniveaus voor een statische compiler. Een moderne JIT-compiler
maakt immers gebruik van meerdere optimalisatieniveaus om een dy-
namisch optimalisatiemechanisme te implementeren. Dit gebeurt in
combinatie met een dynamische regelaar, die beslist welke delen van
de programmacode geoptimaliseerd worden met behulp van welk op-
timalisatieniveau en ook wanneer de optimalisatie wordt uitgevoerd.
Dit proces brengt enkele subtiele afwegingen met zich mee en creëert
complexe interacties tussen de verschillende optimalisatieniveaus en
de parameters die de dynamische regelaar aansturen. Steunend op het
COLE raamwerk voor statische compilers, stellen we een volledig ge-
automatiseerd afstelraamwerk voor JIT-compilers voor. De methodo-
logie bestaat uit twee stappen. Eerst wordt een selectie van optimalisa-
tieplannen gemaakt, waarna verschillende JIT-compilers die een aantal
van die plannen gebruiken, worden samengesteld, geëvalueerd en af-
gesteld. Door experimentele evaluatie, gebruik makend van de Jikes
RVM software en een verzameling Java benchmarks, tonen we aan dat
het raamwerk in staat is JIT-compilers te configureren die gemiddeld
gezien even goed presteren als een manueel afgestelde JIT-compiler.
Het raamwerk laat ook toe om een JIT-compiler te specialiseren voor
één bepaald computerprogramma, wat tot significante versnellingen
leidt in vergelijking met een JIT-compiler die afgesteld werd voor ge-
middelde prestatie.

Summary

In the last 40 years, the field of computer engineering has shown amaz-
ing progress. While the early microprocessors were built using only a
few thousand transistors, recent microprocessors are implemented us-
ing billions of transistors. This has led to an exponential increase in
the performance delivered by these microprocessors, through various
innovations in both microarchitectural and physical design.

Along with these performance improvements however, the com-
plexity of microprocessors also increased, just like the complexity of
computer systems overall and the software applications that run on
them. By introducing different layers of abstraction, computer engi-
neers are able to focus on one particular aspect of the system, without
having to worry about how applications for that system will be devel-
oped for example. This allows for building complex but well perform-
ing systems.

Although problems caused by the high complexity of modern com-
puter systems are mostly avoided by the use of layers of abstraction,
complexity is still a limiting factor in some respects: it makes it hard to
reason about the performance of modern microprocessors, anticipate
how they will perform given the characteristics of a certain workload
of interest, and optimize the performance they achieve for a particular
(set of) workload(s). In this dissertation, we study a number of prob-
lems related to computer system performance for which the root cause
can be brought back to the complexity of modern systems. For each
problem, we present an adequate solution using one or multiple ma-
chine learning techniques.

A first problem we look into is analyzing the time-varying behav-
ior of a set of applications. We show that using hardware performance
counter metrics that are specific to a particular hardware platform are
ill-suited for this, and that aggregate workload characterization pro-

x SUMMARY

vides insufficient detail. Therefore, we present a set of microarchitec-
ture-independent workload characteristics, which allow for capturing
the program behavior of applications. Using these characteristics, we
propose a feasible methodology for studying the time-varying program
behavior. This methodology employs multiple machine learning tech-
niques, including k-means clustering and Principal Component Anal-
ysis (PCA) to determine the most prominent phase behaviors, and ge-
netic algorithms to identify the key workload characteristics. Using
kiviat diagrams, we represent these prominent phase behaviors visu-
ally on a concise though intuitive manner.

While collecting performance numbers for computer systems is rel-
atively simple at present, obtaining insight into the data remains trou-
blesome, or at least non-trivial. Therefore, we present the Processor
Performance Visualizer framework, which relies on Principal Compo-
nent Analysis to extract performance trends from a set of raw perfor-
mance numbers. By combining this with microarchitecture-indepen-
dent workload characteristics, we are able to quickly and easily recog-
nize and interpret the performance trends captured by the data set. We
support this claim by applying the methodology to the performance
data available for the SPEC CPU2000 and CPU2006 general-purpose
benchmark suites, resulting in various interesting insights regarding
the relative performance of existing high-end commercial computer
systems.

A ubiquitous problem in performance evaluation and benchmark-
ing is anticipating the performance of computer systems for a particular
application-of-interest. Current practice mainly relies on ranking com-
puter systems based on the average performance across a set of bench-
marks, at best incorporating the application domain of the application-
of-interest and/or some high-level heuristics, e.g., whether the applica-
tion is compute-intensive or memory-intensive, the ratio of integer and
floating-point operations, etc. Because this may lead to inaccurate per-
formance estimations, we present a performance estimation methodol-
ogy based on microarchitecture-independent workload characteristics
and a combination of machine learning techniques, more particularly
genetic algorithms and k-nearest-neighbors. After quantifying the rel-
evance of each workload characteristic with respect to the performance
differences observed for a set of benchmarks, we weight each work-
load characteristic accordingly. To estimate the performance for the
application-of-interest, we compute the weighed average of the per-
formance numbers of the similarly behaving benchmarks. Using the

xi

SPEC CPU benchmarks in a cross-validation setup, we show that our
framework yields significantly better rankings of computer systems as
opposed to current practice which is based on average system perfor-
mance.

Next to analyzing and anticipating computer system performance,
we also look into automatically tuning system software. Static compil-
ers usually provide a number of optimization levels representing dif-
ferent trade-offs between a number of objectives like compilation cost,
code size and code quality. Currently, compiler developers resort to ex-
perience and high-level heuristics when constructing these optimiza-
tion levels, resulting in a time-consuming and labor-intensive process.
It also requires in-depth knowledge about the multitude of potentially
interacting compiler optimizations. To alleviate this issue we present
COLE, a framework that relies on a multi-objective evolutionary search
algorithm to automatically construct compiler optimization levels for a
particular set of applications and a particular hardware platform. Us-
ing the GNU Compiler Collection (GCC) and the SPEC CPU bench-
marks, we show that our framework significantly outperforms random
searching and the obtained optimization levels represent better trade-
offs compared to manually constructed levels. We present empirical
evidence that specializing optimization levels for a particular hardware
platform and set of applications is important for obtaining good trade-
offs, and we analyze the composition of the obtained levels which re-
veals interesting insights concerning the usefulness of individual com-
piler optimizations.

We also look into tuning a Just-In-Time (JIT) compiler to a particular
hardware platform and set of applications. This is a more challenging
task than constructing optimization levels for a static compiler. Modern
JIT compilers use multiple optimization levels to implement a dynamic
optimization mechanism. This is combined with an adaptive controller,
which decides what parts of the application code are optimized us-
ing which optimization level, and when the optimization is performed.
This process involves subtle trade-offs, and creates complex interac-
tions between the various optimization levels and the parameters that
steer the adaptive controller. Building on the COLE framework for
static compilers, we propose a fully automated tuning framework for
JIT compilers. The methodology uses a two-step approach. A set of
suitable optimization plans is obtained, after which JIT compilers using
a number of these plans are constructed, evaluated and tuned. Through
experimental evaluation using the Jikes RVM and a collection of Java

xii SUMMARY

benchmarks, we show that the framework is able to deliver JIT compil-
ers that perform as good as a manually tuned JIT compiler on average.
The framework also allows for tuning a JIT compiler to a particular ap-
plication, which is shown to yield significant speedups compared to a
JIT compiler tuned for average performance.

Contents

Nederlandse samenvatting v

English Summary ix

1 Introduction 1
1.1 Machine learning . 3
1.2 Contributions . 4

1.2.1 Analyzing and estimating performance 4
1.2.2 Automatically specializing system software 8

2 Phase-level Microarchitecture-Independent
Workload Characterization 11
2.1 Microarchitecture-independent workload characterization 13

2.1.1 Hardware performance counter based workload
characterization . 13

2.1.2 Pitfall in using hardware performance counters . 14
2.1.3 Microarchitecture-independent workload charac-

terization . 19
2.2 Phase-level workload characterization 25

2.2.1 Aggregate versus phase-level workload charac-
terization . 27

2.2.2 Challenges in phase-level workload characteriza-
tion . 27

2.2.3 Phase-level workload characterization 28
2.3 Application: Comparing phase-level workload behavior

across benchmark suites 36
2.3.1 Applying the methodology 36
2.3.2 Coverage, diversity and uniqueness of benchmark

suites . 46
2.4 Related work . 49

xiv CONTENTS

2.5 Summary . 52

3 Analyzing Performance Trends 53
3.1 Processor Performance Visualizer 54

3.1.1 Finding performance trends using PCA 54
3.1.2 Interactive visualization 56

3.2 Case study: SPEC CPU2000 57
3.2.1 Interpretation of principal components 58
3.2.2 Discussion . 62

3.3 Case study: SPEC CPU2006 68
3.3.1 Interpretation of principal components 68
3.3.2 Discussion . 72

3.4 Related work . 76
3.5 Summary . 76

4 Estimating Relative Computer System Performance 79
4.1 Performance estimation framework 80

4.1.1 Relating differences in inherent workload behav-
ior to performance differences 80

4.1.2 Estimating performance for a particular application 82
4.1.3 Discussion . 82

4.2 Experimental evaluation 83
4.2.1 Experimental setup 83
4.2.2 Evaluation . 85

4.3 Related work . 90
4.4 Summary . 91

5 Constructing Compiler Optimization Levels 93
5.1 Compiler Optimization Level Exploration 95

5.1.1 Pareto optimality 95
5.1.2 Multi-objective exploration 96
5.1.3 Exploration speed 98

5.2 Evaluation and analysis 98
5.2.1 Experimental setup 98
5.2.2 Evaluation . 101
5.2.3 Analysis . 108
5.2.4 Discussion . 112

5.3 Related work . 112
5.4 Summary . 114

6 Automated Just-In-Time Compiler Tuning 115

CONTENTS xv

6.1 Java Virtual Machine: Jikes RVM 117
6.1.1 Optimization plans and levels 117
6.1.2 Compiler DNA . 118
6.1.3 Sample-based JIT optimization 118
6.1.4 Adaptive Optimization System 119

6.2 Methodology . 119
6.2.1 Why a two-step process? 119
6.2.2 Step 1: Pareto optimal optimization plans 120
6.2.3 Step 2: JIT compiler tuning 122

6.3 Evaluation and analysis 122
6.3.1 Experimental setup 122
6.3.2 Tuning for a benchmark suite 127
6.3.3 Tuning for a single benchmark 131
6.3.4 Cross-validation 131
6.3.5 Tuning for a specific hardware platform 137

6.4 Exploration time . 140
6.5 Related work . 142
6.6 Summary . 143

7 Conclusions and Future Work 145
7.1 Conclusions . 145

7.1.1 Analyzing and estimating performance 145
7.1.2 Automatically specializing system software 148
7.1.3 Efficacy of machine learning techniques 149

7.2 Future work . 150

A Machine Learning Techniques 151
A.1 Principal Component Analysis 151

A.1.1 Normalization . 152
A.1.2 Reducing the dimensionality 153
A.1.3 Interpretation of principal components 154

A.2 Genetic algorithms . 154
A.2.1 Terminology . 155
A.2.2 Defining entities 156
A.2.3 Crossover and mutation operators 156
A.2.4 Fitness, selection, evolution and convergence . . . 158
A.2.5 Multi-objective evolutionary searching 160

B Benchmark Suites 161
B.1 BioMetricsWorkload . 161
B.2 BioPerf . 162

xvi CONTENTS

B.3 MediaBench II . 163
B.4 SPEC CPU2000 . 164
B.5 SPEC CPU2006 . 166

C Tools 169
C.1 Hardware . 169

C.1.1 Intel Xeon L5420 systems (Core) 169
C.1.2 Intel Xeon L5520 systems (Nehalem) 169

C.2 Software . 170
C.2.1 GCC . 170
C.2.2 Jikes RVM . 171

List of Tables

2.1 Microarchitecture-independent workload characteristics 20
2.2 Set of 10 key workload characteristics selected by the ge-

netic algorithm . 40

3.1 The computer systems considered in the SPEC CPU2000
case study, grouped by ISA 58

3.2 The computer systems considered in the SPEC CPU2006
case study, grouped by ISA 70

4.1 Performance data sets used for the SPEC CPU2000 bench-
mark suite . 84

4.2 Performance data sets used for the SPEC CPU2006 bench-
mark suite . 85

5.1 The list of compiler optimization flags considered 100

6.1 Default compiler DNA values for Jikes RVM v3.0.1 118
6.2 SPECjvm98 and DaCapo benchmarks considered in this

paper . 123
6.3 The list of boolean optimizations which are available in

Jikes RVM and used throughout this chapter 125
6.4 The list of value optimizations which are available in

Jikes RVM and used throughout this chapter 126
6.5 Compilation rates and speedups over base on the Intel

Core 2 for the optimization plans used by default in Jikes
RVM, and the compilations plans obtained through our
exploration . 127

6.6 The JIT compiler configurations that are optimal in terms
of startup (CST) and in terms of steady-state (CSS) 128

xviii LIST OF TABLES

B.1 Overview of the workloads in the BiometricsWorkload
benchmark suite . 161

B.2 Overview of the workloads in the BioPerf benchmark
suite . 162

B.3 Overview of the workloads in the MediaBenchII bench-
mark suite . 163

B.4 Overview of the integer workloads in the SPEC CPU2000
benchmark suite (SPECint2000) 164

B.5 Overview of the floating-point workloads in the SPEC
CPU2000 benchmark suite (SPECfp2000) 165

B.6 Overview of the integer workloads in the SPEC CPU2006
benchmark suite (SPECint2006) 166

B.7 Overview of the floating-point workloads in the SPEC
CPU2006 benchmark suite (SPECfp2006) 167

C.1 Hardware details for the Intel Xeon L5420 systems 170
C.2 Hardware performance counter events used on Intel Xeon

L5420 systems . 171
C.3 Hardware details for the Intel Xeon L5520 systems 172

List of Figures

1.1 The three main layers of abstraction: hardware, system
software and application software 2

2.1 Illustration of the pitfall in using hardware performance
counter based workload characterization 16

2.2 HPC metrics for eon, gamess and Phylip 17
2.3 Microarchitecture-independent workload characteristics

for eon, gamess and Phylip 18
2.4 Illustration of the phase behavior of gzip-graphic 26
2.5 Outline of the proposed phase-level workload character-

ization methodology . 28
2.6 Principal component factor loadings in a workload char-

acterization study . 32
2.7 Legend for a kiviat diagram representing a prominent

phase behavior . 36
2.8 Cluster coverage of the 100 largest clusters for different

numbers of clusters . 37
2.9 Mean in-cluster variance for different numbers of clusters 38
2.10 Comparison of the sets of key workload characteristics

obtained with correlation elimination and the genetic al-
gorithm . 39

2.11 Kiviat plots (part I) . 42
2.12 Kiviat plots (part II) . 43
2.13 Kiviat plots (part III) . 44
2.14 Workload space coverage per benchmark suite 46
2.15 Cumulative coverage per benchmark suite 47
2.16 Fraction unique behavior per benchmark suite 47

3.1 A screenshot of the Processor Performance Visualizer in-
teractive user interface . 56

xx LIST OF FIGURES

3.2 Factor loadings for the first three principal components
(SPEC CPU2000) . 59

3.3 Percentage of floating-point instructions and number of
mispredicted branches per instruction for SPEC CPU2000
benchmarks . 61

3.4 Probabilities of memory LRU stack distance being smaller
than 16 K for the SPEC CPU2000 benchmarks 62

3.5 Visualizing the SPEC CPU2000 performance numbers in
terms of the first three principal components and proces-
sor architectures . 63

3.6 Visualizing PC2 vs. PC1 obtained from SPEC CPU2000
performance numbers, by SPECint and SPECfp numbers 64

3.7 Visualizing the SPEC CPU2000 performance numbers in
terms of the first three principal components and proces-
sor clock frequencies . 65

3.8 Detailed study of the processors that implement the Intel
NetBurst architecture . 67

3.9 Factor loadings for the first three principal components
(SPEC CPU2006) . 69

3.10 Temporal data locality quantified by the probability of
the memory LRU stack distance being smaller than 128k 71

3.11 Spatial data locality quantified by the probability of the
global load stride distance being smaller than 4096 71

3.12 Visualizing the SPEC CPU2006 performance numbers in
terms of the first three principal components and proces-
sor architecture . 73

3.13 Visualizing the SPEC CPU2006 performance numbers in
terms of the first two principal components, by SPECint
and SPECfp numbers . 75

4.1 The performance estimation framework proposed 81
4.2 Average Spearman rank correlation coefficients obtained

for the large SPEC CPU2000 data set 86
4.3 Per-benchmark Spearman rank correlation coefficients ob-

tained for the large SPEC CPU2000 data set 87
4.4 Per-benchmark Spearman rank correlation coefficients ob-

tained for the small SPEC CPU2000 data set 87
4.5 Per-benchmark Spearman rank correlation coefficients ob-

tained for the large SPEC CPU2006 data set 88

LIST OF FIGURES xxi

4.6 Per-benchmark Spearman rank correlation coefficients ob-
tained for the small SPEC CPU2006 data set 88

5.1 An example Pareto frontier in a multi-objective design
space . 96

5.2 Pareto frontier containing candidate optimization levels
trading off speedup and compilation cost, obtained us-
ing COLE on the Core systems and the SPEC CPU2000
benchmarks . 102

5.3 Pareto frontier containing candidate optimization levels
trading off speedup and compilation cost, obtained us-
ing COLE on the Nehalem systems and SPEC CPU2000
benchmarks . 103

5.4 Example Pareto frontier, illustrating how the hypervol-
ume (HV) metric is computed 104

5.5 Quantification using the hypervolume metric of the stan-
dard optimization levels and the Pareto optimal opti-
mization levels obtained through random search and us-
ing the COLE framework 105

5.6 Experimental results of two cross-validation experiments
on the Nehalem systems 106

5.7 Composition of the 50 Pareto optimal optimization levels
obtained for the Core systems and SPEC CPU2000 (train) 109

5.8 Composition of the 64 Pareto optimal optimization levels
obtained for the Nehalem systems and SPEC CPU2000
(train) . 110

6.1 An example of a Pareto frontier in our dual-objective ex-
ploration space . 121

6.2 Composition of the optimization plans of the default Jikes
RVM optimization levels, and the 8 selected optimiza-
tion plans obtained with our framework, when tuning
for both the SPECjvm98 and DaCapo benchmarks on the
Intel Core 2 system . 130

6.3 Speedup on the Intel Core 2 compared to the manually
tuned default Jikes RVM for start-up and steady-state
performance when tuning the JIT compiler for optimum
performance on a per-benchmark basis 132

xxii LIST OF FIGURES

6.4 Per-benchmark performance speedups on the Intel Core
2 compared to default Jikes RVM when tuning Jikes RVM
for the SPECjvm98 benchmarks in a non cross-validation
setup and a cross-validation setup 133

6.5 Per-benchmark performance speedups on the Intel Core
2 compared to default Jikes RVM when tuning Jikes RVM
for the DaCapo benchmark suite in a non cross-validation
setup and a cross-validation setup 135

6.6 Per-benchmark start-up and steady-state speedup for a
cross-input validation experiment 136

6.7 Speedup numbers across different heap sizes on all hard-
ware platforms for mtrt and luindex for start-up and
steady-state performance 138

6.8 The Pareto frontiers for the optimization plans tuned for
mtrt on each of the platforms in our experimental setup 139

6.9 Compilation rate versus performance speedup for the
Pareto optimal optimization plans determined on AMD
Opteron, Pentium 4 and Core i7 when run on the Core 2
platform, and start-up versus steady-state performance
for SPECjvm98’s mtrt . 141

A.1 Principal Component Analysis on a hypothetical 2D data
set . 152

A.2 Normalizing principal components 153
A.3 Illustration of two common crossover operators 157
A.4 Illustration of a common mutation operator 158
A.5 Genetic algorithm outline 159

List of Abbreviations

AOS Adaptive Optimization System
API Application Programming Interface
CMP Chip Multi-Processor
CPI Cycles-Per-Instruction
CPU Central Processing Unit
GA Genetic Algorithm
GAg global branch history, global prediction table
GAs global branch history, local prediction table
GC garbage collector
GCC GNU Compiler Collection
HPC Hardware Performance Counter
ILP Instruction-Level Parallelism
IPC Instructions-Per-Cycle
ISA Instruction Set Architecture
JIT Just-In-Time
kNN k-nearest-neighbors
LRU Least-Recently Used
MICA Microarchitecture Independent Characterization

of Applications
PAg local branch history, global prediction table
PAs local branch history, local prediction table
PCA Principal Component Analysis
PPV Processor Performance Visualizer
PPM Prediction by Partial Match
TLB Translation Lookaside Buffer

xxiv LIST OF ABBREVIATIONS

Chapter 1

Introduction

Any sufficiently advanced technology is indistinguishable from magic.
Arthur C. Clarke

In the last 40 years, the field of computer engineering and more
specifically microprocessor design has shown amazing progress. The
Intel 4004 microprocessor which was introduced in 1971 was imple-
mented using 2,300 transistors [61]. Recent microprocessors are built
using on the order of a few billion transistors, an increase of over six or-
ders of magnitude, in line with Moore’s law [60]. Examples of modern
microprocessors include the Intel Core i7 implementing the Nehalem
microarchitecture (781 million transistors) and the Intel Itanium 9300
(2 billion transistors).

The exponential growth in the number of transistors was accompa-
nied by an exponential increase in the performance delivered by these
microprocessors. An indicative measure is the clock frequency: while
the Intel 4004 ran at 750 kHz, modern microprocessors run at frequen-
cies of up to 5 GHz1. Various important innovations in microarchitec-
tural design contributed to the impressive performance gains alongside
advances in chip technology: pipelining, superscalar execution, out-of-
order execution, branch prediction and speculative execution, caches,
etc. In recent years, the ever growing transistor budget was spent im-
plementing chip-multiprocessors (CMPs, also called multi-core proces-
sors), because of diminishing returns in terms of performance and huge
power costs of innovations targeted at further improving single-thread
performance.

1IBM POWER6, see http://www.ibm.com/systems/power/hardware/595/
specs.html.

http://www.ibm.com/systems/power/hardware/595/specs.html
http://www.ibm.com/systems/power/hardware/595/specs.html

2 Introduction

hardware

system software

application software

layer I

layer II

layer III

Figure 1.1: The three main layers of abstraction: hardware, system software
and application software.

The key contributor to this success story is the use of various lay-
ers of abstraction. By introducing layers of abstraction, both hardware
manufacturers and software developers have been able to work in their
own field of expertise more or less independently, allowing for great
improvements in overall computer system performance and provid-
ing support for previously inconceivable software applications on these
systems.

For example, a computer engineer only needs a high-level view of
the types of applications that will run on the system he/she is design-
ing. By specifying an Instruction Set Architecture (ISA), which serves
as a layer of abstraction between the hardware and the end user’s soft-
ware applications, he/she leaves it up to the system software develop-
ers to provide support for software that is going to run on the system
being designed. Likewise, a software developer only needs a high-level
understanding of how a microprocessor is able to execute billions of in-
structions per second in order to design an application for it.

Figure 1.1 shows the three main layers of abstraction in computer
systems:

(I) the hardware layer, consisting of the physical microprocessor im-
plemented using semiconductor technology and its peripherals
(e.g., main memory, I/O, etc.);

(II) the system software layer, consisting of the operating system
(OS), compilers for different programming languages, runtime
systems (e.g., a Java Virtual Machine) and middleware, etc.;

(III) the application software layer, consisting of the end-user software
applications.

Each of the layers can be further divided, but this limited set of
layers is sufficient for the discussion to follow.

1.1 Machine learning 3

Although abstraction has helped in achieving great performance in
modern computer systems, it does not take away their enormous com-
plexity. Modern microprocessors are utterly complex pieces of technol-
ogy by themselves, with a large number of structures each responsible
for a piece of the puzzle. These structures potentially have a mutu-
ally large impact on efficiency, e.g., the cache configuration may have a
significant impact on the effectiveness of the processor pipeline width
and depth. This makes it very hard to reason about the performance
of modern microprocessors, analyze their performance under a given
workload, anticipate how they will perform giving the characteristics
of a workload of interest, or optimize the performance achieved for a
particular (set of) workload(s).

In this dissertation, we look at several problems for which the root
cause can be attributed to the sheer complexity of modern computer
systems, and more specifically the microprocessors that are at the heart
of these systems and the software that runs on them. In the solutions
presented for each of the problems addressed, we rely on a variety of
machine learning techniques to tackle the problems efficiently and ade-
quately. Combining several well-chosen machine learning techniques,
each of which taking care of a particular aspect of the problem, is shown
to yield an appropriate solution for the problem at hand.

Before describing the contributions made in this dissertation, we
first briefly revisit machine learning.

1.1 Machine learning

Machine learning is a field of computer science that focuses on design-
ing algorithms and techniques that automatically ’learn’ about a partic-
ular problem. The term learning is interpreted broadly in this context: it
may refer to discovering structure in a data set, or to training a so-called
model that is able to estimate some quantitative measure of previously
unobserved instances.

In general, machine learning techniques are split into two cate-
gories: supervised techniques and unsupervised techniques. Super-
vised machine learning techniques aim at producing some kind of
model based on training data, consisting of a set of training instances
described by feature vectors and their corresponding output values.
Usually, the end goal is to obtain a model that is able to accurately esti-
mate the output values for unseen instances, i.e., that generalizes well

4 Introduction

beyond the provided training data. Examples of supervised techniques
include decision trees and the k-nearest neighbor algorithm. Unsu-
pervised machine learning techniques on the other hand operate on
unlabeled data points. These techniques aim at deducing information
about the structure of the data set provided, and often rely heavily on
preprocessing. Examples include clustering (e.g., k-means clustering)
and Principal Component Analysis (PCA).

It should be noted that there is no strict set of rules for determining
whether or not a particular technique is a machine learning technique.
In this dissertation, the term machine learning is used in a broad sense.
We consider evolutionary algorithms and more in particular genetic
algorithms to be machine learning techniques too, while these are actu-
ally search or optimization algorithms. Likewise, PCA is often viewed
as a data mining or data analysis technique rather than a machine learn-
ing technique.

For an in-depth overview of the field of machine learning, we refer
to [4, 78].

1.2 Contributions

This thesis makes a number of contributions. In each of the following
chapters, we discuss a specific problem and the solution we came up
with. The different contributions are situated in one of the abstraction
layers shown in Figure 1.1. Chapter 2 is situated in the application soft-
ware layer, Chapters 3 and 4 look into problems related to the hardware
abstraction layer, and Chapters 5 and 6 concern problems in the system
software layer.

1.2.1 Analyzing and estimating performance

Although collecting performance numbers for computer systems and
data describing the low-level behavior of applications is relatively sim-
ple, gaining insight and extracting relevant information is non-trivial.
Likewise, anticipating the performance of a particular system for a
given application-of-interest is hard. Introducing multiple layers of ab-
straction has made designing these systems and developing software
for them feasible, but the root cause behind the problems mentioned,
i.e., the complexity of modern computer systems and the software that
runs on them remains. In the first three chapters following this intro-

1.2 Contributions 5

duction, we look into problems related to analyzing and estimating
computer system performance.

Analyzing time-varying program behavior

While software developers mostly care about the features of the soft-
ware applications they build and computer engineers are focused on
spending the transistor budget adequately and efficiently, both are con-
cerned about the performance of the computer system under consider-
ation. The key to recognizing and resolving performance bottlenecks
lies in evaluating the performance of the computer system using the
set of applications-of-interest. Understanding the characteristics of the
various workloads that will run on the system is important; that way,
a computer engineer can reconsider certain design decisions, while a
software developer can realize that some part of a software application
should be rewritten in order to make it a better fit for a particular target
system.

Although multiple benchmark suites each representing a certain ap-
plication domain are available, it is still hard to obtain general insight
in the different inherent program behaviors for a particular set of ap-
plications. Current workload characterization studies tend to focus on
using performance metrics that are tied to the computer system under
study. Also, most studies tend to limit themselves to looking at the
average program behavior. In Chapter 2, we show that both these com-
mon practices potentially yield misleading results. We present a set of
microarchitecture-independent workload characteristics that allow to
capture the true inherent program behavior.

Subsequently, we present a methodology for studying the time-
varying program behavior of a set of applications. This methodology
relies on several machine learning techniques including clustering,
Principal Component Analysis and genetic algorithms. The methodol-
ogy is applied to a data set of workload characteristics for five different
benchmark suites. Analyzing the results leads to various interesting in-
sights on the coverage, uniqueness and diversity of existing benchmark
suites.

This workload characterization methodology was published in:

• Kenneth Hoste and Lieven Eeckhout, ”Comparing Benchmarks
Using Key Microarchitecture-Independent Characteristics”, in

6 Introduction

Proceedings of the 2006 IEEE International Symposium on Workload
Characterization (IISWC). IEEE Computer Society, 2006, pp. 83–92.

• Kenneth Hoste and Lieven Eeckhout, ”Microarchitecture-Inde-
pendent Workload Characterization”, in IEEE Micro, Special Issue
on Hot Tutorials, IEEE Computer Society, Vol. 27 (3), 2007, pp. 63–72.

• Kenneth Hoste and Lieven Eeckhout, ”Characterizing the Unique
and Diverse Behaviors in Existing and Emerging General-Purpose
and Domain-Specific Benchmark Suites”, in Proceedings of the
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), IEEE Computer Society, 2008, pp. 157–168.

Recognizing and interpreting performance trends

For several benchmark suites, performance data is publicly available
for a wide range of computer systems. Examples are the performance
databases for commercial machines that have been constructed by the
SPEC consortium. A well-known example is the set of performance
numbers available for the SPEC CPU benchmark suites; for both the
SPEC CPU2000 and CPU2006 benchmark suites, performance data is
available for over 1,000 systems, providing a wealth of information.
However, quickly gaining insight into how these systems differ from
each other and which performance trends can be observed is difficult.

To alleviate this problem, we present the Processor Performance Vi-
sualizer methodology in Chapter 3. In this work, we combine Prin-
cipal Component Analysis, which automatically extracts performance
trends, with the earlier proposed microarchitecture-independent work-
load characteristics, which allow for giving meaningful interpretations
to the observed trends. We apply the proposed methodology to the per-
formance databases for both the SPEC CPU2000 and CPU2006 bench-
mark suites. We observe and analyze various interesting performance
trends, which both confirm a number of well-known trends and bring
forth new insights.

This work was published in:

• Kenneth Hoste and Lieven Eeckhout, ”A Methodology for An-
alyzing Commercial Processor Performance Numbers”, in IEEE
Computer, Vol. 42 (10), 2009, pp. 70–76.

1.2 Contributions 7

Estimating relative computer system performance

Anticipating the performance of a computer system is infeasible with-
out thorough performance evaluation of the system, given the com-
plexity we already discussed. Evaluating systems using a set of bench-
marks yields valuable information on the performance of these systems
relative to each other.

However, this usually does not allow for ranking these systems in
terms of performance for a particular application-of-interest. Only in
rare cases is the application-of-interest part of the benchmark suite,
and whenever this is not the case, the user is forced to resort to the
average performance across the benchmark set. At best, a rough
performance estimation can be made by using high-level heuristics
based on coarse program characteristics, e.g., whether the application
is memory-intensive or compute-intensive, and which benchmarks are
similar in that respect.

In Chapter 4, we propose a performance estimation methodology
based on microarchitecture-independent workload characteristics and
a combination of machine learning techniques such as genetic algo-
rithms and k-nearest-neighbors. First, we weigh each of the work-
load characteristics based on their relevance with respect to perfor-
mance differences. Subsequently, we are able to identify the bench-
marks which are most relevant for our application-of-interest based on
the weighted workload characteristics. This way, we obtain a more
accurate estimate of the relative performance differences between the
computer systems under consideration. We evaluate the methodology
using the SPEC CPU2000 and CPU2006 benchmarks, and show that
significant improvements in the ranking of the systems in terms of the
performance for the application-of-interest are obtained, compared to
current practice which is based on average system performance.

This methodology was published in:

• Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy
Georges, Lizy K. John and Koen De Bosschere, ”Performance
Prediction based on Inherent Program Similarity”, in Proceed-
ings of the 15th international conference on Parallel Architectures and
Compilation Techniques (PACT), ACM. 2006, pp. 114–122.

8 Introduction

1.2.2 Automatically specializing system software

Apart from the relationship between the inherent behavior of software
applications and the hardware of the computer system it is running
on, also the system software that forms the link between both layers is
affected by the complexity of modern computer systems.

Typically, system software tools, e.g., compilers and runtime sys-
tems such as a Java Virtual Machine (JVM), go further than merely
making sure that the application software runs (correctly) on the under-
lying hardware. Most system software also fulfills the task of trying to
optimize the applications, which are mostly oblivious to idiosyncrasies
of the hardware. Unfortunately, achieving optimal performance is a
challenging task. Compiler optimization is sometimes referred to as a
“black art”, precisely because of the difficulty in optimizing a particular
application for a particular hardware platform.

In Chapters 5 and 6, we present two frameworks for performing te-
dious but critical tasks for system software in order to be able to deliver
good performance.

Constructing optimization levels for a static compiler

Static compilers usually provide a number of optimization levels (e.g.,
-O1, -O2, -O3, -Os), each a combination of optimizations representing
a trade-off between different objectives, e.g., compilation time, code
quality and code size. These standard optimization levels allow soft-
ware developers and end-users to produce heavily optimized builds of
their applications, without having to select individual optimizations.

Defining these standard optimization levels is a challenging task
however, for a variety of reasons. Most compilers offer a large number
of optimizations, resulting in a huge amount of possible optimization
levels; e.g., 30 optimizations already result in over one billion possible
optimization levels. Also, optimizations potentially affect the applica-
bility and/or efficacy of other optimizations, and different objectives
may be affected conflictingly by a particular optimization. On top of
this, the effect of a compiler optimization is highly dependent on the
code being compiled and the hardware platform for which the code is
being compiled.

In current practice, compiler developers construct a number of com-
piler optimization levels manually, relying heavily on experience, intu-

1.2 Contributions 9

ition and high-level heuristics. This is a tedious and labor-intensive
task, which requires deep knowledge of the various optimizations and
their possible interactions. It also requires taking several conservative
decisions, to ensure that the optimization level performs well for a va-
riety of applications and hardware platforms.

To address this issue we present COLE in Chapter 5, a framework
based on an evolutionary search algorithm that allows for automati-
cally constructing a set of optimization levels representing trade-offs
between a number of objective functions. Using the GNU Compiler
Collection (GCC), we show that the optimization levels obtained us-
ing our fully automated framework significantly outperform the man-
ually constructed standard optimization levels, and that the evolution-
ary search algorithm clearly outperforms random searching. Studying
the optimization levels obtained through our framework in terms of
their constituent optimizations yields various interesting insights.

This work was published in:

• Kenneth Hoste and Lieven Eeckhout, ”COLE: Compiler Opti-
mization Level Exploration”, in Proceedings of the 6th Annual
IEEE/ACM International Symposium on Code Generation and Op-
timization (CGO), ACM, 2008, pp. 165–174.

Automatically tuning a Just-In-Time compiler

In recent years, managed programming languages such as Java have
gained a lot of interest, because of the cross-platform portability they
offer to application software developers. This portability is achieved
by compiling the applications to an intermediate machine-independent
level, called bytecode, and providing a process virtual machine (e.g.,
a Java Virtual Machine (JVM)) that executes the application from this
bytecode. Besides portability, this approach has an additional advan-
tage: it allows for the use of runtime information to really focus the
optimization of the application at runtime. Typically, a JVM will re-
compile frequently executed code using a more aggressive optimiza-
tion strategy at runtime, a mechanism known as Just-In-Time (JIT) com-
pilation, thereby gradually improving the performance during the exe-
cution of the application.

Modern JIT compilers use multiple optimization levels to imple-
ment this dynamic optimization mechanism, in combination with an
adaptive controller that decides which parts of the application are

10 Introduction

recompiled to which level, and when the recompilation is to be per-
formed. In this process, trade-offs need to be made between the cost of
recompilation and the expected benefit in terms of performance, since
the recompilation adds extra overhead at runtime.

Tuning a dynamic JIT compiler for optimal performance is even
more challenging than coming up with individual optimization levels
for a static compiler. Besides the difficulties in constructing suitable op-
timization levels that deliver useful trade-offs as discussed before, the
inherent complexity of the optimization mechanism of a JIT compiler
complicates things further. In a JIT compiler, the different optimiza-
tion levels potentially have a significant effect on each other. Indeed,
the decision whether or not to recompile a piece of code is influenced
by the expected speedup, which in turn depends on the quality of the
currently used binary version of that piece of code and the additional
speedup delivered by the higher optimization levels. In addition, the
adaptive controller also has some knobs to turn, for example to adjust
the notion of frequently executed code.

Building on the COLE framework, we present a fully automated
tuning framework for JIT compilers in Chapter 6. The methodology
uses a two-step approach to deal with the complexity of the optimiza-
tion strategy of a JIT compiler. First, a set of suitable optimization levels
is determined. The second step uses these optimization levels to con-
struct, evaluate and tune JIT compilers that perform well for one or
multiple applications on the target platform. Experimental evaluation
using a set of Java benchmarks and the Jikes RVM shows that the frame-
work is able to deliver JIT compilers that achieve performance that is
competitive to a manually tuned JIT compiler. Using the automatic tun-
ing framework, it becomes straightforward to specialize a JIT compiler
to a single application-of-interest or a target hardware platform, which
is shown to yield significant speedups over a manually tuned default
JIT compiler.

This work was published in:

• Kenneth Hoste and Lieven Eeckhout, ”Automated Just-In-Time
Compiler Tuning”, in Proceedings of the 8th Annual IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO),
ACM, 2010, pp. 62–72.

Chapter 2

Phase-level
Microarchitecture-Independent

Workload Characterization

You can have data without information,
but you cannot have information without data.

Daniel Keys Moran

Computer workloads are ever evolving. Software companies and
researchers continuously come up with new applications, often from
new application domains, e.g., multimedia, gaming, data mining,
physics simulation, etc. Not only are these emerging workloads in-
duced by customer demands or innovation in software, but also by
advances in technology which result in increased computing power.
This opens up opportunities for workloads that were never considered
before.

Consequently, it is important for a computer system designer to
understand the characteristics of these (emerging) workloads, so that
the computer system under design is optimized for its target work-
loads. Designing a future computer system using yesterday’s appli-
cations may lead to a suboptimal design for its future workloads [109].

