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The wealth of performance numbers provided by benchmarking 

corporations makes it difficult to detect trends across commercial 

machines. A proposed methodology, based on statistical data analysis, 

simplifies exploration of these machines’ large datasets.

B enchmarking consortia and corporations pub-
lish performance numbers on commercial 
computer systems for a set of industry-stan-
dard benchmarks. For example, the Standard 
Performance Evaluation Corporation (SPEC; 

www.spec.org) provides performance results for various 
benchmarks from application domains such as com-
pute-intensive workloads, Java workloads, graphics, Web 
servers, mail servers, and network !le systems. The infor-
mation obtained from these benchmarking experiments 
is valuable for comparing commercial machines across 
applications, manufacturers, and processor generations 
for different types of workload behaviors. However, the 
abundance of data makes analysis dif!cult.

To gain insight from these large datasets, we developed 
a performance analysis methodology and framework using 
principal components analysis (PCA),1 which reduces the 
dataset’s dimensionality. To illustrate the power of the 
proposed performance analysis methodology, we used it 
to analyze and expose trends in a SPEC CPU2000 dataset 
consisting of performance numbers for 26 benchmarks and 
more than 1,000 machines. We then served the output of 
the statistical analysis into the processor performance visu-
alizer, an interactive visualization tool that yields quick and 
intuitive navigation through large performance datasets.

Kenneth Hoste and Lieven Eeckhout, Ghent University 

DATA COLLECTION
Our dataset includes the performance numbers re-

ported on the SPEC CPU website (www.spec.org/cpu2000/
results) for the SPEC CPU2000 benchmark suite. As Table 1 
shows, we use the speedup ratios with base optimization—
that is, SPECint base2000 (integer) and SPECfp base2000 
(floating-point)—for numerous machines with different 
architectures, processors, and configurations from a vari-
ety of computer manufacturers. These speedup numbers 
are relative to a Sun Ultra 5/10 workstation with a 300-MHz 
Sparc processor and 256 Mbytes of main memory. 

Of the 1,381 SPECint and 1,399 SPECfp machines in 
the SPEC CPU2000 dataset, we selected all machines for 
which both SPECint and SPECfp results were submitted 
on the same date, resulting in 1,123 machines. Table 2 
provides an overview of our dataset per architecture. 
These performance numbers were published between the 
fourth quarter of 1999 and the first quarter of 2007. The 
processors are implemented in 65- to 500-nanometer com-
plementary metal-oxide semiconductor technology with 
a clock frequency ranging from 250 MHz to 3.8 GHz and 
average base SPECint and SPECfp speed numbers ranging 
from 93.7 and 84.4, to 3,108 and 3,369, respectively.

We denote the data matrix of commercial machine 
performance numbers as S. The S matrix contains perfor-
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mance speedup numbers for all machines and benchmarks 
in the SPEC CPU2000 benchmark suite. The S matrix 
consists of 1,123 rows—there are 1,123 machines in our 
dataset—and 26 columns—there are 26 benchmarks in 
the SPEC CPU2000 benchmark suite.

PERFORMANCE ANALYSIS METHODOLOGY
To simplify our raw dataset, we need a statistical analy-

sis technique that can reduce the S matrix into a tractable 
dataset without losing too much information. Thus, we 
transform the S matrix into a lower-dimensional St matrix 
in two steps: data normalization, followed by statistical 
analysis using PCA. We then normalize the output of PCA 
to create the St,n matrix.

Data normalization
The input given to PCA can be a raw dataset or a nor-

malized dataset. A raw input dataset, such as our S matrix, 
gives a higher weight in the PCA analysis to variables that 
range across a larger span of absolute values. For example, 
if variable A ranges from 1 to 100 and variable B ranges 
from 1 to 20, variable A will have a higher weight in the 
analysis. A normalized dataset, in which all variables are 
normalized to a zero mean and unit variance, gives equal 
importance to all variables.

