Automated Just-In-Time Compiler Tuning

Kenneth Hoste

Andy Georges

Lieven Eeckhout

Ghent University, Belgium
{kehoste, ageorges, leeckhou}@elis.ugent.be

Abstract

Managed runtime systems, such as a Java virtual machine
(JVM), are complex pieces of software with many interacting
components. The Just-In-Time (JIT) compiler is at the core
of the virtual machine, however, tuning the compiler for
optimum performance is a challenging task. There are (i)
many compiler optimizations and options, (ii) there may be
multiple optimization levels (e.g., -00, -01, -02), each with
a specific optimization plan consisting of a collection of
optimizations, (iii) the Adaptive Optimization System (AOS)
that decides which method to optimize to which optimization
level requires fine-tuning, and (iv) the effectiveness of the
optimizations depends on the application as well as on the
hardware platform. Current practice is to manually tune the
JIT compiler which is both tedious and very time-consuming,
and in addition may lead to suboptimal performance.

This paper proposes automated tuning of the JIT com-
piler through multi-objective evolutionary search. The pro-
posed framework (i) identifies optimization plans that are
FPareto-optimal in terms of compilation time and code qual-
ity, (ii) assigns these plans to optimization levels, and (iii)
fine-tunes the AOS accordingly. The key benefit of our frame-
work is that it automates the entire exploration process,
which enables tuning the JIT compiler for a given hardware
platform and/or application at very low cost.

By automatically tuning Jikes RVM using our frame-
work for average performance across the DaCapo and
SPECjvm98 benchmark suites, we achieve similar perfor-
mance to the hand-tuned default Jikes RVM. When optimiz-
ing the JIT compiler for individual benchmarks, we achieve
statistically significant speedups for most benchmarks, up
to 40% for start-up and up to 19% for steady-state per-
formance. We also show that tuning the JIT compiler for a
new hardware platform can yield significantly better perfor-
mance compared to using a JIT compiler that was tuned for
another platform.

Categories and Subject Descriptors D.3.4 [Programming
Languages): Processors—Run-time environments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

CGO’10, April 24-28, 2010, Toronto, Ontario, Canada.
Copyright © 2010 ACM 978-1-60558-635-9/10/04. .. $10.00

General Terms Design, Experimentation, Measurement,
Performance

Keywords Java Virtual Machine (JVM), Just-In-Time (JIT)
compiler, compiler tuning, evolutionary search, machine
learning

1. Introduction

One of the key advantages of managed programming lan-
guages, such as Java, is that programs are compiled to an in-
termediate machine-independent level, called bytecode, en-
abling cross-platform portability. However, this requires a
process virtual machine—a Java virtual machine or JVM
for short—to translate bytecode to executable code. Mod-
ern JVMs tend to follow a mixed-mode execution scheme
in which application methods are first interpreted, or com-
piled with a baseline non-optimizing compiler. If a method
is sufficiently hot, i.e., is executed frequently, it will likely be
a candidate for (re)compilation by the optimizing JIT com-
piler. In this paper, we refer to a set of optimizations used
together during the (re)compilation of a method as an op-
timization plan. Modern JVMs [3, 19, 21] employ multiple
optimization levels (e.g., —00, -01 and -02), in which each
level comprises a successively more aggressive optimization
plan. In other words, more aggressive optimizations are per-
formed on more frequently executed code: higher optimiza-
tion levels result in longer compilation times, yet they sup-
posedly yield better code, thereby further speeding up the
execution of the hot methods.

Tuning the VM’s JIT compiler is a challenging task for
a number of reasons. For one, to ensure good performance,
the VM developer has to carefully tune each of the optimiza-
tion levels, choosing the right optimizations at each level and
tweaking their settings and controls. This is far from trivial
because of the large number of available optimizations and
their complex interactions. Second, the Adaptive Optimiza-
tion System (AOS), i.e., the engine that decides which meth-
ods to optimize to which optimization level, needs to be fine-
tuned. This is non-trivial as well because the optimum AOS
configuration is highly dependent on the compilation plans
at each optimization level and it is crucial to take full advan-
tage of the available optimization levels. Third, this tuning
process needs to be done for every possible optimization tar-
get of interest. In particular, the optimal VM configuration

may be specific to a particular hardware platform because
different hardware platforms come with different memory
hierarchies, microarchitecture, etc. which requires the JIT
compiler to be tuned differently. Different applications may
need the JIT compiler to be tuned differently as well. For
example, servers often run a single application or a limited
number of applications, such as middle-ware or business ap-
plications, over and over again. As such, it makes sense to
tune the VM for a particular application or set of applica-
tions.

Current practice is to manually tune the JIT compiler.
Arnold et al. [4] and Ishizaki et al. [16] describe such a man-
ual process for the Jikes RVM and the IBM JDK produc-
tion VM, respectively. This process is both tedious, time-
consuming and costly, and may lead to sub-optimal perfor-
mance. Moreover, tuning needs to be done for every new
processor on the market as well as for different applications
and application domains.

This paper proposes automated JIT compiler tuning. This
is done in two steps. The first step identifies optimization
plans that are Pareto-optimal in terms of compilation time
and code quality—a Pareto-optimal plan is defined such that
there exists no optimization plan that performs better on both
compilation time and code quality. We use a multi-objective
evolutionary search algorithm to efficiently search the large
optimization space: starting from a set of randomly gener-
ated optimization plans, we let the algorithm evolve until it
converges on a set of Pareto-optimal plans. We subsequently
retain a limited number of optimization plans that cover the
Pareto frontier well. The second major step is to search for
the optimum JIT compiler. This involves assigning Pareto-
optimal compilation plans to optimization levels (-00, -01
and -02), and fine-tuning the AOS. Again, we use evolu-
tionary search for doing so. The end result is a VM that is
optimized for the optimization target(s) of interest, i.e., for a
given hardware platform and/or application domain.