Computer architects and performance analysts are well aware of
this and are therefore continuously looking for new emerging work-
loads. Whenever an emerging workload is identified, a number of
benchmarks are collected that represent this emerging workload. Bench-
marks are no different from real applications, except that significant
efforts are made to ensure that the applications are portable and ro-

12
Phase-level Microarchitecture-Independent

Workload Characterization

bust, to include multiple input data sets of different sizes, and to
provide an evaluation framework. This way, performance numbers
for collections of these benchmarks – called benchmark suites – can be
used for evaluating new microprocessor designs and comparing these
with previous designs. Well-established benchmark suites in the field
of computer architecture and compilers include SPEC CPU (general-
purpose computing) [51, 87] and EEMBC (embedded systems) [88].
Examples of recently introduced benchmark suites covering emerg-
ing workloads are BioPerf (bioinformatics) [12], BioMetricsWorkload
(biometrics) [25], BioInfoMark (bioinformatics) [71], MineBench (data
mining) [80], PhysicsBench (physics simulation) [105], ImplantBench
(bio-implantable computing) [63], MediaBench II (multimedia) [41],
DaCapo (Java client) [16], STAMP (transactional memory) [77] and
PARSEC (recognition, mining and synthesis (RMS)) [14].

In an early design stage, computer architects rely heavily on soft-
ware simulation of microprocessor designs, because building hardware
prototypes for each possible design point is simply too expensive. A
big disadvantage of simulation is that it is several orders of magnitude
slower than native hardware execution [24]. This implies that includ-
ing new benchmark suites in the design cycle has to be considered care-
fully. If the runtime behavior of a new benchmark suite is not signifi-
cantly different from the runtime behavior of benchmark suites already
included in the design process, then there is no need for including these
new benchmarks. Simulating those additional benchmarks would only
add to the overall simulation time, without providing additional in-
sight about the performance of the design.

Therefore, it is important to assess how different the workload char-
acteristics of these new workloads are compared to those of already
existing benchmark suites. This will provide insight into whether the
next-generation microprocessors need to be designed differently com-
pared to today’s machines. It will also be very helpful in managing
the simulation cost, without compromising the scope and accuracy of
the performance evaluation of the microprocessor design. Moreover,
the need for a solid workload characterization methodology is increasingly
important given the current shift to chip-multiprocessor (CMP) com-
puting — especially for heterogeneous CMPs with different cores being
specialized to particular types of workloads.

As we will show in this chapter, workload characterization is
not a straightforward task. A traditional workload characterization

2.1 Microarchitecture-independent workload characterization 13

methodology may produce misleading results because they depend
on workload characteristics that are specific to the particular hardware
on which they are obtained. Also, many workload characterization
studies limit themselves to aggregate workload characterization which
fails to capture the time-varying behavior of workloads. The more in-
formative phase-level workload characterization yields large amounts
of data, which makes it more difficult to obtain insight.

We address these problems by presenting a new phase-level work-
load characterization methodology. We present a set of microarchi-
tecture-independent workload characteristics in Section 2.1, to solve
the problems with the traditional hardware performance counter based
workload characteristics. In Section 2.2, we outline a feasible way of us-
ing these workload characteristics to analyze the time-varying phase-
level runtime behavior of workloads. We apply this methodology to a
set of five benchmark suites in Section 2.3, allowing for a detailed com-
parative study of the diversity and uniqueness of the various bench-
marks.

In this work, powerful machine learning techniques such a prin-
cipal component analysis, genetic algorithms and cluster analysis will
prove to be very useful in gaining insight into inherent workload be-
havior.

2.1 Microarchitecture-independent workload char-
acterization

In the following sections, we will describe the traditional workload
characterization methodology which relies on hardware performance
counters (Section 2.1.1), discuss the pitfall in using these workload
characteristics to compare inherent program behavior (Section 2.1.2)
and present our set of microarchitecture-independent workload char-
acteristics as an alternative (Section 2.1.3).

2.1.1 Hardware performance counter based workload charac-
terization

Most modern microprocessors include special purpose registers and
accompanying hardware logic called hardware performance counters
(HPCs) [96]. These allow for low-level performance analysis, by keep-

14
Phase-level Microarchitecture-Independent

Workload Characterization

ing track of the frequency count in which certain performance-related
events occur during the execution of a program [10]. Because the coun-
ters are built into hardware, the overhead for collecting performance
metrics using HPCs is negligible, which makes them very attractive for
performance analysis on real hardware.

Studies on benchmark suites representing emerging workloads of-
ten use these hardware performance counters to obtain workload char-
acteristics [12, 25, 105]. Some studies use cycle-accurate simulation
tools to derive similar results [12, 41, 63, 90]. These studies often con-
clude either that two workloads show dissimilar behavior if their hard-
ware performance counter characteristics are dissimilar, or that two
workloads are similar if their hardware performance counter character-
istics show similar behavior. In other words, two workloads are con-
sidered similar if they stress the microarchitecture of the processor in
similar ways, and dissimilar otherwise.

Throughout the remainder of this chapter, we will use the most
common workload characteristics measured using hardware perfor-
mance counters: cycles-per-instruction (CPI), L1 data cache miss rate,
L1 instruction cache miss rate, L2 cache miss rate, branch misprediction
rate, data translation lookaside buffer (TLB) miss rate and instruction
TLB miss rate. All miss rates are measured as the average number of
misses per instruction. These characteristics are measured on an Intel
Xeon L5420 system, which is an implementation of Intel’s Core archi-
tecture on 45-nm technology. For more details on this system, we refer
to Appendix C.1.1.

2.1.2 Pitfall in using hardware performance counters

There is a pitfall in most benchmark studies that rely heavily on work-
load characteristics obtained through hardware performance counters
i.e., that the conclusions drawn from comparing the runtime behav-
ior of programs using these metrics are potentially misleading. The
fundamental reason for this pitfall is that different inherent (microar-
chitecture-independent) workload behavior can yield similar microar-
chitectural behavior. In other words, it is not because the performance
achieved by a processor is similar in terms of metrics like CPI and
cache miss rates for two different applications, that both workloads
are stressing the processor in similar ways. In fact, the inherent be-
havior of the applications might be very different. The pitfall of

2.1 Microarchitecture-independent workload characterization 15

microarchitecture-dependent workload characterization is thus that
the conclusions drawn from it may not be generalized to other micro-
architectures [53, 54].

Quantifying the pitfall

In order to quantify this pitfall, we compare the differences that are
observed between pairs of applications using two different workload
characterization methodologies. For this, we characterize the bench-
marks from five different benchmark suites, i.e., SPEC CPU2000, SPEC
CPU2006, BioMetricsWorkload, BioPerf, MediaBench II.1 We use the
most common hardware performance counter metrics (CPI, cache miss
rates, branch misprediction rate and TLB miss rates) and the set of
microarchitecture-independent workload characteristics listed in Ta-
ble 2.1. We will describe the microarchitecture-independent workload
characteristics in more detail later.2

Using both types of workload characteristics, we build two normal-
ized workload spaces. Each workload characteristic is normalized to a
zero mean and unit standard deviation. This is done to put all charac-
teristics on a common scale, regardless of the variation or the magni-
tude of the values.3

We then compute the Euclidean distance in both workload spaces
between all pairs of workloads. Figure 2.1 shows the distance in the
space constructed using normalized hardware performance counter
(HPC) metrics on the vertical axis versus the distance in the normal-
ized microarchitecture-independent (MICA) workload space on the
horizontal axis. For convenience, we will refer to both workload spaces
as the HPC space and the MICA space, respectively. Each dot corre-
sponds to one pair of workloads.

There are several interesting observations to be made from Fig-
ure 2.1. First, it shows that two workloads may be very similar in terms
of hardware performance counter metrics, while exhibiting signifi-
cantly different microarchitecture-independent workload characteris-
tics. This illustrates the pitfall in using hardware performance counter
metrics in workload characterization studies clearly. It shows that
although two workloads might exhibit similar behavior on one par-

1For more details on the benchmark suites used in this experiment, see Appendix B.
2See Section 2.1.3.
3See also the section on normalization in Section A.1.

16
Phase-level Microarchitecture-Independent

Workload Characterization

Figure 2.1: Illustration of the pitfall in using hardware performance counter
based workload characterization. Each dot represents a pair of workloads; the
vertical axis shows distances computed using hardware performance counter
metrics collected on an Intel Xeon system, while the horizontal axis shows dis-
tance in terms of normalized microarchitecture-independent workload char-
acteristics.

ticular microarchitecture, the inherent program behavior is potentially
very different.

A second observation is that very few, if any, workload tuples show
a very small distance in the MICA space and a large distance in the
HPC space. This shows that the microarchitecture-independent work-
load characteristics are capable of capturing (dis)similarity in inherent
program behavior: there are no pairs of workloads that are found to
show similar microarchitecture-independent characteristics, but show
dissimilar behavior in terms of hardware performance metrics.

It should be noted however that, once a certain threshold distance
for a given workload tuple is observed in the MICA space, the work-
loads might show dissimilar hardware performance counter metrics.
This is not surprising however. One example of a small difference in

2.1 Microarchitecture-independent workload characterization 17

(a) cycles-per-instruction (CPI)

0.0

0.5

1.0

1.5

2.0

C
PI

eon-cook gamess-cytosine Phylip-dnapenny

(b) cache miss rates

0.00%

0.25%

0.50%

0.75%

1.00%

L1 data
cache

L1 instr.
cache

L2 cache

%
 m

is
se

s/
in

st
r.
 eon-cook gamess-cytosine Phylip-dnapenny

(c) branch misprediction rate

0.00%

0.25%

0.50%

0.75%

1.00%

%
 m

is
sp

re
d
./

in
st

r.

eon-cook gamess-cytosine Phylip-dnapenny

(d) TLB miss rates

0.00%

0.05%

0.10%

data TLB instruction TLB

%
 m

is
se

s/
in

st
r.

eon-cook gamess-cytosine Phylip-dnapenny

Figure 2.2: Hardware performance counter metrics measured on an Intel
Xeon L5420 system (Core architecture), for three different workloads: SPEC
CPU2000’s eon with the reference input cook, SPEC CPU2006’s gamess with
the reference input cytosine, and BioPerf’s Phylip with the medium input. The
metrics suggest a high similarity of the runtime behavior of the three work-
loads.

program behavior that might result in large performance differences
is branch predictability; even a seemingly small difference, e.g., a mis-
prediction rate of 0.1% versus 0.5%, can potentially have a large im-
pact on overall performance. Because this is captured by only a small
portion of the microarchitecture-independent workload characteristics,
this results in a relatively small distance in the MICA space. In terms
of hardware performance counter metrics however, it is likely that a
small difference in branch prediction accuracy is reflected by relatively
large discrepancies for various metrics besides the branch mispredic-
tion rate, e.g., cycles-per-instruction (CPI) and potentially also L1 in-
struction cache miss rate, instruction TLB miss rate, etc.

Case study: eon vs gamess vs Phylip

We now further illustrate the pitfall in hardware performance counter
workload characterization by means of a case study comparing the in-

18
Phase-level Microarchitecture-Independent

Workload Characterization

(a) instruction-level parallelism (ILP)

0

5

10

15

32 64 128 256

am
o
u
n
t

o
f
IL

P

instruction window size

eon-cook gamess-cytosine Phylip-dnapenny

(b) instruction mix

0%

20%

40%

60%

80%

100%

read write control int stack shift SSE system %
 o

f
in

st
r.
 i
n
 c

at
eg

o
ry

instruction category

eon-cook gamess-cytosine Phylip-dnapenny

(c) branch predictability

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%

GAg PAg GAs PAs GAg PAg GAs PAs GAg PAg GAs PAs

%
 m

is
sp

re
d
./

in
st

r.

12 bit history 8 bit history 4 bit history

eon-cook gamess-cytosine Phylip-dnapenny

(d) branch transition/taken rate

0.00

0.10

0.20

0.30

transition rate taken rate

tr
an

s.
/t

ak
en

 r
at

e

eon-cook gamess-cytosine Phylip-dnapenny

(e) memory footprint

1
10

100
1,000

10,000
100,000

1,000,000

64b blocks 4KB pages 64b blocks 4KB pages #
 o

f
b
lo

ck
s/

p
ag

es

to
u
ch

ed

data stream instruction stream

eon-cook gamess-cytosine Phylip-dnapenny

(f) spatial locality of memory accesses

0.0
0.2
0.4
0.6
0.8
1.0

8 64 512 4K 32K 256K 8 64 512 4K 32K 256K

p
ro

b
.

st
ri
d
e

<
=

 D

global stride distance D (mem. reads) global stride distance D (mem. writes)

eon-cook gamess-cytosine Phylip-dnapenny

Figure 2.3: Microarchitecture-independent workload characteristics for three
different workloads: SPEC CPU2000’s eon with the reference input cook,
SPEC CPU2006’s gamess with the reference input cytosine, and BioPerf’s
Phylip with the medium input. Significant differences between the three work-
loads are observed in each group of characteristics.

2.1 Microarchitecture-independent workload characterization 19

herent behavior of three benchmarks, namely eon (SPEC CPU2000),
gamess (SPEC CPU2006) and Phylip (BioPerf). Figures 2.2 and 2.3 show
the hardware performance counter metrics and the microarchitecture-
independent workload characteristics, respectively.

Figure 2.2 shows that the hardware performance counter metrics
are very similar for eon, gamess and Phylip. However, the microarchi-
tecture-independent workload characteristics shown in Figure 2.3 sug-
gest that these workloads are fairly dissimilar. Significant differences
are observed for each group of workload characteristics. Note that we
omitted some workload characteristics from the graphs for brevity.

This example clearly illustrates that current practice in workload
characterization, i.e., relying on hardware performance counter met-
rics, can be misleading. The set of microarchitecture-independent
workload characteristics we present in the next section allows for com-
paring the true inherent behavior of workloads, instead of just the way
in which the workloads stress one particular microarchitecture.

2.1.3 Microarchitecture-independent workload characteriza-
tion

To capture the true inherent behavior of applications, we propose a set
of microarchitecture-independent workload characteristics [54]. These
are fundamentally different from the metrics described in Section 2.1.1,
because they are not tied to the specific microarchitecture or processor.
In other words, the values obtained for these workload characteristics
will be the same regardless of the particular microarchitecture of the
system on which they are measured, e.g., Intel NetBurst, Intel Core,
Intel Nehalem, AMD Opteron, etc. Note that they are dependent on the
instruction set architecture (ISA) being used (x86, x86-64, Alpha, ARM,
etc.), and also on the particular compiler configuration used to build the
application. In this work, we will measure these characteristics using
the x86-64 ISA, for programs compiled with the GCC C/C++/Fortran
compiler version 4.2.4, using the -O2 optimization level.

In the following sections, we will describe each group of these
workload characteristics in detail. Table 2.1 summarizes the set of 90
microarchitecture-independent workload characteristics. We found
this set of workload characteristics sufficient to compare the inherent
workload behavior for a large range of applications.

20
Phase-level Microarchitecture-Independent

Workload Characterization

Table 2.1: Set of 90 microarchitecture-independent workload characteristics,
divided in 7 groups: instruction mix, ILP, register traffic, branch predictability,
memory footprint, temporal locality and spatial locality.

group no. workload characteristic

instruction mix [12] 1 fraction of instructions that read from memory
2 fraction of instructions that write to memory
3 fraction of control flow instructions
4 fraction of integer instructions
5 fraction of floating-point instruction
6 fraction of stack operations (push/pop)
7 fraction of shift operations
8 fraction of string operations
9 fraction of MMX/SSE instructions
10 fraction of system operations (user-space)
11 fraction of NOP operations
12 fraction of other instructions

instruction-level 13 amount of ILP for instr. window of size 32
parallelism (ILP) [4] 14 amount of ILP for instr. window of size 64

15 amount of ILP for instr. window of size 128
16 amount of ILP for instr. window of size 256

register traffic [9] 17 average number of register input operands
18 average degree of use

19-25 prob. register dep. dist. ≤ 1, 2, 22, . . . , 26

branch 26-28 GAg PPM predictor miss rates (4,8,12 bits)
predictability [14] 29-31 GAs PPM predictor miss rates (4,8,12 bits)

32-34 PAg PPM predictor miss rates (4,8,12 bits)
35-37 PAs PPM predictor miss rates (4,8,12 bits)

38 average branch taken rate
39 average branch transition rate

memory footprint [4] 40 number of unique 64-byte blocks touched (data stream)
41 number of unique 4 KB pages touched (data stream)
42 number of unique 64-byte blocks touched (instr. stream)
43 number of unique 4 KB pages touched (instr. stream)

temporal locality [28] 44-50 prob. global mem. read stride ≤ 0, 8, 82, . . . , 86

51-57 prob. local mem. read stride ≤ 0, 8, 82, . . . , 86

58-64 prob. global mem. write stride ≤ 0, 8, 82, . . . , 86

65-71 prob. local mem. write stride ≤ 0, 8, 82, . . . , 86

spatial locality [19] 72 prob. cold memory read operations
73-90 prob. LRU stack distance ≤ 2, 22, . . . , 218

2.1 Microarchitecture-independent workload characterization 21

Instruction mix

A first group of workload characteristics captures the instruction mix of
the application. Each of these characteristics represents the ratio of the
number of dynamically executed instructions of a particular instruction
category to the total number of dynamically executed instructions.

We discriminate between 9 instruction categories: control flow in-
structions, integer instructions, floating-point instructions, stack oper-
ations, shift operations, string operations, MMX/SSE instructions, sys-
tem operations and NOP operations. An extra group, referred to as
other, is used to capture instructions that do not fit in any of these cate-
gories.

On top of this, we also determine the ratio of instructions that read
from memory, and that write to memory. Because the x86-64 ISA is
a CISC instruction set architecture (ISA), as opposed a RISC ISA (e.g.,
Alpha, ARM), this load/store aspect is not captured by the 10 other
categories.

This results in 12 numbers which collectively characterize the dy-
namic instruction mix of an application.

Instruction-level parallelism

Instruction-level parallelism (ILP) quantifies the lack of dependences
between instructions, and is defined as the average number of inde-
pendent instructions over a fixed-size window of subsequent dynamic
instructions. An instruction X is dependent on another instruction
Y when X requires a result produced by Y, e.g., a value in a register
or a value in a memory location. Note that the amount of available
ILP is inherent to the particular workload being executed; the only
microarchitecture-dependent factor is the size of the instruction win-
dow.

In order to measure the amount of ILP, we consider an out-of-order
processor model in which every processor component is idealized and
unlimited, except for the instruction window – we assume single-cycle
latencies for caches (i.e., no cache misses), perfect branch prediction, an
infinite number of functional units, etc. Using this idealized processor
model, we measure the average amount of instructions-per-cycle (IPC)
that can be achieved with a window size of 32, 64, 128 and 256 in-flight
instructions.

22
Phase-level Microarchitecture-Independent

Workload Characterization

The performance of a superscalar microprocessor is (in the absence
of miss events) only affected by the number of available independent
instructions and the fetch rate, and is limited by the issue width of the
processor (typically 4 or 5). The number of independent instructions
that can be executed in parallel is determined by the amount of avail-
able ILP. The importance of ILP with respect to the performance of a
processor can be made apparent by applying Little’s law, which states
that the average number of tasksN in a system is equal to the frequency
of incoming tasks λ times the average time required for handling a task
T , i.e., N = λ · T , or equivalently, λ = N / T . When applied to the per-
formance of a microprocessor, we obtain IPC = W / (K · l), in which W
is the number of instructions in the instruction window, K is the length
of the critical path (assuming single-cycle latencies), and l is the average
instruction latency. The critical path is defined as the longest path of de-
pendent instructions present in the instruction window. Likewise, we
can express the amount of ILP in terms of W and K, i.e., ILP= W / K.
Thus, we obtain IPC = ILP / l, which clearly show the importance of
the amount of ILP with respect to the performance of a processor.

Register traffic

We characterize the register traffic [40] between instructions using
three metrics. First, we measure the average number of register input
operands to an instruction. Next to this, we look at the average degree
of use, i.e., the average number of times a register instance is consumed
(register read) since its production (register write). Finally, we quantify
the dependency distances between registers. The dependency distance
is defined as the number of dynamic instructions between the produc-
tion of a register and its consumption. This is captured by a set of
probabilities, each of which reflect how often the register dependency
distance is smaller than a value d, with d = 2i and i in {0, 1, 2, . . . , 7}.

Branch predictability

Branch predictors are a very important component in modern micro-
processors. By predicting the direction (taken, not-taken) and/or tar-
get of a particular branch with very high accuracy, they form a crucial
component of an out-of-order microprocessor in order to achieve high
performance [106].

2.1 Microarchitecture-independent workload characterization 23

In order to characterize the predictability of branch behavior in-
dependently of a particular microarchitecture, we use the Predic-
tion by Partial Matching (PPM) predictor [23], a universal compres-
sion/prediction technique. We can view the PPM predictor as a theo-
retical basis for branch prediction, rather than an actual predictor that
is to be built in hardware.

We will consider four variations of the PPM predictor: GAg, PAg,
GAs and PAs. ‘G’ means global branch history whereas ‘P’ stands for
per-address or local branch history; ‘g’ means that one global predic-
tor table is shared by all branches, while ‘s’ indicates separate tables
per branch. For each variation, we consider three different maximum
history lengths, i.e., 4, 8 and 12 bits.

In addition, we also quantify the average branch taken rate and av-
erage branch transition rate. The branch taken rate is simply the per-
centage of times a conditional branch was taken. The branch transi-
tion rate quantifies how frequently the direction of a conditional branch
changes from taken to non-taken (or vice versa) dynamically [50]. Con-
ditional branches that are highly biased towards one direction or that
show a very low or very high transition rate tend to be easier to predict.

Memory footprint

The memory footprint of a workload is defined as the amount of mem-
ory that the application uses during its execution. We characterize this
as the number of unique 64-byte blocks that were touched together
with the number of unique 4 KB pages that were touched. We count
the number of blocks and pages separately for accesses to data (data
stream) and accesses to instructions (instruction stream).

Spatial locality of memory accesses

To characterize the spatial locality of memory accesses of a workload,
i.e., the patterns in which the workload accesses memory, we look at
local and global data strides. A global stride is defined as the difference
in the data memory addresses between temporally adjacent memory
accesses. A local stride is defined in the same way, except that both
memory accesses come from a single static instruction – this is done by
tracking memory addresses for each memory operation.

The stride behavior is characterized by a set of probabilities that

24
Phase-level Microarchitecture-Independent

Workload Characterization

reflect how often a stride was smaller than or equal to 0 and 8i, with i
in {1, 2, . . . , 6}. We make a distinction between the stride behavior of
memory reads and memory writes.

Because these workload characteristics characterize the spatial lo-
cality of memory accesses, they are particularly important with respect
to cache behavior and prefetching.

Temporal locality of memory accesses

Next to characterizing spatial locality, it is equally important to quan-
tify the temporal locality of memory accesses, which can be character-
ized by the number of accesses to unique memory addresses between
two accesses to the same memory address. High temporal locality sug-
gests good cache behavior, whereas poor temporal locality is a possible
cause of a high cache miss ratio. Since temporal locality of memory
read operations is more important than that of memory writes with re-
gard to performance, since the latter are typically buffered and do not
necessarily stall the processor pipeline, we only characterize the former.

To characterize the temporal locality of the memory reads per-
formed by a workload we look at the distribution of least-recently-used
(LRU) stack distances [18]. The LRU stack distance of a memory read
operation is defined as the number of unique memory read operations
between two reads of the same memory address. A small LRU stack
distance corresponds to good temporal locality, while a large distance
is an indication of poor temporal locality. We consider 64-byte blocks
instead of individual memory addresses for efficiency.

Again, we use a set of probabilities to capture the distribution of val-
ues. Each probability reflects how often an LRU stack distance smaller
than a given value was observed. We collect probabilities for distances
smaller than 2i, with i in {1, 2, . . . , 18}. In addition, we also keep track
of the frequency of cold memory read operations, i.e., read accesses to
addresses not accessed before, and that of LRU stack distances greater
than 218.

MICA Pin tool

To collect these microarchitecture-independent workload characteris-
tics, we developed a Pin tool called MICA (Microarchitecture-Indepen-

2.2 Phase-level workload characterization 25

dent Characterization of Applications) 4. Pin is a binary instrumenta-
tion framework provided by Intel 5, which allows to easily implement
analysis tools. A Pin tool can be used as a plug-in to the Pin frame-
work, which provides a rich API for analyzing the runtime behavior of
a program. MICA is also being used by other research groups, includ-
ing researchers at the University of Virginia, University of California
and Simon Fraser University (Canada) [22, 75, 91, 112].

Depending on the analysis being done, instrumentation may intro-
duce a significant overhead, resulting in substantial slowdowns com-
pared to native execution. The most expensive analysis implemented
in MICA is collecting the ILP workload characteristics, which results
in a slowdown of up to 600×. This is not surprising, keeping in mind
that the ILP analysis is done by actually simulating an idealized out-
of-order processor. Measuring the other groups of microarchitecture-
independent workload characteristics is less intrusive, ranging from
a slowdown of roughly 200× to 10× slowdown. Note that the slow-
downs observed when simulating workloads using a state-of-the-art
cycle-accurate simulator are substantially higher; slowdowns of at least
four orders of magnitude (10,000×) are common [24].

2.2 Phase-level workload characterization

Most workload characterization studies limit themselves to aggregate
workload characterization [51, 86, 88], i.e., they report and analyze
workload characteristics that represent the average behavior of work-
loads across the entire program execution. However, only relying on
aggregate workload characterization might, again, be misleading.

Consider for example the case where a workload characterization
study would report that, for a given workload, 30% of the instructions
executed read from memory. This would make a computer architect
conclude that about one third of the functional units being load/store
units would suffice for this workload to achieve good performance.
However, during the first half of program execution, only 10% of the
instructions may be reading from memory; and during the second half,
there may be 50% instructions in the dynamic instruction stream that
need to read from memory. On average over the entire program execu-
tion, this results in 30% instructions reading from memory. Obviously,

4MICA is available at http://www.elis.ugent.be/˜kehoste/mica
5http://www.pintool.org

http://www.elis.ugent.be/~kehoste/mica
http://www.pintool.org

26
Phase-level Microarchitecture-Independent

Workload Characterization

(a) ILP (window size 32)

6

6.5

7

7.5

8

8.5

9

0 100 200 300 400 500 600 700

am
o
u
n
t

o
f
IL

P

instruction interval (100M instr.)

(b) branch predictability (GAg, 4-bit hist.)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0 100 200 300 400 500 600 700

#
 m

is
p
re

d
ic

ti
o
n
s/

in
st

r.

fo
r

4
-b

it
 G

A
g

instruction interval (100M instr.)

(c) temp. locality (LRU stack dist. ≤ 16)

0.8

0.82

0.84

0.86

0.88

0.9

0 100 200 300 400 500 600 700

p
ro

b
.

LR
U

 s
ta

ck

d
is

t.
 <

=
 1

6

instruction interval (100M instr.)

Figure 2.4: Illustration of phase behavior of gzip-graphic. The three subfigures
show the variation for three different microarchitecture-independent work-
load characteristics over time, i.e., (a) the amount of available ILP for an in-
struction window size of 32, (b) the branch predictability for a GAg PPM pre-
dictor with 4-bit history, and (c) the temporal locality expressed as the proba-
bility of the LRU stack distance being smaller than 16 64-byte blocks.

one third of the functional units being load/store units (based on the
aggregate analysis) would yield good performance for the first part of
the program execution, but would yield suboptimal and unexpectedly
low performance for the second part. A phase-level characterization
showing that there are two major program phases each exhibiting dif-
ferent behavioral characteristics would be more accurate and more in-
formative.

In this section, we present a feasible way of doing phase-level work-
load characterization studies. First, we compare aggregate and phase-
level workload characterization in Section 2.2.1 and discuss the chal-
lenges of a phase-level workload characterization study in Section 2.2.2.
Our methodology is outlined in Section 2.2.3.

2.2 Phase-level workload characterization 27

2.2.1 Aggregate versus phase-level workload characterization

A phase is (informally) defined as an interval of temporally adjacent
dynamic instructions in which the behavior of the workload is more or
less homogeneous with respect to one or more workload characteris-
tics. In this work, we collect workload characteristics for fixed intervals
of 100 million (108) dynamic instructions. This allows us to capture
the phase-behavior of workload executions, while keeping the amount
of data that needs to be processed more or less manageable. Also, in-
tervals of this order of magnitude are large enough to avoid warmup
issues in simulation studies [84], which further motivates our choice.

Figure 2.4 shows the time-varying behavior of the SPEC CPU2000
gzip benchmark with the graphic reference input in terms of ILP, branch
predictability (4-bit history GAg PPM predictor) and temporal local-
ity, i.e., the probability of the memory access LRU stack distance to be
smaller than 16 64-byte blocks. Just reporting average values for these
workload characteristics, i.e., 7.265, 0.028 and 0.878 respectively, com-
pletely hides the phase behavior of the workload that is clearly visible
when the values of the different workload characteristics are plotted as
a function of time.

2.2.2 Challenges in phase-level workload characterization

Although the notion of time-varying behavior is well known to com-
puter architects, and although there is a lot of recent work on detecting
and exploiting phase behavior [94, 95], most workload characterization
work is still limited to aggregate workload analysis and does not study
time-varying behavior.

The motivation behind this is straightforward: aggregate analysis
requires no new methodology for processing and presenting the data
compared to previous studies. Even if the number of workloads being
studied is large (e.g., tens to hundreds), and a large number of different
workload characteristics are being used, the amount of data that needs
to be processed and handled is relatively small. Thus, relying on tradi-
tional ways to present the data in a concise manner, e.g., using multiple
bar plots and/or scatter plots, is often sufficient.

In case of phase-level workload characterization on the other hand,
one quickly obtains a very large data set, up to the point where tra-
ditional approaches for handling and processing the data becomes in-

28
Phase-level Microarchitecture-Independent

Workload Characterization

MICA
I

clustering
II

phasesworkloads

find key workload
characteristics

III

visualization

most prominent
phases

sampling
PCA

k-means

IV

Figure 2.5: Outline of the proposed phase-level workload characterization
methodology, which consists of 5 steps: microarchitecture-independent work-
load characterization, sampling, clustering, finding key workload characteris-
tics and visualization of the most prominent phase behaviors.

tractable. For example, the data set which will be used in Section 2.3
consists of workload characteristics for 100 M instruction intervals of
77 benchmarks. Together, this results in 90 microarchitecture-indepen-
dent workload characteristics for over one million instruction intervals.
It is obvious that getting insight into this huge data set is non-trivial.

2.2.3 Phase-level workload characterization

In this section, we present a feasible phase-level workload characteriza-
tion methodology that uses microarchitecture-independent workload
characteristics. After finding the most prominent phase behaviors in
terms of these workload characteristics, we identify a subset of key
characteristics which are then used to visualize these phase behaviors.

The methodology is discussed in general here, and is applied in the
next section to analyze a large data set of fine-grained workload char-
acteristics. The steps are outlined in detail in the following paragraphs
and are illustrated in Figure 2.5. Note that although these steps are tar-
geted towards analyzing the most prominent phase-level behavior of a
set of applications, they could be easily adopted to other purposes, e.g.,
finding extreme behavior or phase behavior which is common across
multiple workloads or programs.

2.2 Phase-level workload characterization 29

Step I: Microarchitecture-independent workload characterization

In the first step, we collect the microarchitecture-independent work-
load characteristics presented in Section 2.1.3 per execution interval
of 100 million (108) dynamic instructions. The following steps are in-
tended to cope with the large amount of data obtained.

Step II: Finding the most prominent phase behaviors

The goal of the second step in the methodology is to find the most
prominent phase behaviors. We use the data set obtained in step I,
normalized to a zero mean and unit standard deviation per microar-
chitecture-independent workload characteristic. This is done to ensure
equal weight for each workload characteristic, regardless of the varia-
tion or range of values.

Finding the most prominent phase behaviors is done in a series of
substeps, as indicated in Figure 2.5. We subsequently sample the huge
data set per benchmark, apply Principal Component Analysis (PCA)
to obtain a small number of uncorrelated underlying dimensions, and
then perform cluster analysis to find groups of similar execution inter-
vals.

Sampling The first of these substeps is intended to cope with the
huge amount of data, by significantly reducing the size of the data
set by means of randomly sampling execution intervals per bench-
mark. Because workloads often exhibit distinct phase behavior (see
Figure 2.4), which results in large subsets of very similar execution
intervals, this step causes very little information loss. It does however
significantly reduce the resources required to perform the following
steps of the methodology.

We randomly select a fixed number of intervals per program (or
benchmark), as opposed to sampling per workload, i.e., a program run
with a particular input set. For programs for which fewer intervals
are available in the data set, this means that instruction intervals will
appear multiple times in the final sampled data set. The motivation be-
hind this is that the data set is likely to contain workloads which show
a significantly longer runtime than others, or multiple workloads that
correspond to the same program being run with different input sets.
By sampling per program, we ensure equal weight for each program

30
Phase-level Microarchitecture-Independent

Workload Characterization

in the subsequent steps of the methodology. This is important, because
otherwise long-running applications or programs with multiple inputs
would indirectly get more emphasis in PCA and clustering. Note that
this is a design choice: if equal weights per workload, or per group of
workloads (e.g., benchmark suite) are preferred, this step can be ad-
justed accordingly.

Principal Component Analysis Applying PCA prior to performing
cluster analysis is important for several reasons. For one, by only re-
taining the p most significant principal components, we emphasize on
the underlying dimensions in the data set along which the largest vari-
ation is observed. Removing dimensions which contribute less to the
overall variance thus not only reduces the dimensionality of the data
set on which cluster analysis will be done, which will benefit the time
needed to perform the clustering; it also contributes to focusing on
large differences in phase behavior. A second major reason to apply
PCA prior to clustering is the fact that principal components are un-
correlated. Computing a distance across uncorrelated dimensions is
clearly preferred over computing a distance across potentially highly
correlated dimensions. Normalizing the retained principal components
is required to put them on a common scale. For a thorough overview
of PCA, we refer to Appendix A.1.

Cluster analysis Cluster analysis is performed using the k-means
clustering algorithm [64], which is an iterative process that first ran-
domly selects k cluster centers, and then continues in two steps per
iteration. The first step is to compute the Euclidean distance of each
point in the multidimensional space to each cluster center. In the sec-
ond step, each point gets assigned to the closest cluster. As such, new
cluster centers are to be computed. The algorithm iterates until con-
vergence is observed, i.e., until cluster membership ceases to change
across iterations (or until a maximum number of iterations is reached).
K-means clustering yields spherical clusters, i.e., sets of data points
located around a cluster center. In the context of clustering execution
intervals, each cluster represents a program phase, i.e., a set of inter-
vals with similar workload characteristics. For a particular cluster,
the interval closest to the cluster center can be used as a representa-
tive for all intervals in that cluster, thus serving as an example for the
corresponding phase.

2.2 Phase-level workload characterization 31

The final goal of this clustering step is to yield a limited number of
representative execution intervals that collectively cover a sufficiently
large fraction of the entire data set of benchmarks. This involves mak-
ing a trade-off between coverage and variability within a cluster. To il-
lustrate this, consider the following example. Say the ultimate goal for
the workload characterization study is to come up with 100 prominent
phases. One option would be to apply k-means clustering with k set to
100; this will yield 100 prominent phases with a 100% coverage, i.e., all
instruction intervals in the data set will be represented by a phase rep-
resentative. Another option is to apply k-means clustering for k � 100;
in this case, the 100 most prominent phases, i.e., the 100 largest clus-
ters, will account for less than 100% coverage. However, the variability
within each cluster will be substantially smaller than for the k = 100
case. In other words, we can select the most prominent phase behav-
iors that collectively account for a large fraction of the entire benchmark
suite while minimizing the variability of each prominent phase.

Note that for identifying the most prominent phases, we map the
full data set obtained in step I to the clusters obtained with k-means.
We only sampled the data set prior to cluster analysis to speed up this
step, and to assure an equal weight for each benchmark in the clus-
tering analysis. However, when evaluating how prominent the phase
behavior represented by each particular cluster is, we should also take
the non-sampled execution intervals into account. This is also impor-
tant for subsequent analysis of the uniqueness and diversity of the pro-
grams in terms of phase behavior (see Section 2.3.2).

This step of the overall methodology again gives the analyst some
freedom: retaining more or less principal components will result in a
more or less fine-grained analysis, while changing the value of k and
the number of prominent phases retained for subsequent analysis al-
lows trading off coverage and in-phase variability.

Step III: Identifying key workload characteristics

In order to ease gaining insight into a large data set, reducing the di-
mensionality of the data is a logical step: interpreting data that is ex-
pressed using justN features is significantly easier than interpreting an
equivalent data set with M features, with N � M . Limiting the num-
ber of workload characteristics without losing too much information
will not only help to understand the inherent behavior of the work-
loads but could also limit the time required to collect additional data.

32
Phase-level Microarchitecture-Independent

Workload Characterization

!"#$"%
!"#&'%
!"#&"%
!"#"'%
"#""%
"#"'%
"#&"%
"#&'%
"#$"%
"#$'%

(
)*
+,
-%*
.%
/0
1-
%2
3%

ILP

instruction mix

memory
footprint

temporal locality

branch
predictability

control
flow

SSE
floating-point

register
traffic

local read
strides

local write
strides

global
read strides

global
write strides

Figure 2.6: Factor loadings for the first principal component in a phase-level
workload characterization study using microarchitecture-independent work-
load characteristics. Giving a meaningful interpretation to the underlying di-
mension represented by this PC is not straightforward.

This is especially important when the data is being collected with tech-
niques which suffer from significant slowdowns compared to native
execution, e.g., simulation or instrumentation.

In the machine learning community, there is a large body of work
on so-called feature selection techniques [48], which lower the dimen-
sionality of a data set in various ways. Each technique has its strengths
and weaknesses with regard to time complexity, heuristical or exhaus-
tive nature, interpretability of the results, etc. Here, we will consider
three such techniques in the context of workload characterization.

Principal Component Analysis In step II, we already relied on Prin-
cipal Component Analysis to capture the major trends in the data set
and make the clustering of execution intervals faster. PCA has also
proven its value in other workload characterization studies involving
the construction of a subset of representative workloads [108].

However, although principal components are just linear combina-
tions of the original input variables, in this case microarchitecture-inde-
pendent workload characteristics, it is sometimes hard to give a mean-
ingful interpretation to them. This is illustrated in Figure 2.6, which
shows the factor loadings obtained in step II, for the first principal com-
ponent retained from the data set being studied in Section 2.3.

Interpreting just this first principal component which represents the
most prominent underlying dimension is already surprisingly difficult;
the best we can come up with is that this underlying dimension differ-
entiates between workloads with difficult to predict control-intensive

2.2 Phase-level workload characterization 33

behavior and floating-point workloads6 with fairly high temporal local-
ity and very good spatial locality (both for memory reads and writes).
It is clear that such rather complex interpretations for each of the prin-
cipal components will make a comparison of the inherent behavior of
workloads difficult. Furthermore, a value close to zero along a prin-
cipal component can mean one of two things. Either all the workload
characteristics that have a significant factor loading in that principal
component are close to zero, or the values of workload characteristics
with a significantly high or low factor loading balance each other out.

