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ABSTRACT
Modern compilers implement a large number of optimiza-
tions which all interact in complex ways, and which all have
a different impact on code quality, compilation time, code
size, energy consumption, etc. For this reason, compilers
typically provide a limited number of standard optimization
levels, such as -O1, -O2, -O3 and -Os, that combine various
optimizations providing a number of trade-offs between mul-
tiple objective functions (such as code quality, compilation
time and code size). The construction of these optimization
levels, i.e., choosing which optimizations to activate at each
level, is a manual process typically done using high-level
heuristics based on the compiler developer’s experience.

This paper proposes COLE, Compiler Optimization Level
Exploration, a framework for automatically finding Pareto
optimal optimization levels through multi-objective evolu-
tionary searching. Our experimental results using GCC and
the SPEC CPU benchmarks show that the automatic con-
struction of optimization levels is feasible in practice, and in
addition, yields better optimization levels than GCC’s man-
ually derived (-Os, -O1, -O2 and -O3) optimization levels,
as well as the optimization levels obtained through random
sampling. We also demonstrate that COLE can be used to
gain insight into the effectiveness of compiler optimizations
as well as to better understand a benchmark’s sensitivity to
compiler optimizations.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gen-
eration, compilers

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
Modern compilers provide a broad collection of optimiza-

tions. Anticipating the efficacy of these optimizations is
not trivial though. The effect of a compiler optimization
is highly dependent on the code being compiled. In addi-
tion, compiler optimization interactions are complex, and
in many cases counter-intuitive, or at least hard to reason
about. To make things even worse, objective functions, such
as performance, code size, energy consumption and compila-
tion time, may be affected conflictingly by different compiler
optimizations.

This is a well recognized problem and to facilitate the
end user in determining appropriate compiler optimizations,
compiler developers typically provide their compilers with a
set of standard optimization levels, such as -O1, -O2, -O3,
and -Os. These optimization levels combine various com-
piler optimizations and provide different trade-offs in terms
of code quality, compilation time and code size. For users
willing to trade compilation time for high code quality, the
highest level of optimization (e.g., -O3) may be worth trying.
If on the other hand, compilation time is a concern, more
so than code quality, -O1 may be the optimization level of
choice. Finally, if code size is of primary importance, for
example for embedded applications, then -Os is a suitable
optimization level.

Besides static compilers, also dynamic compilers provide
multiple optimization levels. For example, the Just-In-Time
compilers/optimizers in various Java Virtual Machines [3, 4,
19, 21] can optimize code to a number of optimization levels.
In dynamic compilers, the problem of making an appropriate
trade-off between code quality and compilation time is even
more pressing than for static compilers, because the time
spent compiling is part of the total execution time.

The construction of optimization levels however is trou-
blesome. The search space is huge given the large number of
compiler optimizations. For example, in the GNU Compiler
Collection (GCC) compiler (which we use in this paper) 60
different optimizations are used in the various optimization
levels (-O1, -O2, -O3, -Os); this results in a huge space with
260 (in the order of ≈ 1018) possible optimization levels. An
exhaustive search in such a huge space is obviously infea-
sible, because of the time required to compile and run the
benchmarks for each combination of optimizations.

Therefore, compiler developers heavily rely on their ex-
perience and heuristics in their definition of optimization
levels. These heuristics typically look like: optimizations
that do not increase compilation time and are likely to pro-
duce good code, should be activated at -O1; optimizations



that tend to increase code size but will likely result in bet-
ter code quality, should be activated at -O2 and disabled at
-Os; and optimizations that typically require a lot of compi-
lation time, and might lead to even better code, should be
activated at -O3. Ishizaki et al. [17] describe such a manual
optimization level selection process for a dynamic Just-In-
Time compiler.

In this paper, we propose Compiler Optimization Level
Exploration (COLE), a method to automatically construct
optimization levels that represent optimal trade-offs between
multiple objective functions, such as performance, compila-
tion time, code size, etc. COLE employs multi-objective
evolutionary searching for identifying Pareto optimal opti-
mization levels — a Pareto optimal solution is a solution
that can not be beaten by another solution along all objec-
tive functions simultaneously. COLE does not only relieve
the compiler developer from the tedious and time-consuming
task of manually building optimization levels, it also (most
likely) yields better performing optimization levels.