Our experimental results using the Jikes RVM, the Da-
Capo and SPECjvm98 benchmarks, and four different hard-
ware platforms demonstrate the value of the proposed frame-
work. The key experimental results from this paper are as
follows:

e We show that the framework succeeds in automatically
tuning a modern JIT compiler. We report similar aver-
age performance compared to the manually tuned Jikes
RVM.

® Tuning for a particular benchmark and a particular hard-
ware platform yields statistically significant speedups of
up to 19% for steady-state and 40% for start-up perfor-
mance.

® Tuning a VM for a new hardware platform yields signif-
icantly better performance compared to a VM that was
tuned for another platform.

Overall, this paper makes the following key contributions:

e We are the first to propose a framework for automatically
tuning a JIT compiler with multiple optimization levels
for optimum performance. The key benefit is that the
exploration is fully automated and enables tuning the JIT
compiler for a given hardware platform and/or (set of)
application(s) at very low cost.

e We provide empirical evidence that substantial perfor-
mance gains can be obtained by tuning the JIT compiler
for a particular hardware platform and/or application.

We make the case that tuning a dynamic (JIT) compiler
is much more complicated than tuning a static compiler
because of the tight interaction between the optimization
plans and levels and the AOS. This insight motivated us
to propose a two-step process in which we first identify
Pareto-optimal optimization plans, and subsequently as-
sign plans to levels and fine-tune the AOS.

Although this paper uses the Jikes RVM for driving the
experiments, we strongly believe that the overall framework
and conclusion is applicable to other Java virtual machines.
Moreover, similar JIT compiler tuning can be applied on
other process virtual machines, such as the Common Lan-
guage Runtime (CLR) of the Microsoft’s .NET initiative.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a detailed description of the organization of a
modern JVM, namely Jikes RVM. In Section 3, we present
our JIT optimization space exploration algorithm. In Sec-
tion 4, we describe our experimental setup, and we present
the results in Section 5. Finally, we discuss related work in
Section 6 and conclude in Section 7.

2. Java Virtual Machine

Before presenting the proposed JIT compiler optimization
framework, we first briefly describe the organization of a
modern Java virtual machine, namely Jikes RVM [3]. This
will enable us to better understand the complexity of JIT
compiler tuning.

Optimization plans and levels. Jikes RVM is a compilation-
only VM. Methods are initially compiled using a fast but
non-optimizing baseline compiler that generates relatively
inefficient machine code. To improve performance, Jikes
RVM employs an JIT optimization strategy for optimizing
hot methods using three optimization levels (-00, -01 , and
-02). We refer to the baseline compilation level as base.
Each optimization level -0n is defined by an optimization
plan Py, that enumerates the optimizations at that level along
with several values that further steer their use. In the default
Jikes RVM configuration, optimization plans for higher lev-
els include the optimizations for the lower levels. Each op-
timization level also has a corresponding aggressiveness as-
signed to it that influences the use of various optimizations,
e.g., more copy propagation passes are done at higher opti-

base -00 -01 -02
compilation rate (bs/ms) 909.46 39.53 1848 17.28
speedup vs. base 1.0 4.03 5.88 5.93

Table 1: Default compiler DNA values for Jikes RVM.

mization levels. In Jikes RVM (version 3.0.1), there are 33
boolean options available, each of which turns an optimiza-
tion on or off, and 10 value options that control the opti-
mizations'. Thus, per optimization plan, we have 233 possi-
ble combinations of boolean flags and a space spanned by
eight positive integer values and two positive floating-point
values. This results in a huge search space.

Compiler DNA. A compilation plan is characterized using
two metrics: the compilation rate (i.e., bytecodes compiled
per millisecond (bc/ms), and the improvement in code qual-
ity (i.e., speedup in execution time over base). Combined,
these two metrics are referred to as the compiler DNA asso-
ciated with the optimization plan.

The compiler DNA for each optimization plan/level in
Jikes RVM is measured as follows. The compilation rate
is obtained by compiling all methods at the specified opti-
mization level upon first execution. The speedup is the ratio
between the execution time obtained by executing the opti-
mized code and the execution time for a VM using the base
compiler only. The DNA in Jikes RVM for x86, see Table 1,
was computed on an LS41 type 7972 blade, equipped with
an AMD Opteron 8218 with 4MB L2 cache and 4GB RAM,
using the SPECjvm98 benchmarks?.

Sample-based JIT optimization. Jikes RVM uses OS-
timer triggered sampling to identify hot methods. When the
timer fires, the method on top of the stack is sampled the
moment a yield point® is reached [4, 5]. When sufficient
samples have been gathered for a method, the VM uses the
AOS to decide whether or not to optimize the method to a
particular optimization level.

Adaptive Optimization System. The AOS decides whether
or not to optimize a method, and if so, to which optimization
level the method should be optimized. There are five value
options in total that control the AOS. There are three positive
integer values, and two positive floating-point values in total,
again, a large space to explore. The AOS parameters control
when the engine finds a method to be hot enough to be
considered for optimization to a higher level. The AOS uses
the compiler DNA to make a trade-off in compilation cost

! These are the options we have used in the exploration. There are other
options we did not use because they are either unstable, not meant to be
changed from outside the VM or can activate options that result in breaking
the Java language specification.

2 The Jikes RVM compiler DNA for the PowerPC platform specifies differ-
ent values.

3 A yield point in Jikes RVM is a point during the execution where the
scheduler can safely switch threads. It is placed at the beginning and the
end of methods and at loop back-edges.

(i.e., how long does it take to optimize the method at a given
optimization level?) and code quality (i.e., how much faster
will the code run once optimized?).

3. JIT Compiler Tuning

We now present our framework for automatically optimiz-
ing a JIT compiler. This includes identifying the compilation
plans, optimization levels and AOS settings. Before describ-
ing the overall framework in great detail, we first motivate
the need for a two-step process.