The goal of representing the workloads using just a small subset
of workload characteristics is to make it easier to compare the inher-
ent behavior of those workloads. In our opinion, this goal is not met
when using PCA for identifying key workload characteristics, because
of the difficulties described above with interpreting the principal com-
ponents. Therefore, we also consider two other feature selection tech-
niques for selecting subsets of the original workload characteristics.

Correlation elimination Correlation elimination is a so called greedy
backward elimination feature selection technique [48]. It is classified as
a backward elimination technique because it selects a workload char-
acteristic for removal in each iteration, starting from the set including
all workload characteristics. The greedy aspect is reflected in the way
in which it selects the next characteristic for removal; it will select the
characteristic which causes the smallest drop in the overall evaluation
criterion, without reconsidering previous choices.

This technique heavily relies on the correlation between the differ-
ent workload characteristics to construct a subset. It uses an iterative
algorithm, and works as follows. For each workload characteristic wi,
the Pearson correlation coefficient ρj [64] with all the other workload
characteristics wj (1 ≤ j ≤ N, i 6= j) is computed, and then combined
into an average correlation coefficient ρi as follows:

ρi =
1
N

∑
i 6=j

ρj

All workload characteristics are then ranked by their correspond-
ing average correlation coefficient ρi. The workload characteristic that

6For x86-64, GCC emits SSE instructions for all floating-point work by default, be-
cause these instructions are more effective than the X87 floating-point instructions used
on platforms which do not support SSE, as is the case for some 32-bit x86 platforms.

34
Phase-level Microarchitecture-Independent

Workload Characterization

shows the highest average correlation coefficient is then removed, by
which we implicitly assume that it contains the least additional infor-
mation compared to all the other workload characteristics. This results
in an (N − 1)-dimensional data set.

This process is iterated by progressively removing additional work-
load characteristics, until a predetermined number of workload charac-
teristics is retained. By eliminating highly correlated characteristics, we
reduce the dimensionality of the data set without losing the insight that
the workload characterization provides.

Although this technique avoids the interpretation issues observed
with PCA, it is likely to yield significantly suboptimal sets of key work-
load characteristics because of its greedy nature. Greedy algorithms are
known to be very sensitive to getting stuck in local optima of the search
space. Unfortunately, evaluating all possible subsets of our set of 90 mi-
croarchitecture-independent workload characteristics as key workload
characteristics is out of the question. Even with a very fast evaluation
function and using huge computing resources, the search space of 290

(roughly 1027) subsets is simply too large. Therefore, we consider one
last feature selection technique which avoids the downsides of both
PCA and correlation elimination.

Genetic algorithm By building a specialized feature selection tech-
nique which relies on a genetic algorithm, which is a broadly applied
technique for quickly finding adequate solutions in a huge search
space, we are able to obtain a set of original key workload characteris-
tics, thus avoiding the interpretation concerns of principal components.
Because of its evolutionary rather than greedy nature, this technique
will quickly focus on the most important workload characteristics re-
quired for capturing the major differences between the inherent behav-
ior of the workloads. For a detailed discussion on genetic algorithms,
see Section A.2.

For the purpose of identifying key workload characteristics, we de-
fine a candidate solution represented by an entity as a vector of N 0’s
and 1’s, with N being the number of workload characteristics (N = 90
using our set of microarchitecture-independent workload characteris-
tics). The inclusion of a workload characteristic in a particular candi-
date solution is then indicated by a 1 in the vector, while a 0 indicates
exclusion of a workload characteristic.

The fitness function f(e) used to compute the fitness of an entity e

2.2 Phase-level workload characterization 35

for this particular problem consists of two factors:

f(e) = ρe · (1−
ne

N
)

The first factor ρe corresponds to the Pearson correlation coeffi-
cient of the Euclidean distances between the benchmark tuples using
the original set of workload characteristics with the distances between
those tuples using the subset of workload characteristics described
by e. This will cause the genetic algorithm to try and find a subset
of workload characteristics that correlates well with the original set in
terms of the differences that are observed between benchmark tuples.
This is a direct translation of the desire to obtain a set of key workload
characteristics for comparing the inherent program behavior of a set of
workloads. As before, the Euclidean distances are calculated in terms
of normalized principal components, which are uncorrelated; for both
sets of workload characteristics we retain all principal components
with a standard deviation greater than one.

The second factor (1 − ne
N), in which ne is the number of selected

workload characteristics in entity e (i.e., the number of 1’s), is a simple
but effective heuristic which rewards subsets with fewer selected char-
acteristics. The purpose of this factor is to make the genetic algorithm
focus more on smaller subsets of workload characteristics, if those are
able to achieve a sufficiently high correlation coefficient ρe.

Step IV: Visualizing the prominent phase-level workload behavior

The last step of the methodology consists of visualizing the most
prominent phase behaviors using the key microarchitecture-indepen-
dent workload characteristics. Because we prefer a concise way of
visually representing the different key workload characteristics of the
potentially large number of retained phases, we opt for so-called kiviat
diagrams.

A kiviat diagram, also known as a radar plot, represents one of the
prominent phase behaviors (see Figure 2.7). The values of each work-
load characteristic are plotted as points on axes organized in a circular
way, and are then connected pairwise to form a single 2-dimensional
area which represents the phase behavior in terms of the key workload
characteristics. Each of the axes are divided in four ranges, using the
mean, the mean minus one standard deviation and the mean plus one

36
Phase-level Microarchitecture-Independent

Workload Characterization

each axis
represents

one workload
characteristic

rings represent
(mean - sd),
mean and

(mean + sd) resp.

area visually
represents phase behavior

Figure 2.7: Legend for a kiviat diagram representing a prominent phase be-
havior.

standard deviation as boundary values. This way, extreme phase be-
havior is easier to recognize when comparing the kiviat diagrams.

2.3 Application: Comparing phase-level workload
behavior across benchmark suites

We now apply the methodology to a data set of microarchitecture-in-
dependent workload characteristics for over one million execution in-
tervals, which represent the inherent program behavior of 77 bench-
marks taken from 5 different benchmark suites, i.e., BioMetricsWork-
load (biometrics), BioPerf (bioinformatics), MediaBench II (multime-
dia), and SPEC CPU2000 and CPU2006 (general-purpose computing).
For a detailed overview of these benchmark suites, see Appendix B.

The goal of this workload characterization study is to compare these
benchmark suites in terms of time-varying inherent program behav-
ior, and also evaluate the uniqueness and diversity of the benchmarks,
which can be done by applying the methodology presented in the pre-
vious section.

2.3.1 Applying the methodology

The following sections detail on the application of the various substeps
of the presented methodology to our data set.

Finding the most prominent phase behaviors

After applying step I of the methodology, we obtain 90 microarchi-
tecture-independent workload characteristics for each of the 1,090,005
100 M-instruction execution intervals. In the second step, we randomly

2.3 Application: Comparing phase-level workload behavior
across benchmark suites 37

50%	

60%	

70%	

80%	

90%	

100%	

100	 300	 500	 700	 900	

co
ve
ra
ge
	 o
f	 1

00
	 la
rg
es
t	 c
lu
st
er
s	

#	 clusters	

Figure 2.8: Cluster coverage of the 100 largest clusters for different numbers
of clusters.

select 1,000 execution intervals per benchmark. Collectively, this yields
a data set of just 77,000 intervals, a reduction of over 90% in terms of the
amount of data that needs to be processed in the subsequent substeps
of step II of the methodology. For most benchmarks more than 1,000 ex-
ecution intervals are available in the full data set, so only a few bench-
marks will have intervals appearing multiple times in the sampled data
set. This is a small sacrifice we make to ensure that all benchmarks in
the PCA and cluster analysis all get an equal weight, which we believe
is important in a workload characterization study. Prior to the cluster
analysis in step II, we retain all principal components which show a
standard deviation of one or higher. This results in 19 principal compo-
nents, which collectively contain 84.81% of the total variance observed
in the 90 original microarchitecture-independent workload character-
istics. Thus, we will obtain relatively coarse-grained prominent phase
behaviors.

Figure 2.8 shows the coverage of the 100 largest clusters obtained
with k-means clustering, for different values of the total number of
clusters k. The largest 100 out of 300 clusters obtained by applying
k-means clustering cover 89.61% of the entire set of 100 M-instruction
execution intervals, which matches our preset goal. Figure 2.9 shows
the mean in-cluster variance for the same cluster configurations. Clus-
tering to more than 300 clusters only marginally improves the mean
in-cluster variability relative to the loss in coverage, further motivat-
ing this selected setting. We will study the clustering of the execution
intervals into these 300 clusters in detail in Section 2.3.2.

38
Phase-level Microarchitecture-Independent

Workload Characterization

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

100	 300	 500	 700	 900	

m
ea
n	
in
-‐c
lu
st
er
	 v
ar
ia
nc
e	

#	 clusters	

Figure 2.9: Mean in-cluster variance for different numbers of clusters.

Identifying the key workload characteristics

The next step in the methodology is to identify a set of key microarchi-
tecture-independent workload characteristics. The genetic algorithm
was configured to evolve a single population of 500 entities with an
archive of 100 entities, using a crossover rate of 85% and a mutation
rate of 15%. For crossover, we use crossover mixing with a mixing rate
of 25%, while mutation is done using multi-point drift with a control
parameter value of 0.257. The algorithm reached convergence in just
32 generations or less for each number of selected workload character-
istics. We found these empirically determined settings to yield good
results, both in terms of the quality of solutions and the required explo-
ration time. We ran the genetic algorithm multiple times, each time for
a fixed number of workload characteristics to select. That way we can
trade off the distance correlation ρe and the number of retained charac-
teristics, and also easily compare the quality of the key workload char-
acteristics with those obtained using the correlation elimination tech-
nique.

Figure 2.10 shows the quality of the sets of key workload character-
istics obtained using both correlation elimination and the genetic algo-
rithm, in terms of the fitness score as defined in Section 2.2.3 and the
Pearson correlation coefficient ρe of the distances between all pairs of
phase representatives.

These results support the claims in Section 2.2.3 about the greedy
nature of the correlation elimination technique. The pair-wise distances

7See Section A.2.

2.3 Application: Comparing phase-level workload behavior
across benchmark suites 39

(a) fitness = ρe ·
1− ne

N

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0	 5	 10	 15	 20	 25	 30	

fit
ne

ss
	

#	 retained	 characteris8cs	 (ne)	

	 correla8on	 elimina8on	 	 gene8c	 algorithm	

(b) Pearson corr. coef. (ρe)

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

0	 5	 10	 15	 20	 25	 30	

Pe
ar
so
n	
co
rr
.	 c
oe

f.	

#	 retained	 characteris9cs	 (ne)	

	 correla9on	 elimina9on	 	 gene9c	 algorithm	

Figure 2.10: Comparison of the sets of key workload characteristics obtained
with correlation elimination and the genetic algorithm. The fitness score for 1
up to 30 retained key workload characteristics is shown on the top graph, the
Pearson correlation coefficient is shown in the bottom graph.

40
Phase-level Microarchitecture-Independent

Workload Characterization

Table 2.2: Set of 10 key workload characteristics selected by the genetic algo-
rithm, with a correlation coefficient of the pair-wise distances between phase
representatives of 0.8188.

id label key workload characteristic

k1 ilp 64 amount of ILP for instr. window of size 64
k2 ratio string ratio of string instructions
k3 ratio nop ratio of NOP instructions
k4 instr ftprnt 64b number of unique 64-byte blocks touched

(instruction stream)
k5 prob cold mem prob. cold memory read operations
k6 prob LRU dist lt 2 prob. LRU stack distance ≤ 2
k7 prob LRU dist lt 8k prob. LRU stack distance ≤ 213

k8 prob lw stride lt 64 prob. local mem. write stride ≤ 82

k9 prob lw stride lt 256k prob. local mem. write stride ≤ 86

k10 prob gw stride eq 0 prob. global mem. write stride ≤ 0

obtained using the sets of key workload characteristics retained with
correlation elimination show significantly lower correlation coefficients
with the distances obtained using the full set of workload characteris-
tics compared to those obtained with the genetic algorithm (see Fig-
ure 2.10b). Naturally, this also results in significantly lower fitness
scores when the factor which rewards smaller sets of key workload
characteristics is taken into account.

Another interesting observation is the effectiveness of the reward
factor in the fitness score. Figure 2.10b shows that the distance corre-
lation ρe ramps up fairly quickly initially, as more key workload char-
acteristics are included, but then starts flattening beyond 10 key work-
load characteristics. The fitness score shown in Figure 2.10a captures
this well; the set of 10 key workload characteristics obtained using the
genetic algorithm yields a fitness score very close to the highest fitness
score, and including more characteristics beyond 15 only lowers the fit-
ness, since the additional gain in the correlation of the distances does
not outweigh the larger number of selected characteristics.

Thus, we retain the 10 workload characteristics identified using the
genetic algorithm in step IV of the methodology, which results in a cor-
relation coefficient ρe of 0.8188. Table 2.2 lists the selected key microar-
chitecture-independent workload characteristics. Next to the amount
of ILP (k1) , the ratio of string (k2) and NOP instructions (k3) and the
instruction memory footprint (k4), a large part of the key workload

2.3 Application: Comparing phase-level workload behavior
across benchmark suites 41

characteristics concern the temporal locality of memory read accesses
(k5 − k7) and the spatial locality of memory write accesses (k8 − k10),
which suggests the memory access patterns of the 77 workloads stud-
ied are quite different.

Visualizing the prominent phase-level workload behavior

The final step of the methodology is to use this set of key workload
characteristics to visualize the 100 most prominent phase behaviors
using kiviat diagrams (see Figures 2.11, 2.12 and 2.13). We organize
the kiviat diagrams in three groups. We make a distinction between
benchmark-specific phase behaviors which stem from a single bench-
mark, suite-specific phase behaviors which stem from multiple bench-
marks from a single benchmark suite, and mixed phase behaviors which
stem from different benchmarks from multiple benchmark suites.

Each kiviat diagram is accompanied with a legend specifying the
relevant benchmarks for the presented phase behavior and the percent-
age of their total runtime for which the particular phase behavior is
representative. The pie chart indicates the weight of each benchmark
in the prominent phase behavior. For example, the leftmost kiviat di-
agram in the first row of Figure 2.13 shows the phase behavior that is
present in both the wrf and zeusmp benchmarks. About 10% of the ex-
ecution intervals represented by this phase behavior stem from the wrf
benchmark, and capture 2.72% of the runtime behavior of wrf; the re-
maining intervals stem from the zeusmp benchmark, and collectively
represent almost 66% of the runtime behavior of that benchmark.

Discussion

Several interesting observations can be made from these kiviat dia-
grams when comparing the most significant phase behaviors.

Unique phase behavior The benchmark-specific kiviat diagrams rep-
resent unique phase behaviors not observed in other benchmarks. The
BioPerf, SPECint2006 and SPECfp2006 benchmark suites, and to a
lesser extent also the SPECint2000, SPECfp2000 and BioMetricsWork-
load benchmark suites, exhibit a number of unique phase behaviors
(see Figures 2.11 and 2.12), and the kiviat plots provide insight into
why these behaviors are unique. For example, the runtime behavior

42
Phase-level Microarchitecture-Independent

Workload Characterization

 1) h264refCPU2006: 71.22%
 2) other (2)

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1 2

 finger: 55.25%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 face: 77.72%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) libquantum: 54.24%
 2) other (1)

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1 2

 1) sjeng: 50.56%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 sjeng: 49.40%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 gobmk: 57.16%

1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) libquantum: 38.38%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) astar: 64.17%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) finger: 31.86%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) xalancbmk: 55.89%
 2) other (2)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 gobmk: 35.72%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 omnetpp: 93.78%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) h264refCPU2006: 15.22%
 2) other (7)

1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

2

 1) perlbench: 17.33%
 2) other (3)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) soplex: 48.40%
 2) other (4)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) perlbench: 16.62%
 2) other (2)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) hand: 33.01%
2) other (4)

1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

2

1) perlbench: 15.19%
2) other (7)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) finger: 12.88%
2) other (3)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) hand: 30.31%
2) other (3)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) twolf: 99.83%
2) other (1)

1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

2

 bzip2CPU2006: 11.12%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) bzip2CPU2006: 10.93%
2) other (3)

1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

2

 1) bzip2CPU2006: 10.40%
 2) other (2)

1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

2

 1) gccCPU2006: 20.13%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

bzip2CPU2006: 9.21%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

perlbmk: 60.42%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 sixtrack: 98.27%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 mgrid: 74.91%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) apsi: 65.51%
2) other (5)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 applu: 48.58%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

SP
EC

in
t2
00
0

Bi
oM

et
ric
sW

or
ko
ad

SP
EC

in
t2
00
6

 1) perlbench: 18.00%
 2) other (3)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

SP
EC

fp
20
00

benchmark-specific

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

ratio_nop
ratio_string
ilp_64
prob_gw_stride_eq_0
prob_lw_stride_lt_256k

instr_ftprnt_64b
prob_cold_mem

prob_LRU_dist_lt_2
prob_LRU_dist_lt_8k
prob_lw_stride_lt_64max mean min

Figure 2.11: Kiviat plots (part I) representing the prominent phase behaviors.

2.3 Application: Comparing phase-level workload behavior
across benchmark suites 43

benchmark-specific

1) calculix: 74.16%
2) other (2)

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

21

1) gamess: 53.56%
2) other (1)

21

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) cactusADM: 99.63%
2) other (1)

21

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 namd: 99.94%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) leslie3d: 57.16%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) sphinx3: 69.82%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) gamess: 38.08%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 bwaves: 44.38%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) bwaves: 43.08%
 2) other (2)

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1 2

 1) leslie3d: 31.60%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) lbm: 77.74%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) povray: 99.98%
 2) other (3)

1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 2

 1) wrf: 23.39%
 2) other (2)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) GemsFDTD: 37.98%
 2) other (2)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) sphinx3: 30.08%
 2) other (2)

1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

2

 1) tonto: 27.88%
 2) other (8)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) tonto: 27.13%
 2) other (6)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) GemsFDTD: 28.02%
 2) zeusmp: 0.77%

1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

2

 1) gromacs: 36.85%
 2) other (3)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 calculix: 9.34%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) gromacs: 32.95%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) dealII: 32.90%
 2) other (2)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) wrf: 14.14%
 2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 calculix: 7.91%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 milc: 38.52%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 milc: 28.73%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) dealII: 14.56%
2) other (2)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) milc: 22.82%
2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 bwaves: 6.74%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

Fasta: 52.54% Fasta: 44.05%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 Grappa: 59.93%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 Grappa: 40.07%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 Phylip: 60.60%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) Fasta: 3.40%
 2) other (3)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) Phylip: 31.62%
 2) other (3)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) Predator: 54.87%
2) other (1)

1 2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 HmmerBioPerf: 54.21%

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

Bi
oP
er
f

SP
EC

fp
20
06

benchmark-specific

Figure 2.12: Kiviat plots (part II) representing the prominent phase behaviors.

44
Phase-level Microarchitecture-Independent

Workload Characterization

 1) bwaves: 2.76%
 2) calculix: 1.48%
 3) tonto: 14.72%
 4) wrf: 12.80%
 5) other (6)

1
2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

3

4

5

 1) wrf: 15.40%
 2) zeusmp: 1.27%
 3) other (2)

1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

2
3

 1) GemsFDTD: 20.78%
 2) bwaves: 2.14%

1

2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) GemsFDTD: 4.51%
 2) bwaves: 0.44%
 3) cactusADM: 0.22%
 4) leslie3d: 11.22%
 5) other (1)

1

4

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

23

5

 1) calculix: 0.30%
 2) gamess: 7.33%
 3) other (7)

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1
2 3

1) gromacs: 0.83%
2) wrf: 4.35%
3) zeusmp: 5.64%
4) other (4) 1

2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

3

4

1) gccCPU2006: 0.51%
2) perlbench: 13.94%

12

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) GemsFDTD: 6.26%
2) zeusmp: 4.30%

1

2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) calculix: 2.58%
2) gamess: 0.06%
3) other (1)

2
1 3

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) calculix: 0.04%
2) gccCPU2006: 0.26%
3) wrf: 0.11%
4) xalancbmk: 16.15%
5) other (6) 2

1
3

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 4 5

SP
EC

fp
20
06

SP
EC

in
t2
00
6

mixed

1) HmmerBioPerf: 28.34%
2) hmmerCPU2006: 99.99%
3) other (1) 2

1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

3

 1) Tcoffee: 13.60%
 2) tonto: 9.97%
 3) wrf: 8.52%
 4) other (8) 1

2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

3

4

 1) gait: 3.66%
 2) dealII: 0.40%
 3) tonto: 19.76%
 4) other (5) 12

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

3 4

 1) ammp: 13.71%
 2) gromacs: 27.87%
 3) other (2) 1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

2 3

 1) bzip2CPU2006: 16.00%
 2) calculix: 0.56%
 3) other (3) 1

2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

3

 1) h264refCPU2006: 9.23%
 2) h264MediaBenchII: 75.60%
 3) other (1) 1

2
3

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) bzip2CPU2000: 2.83%
 2) dealII: 17.64%
 3) h264refCPU2006: 0.36%
 4) other (6)

3
2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

14

 1) apsi: 24.16%
 2) wrf: 5.68%
 3) other (4) 1

2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

3

1) face: 4.77%
2) gait: 60.91%
3) fma3d: 1.74%
4) perlbmk: 2.14%
5) calculix: 0.12%
6) other (3)

1

2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

45
6

3

1) apsi: 2.65%
2) bwaves: 0.11%
3) zeusmp: 14.14%

1
2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 3

1) apsi: 5.56%
2) lucas: 2.30%
3) GemsFDTD: 1.87%
4) calculix: 0.11%
5) wrf: 4.29%
6) zeusmp: 1.48%
7) other (1)

1
2

5

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

34

6
7

1) astar: 0.25%
2) dealII: 13.33%

12

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

 1) ammp: 71.56%
 2) gromacs: 0.80%
 3) other (1) 1

2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

3

 1) calculix: 0.06%
 2) omnetpp: 3.88%
 3) xalancbmk: 17.61%
 4) other (5) 1

2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

3 4

1) gait: 0.85% 8) wrf: 2.91%
2) Tcoffee: 1.09% 9) other (11)
3) facerec: 4.13%
4) perlbmk: 0.71%
5) bzip2CPU2006: 0.94%
6) calculix: 0.30%
7) gccCPU2006: 3.09%

3

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

2
1

45
7

8
9

6

1) bzip2CPU2000: 8.32%
2) bzip2CPU2006: 7.58%
3) h264refCPU2006: 0.07%
4) other (1)

2
1

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

34

1) bzip2CPU2000: 0.84%
2) bzip2CPU2006: 8.47%
3) other (3)

2
1
3

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

1) fma3d: 68.30%
2) calculix: 0.04%
3) zeusmp: 0.29%
4) other (4) 21

3

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

4

 1) wrf: 2.72%
 2) zeusmp: 65.97%

1
2

mapped

ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0
ilp_win_size_64
ratio_string

ratio_nopinstr_stream_64byte_blocks
cold_mem_ref_ratio

mem_reuse_dist_ratio_lt_2
mem_reuse_dist_ratio_lt_8k

prob_mem_write_local_stride_64 prob_mem_write_local_stride_262144
prob_mem_write_global_stride_0

suite-specific

Figure 2.13: Kiviat plots (part III) representing the prominent phase behaviors.

2.3 Application: Comparing phase-level workload behavior
across benchmark suites 45

of twolf is characterized by fairly average behavior except for low tem-
poral locality, indicated by the low probability of LRU stack distance
being smaller than 8 k, and the lack of very good per-instruction spa-
tial locality for memory writes, indicated by the low probability of the
stride distance being smaller than 64 (see Figure 2.11, bottom row).
Another example is the kiviat diagram that represents the runtime be-
havior of povray (see Figure 2.12, third row from below). It is clear
that povray shows more extreme behavior, as indicated by the kiviat
diagram which shows a low amount of available ILP, a large instruc-
tion memory footprint and a (very) low spatial locality for local write
operations.

Per-benchmark phase behavior These kiviat plots also present an in-
teresting view on per-benchmark phase behavior. One interesting ex-
ample is the runtime behavior of Fasta, which is split up into two ma-
jor phases. The kiviat plots provide an easy-to-understand view on
how these unique phase behaviors differ from each other: the two first
diagrams in Figure 2.12 reveal three differences in terms of the key
workload characteristics. The most striking difference is observed in
the ratio of NOP instructions in both phase behaviors; the first phase
shows a relatively low ratio, while in the second phase the ratio is
fairly large, i.e., higher than the mean ratio plus one standard devia-
tion. The two other differences are observed in terms of per-instruction
spatial locality of memory write operations for small stride distances
and the amount of available ILP. For finger, we identify three major
unique phase behaviors (see Figure 2.11, top two rows). Various dif-
ferences are again easily recognized between these phases, in terms of
the instruction memory footprint, the amount of available ILP and the
temporal locality.

Cross-benchmark phase behavior The suite-only phase behaviors re-
veal a limited overlap between several SPECfp2006 workloads and also
between two SPECint2006 workloads, but only involves a very small
fraction of the runtime behavior of one of the benchmarks in most cases.

The mixed phase behaviors are observed across different bench-
marks from various benchmark suites; in general, these mixed clus-
ters represent more average behavior than the benchmark-specific and
suite-specific clusters, with some notable exceptions. One such excep-
tion is the phase behavior which is shared between the hmmer bench-

46
Phase-level Microarchitecture-Independent

Workload Characterization

0	

25	

50	

75	

100	

125	

150	

175	

Bio
Pe
rf	

BM
W
	

M
ed
iaB
en
ch
II	

SP
EC
int
20
00
	

SP
EC
fp
20
00
	

SP
EC
int
20
06
	

SP
EC
fp
20
06
	

nu
m
be

r	
of
	 c
lu
st
er
s	

Figure 2.14: Workload space coverage per benchmark suite.

marks part of the BioPerf and SPEC CPU2006 benchmark suites, which
shows a large amount of available ILP and a very small probability
of the LRU stack distance being smaller than 2. Other examples are
the phase behavior shared between the h264 and h264ref benchmarks,
and the astar and dealII benchmarks. Some of the mixed phase behav-
iors also only involve just a very small fraction of one of the workloads
involved. For applications that are part of multiple benchmark suites,
such as bzip2, h264/h264ref and hmmer just a partial overlap of the
phase behavior is observed, which suggests that a different version of
the application or different types of input files significantly affect the
runtime behavior.

2.3.2 Coverage, diversity and uniqueness of benchmark suites

We now look into the coverage, diversity and uniqueness of the various
benchmark suites; for this purpose, we now consider all phase-level
behaviors (see Section 2.2.3), not just the most prominent ones as in the
previous section. Subsequently, we discuss the implications of these
observations for simulation-based performance evaluation.

2.3 Application: Comparing phase-level workload behavior
across benchmark suites 47

0%	

20%	

40%	

60%	

80%	

100%	

0	 10	 20	 30	 40	 50	

cu
m
ul
a0

ve
	 c
ov
er
ag
e	

number	 of	 clusters	

BioPerf	 BMW	 MediaBenchII	 SPECint2000	
SPECfp2000	 SPECint2006	 SPECfp2006	

Figure 2.15: Cumulative coverage per benchmark suite as a function of the
number of clusters.

0%	

20%	

40%	

60%	

80%	

100%	

Bio
Pe
rf	

BM
W
	

M
ed
iaB
en
ch
II	

SP
EC
int
20
00
	

SP
EC
fp
20
00
	

SP
EC
int
20
06
	

SP
EC
fp
20
06
	

%
	 u
ni
qu

e	
be

ha
vi
or
	

Figure 2.16: Fraction of a benchmark suite that represents unique program
behavior not observed in the other benchmark suites.

Coverage of the workload space

First, we quantify a benchmark suite’s workload space coverage, or
how much a benchmark suite covers the entire workload space. Figure
2.14 shows the number of clusters (out of the 300) that represent some
part of the benchmark suite, e.g., 154 and 80 of the clusters represent
(at least one interval from) SPECint2006 and SPECfp2006, respectively.

48
Phase-level Microarchitecture-Independent

Workload Characterization

We observe that the SPEC CPU2000 and CPU2006 integer benchmarks
cover the largest part of the workload space, followed by floating-point
benchmarks of the same suites. This reflects SPEC CPU’s property
of being a general-purpose benchmark suite. Note that the CPU2006
suites cover a broader part of the workload space than the CPU2000
suites. The emerging benchmark suites, BioPerf, BioMetricsWorkload
and MediaBench II cover a narrower part of the workload space, i.e.,
they deliver significantly less phase behaviors, reflecting the fact that
these benchmark suites are tied to a specific application domain.

Benchmark suite diversity

Next, we quantify the diversity within a benchmark suite. This is done
by computing the cumulative number of clusters needed to represent a
given fraction of the given benchmark suite. The results are shown in
Figure 2.15: the cumulative coverage is shown per benchmark suite as a
function of the number of clusters. For example, this graph shows that
about 20 clusters are required to cover 72% of the SPECfp2006 bench-
mark suite; or, only 5 clusters are required to cover 88% of the BioPerf
benchmark suite. The lower the curve for a given benchmark suite,
the more clusters are required to cover a given percentage of the entire
benchmark suite, and thus the higher the diversity. We observe that
the domain-specific benchmark suites show a relatively low diversity
compared to the general-purpose benchmark suites.

We thus conclude that BioPerf, BioMetricsWorkload and Media-
Bench II cover a much narrower part of the workload space than SPEC
CPU, and in addition, the number of distinct behaviors within these
benchmark suites is much smaller than for SPEC CPU. This analysis
thus provides experimental evidence for the intuitive understanding
that domain-specific benchmark suites represent a smaller part of the
workload space than general-purpose benchmark suites do.

Uniqueness of each benchmark suite

We now quantify a benchmark suite’s uniqueness with respect to the
other benchmark suites. To do so, we compute the fraction of a given
benchmark suite for which the relevant phase behaviors are specific to
that particular benchmark suite, i.e., which do not represent any behav-
ior of benchmarks from other benchmark suites (see Figure 2.16). For
example, 93% of the BioPerf benchmark suite execution is represented

2.4 Related work 49

by either benchmark-specific or suite-specific clusters. In other words,
93% of the BioPerf benchmark suite exhibit unique program behavior
not observed in other benchmark suites. This is the highest fraction ob-
served among the benchmark suites analyzed. Also BioMetricsWork-
load exhibits a fairly large fraction of unique program behavior with
67%, as opposed to MediaBench II, which only contains 11% of phase
behavior not observed in other benchmark suites. The floating-point
SPEC CPU benchmarks exhibit more unique behavior than the inte-
ger benchmarks, for both CPU2000 and CPU2006, but significantly less
than the BioPerf and BioMetricsWorkload benchmarks.

Implications

The results obtained in the previous sections present a number of impli-
cations to performance evaluation. First, since SPEC CPU2006 exhibits
a larger diversity than its predecessor (see Figure 2.15), this implies that
a larger number of representative samples or simulation points need to
be simulated for CPU2006 as for CPU2000 in order to cover all ma-
jor phase-level behaviors in the benchmark suite. Second, both BioPerf
and BioMetricsWorkload show a large fraction unique behavior not ob-
served in the other benchmark suites. Therefore, including these bench-
mark suites into the experimental setup will yield additional insights.
This is not the case for MediaBench II however; also considering this
suite would only add to the simulation time required.

2.4 Related work

There exists a large body of work on workload characterization and its
applications, which we summarize in this section.

Workload characterization in general

Next to traditional workload characterization studies, various authors
have looked into the redundancy that is often present in benchmark
suites, and use various subsetting techniques to counter this redun-
dancy, e.g., to limit simulation time [100, 108]. Other work in workload
characterization focuses on understanding how benchmarks evolve
over time. One example is a study on how four subsequent genera-
tions of the SPEC CPU benchmark suite (CPU89, CPU92, CPU95 and

50
Phase-level Microarchitecture-Independent

Workload Characterization

CPU2000) have evolved [66]. In that study, it is concluded that none
of the inherent workload characteristics changes as dramatically as
the dynamic instruction count. It was also observed that the temporal
locality has become increasingly poor over time, while other charac-
teristics have remained more or less the same. Another study looked
into how benchmark drift affects processor design [109]. There, the
authors conclude that benchmark drift can have a significant impact on
the performance of next generation of microprocessors if the design of
the next generation is driven solely by yesterday’s benchmarks. This
observation also motivates the work presented in this chapter, namely
that an accurate workload characterization methodology is required
for comparing emerging workloads against existing workloads, so that
the microprocessors of the next generation perform well on future
workloads.

Microarchitecture-independent workload characterization

Earlier work has recognized the strong correlation between the code
that is executed and performance [6, 69, 70, 84, 93]. The SimPoint
tool builds on this observation by using code signatures to select sam-
pling units to be used during sampled simulation [93]. This is done
by exploiting the fact that execution intervals that execute similar code
stress the microprocessor in similar ways, i.e., they exhibit similar
microarchitecture-dependent workload characteristics such as cache
miss rates, branch misprediction rates, CPI, etc. Thus, code signatures
allow for identifying phases in workloads, independently of the mi-
croarchitecture. However, because these code signatures are tied to the
particular program being run, they can not be used for comparing the
inherent workload behavior of different programs.

Therefore, researchers use workload characteristics instead for com-
paring programs. Previous work has characterized benchmarks at the
programming level by counting the number of assignments, the num-
ber of if-then-else statements, the number of function calls, the number
of loops, etc [102], or uses various workload characteristics at the For-
tran programming language level such as operation mix, number of
function calls, number of address computations, etc [89].

More recent work on studying program similarity uses statisti-
cal data analysis techniques on lower-level program characteristics.
Some of these studies advocate the use of microarchitecture-indepen-
dent workload characteristics solely [35, 86], as we have done in Sec-

2.4 Related work 51

tion 2.1.3. Others use a mixture of microarchitecture-dependent and
microarchitecture-independent characteristics [36]. A completely dif-
ferent approach for identifying similarity across workloads is based
on the Plackett-Burman design of experiments [107]. In this work,
benchmarks are classified based on how they stress the same processor
components to similar degrees.

Studying phase-level workload behavior

In recent literature, different approaches have been proposed to iden-
tify program phases. Some work identifies and predicts program phase
behavior based on microarchitecture-dependent characteristics [33].
The advantage of microarchitecture-independent workload character-
ization, as we used in this chapter, is that it applies across different
microarchitectures – this is especially valuable to exploit the program
phase behavior to drive software or hardware optimization.

Several approaches to characterize program phase behavior inde-
pendent of the microarchitecture have been proposed. One approach
proposes to track the instruction footprint to detect transitions between
program phases [32]. Another one is to compute Basic Block Vector
(BBV) code signatures – a BBV computes the number of times a basic
block has been executed in a given instruction interval. Next to show-
ing that BBVs correlate strongly with performance metrics [69], others
relate the phase behavior to methods and loops being executed [59].
Other studies identify phase behavior using other microarchitecture-
independent workload characteristics, such as memory access pat-
terns [70, 92] or a wide variety of workload characteristics [35]. Just
like in the work we presented in this chapter, these approaches have
the advantage over instruction footprints and BBVs that they can be
used to compare the phase behavior of different workloads.

Various researchers have proposed to exploit phase behavior for a
variety of applications. One application to phase analysis is hardware
adaptation for energy saving [13, 32, 59, 95]. The idea there is to adapt
the hardware on a per-phase basis so that energy consumption is re-
duced while not affecting overall performance. Another application is
software profiling and optimization [44, 79]. Yet another application
is simulation acceleration [35, 84, 93] by picking and simulating only
one representative simulation point per phase, as done by the SimPoint
tool.

52
Phase-level Microarchitecture-Independent

Workload Characterization

2.5 Summary

Most workload characterization studies which look into the runtime
program behavior of well-established or emerging workloads limit
themselves to hardware performance counter-based and/or aggregate
workload characterization. In this chapter, we illustrated that major
pitfalls are associated with these approaches. Hardware performance
counter metrics may hide the inherent program behavior. Aggregate
workload characterization fails to capture the time-varying behavior of
workloads.

We presented a phase-level workload characterization methodol-
ogy [52], motivated by said pitfalls. We propose a set of microar-
chitecture-independent workload characteristics that capture the true
inherent runtime behavior of programs, which allow for more infor-
mative workload characterization studies. Using these characteristics,
we subsequently devised a methodology for feasible phase-level work-
load characterization. The key enablers in our proposal are different
machine learning techniques such as Principal Component Analysis,
cluster analysis (k-means clustering), and genetic algorithms. Together,
these techniques allow for capturing the essential information that
is present in a data set of phase-level microarchitecture-independent
workload characteristics for a large collection of applications. Using
our step-wise methodology, a set of key workload characteristics is
identified which can be used to visually represent a limited set of
phase behaviors which cover the largest part of the entire data set.

The proposed methodology was applied to a collection of microar-
chitecture-independent workload characteristics for execution inter-
vals of 77 benchmarks taken from 5 different benchmark suites, result-
ing in a data set of 90 workload characteristics for over one million data
points. The 100 most prominent phase behaviors, which collectively
cover almost 90% of the entire workload space, were visually repre-
sented using kiviat diagrams showing just 10 key microarchitecture-
independent workload characteristics, which capture the major differ-
ences in phase behavior. Studying these prominent phase behaviors in
terms of coverage of the workload space, and diversity and uniqueness
of each the benchmark suites confirmed the general-purpose nature of
the SPEC CPU benchmark suites, and yields valuable insights on the
domain-specific benchmark suites BioPerf, BioMetricsWorkload and
MediaBench II.

Chapter 3

Analyzing Performance Trends

The purpose of computing is insight, not numbers.
Richard W. Hamming

Evaluating the performance of computer systems for a range of ap-
plications, whether it is done through simulation or through real hard-
ware execution, is and will always be a key aspect of computer science
and engineering. This is well recognized, and significant efforts have
been made to make the process of performance evaluation more rigor-
ous, for example by making standardized benchmark suites available
that can be used by both academia and industry.

Well-established organizations such as SPEC1, EEMBC2 and TPC3

have taken this one step further. They not only provide industry-
standard benchmark suites for workloads, but they also collect perfor-
mance numbers obtained with these benchmark suites on a wide range
of computer systems and make these numbers publicly available. For
example, SPEC provides performance numbers for benchmarks from
various application domains such as compute-intensive workloads,
Java workloads, graphics, web servers, mail servers, network file sys-
tems, etc.

Usually, the data that is made available consists of performance
numbers for a number of individual benchmarks on a potentially large
set of commercially available computer systems. Collectively, these
performance numbers provide a wealth of information. For example,

1http://www.spec.org
2http;//www.eembc.org
3http://www.tpc.org

54 Analyzing Performance Trends

for the SPEC CPU2000 benchmark suite, performance numbers are
available for 26 benchmarks for over 1,000 machines.