In this paper, we make the following contributions:

• To the best of our knowledge, we are the first to pro-
pose automated multi-objective compiler optimization
level searching, of which the COLE framework is a
prototype example. In contrast, today’s current prac-
tice is to manually build optimization levels based on
heuristics and compiler developers’ experience and in-
tuition. Similar to COLE, iterative compilation [1, 2,
5, 6, 10, 12, 13, 18, 20, 22, 23, 24] also uses automated
searching for identifying the optimal compiler options
for a given application of interest, however COLE per-
forms multi-objective searching whereas iterative com-
pilation to date is limited to single-objective searching.

• We experimentally demonstrate that the automatic
construction of Pareto optimal compiler optimization
levels is feasible in practice. In addition, using the
GCC compiler and the SPEC CPU2000 benchmarks,
we show that the multi-objective evolutionary search
algorithm proposed in COLE outperforms random search-
ing, as well as GCC’s (manually derived) standard op-
timization levels.

• We analyze the Pareto optimal optimization levels ob-
tained from searching a code quality (execution time)
versus compilation time multi-objective space in order
to gain insight into the importance of the various com-
piler optimizations. For example, we find that only
25% of the optimizations used in GCC’s standard op-
timization levels appear in one of the Pareto optimal
optimization levels, and only a handful optimizations
appear in all Pareto optimal optimization levels.

• We use the COLE framework to characterize per-bench-
mark sensitivities with respect to compiler optimiza-
tions. This enables identifying groups of benchmarks
exhibiting similar compiler optimization level sensitiv-
ity, which provides compiler developers and researchers
with a way of picking representative benchmarks for
their research or development project.

The paper is organized as follows. We first describe prior
work in Section 2. In Section 3 we propose the COLE frame-
work. Section 4 then describes our experimental setup. We
evaluate the COLE framework in Section 5, and compare it

against random searching and the standard GCC optimiza-
tion levels. Subsequently, Section 6 analyzes the Pareto op-
timal optimization levels in terms of the compiler optimiza-
tions they enable. We employ the COLE framework to study
benchmark optimization level sensitivity in Section 7. And
finally, we conclude and discuss future work in Section 8.

2. PRIOR WORK

2.1 Iterative compilation
The work closest related to our work is iterative com-

pilation. The basic idea of iterative compilation is to ex-
plore the compiler optimization space by iteratively com-
piling and measuring the effectiveness of optimization se-
quences. Driven by a search algorithm, iterative compila-
tion explores the optimization space, and upon termination
of the search algorithm, the best performing optimization
sequence is reported. A large body of work has been done
on iterative compilation over the past few years, and many
researchers have reported impressive results showing signif-
icant performance, energy or code size improvements over
standard optimization sequences, see for example [1, 2, 5, 6,
9, 10, 12, 13, 15, 18, 20, 22, 23, 24].

An important concern though with iterative compilation
is that searching the optimization space is very time con-
suming. By consequence, the vast majority of the work on
iterative compilation focuses on reducing the search time;
there are basically two ways for doing so. One approach is
to speedup the search process by either pruning the search
space [22], or intelligently navigating through the search
space using heuristic search algorithms, such as genetic al-
gorithms [10, 18] or combination elimination [20]. Another
approach is to reduce the time spent evaluating a design
point during this search. Some researchers propose analyti-
cal modeling for estimating the effect of compiler optimiza-
tions on performance [22, 24]. Others build empirical models
using predictive modeling built from static code features [1,
8, 23] or dynamic code features [6]. Yet others exploit the
phase behavior observed during application execution, and
evaluate different optimization sequences in subsequent oc-
currences of the same phase [12].

What all of this prior work on iterative compilation has
in common is that it focuses on a single objective function
to be optimized. For example, researchers typically focus on
a single optimization criterion such as performance [1, 5, 6,
8, 10, 14, 12, 20, 22, 23, 24], or energy consumption [13],
or code size [10]. And some researchers focus on optimizing
a single objective function that combines multiple optimiza-
tion criteria such as code quality and compilation time [7, 8],
or code quality and code size [18]. All of these approaches
optimize a single metric. And this is where the key differ-
ence lies between the prior work on iterative compilation
and the COLE approach described in this paper. COLE
aims at exploring a multi-objective compiler optimization
space, whereas prior work is limited to single-objective opti-
mization. Or, in other words, COLE yields multiple Pareto
optimal points whereas prior work yields a single optimal
point. An additional difference between existing iterative
compilation work and COLE is that iterative compilation
focuses on optimizing the performance of a single applica-
tion, whereas COLE allows finding compiler optimization
levels that improve the average performance for a collection
of applications.
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Figure 1: The Pareto frontier in a multi-objective
design space.

