
RESE ARCH FE ATURE

COMPUTER 70 Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

The wealth of performance numbers provided by benchmarking

corporations makes it difficult to detect trends across commercial

machines. A proposed methodology, based on statistical data analysis,

simplifies exploration of these machines’ large datasets.

B enchmarking consortia and corporations pub-
lish performance numbers on commercial
computer systems for a set of industry-stan-
dard benchmarks. For example, the Standard
Performance Evaluation Corporation (SPEC;

www.spec.org) provides performance results for various
benchmarks from application domains such as com-
pute-intensive workloads, Java workloads, graphics, Web
servers, mail servers, and network !le systems. The infor-
mation obtained from these benchmarking experiments
is valuable for comparing commercial machines across
applications, manufacturers, and processor generations
for different types of workload behaviors. However, the
abundance of data makes analysis dif!cult.

To gain insight from these large datasets, we developed
a performance analysis methodology and framework using
principal components analysis (PCA),1 which reduces the
dataset’s dimensionality. To illustrate the power of the
proposed performance analysis methodology, we used it
to analyze and expose trends in a SPEC CPU2000 dataset
consisting of performance numbers for 26 benchmarks and
more than 1,000 machines. We then served the output of
the statistical analysis into the processor performance visu-
alizer, an interactive visualization tool that yields quick and
intuitive navigation through large performance datasets.

Kenneth Hoste and Lieven Eeckhout, Ghent University

DATA COLLECTION
Our dataset includes the performance numbers re-

ported on the SPEC CPU website (www.spec.org/cpu2000/
results) for the SPEC CPU2000 benchmark suite. As Table 1
shows, we use the speedup ratios with base optimization—
that is, SPECint base2000 (integer) and SPECfp base2000
(floating-point)—for numerous machines with different
architectures, processors, and configurations from a vari-
ety of computer manufacturers. These speedup numbers
are relative to a Sun Ultra 5/10 workstation with a 300-MHz
Sparc processor and 256 Mbytes of main memory.

Of the 1,381 SPECint and 1,399 SPECfp machines in
the SPEC CPU2000 dataset, we selected all machines for
which both SPECint and SPECfp results were submitted
on the same date, resulting in 1,123 machines. Table 2
provides an overview of our dataset per architecture.
These performance numbers were published between the
fourth quarter of 1999 and the first quarter of 2007. The
processors are implemented in 65- to 500-nanometer com-
plementary metal-oxide semiconductor technology with
a clock frequency ranging from 250 MHz to 3.8 GHz and
average base SPECint and SPECfp speed numbers ranging
from 93.7 and 84.4, to 3,108 and 3,369, respectively.

We denote the data matrix of commercial machine
performance numbers as S. The S matrix contains perfor-

A Methodology for
Analyzing Commercial
Processor Performance
Numbers

mance speedup numbers for all machines and benchmarks
in the SPEC CPU2000 benchmark suite. The S matrix
consists of 1,123 rows—there are 1,123 machines in our
dataset—and 26 columns—there are 26 benchmarks in
the SPEC CPU2000 benchmark suite.

PERFORMANCE ANALYSIS METHODOLOGY
To simplify our raw dataset, we need a statistical analy-

sis technique that can reduce the S matrix into a tractable
dataset without losing too much information. Thus, we
transform the S matrix into a lower-dimensional St matrix
in two steps: data normalization, followed by statistical
analysis using PCA. We then normalize the output of PCA
to create the St,n matrix.

Data normalization
The input given to PCA can be a raw dataset or a nor-

malized dataset. A raw input dataset, such as our S matrix,
gives a higher weight in the PCA analysis to variables that
range across a larger span of absolute values. For example,
if variable A ranges from 1 to 100 and variable B ranges
from 1 to 20, variable A will have a higher weight in the
analysis. A normalized dataset, in which all variables are
normalized to a zero mean and unit variance, gives equal
importance to all variables.

In our setup, we normalize the S matrix columnwise to
create Sn, rendering all benchmarks on a common scale.
Note that normalizing the dataset prior to statistical data
analysis is an experimental design decision made by the
performance analyst. If desired, the analyst can give a
higher weight to a particular benchmark.