Given the large amount of data provided, it is often difficult to
quickly gain insight from the wealth of performance data, i.e., it is
hard to see how different systems compare against each other for dif-
ferent types of applications. Thorough performance analysis using a
straightforward process of studying simple plots of the performance
data available for tens of benchmarks and hundreds to thousands of
computer systems in a spreadsheet is both insufficient and too time
consuming. In this chapter, we present a methodology for the compre-
hensive analysis of a potentially large data set of performance numbers.
The methodology presented relies on the statistical data analysis tech-
nique Principal Component Analysis, which is used in this chapter as
a feature extraction technique.

3.1 Processor Performance Visualizer

In order to quickly and easily recognize performance trends from a
database containing performance numbers for several benchmarks
which were run on a large number of computer systems, we present
the Processor Performance Visualizer (PPV) methodology. The key
aspect of this methodology is the extraction of underlying dimensions
in the data set using Principal Component Analysis, which we discuss
in Section 3.1.1. Subsequently, the computer systems are represented
in a low dimensional space constructed using selected principal com-
ponents. Using an interactive tool which allows for easy navigation in
a 3D-space representing the performance data allows for easily recog-
nizing performance trends, as described in Section 3.1.2. Combining
the observed trends with an interpretation of the principal components
enables obtaining insight quickly and easily.

3.1.1 Finding performance trends using PCA

As described in Appendix A.1, Principal Component Analysis (PCA)
can be viewed as a feature extraction technique, which extracts so-
called principal components. These principal components are ordered
according to the amount of variance in the original data set they ex-
plain. Therefore, one can easily capture the major trends in the data set
using just a small number of principal components.

3.1 Processor Performance Visualizer 55

In the context of this chapter, the input to PCA are the performance
numbers for the benchmarks on a set of computer systems. In other
words, the variables are different benchmarks, and the instances are
the computer systems for which performance is being evaluated. PCA
will compute new variables, which represent uncorrelated underly-
ing dimensions. More formally, PCA will transform a data set con-
taining performance numbers for p benchmarks S1, S2, . . . , Sp on m
computer systems into p principal components Z1, Z2, . . . , Zp. Each
principal component Zi is a linear combination of the input dimen-
sions Sj , 1 ≤ j ≤ p, i.e., Zi =

∑p
j=1 aijSj , and captures a performance

trend observed across the various computer systems.
An important concern when using PCA for feature extraction is

the interpretability of the principal components. Even though a prin-
cipal component is simply a linear combination of the dimensions of
the original data set, attaching an intuitive meaning to each principal
component can sometimes be surprisingly difficult, as was illustrated
in Section 2.2.3 in the context of workload characterization.

As will become clear in the case studies presented in Sections 3.2
and 3.3, there are certain situations in which the interpretation of prin-
cipal components is relatively easy. When each input dimension ex-
presses the performance of one particular benchmark on different com-
puter systems, it is often sufficient to identify one or more workload
characteristics which discriminate between benchmarks with high fac-
tor loadings aij and those with low factor loadings. This allows for a
concise interpretation of the principal components, which is then ex-
pressed as the average performance for a subset of applications with
certain characteristics.

In the PPV methodology, each of the input dimensions is normal-
ized to a zero mean and unit standard deviation, prior to applying PCA.
This normalization step is required to put the benchmarks on a com-
mon scale. Also, the principal components that are included in the sub-
sequent visualization step are normalized. Without this normalization
step, a principal component that explains a large amount of variation
would completely hide the patterns formed by principal components
that explain less variation.

56 Analyzing Performance Trends

Figure 3.1: A screenshot of the Processor Performance Visualizer interactive
user interface, which shows computer systems as dots in a 3-dimensional
space spanned by principal components.

3.1.2 Interactive visualization

To further facilitate the discovery of interesting patterns and perfor-
mance trends in the data set by looking at the data in terms of selected
principal components, we developed an interactive PPV tool in the
form of a Java applet. The input to the tool consists of the performance
data for all available computer systems, expressed in terms of normal-
ized principal components Z ′i. Next to this, the available meta-data for
each of the computer systems is also fed into the tool. Examples include
the system and components manufacturers, instruction set architecture
(ISA), processor type and family, processor clock frequency, cache sizes,
compiler used to build the benchmark applications, etc.

Using a straightforward user interface, the tool allows for visualiz-
ing the data as points in a 3D space, in terms of three selected principal
components. The user can easily navigate through this performance
space through various actions such as rotation, labeling data points by

3.2 Case study: SPEC CPU2000 57

color, filtering, zooming, selection of data points, etc. A screenshot of
the user interface is shown in Figure 3.1.4

3.2 Case study: SPEC CPU2000

In a first case study which will illustrate the strengths of the Proces-
sor Performance Visualizer methodology described in Section 3.1, we
analyze the base ratio performance numbers available for the SPEC
CPU2000 benchmarks.

The data set of performance numbers for the SPEC CPU2000 bench-
mark was collected by the SPEC consortium during the lifetime of the
benchmark suite – from the last quarter of 1999 to the first quarter of
2007 5. Computer system and processor manufacturers submitted per-
formance reports for the CPU2000 benchmarks each time significant
changes were made to their product line, yielding a wealthy source of
performance data for the general-purpose microprocessors and com-
puter systems produced during that time.

The SPEC CPU2000 benchmark suite consists of 26 benchmarks,
split into two categories: 12 integer (SPECint) benchmarks and 14
floating-point (SPECfp) benchmarks. Performance data is available for
computer systems with a large range of architectures, from server sys-
tems such as Intel Itanium and IBM POWER to desktop systems like
Intel Pentium 4 and AMD Opteron. The microprocessor in these sys-
tems, which is the most important component for compute-intensive
workloads, is implemented in a 500-nm to 65-nm CMOS technology
and has a clock frequency ranging from 250 MHz to 3.8 GHz.

A performance number for one of the benchmarks on a particular
computer system consists of the execution time speedup obtained rela-
tive to a reference system – a Sun Ultra5 10 workstation with a 300 MHz
SPARC processor and 256 MB main memory. The entire data set com-
prises performance numbers for 1,381 and 1,399 computer systems, for
SPECint and SPECfp, respectively. From this, we select the computer
systems for which both base SPECint and SPECfp performance data
were submitted on the same date – this results in a data set containing
performance numbers for 1,123 computer systems. Table 3.1 gives an
overview of the ISAs of these systems.

4The tool is available from http://www.elis.ugent.be/˜kehoste/PPV.
5SPEC CPU2000 was retired in February 2007, and replaced by SPEC CPU2006.

http://www.elis.ugent.be/~kehoste/PPV

58 Analyzing Performance Trends

Table 3.1: The computer systems considered in the SPEC CPU2000 case study,
grouped by ISA.

architecture # machines

Alpha 23
AMD x86 (32-bit) 28
AMD x86 (64-bit) 181
Intel x86 (32-bit) 250
Intel x86 (64-bit) 410
Intel Itanium (IA-64) 43
MIPS 10
PA-RISC 14
PowerPC 83
SPARC64 32
UltraSPARC 49

3.2.1 Interpretation of principal components

Collectively, the first three principal components explain 92.9% of the
total variance observed in the data set; the first principal component
explains 81%, the second principal component explains 7.7%, and the
third principal component explains 4.2% of the total variance. We limit
ourselves to three principal components because they explain most of
the variance observed in the data set while enabling data visualization,
i.e., the major performance trends will be preserved in the 3D space
spanned by these underlying dimensions.

Figure 3.2 shows the factor loadings aij for the first three principal
components. For example, the top graph in Figure 3.2 shows that the
value along the first principal component for a given computer system
is computed as 0.21×Sn,ammp + 0.18×Sn,applu + 0.20×Sn,apsi + 0.13×
Sn,art + . . ., where Sn,b indicates the normalized speedup for bench-
mark b.

Given the fact that the weights along the first principal compo-
nent are approximately the same for all benchmarks, the first princi-
pal component thus represents the average normalized speedup across
all benchmarks. This means that a computer system with a high value
along the first principal component achieves relatively better average
performance than a system with a low value along the first principal
component. The only benchmark that has a relatively small weight
in the first principal component is art; the reason is that the speedup

3.2 Case study: SPEC CPU2000 59

Figure 3.2: Factor loadings for the first three principal components, obtained
by applying PCA to the SPEC CPU2000 data set of performance numbers for
26 benchmarks on 1,123 computer systems.

60 Analyzing Performance Trends

numbers vary widely for art across the various systems, more so than
for any other benchmark. For about 10% of the machines, a speedup
number greater than 8,236 (the maximum speedup number observed
across the other benchmarks) is reported for art, with a maximum of
26,443; none of the other benchmarks show a speedup this large on any
of the machines. The reason for this high speedup range lies in aggres-
sive compiler optimizations [103] applied on some machines. This is
recognized by PCA which assigns a lower factor loading to art in the
first principal component, so that the performance numbers for art do
not dominate the first principal component.

As expected, the most prominent dimension in the data set (the first
and most significant principal component) correlates very well with av-
erage performance — the correlation coefficient between the first prin-
cipal component and the SPECint and SPECfp scores is 0.969 and 0.974,
respectively. This illustrates the huge performance increase achieved
over the 7+ years during which the SPEC CPU2000 performance num-
bers were collected, through various enhancements in compiler sup-
port, architecture and chip technology.

The second principal component gives a positive weight to most
of the floating-point benchmarks and a negative weight to all integer
benchmarks. Hence, a machine with a high score along the second
principal component yields relatively better normalized performance
for the floating-point benchmarks than for the integer benchmarks.
And vice versa, a low value along the second principal component
indicates relatively better normalized integer performance, compared
to floating-point performance. Two floating-point benchmarks, mesa
and wupwise, get a negative weight, while all the other floating-point
benchmarks are assigned a positive weight. This suggests that these
benchmarks stress systems in a similar way as the integer bench-
marks do. This observation is supported by the microarchitecture-
independent workload characteristics. We found the ratio of floating-
point operations and the branch misprediction rates for mesa and
wupwise to be in the range of the integer benchmarks, and to be sig-
nificantly different from the other floating-point benchmarks. More
specifically, mesa and wupwise show fewer floating-point operations
and higher branch misprediction rates than the other floating-point
benchmarks, but similar to the integer benchmarks (see Figure 3.3).

In the third principal component, two benchmarks are assigned a
significantly higher weight than the others, namely art and mcf. Both

3.2 Case study: SPEC CPU2000 61

Figure 3.3: Percentage of floating-point instructions and number of mispre-
dicted branches per instruction (GAg PPM predictor, 12 bit history) for the
SPEC CPU2000 benchmarks. The mesa and wupwise benchmarks differ from
the other SPECfp benchmarks, and lean more towards the values observed for
the SPECint benchmarks.

benchmarks are known to stress the memory hierarchy subsystem
more than any of the other SPEC CPU2000 benchmarks. Figure 3.4
illustrates this using microarchitecture-independent workload charac-
teristics. Both art and mcf exhibit a low probability for the LRU stack
distance to be smaller than 16 K. Taking into account that the LRU
stack distances were measured using cache blocks of 64 bytes, these
probabilities are a good indicator for the number of cache misses per
instruction for a 1 MB sized L2 cache. Thus, computer systems with
a high value along the third principal component yield relatively bet-
ter performance for memory-intensive workloads with poor temporal
data locality than systems with a lower value.

62 Analyzing Performance Trends

Figure 3.4: Probabilities of memory LRU stack distance being smaller than 16
K for the SPEC CPU2000 benchmarks. The low probabilities for art and mcf
show that the memory accesses in these benchmarks exhibit poor temporal
locality.

3.2.2 Discussion

Using the interpretation given to the first three principal components in
the previous section, we now look into some interesting patterns and
performance trends which can be observed. The interactive visualiza-
tion tool described in Section 3.1.2 significantly facilitates finding these
patterns and trends by browsing through the 3D-space spanned by the
principal components. For the purpose of clarity however, we will rely
on traditional 2D scatter plots to highlight the observations made.

Major performance trends

Visualizing the various computer systems in the 3-dimensional space
spanned by principal components (PCs) yields the graphs shown in
Figure 3.5. The 2-dimensional scatter plots show the second PC ver-
sus the first PC, and the third PC versus the first PC. Each dot in these
graphs represents one system; there are 1,123 systems plotted in each
graph; and the various colors encode various architectures. Many in-
teresting insights can be gained from analyzing Figure 3.5 — we just
give a couple of examples here for the sake of illustration.

The right bottom corner in the PC2 vs. PC1 plot in Figure 3.5 shows
that the Intel x86 64-bit machines yield better average performance for
the integer benchmarks than the other machines. The PowerPC and

3.2 Case study: SPEC CPU2000 63

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3

PC
 2

 (
S
PE

C
in

t
vs

 S
PE

C
fp

)

PC 1 (average performance)

AMD x86 (32-bit)
AMD x86 (64-bit)
DEC Alpha
Fujitsu SPARC64
IBM PowerPC
Intel Itanium (IA64)
Intel x86 (32-bit)
Intel x86 (64-bit)
MIPS
PA-RISC
Sun UltraSPARC

-4

-3

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3

PC
 3

 (
p
er

fo
rm

an
ce

 f
o
r

m
em

o
ry

-i
n
te

n
si

ve
 w

o
rk

lo
ad

s)

PC 1 (average performance)

AMD x86 (32-bit)

AMD x86 (64-bit)

DEC Alpha

Fujitsu SPARC64

IBM PowerPC

Intel Itanium (IA64)

Intel x86 (32-bit)

Intel x86 (64-bit)

MIPS

PA-RISC

Sun UltraSPARC

-4

-3

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3

PC
 3

 (
p
er

fo
rm

an
ce

 f
o
r

m
em

o
ry

-i
n
te

n
si

ve
 w

o
rk

lo
ad

s)

PC 1 (average performance)

AMD x86 (32-bit)
AMD x86 (64-bit)
DEC Alpha
Fujitsu SPARC64
IBM PowerPC
Intel Itanium (IA64)
Intel x86 (32-bit)
Intel x86 (64-bit)
MIPS
PA-RISC
Sun UltraSPARC

Figure 3.5: Visualizing the SPEC CPU2000 performance numbers in terms of
the first three principal components. The colors represent different architec-
tures.

64 Analyzing Performance Trends

-2

-1

0

1

2

3

4

5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

PC
 2

 (
S
PE

C
in

t
vs

 S
PE

C
fp

)

PC 1 (average performance)

0-500

500-1000

1000-1500

1500-2000

2000-2500

2500-3000

3000-3500

-2

-1

0

1

2

3

4

5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

PC
 2

 (
S
PE

C
in

t
vs

 S
PE

C
fp

)

PC 1 (average performance)

0-500

500-1000

1000-1500

1500-2000

2000-2500

2500-3000

3000-3500

SPECfp base

SPECint base

-2

-1

0

1

2

3

4

5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

PC
 2

 (
S
PE

C
in

t
vs

 S
PE

C
fp

)

PC 1 (average performance)

0-500
500-1000
1000-1500
1500-2000
2000-2500
2500-3000
3000-3500

-2

-1

0

1

2

3

4

5

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

PC
 2

 (
S
PE

C
in

t
vs

 S
PE

C
fp

)

PC 1 (average performance)

0-500
500-1000
1000-1500
1500-2000
2000-2500
2500-3000
3000-3500

Figure 3.6: Visualizing PC2 vs. PC1 obtained from the SPEC CPU2000 per-
formance numbers. The colors reflect ranges of average SPEC numbers: the
top and bottom graphs use colors showing average CINT2000 and CFP2000
speedup numbers, respectively.

3.2 Case study: SPEC CPU2000 65

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3

PC
 2

 (
S
PE

C
in

t
vs

 S
PE

C
fp

)

PC 1 (average performance)

< 500 MHz
500 MHz - 1.0 GHz
1.0 GHz - 1.5 GHz
1.5 GHz - 2.0 GHz
2.0 GHz - 2.5 GHz
2.5 GHz - 3.0 GHz
3.0 GHz - 3.5 GHz
3.5 GHz - 4.0 GHz

brainiacs

speed demons

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3

PC
 2

 (
S
PE

C
in

t
vs

 S
PE

C
fp

)

PC 1 (average performance)

< 500 MHz
500 MHz - 1.0 GHz
1.0 GHz - 1.5 GHz
1.5 GHz - 2.0 GHz
2.0 GHz - 2.5 GHz
2.5 GHz - 3.0 GHz
3.0 GHz - 3.5 GHz
3.5 GHz - 4.0 GHz

Figure 3.7: Visualizing the SPEC CPU2000 performance numbers in terms of
the first three principal components. The colors reflect ranges of processor
clock frequencies.

Itanium machines perform better on the floating-point benchmarks, see
the upper part in the PC2 vs. PC1 plot. This is also illustrated in Fig-
ure 3.6 where the various computer systems are shown in terms of PC1
and PC2 categorized by average SPEC performance number; the top
and the bottom graphs show the average SPEC performance numbers
for the integer and floating-point benchmarks, respectively. The inter-
esting observation here is that the performance wave of increased per-
formance for the integer benchmarks has a different orientation than
the performance wave for the floating-point benchmarks. This con-
firms the interpretation given to the second principal component as dis-
criminator between systems performing better on integer or floating-
point workloads. Systems in the lower half of the PC1-vs-PC2 graph
obtain better SPECint performance than the systems with roughly the
same value along PC1, i.e., comparable overall average performance, in
the upper half of the graph. Likewise, systems in the upper half of the
graph show higher SPECfp performance compared to overall equally
performing systems in the lower half.

66 Analyzing Performance Trends

Another interesting observation is that the PC3 vs. PC1 plot in Fig-
ure 3.5 shows that although both the PowerPC and Itanium machines
achieve similar average performance for the integer and floating-point
benchmarks — values are obtained in the same range along the first two
principal components — they seem to exhibit very different behavior in
terms of the third principal component. This is due to the PowerPC ma-
chines performing relatively better than the Itanium machines for the
memory-intensive benchmarks with poor temporal data locality (i.e.,
art and mcf). The same is observed when comparing Intel 64-bit versus
AMD 64-bit systems: systems with an Intel processor perform better
than AMD-based systems for memory-intensive workloads.

Figure 3.7 represents the same data in another way, by coloring the
systems by their processor clock frequency. This clearly shows two
groups of machines, namely the speed demons and the brainiacs. The
speed demons achieve high performance mainly through high clock
frequencies; the brainiacs on the other hand achieve high performance
through a high instruction throughput per cycle (IPC) at a relatively
low clock frequency. The speed demons appear to be the Intel and
AMD 64-bit machines; these machines achieve high performance for
the integer benchmarks through their high 2.5+ GHz clock frequencies.
The brainiacs are the PowerPC and Itanium machines which achieve
high performance on the floating-point benchmarks by achieving high
instruction throughput per cycle at moderate clock frequencies of less
than 2.5 GHz.

Intel NetBurst generation

We now look into systems with an Intel processor implementing the
NetBurst architecture, see Figure 3.8. The various computer systems
included are categorized by processor type. This plot clearly shows
the evolution across the various generations of Intel NetBurst-based
processors.

There are a number of interesting observations to be made here.
First, it confirms the general expectation, namely average performance
improves across Intel NetBurst processor generations, i.e., the data
points go from left to right across the different generations. Second, the
different processors within a single generation show a negative slope
in both the PC2 vs. PC1 and PC3 vs. PC1 graphs. This suggests that
increasing the clock frequency within a processor generation (which is
the main contributor to the variation in performance within a proces-

3.2 Case study: SPEC CPU2000 67

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5

PC
 2

 (
S
PE

C
in

t
vs

 S
PE

C
fp

)

PC 1 (average performance)

Pentium 4 (Willamette, 32-bit)

Pentium 4 (Northwood, 32-bit)

Pentium 4 (Prescott, 32-bit)

Pentium 4 (Prescott, 64-bit)

Pentium 4 (Prescott 2M, 64-bit)

Pentium 4 (Cedar Mill, 64-bit)

Pentium 4 Extreme Edition (32-bit)

Pentium 4 Extreme Edition (64-bit)

Pentium D (Presler, 64-bit)

Pentium D (Smithfield, 64-bit)

Pentium M (Dothan, 32-bit)

Pentium Extreme Edition (64-bit)

Xeon (Gallatin, 32-bit)

1.6 GB/s

2.1-2.7 GB/s

3.2 GB/s

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5

PC
 3

 (
p
er

fo
rm

an
ce

 f
o
r

m
em

o
ry

-i
n
te

n
si

ve
 w

o
rk

lo
ad

s

PC 1 (average performance)

Pentium 4 (Willamette, 32-bit)

Pentium 4 (Northwood, 32-bit)

Pentium 4 (Prescott, 32-bit)

Pentium 4 (Prescott, 64-bit)

Pentium 4 (Prescott 2M, 64-bit)

Pentium 4 (Cedar Mill, 64-bit)

Pentium 4 Extreme Edition (32-bit)

Pentium 4 Extreme Edition (64-bit)

Pentium D (Presler, 64-bit)

Pentium D (Smithfield, 64-bit)

Pentium M (Dothan, 32-bit)

Pentium Extreme Edition (64-bit)

Xeon (Gallatin, 32-bit)

-1.5

-1

-0.5

0

0.5

1

-1.5 -1 -0.5 0 0.5 1 1.5

PC
 3

 (
p
er

fo
rm

an
ce

 f
o
r

m
em

o
ry

-i
n
te

n
si

ve
 w

o
rk

lo
ad

s

PC 1 (average performance)

Pentium 4 (Willamette, 32-bit)

Pentium 4 (Northwood, 32-bit)

Pentium 4 (Prescott, 32-bit)

Pentium 4 (Prescott, 64-bit)

Pentium 4 (Prescott 2M, 64-bit)

Pentium 4 (Cedar Mill, 64-bit)

Pentium 4 Extreme Edition (32-bit)

Pentium 4 Extreme Edition (64-bit)

Pentium D (Presler, 64-bit)

Pentium D (Smithfield, 64-bit)

Pentium M (Dothan, 32-bit)

Pentium Extreme Edition (64-bit)

Xeon (Gallatin, 32-bit)

Figure 3.8: Detailed study of the processors that implement the Intel Net-
Burst architecture in terms of the second versus first principal components
(top graph) and third versus first principal components (bottom graph).

68 Analyzing Performance Trends

sor generation) improves performance more for the compute-intensive
and integer benchmarks than for the memory-intensive and floating-
point benchmarks. The reason is that memory-intensive benchmarks
spend more time waiting for memory — increasing clock frequency
does not improve performance as much for memory-intensive applica-
tions as it does for compute-intensive applications. A third interesting
observation is that three sub-generations can be observed within the
Northwood processor generation, see Figure 3.8 (top graph). The three
sub-generations represent machines with different memory bandwidth
characteristics ranging from 1.6 GB/s, to 2.1-2.7 GB/s, up to 3.2 GB/s.

3.3 Case study: SPEC CPU2006

In our second case study, we apply the methodology presented in Sec-
tion 3.1 to SPEC CPU2006, the latest SPEC benchmark suite for general-
purpose workloads. For a detailed overview of the SPEC CPU2006
benchmark suite, we refer to Appendix B.5.

The performance numbers available for the SPEC CPU2006 bench-
marks cover computer systems tested from the 3rd quarter of 2006 to
the last quarter of 2009. Again, this represents a sufficiently wide range
of systems to allow for identifying major performance trends.

The SPEC CPU2006 benchmark suite contains 29 benchmarks, split
up in SPECint (12) and SPECfp benchmarks (17). Our data set contains
the base ratio performance numbers for 1,040 computer systems, which
are again relative to a reference system – mostly identical to the one
used for SPEC CPU2000, but with 2 GB of main memory.

Table 3.2 gives an overview of the architectures of these systems.
The vast majority consists of systems with an x86-64 processor, i.e., Intel
NetBurst/Nehalem/Core or AMD Athlon/Opteron/Phenom/Turion.
Thus, this case study will mainly focus on this group of systems, since
most performance trends will only concern these systems.

3.3.1 Interpretation of principal components

Figure 3.9 shows the factor loadings for the first three principal compo-
nents. Individually, each of these PCs explain 77.7%, 10.7% and 3.1%
of the total variance, respectively, and collectively they explain 91.5%
of the total variance. We will concentrate on just these three principal

3.3 Case study: SPEC CPU2006 69

Figure 3.9: Factor loadings for the first three principal components, obtained
by applying PCA to the SPEC CPU2006 data set of performance numbers for
29 benchmarks on 1,040 computer systems.

70 Analyzing Performance Trends

Table 3.2: The computer systems considered in the SPEC CPU2006 case study,
grouped by ISA.

architecture # machines

Intel NetBurst 18
Intel Core 524
Intel Nehalem 259
AMD Athlon 64 7
AMD Opteron K8 46
AMD Opteron K10 128
AMD Phenom 13
AMD Turion 3
Intel Itanium 19
IBM POWER 10
SPARC64 6
UltraSPARC 7

components, which are sufficient to bring forward interesting perfor-
mance trends.

The weights along the first principal component are again approxi-
mately the same for all benchmarks, and thus also in this case study the
most prominent underlying dimension represents average normalized
speedup across all benchmarks.

The second principal component clearly discriminates between two
groups of benchmarks. Several benchmarks, mostly SPECint work-
loads, obtain positive weights. Other benchmarks, clearly biased to-
wards SPECfp workloads, obtain a negative weight. Figure 3.10 shows
that most of the benchmarks that obtain a negative weight show rela-
tively poor temporal locality: 2% or more of the memory accesses of
these benchmarks correspond with an LRU stack distance over more
than 128k, except for cactusADM. This is a strong indicator for a sig-
nificant amount of long-latency memory accesses. Some benchmarks
also showing poor temporal locality are not given a negative weight
in PC2; the memory-intensity of their program behavior is hidden by
either complex control flow behavior, causing a significant amount of
branch mispredictions (e.g., omnetpp), or very good spatial locality
(e.g., libquantum).

Thus, PC2 captures the differences in system performance for
memory-intensive workloads with poor temporal locality. A computer

3.3 Case study: SPEC CPU2006 71

Figure 3.10: Temporal data locality quantified by the probability of the mem-
ory LRU stack distance being smaller than 128k.

Figure 3.11: Spatial data locality quantified by the probability of the global
load stride distance being smaller than 4096. A high weight in the third prin-
cipal component can be linked to good spatial data locality, a low weight is
observed for benchmarks with poor spatial locality.

system that obtains a high value along the second principal compo-
nent performs better for workloads with good temporal locality, while
systems that show a low value along PC2 yield better performance for
memory-intensive workloads with a poor temporal locality.

For the third principal component, we observe high Pearson corre-
lation coefficients of the group of microarchitecture-independent work-
load characteristics quantifying spatial locality with the factor loadings
of PC3. Figure 3.11 shows that libquantum exhibits very good spatial
locality: the addresses of over 98% of the memory read operations are
within a 4096 boundary of the address of the previous memory read op-
eration. For hmmer however, we observe that only 8% of all memory
read operations access an address even remotely close to the previously
touched address. This is not only a possible cause of a higher cache
miss rate, but could also cause major paging activity, both of which are

72 Analyzing Performance Trends

likely to have a significant effect on performance.
The weights for the third principal component shown in Figure 3.9

match this discrepancy in spatial data locality: libquantum obtains
a high positive weight, while hmmer is given a significant negative
weight. Two other benchmarks that also jump out in terms of weights
in the third principal component, i.e., cactusADM and namd, show no
exceptional spatial data locality in Figure 3.11. However, other factors
such as aggressive prefetching can again affect this significantly both
in beneficial and destructive ways, and may explain the significant
weights for these benchmarks. This analysis suggests that a computer
system with a high value along the third principal component per-
forms better for workloads with good spatial locality than systems
with a similar average performance that show a lower value. Like-
wise, systems that show a low value for PC3 show better performance
for workloads with irregular data access patterns than a performance-
wise competitive system with a higher value along the third principal
component.

3.3.2 Discussion

Visualizing the computer systems in terms of the first three principal
components again allows us to identify interesting performance trends,
see Figure 3.12.

The first most striking observation is the significant shift made by
the Intel Nehalem generation of microprocessors. While the previous
generations of Intel processors, i.e., those implementing the NetBurst
or Core microarchitecture, are mainly yielding better performance for
workloads with good temporal locality, this is apparently not the case
for the Nehalem architecture. Figure 3.12 shows a clear shift towards
lower values along the second principal component for the Nehalem
systems, suggesting that significant improvements in the microarchi-
tecture relieve part of the performance bottleneck for workloads with
poor temporal locality in the NetBurst and Core microarchitecture.
Both the Intel Itanium and IBM POWER systems show lower val-
ues along PC2 compared to (most of) the AMD Opteron and Intel
Core-based systems, indicating that poor temporal locality is less of a
bottleneck in these systems.

Another interesting observation is the direction in which the sys-
tems move in terms of the second principal component as their aver-

3.3 Case study: SPEC CPU2006 73

-6

-5

-4

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

PC
 3

 (
sp

at
ia

l
d
at

a
lo

ca
lit

y)

PC 1 (average performance)

Intel NetBurst
Intel Core
Intel Nehalem
AMD Athlon
AMD Opteron (K8)
AMD Opteron (K10)
AMD Phenom
AMD Turion
Intel Itanium
IBM POWER
SPARC64
UltraSPARC

-4

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

PC
 2

 (
te

m
p
o
ra

l
d
at

a
lo

ca
lit

y)

PC 1 (average performance)

Intel NetBurst
Intel Core
Intel Nehalem
AMD Athlon
AMD Opteron (K8)
AMD Opteron (K10)
AMD Phenom
AMD Turion
Intel Itanium
IBM POWER
SPARC64
UltraSPARC

-6

-5

-4

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

PC
 3

 (
sp

at
ia

l
d
at

a
lo

ca
lit

y)

PC 1 (average performance)

Intel NetBurst
Intel Core
Intel Nehalem
AMD Athlon
AMD Opteron (K8)
AMD Opteron (K10)
AMD Phenom
AMD Turion
Intel Itanium
IBM POWER
SPARC64
UltraSPARC

Figure 3.12: Visualizing the SPEC CPU2006 performance numbers in terms of
the first three principal components. The colors represent different processor
architectures.

74 Analyzing Performance Trends

age performance, captured by the first principal component, improves.
As mentioned before, the largest contributor in improved performance
within a single processor generation is the increased clock frequency.
The up-right slope indicates that increasing the clock frequency mainly
yields improved performance for workloads with good temporal lo-
cality. Indeed, when a particular workload is causing the processor to
stall due to long-latency memory instructions, increasing the clock fre-
quency will yield little performance improvement because it does not
resolve the main performance bottleneck. Note that this is similar to
the performance trend observed for the Intel NetBurst generation of
microprocessors in Section 3.2.

The bottom graph in Figure 3.12 also reveals some interesting per-
formance trends. Different waves of computer systems are observed.
First, the Intel Itanium systems clearly separate themselves from the
others in terms of performance for workloads with low spatial local-
ity, e.g., hmmer. This can be easily explained by the specialized cache
hierarchy, i.e., an L2 data cache of 256 kB and an on-chip L3 cache of
6 MB up to 12 MB. While the IBM POWER systems also provide large
caches, up to 4 MB of L2 cache and 32 MB of off-chip L3 cache, the
emphasis on workloads with a low spatial locality is less outspoken.
The aggressive software prefetching performed by the compiler used
to build workloads on Itanium systems, which results in an efficient
use of the large caches, is presumably one of the reasons for this. An-
other observation is the two clearly separated groups of Intel Nehalem
computer systems. The systems in the upper right part of the bottom
graph all contain a microprocessor of a particular implementation of
the Intel Nehalem generation, i.e., Intel Xeon Gainestown. The other
group consists of systems with other processor implementations of the
Intel Nehalem family. A likely cause of the separation in two distinct
groups is the introduction of the QuickPath Interconnect (QPI), which
replaces the front side bus (FSB).

Figure 3.13 again shows two differently oriented performance
waves when the computer systems are colored by SPECint and SPECfp
rates. The upper graph shows that computer systems that perform bet-
ter for workloads with good temporal locality obtain higher SPECint
rates than systems that perform better, relatively, for workloads with
poor temporal locality. The bottom graph reveals the opposite trend
in terms of SPECfp rate: systems that perform well relatively speak-
ing for programs that suffer from a significant amount of long-latency
memory accesses obtain higher SPECfp rates than the other systems.

3.3 Case study: SPEC CPU2006 75

-4

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

PC
 2

 (
te

m
p
o
ra

l
d
at

a
lo

ca
lit

y)

PC 1 (average performance)

0-5

5-10

10-15

15-20

20-25

25-30

30-35

35-40

40-45

-4

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 0 1 2 3 4

PC
 2

 (
te

m
p
o
ra

l
d
at

a
lo

ca
lit

y)

PC 1 (average performance)

0-5

5-10

10-15

15-20

20-25

25-30

30-35

SPECint

SPECfp

Figure 3.13: Visualizing the SPEC CPU2006 performance numbers in terms
of the first two principal components. The colors reflect ranges of average
SPECint and SPECfp base rate numbers.

76 Analyzing Performance Trends

3.4 Related work

Although interest into using statistics in microprocessor performance
analysis has grown recently, this is the first work providing a compre-
hensive methodology for analyzing performance trends across a large
data set of processor performance numbers.

Lilja [73] describes various statistical data analysis techniques that
can be readily used by computer architects for taking meaningful con-
clusions from large data sets. These techniques include the t-test, lin-
ear regression modeling, design of experiments, etc. The Plackett and
Burman design of experiments, which is a fractional factorial design of
experiments, allows for identifying microarchitecture design parame-
ters that have a large impact on overall performance using a limited
number of simulations [107].

Other uses of statistical techniques are related to the non-determinism
of computer systems which needs to be taken into account when
evaluating performance. It was observed that the performance of
a computer system with multiple single-core processors running a
multi-threaded workload is susceptible to non-deterministic effects,
i.e., subtle changes may lead to different interleavings and interactions
between threads executing on such a system. In order to account for
these non-deterministic effects, a methodology was proposed that in-
troduces non-determinism in deterministic simulators and then uses
statistics for computing confidence bounds [2].

The use of confidence bounds to determine how many sampling
units to take for estimating uniprocessor performance was proposed
by Conte et al. [27]. Others showed that a matched-pair comparison
reduces the number of samples that need to be taken in order to es-
timate a change in performance between alternative processor archi-
tectures [38]. In other work, a statistical approach to selecting multi-
ple starting points for simulating multi-program workloads on multi-
thread processor architectures was used [99].

3.5 Summary

The wealth of performance numbers provided by benchmarking con-
sortiums or corporations complicates understanding general perfor-
mance trends across commercial machines. In this chapter, we pro-
posed a performance analysis methodology and framework based on

3.5 Summary 77

Principal Component Analysis (PCA), a statistical data analysis tech-
nique which we use as a machine learning technique for feature ex-
traction [56]. PCA reduces a large data set into a manageable data
set which facilitates the ease of understanding. Including the set of
microarchitecture-independent workload characteristics in the analy-
sis allows for interpreting each of the principal components in terms of
these workload characteristics, enabling valuable insights.

Applying PCA to the published SPEC CPU2000 and SPEC CPU2006
benchmark suite performance numbers yields various interesting in-
sights in a limited number of plots that summarize the major perfor-
mance trends. This analysis shows that the proposed methodology is a
powerful tool in the toolbox of a performance analyst.

78 Analyzing Performance Trends

Chapter 4

Estimating Relative Computer
System Performance

Prediction is difficult, especially about the future.
Niels Bohr

In benchmarking, the key challenge is to determine the computer
system that yields the best performance for a given application-of-
interest. Ideally, a user’s application-of-interest is his/her best bench-
mark. However, in many practical circumstances the user has to rely
on the performance scores of a standardized benchmark suite for es-
timating the performance of the application-of-interest for a number
of reasons. First, it is too difficult or costly to port the application-of-
interest to a wide range of platforms. Another reason is that there are
many different systems for which the performance needs to be mea-
sured before making a choice about which computer system yields
the best performance for the given application. Of course, purchas-
ing all the systems that are of potential interest just to evaluate their
performance is infeasible.

A popular tool for estimating the performance of software applica-
tions on an unavailable platform is detailed cycle-accurate simulation.
However, next to not solving the porting problem, simulation is very
time consuming and thus ill-suited in practice to tackle this key chal-
lenge in benchmarking.

This motivates us to come up with a different solution to this ubiq-
uitous problem in benchmarking, which is presented in this chapter.
By means of machine learning techniques including a genetic algo-
rithm and k-nearest-neighbors (kNN), we outperform current practice,

80 Estimating Relative Computer System Performance

which relies on average system performance, in ranking a set of com-
puter systems in terms of their respective performance for a particular
application-of-interest.

4.1 Performance estimation framework

The framework we present relies on the performance numbers avail-
able for standardized benchmark suites on the computer systems of our
interest. As a part of our framework we collect microarchitecture-inde-
pendent workload characteristics for the application-of-interest, cap-
turing and quantifying its inherent runtime behavior, and relate it to
the benchmarks in the standardized benchmark suite. We then use the
knowledge of similarity between the inherent program behavior of the
application-of-interest and the corresponding benchmarks to estimate
the performance for the application-of-interest. In other words, we use
the standardized benchmarks as proxies for our application-of-interest.

4.1.1 Relating differences in inherent workload behavior to
performance differences

The key issue in a performance estimation framework that uses pro-
gram similarity based on microarchitecture-independent workload
characteristics is to determine how differences in terms of these work-
load characteristics translate into differences in performance. For this,
we use a genetic algorithm that learns how to rescale the workload
space spanned by the workload characteristics so that the Euclidean
distance in the workload space becomes a good measure for perfor-
mance differences.

Figure 4.1 illustrates the framework that we propose for estimat-
ing the performance based on the similarity in terms of inherent pro-
gram behavior. The framework assumes the availability of a bench-
mark suite. For each of the benchmarks, we collect the microarchi-
tecture-independent workload characteristics as well as performance
numbers for various computer systems. The performance numbers
could be obtained from simulation or from real hardware execution.

Both the workload characteristics and the performance numbers are
then used by a genetic algorithm1 to gradually evolve a set of weights

1See Appendix A.2 for a detailed discussion on genetic algorithms.

4.1 Performance estimation framework 81

benchmark
suite

genetic
algorithm

normalized
µarch.-indep.

chars

performance
numbers

application
of interest

w

weights for
wkld. chars

normalized
µarch.-indep.

chars

workload space

predict
performance based

on benchmarks
 in neighborhood

Figure 4.1: The framework proposed in this chapter for estimating perfor-
mance for an application-of-interest based on microarchitecture-independent
program characteristics.

for each of the workload characteristics. Weighting the workload char-
acteristics is done to tweak the Euclidean distance measure used to
determine the benchmark proxies. This is motivated by the intuitive
notion that different workload characteristics have a different impact
on overall performance than others; e.g., the amount of ILP typically
has a much larger impact on performance than the fraction of integer
instructions.