2.2 Dynamic optimization
Next to static, standalone compilers for programming lan-

guages such as C, C++, Fortran, etc., also dynamic compil-
ers which compile and optimize code at run time and which
have multiple levels of optimization (as is the case in many
Java Virtual Machines [3, 4, 19, 21]), can benefit from multi-
objective compiler optimization exploration. The optimiz-
ing compiler in the Jikes Research VM for example, has
three optimization levels (O0, O1, and O2), next to its base-
line compilation level (which compiles methods upon their
first invocation). Jikes RVM uses timer-based sampling to
identify frequently executed methods which are passed to
the controller. The controller uses a cost-benefit model to
decide whether to optimize a candidate method, and, if so,
to which level the method should be optimized. The cost-
benefit model takes into account the estimated compilation
time, as well as the expected future execution time once
the method is optimized. Since compilation time is an in-
tegral part of the total execution time in a dynamic com-
piler, it is of utmost importance to make a good trade-off
between compilation time and code quality when propos-
ing optimization levels in a optimizing dynamic compiler.
Ishizaki et al. [17] describe how optimization levels can be
determined manually. The COLE framework on the other
hand, enables making such a multi-objective trade-off in an
automated manner, which is likely going to result in even
better optimization levels.

3. MULTI-OBJECTIVE COMPILER OPTI-
MIZATION LEVEL EXPLORATION

The goal of the multi-objective optimization is to identify
a set of compiler optimization levels that provide a Pareto
optimal trade-off with respect to a number of objective func-
tions. The objective functions are metrics of interest such
as total execution time, compilation time, code size, energy
consumption, etc.

3.1 Pareto optimization
In order to explain what Pareto optimality means, we need

to introduce some terminology. A given compiler optimiza-
tion level is called Pareto dominant with respect to another
optimization level if the given optimization level achieves a
better score for at least one objective funtion while achieving
the same (or better) score along the other objective func-

tions. A Pareto optimal compiler optimization level is an
optimization level for which there exist no other optimiza-
tion levels that achieve a better score for all objective func-
tions. Multiple Pareto optimal compiler optimization levels
can co-exist to form a so called Pareto frontier or Pareto
set, see Figure 1. In other words, the Pareto set collects all
the Pareto optimal compiler optimization levels. Once the
Pareto frontier is identified through multi-objective explo-
ration, the compiler developer or end user can then select
a compiler optimization level that trades off the various ob-
jective functions according to his or her needs.

3.2 Multi-objective exploration
The COLE multi-objective search algorithm proposed in

this paper is based on SPEA2 [25], which is an improved
version of the well-established Strength Pareto Evolutionary
Algorithm (SPEA) [26]. The SPEA2 algorithm is an eli-
tist evolutionary algorithm that is inspired by genetic algo-
rithms. Our multi-objective algorithm starts from a number
of populations of randomly generated entities, collectively
called a generation, see Figure 2. In our case, an entity is a
set of compiler optimizations, which corresponds to a candi-
date optimization level. From each population, a number of
entities are selected for inclusion in a so called archive. The
archive entity selection is done based on the entities’ Pareto
optimality, i.e., the best set of entities from the current pop-
ulation and the previous archive are retained in the current
archive. The next generation population is computed based
on the current archive through mutation, crossover and mi-
gration. This is done in two steps. First, mating pools are
created by selecting (possibly duplicate) entities from the
archive through binary tournament selection, or through mi-
gration (with probability pmigration) which allows entities
to switch populations. In the second step, mutation and
crossover are applied on the mating pools. Mutation ran-
domly changes a single entity with a probability pmutation;
and crossover generates new entities by mixing two existing
entities within a mating pool with a probability pcrossover.
This process of mutation, crossover and migration based on
the archives, creates the next generation. The algorithm
is repeated, i.e., new generations are constructed, until no
more improvement is observed in the overall Pareto fron-
tier. The end result of the multi-objective search algorithm
is a number of Pareto frontiers — there is a Pareto frontier
per population. The overall Pareto frontier is then deter-
mined based on these individual Pareto frontiers, i.e., only
the Pareto optimal compiler optimization levels are selected
for the overall Pareto frontier.