In our setup, we normalize the S matrix columnwise to 
create Sn, rendering all benchmarks on a common scale. 
Note that normalizing the dataset prior to statistical data 
analysis is an experimental design decision made by the 
performance analyst. If desired, the analyst can give a 
higher weight to a particular benchmark.

Statistical data analysis
We use principal components analysis to reduce the 

dataset’s dimensionality. The input to PCA is the nor-
malized matrix Sn in which the rows are the machines 
and the columns are the normalized variables (bench-
mark speedup numbers). PCA computes new variables 
called principal components (PCs), which are linear 
combinations of the original variables, such that all prin-
cipal components are uncorrelated. PCA transforms the  
p variables Sn,1, Sn,2, …, Sn,p into p principal components 
St,1, St,2, …, St,p with S T St i ij n j

j

p
, ,=

=1
. The Ti,j coefficients 

are computed by PCA and are the factor loadings of vari-
able j for principal component i. This transformation has 
the following properties:

Var[St,1] ≥ Var[St,2] ≥ … ≥ Var[St,p]—St,1 contains the 
most information and St,p the least.
Cov[St,i, St,j] = 0, i ≠ j—There is no information over-
lap between the principal components. 

Note that the total variance remains the same 

before and a f ter the t ransformat ion, namely 
Var S Var Sn i

i

p
t i

i

p
[ ] [ ], ,=

= =1 1
. Variable Sn,i represents 

the normalized speedup for benchmark i; therefore, St,i is 
the ith principal component after PCA. Var[Sn,i] is the vari-
ance of the normalized speedup for benchmark i computed 
across all machines; likewise, Var[St,i] is the variance of 
principal component i across all machines.

Some principal components account for a higher vari-
ance than others. Removing the principal components 
with the lowest variance from the analysis reduces the 
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SPECint bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perlbmk
twolf
vortex
vpr

Compression
Chess game
Computer visualization
Group theory, interpreter
GNU C compiler
Compression
Combinatorial optimization
Word processing
Perl programming language
Place and route simulator
Object-oriented database
FPGA circuit placement and routing

SPECfp ammp
applu
apsi
art
equake
facerec
fma3d
galgel
lucas
mesa
mgrid
sixtrack
swim
wupwise

Computational chemistry
Parabolic/Elliptic partial differential equations
Meteorology: pollutant distribution
Image recognition/Neural networks
Seismic wave propagation simulation
Image processing: face recognition
Finite-element crash simulation
Computational fluid dynamics
Number theory/Primality testing
3D graphics library
Multigrid solver
High-energy nuclear physics accelerator design
Shallow water modeling
Physics/Quantum chromodynamics 

Table	
  2.	
  Machines	
  used	
  in	
  this	
  study.

Architecture No. of machines

AMD x86 (32-bit) 28

AMD x86 (64-bit) 181

DEC Alpha 23

Fujitsu Sparc64 32

HP PA-RISC 14

IBM PowerPC 83

Intel Itanium (IA-64) 43

Intel x86 (32-bit) 250

Intel x86 (64-bit) 410

MIPS 10

Sun UltraSparc 49



dimensionality of the dataset while controlling the amount 
of information lost. We retain q principal components, 
which is a significant information reduction because q << p 
in most cases. To measure the fraction of information re-
tained in this q-dimensional space, we use the amount of 
variance ( [ ]) / [ ]), ,Var S Var St i

i

q
n i

i

p

= =1 1
accounted for 

by these q principal components. Performance analysts 
can choose an appropriate percentage of total variance. 

PCA’s output is the St matrix in which the rows are the 
machines and the columns are the retained principal 
components. 

PC normalization 
The next step is normalizing the principal components, 

which places all principal components on a common scale. 
PCA finds the key underlying mechanisms that correlate 

with the dataset, then represents these as 
principal components. After normalization, 
the underlying mechanisms get equal weight 
in the transformed dataset after PCA. The end 
result of the PCA analysis and its subsequent 
normalization step is a transformed matrix St,n.