The genetic algorithm will favor sets of weights, each of which
is represented by a vector of floating-point values, that yield a bet-
ter match between the Euclidean distances obtained for each pair of
benchmarks in terms of the weighted workload characteristics and the
corresponding performance differences. This is done through a leave-
one-out cross-validation mechanism, in which each of the benchmarks
is in turn considered to be the application-of-interest, and its perfor-
mance is estimated based on the performance for the other benchmarks.
The fitness score used by the genetic algorithm is the average relative
estimation error across the set of benchmarks, i.e.,

f =
1
nb

∑
b

pb − p′b
pb

in which pb represents the real performance number for a benchmark b,
p′b is the estimated performance number for that benchmark, and nb is
the number of benchmarks in the training set.

82 Estimating Relative Computer System Performance

4.1.2 Estimating performance for a particular application

After this training step to obtain weights for each of the workload char-
acteristics, we can map the application-of-interest for which we want to
estimate performance in the workload space by weighting its workload
characteristics. This way, we are able to determine the most similarly
behaving benchmarks for the application-of-interest, allowing for esti-
mating the performance of this application.

The actual performance estimation is done through the k-nearest-
neighbors technique, which only takes into account the performance
of the closest benchmarks in the neighborhood of the application-of-
interest. A benchmark that is in the neighborhood of the application-of-
interest is further referred to as a proxy. We estimate the performance of
the application-of-interest as the weighted average of the performance
numbers of the proxies. Weighting for each proxy is done based on the
Euclidean distance between the proxy and the application-of-interest
in terms of the weighted workload characteristics. The weight wp for
a particular proxy p is inversely proportional to the distance dp, and is
computed as

wp =
1

dp ·
∑k

i=1

1
di

with k the number of retained proxies for the application-of-interest.
Note that the sum of all weights wi (i in [1, k]), is ensured to be one by
normalizing each weight with respect to the sum of all proxy weights.

We focus on estimating speedups relative to a base system, rather
than estimating raw performance numbers. Estimating relative perfor-
mance differences often suffices in practice, for example to rank differ-
ent computer systems. The estimated speedup s of the application-
of-interest is computed as the weighted harmonic average over the
speedups of the proxies:

s =
1∑k

p=1

wp

sp

4.1.3 Discussion

An inherent limitation of this performance estimation framework is
that accurate performance estimation is difficult for an application-of-
interest that is isolated in the workload space. This would indicate

4.2 Experimental evaluation 83

that the application-of-interest is dissimilar to all of the programs in the
benchmark suite in terms of its inherent workload behavior. Hence, it is
to be expected that an accurate performance estimation will be difficult
to obtain based on the almost non-existing similarity of the application-
of-interest with the programs in the benchmark suite.

As a result, an important issue to our performance estimation
framework is which programs to select for inclusion in the bench-
mark suite, i.e., the benchmark suite should be diverse enough to cover
a wide range of program behaviors. In the experimental evaluation
section, we use SPEC CPU as our benchmark suite because the SPEC
website records performance numbers for all of the SPEC CPU2000 and
CPU2006 benchmarks for a large variety of platforms.

Although we can reasonably expect that for some of the bench-
marks it will be hard to estimate performance based on the other bench-
marks, showing that our performance estimation framework works
well using a standardized benchmark suite has a lot of practical ap-
peal. People can compare their application-of-interest versus the SPEC
CPU benchmarks based on inherent program behavior and make per-
formance estimations using the publicly available SPEC CPU results
for a large number of commercial machines.

4.2 Experimental evaluation

4.2.1 Experimental setup

We evaluate our performance estimation framework using SPEC pub-
lished speedup ratios that cover various commercial machines with
different ISAs, compiler settings and microprocessors. In particular,
we use the SPEC CPU2000 and CPU2006 benchmark suites in different
evaluation experiments, each with two different performance data sets:
one for a small hand-picked subset of systems which differ significantly
in terms of microprocessors, and another one containing all available
performance numbers on over 1,000 systems each. Tables 4.1 and 4.2
detail on the data sets used for both the SPEC CPU2000 and CPU2006
benchmark suites, respectively. The performance numbers used are the
speedup ratios with base optimization reported on the SPEC website2.
Note that we limit ourselves to aggregate performance metrics here;
SPEC only provides aggregate performance numbers per benchmark.

2See http://www.spec.org/cpu2000 and http://www.spec.org/cpu2006.

http://www.spec.org/cpu2000
http://www.spec.org/cpu2006

84 Estimating Relative Computer System Performance

Table 4.1: Performance data sets used for the SPEC CPU2000 benchmark suite;
the left column presents details for the small hand-picked subset of signifi-
cantly different systems, whereas the right column details on the full data set
of available performance numbers.

small subset full data set

Alpha 2 23
AMD x86 (32-bit) 2 28
AMD x86 (64-bit) 6 181
Intel x86 (32-bit) 7 250
Intel x86 (64-bit) 8 410

Intel Itanium (IA-64) 3 43
MIPS 1 10

PA-RISC - 14
PowerPC 2 83
SPARC64 2 32

UltraSPARC 3 49

total number of systems 36 1,123

The evaluation is performed through leave-one-out cross-validation,
in which each benchmark is regarded as the application-of-interest in
turn. The remaining benchmarks then form the benchmark suite as
referred to in Section 4.1.1 on which the training of the weights for the
workload characteristics is performed. The microarchitecture-indepen-
dent workload characteristics used to capture the inherent workload
behavior are the ones discussed in Section 2.1.3. Before computing
the Euclidean distance in terms of these workload characteristics or
weighting them, we normalize each characteristic to a zero mean and
unit variance, to ensure that they are all put on a common scale.

The genetic algorithm is configured to evolve a single population
of 100 entities in the form of vectors of floating-point values, each rep-
resenting a set of weights for the workload characteristics. Between
each generation, the best 20 sets of weights in terms of the fitness score,
i.e., the average estimation error, are used to construct the next gener-
ation. Except for the initial generation, of all entities in a generation,
85% are constructed by means of the crossover mixing operator, with
a crossover rate of 0.25; the remaining 15% of the entities are obtained
through multi-point drift mutation, with a mutation rate of 0.25. Con-
vergence is assumed when no more significant changes in the fitness
score are observed for three subsequent generations.

4.2 Experimental evaluation 85

Table 4.2: Performance data sets used for the SPEC CPU2006 benchmark suite;
the left column presents details for the small hand-picked subset of signifi-
cantly different systems, whereas the right column details on the full data set
of available performance numbers.

small subset full data set

AMD x86 (Athlon 64) - 7
AMD x86 (Opteron K8) 1 46

AMD x86 (Opteron K10) 5 128
AMD x86 (Phenom) 2 13

AMD x86 (Turion) - 3
Intel x86 (NetBurst) 2 18

Intel x86 (Core) 15 524
Intel x86 (Nehalem) 5 259

Intel Itanium (IA-64) 8 19
IBM POWER 9 10

SPARC64 3 6
UltraSPARC - 7

total number of systems 50 1,040

4.2.2 Evaluation

Estimating computer system ranking

To evaluate the framework on the different performance data sets, we
rank the computer systems based on estimated performance. We use
the Spearman rank correlation coefficient to assess the quality of an
estimated ranking compared to the real ranking, which yields a value
between -1 and 1; the former indicates a reversed ranking, the latter
indicates a perfect ranking. We compare the Spearman rank correlation
coefficients obtained through our framework with those obtained using
current practice, i.e., the coefficients for the estimated rankings based
on average computer system performance.

We evaluate the accuracy of our framework by treating the bench-
marks as the application-of-interest one by one. The parameter k rep-
resenting the number of proxies used by the k-nearest-neighbors tech-
nique is varied, to assess the effect of this parameter on ranking quality.
Where detailed results regarding the number of proxies are omitted, we
limit ourselves to discussing the results for a fixed value of k showing
the best average Spearman rank correlation across all benchmarks.

86 Estimating Relative Computer System Performance

Figure 4.2: Average Spearman rank correlation coefficients obtained for the
SPEC CPU2000 benchmark suite, the data set of performance numbers for
1,123 computer systems and different values for the number of proxies k.

Estimating rankings for the SPEC CPU2000 benchmarks

Figure 4.2 shows the average Spearman rank correlation coefficients
obtained for the SPEC CPU2000 benchmark suite and the data set con-
taining all 1,123 computer systems. The green curve shows the aver-
age correlation coefficients using our estimation framework for differ-
ent values of the number of proxies k, the red line indicates the corre-
lation coefficient obtained by ranking the computer systems based on
average performance. These results clearly illustrate the importance
of the number of neighbors used to estimate performance; retaining
not enough neighbors results may result in rankings of disappointing
quality, while retaining too many neighbors could also result in a sig-
nificant degradation of the Spearman correlation coefficient. For this
particular data set the best result is obtained using 8 proxies, resulting
in a Spearman rank correlation coefficient of 0.923. This is a significant
improvement over the quality of rankings obtained based on average
performance, yielding a rank correlation of 0.897.

The per-benchmark correlation coefficients obtained both using our
framework and current practice based on average performance for the
large SPEC CPU2000 data set are shown in Figure 4.3. For 22 out of the
26 benchmarks, the ranking obtained based on the performance estima-

4.2 Experimental evaluation 87

Figure 4.3: Per-benchmark Spearman rank correlation coefficients obtained
for the SPEC CPU2000 benchmarks and the data set of performance numbers
for 1,123 computer systems, both using average performance and our perfor-
mance estimation framework, using 8 nearest neighbors.

Figure 4.4: Per-benchmark Spearman rank correlation coefficients obtained
for the SPEC CPU2000 benchmarks and the hand-picked subset of perfor-
mance numbers for 36 computer systems, both using average performance
and our performance estimation framework, using 9 nearest neighbors.

tions of our framework is better than the one obtained based on average
performance. For several benchmarks that show relatively low corre-
lation coefficients using current practice, e.g., art, gzip, mcf and swim,
we observe significant improvements using our estimation framework.
The fairly low correlation coefficients obtained for art are not unex-
pected; the art benchmark is a significant outlier in terms of memory
access behavior and retains excessive speedups on a large number of
systems due to aggressive compiler optimizations [103], making it a
significant outlier with respect to the other benchmarks.

For the small data set containing performance numbers for 36 hand-
picked computer systems, current practice results in a Spearman corre-
lation coefficient of 0.833. Through our estimation framework, the best
result is obtained for 9 nearest neighbors, corresponding with a corre-

88 Estimating Relative Computer System Performance

Figure 4.5: Per-benchmark Spearman rank correlation coefficients obtained
for the SPEC CPU2006 benchmarks and the data set of performance numbers
for 1,040 computer systems, both using average performance and our perfor-
mance estimation framework, using 15 nearest neighbors.

Figure 4.6: Per-benchmark Spearman rank correlation coefficients obtained
for the SPEC CPU2006 benchmarks and the hand-picked subset of perfor-
mance numbers for 50 computer systems, both using average performance
and our performance estimation framework, using 9 nearest neighbors.

lation coefficient of 0.892. The detailed results are shown in Figure 4.4,
again showing large improvements for various benchmarks, and just
modest drops for some benchmarks with high Spearman correlation
coefficients. For this data set, the rankings obtained using our perfor-
mance estimation framework outperforms current practice for 23 out
of the 26 benchmarks.

Estimating rankings for the SPEC CPU2006 benchmarks

Figures 4.5 and 4.6 show the per-benchmark and average correlation
coefficients for the SPEC CPU2006 benchmarks, using the full data set
of performance numbers for 1,040 systems and the small hand-picked
data set of 50 systems, respectively.

4.2 Experimental evaluation 89

For the full data set, our framework yields an average Spearman
correlation coefficient of 0.874, improving on a coefficient of 0.857 ob-
tained based on average performance; we outperform current practice
for 19 out of 29 benchmarks. Likewise, for the small data set our frame-
work shows a significant improvement over current practice: we ob-
tain an average Spearman correlation coefficient of 0.731 while ranking
based on average performance yields a value of 0.696, and outperforms
current practice for 20 out of the 29 benchmarks.

The low average Spearman correlation coefficients for the small
data set are easily explained by the various outlier benchmarks result-
ing in very low quality rankings, i.e., hmmer, lbm, leslie3d, milc, namd,
etc. This corresponds to the observations made in Chapter 2 about the
SPEC CPU2006 benchmark suite covering a broader part of the entire
workload space, and retaining a large amount of benchmark-specific
inherent program behavior.

Using other machine learning techniques

Next to k-nearest-neighbors combined with a genetic algorithm for
weighting the workload characteristics we also tried a variety of other
machine learning techniques, including decision trees, linear regres-
sion, regression trees, support vector machines (SVMs), etc. Neither
of these techniques yielded results even close to the ones we obtained
with the framework we presented.

There are a number of reasons for this. First, there is the limited
amount of training data available. Since both the SPEC CPU2000 and
CPU2006 benchmark suites only contain a small number of bench-
marks, i.e., 26 and 29, respectively, we only have a limited amount
of performance data available. Lots of machine learning techniques
tend to overfit on small data sets, i.e., yield a performance model that
produces accurate estimations for the data points in the training set
but fail to generalize to others. Another difference between k-nearest-
neighbors and the other techniques we evaluated is that the latter uses
the actual training data when estimating for a new data point, while
the other techniques construct some kind of performance model dur-
ing training and never look back at the original data when estimating
for a new data point. Both these differences contribute to significantly
better results for our framework compared to other machine learning
techniques.

90 Estimating Relative Computer System Performance

4.3 Related work

The fundamental facilitator for our performance estimation approach
is a good quantitative measure for program similarity. Several re-
searchers have proposed methods for quantifying program similarity.
Saavedra and Smith [89] use the squared Euclidean distance computed
in a benchmark space built up using dynamic program characteris-
tics at the Fortran programming language level such as operation mix,
number of function calls, number of address computations, etc. Yi
et al. [107] use a Plackett-Burman design for classifying benchmarks
based on how the benchmarks stress the same processor components
to similar degrees.

Several researchers have proposed benchmark suite composition
techniques [35, 37, 86], which first measure a number of program char-
acteristics, then apply PCA, and finally apply cluster analysis in order
to find distinct groups of program behavior. A representative is then
chosen from each cluster for inclusion in the benchmark suite. The key
idea is to select benchmarks so that all major program behaviors are
represented in the benchmark suite. This technique can be used for
building a benchmark suite that covers the benchmark space well, or
it could be used to build a reduced benchmark suite from an existing
benchmark suite. This reduced benchmark suite yields accurate perfor-
mance predictions compared to the original benchmark suite.

A preliminary study by Phansalkar and John [85] used this work-
load characterization methodology consisting of PCA and cluster anal-
ysis to predict performance for individual benchmarks. An important
issue with PCA however is that the distance measure in the benchmark
space may not relate well to the performance differences across vari-
ous platforms [58]. This motivates the use of weights for each of the
workload characteristics in our performance estimation framework.

Another approach to the benchmarking problem that we address
in this chapter is analytical modeling. Ideally, an analytical model
would consume microarchitecture-independent characteristics as well
as microarchitecture parameters and produce accurate performance
estimates of the given application on the given microarchitecture. The
work that gets close to such an approach is the superscalar processor
model presented by Eyerman et al. [39, 67] that estimates performance
based on microarchitecture-dependent characteristics such as cache
miss rates and branch misprediction rates. Various researchers have

4.4 Summary 91

proposed techniques to predict cache miss rates based on microarchi-
tecture-independent characteristics such as the stack distance, see for
example [111]. However, we are unaware of any work that proposes
a superscalar processor model based on microarchitecture-indepen-
dent characteristics solely — the major impediment for achieving this
is a good model for estimating branch misprediction rates based on
microarchitecture-independent characteristics.

4.4 Summary

In this chapter, we proposed an approach for addressing the ubiquitous
problem in benchmarking which is ranking a set of computer systems
for a given application-of-interest. The key idea is to compare inherent
workload characteristics of the application-of-interest against the same
characteristics for all programs in the standardized benchmark suite.
Based on the inherent similarity of the application-of-interest with the
benchmarks in the benchmark suite, a number of proxies are identi-
fied and a performance estimation can be made using the performance
numbers of the proxies [58].

The estimation framework was evaluated using the SPEC CPU2000
and CPU2006 benchmark suites and two performance data sets, a small
one with a hand-picked selection of computer systems which vary sig-
nificantly in terms of microprocessors, and another one containing all
available data for over 1,000 systems. Our framework yields Spear-
man rank correlation coefficients for the estimated ranking of systems
that are significantly higher than the ones obtained through ranking
by average system performance. For the CPU2000 data sets, we obtain
correlation coefficients of 0.923 and 0.892 using our estimation frame-
work, for the large and small data sets, respectively; based on aver-
age system performance, correlation coefficients of 0.897 and 0.833 are
obtained for the same data sets. With the CPU2006 benchmarks, we
obtain similar results: correlation coefficients of 0.874 and 0.731 using
our estimation framework versus 0.857 and 0.696 based on average sys-
tem performance, for the large and small data sets, respectively. Be-
cause of the interpolating nature of the k-nearest-neighbors technique,
applications-of-interest that show inherent program behavior that dif-
fers significantly from that of all the benchmarks result in relatively low
Spearman rank correlation coefficients.

92 Estimating Relative Computer System Performance

Chapter 5

Constructing Compiler
Optimization Levels

There are no solutions... there are only trade-offs.
Thomas Sowell

Modern compilers are complex pieces of software. They consist
of various front-ends for different programming languages, a middle-
end which performs aggressive optimization and a variety of back-
ends which take care of the actual code generation for the different
instruction-set architectures supported. Adjusting any part of the com-
piler, either for maintenance or to add additional functionality, requires
deep knowledge of the existing code base. This is a non-trivial task be-
cause of the inherent complexity of compiler software. For example, the
GNU Compiler Collection (GCC)1 consist of well over 2 million lines of
code, with over half a million lines in the core compiler [81].

The complexity is even more apparent for the parts of the compiler
that perform various optimizations which target a variety of objectives,
including performance, compilation cost and code size. In a modern
compiler, a broad collection of optimizations is available, often provid-
ing over 100 different optimizations. Anticipating the efficacy of these
optimizations for one particular objective is not trivial though. The ef-
fect of a compiler optimization is highly dependent on the code being
compiled, and the hardware platform for which the code is being com-
piled. In addition, multiple compiler optimizations interact in complex
and in many cases even counter-intuitive ways, or at least in ways that
are hard to reason about. To make things even worse, different objec-

1 http://gcc.gnu.org/

http://gcc.gnu.org/

94 Constructing Compiler Optimization Levels

tives may be affected conflictingly by compiler optimizations. Put to-
gether, this constitutes a challenging task for compiler developers who
wish to provide an easy-to-use optimizing compiler framework to their
end users.

This is a well recognized problem, and to facilitate the end user in
determining an appropriate selection of compiler optimizations, com-
piler developers typically provide a set of standard optimization levels,
such as -O1, -O2, -O3 and -Os. Each of these optimization levels com-
bine various compiler optimizations and provide different trade-offs in
terms of code quality, compilation time and code size. For users willing
to trade additional compilation time for better code quality, the highest
level of optimization (e.g., -O3) is worth a try. If on the other hand com-
pilation time is a concern, more so than code quality, -O1 may be the
optimization level of choice. Finally, if code size is of primary impor-
tance, for example for embedded applications, then -Os is a suitable
optimization level.

The construction of these optimization levels however is trouble-
some. The search space is huge given the large number of available
compiler optimizations. For example, in the 4.2.4 version of the GCC
compiler which we use throughout this chapter, 68 different optimiza-
tions are used in the various optimization levels 2 (-O1, -O2, -O3, -Os).
This results in a huge space with 268 (in the order of ≈ 1020) possible
optimization levels. An exhaustive search in such a huge space is ob-
viously infeasible, because of the time required to compile and run the
benchmarks for each of the optimization levels considered. Even if we
would be able to evaluate one optimization level every second, it would
take over 9 trillion years to get through the entire search space.

Therefore, compiler developers heavily rely on their experience, in-
tuition and various heuristics in their definition of optimization levels.
These heuristics typically look like: optimizations that do not increase
compilation time and are likely to produce good code, should be ac-
tivated at -O1; optimizations that tend to increase code size but will
likely result in better code quality, should be activated at -O2 and dis-
abled at -Os; and optimizations that typically require a lot of compi-
lation time, and might lead to even better code, should be activated
at -O3.3 Ishizaki et al. [62] describe such a manual optimization level

2 We only consider the optimizations that can be turned on and off using available
command-line flags; various optimization levels also perform optimizations that are
not controllable by external flags.

3See http://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Optimize-Options.html

5.1 Compiler Optimization Level Exploration 95

selection process for a dynamic Just-In-Time compiler. However, not
only is relying on such heuristics suboptimal and does it require deep
knowledge of the various available optimizations and their possible in-
teractions, it is also very time-consuming and labor-intensive.

In this chapter, we propose Compiler Optimization Level Explo-
ration (COLE), a framework to automatically construct optimization
levels that represent optimal trade-offs between multiple objective
functions, such as performance, compilation time, code size, etc. COLE
not only relieves the compiler developer from the tedious and time-
consuming task of manually building optimization levels, it also (most
likely) yields better performing optimization levels. To the best of our
knowledge, we are the first to propose automated multi-objective com-
piler optimization level exploration, of which the COLE framework is
a prototype example. The core of COLE consists of a multi-objective
evolutionary search algorithm, a machine learning technique shown to
be an efficient way of searching in huge compiler optimization spaces.

5.1 Compiler Optimization Level Exploration

Before describing the COLE framework itself, we first explain the no-
tion of Pareto optimality in the context of compiler optimization levels.

5.1.1 Pareto optimality

In order to explain what Pareto optimality means, we need to introduce
some terminology. A given compiler optimization level is called Pareto
dominant with respect to another optimization level if the given opti-
mization level achieves a better score for at least one objective function
while achieving the same (or a better) score along the other objective
functions. A Pareto optimal compiler optimization level L is an opti-
mization level for which there exist no other optimization levels that
are Pareto dominant with respect to L. Multiple Pareto optimal com-
piler optimization levels can co-exist to form a so called Pareto frontier or
Pareto set. In other words, the Pareto set collects all the Pareto optimal
compiler optimization levels. Once the Pareto frontier is identified, the
compiler developer or end user can then select a compiler optimization
level that trades off the various objective functions according to his or
her needs.

Figure 5.1 shows an example Pareto frontier when two objectives

96 Constructing Compiler Optimization Levels

compilation cost

sp
ee

du
p

compiler opt level
Pareto optimal
compiler opt level

Pareto frontier

Figure 5.1: An example Pareto frontier in a multi-objective design space, using
speedup (higher is better) and compilation cost (lower is better) as objectives.

are considered, compilation cost and speedup; an optimization level is
represented by a single dot. Both compilation cost and speedup are rel-
ative to an optimization level which performs little or no optimization
(e.g., GCC’s -O0). In terms of compilation cost, an optimization level
is better than another level if it results in a smaller compilation time.
On the other hand, if a certain optimization level results in a lower ex-
ecution time, thus yields a higher performance than another level, it is
considered to be better in terms of speedup.

5.1.2 Multi-objective exploration

COLE employs multi-objective evolutionary searching for identifying
Pareto optimal optimization levels — the search algorithm used by
COLE is based on SPEA2 [113], which is an improved version of the
well-established Strength Pareto Evolutionary Algorithm (SPEA) [114].

In this section, we limit ourselves to the aspects of the particular
search algorithm used by COLE which are important for the following
discussion and evaluation. For more details on the SPEA2 algorithm,
and its relation with genetic algorithms, see A.2.5.

In the context of this chapter, each optimization level being consid-
ered during the exploration is modeled by an entity, which represents
a (candidate) solution in the search space. For this work, we only con-
sider enabling or disabling optimizations, along with an additional pa-
rameter representing the aggressiveness in which the optimizations are
performed (O1, O2, O3, Os). Thus, each entity consists of a boolean

5.1 Compiler Optimization Level Exploration 97

vector plus one extra discrete-valued parameter. Combining two enti-
ties to form two offspring entities is done using the crossover mixing
operator, while randomly tweaking a single entity is done using the
multi-point drift mutation operator. Convergence is assumed when no
change is observed in the Pareto frontier for a number of subsequent
generations.

We do not tweak value parameters that steer the optimizations, nor
do we change the order in which optimizations are performed. This
does not limit the applicability of our framework: including additional
non-boolean parameters or taking the order in which optimizations are
being performed into account is a matter of changing the entity defini-
tion and adjusting the crossover and mutation operators accordingly.

Throughout the entire chapter, we will focus on two metrics as op-
timization objectives. The first metric is the compilation cost incurred
by an optimization level relative to that of the standard optimization
level -O0, which performs little or no optimization. The second ob-
jective is the execution time speedup obtained by compiling the set of
benchmarks with the selected set of optimizations, relative to the exe-
cution time resulting from using -O0. Again, this does not affect the
generality of the COLE framework; COLE can be (trivially) used for
other (additional) objective functions of interest, such as code size, en-
ergy consumption, power consumption, etc. We stick to just two com-
mon objective functions to ease the presentation of the results.

Besides these objectives, we also take the number of enabled opti-
mizations into account; whenever we run into an optimization level L
that yields the same generated code but has fewer optimizations en-
abled compared to another optimization level, we consider the former
level to be Pareto dominant. This results in a more focused exploration
by the COLE framework: gradually, more and more emphasis is put
onto the optimizations that make the biggest difference in terms of the
objective functions. By consequence this allows for analysis of the op-
timizations used in the final Pareto frontier, since the vast majority of
optimizations that are used in the levels part of the frontier are the most
effective ones. This would not be the case without this additional dom-
inance constraint.

98 Constructing Compiler Optimization Levels

5.1.3 Exploration speed

Exploring the optimization level design space using COLE requires that
each entity is evaluated in order to assess its Pareto optimality. Evalu-
ating an entity requires quantifying the entity in terms of the objective
functions of interest. In our work, this requires compiling the bench-
marks using the set of compiler optimizations that the entity represents.
Quantifying code size can be done easily by determining the size of the
resulting binary. If performance and/or energy consumption are of in-
terest as objective functions, the compiled benchmarks need to be run,
and execution time and energy consumption need to be measured, ei-
ther through simulation or real hardware execution.

Evaluating an individual entity may be time-consuming. However,
evaluating a generation of entities as a whole is embarrassingly paral-
lel. All entities in a generation — there are 20 entities per generation in
our setup — can be evaluated in parallel. Subsequent generations need
to be run sequentially though because the next generation is computed
based on the previous generation.

5.2 Evaluation and analysis

In this section, we present our experimental results which confirm that
the automatic construction of compiler optimization levels is feasible
in practice. In addition, we show that the levels produced by COLE
outperform those obtained through random search, as well as GCC’s
(manually derived) standard optimization levels for the set of bench-
marks used in our experiments. We also analyze the Pareto optimal
optimization levels obtained in order to gain insight into the impor-
tance of the various compiler optimizations.

5.2.1 Experimental setup

Benchmarks

To evaluate the COLE framework, we use the SPEC CPU2000 bench-
mark suite (see Appendix B.4). Evaluating one optimization level re-
quires compiling and running all the benchmarks. Compiling and run-
ning the benchmarks using the train inputs takes about 10 minutes in
our setup. As mentioned before, evaluating a generation of entities can

5.2 Evaluation and analysis 99

be trivially parallelized by evaluating all entities in that generation in
parallel. Thus, if enough systems are available, evaluating one genera-
tion as a whole only takes about 10 minutes in our setup. Nevertheless,
speeding up the search process, for example by limiting the number of
optimization levels that need to be evaluated, is an interesting avenue
for future research.

Compiler and optimizations

We use the GNU Compiler Collection (GCC) 4.2.4 compiler, and con-
sider all the individual compiler optimizations appearing in the stan-
dard -O1, -O2, -O3 and -Os compiler optimization levels that can
be turned on and off individually through command-line switches,
along with two additional optimizations (-ftree-vectorize and
-fschedule-insns).

There are 68 compiler optimizations in total. The corresponding
compiler flags are shown in Table 5.1 which are ordered according to
their inclusion in the standard -O1, -O2 and -O3 compiler optimiza-
tion levels. For example, the -O1 optimization level includes all the op-
timizations listed in the left column of Table 5.1, along with the top 10
ones in the right column; -O2 includes all optimizations in the left col-
umn plus all the optimizations in the right column from the top down
to and including -ftree-vrp; -O3 includes all optimizations in Ta-
ble 5.1 except for the last two; -Os includes all optimizations used in
-O2, except those indicated by ‘-’ in Table 5.1, and adds one additional
flag marked with ‘+’, -finline-functions.

Next to these 68 compiler optimization flags, we also consider a
base optimization level with four possible options, -O1-stripped,
-O2-stripped, -O3-stripped and -Os-stripped. These stripped
base optimization levels correspond to their respective standard com-
piler optimization levels -O1, -O2, -O3 and -Os with all optimiza-
tions disabled that are controllable through command-line switches;
disabling a standard optimization -f<flag> can be done using the
-fno-<flag> command-line switch. The reason for including these
stripped base optimization levels is that GCC includes some default
optimizations that cannot be controlled through command-line com-
piler switches, and that several optimizations are only activated if the
base level is set high enough, e.g., “if(level > 1)”.

100 Constructing Compiler Optimization Levels

Table 5.1: The list of compiler optimization flags considered in this chapter,
grouped by standard optimization level they are used in. Optimizations used
in -O1 are also used in -O2 and -O3; likewise, optimizations used in -O2 are
also used in -O3. All optimizations used in -O2 are used in -Os, except for
the ones marked with ‘-’. Optimizations marked with ‘+’ are used in -Os, but
not in -O2.

1 -falign-loops 35 -ftree-ch (-)
2 -fbranch-count-reg 36 -ftree-copy-prop
3 -fearly-inlining 37 -ftree-copyrename
4 -ffunction-cse 38 -ftree-dce
5 -fgcse-lm 39 -ftree-dominator-opts -O1
6 -finline 40 -ftree-dse (cont.)

7 -finline-functions-called-once 41 -ftree-fre
8 -fivopts 42 -ftree-sink
9 -fkeep-static-consts 43 -ftree-sra

10 -fmove-loop-invariants 44 -ftree-ter
11 -fpeephole 45 -fcaller-saves
12 -freg-struct-return 46 -fcrossjumping
13 -fsched-interblock 47 -fcse-follow-jumps
14 -fsched-spec default 48 -fdelete-null-pointer-checks
15 -fsched-stalled-insns-dep 49 -fexpensive-optimizations
16 -fsplit-ivs-in-unroller 50 -fgcse
17 -ftop-level-reorder 51 -foptimize-register-move
18 -ftree-loop-im 52 -foptimize-sibling-calls
19 -ftree-loop-ivcanon 53 -fpeephole2 -O2
20 -ftree-loop-optimize 54 -fregmove
21 -ftree-vect-loop-version 55 -freorder-blocks (-)
22 -fzero-initialized-in-bss 56 -freorder-functions
23 -maccumulate-outgoing-args 57 -frerun-cse-after-loop
24 -malign-stringops 58 -fschedule-insns2
25 -mno-push-args 59 -fstrict-aliasing
26 -fno-unit-at-a-time 60 -fstrict-overflow
27 -fcprop-registers 61 -fthread-jumps
28 -fdefer-pop 62 -ftree-pre (-)
29 -fguess-branch-probability 63 -ftree-vrp
30 -fif-conversion -O1 64 -fgcse-after-reload
31 -fif-conversion2 65 -finline-functions (+) -O3
32 -fmerge-constants 66 -funswitch-loops
33 -fomit-frame-pointer 67 -ftree-vectorize
34 -ftree-ccp 68 -fschedule-insns

Hardware platforms

We evaluate the COLE framework using two different hardware plat-
forms: systems with an Intel Xeon L5420 processor, which implements
the Intel Core microarchitecture, and systems with an Intel L5520 pro-
cessor, which implements the Intel Nehalem microarchitecture. For
more details, we refer to Appendix C.1. For convenience, we will re-
fer to these systems as the Core and Nehalem systems, respectively.

5.2 Evaluation and analysis 101

COLE setup

In the initial generation of the COLE optimization process, we include
levels with all flags disabled, and levels with all flags enabled, next to
a number of randomly generated optimization levels, in order to give
the multi-objective search algorithm a head start in its exploration.

We consider one single population, 20 entities per population,
and 20 entities per archive in our experiments. The algorithm selects
the Pareto optimal entities from the current population and the prior
archive, and fills the archive with either a selection of Pareto optimal
entities covering the entire Pareto frontier, or all Pareto optimal entities
supplemented with the best non-Pareto optimal entities. The mutation
probability is set to 0.15; the probability for crossover is set to 0.85. We
use a crossover mixing rate of 0.25, and the value of the multi-point
drift mutation control parameter is set to 0.25. Convergence is detected
when no change is observed in the Pareto frontier for three subsequent
generations. These settings were obtained empirically following com-
mon practice in evolutionary algorithms, and we found these settings
to work well in our setup.

5.2.2 Evaluation

Pareto frontiers

First, we evaluate the quality of the obtained Pareto optimal optimiza-
tion levels by visual inspection of the Pareto frontiers. Figures 5.2
and 5.3 show the Pareto frontiers obtained on the Core and the Ne-
halem systems, respectively. Each graph also shows the reference point
used for quantifying the quality of each Pareto frontier. The reference
point corresponds to the point obtained by taking the minimum or
maximum value observed along each objective function (depending on
whether the metric is higher-is-better or lower-is-better).

Each figure shows Pareto frontiers in terms of compilation cost and
speedup obtained in three different ways:

• the standard GCC optimization levels (-O1, -O2, -O3 and -Os);
the optimization level -Os is not a Pareto optimal optimization
level (in terms of the compilation cost and speedup objective
functions);

102 Constructing Compiler Optimization Levels

-O1

-O2
-O3

-Os

Figure 5.2: Pareto frontier containing candidate optimization levels trading
off speedup and compilation cost, obtained using COLE on the Core systems
and the SPEC CPU2000 benchmarks.

• the Pareto frontier obtained by randomly sampling the optimiza-
tion space: 10,000 randomly chosen optimization levels were
evaluated and the Pareto optimal optimization levels are re-
tained;

• the Pareto frontier obtained through COLE after convergence. On
the Core systems, 208 generations were required for convergence,
during which 3,628 unique entities were evaluated; the explo-
ration on the Nehalem systems took 187 generations to converge,
during which 3,400 unique entities were evaluated.

Thus, COLE required about 36,280 minutes (3,628×10 min.) or 605
hours on the Core systems, and 34,000 minutes (3,400×10 min.) or 567
hours on the Nehalem systems. Taking into account that each genera-
tion can be evaluated in parallel, this can be limited to just 2,080 min-
utes (35 hours) and 1,870 minutes (31 hours), respectively, if enough
(identical) systems are available.

The results in Figures 5.2 and 5.3 show that the Pareto frontier

5.2 Evaluation and analysis 103

-O1

-O2
-O3

-Os

Figure 5.3: Pareto frontier containing candidate optimization levels trading off
speedup and compilation cost, obtained using COLE on the Nehalem systems
and the SPEC CPU2000 benchmarks.

obtained through COLE is substantially better in terms of compila-
tion cost than the standard GCC optimization levels. For example,
roughly the same average speedup can be obtained compared to -O2
at a substantially lower compilation cost, i.e., 16.9% and 18.3% lower
on the Core systems and Nehalem, respectively. Compared to -O1
roughly the same code quality (quantified in terms of speedup) can be
achieved at a lower compilation cost, and a higher speedup is obtained
at roughly the same compilation cost (6.0% higher on the Core systems
and 6.5% higher on the Nehalem systems). On the Core systems, the
right-most COLE optimization level obtains an average speedup 0.7%
lower compared to -O3, but does so with a compilation cost that is
15.0% lower; on the Nehalem systems, the best optimization level in
terms of speedup obtained with COLE yields a speedup 1.0% higher
than -O3, at a compilation cost which is 5.8% lower.

Comparing the Pareto frontier obtained with COLE with the fron-
tier obtained through random sampling reveals that COLE explores the
search space in a more effective way and obtains better results that way,

104 Constructing Compiler Optimization Levels

compilation cost

sp
ee

du
p

Pareto frontier

HV reference point

compiler opt level
Pareto optimal
compiler opt level
hypervolume

Figure 5.4: Example Pareto frontier, illustrating how the hypervolume (HV)
metric is computed.

even with a significantly lower search budget. Both on the Core and
Nehalem systems, COLE yields a Pareto curve which clearly outper-
forms the one obtained by evaluating roughly 2.5 times as many ran-
domly picked optimization levels.

It should be noted that these results are tied to the particular set
of benchmarks used, and the platforms on which the benchmarks are
compiled and executed. It is no surprise that the best optimization
levels for a particular set of benchmarks on a particular platforms ob-
tained through random search and COLE significantly outperform the
standard optimization levels readily available in GCC; these levels are
tuned for a much larger set of applications and a broader range of hard-
ware platforms. Nevertheless, the fully automated COLE framework is
very useful to both compiler developers and end users, because it is
able to identify a diverse set of optimization levels that could serve as
standard optimization levels, and does so in a more effective way than
simple random searching.

Quantitative comparison

We now also evaluate the quality of the Pareto frontiers obtained
through COLE using the hypervolume (HV) metric discussed in [30].

Figure 5.4 illustrates how the HV metric is computed. After deter-
mining the HV reference point, the hypervolume can be computed as
the area between the Pareto frontier and the HV reference point. The
HV metric thus is a higher-is-better metric. Note that although we only

5.2 Evaluation and analysis 105

(a) Core systems (b) Nehalem systems

Figure 5.5: Quantification using the hypervolume metric of the standard op-
timization levels and the Pareto optimal optimization levels obtained through
random search and using the COLE framework, on the Core and Nehalem
systems.

use the HV metric with two objective functions, it is straightforward to
use the same metric with more than two objective functions of interest.

Figure 5.5 compares the values of the HV metric for the standard
optimization levels available in GCC and the Pareto frontiers obtained
using random search and COLE. These graphs quantitatively confirm
the conclusions drawn from the visual inspection of the Pareto frontiers
in the previous section.

Both for the Core and Nehalem systems, the standard optimization
levels are significantly outperformed by both Pareto frontiers; the HV
metric for the COLE Pareto frontier is 49.4% and 61.2% higher, on both
hardware platforms, respectively. The COLE Pareto frontier is 13.8%
and 25.0% better, respectively, than the frontier obtained through ran-
dom search in terms of the HV metric, which is a substantial difference
given the large difference in search budget.