The multi-objective algorithm considered in this work is
an extension and generalization of the SPEA2 algorithm in
that we consider multiple populations, whereas SPEA2 only
considers a single population. During our work, we found
that different populations to start from results in different
Pareto frontiers. In other words, it seems that, at least
for our design space, SPEA2 may yield a Pareto frontier
that is a local optimum. For this reason, we consider multi-
ple populations on which to apply the SPEA2 algorithm in
conjunction with migration which allows entities to switch
populations.

Within COLE, we give higher priority to optimization lev-
els that include fewer optimizations. For example, if two
optimization levels achieve the same compilation time and
execution time numbers — within the range of the run time
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Figure 2: The COLE multi-objective optimization framework.

variability observed from real hardware executions — we will
retain the optimization level with the fewest optimizations
included. Next to providing concise optimization levels, this
also helps the search algorithm in creating better quality
populations, i.e., optimizations that are effective are given
a bigger chance to be used along the evolutionary search
process.

3.3 Exploration speed
Exploring the optimization level design space using the

above multi-objective search algorithm requires that each
entity is evaluated in order to understand its Pareto opti-
mality. Evaluating an entity requires quantifying the en-
tity in terms of the objective functions of interest. In our
work, this requires compiling the benchmarks using the set
of compiler optimizations that the entity represents. If per-
formance and/or energy consumption are of interest as ob-
jective functions, the compiled benchmarks need to be run,
and execution time and energy consumption need to be mea-
sured, either through simulation or real hardware execution.

In case code size is of interest, the code size needs to be com-
puted.

Evaluating an individual entity may be time-consuming.
However, evaluating a generation as a whole is embarrass-
ingly parallel. All entities in a generation — there are 3 ×
20 = 60 entities in total in our setup — can be evaluated in
parallel. Subsequent generations need to be run sequentially
though because the next generation is computed based on
the previous generation.

3.4 Compiler optimization level design space
The compiler optimization level design space can be huge,

which is the motivation in the first place for employing an
automated multi-objective evolutionary search algorithm.
In our experimental setup, we use the GNU Compiler Col-
lection (GCC) 4.1.2 compiler, and consider all the individ-
ual compiler optimizations appearing in the standard -O1,
-O2, -O3 and -Os compiler optimization levels that can be
turned on and off individually through command-line com-
piler switches. There are 60 compiler flags in total, see Ta-
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-fearly-inlining

-O2

-falign-functions=0
-ffunction-cse -falign-jumps=0
-fkeep-static-consts -falign-labels=0
-fpeephole -falign-loops=0
-fsplit-ivn-in-unroller -fcaller-saves
-ftree-vect-loop-version -fcrossjumping

-O1

-fcprop-registers -fcse-follow-jumps
-fdefer-pop -fcse-skip-blocks
-fguess-branch-probability -fdelete-null-pointer-checks
-fif-conversion -fexpensive-optimizations
-fif-conversion2 -fgcse
-fipa-pure-const -fipa-type-escape
-fipa-reference -foptimize-sibling-calls
-floop-optimize -fpeephole2
-fmerge-constants -fregmove
-ftree-ccp -freorder-blocks
-ftree-ch -freorder-functions
-ftree-copy-prop -frerun-cse-after-loop
-ftree-copyrename -frerun-loop-opt
-ftree-dce -fschedule-insns2
-ftree-dominator-opts -fstrength-reduce
-ftree-dse -fstrict-aliasing
-ftree-fre -fthread-jumps
-ftree-lrs -ftree-pre
-ftree-salias -ftree-store-ccp
-ftree-sink -ftree-store-copy-prop
-ftree-sra -ftree-vrp
-ftree-ter

-O3

-fgcse-after-reload
-funit-at-a-time -finline-functions

-funswitch-loops
-fno-reorder-blocks-and-partition

Table 1: Compiler optimization flags considered in this paper.