Statistical data analysis
We use principal components analysis to reduce the

dataset’s dimensionality. The input to PCA is the nor-
malized matrix Sn in which the rows are the machines
and the columns are the normalized variables (bench-
mark speedup numbers). PCA computes new variables
called principal components (PCs), which are linear
combinations of the original variables, such that all prin-
cipal components are uncorrelated. PCA transforms the
p variables Sn,1, Sn,2, …, Sn,p into p principal components
St,1, St,2, …, St,p with S T St i ij n j

j

p
, ,=

=1
. The Ti,j coefficients

are computed by PCA and are the factor loadings of vari-
able j for principal component i. This transformation has
the following properties:

Var[St,1] ≥ Var[St,2] ≥ … ≥ Var[St,p]—St,1 contains the
most information and St,p the least.
Cov[St,i, St,j] = 0, i ≠ j—There is no information over-
lap between the principal components.

Note that the total variance remains the same

before and a f ter the t ransformat ion, namely
Var S Var Sn i

i

p
t i

i

p
[] [], ,=

= =1 1
. Variable Sn,i represents

the normalized speedup for benchmark i; therefore, St,i is
the ith principal component after PCA. Var[Sn,i] is the vari-
ance of the normalized speedup for benchmark i computed
across all machines; likewise, Var[St,i] is the variance of
principal component i across all machines.

Some principal components account for a higher vari-
ance than others. Removing the principal components
with the lowest variance from the analysis reduces the

71OCTOBER 2009

SPECint bzip2
crafty
eon
gap
gcc
gzip
mcf
parser
perlbmk
twolf
vortex
vpr

Compression
Chess game
Computer visualization
Group theory, interpreter
GNU C compiler
Compression
Combinatorial optimization
Word processing
Perl programming language
Place and route simulator
Object-oriented database
FPGA circuit placement and routing

SPECfp ammp
applu
apsi
art
equake
facerec
fma3d
galgel
lucas
mesa
mgrid
sixtrack
swim
wupwise

Computational chemistry
Parabolic/Elliptic partial differential equations
Meteorology: pollutant distribution
Image recognition/Neural networks
Seismic wave propagation simulation
Image processing: face recognition
Finite-element crash simulation
Computational fluid dynamics
Number theory/Primality testing
3D graphics library
Multigrid solver
High-energy nuclear physics accelerator design
Shallow water modeling
Physics/Quantum chromodynamics

Table	
 2.	
 Machines	
 used	
 in	
 this	
 study.

Architecture No. of machines

AMD x86 (32-bit) 28

AMD x86 (64-bit) 181

DEC Alpha 23

Fujitsu Sparc64 32

HP PA-RISC 14

IBM PowerPC 83

Intel Itanium (IA-64) 43

Intel x86 (32-bit) 250

Intel x86 (64-bit) 410

MIPS 10

Sun UltraSparc 49

dimensionality of the dataset while controlling the amount
of information lost. We retain q principal components,
which is a significant information reduction because q << p
in most cases. To measure the fraction of information re-
tained in this q-dimensional space, we use the amount of
variance ([]) / []), ,Var S Var St i

i

q
n i

i

p

= =1 1
accounted for

by these q principal components. Performance analysts
can choose an appropriate percentage of total variance.

PCA’s output is the St matrix in which the rows are the
machines and the columns are the retained principal
components.

PC normalization
The next step is normalizing the principal components,

which places all principal components on a common scale.
PCA finds the key underlying mechanisms that correlate

with the dataset, then represents these as
principal components. After normalization,
the underlying mechanisms get equal weight
in the transformed dataset after PCA. The end
result of the PCA analysis and its subsequent
normalization step is a transformed matrix St,n.

ANALYZING THE SPEC CPU2000
PERFORMANCE NUMBERS

Visualizing the 1,123 machines in terms
of the retained principal components—the
new St,n dataset—reveals major performance
trends in the original dataset.

Principal components
The first three principal components en-

compass 92.9 percent of the total variance
observed in our original dataset. The first
principal component explains 81 percent of
the total variance; the second, 7.7 percent;
and the third, 4.2 percent. We limit our anal-
ysis to three principal components because
they explain most of the variance observed
in the dataset while enabling data visualiza-
tion; the transformed St,n dataset preserves
the major performance trends.