Cross-validation

So far, we evaluated our COLE framework with the SPEC CPU2000
benchmarks, which is the same set of benchmarks used to construct the
Pareto optimal optimization levels. Likewise, we evaluated the opti-
mization levels on the same hardware platform as the one on which
the COLE framework performed its measurements to evaluate opti-
mization levels. In this section, we consider two cross-validation exper-
iments in which we evaluate the cross-application and cross-platform
effectiveness of the Pareto optimal optimization levels obtained using

106 Constructing Compiler Optimization Levels

Figure 5.6: Experimental results of two cross-validation experiments on the
Nehalem systems: the cross-platform Pareto curve is obtained by evaluat-
ing optimization levels constructed for the Core systems, while the cross-
application Pareto curve is constructed using optimization levels targeted to
the SPEC CPU2006 benchmark suite (as opposed to the SPEC CPU2000 bench-
marks).

our COLE framework. The results of these cross-validation experi-
ments are shown in Figure 5.6.

Cross-application evaluation First, we look at the effectiveness of op-
timization levels obtained for a different set of applications. Through
COLE, we obtained a set of Pareto optimal optimization levels for the
SPEC CPU2006 benchmark suite4. Evaluating these levels using the
SPEC CPU2000 benchmarks allows assessing the cross-application ef-
fectiveness of the optimization levels obtained with COLE, see Fig-
ure 5.6.

4Again, we used the train inputs when running the benchmarks.

5.2 Evaluation and analysis 107

The optimization levels obtained for the SPEC CPU2006 bench-
marks are clearly suboptimal in terms of compilation cost and speedup
obtained for the SPEC CPU2000 benchmarks; the right-most CPU2006
optimization levels are even outperformed by the ones obtained for
CPU2000 by means of random search. More quantitatively, the Pareto
frontier for the CPU2006 optimization levels is 18.7% lower than
CPU2000 Pareto frontier obtained with COLE in terms of the HV met-
ric; compared to the random Pareto frontier, it is 14.5% better. While
the CPU2006 optimization levels that focus on low compilation cost
are competitive with the CPU2000 levels, the ones targeted towards
high speedup are inferior to the CPU2000 levels. In particular, the
CPU2006 optimization level that performs best in terms of speedup for
the CPU2000 benchmarks, i.e., the second level from the right, yields
code that is 3.6% slower than the CPU2000 optimization level which
is most competitive in terms of compilation cost; likewise, the com-
pilation cost of the CPU2000 optimization level that yields a similar
speedup as this CPU2006 level is 22.4% lower.

Cross-platform evaluation A second cross-validation experiment
evaluates the effectiveness of optimization levels obtained for one
particular hardware platform when they are being used on a differ-
ent hardware platform. For this experiment, we evaluate the Pareto
optimal optimization levels obtained through COLE for the Core sys-
tems on the Nehalem systems. For convenience, we will refer to the
optimization levels constructed for the Nehalem systems as the native
optimization levels, and the ones obtained on the Core systems as the
cross-validation optimization levels (see Figure 5.6).

The cross-validation optimization levels are fairly competitive with
the native optimization levels; in terms of hypervolume, the cross-
validation Pareto frontier is just 6.4% lower than the native Pareto fron-
tier. In some cases, one of the cross-validation levels even outperforms
some of the native optimization levels. Considering the entire range
of trade-offs however, the native optimization levels clearly have the
upper hand, especially for levels that deliver the highest speedups. The
right-most cross-validation optimization level yields a speedup 0.8%
lower than the native optimization level with roughly the same com-
pilation cost, and 2.2% lower than the right-most native optimization
level.

Although the native and cross-validation Pareto curve are fairly

108 Constructing Compiler Optimization Levels

competitive in this particular case, this will probably not be the case
in general. Relatively speaking, microprocessors based on the Core mi-
croarchitecture are fairly similar to microprocessors that implement the
Nehalem microarchitecture: same ISA (Intel 64-bit), comparative num-
ber of registers, similar cache memory hierarchies, etc. Performing a
similar experiment using systems which differ in more ways may show
more significant differences, in favor of the native optimization levels.

Conclusions The results of the cross-application and cross-platform
experiments support our initial motivation for an automated frame-
work for constructing compiler optimization levels. The experiments
discussed above show that tuning for a particular hardware platform
and a particular set of applications can have significant benefits in
terms of the trade-off between compilation cost and application perfor-
mance. Currently, compiler developers are forced to resort to manually
developing a generic set of optimization levels. Besides the fact that
this a labor-intensive and thus time-consuming task, our experiments
show that it is likely that a significant price is paid for this generality.
An automated framework like COLE is an important step in support-
ing the construction of more specialized optimization levels, both for a
particular hardware platform and a particular application domain.

5.2.3 Analysis

In order to analyze the Pareto optimal optimization levels obtained
through COLE in terms of their constituent compiler optimizations, we
show the composition of the optimization levels in Figure 5.7 (Core sys-
tems) and Figure 5.8 (Nehalem systems). In these figures, each row of
boxes corresponds to one optimization level, while each column, except
for the first one, corresponds to one particular compiler optimization.
The first column indicates the base optimization level used (-O1, -O2,
-O3 or -Os). The compiler optimizations are shown in the same order
(left to right) as they are listed in Table 5.1, and can be identified using
the index number shown in that same table. The optimization levels are
ordered horizontally from low compilation cost and low speedup (left-
most levels in Figures 5.2 and 5.3) to high compilation cost and high
speedup (right-most levels). A filled box indicates that the correspond-
ing compiler optimization is enabled for that particular optimization
level.

5.2 Evaluation and analysis 109

BA
SE

1 5 10 15 20 25 30 35 40 45 50 55 60 65

compiler optimizations

op
tim

iza
tio

n
le

ve
ls lo
we

r c
om

pi
la

tio
n

co
st

hi
gh

er
 p

er
fo

rm
an

ce

 disabled enabledO1 O2 O3 Os

Figure 5.7: Composition of the 50 Pareto optimal optimization levels obtained
for the Core systems and SPEC CPU2000 (train). Each row represents one opti-
mization level (horizontally sorted from lowest compilation cost and speedup
to highest compilation cost and speedup), each column represent one of 68
compiler optimizations used in this study (see Table 5.1).

A number of interesting observations can be made from these fig-
ures. First, some compiler optimizations are never used, regardless
of the trade-off made between compilation cost and speedup. In the
optimization levels obtained for the Core systems, 24 compiler opti-
mizations are never used; for the Nehalem systems, 9 levels are never
used (19 if we omit the last optimization level). In other words, 35%
of the compiler optimizations are not used on the Intel Core systems;
likewise, 28% of the optimizations are never used in any of the opti-
mization levels (except the last one) on the Nehalem systems. Four
compiler optimizations are never used at all, on either of both hard-
ware platforms: -fno-unit-at-a-time, -fcprop-registers,
-fexpensive-optimizations and -fschedule-insns. There
are various reasons why a particular compiler optimization might not

110 Constructing Compiler Optimization Levels

BA
SE

1 5 10 15 20 25 30 35 40 45 50 55 60 65

 disabled enabledO1 O2 O3 Os

op
tim

iza
tio

n
le

ve
ls

compiler optimizations

lo
we

r c
om

pi
la

tio
n

co
st

hi
gh

er
 p

er
fo

rm
an

ce

Figure 5.8: Composition of the 64 Pareto optimal optimization levels obtained
for the Nehalem systems and SPEC CPU2000 (train). Each row represents
one optimization level (horizontally sorted from lowest compilation cost and
speedup to highest compilation cost and speedup), each column represent one
of 68 compiler optimizations used in this study (see Table 5.1).

be enabled. A non-extensive list of possible reasons includes:

• the optimization is not applicable to the particular set of target ap-
plications; enabling the optimization would result in additional
analysis being performed, adding up to the overall compilation
cost, but without any benefit in terms of performance;

• the optimization is too expensive in terms of compilation cost
(e.g., too intrusive analysis is required), and does not yield a sig-
nificant gain in speedup to justify the added cost;

5.2 Evaluation and analysis 111

• the optimization is interfering with other optimizations, for ex-
ample by removing opportunities for other optimizations that are
beneficial either in terms of compilation cost or speedup.

Of course, this is tied to the particular hardware platforms used
in our experiments, and more importantly also to the SPEC CPU2000
benchmark suite which the COLE framework used to evaluate each op-
timization level.

Some compiler optimizations come forward as critical, i.e., they
are used in a large number of Pareto optimal optimization levels:
11 and 13 optimizations are enabled in at least 90% of the optimiza-
tion levels, on the Core and Nehalem systems, respectively. Over-
all, 7 compiler optimizations are used in at least 90% of the Pareto
optimal optimization levels on both platforms: -free-loop-im,
-fguess-branch-probability, -fomit-frame-pointer,
-ftree-copyrename, -ftree-ter, -fcrossjumping and
-foptimize-sibling-calls. Apparently, the corresponding opti-
mizations are beneficial regardless of the trade-off between compilation
cost and speedup.

When we compare the composition of the Pareto optimal optimiza-
tion levels on both hardware platforms, there are some remarkable dif-
ferences. For example, the -ftree-fre optimization is enabled in 62
of the 64 optimization levels on the Nehalem systems, but is never used
in any of the optimization levels obtained for the Core systems. It seems
that the corresponding Full Redundancy Elimination analysis which at-
tempts to remove redundant computations is too expensive in terms of
compilation cost on the Core systems to be considered beneficial, while
this is not the case on the Nehalem systems. Similar observations in-
clude -finline-functions-called-once, which is always used
on the Core systems and is only enabled for the last optimization level
(highest compilation cost and speedup) on the Nehalem systems, and
-malign-stringops, which appears to be critical for the Nehalem
systems, but is never used on the Core systems. These observations
confirm that the construction of optimization levels should be done
specifically for the hardware platform on which they will be used in
order to obtain the best results; an automated framework as proposed
in this chapter is thus very desirable in this regard.

We showed that analysis of the Pareto optimal optimization levels
obtained using our COLE framework is likely to yield interesting obser-
vations for compiler developers. These observations can steer further

112 Constructing Compiler Optimization Levels

efforts to improve existing compiler optimizations, and to study the in-
teractions that occur between different optimizations. Some of the ob-
servations made above would have been more difficult to obtain with-
out a fully automated framework for constructing optimization levels,
in particular because a compiler developer manually constructing op-
timization levels heavily depends on his intuition and experience.

5.2.4 Discussion

Although the results presented in this section show that COLE is in-
deed a useful tool for automatically constructing optimization levels,
there is one major drawback. Even though the number of candidate
optimization levels that need to be evaluated is very limited compared
to the enormous size of the search space, the total amount of time re-
quired to evaluate the levels considered limits the applicability of the
framework. While sufficient computing resources can help resolve this
problem by evaluating each generation of optimization levels in paral-
lel, a significant reduction of the exploration time can be achieved by
either lowering the time required to evaluate one particular optimiza-
tion level (for example by relying on partial evaluation), or by limiting
the number of levels that actually need to be evaluated. One promising
avenue for future work is the field of global optimization [65]. Applying
this technique would require to gradually build more and more accu-
rate predictive models for each of the objective functions, which can
then be used to guide the evolutionary search algorithm without re-
quiring evaluation of each of the optimization levels being considered.

5.3 Related work

The work most closely related to the work presented in this chap-
ter is iterative compilation. The basic idea of iterative compilation
is to explore the compiler optimization space by iteratively compil-
ing and measuring the effectiveness of a set of optimizations. Driven
by a search algorithm, iterative compilation explores the optimiza-
tion space, and upon termination of the search algorithm, the best
performing set of optimizations is reported for the given applica-
tion. A large body of work has been done on iterative compila-
tion over the past few years, and many researchers have reported
impressive results showing significant performance, energy or code

5.3 Related work 113

size improvements over standard optimization levels, see for exam-
ple [1, 3, 17, 19, 26, 28, 42, 45, 49, 68, 83, 98, 104, 110].

An important concern though with iterative compilation is that
searching the optimization space is very time consuming. By conse-
quence, the vast majority of the work on iterative compilation focuses
on reducing the search time; there are basically two ways for doing so.
One approach is to speed up the search process by either pruning the
search space [98], or intelligently navigating through the search space
using heuristic search algorithms, such as genetic algorithms [28, 68] or
combination elimination [83]. Another approach is to reduce the time
spent evaluating a design point during this search. Some researchers
propose analytical modeling for estimating the effect of compiler op-
timizations on performance [98, 110]. Others build empirical models
using predictive modeling built from static code features [1, 21, 104]
or dynamic code features [19]. Yet others exploit the phase behavior
observed during application execution, and evaluate different opti-
mization sequences in subsequent occurrences of the same phase [42].

What all of this prior work on iterative compilation has in common
is that it focuses on a single objective function to be optimized. For
example, researchers typically focus on a single optimization criterion
such as performance [1, 17, 19, 21, 28, 42, 47, 83, 98, 104, 110], or en-
ergy consumption [45], or code size [28]. And some researchers focus
on optimizing a single objective function that combines multiple opti-
mization criteria such as code quality and compilation time [20, 21], or
code quality and code size [68]. All of these approaches optimize a sin-
gle metric. And this is where the key difference lies between the prior
work on iterative compilation and the COLE approach described in this
paper. COLE aims at exploring a multi-objective compiler optimiza-
tion space, whereas prior work is limited to single-objective optimiza-
tion. Or, in other words, COLE yields multiple Pareto optimal points
whereas prior work yields a single optimal point. An additional dif-
ference between existing iterative compilation work and COLE is that
iterative compilation focuses on optimizing the performance of a sin-
gle application, whereas COLE allows finding compiler optimization
levels that improve the average performance for a collection of appli-
cations.

114 Constructing Compiler Optimization Levels

5.4 Summary

Compilers typically come with a number of optimization levels such
as -O1, -O2, -O3 and -Os, which provide different trade-offs between
code quality, compilation time and code size. Constructing these op-
timization levels typically is a manual process which is both tedious
and time consuming. Identifying an appropriate set of optimization
levels is particularly challenging because the search space is huge —
for example, the design space in our setup counts in the order of 1020

candidate optimization levels.
In this chapter, we presented COLE, Compiler Optimization Level

Exploration, which employs a multi-objective evolutionary algorithm
to find Pareto optimal optimization levels. COLE is fully automated
and is completely transparent to the compiler, the benchmarks, the
hardware platform, as well as the objective functions. To the best of our
knowledge, this work is the first to study automated multi-objective
compiler optimization exploration. COLE differs from iterative compi-
lation in this respect because the work done so far in iterative compila-
tion focused on single-objective optimization.

Our experiments using GCC and the SPEC CPU benchmarks on
both an Intel Core and Intel Nehalem system optimizing for run time
(code quality) and compilation cost show that the optimization lev-
els obtained through COLE significantly outperform the standard (and
manually derived) compiler optimization levels (-O1, -O2, -O3), and
in addition, outperform the optimization levels obtained through ran-
dom sampling. The cross-validation experiments show that targeting
the optimization levels to the particular hardware platform and appli-
cation domain for which they will be employed is important with re-
spect to obtaining good trade-offs. A thorough analysis of the composi-
tion of the optimization levels obtained through COLE leads to interest-
ing observations about the contribution of the different optimizations;
a significant amount of optimizations are not used, regardless of the
trade-off between code quality and compilation cost, while other opti-
mizations come forward as critical because they are beneficial overall.

Chapter 6

Automated Just-In-Time
Compiler Tuning

Make everything as simple as possible, but not simpler.
Albert Einstein

One of the key advantages of managed programming languages,
such as Java, is that programs are compiled to an intermediate machine-
independent level, called bytecode, enabling cross-platform portabil-
ity. However, this requires a process virtual machine—a Java virtual
machine or JVM for short—to translate bytecode to executable code.
Modern JVMs tend to follow a mixed-mode execution scheme in which
application methods are first interpreted, or compiled with a baseline
non-optimizing compiler. If a method is sufficiently hot, i.e., is executed
frequently, it will likely be a candidate for (re)compilation by the opti-
mizing Just-In-Time (JIT) compiler. In this chapter, we refer to a set of
optimizations used together during the (re)compilation of a method as
an optimization plan. Modern JVMs [5, 76, 82] employ multiple optimiza-
tion levels (e.g., -O0, -O1 and -O2), in which each level comprises a
successively more aggressive optimization plan. In other words, more
aggressive optimizations are performed on more frequently executed
code: higher optimization levels result in longer compilation times, yet
they supposedly yield better code, thereby further speeding up the ex-
ecution of the hot methods.

Tuning the VM’s JIT compiler is a challenging task for a number of
reasons. For one, to ensure good performance, the VM developer has
to carefully pick and tune each of the optimization levels, choosing the
right optimizations at each level and tweaking their settings and con-

116 Automated Just-In-Time Compiler Tuning

trols. As mentioned during the previous chapter, this is far from trivial
because of the large number of available optimizations and their com-
plex interactions. Second, the Adaptive Optimization System (AOS),
i.e., the engine that decides which methods to optimize to which op-
timization level, needs to be fine-tuned. This is non-trivial as well be-
cause the optimum AOS configuration is highly dependent on the op-
timization plans at each optimization level and it is crucial to take full
advantage of the available optimization levels. Third, this tuning pro-
cess needs to be done for every possible optimization target of interest.
In particular, the optimal VM configuration may be specific to a par-
ticular hardware platform because different hardware platforms come
with different memory hierarchies, microarchitectures, etc. which re-
quires the JIT compiler to be tuned differently. Different applications
may need the JIT compiler to be tuned differently as well. For exam-
ple, servers often run a single application or a limited number of appli-
cations, such as middle-ware or business applications, over and over
again. As such, it makes sense to tune the VM for a particular applica-
tion or set of applications.

Current practice is to manually tune the JIT compiler. Arnold et
al. [7] and Ishizaki et al. [62] describe such a manual process for the
Jikes RVM and the IBM JDK production VM, respectively. This pro-
cess is both tedious, time-consuming and costly, and may lead to sub-
optimal performance. Moreover, tuning needs to be done for every
new processor on the market as well as for different applications and
application domains.

In this chapter, we propose automated JIT compiler tuning. This is
done in two steps. The first step identifies optimization plans that are
Pareto optimal in terms of compilation time and code quality. This is
done using the COLE framework presented in Chapter 5. We subse-
quently retain a limited number of optimization plans that cover the
Pareto frontier well. The second major step is to search for the opti-
mum JIT compiler. This involves assigning Pareto optimal optimiza-
tion plans to optimization levels (-O0, -O1 and -O2), and fine-tuning
the AOS. Again, we use machine learning techniques, and evolution-
ary search algorithms in particular, for doing so. The end result is a
VM that is optimized for the optimization target(s) of interest, i.e., for a
given hardware platform and/or application domain.

To the best of our knowledge, we are the first to propose a frame-
work for automatically tuning a JIT compiler with multiple optimiza-

6.1 Java Virtual Machine: Jikes RVM 117

tion levels for optimum performance. The key benefit is that the ex-
ploration is fully automated and enables tuning the JIT compiler for a
given hardware platform and/or (set of) application(s) at very low cost.

6.1 Java Virtual Machine: Jikes RVM

Before presenting the proposed JIT compiler optimization framework,
we first briefly describe the organization of a modern Java virtual ma-
chine, namely Jikes RVM (Research Virtual Machine) [5]. This will en-
able us to better understand the complexity of JIT compiler tuning.

Although this work uses the Jikes RVM for driving the experiments,
we strongly believe that the overall framework and conclusion is ap-
plicable to other Java virtual machines. Moreover, similar JIT compiler
tuning can be applied on other process virtual machines, such as the
Common Language Runtime (CLR) of the Microsoft’s .NET initiative.

6.1.1 Optimization plans and levels

JikesRVM is a compilation-only VM. Methods are initially compiled
using a fast but non-optimizing baseline compiler that generates rel-
atively inefficient machine code. To improve performance, Jikes RVM
employs a JIT optimization strategy for optimizing hot methods using
three optimization levels (-O0, -O1 , and -O2). We refer to the baseline
compilation level as base.

Each optimization level -On is defined by an optimization plan POn
that enumerates the optimizations at that level along with several val-
ues that further steer their use. In the default Jikes RVM configuration,
optimization plans for higher levels include the optimizations for the
lower levels. Each optimization level also has a corresponding aggres-
siveness assigned to it that influences the use of various optimizations,
e.g., more copy propagation passes are done at higher optimization lev-
els. In Jikes RVM (version 3.0.1), there are 33 boolean options available,
each of which turns an optimization on or off, and 10 value options that
control the optimizations1. Thus, per optimization plan, we have 233

possible combinations of boolean flags and a space spanned by eight

1These are the options we have used in the exploration. There are other options we
did not use because they are either unstable, not meant to be changed from outside the
VM or can activate options that result in breaking the Java language specification.

118 Automated Just-In-Time Compiler Tuning

Table 6.1: Default compiler DNA values for Jikes RVM v3.0.1.

base -O0 -O1 -O2

compilation rate (bc/ms) 909.46 39.53 18.48 17.28
speedup vs. base 1.0 4.03 5.88 5.93

positive integer values and two positive floating-point values. This re-
sults in a huge search space.

6.1.2 Compiler DNA

An optimization plan is characterized using two metrics: the compila-
tion rate (i.e., bytecodes compiled per millisecond (bc/ms)), and the im-
provement in code quality (i.e., speedup in execution time over base).
Combined, these two metrics are referred to as the compiler DNA asso-
ciated with the optimization plan.

The compiler DNA for each optimization plan/level in Jikes RVM is
measured as follows. The compilation rate is obtained by compiling all
methods at the specified optimization level upon first execution. The
speedup is the ratio between the execution time obtained by executing
this optimized code and the execution time for a VM using the base
compiler only. The DNA in Jikes RVM for x86, see Table 6.1, was com-
puted on an LS41 type 7972 blade, equipped with an AMD Opteron
8218 with 4 MB L2 cache and 4 GB RAM, using the SPECjvm98 bench-
marks2.

6.1.3 Sample-based JIT optimization

Jikes RVM uses OS-timer triggered sampling to identify hot methods.
When the timer fires, the method on top of the stack is sampled the
moment a yield point3 is reached [7, 8]. When sufficient samples have
been gathered for a method, the VM uses the AOS to decide whether
or not to optimize the method to a particular optimization level.

2The Jikes RVM compiler DNA for the PowerPC platform specifies different values.
3A yield point in Jikes RVM is a point during the execution where the scheduler can

safely switch threads. It is placed at the beginning and the end of methods and at loop
back-edges.

6.2 Methodology 119

6.1.4 Adaptive Optimization System

The AOS decides whether or not to optimize a method, and if so, to
which optimization level the method should be optimized. There are
five value options in total that control the AOS: three positive integer
values, and two positive floating-point values, again resulting in a large
space to explore. The AOS parameters control when the engine finds a
method to be hot enough to be considered for optimization to a higher
level. It uses the compiler DNA to make a trade-off in compilation cost
(i.e., how long does it takes to optimize the method at a given optimiza-
tion level?) and code quality (i.e., how much faster will the code run
once optimized?).

6.2 Methodology

We now present our framework for automatically tuning a JIT compiler.
This includes identifying the optimization plans, optimization levels
and AOS settings. Before describing the overall framework in great
detail, we first motivate the need for a two-step process.

6.2.1 Why a two-step process?

As mentioned earlier in the introduction, optimizing a dynamic com-
piler is substantially more complicated than optimizing a static com-
piler because of the tight interaction between optimization plans and
levels, and the AOS settings. For example, including a compiler opti-
mization at one level changes the compilation rate versus code quality
trade-off, which in turn changes which methods are optimized to which
optimization level. This leads to complex interactions that severely
complicate the search process. Our initial approach to this problem was
to use an evolutionary algorithm to construct the optimization plans,
plan-to-level assignments, the number of optimization levels, and the
AOS settings in a single go. In fact, we used the COLE framework [55]
presented in Chapter 5 which was developed for a static compiler, and
naively applied it to a dynamic compiler by defining an entity that
represents a JIT configuration with multiple optimization levels and
AOS parameters. However, we encountered three significant problems.
First, the automatically derived JIT compiler did not perform as well as
or better than the default manually tuned Jikes RVM (and for many

120 Automated Just-In-Time Compiler Tuning

benchmarks performed significantly worse). Second, the search pro-
cess took extremely long to converge. Third, expressing the optimiza-
tion problem in a format that can be handled by COLE’s evolutionary
search algorithm was non-trivial, e.g., it is unclear how to sensibly de-
fine crossover across two JIT compiler settings with a different number
of optimization levels. This motivated us to come up with a two-step
process in which we first focus on code quality versus compilation rate
while excluding dynamic compilation and garbage collector (GC) ac-
tivity, and subsequently assign plans to levels and optimize the AOS
settings while considering dynamic compilation and GC activity. The
two-step process enables a higher performance JIT compiler to be de-
rived in a shorter amount of time.

6.2.2 Step 1: Pareto optimal optimization plans

Exploration using COLE

The goal of the first step is to identify optimization plans that are Pareto
optimal in terms of compilation cost and code quality they deliver. Fig-
ure 6.1 shows an illustrative example of a Pareto frontier in the dual-
objective search space, namely compilation rate (i.e., number of byte-
codes compiled per unit of time) versus speedup (i.e., performance im-
provement compared to non-optimized code). An optimization plan
is Pareto optimal if there is no other plan that performs better both in
terms of compilation rate and speedup. When constructing the Pareto
frontier, we consider a setup in which we first compile all the code ac-
cording to the optimization plan and subsequently execute the opti-
mized code—we do not consider JIT compilation (for now) and con-
sider a large heap size (8 times the minimum heap size) to minimize
GC activity. This is to understand the basic trade-off in code quality
versus optimization overhead.

For identifying the Pareto frontier, we use the COLE framework
presented in the previous chapter. We retain all the Pareto optimal op-
timization plans ever seen during the exploration performed by COLE.

Selecting optimization plans

Through COLE, we obtain a fairly large set of Pareto optimal optimiza-
tion plans; in our experiments, we obtained up to 80 Pareto optimal
plans. From this set, we select a subset such that the Pareto frontier

6.2 Methodology 121

sp
ee

du
p

compilation rate

A
B
C D

E

F

Pareto optimal compilation plan
compilation plan
retained plan after step 1

Figure 6.1: An example of a Pareto frontier in our dual-objective exploration
space. The circled plans are those retained at the end of the first step to boot-
strap the second step.

is covered well. We found this Pareto frontier reduction procedure to
be an important step in the overall JIT exploration in order to limit the
total exploration time.

The rationale behind the Pareto frontier reduction procedure is to
prefer optimization plans that result in higher code quality at roughly
the same compilation rate, and compile bytecode faster while attaining
roughly the same speedup. We therefore use an iterative selection algo-
rithm. In the first iteration, we pick the two adjacent plans on the Pareto
frontier that lie closest to each other along the X axis. We drop the plan
that scores worst along the Y axis. We then select the two plans that
lie closest to each other along the Y axis, and drop the one that scores
worst along the X axis. This iterative process stops when the number
of retained plans drops below a given number. We limit the number of
retained Pareto optimal optimization plans to 8.

In our running example, see Figure 6.1, this means we first select the
pair (B,C) because they lie closest on the X axis and drop C. The next
pair is (D, E) because they lie closest on the Y-axis and we only retain E.
After two iterations, the set of retained optimization plans equals {A,
B, E, F}.

122 Automated Just-In-Time Compiler Tuning

6.2.3 Step 2: JIT compiler tuning

The second step in the proposed JIT compiler tuning framework is to
(i) assign the Pareto optimal optimization plans to optimization levels
(-O0, -O1 and -O2), and (ii) tune the JIT AOS accordingly. In contrast
to the first step, we now consider adaptive JIT compilation, i.e., the
JIT compiler optimizes the most frequently executed methods at run
time, and we consider heap sizes that introduce GC activity in order
to achieve representative performance numbers. In other words, com-
pilation and optimization time as well as GC time become part of the
overall execution time.

Assigning optimization plans to optimization levels is fairly straight-
forward: given the limited number of retained Pareto optimal opti-
mization plans we can easily consider all possible assignments of plans
to levels. In our setup, this means we need to assign 8 optimization
plans to 1 through 3 optimization levels. There are 92 possible as-
signments. We use a multi-objective evolutionary search algorithm to
identify the best AOS settings. In this algorithm, the 92 JIT compilers
obtained by assigning plans to levels use the default AOS settings used
in Jikes RVM and serve as the initial population. Subsequent popula-
tions are then constructed from the best performing JIT compilers (in
terms of startup and steady-state performance) through crossover and
mutation of the AOS settings, until convergence is reached.

6.3 Evaluation and analysis

In this section, we experimentally evaluate our framework and analyze
the results, after detailing on our experimental setup.

6.3.1 Experimental setup

Benchmarks

Table 6.2 shows the benchmarks used in this chapter. We use the
SPECjvm98 benchmarks [29] (top seven rows), as well as nine Da-
Capo benchmarks [15] (bottom nine rows). SPECjvm98 is a client-side
Java benchmark suite consisting of seven benchmarks. We run all
SPECjvm98 benchmarks with the largest input set (s100). The Da-
Capo benchmark suite is an open-source benchmark suite; we use

6.3 Evaluation and analysis 123

Table 6.2: SPECjvm98 (top seven) and DaCapo (bottom nine) benchmarks
considered in this paper.

benchmark description min heap
size (MB)

compress file compression 24
jess puzzle solving 16
db database 32
javac Java compiler 32
mpegaudio MPEG decompression 16
mtrt raytracing 24
jack parsing 24

antlr parsing 32
bloat Java bytecode optimization 56
fop PDF generation from XSL-FO 56
hsqldb database 176
jython Python interpreter 72
luindex document indexing 32
lusearch document search 32
pmd Java class analysis 64
xalan XML to HTML transformer 40

release version 2006-10-MR2. We include the nine benchmarks that ex-
ecute properly on the 3.0.1 version of Jikes RVM. The default (medium)
input set is used for the DaCapo benchmarks unless mentioned other-
wise.

Hardware platforms

We use four different hardware platforms in this study:

- an AMD Opteron 242 clocked at 1.6GHz with 1 MB L2 cache and
4 GB RAM running Linux 2.6.9;

- an Intel Pentium 4 clocked at 3.0GHz with 1 M L2 cache and
1.5GB RAM running Linux 2.6.19;

- an Intel Core 2 based Xeon L5420 clocked at 2.5GHz with 6 MB
L2 cache and 16 GB RAM running Linux 2.6.18; and

- an Intel Core i7 920 based machine clocked at 2.6GHz with 256 kB
L2, 8MB L3 and 12 GB RAM running Linux 2.6.27.

124 Automated Just-In-Time Compiler Tuning

Jikes RVM

We use Jikes RVM version 3.0.1, released on November 18th, 2008.
We patched Jikes RVM such that optimizations can be set on a per-
optimization level basis at the command line. The virtual machine was
built using the production profile, which uses the GenMS garbage collec-
tor and compiles the VM methods using the optimizing compiler with
the default PO2 optimization plan.

For the optimization plans, we consider the 33 boolean optimiza-
tion options listed in Table 6.3 in the tuning process, alongside 10 value
options. We also consider 5 AOS value options that steer the adaptive
compilation. All value options are listed in Table 6.4. For each opti-
mization plan, we consider three base settings (O0, O1 and O2), which
control the aggressiveness of some optimizations.

During the first step of the exploration algorithm, we use a heap size
that is 8 times the minimum size required to run a benchmark; this is to
eliminate the effect of garbage collection, as mentioned earlier. We do
vary the heap size (i.e., 2×, 4×, and 8× the minimum heap size) during
the second step and during evaluation, following current practice [15].

Tuning framework configuration

As mentioned in Section 6.2.2, we rely on the COLE framework pre-
sented in Chapter 5 in the first step of the tuning process. In our setup,
each population consists of 25 entities each representing an optimiza-
tion plan. The archive size is set to 20 entities. Crossover mixing with
a crossover rate of 25% is used to construct 9/10 of the entities in a
new generation, while multi-point drift mutation with a mutation rate
of 25% is used for the remaining 1/10 of the entities. Convergence is
considered when no change in the Pareto frontier is observed for three
subsequent generations.

In the initial generation, we add plans with all optimizations turned
off and plans with all optimizations turned on, next to the randomly
generated optimization plans. The value parameters for each of the ini-
tial compilation plans are set to the values used in the manually tuned
default Jikes RVM configuration; this is the only aspect in which the
framework relies on the experience of the compiler developer to start
off with a meaningful set of values. Note that both these steps are not
strictly required when using the framework; they do however signifi-
cantly speed up and focus the exploration.

6.3 Evaluation and analysis 125

Table 6.3: The list of boolean optimizations which are available in Jikes RVM
and used throughout this chapter. Optimizations used in the default Jikes
RVM optimization levels -O0, -O1 and -O2 are indicated as such. Note that
we also consider 15 optimizations which are not used in the default Jikes RVM
optimization levels.

1 -X:opt:local constant prop -O0
2 -X:opt:local copy prop -O0
3 -X:opt:local cse -O0
4 -X:opt:field analysis -O0
5 -X:opt:reorder code -O0
6 -X:opt:inline new -O0
7 -X:opt:inline -O0
8 -X:opt:guarded inline -O0
9 -X:opt:guarded inline interface -O0

10 -X:opt:preex inline -O0
11 -X:opt:monitor removal -O0,-O1
12 -X:opt:scalar replace aggregates -O0,-O1
13 -X:opt:reorder code ph -O0,-O1
14 -X:opt:inline write barrier -O0,-O1
15 -X:opt:static splitting -O0,-O1
16 -X:opt:osr guarded inlining -O0,-O1
17 -X:opt:osr inline policy -O0,-O1
18 -X:opt:handler liveness -O0,-O1,-O2
19 -X:opt:redundant branch elimination
20 -X:opt:ssa
21 -X:opt:load elimination
22 -X:opt:coalesce after ssa
23 -X:opt:expression folding
24 -X:opt:gcp
25 -X:opt:gcse
26 -X:opt:turn whiles into untils
27 -X:opt:global bounds check
28 -X:opt:verbose gcp
29 -X:opt:licm ignore pei
30 -X:opt:loop versioning
31 -X:opt:schedule prepass
32 -X:opt:reads kill
33 -X:opt:freq focus effort

The evolutionary search algorithm used in step 2 of the tuning pro-
cess is configured in the same way, in terms of population and archive
size, recombination operators and convergence criterion. The only dif-
ference is the entity definition, which describes a JIT compiler config-

126 Automated Just-In-Time Compiler Tuning

Table 6.4: The list of value optimizations which are available in Jikes RVM
and used throughout this chapter; the top 10 value optimizations steer one or
more boolean optimizations, while the bottom 5 value options steer the AOS
during adaptive compilation. For each value option, the value used in the
default Jikes RVM compiler is shown.

-X:opt:ic max target size 23
-X:opt:ic max inline depth 5
-X:opt:ic max always inline target size 11
-X:opt:ic massive method size 2048
-X:opt:ai max target size 119
-X:opt:ai min callsite fraction cole 0.40
-X:opt:unroll log 2
-X:opt:cond move cutoff 5
-X:opt:load elimination 3
-X:opt:infrequent threshold 0.010

-X:aos:decay frequency 100
-X:aos:dcg decay rate 1.10
-X:aos:dcg sample size 20
-X:aos:ai seed multiplier 3
-X:aos:ai hot callsite threshold 0.0100

uration, i.e., a selection of optimization plans to be used at the differ-
ent optimization levels and a set of value parameters representing the
AOS settings, and the objective metrics, i.e., steady-state and startup
performance relative to a baseline compiler. Using the 8 optimization
plans retained from the first step, we construct all possible 92 entities
for the initial population (subsequent generations only contain 25 en-
tities): 8 entities which represent JIT compiler configurations with one
single optimization level, and 28 and 56 entities which represent con-
figurations with two and three levels, respectively. Again, the values of
the AOS settings in the manually tuned default Jikes RVM configura-
tion are used in the initial population.

Statistically rigorous performance evaluation

To deal with the non-determinism that is due to timer-based sampling
and adaptive optimization in Jikes RVM, we use both multiple VM in-
vocations and multiple benchmark iterations per VM invocation in our
experiments, following the statistically rigorous performance evalua-

6.3 Evaluation and analysis 127

Table 6.5: Compilation rates and speedups over base on the Intel Core 2
for the optimization plans used by default in Jikes RVM (top rows), and the
compilations plans obtained through our exploration (bottom rows).

Plan Compilation rate Speedup (over base)

-O0 53.12 1.86
-O1 21.84 2.14
-O2 20.81 2.13

A 59.70 1.77
B 57.62 1.86
C 50.86 1.89
D 41.07 2.00
E 37.42 2.02
F 28.70 2.05
G 25.90 2.08
H 19.11 2.13

tion methodology proposed by Georges et al. [43]. When reporting
start-up performance we consider the average execution time for the
first benchmark iteration across 20 VM invocations. When reporting
steady-state performance we consider the arithmetic mean across the
final 5 out of 15 benchmark iterations across 20 VM invocations. We
report 95% confidence intervals which are indicated through error bars
in the graphs.

We now evaluate the proposed JIT compiler tuning framework.
We consider three cases: (i) tuning for average performance across all
benchmarks, (ii) tuning for a particular benchmark, and (iii) tuning for
a specific hardware platform. We consider experimental setups both
with and without cross-validation. Finally, we discuss the exploration
time.

6.3.2 Tuning for a benchmark suite

In a first evaluation, we use all the benchmarks from the SPECjvm98
and DaCapo suites, and aim at finding a JIT compiler configuration
that performs well on average across all of the benchmarks. Our goal is
to demonstrate that automated JIT compiler tuning performs at least as
well as a manually tuned JIT compiler. This exploration was conducted
on the Intel Core 2 platform.

128 Automated Just-In-Time Compiler Tuning

Table 6.6: The JIT compiler configurations that are optimal in terms of startup
(CST) and in terms of steady-state (CSS).

default CST CSS

number of levels 3 3 2
level 0 PO0 plan A plan A
level 1 PO1 plan C plan E
level 2 PO2 plan E –

Clock tick count for call graph decay 100 52 26
Call graph decay rate 1.10 1.10 1.10
Call graph update frequency (ticks) 20 3 4
Initial edge weight in call graph 3 3 3
Percentage of edges that mark hotness 0.01 0.0136 0.0098

Pareto optimal optimization plans

Table 6.5 lists the three default compilation levels as well as the opti-
mization plans we obtained from the first step in our exploration pro-
cess, in terms of compilation rate and speedup (code quality). The au-
tomatically derived Pareto optimal optimization plans are comparable
to the manually tuned optimization plans in the manually tuned de-
fault Jikes RVM, and are well spread in terms of compilation rate and
code quality.