3.1 Why a two-step process?

As mentioned earlier in the introduction, optimizing a dy-
namic compiler is substantially more complicated than opti-
mizing a static compiler because of the tight interaction be-
tween optimization plans and levels, and the AOS settings.
For example, including a compiler optimization at one level
changes the compilation rate versus code quality trade-off,
which in its turn changes which methods are optimized to
which optimization level. This leads to complex interactions
which severely complicate the search process. Our initial ap-
proach to this problem was to use an evolutionary algorithm
to optimize the compilation plans, plan-to-level assignments,
the number of optimization levels, and the AOS settings in
a single go. In fact, we used the previously proposed COLE
approach [15] which was developed for a static compiler,
and naively applied it to a dynamic compiler. However, we
encountered three significant problems. First, the automat-
ically derived JIT compiler did not perform better (and for
many benchmarks significantly worse) than the manually
tuned Jikes RVM. Second, the search process took extremely
long to converge. Third, expressing the optimization prob-
lem in a format that could be handled by COLE’s evolution-
ary search algorithm was non-trivial, e.g., it is unclear how
to sensibly define crossover across two JIT compiler settings
with a different number of optimization levels. This moti-
vated us to come up with a two-step process in which we first
focus on code quality versus compilation rate while exclud-
ing dynamic compilation and GC activity, and subsequently
assign plans to levels and optimize the AOS settings while
considering dynamic compilation and GC activity. The two-
step process enables a higher performance JIT compiler to
be derived in a shorter amount of time.

3.2 Pareto-optimal optimization plans

The goal of the first step is to identify optimization plans that
are Pareto-optimal in terms of compilation time and code
quality. Figure 1 shows an illustrative example of a Pareto
frontier in the dual-objective search space, namely compi-
lation rate (i.e., number of bytecodes compiled per unit of
time) versus speedup (i.e., performance improvement com-
pared to non-optimized code). A compilation plan is Pareto-
optimal if there is no other plan that performs better both
in terms of compilation rate and speedup. When construct-
ing the Pareto frontier, we consider a setup in which we first

‘ Pareto optimal optimization plan
<> optimization plan
O retained plan at the end of step 1

speedup

— >
compilation rate

Figure 1: An example of a Pareto frontier in our dual-
objective exploration space. The circled plans are those re-
tained at the end of the first step to bootstrap the second step.

compile all the code according to the optimization plan and
subsequently execute the optimized code—we do not con-
sider JIT compilation (for now) and consider a large heap
size (8 times the minimum heap size) to minimize GC activ-
ity. This is to understand the basic trade-off in code quality
versus optimization overhead.

For identifying the Pareto frontier, we use the SPEA2
multi-objective evolutionary search algorithm [27], which
was also used in the COLE framework [15]. In our imple-
mentation, the algorithm starts with a generation of 25 com-
pilation plans: one plan with all compilations turned on, one
plan with all optimizations turned off, and 23 randomly gen-
erated compilation plans. Each of these plans are evaluated
in terms of compilation rate and speedup. The best compila-
tion plans seen so far are retained in an archive, which con-
tains the Pareto-optimal plans. The next generation is formed
by probabilistically mutating plans and combining them us-
ing crossover. In our setup, we use mutation to construct
1/10 of the plans in the next generation with a mutation rate
of 25%, and crossover for 9/10 of the plans with a crossover
rate of 25%. After evaluating this new generation, we retain
the Pareto-optimal entities in the new archive. This iterative
process is repeated until convergence, i.e., until there is no
further improvement in the Pareto frontier. The final Pareto
frontier contains all the Pareto-optimal optimization plans
ever seen during the exploration.

3.3 Limiting the number of Pareto-optimal
optimization plans

The end result of the multi-objective evolutionary search
as described above is a fairly large set of Pareto-optimal
optimization plans; in our experiments, we obtained up to 80
Pareto-optimal plans. From this set, we select a subset such
that the Pareto frontier is covered well. We found this Pareto
frontier reduction procedure to be an important step in the

overall JIT exploration in order to limit the total exploration
time.

The rationale behind the Pareto frontier reduction proce-
dure is to prefer optimization plans that result in high code
quality at roughly the same compilation rate, and compile
bytecode faster while attaining roughly the same speedup.
We therefore use an iterative selection algorithm. In the first
iteration, we pick the two adjacent plans on the Pareto fron-
tier that lie closest to each other along the X axis. We drop
the plan that scores worst along the Y axis. We then select
the two plans that lie closest to each other along the Y axis,
and drop the one that scores worst along the X axis. This
iterative process stops when the number of retained plans
drops below a given number. We limit the number of retained
Pareto-optimal compilation plans to 8.

In our running example, see Figure 1, this means we first
select the pair (B,C) because they lie closest on the X axis
and drop C. The next pair is (D, E) because they lie closest
on the Y-axis and we only retain E. After two iterations, the
list of retained optimization plans equals {A, B, E, F}.

3.4 JIT compiler tuning

The second step in the proposed JIT compiler tuning frame-
work is to (i) assign the Pareto-optimal optimization plans
to optimization levels (-00, -01 and -02), and (ii) optimize
the JIT AOS accordingly. In contrast to the first step, we
now consider adaptive JIT compilation, i.e., the JIT com-
piler optimizes the most frequently executed methods at run
time, and we consider heap sizes that introduce GC activity
in order to achieve representative performance numbers. In
other words, compilation and optimization time as well as
GC time become part of the overall execution time.

Assigning compilation plans to optimization levels is
fairly straightforward: given the limited number of retained
Pareto-optimal optimization plans we can easily consider all
possible assignments of plans to levels. In our setup, this
means we need to assign 8 optimization plans to 1 through
3 optimization levels. There are 92 possible assignments.
We use an evolutionary search algorithm to identify the best
AOS settings.

4. Experimental Setup

In this section, we describe our experimental setup in terms
of the benchmarks, the hardware platforms, the Jikes RVM
version, and the data analysis method used.