Figure 1 represents the three principal
components in terms of the normalized
benchmark performance numbers, that is,
the factor loadings (Tij) for the three principal
components. For example, Figure 1a shows
that the score along the first principal com-
ponent for a given machine is computed as:
0.21 × Sn,ammp + 0.18 × Sn,applu + 0.20 × Sn,apsi
+ 0.13 × Sn,art + …

Because the weights along the first prin-
cipal component, shown in Figure 1a, are
approximately the same for all benchmarks,

PC1 represents the average normalized speedup across all
benchmarks. Therefore, a machine with a high score for
PC1 achieves relatively better average performance than a
machine with a low score for PC1. The only benchmark that
has a relatively small weight in the first principal component
is art; the reason is that the speedup numbers vary widely
for art across the machines, more so than for any other
benchmark. For about 10 percent of the machines, art re-
ports a speedup number greater than 8,236 (the maximum
speedup number observed across the other benchmarks)
with a maximum of 26,443; none of the other benchmarks
show this large a speedup on any of the machines. The
reason for this high speedup range lies in the aggressive
compiler optimizations applied on some machines.2

The most prominent dimension in the dataset (the
most significant principal component) has the largest vari-

Figure 1. The factor loadings per benchmark for (a) PC1, (b) PC2, and (c) PC3.

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

W
eig

ht
 in

 PC
2

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

W
eig

ht
 in

 PC
3

0

0.05

0.1

0.15

0.2

0.25
am

mp
ap

plu ap
si art

bz
ip2

cra
fty eo

n
eq

ua
ke

fac
er

ec
fm

a3
d

ga
lge

l
ga

p gc
c

gz
ip

luc
as m
cf

me
sa

mg
rid

pa
rse

r
pe

rlb
mk

six
tra

ck
sw

im
tw

olf
vo

rte
x

vp
r

wu
pw

ise

W
eig

ht
 in

 PC
1

CINT2000 CFP2000

(a)

(b)

(c)

RESE ARCH FE ATURE

COMPUTER 72

ance and correlates
well with average
performance. The
correlation coeffi-
cients between the
first principal compo-
nent and the SPECint
and SPECfp base
scores are 96.9 per-
cent and 97.4 percent,
respectively. PCA thus
recognizes that the
large performance in-
crease achieved over
the past several years
through enhance-
ments in compiler
support, architecture,
and chip technology
is by far the most pre-
dominant dimension
in the dataset.

The second prin-
cipa l component,
shown in Figure 1b,
gives a positive weight
to most of the floating-
point benchmarks and
a negative weight to all
integer benchmarks.
As such, a machine
with a high score for
PC2 yields relatively
better normalized performance for the floating-point bench-
marks than for the integer benchmarks, whereas a low value
for PC2 indicates relatively better normalized integer perfor-
mance compared to floating-point performance.

Two floating-point benchmarks, mesa and wupwise,
get a negative weight, while all the other floating-point
benchmarks receive a positive weight. This categorization
suggests that mesa and wupwise stress systems in a way
similar to the integer benchmarks. We confirm this in a
behavioral characterization using the Microarchitecture-
Independent Characterization of Applications tool3 (www.
elis.ugent.be/~kehoste/mica). We found instruction-level
parallelism, the fraction of memory accesses and float-
ing-point operations, and the branch misprediction rates
for mesa and wupwise to be in the range of the integer
benchmarks and significantly different from the other
floating-point benchmarks. More specifically, mesa and
wupwise show less ILP, more memory operations, fewer
floating-point operations, and higher branch mispredic-
tion rates than the other floating-point benchmarks.

In the third principal component, shown in Figure 1c, two

benchmarks are assigned a significantly higher weight than
the others, namely art and mcf. Both benchmarks are known
to stress the memory hierarchy subsystem more than any
of the other SPEC CPU2000 benchmarks. From a detailed
characterization using microarchitecture-independent be-
havioral characteristics,3 we found that these benchmarks
exhibit many unique references between two accesses to the
same memory location, that is, temporal locality is poor. Ma-
chines with a high value for PC3 thus yield relatively better
performance for memory-intensive workloads with poor
temporal data locality than machines with a lower value.

Analyzing the SPEC CPU2000
performance space

Figure 2 shows the various machines in a PCA space.
The three two-dimensional plots show the second PC as
a function of the first PC, the third PC as a function of
the first PC, and the third PC as a function of the second
PC. Each symbol in these graphs represents one machine;
there are 1,123 machines in each graph, and the colors
symbolize the various architectures.