Tuned JIT compiler

The second step is to identify optimum plan-to-level assignments and
AOS settings. We denote the JIT compiler that yields best start-up per-
formance as CST; the JIT compiler that delivers the best steady-state
performance is denoted as CSS. These settings are shown in Table 6.6.
Interestingly, the optimum start-up JIT compiler CST has three levels
with plans E, C and A, whereas the optimum steady-state JIT com-
piler CSS has only two levels with plans E and A. We found the au-
tomatically tuned JIT compiler to achieve significantly better perfor-
mance than the manually tuned Jikes RVM for a couple benchmarks,
e.g., mtrt (30% for start-up and 7% for steady-state), hsqldb (10%
for start-up) and bloat (3% for steady-state). For some benchmarks,
we observe slightly worse performance, e.g., lusearch and xalan for
steady-state; performance degradation is limited to 3% to 4% though.
However, for the majority of the benchmarks, we do not observe statis-

6.3 Evaluation and analysis 129

tically significantly better or worse performance. Overall, the end con-
clusion is that automated JIT compiler tuning is feasible and achieves
similar performance compared to a manually tuned JIT compiler.

Analysis

A number of interesting observations can be made from studying the
selected Pareto optimal optimization plans and their composition, com-
paring them with the optimization plans of the default Jikes RVM op-
timization levels and looking into the optimization plans that are effec-
tively used in the tuned JIT compilers.

A first observation is that the three optimization plans that deliver
the highest performance (F-G-H) are not included in the best perform-
ing tuned JIT compilers obtained through our framework. Apparently
the significant drop in compilation rate that accompanies these opti-
mization plans, along with the very modest increase in delivered code
quality makes these plans ill-suited for inclusion in the optimization
level of an optimizing JIT compiler.

The optimization plan that is used in the highest optimization level
of both theCSS andCST JIT compilers, i.e., plan E, shows a compilation
rate that is 80% higher than the optimization plan of the default -O2
level, while yielding a speedup that is just 5.4% lower (see Table 6.5).
This causes the adaptive controller to recompile hot methods at the
highest optimization level a lot sooner in the tuned JIT compiler com-
pared to the default configuration, causing an overall modest speedup
for some benchmarks and a significant speedup in terms of startup per-
formance for selected benchmarks, despite the slightly lower speedup
delivered by the highest optimization level.

Figure 6.2 reveals the composition of the 8 optimization plans that
were selected during the tuning process for both the SPECjvm98 and
DaCapo benchmarks. Note that we excluded the value options, be-
cause the tuning framework did not change their values compared to
the default values given to the plans in the initial set of plans.

A first striking observation regarding the composition of optimiza-
tion plans is that the selection of enabled optimizations of a particular
tuned optimization plan is not determined by the ‘lower’ optimization
plans, as is the case with the optimization plans of the default Jikes
RVM optimization levels. For example, in plan D various optimizations
that were used in plan C are disabled, and other optimization were en-

130 Automated Just-In-Time Compiler Tuning

(a) optimization plans in default Jikes RVM

BA
SE

1 5 10 15 20 25 30

 disabled enabledO0 O1 O2

boolean optimizations

(b) 8 selected optimization plans (A-H)

BA
SE

1 5 10 15 20 25 30
boolean optimizations

A
B
C
D
E
F
G
H

 disabled enabledO0 O1 O2

Figure 6.2: Composition of the optimization plans of the default Jikes RVM
optimization levels (a), and the 8 selected optimization plans obtained with
our framework, when tuning for both the SPECjvm98 and DaCapo bench-
marks on the Intel Core 2 system. We excluded the value options for these op-
timization plans, because they remained unchanged by the tuning framework
compared to the default values given during initialization of the exploration.

abled instead. This is a direct consequence of the automatic nature of
the tuning framework: a compiler developer who needs to construct
a set of optimization plans manually, trading of compilation rate and
code quality, would be tempted to the more intuitive hierarchical way
of constructing optimization plans, unknowingly paying the price in
terms of performance in the end.

The most aggressive optimization plan used in the tuned JIT com-
pilers, i.e., plan E, enabled 13 boolean optimizations. This explain the
significant gain in compilation rate compared to the optimization plan
of -O2, which enables 18 boolean optimizations. Plan E does not use
11 of the optimizations used in the -O2 plan, but does enable 6 op-
timization not used at -O2, and achieves a better trade-off between
compilation rate and delivered speedup that way. The selected opti-
mization plan with the fastest compilation rate (plan A) does not use
any of the optimizations used in -O0 and only enables 3 optimizations
all together. Plan C, which is used in the CST JIT compiler at the in-
termediate optimization level, enables half of the optimizations used at

6.3 Evaluation and analysis 131

-O1 next to two other optimizations.
Several optimizations that are used in the optimization plans of the

default Jikes RVM optimization levels are not used in the tuned opti-
mization plans (except in plan H, which is shown to be of little inter-
est because it represents a suboptimal trade-off): local copy prop,
scalar replace aggregates, inline write barrier,
osr guarded inlining, osr inline policy and
handler liveness. As mentioned in the previous chapter, there are
several possible reasons for this: the optimizations are not applicable
to the set of benchmarks used in the tuning process, they conflict with
other optimizations, they hurt the compilation cost versus code quality
trade-off, etc.

Of the optimizations that are not included in the default Jikes RVM
v3.0.1 optimization levels, several are used in the tuned optimization
plans. The most notable examples include ssa, load elimination
and verbose gcp. While these optimizations might have appeared to
be too expensive on top of the optimizations enabled at -O2 to con-
sider for inclusion, our results suggest that these optimizations might
be worthwhile at various trade-off levels.

6.3.3 Tuning for a single benchmark

An important benefit from automated JIT compiler tuning is that it en-
ables the optimization for specific applications as well as for specific
hardware platforms at very low cost, given that the tuning process is
completely automated. In this section, we discuss the results we obtain
when we tune the JIT compiler for a specific benchmark; we discuss the
case in which we tune for a specific hardware platform later.

Figure 6.3 shows the speedup on the Core 2 platform when compar-
ing the best Pareto optimal configuration tuned per benchmark for (a)
start-up and (b) steady-state performance against the manually tuned
default Jikes RVM. The automated exploration yields JIT compilers that
outperform the default Jikes RVM for a good portion of the bench-
marks, and up to 40% for start-up and up to 19% for steady-state.

6.3.4 Cross-validation

The evaluation described so far assumed that the JIT compiler was
tuned and evaluated using the same set of benchmarks, namely Da-

132 Automated Just-In-Time Compiler Tuning

(a) start-up

(b) steady-state

Figure 6.3: Speedup on the Intel Core 2 compared to the manually tuned de-
fault Jikes RVM for start-up and steady-state performance when tuning the
JIT compiler for optimum performance on a per-benchmark basis.

6.3 Evaluation and analysis 133

(a) tuned for SPECjvm98, evaluated with SPECjvm98

(b) tuned for DaCapo, evaluated with SPECjvm98

Figure 6.4: Per-benchmark performance speedups on the Intel Core 2 com-
pared to default Jikes RVM when tuning Jikes RVM for the SPECjvm98 bench-
marks in a non cross-validation setup (a) and a cross-validation setup (b). The
graphs show results for both startup (ST) and steady-state (SS) performance,
across three heap sizes.

134 Automated Just-In-Time Compiler Tuning

Capo and SPECjvm98. Even more relevant is to study whether one
could tune the JIT compiler with one set of benchmarks and then
achieve good performance for other benchmarks. We now employ
such a cross-validation setup: we tune the JIT compiler using the Da-
Capo benchmark suite and then evaluate the tuned JIT compiler using
the SPECjvm98 benchmark suite, and vice versa. Figures 6.4 and 6.5
show the results of this cross-validation experiment along with the
results of a non cross-validation experiment (i.e., the JIT compiler is
tuned and evaluated using the same set of benchmarks), which serves
as a point of reference.

For SPECjvm98, we observe that the automatically tuned JIT com-
piler achieves good performance even in a cross-validation experiment
(compare Figure 6.4a to the non cross-validation experiment in Fig-
ure 6.4b). The automatically tuned JIT compiler achieves substantial
speedups for mtrt and compress. We observe a slowdown for mpegau-
dio in the cross-validation setup. The performance picture is mixed for
the DaCapo benchmark suite (Figure 6.5): when tuned for SPECjvm98,
the JIT compiler performs worse for several DaCapo benchmarks, see
for example bloat, jython, lusearch and pmd. For the other benchmarks,
we observe similar (or similarly good, see hsqldb) performance under
cross-validation. The reason for the different performance picture for
DaCapo compared to SPECjvm98 is the significant differences in work-
load characteristics between DaCapo and SPECjvm98: Blackburn et
al. [15] demonstrate that DaCapo shows more complex code, has richer
object behaviors, and has more demanding memory system require-
ments. This result motivates the need for representative benchmarks
when (automatically) tuning a JIT compiler—this is a general concern
for feedback-loop based optimization and tuning.

In the previous section, we considered the same benchmark inputs
when tuning the JIT compiler as during evaluation. Figure 6.6 reports
performance results when considering a different input during the tun-
ing process and evaluation, i.e., we now consider a cross-input valida-
tion setup. We limit ourselves to the DaCapo benchmarks in this exper-
iment: we use the medium inputs during JIT compiler tuning and use
the large inputs during evaluation. Two DaCapo benchmarks are ex-
cluded, namely fop and luindex, because the medium input is equal
to the large input. We do not consider SPECjvm98 here because of lack
of inputs: the s1 and s10 inputs are too small and only stress virtual
machine startup performance and do not stress code quality [34].

6.3 Evaluation and analysis 135

(a) tuned for SPECjvm98, evaluated with DaCapo

(b) tuned for DaCapo, evaluated with DaCapo

Figure 6.5: Per-benchmark performance speedups on the Intel Core 2 com-
pared to default Jikes RVM when tuning Jikes RVM for the DaCapo bench-
mark suite in a non cross-validation setup (a) and a cross-validation setup (b).
The graphs show results for both startup (ST) and steady-state (SS) perfor-
mance, across three heap sizes.

136 Automated Just-In-Time Compiler Tuning

(a) start-up

(b) steady-state

Figure 6.6: Per-benchmark start-up and steady-state speedup for a cross-input
validation experiment.

6.3 Evaluation and analysis 137

Comparing Figures 6.3 and 6.6, we observe roughly the same
speedup for the medium inputs (Figure 6.3) as for the large input (Fig-
ure 6.6) for some benchmarks, e.g., hsqldb. For other benchmarks, we
observe a slight performance drop, e.g., bloat. This motivates the need
for representative inputs when tuning a JIT compiler for a particu-
lar application — an input that yields substantially different program
behavior than the input used during the tuning process may result
in suboptimal performance. As mentioned before, this is a general
concern for feedback-loop based optimization and tuning.

6.3.5 Tuning for a specific hardware platform

We now explore the potential performance benefit by tuning the JIT
compiler for a specific hardware platform. In this section, we examine
the effects of tuning for a particular platform using two benchmarks:
(i) mtrt, and (ii) luindex. During the benchmark suite wide explo-
ration on the Intel Core 2 (see Figures 6.4 and 6.5), the optimum JIT
compiler did very well for mtrt, yet it failed to improve performance
for luindex. In the per-benchmark exploration, mtrt improves fur-
ther, while luindex gains 9% in both start-up performance and in
steady-state performance on the Core 2, see Figure 6.3. Thus, these
two benchmarks make for two excellent cases for examining the effect
of exploring benchmark-specific tuning across different hardware plat-
forms.

Per-platform tuning

Our first experiment tunes the JIT compiler for a specific hardware
platform and compares performance against the default JIT compiler
(which was manually tuned for another hardware platform). The re-
sults of this hardware-specific exploration are shown in Figure 6.7 for
(a) start-up and (b) steady-state performance. There is significant ben-
efit in start-up performance for mtrt: performance speedups range
from 19% to 40%. For luindex we observe performance benefits in the
4% to 12% range. For steady-state performance, we observe substantial
performance benefits for both mtrt and luindex: performance im-
proves by up to 13% for mtrt and up to 17% for luindex. These ex-
amples make the case that significant speedups can be obtained from
tuning a JIT compiler for a specific hardware platform.

138 Automated Just-In-Time Compiler Tuning

(a) start-up

mtrt luindex
2x 4x 8x 2x 4x 8x

(b) steady-state

mtrt luindex
2x 4x 8x 2x 4x 8x

Figure 6.7: Speedup numbers across different heap sizes on all hardware
platforms for mtrt and luindex for (a) start-up and (b) steady-state per-
formance.

6.3 Evaluation and analysis 139

Figure 6.8: The Pareto frontiers for the optimization plans tuned for mtrt on
each of the platforms in our experimental setup.

This result is further illustrated in Figure 6.8 which shows the per-
platform Pareto optimal optimization plans in terms of compilation
rate and performance speedup relative to baseline compiled code.
There are two observations we can immediately draw from this graph.
First, the frontier shifts to the upper right for more recent platforms. As
a consequence, if one tunes the compiler DNA on an older platform,
the cost for optimization is over-estimated and the potential benefit the
optimization reaps is under-estimated. This may result in optimizing
later — more samples are required to reach the decision threshold — or
optimizing to a lower level. Conversely, if the VM is tuned for a more
recent platform, the VM might optimize too soon and/or too much,
potentially offsetting the gain the adaptive framework might bring.
Second, we see that on each platform the Pareto frontier is well spread
across the space, suggesting that a few optimizations might have a
large effect.

Employing tuned JIT compilers across platforms

Using a JIT compiler that was tuned for a particular hardware platform
on another hardware platform may yield suboptimal results. This is il-
lustrated in Figure 6.9a where the Pareto optimal plans tuned for mtrt

140 Automated Just-In-Time Compiler Tuning

for each platform have been evaluated on the Intel Core 2 platform. The
optimization plans tuned for the Intel Pentium 4 and AMD Opteron
platforms are suboptimal, i.e., they perform worse than the ones that
were tuned for the Core 2. We observe a similar result when looking
into tuned JIT compilers, see Figure 6.9b which compares the perfor-
mance of a JIT compiler tuned for the Pentium 4, AMD Opteron and
Core i7 when run on a Core 2 machine against a JIT compiler that was
tuned on the Core 2. In this figure, we only show the two JIT compiler
configurations that perform best in terms of steady-state and startup.
Clearly, the JIT compilers tuned for the Core 2 yields the best possible
performance on the Core 2—the JIT compilers tuned for the other plat-
forms perform worse. In particular, the JIT compiler that was tuned
for the Core 2 yields approximately 5% better start-up performance
and 10% better steady-state performance compared to the JIT compiler
that was tuned for the Pentium 4. We thus conclude that platform-
specific JIT compiler tuning can yield substantial performance benefits
and transferring JIT settings across platforms may lead to suboptimal
performance.

6.4 Exploration time

Finally, we discuss how much time is needed to complete the JIT com-
piler tuning.

Performing the first step for all of the DaCapo and SPECjvm98
benchmarks on the Core2 platform took 33 generations to converge.
During each generation, 25 new optimization plans are constructed,
each of which requires roughly 40 minutes to measure the compiler
DNA. This means that about 550 machine hours are needed to run the
first step of the tuning process to convergence. Note however, that this
tuning process is again embarrassingly parallel, i.e., all plans can be
measured in parallel and independently of each other. Thus, having
sufficient machine resources available this first step only takes about
22 hours.

The second exploration step, which tunes the plan-to-level assign-
ment and AOS, converges significantly faster: only 8 generations are
required. Evaluating a single JIT compiler setting takes about 400 min-
utes on average. This results in an additional exploration time of about
1320 hours. Again, because each generation can be evaluated in paral-
lel, the exploration can be performed in about 53 hours.

6.4 Exploration time 141

(a) Optimization plans

(b) Tuned JIT compilers

Figure 6.9: Graph (a) shows compilation rate versus performance speedup
for the Pareto optimal optimization plans determined on the AMD Opteron,
Pentium 4 and Core i7 when run on the Core 2 platform. Graph (b) shows
start-up versus steady-state performance for the AMD Opteron, Pentium 4
and Core i7 tuned JIT compilers when evaluated on the Core 2. These graphs
consider SPECjvm98’s mtrt.

142 Automated Just-In-Time Compiler Tuning

Thus, the entire exploration for a set of 16 benchmarks on a par-
ticular hardware platform takes around 75 hours or roughly 3 days.
Performing the exploration for a single application only, as we did for
the experiments described in Section 6.3.3, is a matter of hours.

6.5 Related work

Most modern Java virtual machines implement multiple levels of op-
timization, see for example [7, 9, 76, 97]. Since compilation time is an
integral part of the total execution time in a dynamic compiler, it is of
utmost importance to make a good trade-off between compilation time
and code quality when proposing optimization levels in a optimizing
dynamic compiler. Arnold et al. [9] and Ishizaki et al. [62] describe
how optimization levels are determined manually for the Jikes RVM
and IBM DB production VM, respectively.

Cavazos and O’Boyle [21] take a different approach to optimiz-
ing JIT compilers. They apply a different optimization plan for each
method. The optimizations in these plans are determined by using a
logistic regression function that predicts which optimizations are most
useful for the given method based on bytecode features. They report
speedups of 4%, 2% and 29% on average compared to optimizing all
methods at the -O0, -O1, and -O2 levels, respectively. When consider-
ing adaptive optimization, they report a 1% improvement over default
Jikes RVM for SPECjvm98; for the DaCapo benchmarks, they report a
4% average performance improvement. Our JIT tuning approach does
not apply different optimization plans to individual methods which
simplifies JIT compiler tuning. In addition, Cavazos and O’Boyle do
not make the case that JIT compilers that are tuned for particular hard-
ware platforms and/or applications can yield substantial performance
benefits. In their follow-on work [20], Cavazos and O’Boyle use a ge-
netic algorithm to automatically tune the heuristics of the inliner in
a dynamic Java compiler. Our work is not limited to the inliner; we
instead tune the entire JIT optimization system.

6.6 Summary 143

6.6 Summary

In this chapter, we presented a framework for automatically tuning
dynamic compilers. The framework uses evolutionary searching and
tunes the JIT compiler for a given hardware platform and a given ap-
plication or application domain [57]. This is done through a two-step
process in order to manage the complexity in exploring the huge op-
timization space: we first identify Pareto optimal optimization plans,
and subsequently assign plans to optimization levels and fine-tune the
AOS.

Our experimental results using the Jikes RVM, four hardware plat-
forms and the SPECjvm98 and DaCapo benchmarks, demonstrate that
the proposed framework identifies JIT compiler configurations that
achieve significantly better performance compared to a manually tuned
VM. When optimizing for individual applications, we achieve perfor-
mance improvements up to 40% and 19% for start-up and steady-state
performance, respectively. Also, optimizing for a specific hardware
platform leads to significantly better performance. Our framework is
completely automated and explores the complex JIT compiler space
in approximately 3 days for the collection of DaCapo and SPECjvm
benchmarks; tuning the JIT compiler for individual applications is
done in a few hours.

144 Automated Just-In-Time Compiler Tuning

Chapter 7

Conclusions and
Future Work

One never notices what has been done;
one can only see what remains to be done.

Marie Curie

7.1 Conclusions

Modern computer systems are utterly complex pieces of engineering.
The most recent microprocessors are implemented using billions of
transistors, and consist of a multitude of components working together
and delivering great performance compared to previous generations.
Although the design of increasingly better performing computer sys-
tems is kept manageable by introducing several layers of abstraction,
this complexity is still a concern for computer engineers. In this disser-
tation we looked into a number of problems related to the performance
of modern computer systems, for which the cause can be traced back
to their complexity.

7.1.1 Analyzing and estimating performance

A first set of problems we studied relate to the analysis and estimation
of computer system performance.

146 Conclusions and Future Work

Analyzing inherent time-varying program behavior

In Chapter 2 we presented a set of microarchitecture-independent
workload characteristics that allow for capturing the true inherent
behavior of applications, as opposed to hardware performance counter
metrics which are commonly used in workload characterization stud-
ies. Based on these workload characteristics, we presented a method-
ology for studying the phase-level behavior of a set of workloads,
which is more informative than the less detailed aggregate workload
characterization as mostly done in current practice. The methodology
combines different machine learning techniques including k-means
clustering, Principal Component Analysis (PCA) and genetic algo-
rithms to cope with the large amount of information that needs to be
processed, and to distill the most relevant information. Subsequently,
we determine the most prominent phase behaviors, identify the key
microarchitecture-independent workload characteristics and visualize
these prominent phase behaviors using kiviat diagrams. Applying the
methodology on a data set consisting of over one million execution
intervals obtained for 77 benchmarks demonstrated the applicability of
our methodology, and yielded interesting insights when comparing the
workload behavior of the different applications and benchmark suites.
Additional analysis in terms of the coverage, diversity and uniqueness
of the benchmark suites confirmed several intuitive understandings,
e.g., that domain-specific benchmark suites represent a much smaller
part of the workload space than general-purpose benchmark suites
like SPEC CPU, and that general-purpose benchmark suites exhibit
less unique behavior than benchmark suites like BioPerf and BioMet-
ricsWorkload, which represent emerging workload domains.

Recognizing and interpreting performance trends

We proposed an analysis framework in Chapter 3 named Processor Per-
formance Visualizer (PPV), which also uses PCA for studying perfor-
mance data across a large number of computer systems. By using PCA
as a feature extraction technique, we are able to quickly and easily rec-
ognize performance trends in a large data set of performance numbers.
By relying on the microarchitecture-independent workload character-
istics, we were able to give a meaningful interpretation to each of the
principal components representing underlying dimensions in the data
set. Thus, we were able to give meaning to each of the recognized per-

7.1 Conclusions 147

formance trends, allowing for obtaining interesting insights. We ap-
plied the PPV methodology to the data sets of performance numbers
available for both the SPEC CPU2000 and SPEC CPU2006 benchmark
suites. This revealed performance trends over a wide range of com-
puter systems, such as the difference between the speed demon and
brainiac computer systems, the relation between increased clock fre-
quency and the performance for memory-intensive workloads, notable
differences between microprocessors of different vendors and the vari-
ous sub-generations in certain processor families.

Estimating relative system performance

Next to analyzing inherent program behavior and looking for per-
formance trends, we also developed a methodology to anticipate
how good computer systems perform for a particular application-
of-interest, relative to each other. While common practice often relies
on using the average performance across a range of benchmarks for
ranking systems, we estimate the performance based on the perfor-
mance numbers obtained for benchmarks exhibiting program behavior
that is similar to that of the application-of-interest. Using a genetic
algorithm, we first learn the relation between the difference in terms of
microarchitecture-independent workload characteristics of each bench-
mark pair and the corresponding difference in terms of performance,
and then weight each of the workload characteristics accordingly. To
find the most similarly behaving benchmarks for a particular applica-
tion, we use the k-nearest-neighbors technique. The performance of
the application-of-interest is then computed as the weighted average
of the performance numbers of the proxy benchmarks. Evaluating
this methodology using the SPEC CPU2000 and CPU2006 benchmarks
using different sets of computer systems showed significant improve-
ments in terms of overall ranking over current practice which relies
on overall average performance. For large sets of systems, i.e., sets
counting over 1,000 systems, our methodology showed improvements
in terms of the average Spearman rank correlation coefficient from
0.897 to 0.923 and from 0.857 to 0.874 for CPU2000 and CPU2006, re-
spectively. For a small number of computer systems considered, we
saw an increase in the average Spearman rank correlation coefficient
from 0.833 to 0.892 and from 0.696 to 0.731 for CPU2000 and CPU2006,
respectively. Some outlier benchmarks result in low Spearman corre-
lation coefficients, both for current practice and our estimation frame-

148 Conclusions and Future Work

work, because they exhibit program behavior that is significantly dif-
ferent from all of the other benchmarks in the suite.

7.1.2 Automatically specializing system software

In Chapters 5 and 6, we looked at the problems that arise when opti-
mizing applications for a particular hardware platform.

Constructing optimization levels for a static compiler

For static compilers a set of manually constructed optimization levels
is typically provided, with each optimization level representing a dif-
ferent trade-off between objectives such as compilation time, code size
and code quality. Constructing these optimization levels is tedious and
time-consuming for a variety of reasons. An in-depth knowledge of
the multitude of possibly interacting compiler optimizations and the
dependency of their effect on both the application being compiled and
the target platform is required. To help resolve this issue, we proposed
the COLE framework which allows for constructing compiler optimiza-
tion levels fully automatically, while trading off between a number of
objectives. The experimental evaluation we presented showed that:
(a) our framework based on a multi-objective evolutionary search al-
gorithm significantly outperforms random searching, (b) the obtained
optimization levels represent better trade-offs than the manually con-
structed default optimization levels, (c) specializing the optimization
levels to a particular hardware platform or application domain is im-
portant to provide good trade-offs. Thorough analysis of the compo-
sition of the optimization levels obtained through COLE revealed in-
teresting insights concerning the usefulness of individual compiler op-
timizations, depending on the target platform and the trade-off being
made.

Automatically tuning a Just-In-Time compiler

Building on this work, we also presented an automated tuning frame-
work for Just-In-Time compilers. Specializing the optimizing recompi-
lation mechanism of modern JIT compilers, which relies on a number
of different optimization levels and an adaptive controller to steer the
recompilation, was found to be significantly more difficult than con-
structing optimization levels for a static compiler. On top of the already

7.1 Conclusions 149

challenging task of finding optimization plans that represent suitable
trade-offs in terms of compilation cost and code quality, a selection
needs to be made of plans that perform well together in an adaptive op-
timization setting, and the adaptive controller needs to be fine-tuned.
The framework we proposed in Chapter 6 uses a two-step approach to
resolve these issues. In a first step, a set of Pareto-optimal optimization
plans is obtained, from which a selection of plans representing different
trade-offs between (re)compilation cost and code quality is retained.
Using these optimization plans, JIT compilers utilizing different opti-
mization levels are constructed and fine-tuned. Using the Jikes RVM
and a collection of Java benchmarks, our experimental results show that
the framework is able to deliver JIT compilers that perform on average
equally well as JIT compilers for which the optimization plans and pa-
rameters of the adaptive controller were obtained manually. Further-
more, we showed that using the framework to automatically specialize
the JIT compiler to a particular application and a particular hardware
platform, a task previously unthinkable because of the labor-intensive
re-tuning involved, results in speedups of up to 40% for startup perfor-
mance and 19% for steady-state performance. Empirical results were
given to show that re-tuning the JIT compiler for a different target plat-
form yields significant performance improvements.

7.1.3 Efficacy of machine learning techniques

Through the various solutions we proposed, we showed that resort-
ing to machine learning techniques allows for solving difficult prob-
lems related to computer system performance, each of which is tightly
coupled to the sheer complexity of modern-day computer systems. By
picking machine learning techniques that are well-suited for the par-
ticular problems at hand, e.g., PCA for extracting underlying dimen-
sions in large data sets and evolutionary search algorithms for finding
adequate solutions in huge search spaces, the proposed methodolo-
gies yield good results overall. Resorting to these techniques relieves
computer engineers from tedious time-consuming tasks by automating
them, and often yields better results because they do not simply depend
on high-level heuristics and intuition.

150 Conclusions and Future Work

7.2 Future work

Several of the methodologies proposed in this dissertation are subject
to improvement, in order to make them even more applicable in real-
world situations. This section briefly describes some interesting possi-
bilities for future work.

Recently chip-multiprocessors, often referred to as multi-core pro-
cessors, have become the industry standard for general-purpose com-
puting. As mentioned before, important reasons for this paradigm shift
are the diminishing returns in performance improvements and chal-
lenging power requirements that accompany additional microarchitec-
tural improvements targeted to single-thread performance. One inter-
esting extension to the set of microarchitecture-independent workloads
characteristics presented in Section 2.1.3 would be to add support for
multi-threaded workloads. In particular, workload characteristics that
provide insight into the inter-thread communication patterns and po-
tential resource conflict behavior between threads would be valuable.

The performance estimation framework presented in Chapter 4
could be further improved to obtain more accurate performance esti-
mations. Being able to obtain accurate estimations of the time-varying
behavior of applications would contribute to the applicability of the
methodology. Another interesting addition would be the ability to de-
tect outliers a priori, for which performance estimation based on the
inherent behavior of the available set of benchmarks is unlikely to be
accurate, and/or to quantify the level of confidence in the estimated
performance numbers.

An important limiting factor of the automated frameworks pre-
sented in Chapters 5 and 6 is the time required to construct well-
performing optimization levels or JIT compilers. Although the explo-
ration time needed by the current frameworks is very small relative to
the time that would be needed to evaluate each point in the respective
design spaces, this still may be troublesome in a commercial setting
where time-to-market is of critical importance. To further limit the ex-
ploration time, the evolutionary search algorithm could be combined
with predictive models for each of the objectives, which would elimi-
nate the need for measuring each of the objective functions for every
candidate solution being considered. Related machine learning tech-
niques such as active learning and global optimization have shown
promising results in different research domains.

Appendix A

Machine Learning Techniques

A.1 Principal Component Analysis

Principal Component Analysis (PCA) [64] is a data analysis technique
with two interesting features: (i) it transforms a given data set with
(potentially) highly correlated dimensions into a data set with uncorre-
lated dimensions, and (ii) it allows lowering the dimensionality of the
data set while controlling the amount of information that is lost. These
features are important, for two reasons. First, analyzing a lower di-
mensional space is easier than analyzing a higher dimensional space.
Second, analyzing correlated data gives a distorted view. By removing
correlation from the data set, equal weight is given to all underlying
dimensions represented by the principal components.

The input to PCA is a matrix in which the rows are the instances and
the columns are the variables. PCA computes new variables, so called
principal components, which are linear combinations of the original
variables. This is done such that all principal components are uncor-
related. More formally, PCA transforms the p variables X1, X2, . . . , Xp

into p principal components Z1, Z2, . . . , Zp with Zi =
∑p

j=1 aijXj . The
aij coefficients are computed by PCA and are the factor loadings of
variable Xj for principal component Zi.

This transformation has the following properties:

(i) the principal components are ordered by decreasing variance:

V ar[Z1] ≥ V ar[Z2] ≥ . . . ≥ V ar[Zp]

i.e. Z1 contains the most information and Zp the least;

152 Machine Learning Techniques

(a) raw data set

X1

X2

(b) data set after PCA

Z2
Z1

Figure A.1: Principal Component Analysis on a hypothetical 2D data set;
(a) the data in terms of the original variables X1 and X2, (b) the transformed
data in terms of principal components Z1 and Z2.

(ii) there is no covariance between principal components:

Cov[Zi, Zj] = 0, ∀i 6= j

i.e. there is no information overlap between the principal compo-
nents, or, in other words, they are uncorrelated;

Note that the total variance in the data (variables) remains the same
before and after the transformation, i.e.

∑p
i=1 V ar[Xi] =

∑p
i=1 V ar[Zi].

An illustrative example of how the principal components relate to
the original input dimensions in shown in Figure A.1 for a hypothetical
2-dimensional data set.

A.1.1 Normalization

Before applying PCA, it is common to first normalize the data set. This
is done by subtracting the mean x̄ and dividing by the standard devia-
tion s for each input variable Xi (1 ≤ i ≤ p): X

′
i = Xi−x̄

s . This causes
the transformed variables X

′
i to have a zero mean an unit standard de-

viation. This normalization step is illustrated in Figure A.2.
The motivation behind normalizing prior to PCA is that the data set

is often heterogeneous in terms of its input variables, and thus the vari-
ance of the original input variables may differ substantially. Consider-
ing the microarchitecture-independent workload characteristics used

A.1 Principal Component Analysis 153

(a) non-normalized PCs

Z1

Z2

(b) normalized PCs

Z'1

Z'2

Figure A.2: Normalizing principal components using a hypothetical 2D data
set; (a) the raw (non-normalized) principal components Z1 and Z2, (b) the
normalized principal components Z ′

1 and Z ′
2.

in this dissertation, this is indeed the case; e.g., the variance of the
amount of ILP is likely to be a lot higher than the variance of the ratio
of integer instructions. With respect to PCA, normalizing the data set
is crucial because in the case of non-normalized data a higher weight
would be given in the analysis to variables with a higher variance.

After applying PCA it is also common to normalize the resulting
principal components, depending on the context they will be used in.
The idea is that PCA finds the key underlying mechanisms that cor-
relate well with the data set. By normalizing the principal compo-
nents, these underlying mechanisms get equal weights in the subse-
quent analysis.

A.1.2 Reducing the dimensionality

By removing the principal components with the lowest variance, we
can reduce the dimensionality of the data set while controlling the
amount of information lost. We retain the first q of p principal compo-
nents which results in a significant reduction in dimensionality, since
q � p in most cases. Determining the number of principal components
to retain is an important issue: too few principal components will fail
to capture the major trends in the data set, while too many principal
components complicate reasoning about the data set and may lead to
a curse-of-dimensionality problem. To measure the fraction of infor-
mation retained in this q-dimensional space, we use the amount of

154 Machine Learning Techniques

variance accounted for by these q principal components:∑q
i=1 V ar[Zi]∑p
i=1 V ar[Zi]

For example, criteria such as ’80% or 90% of the total variance should
be explained by the retained principal components’ is often used for
dimensionality reduction. Alternative criteria are to retain all principal
components that explain a fraction of the total variance that is at least
as large as the minimum variance of the original variables, or to retain
all principal components with a standard deviation greater than one.

A.1.3 Interpretation of principal components

It is often argued that principal components can be easily interpreted,
because they are basically linear combinations of the original variables.
Arguably, a coefficient aij that is very high or very low compared to
other coefficients implies a strong impact of the original variable Xj on
the principal component Zi. On the other hand, a coefficient aij that is
close to zero implies very little impact.

In practice however, interpreting principal components sometimes
turns out to be surprisingly hard. For a principal component with both
positive and negative factor loadings, positive contributions by certain
variables balance out the negative contributions by others, which might
complicate giving a sensible interpretation to each of the principal com-
ponents. This is illustrated in Chapter 2 of this dissertation.

A.2 Genetic algorithms

A genetic algorithm (GA) is an iterative search algorithm which tries to
improve intermediate solutions by tweaking them or combining them
to obtain new, hopefully better solutions. Genetic algorithms are a
well-known and effective machine learning technique, based on the bi-
ological process of evolution. They have proven to be very effective in
large search or optimization spaces, for a wide variety of problems in-
cluding multiple sequence alignment (bioinformatics) [46], control en-
gineering [72] and numerical optimization [74].

In this work, we rely on a number of different types of so-called
evolutionary algorithms (EAs) to tackle a variety of problems. Although

A.2 Genetic algorithms 155

strictly speaking genetic algorithms are a special case of evolutionary
algorithms, we will use both terms interchangeably. For an overview of
evolutionary algorithms in general and genetic algorithms specifically,
we refer to the work of Thomas Bäck [11]. In this section, we will give
an overview of genetic algorithms in general and detail on the way in
which we used them to identify key workload characteristics.

Although there is a general definition of a genetic algorithm which
is followed by many, it is often the subtleties of a particular implemen-
tation and choice of parameters that make the difference between im-
pressive or downright disappointing results [31, 101]. In the following
paragraphs, we will detail on the particular implementation of genetic
algorithms we used in our experiments. We describe the terminology
used in subsequent sections and discuss the aspects of genetic algo-
rithms that we found to be most important to obtain good results for a
variety of problems.

A.2.1 Terminology

A genetic algorithm applies the mechanism of evolution to one or more
population(s) of entities, together forming a generation, and keeps track
of the best entities so far in the archive.

An entity is the equivalent of a biological entity, i.e. a useful repre-
sentation of a (candidate) solution for the problem at hand. Examples
range from a single vector of elements (e.g. bits, integer numbers, etc.)
to a combination of multiple parameters, vectors and other structures
containing the required information to fully describe the candidate so-
lution. The different parts of an entity are often referred to using terms
like chromosomes, genes and alleles, depending on the granularity. We
will try and make the description of the entities and the operators work-
ing on them more explicit to avoid these latter, sometimes confusing
terminology.

A population is simply a collection of entities in one iteration of
the GA. The set of populations which is being used in one particular
iteration of the GA is called the generation of (populations of) entities.
Thus, a genetic algorithm iterates across a number of generations, grad-
ually improving the best entities. Between generations, the set of best
entities so far is referred to as the archive, and will be important both
for generating new entities in subsequent generations and for detect-
ing convergence.

156 Machine Learning Techniques

A.2.2 Defining entities

Using a well-suited entity definition, which is very often specific to the
problem of interest, is an important part of configuring the genetic al-
gorithm. Indeed, all the information needed to model all the necessary
aspects of candidate solutions in order to quantify their quality should
be present. On the other hand, a complex definition significantly com-
plicates defining suitable entity operators, which in turn results in ob-
taining suboptimal or downright disappointing solutions for the prob-
lem (see Section 6.2.1 in this dissertation, for example).

In most cases where we will rely on genetic algorithms to find good
solutions, we will limit ourselves to simple entity definitions, such as
vectors of atomic elements like bits, integer and/or floating-point num-
bers. This will prove sufficient in order to obtain satisfying results rel-
atively quick, and more importantly will also allow us to use more or
less standard and well-established crossover and mutation operators.

A.2.3 Crossover and mutation operators

There are two important entity operators which are used in the con-
struction of new entities in subsequent generations: crossover and muta-
tion.

The crossover (or recombination) operator is applied to two enti-
ties, and usually results in two new entities. In this, the objective is to
try and combine the good features of both parent entities and produce
offspring entities of higher quality. Usually, the operator has at least
one control parameter which can be tweaked to steer the amount of
information that is exchanged between the parent entities.

Figure A.3 illustrates two well-known examples of crossover op-
erators: crossover mixing, in which multiple parts of an entity are
exchanged randomly in isolation (e.g. vector elements), and n-point
crossover, in which n so-called crossover points are chosen at random
after which contiguous parts of the entity definition are exchanged (e.g.
parts of a vector). The control parameters for these particular crossover
operators are the probability of exchanging information between enti-
ties, and the number of crossover points n, respectively.

Next to crossover, the mutation operator also plays an important
role in the construction of new entities. This operator is applied to a
single entity, and randomly changes or tweaks one of multiple parts

A.2 Genetic algorithms 157

parent entities

offspring entities

crossover points

(a) crossover mixing

(b) 2-point crossover

parent entities

offspring entities

Figure A.3: Application of the crossover mixing and 2-point crossover opera-
tors on two entities, each represented by a simple bit vector.

of the entity. The idea is that these random changes hopefully yield
an increase of the quality of the entity. While the crossover operator
only combines features of entities already evaluated, the mutation op-
erator allows to generate entities with features which were not used be-
fore. Thus, it helps to avoid getting stuck in local optima in the search
space. Just like crossover, the mutation operator often is steered by one
or more parameters. Usually, one parameter controls the aggressive-
ness with which entities are mutated, i.e. how many parts of the entity
are randomly changed or tweaked.

To illustrate the way in which mutation works, we consider an ex-
ample of a frequently used mutation operator: multi-point drift, illus-
trated in Figure A.4. Multi-point drift will tweak multiple random parts
of the entity, taking into account a control parameter that expresses the
degree in which the mutated part should differ from the original part.
In the illustrative example in Figure A.4 we use a vector of values rep-
resented by different shades of gray. Each vector element is mutated
with a probability of 0.2, and a large value for the parameter control-
ling the degree of mutation is used. Thus, if a vector element is mu-
tated, a rather large difference between the original and mutated value
is observed.