4.1 Benchmarks

Table 2 shows the benchmarks used in this study. We use
the SPECjvm98 benchmarks [23] (top seven rows), as
well as nine DaCapo benchmarks [7] (bottom nine rows).
SPECjvm98 is a client-side Java benchmark suite consisting
of seven benchmarks. We run all SPECjvm98 benchmarks
with the largest input set (-s100). The DaCapo benchmark
suite is an open-source benchmark suite; we use release ver-
sion 2006-10-MR2. We use the nine benchmarks that exe-

benchmark description min heap

size (MB)
compress file compression 24
jess puzzle solving 16
db database 32
javac Java compiler 32
mpegaudio MPEG decompression 16
mtrt raytracing 24
jack parsing 24
antlr parsing 32
bloat Java bytecode optimization 56
fop PDF generation from XSL-FO 56
hsqldb database 176
jython Python interpreter 72
luindex document indexing 32
lusearch document search 32
pmd Java class analysis 64
xalan XML to HTML transformer 40

Table 2: SPECjvm98 (top seven) and DaCapo (bottom nine)
benchmarks considered in this paper.

cute properly on the 3.0.1 version of Jikes RVM. We use the
default (medium size) input set for the DaCapo benchmarks
unless mentioned otherwise.

4.2 Hardware platforms

We use four different hardware platforms in this study:

- an AMD Opteron 242 clocked at 1.6GHz with 1IMB L2
cache and 4GB RAM running Linux 2.6.9;

- an Intel Pentium 4 clocked at 3GHz with 1M L2 cache
and 1.5GB RAM running Linux 2.6.19;

- an Intel Core 2 based Xeon 1.5420 clocked at 2.5GHz
with 6MB L2 cache and 16GB RAM running Linux
2.6.18; and

- an Intel Core i7 920 based machine clocked at 2.6GHz
with 256KB L2, 8MB L3 and 12GB RAM running Linux
2.6.27.

4.3 Jikes RVM

We use Jikes RVM version 3.0.1, released on November
18th, 2008. We patched Jikes RVM such that optimizations
can be set on a per-optimization level basis at the command
line. The virtual machine was built using the production pro-
file, which uses the GenMS garbage collector and compiles
the VM methods using the optimizing compiler with the de-
fault Py, optimization plan. During the first step of the ex-
ploration algorithm, we use a heap size that is 8 times the
minimum size required to run the benchmark; this is to elim-
inate the effect of garbage collection, as mentioned earlier.
We do vary the heap size (i.e., 2, 4x, and 8 x the minimum
heap size) during the second step and during evaluation, fol-
lowing current practice [7].

Plan Compilation rate Speedup (over base)

-00 53.12 1.86
-01 21.84 2.14
-02 20.81 2.13
A 59.70 1.77
B 57.62 1.86
C 50.86 1.89
D 41.07 2.00
E 37.42 2.02
F 28.70 2.05
G 25.90 2.08
H 19.11 2.13

Table 3: Compilation rates and speedups over base on the
Intel Core 2 for the compilation plans used by default in
Jikes RVM (top rows), and the compilations plans obtained
through our exploration (bottom rows).

4.4 Statistically rigorous performance evaluation

To deal with the non-determinism that is due to timer-based
sampling and adaptive optimization in Jikes RVM, we use
both multiple VM invocations and multiple benchmark it-
erations per VM invocation in our experiments, following
the statistically rigorous performance evaluation methodol-
ogy proposed by Georges et al. [13]. When reporting start-up
performance we consider the average execution time for the
first benchmark iteration across 20 VM invocations. When
reporting steady-state performance we consider the arith-
metic mean across the final 5 out of 15 benchmark itera-
tions across 20 VM invocations. We also report 95% confi-
dence intervals which are indicated through error bars in the
graphs.

5. Results

We now evaluate the proposed JIT compiler tuning frame-
work. We consider three cases: (i) tuning for average per-
formance across all benchmarks, (ii) tuning for a partic-
ular benchmark, and (iii) tuning for a specific hardware
platform. We consider experimental setups both with and
without cross-validation. Finally, we discuss the exploration
time.

5.1 Tuning for a benchmark suite

For now, we use all the benchmarks from the SPECjvm98
and DaCapo suites, and aim at finding a JIT compiler setting
that performs well on average across all of the benchmarks.
Our goal is to demonstrate that automated JIT compiler
tuning performs at least as well as a manually tuned JIT
compiler. This exploration was conducted on the Intel Core
2 platform.

Pareto-optimal optimization plans. Table 3 lists the three
default compilation levels as well as the compilation plans
we obtained from the first step in our exploration process in
terms of compilation rate and speedup (code quality). The

automatically derived Pareto-optimal compilation plans are
comparable to the manually tuned compilation plans in de-
fault Jikes RVM, and are well spread in terms of compilation
rate and code quality.

Optimum JIT compiler. The second step is to identify op-
timum plan-to-level assignments and AOS settings. We de-
note the JIT compiler that optimizes start-up performance
as Cgr; the JIT compiler that optimizes steady-state perfor-
mance is denoted as Cgg. These settings are shown in Ta-
ble 4; interestingly, the optimum start-up JIT compiler Cgr
has three levels with plans E, C and A, whereas the optimum
steady-state JIT compiler Cgg has only two levels with plans
E and A. We found the automatically tuned JIT compiler to
achieve significantly better performance than the manually
tuned Jikes RVM for a couple benchmarks, e.g., mtrt (30%
for start-up and 7% for steady-state), hsqldb (10% for start-
up) and bloat (3% for steady-state). For some benchmarks,
we observe slightly worse performance, e.g., lusearch and
xalan for steady-state; performance degradation is limited
to 3% to 4% though. However, for the majority of the bench-
marks, we do not observe statistically significantly better or
worse performance. Overall, the end conclusion is that auto-
mated JIT compiler tuning is feasible and achieves similar
performance compared to a manually tuned JIT compiler.