ble 1. These flags are ordered in Table 1 according to their
inclusion in the standard -O1, -O2 and -O3 compiler opti-
mization levels. For example, the -O1 optimization level
includes all the optimizations listed in the left column of
Table 1; -O2 includes all optimizations in the left column
plus all the optimizations in the right column from the top
down to and including -ftree-vrp; -O3 includes all opti-
mizations in Table 1. Next to these 60 compiler optimiza-
tion flags, we also consider a base optimization level with
three possible options, -Os-stripped, -O1-stripped, and
-O2-stripped (-O3-stripped is identical to -O2-stripped).
These ‘stripped’ base optimization levels correspond to their
respective standard compiler optimization levels -O1, -O2,
-O3 and -Os with all optimizations disabled that are con-
trollable through compiler switches; disabling a standard
optimization -f<flag> can be done using the -fno-<flag>

compiler switch. The reason for including these stripped
base optimization levels is that GCC includes some default
optimizations that cannot be controlled through command-
line compiler switches. Put together, the entire compiler
optimization level design space includes 3× 260 ≈ 3.4× 1018

possible combinations of optimization flags.

4. SETUP AND METHODOLOGY

4.1 Benchmarks, compiler and hardware setup
We use the SPEC CPU2000 benchmark suite [16] in our

setup. We consider the training inputs in this paper, be-
cause of time constraints. Compiling all the SPEC CPU2000
benchmarks and running them using the training inputs
takes about 20 minutes in our setup. Since we had a sin-
gle machine to our disposal for doing this research, evaluat-
ing a generation (which contains 60 candidate optimization
levels) takes about 1,200 minutes, or 20 hours. Running
the multi-objective algorithm until convergence (which re-

quired 70 generations) took about 50 days in our setup. As
mentioned before, this can be trivially parallelized by eval-
uating all entities in a given generation in parallel. In our
case, this would yield a 60× speedup, or it would take less
than a day to run the multi-objective optimization using the
training inputs. Extrapolating these results to the reference
inputs of the SPEC CPU2000 benchmark suite, the whole
multi-objective optimization level searching would take ap-
proximately 5 to 6 days, which we believe is acceptable for
practical use — the definition of optimization levels can be
postponed towards the end of the compiler building process
and needs to be done only once. In addition, the above cal-
culations assume starting the search process ‘from scratch’.
In practice though, the search process for determining the
Pareto optimal optimization levels for the next generation
compiler can start from the Pareto frontier obtained for
the previous generation compiler, significantly reducing the
search time. Nevertheless, speeding up the search process
may be an interesting avenue for future research.

As mentioned before, we use the GCC 4.1.2 compiler in
our experimental setup, because it provides a wide range
of command-line optimizations that can be turned on and
off, which is often not the case for commercial compilers (at
least for the ones we considered for our research). We ran all
of our experiments on an Intel Pentium 4 Prescott 3.0 GHz
processor based machine running Fedora Linux (Core 4).

4.2 COLE setup
In the evaluation reported in this paper of the COLE

framework, we consider two objective functions, namely code
quality (i.e., performance, measured as the benchmark exe-
cution time) and compilation time. This does not affect the
generality of the COLE framework though, because COLE
can be (trivially) used for other objective functions of in-
terest, such as code size, energy consumption, power con-
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Figure 3: Example illustrating how the HV metric
is computed.

sumption, etc. The code quality objective function in our
experiments equals the total sum of the individual execu-
tion times for all the SPEC CPU benchmarks; the compi-
lation time objective function equals the total sum of the
individual compilation times for all the benchmarks. These
objective functions give a higher weight to benchmarks that
execute and compile for a longer time. If equal weight to
all benchmarks is needed, the objective functions need to be
computed differently, for example by taking an unweighted
average over speedup numbers. Again, this is a design choice
up to the COLE user.

In the initial generation for the COLE optimization pro-
cess, we include the standard -O1, -O2, -O3 and -Os op-
timization levels, next to a number of randomly generated
optimizations, in order to give the multi-objective algorithm
a head start in its exploration.