ANALYZING THE SPEC CPU2000 
PERFORMANCE NUMBERS

Visualizing the 1,123 machines in terms 
of the retained principal components—the 
new St,n dataset—reveals major performance 
trends in the original dataset. 

Principal components
The first three principal components en-

compass 92.9 percent of the total variance 
observed in our original dataset. The first 
principal component explains 81 percent of 
the total variance; the second, 7.7 percent; 
and the third, 4.2 percent. We limit our anal-
ysis to three principal components because 
they explain most of the variance observed 
in the dataset while enabling data visualiza-
tion; the transformed St,n dataset preserves 
the major performance trends.

Figure 1 represents the three principal 
components in terms of the normalized 
benchmark performance numbers, that is, 
the factor loadings (Tij) for the three principal 
components. For example, Figure 1a shows 
that the score along the first principal com-
ponent for a given machine is computed as: 
0.21 × Sn,ammp + 0.18 × Sn,applu + 0.20 × Sn,apsi 
+ 0.13 × Sn,art + …

Because the weights along the first prin-
cipal component, shown in Figure 1a, are 
approximately the same for all benchmarks, 

PC1 represents the average normalized speedup across all 
benchmarks. Therefore, a machine with a high score for 
PC1 achieves relatively better average performance than a 
machine with a low score for PC1. The only benchmark that 
has a relatively small weight in the first principal component 
is art; the reason is that the speedup numbers vary widely 
for art across the machines, more so than for any other 
benchmark. For about 10 percent of the machines, art re-
ports a speedup number greater than 8,236 (the maximum 
speedup number observed across the other benchmarks) 
with a maximum of 26,443; none of the other benchmarks 
show this large a speedup on any of the machines. The 
reason for this high speedup range lies in the aggressive 
compiler optimizations applied on some machines.2

The most prominent dimension in the dataset (the 
most significant principal component) has the largest vari-

Figure 1. The factor loadings per benchmark for (a) PC1, (b) PC2, and (c) PC3.
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ance and correlates 
well with average 
performance. The 
correlation coeffi-
cients between the 
first principal compo-
nent and the SPECint 
and SPECfp base 
scores are 96.9 per-
cent and 97.4 percent, 
respectively. PCA thus 
recognizes that the 
large performance in-
crease achieved over 
the past several years 
through enhance-
ments in compiler 
support, architecture, 
and chip technology 
is by far the most pre-
dominant dimension 
in the dataset.

The second prin-
cipa l component, 
shown in Figure 1b, 
gives a positive weight 
to most of the floating-
point benchmarks and 
a negative weight to all 
integer benchmarks. 
As such, a machine 
with a high score for 
PC2 yields relatively 
better normalized performance for the floating-point bench-
marks than for the integer benchmarks, whereas a low value 
for PC2 indicates relatively better normalized integer perfor-
mance compared to floating-point performance. 

Two floating-point benchmarks, mesa and wupwise, 
get a negative weight, while all the other floating-point 
benchmarks receive a positive weight. This categorization 
suggests that mesa and wupwise stress systems in a way 
similar to the integer benchmarks. We confirm this in a 
behavioral characterization using the Microarchitecture-
Independent Characterization of Applications tool3 (www.
elis.ugent.be/~kehoste/mica). We found instruction-level 
parallelism, the fraction of memory accesses and float-
ing-point operations, and the branch misprediction rates 
for mesa and wupwise to be in the range of the integer 
benchmarks and significantly different from the other 
floating-point benchmarks. More specifically, mesa and 
wupwise show less ILP, more memory operations, fewer 
floating-point operations, and higher branch mispredic-
tion rates than the other floating-point benchmarks. 