5.2 Cross-validation experiment

The evaluation described so far assumed that the JIT com-
piler was tuned and evaluated using the same set of bench-
marks, namely DaCapo and SPECjvm98. Even more rele-
vant is to study whether one could tune the JIT compiler
with one set of benchmarks and then achieve good perfor-
mance for other benchmarks. We now employ such a cross-
validation setup: we tune the JIT compiler using the DaCapo
benchmark suite and then evaluate the tuned JIT compiler
using the SPECjvm98 benchmark suite, and vice versa. Fig-
ure 2 shows the results of this cross-validation experiment
along with the results of a non cross-validation experiment
(i.e., the JIT compiler is tuned and evaluated using the same
set of benchmarks), which serves as a point of reference.
For SPECjvm98 (top row), we observe that the automati-
cally tuned JIT compiler achieves good performance even
in a cross-validation experiment (compare Figure 2(a) to the
non cross-validation experiment in Figure 2(b)). The auto-
matically tuned JIT compiler achieves substantial speedups
for mtrt and compress. We observe a slowdown for mpegau-
dio in the cross-validation setup. The performance picture is
mixed for the DaCapo benchmark suite (bottom row): when
tuned for SPECjvm98, the JIT compiler performs worse for
some of the DaCapo benchmarks, see for example bloat,
jython, lusearch and pmd. For the other benchmarks, we
observe similar (or similarly good, see hsqldb) performance
under cross-validation. The reason for the different perfor-
mance picture for DaCapo compared to SPECjvm98 is due
to the significant differences in workload characteristics be-

(a) start-up

Omin. heap size x8

Emin. heap size x4 Omin. heap size x2

50%
40%
30%
20%
10%

0%

% speedup compared to default

-10%

compress
jess

db

javac
mpegaudio
mtrt

jack

antlr

bloat
hsqldb
jython
luindex
lusearch
pmd

xalan

(b) steady-state

Omin heap size x8 B min heap size x4 Omin heap size x2

25%
20% 1+
15%
10%
5%
0%
-5%
-10%

% speedup compared to default

jess
db
javac
mtrt
jack
antlr
bloat
hsqldb
jython
luindex
lusearch
pmd
xalan

"
@
o
4
a
£
S
S

mpegaudio

Figure 3: Speedup on the Intel Core 2 compared to default
Jikes RVM for start-up and steady-state performance when
tuning the JIT compiler for optimum performance on a per-
benchmark basis.

tween DaCapo and SPECjvm98: Blackburn et al. [7] demon-
strate that DaCapo shows more complex code, has richer ob-
ject behaviors, and has more demanding memory system re-
quirements. This result motivates the need for representative
benchmarks when (automatically) tuning a JIT compiler—
this is a general concern for feedback-loop based optimiza-
tion and tuning.

5.3 Tuning for a single benchmark

An important benefit from automated JIT compiler tuning
is that it enables the optimization for specific applications
as well as for specific hardware platforms at very low cost,
given that the tuning process is completely automated. In this
section, we discuss the results we obtain when we tune the
JIT compiler for a specific benchmark; we discuss the case
in which we tune for a specific hardware platform later.

Figure 3 shows the speedup on the Core 2 platform when
comparing the best Pareto-optimal configuration tuned per
benchmark for (a) start-up and (b) steady-state performance
against the default Jikes RVM. The automated exploration
yields JIT compilers that outperform the default Jikes RVM
for a good portion of the benchmarks, and up to 40% for
start-up and up to 19% for steady-state.

5.4 Cross-input validation

In the previous section, we considered the same benchmark
inputs when tuning the JIT compiler as during evaluation.

default Csr Cgsg
number of levels 3 3 2
level O Py planE plan E
level 1 Py planC plan A
level 2 Pys plan A -
Number of clocks ticks after which call graph decays 100 52 26
Call graph decay rate 1.10 1.10 1.10
Call graph update frequency in timer ticks 20 3 4
Initial edge weight in call graph 3 3 3
Percentage of edges that mark hotness 0.01 0.0136 0.0098

Table 4: The JIT compiler configurations that are optimal in terms of startup (Cgr) and in terms of steady-state (Cgg).

(a) Evaluated with SPECjvm98, tuned for DaCapo

Oheap x8 (SS) Oheap x4 (SS) Bheap x2 (SS) Dheap x8 (ST) Bheap x4 (ST) Bheap x2 (ST)
45% +
35% A
25% A
15% 1
5% 1

-5% 4

speedup over default JikesRVM

-15% A

-25% -

compress jess db javac mpegaudio mtrt jack

(c) Evaluated with DaCapo, tuned for SPECjvm98

Oheap x8 (SS) Dheap x4 (SS) Bheap x2 (SS) Dheap x8 (ST) Bheap x4 (ST) Dheap x2 (ST)
20% T
15%
10% 4

5%
0% 1
-5%

-10%
-15%
-20%

speedup over default JikesRVM

-25% -

antlr xalan

bloat fop

hsqgldb jython luindex lusearch pmd

(b) Evaluated with SPECjvm98, tuned for SPECjvm98

Oheap x8 (SS) Oheap x4 (SS) Bheap x2 (SS) Bheap x8 (ST) Bheap x4 (ST) Oheap x2 (ST)

speedup over default JikesRVM

45% 7

35% A

25% A

15% A

5% 1

-5% 1

-15% A

-25% -

compress jess db javac mpegaudio mtrt jack

(d) Evaluated with DaCapo, tuned for DaCapo

Oheap x8 (SS) Dheap x4 (SS) Bheap x2 (SS) Dheap x8 (ST) Dheap x4 (ST) Bheap x2 (ST)

speedup over default JikesRVM

20% 17
15% A
10% A

5% A

0% T
-5% 1
-10% 1
-15% 1

-20% A
-25% -

antlr bloat fop pmd xalan

hsqldb jython luindex lusearch

Figure 2: Per-benchmark performance speedups on the Intel Core 2 compared to default Jikes RVM when tuning Jikes RVM in
a cross-validation setup (left column: (a) + (c)), and a non cross-validation setup (right column: (b) + (d)). These graphs show
results for both startup (ST) and steady-state (SS) performance, across three heap sizes.