We consider three populations, 20 entities per population,
and 10 entities per archive in our experiments. Recall that
the archive selects the Pareto optimal entities from the pop-
ulation and the prior archive. In case there are less than
10 Pareto optimal entities, the archive is filled up with near
Pareto optimal entities. In case there are more than 10
Pareto optimal entities, the archive selects the entities that
cover the objective function ranges as widely as possible.
The mutation probability is set to pmutation = 0.10; the
probability for crossover is set to pcrossover = 0.90; and the
probability for migration is set to pmigration = 0.10. These
settings are fairly standard settings for genetic algorithms
and we found these settings to work well in our setup.

4.3 HV metric
Next to visually assessing the quality of the obtained Pare-

to frontiers, we also quantify their quality using the hyper-
volume (HV) metric discussed in [11]. Figure 3 illustrates
how the HV metric is computed. First, the HV reference
point needs to be determined. The HV reference point is
the point obtained by taking the maximum value observed
by any of the points along each objective function. Second,
once the HV reference point is determined, the HV met-
ric can be computed as the area between the Pareto frontier
and the HV reference point. The HV metric thus is a higher-
is-better metric. The higher the HV metric, the more the
Pareto frontier reduces the scores for all objective functions.

5. EVALUATION
We now evaluate the quality of the obtained Pareto opti-

mal optimization levels, both qualitatively by visual inspec-
tion of the Pareto frontiers, and quantitatively by using the
HV metric.

5.1 Pareto frontiers
Figure 4 shows the Pareto frontiers as a function of code

quality (execution time) and compilation time for four sce-
narios of optimization levels:

• The standard GCC optimization levels (-O1, -O2, -O3
and -Os); the optimization level -Os is not a Pareto
optimal optimization level (in terms of the code quality
and compilation time objective functions).

• The Pareto frontier which is obtained from randomly
sampling the optimization space: 600 randomly cho-
sen optimization levels were evaluated and the Pareto
optimal optimization levels are retained.

• The Pareto frontier obtained through COLE after 10
generations which corresponds to 600 optimization lev-
els being evaluated — this is the same search time as
under random sampling.

• The Pareto frontier obtained through COLE after con-
vergence at 70 generations. This corresponds to 4200
optimization levels being evaluated during the explo-
ration.

The results shown in Figure 4 clearly illustrate that the
Pareto frontier obtained through COLE is substantially bet-
ter than the standard GCC optimization levels. This means
that for the same compilation time, shorter run times are ob-
tained using the COLE Pareto frontier; or reverse, the same
code quality can be obtained with much shorter compila-
tion times, see Figure 5 for a summary result. In particular,
the Pareto optimal optimization level which yields the best
performance achieves 3.1% better performance on average
than -O3 with a 37.6% shorter compilation time. This same
Pareto optimal optimization level even achieves 4.5% better
performance than -O1 for a slightly smaller compilation time
(1.5%).

Comparing COLE versus random sampling — for doing
so we consider COLE with 10 generations (and thus 600
entities) versus random sampling of 600 entities — shows
that the evolutionary search algorithm in COLE is more
effective than random searching. For the same exploration
time, COLE achieves optimization levels that provide better
trade-offs in code quality versus compilation time.

5.2 Evaluation using the HV metric
We now evaluate the quality of the Pareto frontiers ob-

tained through COLE using the HV metric. Figure 6 shows
the HV metric for COLE, random sampling and the stan-
dard compiler optimization levels (-O1, -O2, -O3). This
graph restates our earlier finding more quantitatively, namely
COLE outperforms random sampling by 10% with the same
search budget, and significantly outperforms the standard
(manually derived) optimization levels by 53%.

5.3 Cross-validation
So far, we evaluated the COLE framework using the SPEC

CPU2000 benchmarks, which is also the set of benchmarks
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used to determine the Pareto optimal optimization settings.
We now consider a cross-validation experiment in which we
evaluate the effectiveness of the Pareto optimal optimization
settings found through COLE using the SPEC CPU2000
benchmark suite on a previously unseen set of benchmarks,
namely the SPEC CPU2006 benchmark suite with training
inputs. The HV score for the COLE optimization levels
(obtained using SPEC CPU2000) is 37% higher than the
HV score for the standard optimization levels. This result
shows that the Pareto-optimal optimization settings found
with COLE using the SPEC CPU2000 benchmarks are good
optimization levels for SPEC CPU2006 as well.
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6. ANALYSIS
Now that we have obtained the Pareto optimal optimiza-

tion levels, we can analyze what these optimization levels
look like in terms of their constituent compiler optimiza-
tions. There are 12 Pareto optimal optimization levels in
total, and only 15 out of the 60 compiler optimizations are
included in at least one optimization level. In other words,
75% of the compiler optimizations do not contribute to any
of the Pareto optimal optimization levels. Of course, this
result is tied to the benchmarks as well as the hardware
platform considered in the setup, and only reflects average
performance. Nevertheless, this result may provide insight
to compiler developers and researchers about the usefulness
of the various compiler optimizations for the average user.