The larger part of a new generation of entities is usually created

158 Machine Learning Techniques

parent entity

offspring entity

multipoint drift mutation

Figure A.4: Application of the multi-point drift mutation operator on an entity
defined as a vector of values. Each vector element is represented by a shade
of gray, for simplicity.

using the crossover operator, while the rest is generated using the mu-
tation operator. The motivation behind this is to let the inheritance of
entity features to the offspring entities dominate, and thus to limit the
amount of totally random changes. As the ratio of mutated entities to
recombined entities increases, the genetic algorithm tends to lean to-
wards random search. The main purpose of the mutation operator is to
supply entities that use a large range of values to the crossover opera-
tors [11]. Therefore, we will usually use crossover and mutation rates
in the range of 80-90% and 10-20%, respectively.

A.2.4 Fitness, selection, evolution and convergence

As should be clear from the previous paragraphs, an important aspect
in supporting the genetic algorithm to gradually evolve towards in-
creasingly better entities is the ability to recognize high quality entities.
The quality of an entity is computed by a so-called fitness function, of
which the exact definition is very dependent on the entity definition
and the particular problem at hand. We will use the term fitness score,
or fitness for short, to denote the quality of an entity as computed by
the fitness function.

During the exploration conducted by the genetic algorithm, an
archive of the highest quality entities so far is kept up to date. Af-
ter assessing the fitness of all the entities in a particular generation,
the fitness of all archive entities of the previous generation and of all
entities of this generation are compared, and the archive is adjusted
accordingly.

Subsequently, entities are selected from this archive using a prede-
fined selection operator. Unless specified otherwise, we will use the

A.2 Genetic algorithms 159

...

entity population

generation i

repeat until convergence

...

fitness evaluation

...

archives
generation (i-1)

generation i (evaluated)

...

...

generation (i+1)

...

archives
generation i...

...

...

...

...

migration selection

mating pools
...

crossover and mutationmutation crossover

Figure A.5: The sequence of steps performed by a genetic algorithm iteratively
until convergence is detected.

binary tournament selection technique which retains the entity with the
highest fitness from a random pair of archive entities in each selection
round. The resulting set of selected entities then forms the so-called
mating pool of entities on which the crossover and mutation operators
will be applied to generate the next generation of entities. When a gen-
eration consists of multiple populations an extra migration step is done,
in which a number of archive entities are exchanged between the differ-
ent populations. Although this also helps to avoid getting stuck in local
optimal in particular populations, the overhead of evaluating a larger
number of entities in multiple populations may outweigh its benefit in
terms of entity quality.

This iterative process of evolving generation after generation of
candidate solutions represented by entities ends when a state of con-
vergence is detected, or when the maximum number of generations is

160 Machine Learning Techniques

reached. There are various ways of defining convergence, or equiva-
lently, the lack of progress in terms of quality of candidate solutions.
One common way is to track the fitness of the best entity in each gen-
eration, and assume convergence when this fitness score shows little
or no improvement across generations. Usually this involves a preset
threshold value, which represents the absolute or relative difference
between fitness scores. Often, the convergence criterion requires mul-
tiple subsequent generations without detecting (sufficient) progress in
one or all of the populations.

Figure A.5 summarizes the various steps performed by a genetic
algorithm, clarifies the definitions above and illustrates the use of the
various operators.

A.2.5 Multi-objective evolutionary searching

In traditional genetic algorithms, a single objective is evaluated by the
fitness function, and is the target to either maximize or minimize. In
the case of multi-objective evolutionary algorithms, multiple objectives
are considered at the same time, and the fitness function evaluates the
quality of an entity along each of these objectives. Using a mecha-
nism based on entity dominance, a single value representing the over-
all quality of the entity is computed. In this dissertation, we used the
SPEA2 multi-objective evolutionary algorithm [113] whenever multi-
ple objectives are of interest.

Appendix B

Benchmark Suites

B.1 BioMetricsWorkload

Table B.1: Overview of the workloads in the BiometricsWorkload benchmark
suite. All workloads are run using the s100 inputs.

workload input # 100 M intervals description

hand 10, 172 multi-layer perceptron (MLP)
classification to identify
handwriting

face feret 9, 899 statistical methods for
scraps 4, 236 face recognition

finger 24, 365 neural network based fingerprint
pattern classification

voice 2, 834 voice recognition

gait background 163 identification of people
difference 2, 023 from gait

fast similarity 1, 120

162 Benchmark Suites

B.2 BioPerf

Table B.2: Overview of the workloads in the BioPerf benchmark suite. All
workloads are run using the medium inputs.

workload input # 100 M intervals description

Blast nucleotide 1 searching of sequence databases
protein 1, 537 for local alignments

Fasta fasta34 7, 891 local similarity search in
ssearch34 174, 744 sequence databases

Clustalw 2, 359 multiple sequence alignment

Hmmer hmmpfam 4, 201 aligning multiple sequences
hmmsearch 1 using hidden Markov models

T-Coffee 2, 286 multiple sequence alignment

Glimmer 377 finding genes in microbial DNA

Phylip dnapenny 11, 473 inferring phylogenies
promlk 957

Grappa 33, 440 phylogeny reconstruction

Ce 36 finding structural similarities
between pairs of proteins

Predator 5, 329 finding protein structures

B.3 MediaBench II 163

B.3 MediaBench II

Table B.3: Overview of the workloads in the MediaBenchII benchmark suite.

workload input # 100 M intervals description

h263 decode 9 video coding
encode 206

h264 decode 33 motion-compensation-based
encode 1, 373 video coding

jpeg decode 1 lossy image compression
encode 1

jpeg2000 decode 4 wavelet-based image compression
encode 8

mpeg2 decode 10 audio and video coding
encode 205

mpeg4 decode 2 audio and video coding
encode 19

mpeg4-mmx decode 2 audio and video coding
encode 5 (using MMX/SSE)

164 Benchmark Suites

B.4 SPEC CPU2000

Table B.4: Overview of the integer workloads in the SPEC CPU2000 bench-
mark suite (SPECint2000).

workload input # 100 M intervals description

bzip2 graphic 1, 157 compression
program 1, 008
source 803

crafty 1, 421 game playing: chess

eon cook 629 computer visualization
kaijya 815

rushmeier 466

gap 1, 906 group theory, interpreter

gcc 166 267 C prog. language compiler
200 725
expr 77

integrate 81
scilab 400

gzip graphic 699 compression
log 301

program 1, 276
random 556
source 633

mcf 577 combinatorial optimization

parser 3, 199 word processing

perlbmk diffmail 312 Perl programming language
makerand 11

perfect 198
splitmail-535 534
splitmail-704 565
splitmail-850 1, 086
splitmail-957 937

twolf 2, 981 place and route simulator

vortex lendian1 1, 063 object-oriented database
lendian2 1, 195
lendian3 1, 183

vpr place 928 FPGA circuit placement/routing
route 706

B.4 SPEC CPU2000 165

Table B.5: Overview of the floating-point workloads in the SPEC CPU2000
benchmark suite (SPECfp2000).

workload input # 100 M intervals description

ammp 3, 210 computational chemistry

applu 3, 954 partial differential equations

apsi 4, 263 meteorology: pollutant distribution

art 110 539 image recognition / neural networks
470 594

equake 1, 206 seismic wave propagation simulation

facerec 2, 883 image processing: face recognition

fma3d 2, 754 finite-element crash simulation

galgel 3, 013 computational fluid dynamics

lucas 2, 608 number theory / primality testing

mesa 2, 398 3-D graphics library

mgrid 4, 627 multi-grid solver: 3D potential field

sixtrack 5, 676 nuclear physics accelerator design

swim 2, 218 shallow water modeling

wupwise 3, 645 physics / quantum chromodynamics

166 Benchmark Suites

B.5 SPEC CPU2006

Table B.6: Overview of the integer workloads in the SPEC CPU2006 bench-
mark suite (SPECint2006).

workload input # 100 M intervals description

astar BigLakes 4, 202 path-finding algorithms
river 8, 495

bzip2 chicken 1, 787 compression
combined 3, 404
liberty 3, 089
program 5, 437
source 4, 258
text 5, 977

gcc 166 808 C compiler
200 1, 521
c-typechk 1, 458
cp-decl 1, 093
expr 1, 194
expr2 1, 623
g23 1, 894
s04 1, 799
scilab 584

gobmk 13x13 2, 290 artificial intelligence: Go
nngs 6, 089
score2 3, 156
trevorc 2, 284
trevord 3, 265

h264ref foreman baseline 5, 054 video compression
foreman main 2, 907
sss 26, 735

hmmer nph3 8, 953 search gene sequence
retro 20, 167

libquantum 24, 139 physics / quantum computing

mcf 3, 891 combinatorial optimization

omnetpp 6, 004 discrete event simulation

perlbench checkspam 10, 955 Perl programming language
diffmail 3, 844
splitmail 6, 911

sjeng 24, 086 artificial intelligence: chess

xalancbmk 11, 257 XML processing

B.5 SPEC CPU2006 167

Table B.7: Overview of the floating-point workloads in the SPEC CPU2006
benchmark suite (SPECfp2006).

workload input # 100 M intervals description

bwaves 37, 361 fluid dynamics

cactusADM 27, 800 physics / general relativity

calculix 75, 380 structural mechanics

dealII 19, 114 finite element analysis

gamess cytosine 10, 854 quantum chemistry
h2ocu2+ 7, 880
triazolium 34, 313

GemsFDTD 26, 262 computational electromagnetics

gromacs 20, 017 biochemistry / molecular dynamics

lbm 12, 770 fluid dynamics

leslie3d 42, 711 fluid dynamics

milc 11, 733 physics / quantum chromodynamics

namd 25, 891 biology / molecular dynamics

povray 10, 014 image ray-tracing

soplex pds-50 3, 746 linear programming, optimization
ref 3, 876

sphinx3 32, 398 speech recognition

tonto 30, 595 quantum chemistry

wrf 42, 689 weather

zeusmp 20, 386 physics / CFD

168 Benchmark Suites

Appendix C

Tools

C.1 Hardware

C.1.1 Intel Xeon L5420 systems (Core)

For several experiments in this thesis we relied on the cluster of com-
puter systems nicknamed gengar, which is part of the Ghent Univer-
sity supercomputer. The cluster consists of 194 systems each containing
two dual socket quad-core Intel Xeon L5420 processors (8 cores in to-
tal). The most important details are shown in Table C.1.

Table C.2 lists the hardware performance counter events used to
measure the most commonly used performance metrics in workload
characterization studies (see Chapter 2). These events were measured
in user-space using the perfex tool that comes with the perfctr
Linux kernel patch 1.

C.1.2 Intel Xeon L5520 systems (Nehalem)

Another cluster which is part of the Ghent University supercomputer,
nicknamed gastly, was used for selected experiments. This cluster
consists of 80 systems each containing two dual socket quad-core Intel
Xeon L5520 processors (8 cores in total). The most important details are
listed in Table C.3.

1http://user.it.uu.se/˜mikpe/linux/perfctr/

http://user.it.uu.se/~mikpe/linux/perfctr/

170 Tools

Table C.1: Hardware details for the Intel Xeon L5420 systems.

parameter value

processor
type Intel Xeon L5420 (x2)
details dual socket quad-core
architecture Intel Core
technology 45-nm
clock frequency 2.5 GHz
L1 instruction cache 32 kB
L1 data cache 32 kB
L2 cache (per dual-core) 6 MB

memory
amount of physical mem. 16 GB (DDR2 PC-5300)
amount of virtual mem. 32 GB

local disk
size 146 GB (SAS)
speed 10,000 RPM

OS
version Scientific Linux 5.3
Linux kernel version 2.6.18
notes kernel patched with perfctr 2.6.38

C.2 Software

This section provides information on two system software tools we ex-
perimented with in this dissertation.

C.2.1 GCC

The GNU Compiler Collection (GCC) is an open source software pack-
age, which includes static compilers for various programming lan-
guages including C, C++, Objective-C, Fortran, Java and Ada, as well
as runtime libraries for these languages. It supports a wide variety of
hardware platforms, including x86, both 32-bit and 64-bit, ARM, Alpha,
PowerPC, MIPS and SPARC. GCC is the default compiler in most GNU
Linux operation system distributions, and is therefore widely used in
industry and academia. More information about GCC is available at
http://gcc.gnu.org.

http://gcc.gnu.org

C.2 Software 171

Table C.2: Hardware performance counter events used on Intel Xeon L5420
systems, with event numbers as specified in the Intel Software Developer’s
Manual, Volume 3B (Appendix A.1).

nr description event

(1) number of dynamic instructions retired INST_RETIRED.ANY_P
(2) number of core cycles executed CPU_CLK_UNHALTED.CORE_P
(3) average number of cycles per instr. derived from (1) and (2)
(4) average number of L1 data cache MEM_LOAD_RETIRED.L1D_MISS

misses per instr.
(5) average number of L1 instruction cache L1I_MISSES

cache misses per instr.
(6) average number of L2 cache MEM_LOAD_RETIRED.L2_MISS

misses per instr.
(7) average number of miss-predicted BR_INST_RETIRED.MISPRED

branches per instr.
(8) average number of data TLB MEM_LOAD_RETIRED.DTLB_MISS

misses per instr.
(9) average number of instruction TLB ITLB_MISS_RETIRED

misses per instr.

C.2.2 Jikes RVM

Jikes RVM (Research Virtual Machine) is an open source Java Vir-
tual Machine targeted towards providing a vehicle for research on the
frontiers of virtual machine technologies, such as garbage collection,
dynamic compilation, adaptive optimization, thread scheduling and
synchronization. More information about Jikes RVM is available at
http://www.jikesrvm.org.

http://www.jikesrvm.org

172 Tools

Table C.3: Hardware details for the Intel Xeon L5520 systems.

parameter value

processor
type Intel Xeon L5520 (x2)
details dual socket quad-core
architecture Intel Nehalem
technology 45-nm
clock frequency 2.27 GHz
L1 instruction cache 32 kB
L1 data cache 32 kB
L2 cache (per core) 256 kB
L3 cache (per dual-core) 8 MB

memory
amount of physical mem. 12 GB
amount of virtual mem. 12 GB

local disk
size 110 GB
speed 10,000 RPM

OS
version Scientific Linux 5.4
Linux kernel version 2.6.18
notes kernel patched with perfctr 2.6.39

Bibliography

[1] F. Agakov, E. Bonilla, J. Cavazos, B.Franke, G. Fursin, M. O’Boyle,
J. Thomson, M. Toussaint, and C. Williams. Using machine learn-
ing to focus iterative optimization. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization (CGO),
pages 295–305, March 2006.

[2] A. Alameldeen and D. Wood. Variability in architectural simula-
tions of multi-threaded workloads. In Proceedings of the Ninth In-
ternational Symposium on High-Performance Computer Architecture
(HPCA), pages 7–18, February 2003.

[3] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves,
D. Subramanian, L. Torczon, and T. Waterman. Compilation or-
der matters: Exploring the structure of the space of compilation
sequences using randomized search algorithms. In Proceedings of
the ACM SIGPLAN Symposium on Languages, Compilers and Tools
for Embedded Systems (LCTES), pages 231–239, June 2004.

[4] E. Alpaydin. Introduction to Machine Learning (Adaptive Computa-
tion and Machine Learning). The MIT Press, 2004.

[5] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng,
J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hum-
mel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,
V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreed-
har, H. Srinivasan, and J. Whaley. The Jalapeño virtual machine.
IBM System Journal, 39(1), February 2000.

[6] M. Annavaram, R. Rakvic, M. Polito, J. Bouguet, R. Hankins, and
B. Davies. The fuzzy correlation between code and performance
predictability. In Proceedings of the 37th International Symposium on
Microarchitecture (MICRO), pages 93–104, December 2004.

174 BIBLIOGRAPHY

[7] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. Adap-
tive optimization in the Jalapeño JVM. In Proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA), pages 47–65, October
2000.

[8] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney. A
survey of adaptive optimization in virtual machine. Proceedings
of the IEEE, 93(2):449–466, February 2005.

[9] M. Arnold, M. Hind, and B. G. Ryder. Online feedback-directed
optimization in Java. In Proceedings of the ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA), pages 111–129, October 2002.

[10] R. Azimi, M. Stumm, and R. W. Wisniewski. Online performance
analysis by statistical sampling of microprocessor performance
counters. In Proceedings of the 19th annual international confer-
ence on Supercomputing (ISC), pages 101–110, New York, NY, USA,
2005. ACM.

[11] T. Bäck. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford
University Press, Oxford, UK, 1996.

[12] D. A. Bader, Y. Li, T. Li, and V. Sachdeva. BioPerf: A bench-
mark suite to evaluate high-performance computer architecture
on bioinformatics applications. In Proceedings of the 2005 IEEE In-
ternational Symposium on Workload Characterization (IISWC), pages
163–173, October 2005.

[13] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory hierarchy reconfiguration for energy and
performance in general-purpose processor architectures. In Pro-
ceedings of the 33th Annual International Symposium on Microarchi-
tecture (MICRO), pages 245–257, December 2000.

[14] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC bench-
mark suite: Characterization and architectural implications. In
Proceedings of the 17th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT-2008), October 2008.

[15] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.

BIBLIOGRAPHY 175

Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java bench-
marking development and analysis. In Proceedings of the ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 169–190,
October 2006.

[16] S.M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. . Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmark-
ing development and analysis. In Proceedings of the 21st annual
ACM SIGPLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications (OOPSLA-2006), pages 169–190, New
York, NY, USA, October 2006. ACM Press.

[17] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Rohou.
Iterative compilation in a non-linear optimisation space. In Pro-
ceedings of the Workshop on Profile and Feedback-Directed Compila-
tion, in Conjunction with the Intl. Conf. on Parallel Architectures and
Compilation Techniques (PACT), October 1998.

[18] M. Brehob and R. Enbody. An analytical model of locality and
caching. Technical Report MSU-CSE-99-31, Michigan State Uni-
versity, August 1999.

[19] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. F. P. O’Boyle, and
O. Temam. Rapidly selecting good compiler optimizations using
performance counters. In Proceedings of the International Sympo-
sium on Code Generation and Optimization (CGO), pages 185–197,
March 2007.

[20] J. Cavazos and M. O’Boyle. Automatic tuning of inlining heuris-
tics. In Proceedings of the Supercomputing Conference on High Per-
formance Networking and Computing, page 14, November 2005.

[21] J. Cavazos and M. O’Boyle. Method-specific dynamic compila-
tion using logistic regression. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 229–240, October 2006.

176 BIBLIOGRAPHY

[22] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous com-
puting. In Proceedings of the 2009 IEEE International Symposium on
Workload Characterization (IISWC-2009), pages 44–54, Los Alami-
tos, CA, USA, October 2009. IEEE Computer Society.

[23] I. K. Chen, J. T. Coffey, and T. N. Mudge. Analysis of branch pre-
diction via data compression. In Proceedings of the 7th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 128–137, October 1996.

[24] D. Chiou, D. Sunwoo, J. Kim, N. Patil, W. Reinhart, D. E. Johnson,
J. Keefe, and H. Angepat. FPGA-accelerated simulation technolo-
gies (fast): Fast, full-system, cycle-accurate simulators. In Pro-
ceedings of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-2007), pages 249–261, Washington, DC,
USA, 2007. IEEE Computer Society.

[25] C.-B. Cho, A. V. Chande, Y. Li, and T. Li. Workload characteriza-
tion of biometric applications on Pentium 4 microarchitecture. In
Proceedings of the 2005 IEEE International Symposium on Workload
Characterization (IISWC), pages 76–86, October 2005.

[26] K. Chow and Y. Wu. Feedback-directed selection and character-
ization of compiler optimizations. In Proceedings of the Workshop
on Feedback-Directed and Dynamic Optimization (FDDO), Novem-
ber 1999.

[27] T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state
loss for effective trace sampling of superscalar processors. In
ICCD ’96: Proceedings of the 1996 International Conference on Com-
puter Design, VLSI in Computers and Processors, pages 468–477,
Washington, DC, USA, 1996. IEEE Computer Society.

[28] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing
for reduced code space using genetic algorithms. In Proceedings
of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES), pages 1–9, May 1999.

[29] Standard Performance Evaluation Corporation. SPECjvm98
benchmarks. http://www.spec.org/jvm98.

[30] K. Deb. Multi-Objective Optimization using Evolutionary Algo-
rithms. Wiley, 2001.

BIBLIOGRAPHY 177

[31] K. Deb and S. Agrawal. Understanding interactions among ge-
netic algorithm parameters. In Foundations of Genetic Algorithms
5, pages 265–286. Morgan Kaufmann, 1998.

[32] A. Dhodapkar and J. E. Smith. Managing multi-configuration
hardware via dynamic working set analysis. In Proceedings of
the 29th Annual International Symposium on Computer Architecture
(ISCA), pages 233–244, May 2002.

[33] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing
and predicting program behavior and its variability. In Proceed-
ings of the International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), pages 220–231, October 2003.

[34] L. Eeckhout, A. Georges, and K. De Bosschere. How Java pro-
grams interact with virtual machines at the microarchitectural
level. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA), pages 169–186, October 2003.

[35] L. Eeckhout, J. Sampson, and B. Calder. Exploiting program mi-
croarchitecture independent characteristics and phase behavior
for reduced benchmark suite simulation. In Proceedings of the
2005 IEEE International Symposium on Workload Characterization
(IISWC), pages 2–12, October 2005.

[36] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Quanti-
fying the impact of input data sets on program behavior and its
applications. Journal of Instruction-Level Parallelism, 5, February
2003. http://www.jilp.org/vol5.

[37] L. Eeckhout, H. Vandierendonck, and K. De Bosschere. Quanti-
fying the impact of input data sets on program behavior and its
applications. Journal of Instruction-Level Parallelism, 5, February
2003. http://www.jilp.org/vol5.

[38] M. Ekman and P. Stenström. Enhancing multiprocessor architec-
ture simulation speed using matched-pair comparison. In Pro-
ceedings of the 2005 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 89–99, March
2005.

178 BIBLIOGRAPHY

[39] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A mech-
anistic performance model for superscalar out-of-order proces-
sors. ACM Transactions on Computer Systems (TOCS), 27(2), May
2009.

[40] M. Franklin and G. S. Sohi. Register traffic analysis for streamlin-
ing inter-operation communication in fine-grain parallel proces-
sors. In Proceedings of the 22nd Annual International Symposium on
Microarchitecture (MICRO), pages 236–245, December 1992.

[41] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf. Mediabench II
video: Expediting the next generation of video systems research.
Microprocess. Microsyst., 33(4):301–318, 2009.

[42] G. Fursin, A. Cohen, M. O’Boyle, and O. Temam. Quick and
practical run-time evaluation of multiple program optimizations.
Transactions on High Performance Embedded Architectures and Com-
pilation Techniques (HiPEAC), 1(1):13–31, 2006.

[43] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous
Java performance evaluation. In Proceedings of the ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA), pages 57–76, October 2007.

[44] A. Georges, D. Buytaert, L. Eeckhout, and K. De Bosschere.
Method-level phase behavior in Java workloads. In Proceedings of
the 19th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Languages, Applications and Systems (OOPSLA), pages
270–287, October 2004.

[45] S. V. Gheorghita, H. Corporaal, and T. Basten. Iterative com-
pilation for energy reduction. Journal of Embedded Computing,
1(4):509–520, July 2005.

[46] C. Gondro and B.P. Kinghorn. A simple genetic algorithm for
multiple sequence alignment. Genetics and Molecular Research,
6(4):964–982, 2007.

[47] E. Granston and A. Holler. Automatic recommendation of com-
piler options. In Proceedings of the Workshop on Feedback-Directed
and Dynamic Optimization (FDDO), December 2001.

[48] I. Guyon and A. Elisseeff. An introduction to variable and feature
selection. Journal of Machine Learning Research, 3:1157–1182, 2003.

BIBLIOGRAPHY 179

[49] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Opti-
mizing general purpose compiler optimization. In Proceedings of
the International Conference on Computing Frontiers, pages 180–188,
May 2005.

[50] M. Haungs, P. Sallee, and M. Farrens. Branch transition rate: A
new metric for improved branch classification analysis. In Pro-
ceedings on the Internatioan Symposium on High-Performance Com-
puter Architecture (HPCA), pages 241–250, 2000.

[51] J. L. Henning. SPEC CPU2000: Measuring CPU performance in
the new millennium. IEEE Computer, 33(7):28–35, July 2000.

[52] K. Hoste and L. Eeckhout. Characterizing the unique and di-
verse behaviors in existing and emerging general-purpose and
domain-specific benchmark suites. In Proceedings of the Annual In-
ternational Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), pages 157–168, April 2006.

[53] K. Hoste and L. Eeckhout. Comparing benchmarks using key
microarchitecture-independent characteristics. In Proceedings of
the 2006 IEEE International Symposium on Workload Characterization
(IISWC), pages 83–92, October 2006.

[54] K. Hoste and L. Eeckhout. Microarchitecture-independent work-
load characterization. IEEE Micro, 27(3):63–72, May 2007.

[55] K. Hoste and L. Eeckhout. COLE: Compiler optimization level
exploration. In Proceedings of the International Symposium on Code
Generation and Optimization (CGO), pages 165–174, April 2008.

[56] K. Hoste and L. Eeckhout. A methodology for analyzing
commercial processor performance numbers. IEEE Computer,
42(10):70–76, 2009.

[57] K. Hoste, A. Georges, and L. Eeckhout. Automated just-in-time
compiler tuning. In Proceedings of the 8th annual IEEE/ACM In-
ternational Symposium on Code Generation and Optimization (CGO),
pages 62–72, New York, NY, USA, 2010. ACM.

[58] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John, and
K. De Bosschere. Performance prediction based on inherent pro-
gram similarity. In Proceedings of the 2006 International Conference

180 BIBLIOGRAPHY

on Parallel Architectures and Compilation Techniques (PACT), pages
114–122, September 2006.

[59] M. Huang, J. Renau, and J. Torrellas. Positional adaptation of pro-
cessors: Application to energy reduction. In Proceedings of the 30th
Annual International Symposium on Computer Architecture (ISCA),
pages 157–168, June 2003.

[60] Intel. Moore’s law.
http://www.intel.com/technology/mooreslaw.

[61] Intel. MSC4.
http://www.intel.com/Assets/PDF/Manual/msc4.pdf.

[62] K. Ishizaki, Takeuchi M., K. Kawachiya, T. Suganuma, O. Gohda,
T. Inagaki, A. Koseki, K. Ogata, M. Kawahito, T. Yasue, T. Oga-
sawara, T. Onodera, H. Komatsu, and T. Nakatani. Effective-
ness of cross-platform optimizations for a Java just-in-time com-
piler. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA), pages 187–204, October 2003.

[63] Z. Jin and A. C. Cheng. Implantbench: Characterizing and pro-
jecting representative benchmarks for emerging bioimplantable
computing. IEEE Micro, 28(4):71–91, 2008.

[64] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical
Analysis. Prentice Hall, fifth edition, 2002.

[65] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global opti-
mization of expensive black-box functions. Journal of Global Opti-
mization, 13(4):455–492, December 1998.

[66] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John. Measur-
ing benchmark similarity using inherent program characteristics.
IEEE Transactions on Computers, 55(6):769–782, June 2006.

[67] T. Karkhanis and J. E. Smith. A first-order superscalar processor
model. In Proceedings of the 31st Annual International Symposium
on Computer Architecture (ISCA), pages 338–349, June 2004.

[68] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and
D. Jones. Fast searches for effective optimization phase se-
quences. In Proceedings of the ACM SIGPLAN Conference on Pro-

BIBLIOGRAPHY 181

gramming Language Design and Implementation (PLDI), pages 171–
182, June 2004.

[69] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder. The
strong correlation between code signatures and performance. In
Proceedings of the International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 236–247, March 2005.

[70] J. Lau, S. Schoenmackers, and B. Calder. Structures for phase
classification. In Proceedings of the 2004 International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages
57–67, March 2004.

[71] Y. Li and T. Li. BioInfoMark: A bioinformatic benchmark suite
for computer architecture research. Technical report, ECE, Uni-
versity of Florida, January 2005.

[72] Y. Li, K. C. Ng, D.J. Murray-Smith, G.J. Gray, and K. C. Sharman.
Genetic algorithm automated approach to design of sliding mode
control systems. International Journal of Control, 63:721–739, 1996.

[73] D. J. Lilja. Measuring Computer Performance: A Practitioner’s Guide.
Cambridge University Press, 2000.

[74] Y. Lin and J. Zhang. An isoline genetic algorithm. In Proceedings
of the Eleventh conference on Congress on Evolutionary Computation
(CEC), pages 2002–2007, 2009.

[75] S. Liu and J. Gaudiot. Potential impact of value prediction on
communication in many-core architectures. IEEE Transactions on
Computers, 58:759–769, 2009.

[76] D. Maier, P. Ramarao, M. Stoodley, and V. Sundaresan. Expe-
riences with multithreading and dynamic class loading in a Java
just-in-time compiler. In Proceedings of the International Symposium
on Code Generation and Optimization (CGO), pages 87–97, March
2006.

[77] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In Pro-
ceedings of The IEEE International Symposium on Workload Charac-
terization (IISWC-2008), pages 35–46, September 2008.

[78] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

182 BIBLIOGRAPHY

[79] P. Nagpurkar, C. Krintz, and T. Sherwood. Phase-aware remote
profiling. In Proceedings of the International Conference on Code Gen-
eration and Optimization (CGO), pages 191–202, March 2005.

[80] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and
A. Choudhary. Minebench: A benchmark suite for data mining
workloads. In Proceedings of the 2006 IEEE International Symposium
on Workload Characterization (IISWC), pages 182–188, 2006.

[81] D. Novillo. GCC - yesterday, today and tomorrow.
http://www.airs.com/dnovillo/Papers/hipeac2007.pdf,
January 2007.

[82] M. Paleczny, C. Vick, and C. Click. The Java Hotspot server com-
piler. In Java Virtual Machine Research and Technology Symposium
(JVM), pages 1–12, April 2001.

[83] Z. Pan and R. Eigenmann. Fast, automatic, procedure-level per-
formance tuning. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages
173–181, September 2006.

[84] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing representative portions of large In-
tel Itanium programs with dynamic instrumentation. In Proceed-
ings of the 37th Annual International Symposium on Microarchitecture
(MICRO), pages 81–93, December 2004.

[85] A. Phansalkar and L. K. John. Performance prediction using pro-
gram similarity. In Proceedings of the 2006 SPEC Benchmark Work-
shop, January 2006.

[86] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John. Measur-
ing program similarity: Experiments with SPEC CPU benchmark
suites. In Proceedings of the 2005 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 10–
20, March 2005.

[87] A. Phansalkar, A. Joshi, and L. K. John. Analysis of redundancy
and application balance in the SPEC CPU2006 benchmark suite.
In Proceedings of the 34th annual international symposium on Com-
puter architecture (ISCA’07), pages 412–423, 2007.

BIBLIOGRAPHY 183

[88] A.J Poovey, T.M Conte, M Levy, and S Gal-On. A benchmark
characterization of the EEMBC benchmark suite. IEEE Micro,
29(5):18–29, 2009.

[89] R. H. Saavedra and A. J. Smith. Analysis of benchmark character-
istics and benchmark performance prediction. ACM Transactions
on Computer Systems, 14(4):344–384, November 1996.

[90] V. Sachdeva, E. Speight, M. Stephenson, and L. Chen. Charac-
terizing and improving the performance of bioinformatics work-
loads on the POWER5 architecture. In Proceedings of the IEEE In-
ternational Symposium on Workload Characterization (IISWC), pages
89–97, 2007.

[91] D. Shelepov, J.C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z. F. Huang, S. Blagodurov, and V. Kumar. HASS: a scheduler
for heterogeneous multicore systems. SIGOPS Oper. Syst. Rev.,
43(2):66–75, 2009.

[92] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 165–176, Octo-
ber 2004.

[93] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automat-
ically characterizing large scale program behavior. In Proceed-
ings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pages 45–
57, October 2002.

[94] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Dis-
covering and exploiting program phases. IEEE Micro, 23(6):84–
93, 2003.

[95] T. Sherwood, S. Sair, and B. Calder. Phase tracking and predic-
tion. In Proceedings of the 30th Annual International Symposium on
Computer Architecture (ISCA), pages 336–347, June 2003.

[96] B. Sprunt. Pentium 4 performance-monitoring features. IEEE
Micro, 22(4):72–82, July 2002.

[97] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and
T. Nakatani. Design and evaluation of dynamic optimizations

184 BIBLIOGRAPHY

for a Java just-in-time compiler. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 27(4):732–785, July 2005.

[98] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. Au-
gust. Compiler optimization-space exploration. In Proceedings
of the International Symposium on Code Generation and Optimization
(CGO), pages 204–215, 2003.

[99] M. Van Biesbrouck, L. Eeckhout, and B. Calder. Considering all
starting points for simultaneous multithreading simulation. In
Proceedings of the International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 143–153, March 2006.

[100] H. Vandierendonck and K. De Bosschere. Experiments with sub-
setting benchmark suites. In Proceedings of the Seventh Annual
IEEE International Workshop on Workload Characterization (WWC),
pages 55–62, October 2004.

[101] K. Weicker and N. Weicker. Basic principles for understanding
evolutionary algorithms. Fundam. Inf., 55(3-4):387–403, 2002.

[102] R. P. Weicker. An overview of common benchmarks. IEEE Com-
puter, 23(12):65–75, December 1990.

[103] M. Wolfe. Compilers and more: Gloptimizations. HPCwire: see
http://www.hpcwire.com/features/ Compilers and -
More Gloptimizations.html, November 2007.

[104] H. Wu, E. Park, M. Kaplarevic, and Y. Zhang. Dynamic optimiza-
tion option search in GCC. In Proceedings of the GCC Developers
Summit 2007, June 2007.

[105] T. Y. Yeh, P. Faloutsos, S. J. Patel, and G. Reinman. Parallax:
an architecture for real-time physics. In Proceedings of the 34th
annual international symposium on Computer architecture (ISCA),
pages 232–243, 2007.

[106] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level
adaptive branch prediction. In Proceedings of the 19th Annual In-
ternational Symposium on Computer Architecture (ISCA), pages 124–
134, May 1992.

[107] J. J. Yi, D. J. Lilja, and D. M. Hawkins. A statistically rigorous
approach for improving simulation methodology. In Proceedings

BIBLIOGRAPHY 185

of the Ninth International Symposium on High Performance Computer
Architecture (HPCA), pages 281–291, February 2003.

[108] J. J. Yi, R. Sendag, L. Eeckhout, A. Joshi, D. J. Lilja, and L. K. John.
Evaluating benchmark subsetting approaches. In Proceedings of
the 2006 IEEE International Symposium on Workload Characterization
(IISWC), pages 93–104, October 2006.

[109] J. J. Yi, H. Vandierendonck, L. Eeckhout, and D. J. Lilja. The
exigency of benchmark and compiler drift: Designing tomor-
row’s processors with yesterday’s tools. In Proceedings of the 20th
ACM International Conference on Supercomputing (ICS), pages 75–
86, June 2006.

[110] M. Zhao, B. R. Childers, and M. L. Soffa. Predicting the impact of
optimizations for embedded systems. In Proceedings of the ACM
SIGPLAN Symposium on Languages, Compilers, and Tools for Embed-
ded Systems (LCTES), pages 1–11, June 2003.

[111] Y. Zhong, S. G. Dropsho, and C. Ding. Miss rate prediction across
all program inputs. In Proceedings of the Twelfth International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
September 2003.

[112] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing
shared resource contention in multicore processors via schedul-
ing. In ASPLOS ’10: Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages and operating sys-
tems, pages 129–142, New York, NY, USA, 2010. ACM.

[113] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the
strength pareto evolutionary algorithm. Technical Report TIK-
Report 103, Swiss Federal Institute of Technology (ETH) Zurich,
May 2001.

[114] E. Zitzler and L. Thiele. Multiobjective evolutionary algo-
rithms: A comparative case study and the strength perato ap-
proach. IEEE Transactions on Evolutionary Computation, 3(4):257–
271, November 1999.

	Nederlandse samenvatting
	English Summary
	Introduction
	Machine learning
	Contributions
	Analyzing and estimating performance
	Automatically specializing system software

	Phase-level Microarchitecture-Independent Workload Characterization
	Microarchitecture-independent workload characterization
	Hardware performance counter based workload characterization
	Pitfall in using hardware performance counters
	Microarchitecture-independent workload characterization

	Phase-level workload characterization
	Aggregate versus phase-level workload characterization
	Challenges in phase-level workload characterization
	Phase-level workload characterization

	Application: Comparing phase-level workload behavior across benchmark suites
	Applying the methodology
	Coverage, diversity and uniqueness of benchmark suites

	Related work
	Summary

	Analyzing Performance Trends
	Processor Performance Visualizer
	Finding performance trends using PCA
	Interactive visualization

	Case study: SPEC CPU2000
	Interpretation of principal components
	Discussion

	Case study: SPEC CPU2006
	Interpretation of principal components
	Discussion

	Related work
	Summary

	Estimating Relative Computer System Performance
	Performance estimation framework
	Relating differences in inherent workload behavior to performance differences
	Estimating performance for a particular application
	Discussion

	Experimental evaluation
	Experimental setup
	Evaluation

	Related work
	Summary

	Constructing Compiler Optimization Levels
	Compiler Optimization Level Exploration
	Pareto optimality
	Multi-objective exploration
	Exploration speed

	Evaluation and analysis
	Experimental setup
	Evaluation
	Analysis
	Discussion

	Related work
	Summary

	Automated Just-In-Time Compiler Tuning
	Java Virtual Machine: Jikes RVM
	Optimization plans and levels
	Compiler DNA
	Sample-based JIT optimization
	Adaptive Optimization System

	Methodology
	Why a two-step process?
	Step 1: Pareto optimal optimization plans
	Step 2: JIT compiler tuning

	Evaluation and analysis
	Experimental setup
	Tuning for a benchmark suite
	Tuning for a single benchmark
	Cross-validation
	Tuning for a specific hardware platform

	Exploration time
	Related work
	Summary

	Conclusions and Future Work
	Conclusions
	Analyzing and estimating performance
	Automatically specializing system software
	Efficacy of machine learning techniques

	Future work

	Machine Learning Techniques
	Principal Component Analysis
	Normalization
	Reducing the dimensionality
	Interpretation of principal components

	Genetic algorithms
	Terminology
	Defining entities
	Crossover and mutation operators
	Fitness, selection, evolution and convergence
	Multi-objective evolutionary searching

	Benchmark Suites
	BioMetricsWorkload
	BioPerf
	MediaBench II
	SPEC CPU2000
	SPEC CPU2006

	Tools
	Hardware
	Intel Xeon L5420 systems (Core)
	Intel Xeon L5520 systems (Nehalem)

	Software
	GCC
	Jikes RVM