Figure 4 reports performance results when considering a dif-
ferent input during the tuning process and evaluation, i.e.,
we now consider a cross-input validation setup. We limit
ourselves to the DaCapo benchmarks in this experiment:
we use the medium inputs during JIT compiler tuning and
use the large inputs during evaluation. Two DaCapo bench-
marks are excluded, namely fop and luindex, because the
medium input is equal to the large input. We do not con-
sider SPECjvm98 here because of lack of inputs: the -s1
and -s10 inputs are too small and only stress virtual machine
startup performance and do not stress code quality [12].
Comparing Figures 3 and 4, we observe roughly the same
speedup for the medium inputs (Figure 3) as for the large
input (Figure 4) for some benchmarks, e.g., hsqldb. For

other benchmarks, we observe a slight performance drop,
e.g., bloat. This motivates the need for representative inputs
when tuning a JIT compiler for a particular application —
an input that yields substantially different program behavior
than the input used during the tuning process may result
in suboptimal performance. As mentioned before, this is a
general concern for feedback-loop based optimization and
tuning.

5.5 Tuning for a specific hardware platform

We now explore the potential performance benefit by tun-
ing the JIT compiler for a specific hardware platform. In
this case study, we examine the effects of tuning for a par-
ticular platform using two benchmarks: (i) mtrt, and (ii)

(a) start-up

Omin. heap size x8 Emin. heap size x4 Omin. heap size x2

15%

10% 1

5% 1

0% 1

-5% -

-10% 1

% speedup compared to default

-15%

antlr
bloat
pmd
xalan

hsqldb
jython
lusearch

(b) steady-state

Omin. heap size x8 Emin. heap size x4 Omin. heap size x2

15%

10% A

5% A

0% 7

-5% 1

% speedup compared to default

-10%

antlr
bloat
pmd
xalan

hsqldb
jython
lusearch

Figure 4: Per-benchmark start-up and steady-state speedup
through a cross-input validation experiment.

luindex. During the benchmark suite wide exploration on
the Intel Core 2 (see Figure 2), the optimum JIT compiler
did very well for mtrt, yet it failed to improve performance
for luindex. In the per-benchmark exploration, mtrt im-
proves further, while luindex gains 9% in both start-up per-
formance and in steady-state performance on the Core 2, see
Figure 3. Thus, these two benchmarks make for two excel-
lent cases for examining the effect of exploring benchmark-
specific tuning across different hardware platforms.

Per-platform tuning. Our first experiment tunes the JIT
compiler for a specific hardware platform and compares per-
formance against the default JIT compiler (which was manu-
ally tuned for another hardware platform). The results of this
hardware-specific exploration are shown in Figure 5 for (a)
start-up and (b) steady-state performance. There is signifi-
cant benefit in start-up performance for mtrt: performance
speedups range from 19% to 40%. For 1uindex we observe
performance benefits in the 4% to 12% range. For steady-
state performance, we observe substantial performance ben-
efits for both mtrt and luindex: performance improves by
up to 13% for mtrt and up to 17% for luindex. These ex-
amples make the case that significant speedups can be ob-
tained from tuning a JIT compiler for a specific hardware
platform.

This result is further illustrated in Figure 6 which shows
the per-platform Pareto-optimal optimization plans in terms
of compilation rate versus performance speedup over base.
There are two observations we can immediately draw from

(a) start-up
OAMD Opteron Olntel Pentium 4 @Intel Core 2 ®Intel Core i7

50%

45%
5 40% A
3
£
g 35% A
& 30%
3
o 25% 4
E]
T 20% 4
o3
S 15%
8 10% A

5%

0% -

mtrt luindex
x2 x4 x8 x2 x4 x8

(b) steady-state

OAMD Opteron Olntel Pentium 4 @Intel Core 2 ®Intel Core i7

25%

20% A

15%

10%

5%

0% -

speedup over default JikesRVM

-5% mitrt luindex
x2 x4 x8 x2 x4 x8

Figure 5: This graph shows speedup numbers across dif-
ferent heap sizes on all hardware platforms for mtrt and
luindex for (a) start-up and (b) steady-state performance.

---®-- AMD Opteron ---&-- Intel Core 2 ---A&-- Intel Pentium 4 ---e-- Intel Core i7

7.5
6.5 A ©g, ""N
5.5 Ve i B
°
o =]
g 0) Y
«w 2\ \ \
3.5 4 5 T, oy,
2.5 A ﬂé
1.5 ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 70

compilation rate

Figure 6: The Pareto frontiers for the optimization plans
tuned for mtrt on each of the platforms in our experimental
setup.

this graph. First, the frontier shifts to the upper right for more
recent platforms. As a consequence, if one tunes the com-
piler DNA on an older platform, the cost for optimization
is over-estimated and the potential benefit the optimization
reaps is under-estimated. This results in optimizing either
later—more samples are required to overcome the decision
threshold—or optimizing to a lower level. Conversely, if the
VM is tuned for a more recent platform, the VM might op-
timize too soon and/or too much, potentially offsetting the
gain the adaptive framework might bring. Second, we see
that on each platform the Pareto frontier is well spread across

(a) Optimization plans

a default OIntel Core 2 ¢ AMD Opteron A Intel Pentium 4 @ Intel Core i7
7.5+

651 aa Py
4% a0 o0 Be

557 A0 @

4.5 1

speedup

3.5 1 @A @

2.5 1

1.5

20 30 40 50 60
compilation rate

(b) Tuned JIT compilers

A default ---0---Intel Core 2
---A---Intel Pentium 4 ---@---Intel Core i7

---0--- AMD Opteron

1.5 A e N ._F‘.h
1.4 "‘o - ®
1.3 A

1.2
1.1

startup speedup

0.9 T T T T 1
0.95 1 1.05 1.1 1.15 1.2

steady-state speedup

Figure 7: Graph (a) shows compilation rate versus perfor-
mance speedup for the Pareto-optimal compilation plans de-
termined on the AMD Opteron, Pentium 4 and Core i7 when
run on the Core 2 platform. Graph (b) shows start-up versus
steady-state performance for the AMD Opteron, Pentium 4
and Core i7 tuned JIT compilers when evaluated on the Core
2. These graphs consider mtrt.

the space, suggesting that a few optimizations might have a
large effect.