Table 2 shows the 12 Pareto optimal optimization levels in
terms of these 15 compiler optimizations. The optimization
levels are ordered from short compilation time and modest
code quality (optimization level 0) towards longer compila-



GCC Pareto optimal optimization level
level 0 1 2 3 4 5 6 7 8 9 10 11

-fno-keep-static-consts default x
-fdefer-pop -O1 x x x x
-fguess-branch-probability -O1 x x x x x
-floop-optimize -O1 x x
-ftree-ccp -O1 x x x x x x x x
-ftree-dce -O1 x x x x x x x x x x x x
-ftree-fre -O1 x x x x x x x x x x x x
-ftree-lrs -O1 x x x x x x x x x
-ftree-sra -O1 x x x x x x x x x x x x
-ftree-ter -O1 x x x x x x x x x x x x
-funit-at-a-time -O1 x x x x x x x x x
-fstrength-reduce -O2 x x
-fstrict-aliasing -O2 x x x x x x x
-ftree-store-copy-prop -O2 x x x x x x x
-finline-functions -O3 x

-Os-stripped x x x x
-O1-stripped x x x x x x x x
-O2-stripped

Table 2: Marking the compiler optimizations and (stripped) base optimization levels included in the various
Pareto optimal optimization levels, ordered from short compilation time and long run time (optimization
level 0) towards long compilation time and short run time (optimization level 11).

tion time and better code quality (optimization level 11). An
‘x’ reflects that a given compiler optimization is included in
the given optimization level. There are several interesting
observations to be made from Table 2. For example, sev-
eral of the language and platform-independent Static Sin-
gle Assignment (SSA) tree optimizations (with the -ftree

prefix) seem to be very effective. In particular, four tree
SSA optimizations appear in all 12 Pareto optimal opti-
mization levels. These optimizations are beneficial irrespec-
tive of the multi-objective trade-off in terms of compilation
time versus code quality. On the contrary, some optimiza-
tions are only beneficial for a specific optimization trade-off.
For example, the function inlining optimization (-finline-
functions) and loop optimization (-floop-optimize) are
only helpful when code quality is the primary concern: these
flags result in significant code quality improvement at the
cost of additional compilation time.

Many of the optimizations under the standard compiler
optimization levels (-O1, -O2, -O3 and -Os) do not appear
in any of these optimization levels. For example, of the 27
optimizations appearing under the standard -O2 optimiza-
tion level, see Table 1, only three get selected in at least one
of the Pareto optimal optimization levels; also, only one of
the three -O3 optimizations is being used. The -O1 opti-
mizations are more succesful in this respect: 10 out of the
23 optimizations are selected at least once.

Another interesting observation is that the Pareto opti-
mal optimization levels 0 through 3 use the stripped -Os-

stripped base optimization level; the Pareto optimal opti-
mization levels 4 through 11 use the stripped -O1-stripped

base optimization level. The reason is that the -Os-stripped
base optimization level introduces less optimization oppor-
tunities than the -O1-stripped base optimization level, so
that the optimizations applied on top of the -Os-stripped

base optimization level introduce less compilation load. The
-O2-stripped base optimization level is not selected for any
of the Pareto optimal optimization levels: it seems like this
base optimization level adds too much compilation load com-
pared to the performance gain it provides.

7. BENCHMARK OPTIMIZATION LEVEL
SENSITIVITY

Another interesting application of the COLE framework,
next to the construction of Pareto optimal optimization lev-
els as just decribed, is to study a benchmark’s sensitivity
with respect to the compiler optimization level. This will
enable us to classify benchmarks according to their opti-
mization sensitivity. This can be useful for compiler builders
and researchers in order to pick representative benchmarks.
Benchmarks that are sensitive to compiler optimizations may
be good candidate benchmarks; benchmarks that are rather
insensitive may be of less interest. Or, by looking into what
compiler optimizations affect a benchmark insight can be
gained into the internal behavior of the benchmark.