73OCTOBER 2009

–2 0 2 4

–2

0

2

4

–2

0

2

4

–2

0

2

4

1st principal component(a)

(c)

(b)

2n
d p

rin
cip

al
co

mp
on

en
t

–2 0 2 4
1st principal component

3r
d p

rin
cip

al
co

mp
on

en
t

–2 0 2 4
2nd principal component

3r
d p

rin
cip

al
co

mp
on

en
t

AMD x86 (32-bit)
AMD x86 (64-bit)
DEC Alpha
Fujitsu SPARC64
IBM PowerPC
Intel Itanium (IA-64)
Intel x86 (32-bit)
Intel x86 (64-bit)
MIPS
PA-RISC
Sun UltraSPARC

Figure 2. Visualizing the SPEC CPU2000 performance space: (a) PC2 versus PC1, (b) PC3 versus PC1, and (c)
PC3 versus PC2 in terms of architecture.

The right bottom corner in the PC2 versus PC1 plot in
Figure 2a shows that the Intel x86 64-bit machines yield
better average performance for the integer benchmarks
than the other machines do, while the IBM PowerPC and
Intel Itanium (IA-64) machines perform better on the
floating-point benchmarks. Figure 3 also shows various
machines as a function of PC1 and PC2, categorized by
average SPEC performance number. Note that the perfor-
mance wave for the integer benchmarks shown in Figure
3a has a different orientation than the performance wave
for the floating-point benchmarks in Figure 3b.

Further, the PC3 versus PC1 plot in Figure 2b and the

PC3 versus PC2 plot
in Figure 2c show
that although both
the IBM PowerPC
and Intel Itanium
machines achieve
similar average per-
formance for the
integer and floating-
point benchmarks,
they exhibit different
behavior in the third
principal component.
This behavior is due
to the IBM PowerPC
machines perform-
ing relatively better
than the Intel Ita-
nium machines for

the memory-intensive benchmarks with poor temporal
data locality (that is, art and mcf). Likewise, when com-
paring Intel x86 64-bit and AMD x86 64-bit machines,
Intel performs better than AMD for memory-intensive
workloads.

Figure 4 represents the same data in another way. Col-
oring the machines by their processor clock frequency
reveals two groups of machines—the speed demons and
the brainiacs. The speed demons achieve high performance
mainly through high clock frequencies; the brainiacs, on
the other hand, achieve high performance through a high
instruction throughput per cycle at a relatively slow clock
frequency.

The speed demons are the Intel and AMD x86 64-bit
machines; these machines achieve high performance for
the integer benchmarks through their more than 2.5-GHz
clock frequencies. The brainiacs are the IBM PowerPC and
Intel Itanium machines that achieve high performance on
the floating-point benchmarks by attaining high instruc-
tion throughput per cycle at moderate clock frequencies
of less than 2.5 GHz.

Case study: Intel Pentium 4 architecture
Our case study features a subset of the Intel Pentium

4 (NetBurst) architecture machines. Figure 5 shows the
evolution across the various Intel machines, categorized
by processor type. The analysis confirms the general ex-
pectation, namely average performance improves across
the Intel Pentium 4 machine generations (the data points
go from left to right across the different generations).
The different machines within a single generation show
a negative slope in both the PC2 versus PC1 (Figure 5a)
and PC3 versus PC1 (Figure 5b) graphs.

This pattern suggests that increasing the clock fre-
quency within a processor generation (which is the

RESE ARCH FE ATURE

COMPUTER 74

–2 0 2 4

–2

0

2

4

–2

0

2

4

1st principal component(a) (b)

2n
d p

rin
cip

al
co

mp
on

en
t

–2 0 2 4
1st principal component

2n
d p

rin
cip

al
co

mp
on

en
t

SPECfpSPECint 0-500
500-1000
1000-1500
1500-2000
2000-2500
2500-3000
3000-4000

Figure 3. Visualizing PC2 versus PC1 for the PCA space obtained from the SPEC CPU2000 performance
numbers in terms of average (a) SPECint and (b) SPECfp speedup numbers.