Employing tuned JIT compilers across platforms. Using
a JIT compiler that was tuned for a particular hardware plat-
form on another hardware platform may yield suboptimal
results. This is illustrated in Figure 7(a) where the Pareto-
optimal plans tuned for mtrt for each platform have been
evaluated on the Intel Core 2 platform. The optimization
plans tuned for the Intel Pentium 4 and AMD Opteron plat-
forms are suboptimal, i.e., they perform worse than the ones
that were tuned for the Core 2. We observe a similar re-
sult when looking into tuned JIT compilers, see Figure 7(b)
which compares the performance of a JIT compiler tuned
for the Pentium 4, AMD Opteron and Core i7 when run on a
Core 2 machine against a JIT compiler that was tuned on the
Core 2. Clearly, the JIT compiler tuned for the Core 2 yields
the best possible performance on the Core 2—the JIT com-
pilers tuned for the other platforms perform worse. In par-
ticular, the JIT compiler that was tuned for the Core 2 yields
approximately 5% better start-up performance and 10% bet-
ter steady-state performance compared to the JIT compiler

that was tuned for the Pentium 4. We thus conclude that
platform-specific JIT compiler tuning can yield substantial
performance benefits and transferring JIT settings across
platforms may lead to suboptimal performance.

5.6 Exploration time

Finally, we discuss how much time is needed to complete the
JIT compiler tuning.

Performing the first step for all of the DaCapo and
SPECjvm98 benchmarks on the Core2 platform took 33
generations to converge. During each generation, 25 new
optimization plans are constructed, each of which requires
roughly 40 minutes to measure the compiler DNA. This
means that about 550 machine hours are needed to run the
first step of the tuning process to convergence. Note how-
ever, that this tuning process is embarrassingly parallel, i.e.,
all plans can be measured in parallel and independently from
each other. Having sufficient machine resources available,
this first step takes 22 hours only.

The second exploration step, which tunes the plan-to-
level assignment and AOS, converges significantly faster:
only 8 generations are required. Evaluating a single JIT
compiler setting takes about 400 minutes on average. This
results in an additional exploration time of about 1320 hours.
Again, because each generation can be evaluated in parallel,
the exploration can be performed in about 53 hours.

Thus, the entire exploration for a set of 16 benchmarks
on a particular hardware platform takes around 75 hours
or roughly 3 days. Performing the exploration for a single
application only, as we did for the experiments described in
Section 5.3, is a matter of hours.

6. Related Work

6.1 Dynamic optimization

Most modern Java virtual machines implement multiple lev-
els of optimization, see for example [4, 6, 19, 24]. Since
compilation time is an integral part of the total execution
time in a dynamic compiler, it is of utmost importance to
make a good trade-off between compilation time and code
quality when proposing optimization levels in a optimizing
dynamic compiler. Arnold et al. [6] and Ishizaki et al. [16]
describe how optimization levels are determined manually
for the Jikes RVM and IBM DB production VM, respec-
tively.

Cavazos and O’Boyle [9] take a different approach to
optimizing JIT compilers. They apply a different optimiza-
tion plan for each method. The optimizations in these plans
are determined by using a logistic regression function that
predicts which optimizations are most useful for the given
method based on bytecode features. They report speedups
of 4%, 2% and 29% on average compared to optimizing
all methods at the -00, -01, and -02 levels, respectively.
When considering adaptive optimization, they report a 1%
improvement over default Jikes RVM for SPECjvm98; for

the DaCapo benchmarks, they report a 4% average perfor-
mance improvement. Our JIT tuning approach does not ap-
ply different compilation plans to individual methods which
simplifies JIT compiler tuning. In addition, Cavazos and
O’Boyle do not make the case that JIT compilers that are
tuned for particular hardware platforms and/or applications
can yield substantial performance benefits. In their follow-
on work [10], Cavazos and O’Boyle use a genetic algorithm
to automatically tune the heuristics of the inliner in a dy-
namic Java compiler. Our work is not limited to the inliner;
we instead tune the entire JIT optimization system.

6.2 Multi-objective iterative compilation

The basic idea of iterative compilation is to explore the com-
piler optimization space by iteratively compiling and mea-
suring the effectiveness of optimization sequences. A large
body of work has been done on iterative compilation over the
past few years, and many researchers have reported impres-
sive results showing significant performance, energy or code
size improvements over standard optimization sequences,
see for example [1, 2, 8, 11, 17, 25].

What all of this prior work on iterative compilation has
in common is that it focuses on a single objective function
to be optimized. For example, researchers typically focus on
a single optimization criterion such as performance [1, 8,
9, 11, 25], or energy consumption [14], or code size [11].
And some researchers focus on optimizing a single objective
function that combines multiple optimization criteria such as
code quality and compilation time [9, 10], or code quality
and code size [17].

Very recently, Hoste and Eeckhout [15] proposed the
COLE framework which explores a multi-objective com-
piler optimization space, unlike prior work which focuses on
single-objective optimization. The key innovation compared
to COLE is that this paper studies multi-objective compiler
optimization in a dynamic compiler; the COLE work fo-
cused on static compilers for programming languages such
as C, C++, Fortran, etc. A dynamic compiler poses several
new challenges compared to a static compiler which compli-
cates the search process, which, as mentioned before, moti-
vated us for the two-step process proposed in this paper.