For doing so, we use COLE to find the Pareto frontier per
benchmark, and then compare this per-benchmark Pareto
frontier against the ‘average’ Pareto frontier obtained by
considering all benchmarks (as we did before). The re-
sults are shown in Figure 7. The HV metric for the stan-
dard -O1, -O2 and -O3 optimization levels as well as for
the average Pareto frontier are compared against the per-
benchmark Pareto frontier — these HV metrics are normal-
ized to the HV metric for the per-benchmark Pareto fron-
tier. Since the Pareto frontiers for the standard GCC op-
timization levels as well as for the ‘average’ Pareto frontier
are always worse than the per-benchmark Pareto frontier,
the relative HV metrics are all smaller than one. These re-
sults show that several benchmarks are rather insensitive
to benchmark-specific compiler optimizations, i.e., the ‘av-
erage’ Pareto frontier achieves nearly the same code qual-
ity versus compilation time trade-off as the per-benchmark
Pareto frontier. Example benchmarks are crafty, gzip, wup-
wise and several others with a relative HV metric for the ‘av-
erage’ Pareto frontier over 90%. Other benchmarks are very
sensitive to benchmark-specific optimizations, see for exam-
ple sixtrack and gap, which have relative ‘average’ Pareto
frontier HV scores around 40% and 50%. Overall though,
the ‘average’ Pareto frontier obtained through COLE yields
a trade-off between code quality and compilation time that
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Figure 7: The HV metric per benchmark for the standard -O1, -O2 and -O3 optimization levels as well as the
‘average’ Pareto frontier relative to the per-benchmark Pareto frontier.

is fairly close to the per-benchmark optimal trade-off. The
average HV score for the ‘average’ Pareto frontier equals
83%, which is substantially higher than the standard -O1,
-O2 and -O3 optimization levels with an average HV score
of 50%.

8. SUMMARY AND FUTURE WORK
Static compilers as well as dynamic compilers typically

come with a number of optimization levels such as -O1, -O2,
-O3 and -Os, which provide different trade-offs between code
quality, compilation time and code size. Constructing these
optimization levels typically is a manual process which is
both tedious and time consuming. Identifying an appro-
priate set of optimization levels is particularly challenging
because the search space is huge — for example, the de-
sign space in our setup counts in the order of 1018 candidate
optimization levels.

This paper presented COLE, Compiler Optimization Level
Exploration, which employs a multi-objective evolutionary
algorithm to find Pareto optimal optimization levels. COLE
is fully automated and is completely transparent to the com-
piler, the benchmarks, the hardware platform, as well as the
objective functions. To the best of our knowledge, this pa-
per is the first to study automated multi-objective compiler
optimization exploration. COLE differs from iterative com-
pilation in this respect because the work done so far in iter-
ative compilation focused on single-objective optimization.
Our experiments using GCC and the SPEC CPU bench-
marks on an Intel Pentium 4 machine optimizing for run
time (code quality) and compilation time show that the op-
timization levels obtained through COLE significantly out-
perform the standard (and manually derived) compiler opti-
mization levels (-O1, -O2, -O3), and in addition, outperform
the optimization levels obtained through random sampling.

We believe this work may trigger future research in the
efficient construction of compiler optimization levels. For
example, as mentioned in the paper, although the current
framework is fast enough for practical use, we believe there
is still room for improvement. There are various ways of
speeding up the search process by either pruning the op-
timization space or by reducing the time spent evaluating

an optimization level. Techniques proposed within the con-
text of iterative compilation for single-objective optimiza-
tion most likely need to be rethought within the context
of multi-objective optimization. Another interesting oppor-
tunity for future research is to exploit the fact that opti-
mization levels typically need to yield good average perfor-
mance across a number of benchmarks, as opposed to itera-
tive compilation which aims at optimizing the performance
of a single application. One could take advantage of the
optimization level sensitivity similarities that exist between
benchmarks to further speedup the search process, i.e., eval-
uating the compiler optimizations on a representative set
of benchmarks rather than the whole benchmark suite may
yield significant speedups.
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