–2 0 2 4

–2

0

2

4

1st principal component

2n
d p

rin
cip

al
co

mp
on

en
t

Brainiacs

Speed demons

< 500 MHz
500-1000 MHz
1.0-1.5 GHz
1.5-2.0 GHz
2.0-2.5 GHz
2.5-3.0 GHz
3.0-3.5 GHz
3.5-4.0 GHz

Figure 4. Visualizing the PCA space obtained from the SPEC
CPU2000 performance numbers in terms of processor clock
frequencies.

main contr ibutor
to the variation in
performance) im-
proves performance
more for the com-
pute-intensive and
integer benchmarks
than for the mem-
ory-intensive and
floating-point bench-
m a r k s . B e c a u s e
memory-inten-
s i v e benchmarks
spend more t ime
waiting for memory,
increa s ing clock
frequency does not
i mpr ove p er for-
mance as much for
memory-inten-
s i ve applications.
T h e N o r t h w o o d
p r o c e s s o r g e n -
eration has three
subgenerations,
each representing
different memory
ba ndwidth cha r-
acteristics ranging
from 1.6 gigabytes
per second to 2.1-2.7
gigabytes per second
and up to 3.2 giga-
bytes per second.

INTERACTIVE
VISUALIZATION

To facilitate the
exploration of the
three-dimensional
SPEC CPU2000 per-
formance space, we
developed the pro-
cessor performance
visualizer, an inter-
active Java applet
(www.elis.ugent.
be/~kehoste/PPV).
The input to the PPV
tool is the transformed data matrix St,n obtained after PCA
and normalization. Figure 6 shows PPV applied to the SPEC
CPU2000 performance numbers. The source code is avail-
able so performance analysts can use the tool on their
own datasets. C omputer architects deal with a wealth of per-

formance numbers on a daily basis. From our
research, we learned that a relatively simple
statistical data analysis provides valuable,
high-level insights into these large perform-

75OCTOBER 2009

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5
–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

1st principal component
–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5

1st principal component(a) (b)

3r
d p

rin
cip

al
co

mp
on

en
t

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

2n
d p

rin
cip

al
co

mp
on

en
t

1.6 GB/s
2.1-2.7 GB/s

3.2 GB/s

Pentium 4 (Willamette, 32-bit)
Pentium 4 (Northwood, 32-bit)
Pentium 4 (Prescott, 32-bit)
Pentium 4 (Prescott, 64-bit)
Pentium 4 (Prescott 2M, 64-bit)
Pentium 4 (Cedar Mill, 64-bit)
Pentium 4 Extreme Edition (32-bit)
Pentium 4 Extreme Edition (64-bit)

Figure 5. Case study: Intel Pentium 4 processors as a function of (a) PC2 versus PC1 and (b) PC3 versus PC1.

Figure 6. Processor performance visualizer (PPV) tool for interactively exploring the SPEC CPU2000
performance space. Various functions include getting detailed information about a particular datapoint by
selecting it in the 3D plot, rotating and scaling the space, or applying a !lter on the dataset.

RESE ARCH FE ATURE

COMPUTER 76

ance datasets. To the best of our knowledge, this is the
first work providing a comprehensive methodology for
analyzing performance trends across a large dataset of
commercial processor performance numbers. However,
the “Other Work in Statistical Processor Performance
Analysis” describes other recent research into the use of
statistics in microprocessor performance analysis.

Our future work will try to advance this statistical analysis
approach by addressing a key challenge in benchmarking:
comparing the program characteristics of an application of
interest with the industry-standard benchmarks in the per-
formance dataset to estimate the application’s performance
on a range of commercial machines.

Acknowledgments
Kenneth Hoste is supported through a PhD student
fellowship from the Institute for the Promotion of Inno-
vation by Science and Technology in Flanders, Belgium.
Lieven Eeckhout is supported through a postdoctoral fel-
lowship from the Fund for Scientific Research—Flanders
(FWO). Additional support was provided by FWO project
G.0255.08.

References
 1. R.A. Johnson and D.W. Wichern, Applied Multivariate Sta-

tistical Analysis, 5th ed., Prentice Hall, 2002.

 2. M. Wolfe, “Compilers and More: Gloptimizations,” HPCwire,
9 Nov. 2007; www.hpcwire.com/topic/developertools/
Compilers_and_More_Gloptimizations.html.