7. Conclusion

This paper proposed a framework for automatically tun-
ing dynamic compilers. The framework uses evolutionary
searching and tunes the JIT compiler for a given hardware
platform and a given application or application domain. This
is done through a two-step process in order to manage the
complexity in exploring the huge optimization space: we
first identify Pareto-optimal compilation plans, and subse-
quently assign plans to optimization levels and fine-tune the
AOS. Our experimental results using the Jikes RVM, four
hardware platforms and the SPECjvm98 and DaCapo bench-
marks, demonstrate that the proposed framework identifies
JIT compiler configurations that achieve significantly bet-

ter performance compared to a manually tuned VM. When
optimizing for individual applications, we achieve perfor-
mance improvements up to 40% and 19% for start-up and
steady-state performance, respectively. Also, optimizing for
a specific hardware platform leads to significantly better per-
formance. Our framework is completely automated and ex-
plores the complex JIT compiler space in approximately 3
days for the collection of DaCapo and SPECjvm bench-
marks; tuning the JIT compiler for individual applications
is done in a few hours.

Acknowledgements

We would like to thank Brad Chen and the anonymous re-
viewers for their thoughtful comments and valuable sug-
gestions. Kenneth Hoste is supported by the Institute for
the Promotion of Innovation by Science and Technology in
Flanders (IWT). Andy Georges is supported through a post-
doctoral fellowship by the Research Foundation—Flanders
(FWO). Additional support is provided by the FWO projects
G.0232.06, G.0255.08, and G.0179.10, and the UGent-BOF
projects 01J14407 and 01Z04109. Computational resources
and services used in this work were provided by Ghent Uni-
versity.

References

[1] F. Agakov, E. Bonilla, J. Cavazos, B.Franke, G. Fursin,
M. O’Boyle, J. Thomson, M. Toussaint, and C. Williams. Us-
ing machine learning to focus iterative optimization. In CGO,
pages 295-305, Mar. 2006.

[2] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves,
D. Subramanian, L. Torczon, and T. Waterman. Compilation
order matters: Exploring the structure of the space of com-
pilation sequences using randomized search algorithms. In
LCTES, pages 231-239, June 2004.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. FE. Mergen,
T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapefio Virtual Machine. In IBM System Journal, 39(1), Feb.
2000.

[4] M. Amold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapefio JVM. In OOPSLA,
pages 47-65, Oct. 2000.

[5] M. Amold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
A Survey of Adaptive Optimization in Virtual Machine. In
Proceedings of the IEEE, 93(2), 2005

[6] M. Arnold, M. Hind, and B. G. Ryder. Online Feedback-
Directed Optimization in Java. In OOPSLA, pages 111-129,
2002

[7] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In OOPSLA,
pages 169-190, Oct. 2006.

[8] F. Bodin, T. Kisuki, P. Knijnenburg, M. O’Boyle, and E. Ro-
hou. Iterative compilation in a non-linear optimisation space.
In PACT, Oct. 1998.

[9] J. Cavazos, and M. O’Boyle Method-Specific Dynamic Com-
pilation using Logistic Regression. In OOPSLA, pages 229—
240, Oct. 2006.

[10] J. Cavazos and M. O’Boyle. Automatic tuning of inlining
heuristics. In Proceedings of the ACM/IEEE SC2005 Confer-
ence on High Performance Networking and Computing, Nov.
2005.

[11] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing
for reduced code space using genetic algorithms. In LCTES,
pages 1-9, May 1999.

[12] L. Eeckhout, A. Georges, and K. De Bosschere. How Java
programs interact with virtual machines at the microarchitec-
tural level. In OOPSLA, pages 169-186, Oct. 2003.

[13] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigor-
ous Java performance evaluation. In OOPSLA, pages 57-76,
Oct. 2007.

[14] S. V. Gheorghita, H. Corporaal, and T. Basten. Iterative com-
pilation for energy reduction. Journal of Embedded Comput-
ing, 1(4):509-520, July 2005.

[15] K. Hoste and L. Eeckhout. COLE: Compiler Optimization
Level Exploration In CGO, pages 165-174, Apr. 2008.

[16] K. Ishizaki, M. Takeuchi, K. Kawachiya, T. Suganuma,
O. Gohda, T. Inagaki, A. Koseki, K. Ogata, M. Kawabhito,
T. Yasue, T. Ogasawara, T. Onodera, H. Komatsu, T. Nakatani
Effectiveness of cross-platform optimizations for a java just-
in-time compiler. In OOPSLA, pages 187-204, Oct. 2003.

[17] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson,
and D. Jones. Fast searches for effective optimization phase
sequences. In PLDI, pages 171-182, June 2004.

[18] Y. Luo, and L.K. John. Efficiently Evaluating Speedup Using
Sampled Processor Simulation. In IEEE Computer Architec-
ture Letters, 3, 2004

[19] D. Maier, P. Ramarao, M. Stoodley, and V. Sundaresan. Ex-
periences with Multithreading and Dynamic Class Loading in
a Java Just-In-Time Compiler. In CGO, pages 87-97, Mar.
2006.

[20] J. Neter, M. H. Kutner, W. Wasserman, and C. J. Nachtsheim.
Applied Linear Statistical Models. McGraw-Hill, 1996.

[21] M. Paleczny, C. Vick, and C. Click. The Java Hotspot server
compiler. In JVM, pages 1-12, Apr. 2001.

[22] Standard Performance Evaluation Corporation. SPECjbb2000
Benchmark. http://www.spec.org/jbb2000.

[23] Standard Performance Evaluation Corporation. SPECjvm98
Benchmarks. http://www.spec.org/jvm98.

[24] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and
T. Nakatani. Design and evaluation of dynamic optimiza-
tions for a Java Just-In-Time compiler. ACM Transactions on
Programming Languages and Systems (TOPLAS), 27(4):732—
785, July 2005.

[25] S. Triantafyllis, M. Vachharajani, and D. 1. August.
Compiler optimization-space exploration. Journal of
Instruction-level Parallelism, Jan. 2005. Accessible at
http://wuw.jilp.org/vol7.

[26] E. Zitzler and L. Thiele. Multiobjective evolutionary algo-
rithms: a comparative case study and the strength Pareto ap-
proach. In IEEE Transactions on Evolutionary Computation,
3(4), pages 257-271, Nov. 1999.

[27] E. Zitzler, M. Laumanns and L. Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm. Technical Report
TIK-Report 103, May 2001.