In the third principal component, shown in Figure 1c, two 

benchmarks are assigned a significantly higher weight than 
the others, namely art and mcf. Both benchmarks are known 
to stress the memory hierarchy subsystem more than any 
of the other SPEC CPU2000 benchmarks. From a detailed 
characterization using microarchitecture-independent be-
havioral characteristics,3 we found that these benchmarks 
exhibit many unique references between two accesses to the 
same memory location, that is, temporal locality is poor. Ma-
chines with a high value for PC3 thus yield relatively better 
performance for memory-intensive workloads with poor 
temporal data locality than machines with a lower value.

Analyzing the SPEC CPU2000  
performance space

Figure 2 shows the various machines in a PCA space. 
The three two-dimensional plots show the second PC as 
a function of the first PC, the third PC as a function of 
the first PC, and the third PC as a function of the second 
PC. Each symbol in these graphs represents one machine; 
there are 1,123 machines in each graph, and the colors 
symbolize the various architectures. 
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Figure 2. Visualizing the SPEC CPU2000 performance space: (a) PC2 versus PC1, (b) PC3 versus PC1, and (c) 
PC3 versus PC2 in terms of architecture. 



The right bottom corner in the PC2 versus PC1 plot in 
Figure 2a shows that the Intel x86 64-bit machines yield 
better average performance for the integer benchmarks 
than the other machines do, while the IBM PowerPC and 
Intel Itanium (IA-64) machines perform better on the 
floating-point benchmarks. Figure 3 also shows various 
machines as a function of PC1 and PC2, categorized by 
average SPEC performance number. Note that the perfor-
mance wave for the integer benchmarks shown in Figure 
3a has a different orientation than the performance wave 
for the floating-point benchmarks in Figure 3b.

Further, the PC3 versus PC1 plot in Figure 2b and the 

PC3 versus PC2 plot 
in Figure 2c show 
that although both 
the IBM PowerPC 
and Intel Itanium 
machines achieve 
similar average per-
formance for the 
integer and floating-
point benchmarks, 
they exhibit different 
behavior in the third 
principal component. 
This behavior is due 
to the IBM PowerPC 
machines perform-
ing relatively better 
than the Intel Ita-
nium machines for  

the memory-intensive benchmarks with poor temporal 
data locality (that is, art and mcf). Likewise, when com-
paring Intel x86 64-bit and AMD x86 64-bit machines, 
Intel performs better than AMD for memory-intensive 
workloads.

Figure 4 represents the same data in another way. Col-
oring the machines by their processor clock frequency 
reveals two groups of machines—the speed demons and 
the brainiacs. The speed demons achieve high performance 
mainly through high clock frequencies; the brainiacs, on 
the other hand, achieve high performance through a high 
instruction throughput per cycle at a relatively slow clock 
frequency. 

The speed demons are the Intel and AMD x86 64-bit 
machines; these machines achieve high performance for 
the integer benchmarks through their more than 2.5-GHz 
clock frequencies. The brainiacs are the IBM PowerPC and 
Intel Itanium machines that achieve high performance on 
the floating-point benchmarks by attaining high instruc-
tion throughput per cycle at moderate clock frequencies 
of less than 2.5 GHz.

Case study: Intel Pentium 4 architecture
Our case study features a subset of the Intel Pentium 

4 (NetBurst) architecture machines. Figure 5 shows the 
evolution across the various Intel machines, categorized 
by processor type. The analysis confirms the general ex-
pectation, namely average performance improves across 
the Intel Pentium 4 machine generations (the data points 
go from left to right across the different generations). 
The different machines within a single generation show 
a negative slope in both the PC2 versus PC1 (Figure 5a) 
and PC3 versus PC1 (Figure 5b) graphs. 