 3. K. Hoste and L. Eeckhout, “Microarchitecture-Independent
Workload Characterization,” IEEE Micro, May/June 2007,
pp. 63-72.

Kenneth Hoste is a PhD student in the Electronics and
Information Systems Department at Ghent University, Bel-
gium. Hoste received an MS in computer science from Ghent
University. Contact him at kehoste@elis.UGent.be.

Lieven Eeckhout is an assistant professor in the Electronics
and Information Systems Department at Ghent University.
Eeckhout received a PhD in computer science and engineer-
ing from Ghent University. He is a member of the IEEE and
the ACM. Contact him at leeckhou@elis.UGent.be.

OTHER WORK IN STATISTICAL PROCESSOR PERFORMANCE ANALYSIS

R ecently, interest in using statistics in microprocessor per-
formance analysis has increased.

In particular, David Lilja1 described various statistical data analysis
techniques that computer architects can readily use for taking
meaningful conclusions from large datasets. These techniques
include the t-test, linear regression models, and design of experi-
ments. Joshua Yi and colleagues2 described the Plackett-Burman
design of experiments, a fractional factorial method for identify-
ing microarchitecture design parameters that have a large impact
on overall performance using a limited number of simulations.

Alaa Alameldeen and David Wood3 observed that multiprocessor
performance is susceptible to nondeterministic e!ects—subtle
changes that can lead to di!erent interleavings and interactions
between threads executing on a multiprocessor. To account for
these nondeterministic e!ects, these authors proposed a method-
ology that introduces nondeterminism in deterministic simulators
and then uses statistics for computing con"dence bounds.

Tom Conte and colleagues4 and Roland Wunderlich and col-
leagues5 also proposed using con"dence bounds to determine
how many sampling units to take for estimating uniprocessor per-
formance. Magnus Ekman and Per Stenström6 showed that a
matched-pair comparison reduces the number of samples that
need to be taken to estimate a change in performance between
alternative processor architectures. Michael Van Biesbrouck and
colleagues7 use a statistical approach to select multiple starting
points for simulating multiprogram workloads on multithreaded
processor architectures.

Other previous work8 used principal components analysis as a
data reduction technique for identifying behavioral similarities
across benchmarks with the intent to compose a representative
set of benchmarks.

References
 1. D.J. Lilja, Measuring Computer Performance: A Practitioner’s

Guide, Cambridge Univ. Press, 2000.
 2. J.J. Yi, D.J. Lilja, and D.M. Hawkins, “A Statistically Rigorous

Approach for Improving Simulation Methodology,” Proc. 9th
Int’l Symp. High-Performance Computer Architecture (HPCA 03),
IEEE CS Press, 2003, pp. 281-291.

 3. A. Alameldeen and D. Wood, “Variability in Architectural Sim-
ulations of Multi-threaded Workloads,” Proc. 9th Int’l Symp.
High-Performance Computer Architecture (HPCA 03), IEEE CS
Press, 2003, pp. 7-18.

 4. T.M. Conte, M.A. Hirsch, and K.N. Menezes, “Reducing State
Loss for Effective Trace Sampling of Superscalar Processors,”
Proc. Int’l Conf. Computer Design (ICCD 96), IEEE Press, 1996,
pp. 468-477.

 5. R.E. Wunderlich et al., “SMARTS: Accelerating Microarchitec-
ture Simulation via Rigorous Statistical Sampling,” Proc. Ann.
Int’l Symp. Computer Architecture (ISCA), ACM Press, 2003, pp.
84-95.

 6. M. Ekman and P. Stenström, “Enhancing Multiprocessor Archi-
tecture Simulation Speed Using Matched-Pair Comparison,”
Proc. IEEE Int’l Symp. Performance Analysis of Systems and Soft-
ware (ISPASS 05), IEEE Press, 2005, pp. 89-99.

 7. M. Van Biesbrouck, L. Eeckhout, and B. Calder, “Consider-
ing All Starting Points for Simultaneous Multithreading
Simulation,” Proc. IEEE Int’l Symp. Performance Analysis of
Systems and Software (ISPASS 06), IEEE Press, 2006, pp.
143-153.

 8. L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Work-
load Design: Selecting Representative Program-Input Pairs,”
Proc. Int’l Conf. Parallel Architectures and Compilation Tech-
niques (PACT), IEEE CS Press, 2002, pp. 83-94.