This pattern suggests that increasing the clock fre-
quency within a processor generation (which is the 
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Figure 3. Visualizing PC2 versus PC1 for the PCA space obtained from the SPEC CPU2000 performance 
numbers in terms of average (a) SPECint and (b) SPECfp speedup numbers.
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main contr ibutor 
to the variation in 
performance) im-
proves performance 
more for the com-
pute-intensive and 
integer benchmarks 
than for the mem-
ory-intensive and 
floating-point bench-
m a r k s .  B e c a u s e 
memory-inten-
s i v e  benchmarks 
spend more t ime 
waiting for memory, 
increa s ing clock 
frequency does not 
i mpr ove  p er for-
mance as much for 
memory-inten-
s i ve  applications.  
T h e  N o r t h w o o d 
p r o c e s s o r  g e n -
eration has three 
subgenerations, 
each representing 
different memory 
ba ndwidth cha r-
acteristics ranging 
from 1.6 gigabytes 
per second to 2.1-2.7 
gigabytes per second 
and up to 3.2 giga-
bytes per second.

INTERACTIVE 
VISUALIZATION

To facilitate the 
exploration of the 
three-dimensional 
SPEC CPU2000 per-
formance space, we 
developed the pro-
cessor performance 
visualizer, an inter-
active Java applet 
(www.elis.ugent.
be/~kehoste/PPV). 
The input to the PPV 
tool is the transformed data matrix St,n obtained after PCA 
and normalization. Figure 6 shows PPV applied to the SPEC 
CPU2000 performance numbers. The source code is avail-
able so performance analysts can use the tool on their 
own datasets. C omputer architects deal with a wealth of per-

formance numbers on a daily basis. From our 
research, we learned that a relatively simple 
statistical data analysis provides valuable, 
high-level insights into these large perform-
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Figure 5. Case study: Intel Pentium 4 processors as a function of (a) PC2 versus PC1 and (b) PC3 versus PC1.

Figure 6. Processor performance visualizer (PPV) tool for interactively exploring the SPEC CPU2000 
performance space. Various functions include getting detailed information about a particular datapoint by 
selecting it in the 3D plot, rotating and scaling the space, or applying a !lter on the dataset.
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ance datasets. To the best of our knowledge, this is the 
first work providing a comprehensive methodology for 
analyzing performance trends across a large dataset of 
commercial processor performance numbers. However, 
the “Other Work in Statistical Processor Performance 
Analysis” describes other recent research into the use of 
statistics in microprocessor performance analysis.

Our future work will try to advance this statistical analysis 
approach by addressing a key challenge in benchmarking: 
comparing the program characteristics of an application of 
interest with the industry-standard benchmarks in the per-
formance dataset to estimate the application’s performance 
on a range of commercial machines. 
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OTHER WORK IN STATISTICAL PROCESSOR PERFORMANCE ANALYSIS

R ecently, interest in using statistics in microprocessor per-
formance analysis has increased.

In particular, David Lilja1 described various statistical data analysis 
techniques that computer architects can readily use for taking 
meaningful conclusions from large datasets. These techniques 
include the t-test, linear regression models, and design of experi-
ments. Joshua Yi and colleagues2 described the Plackett-Burman 
design of experiments, a fractional factorial method for identify-
ing microarchitecture design parameters that have a large impact 
on overall performance using a limited number of simulations.

Alaa Alameldeen and David Wood3 observed that multiprocessor 
performance is susceptible to nondeterministic e!ects—subtle 
changes that can lead to di!erent interleavings and interactions 
between threads executing on a multiprocessor. To account for 
these nondeterministic e!ects, these authors proposed a method-
ology that introduces nondeterminism in deterministic simulators 
and then uses statistics for computing con"dence bounds.

Tom Conte and colleagues4 and Roland Wunderlich and col-
leagues5 also proposed using con"dence bounds to determine 
how many sampling units to take for estimating uniprocessor per-
formance. Magnus Ekman and Per Stenström6 showed that a 
matched-pair comparison reduces the number of samples that 
need to be taken to estimate a change in performance between 
alternative processor architectures. Michael Van Biesbrouck and 
colleagues7 use a statistical approach to select multiple starting 
points for simulating multiprogram workloads on multithreaded 
processor architectures.

Other previous work8 used principal components analysis as a 
data reduction technique for identifying behavioral similarities 
across benchmarks with the intent to compose a representative 
set of benchmarks.
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