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Abstract

Characterizing and understanding emerging workload
behavior is of vital importance to ensure next genera-
tion microprocessors perform well on their anticipated
future workloads. This paper compares a number of
benchmark suites from emerging application domains, such
as bio-informatics (BioPerf), biometrics (BioMetricsWork-
load) and multimedia (MediaBench II), against general-
purpose workloads represented by SPEC CPU2000 and
CPU2006. Although these benchmark suites have been
characterized before, prior work did not capture the bench-
mark suites’ inherent (microarchitecture-independent) be-
havior, nor did they provide a phase-level characterization.

In this paper, we characterize these existing and emerg-
ing general-purpose and domain-specific benchmark suites
in terms of their inherent phase-level behaviors. Our char-
acterization methodology identifies prominent phase behav-
iors across benchmarks and visualizes them in terms of their
key microarchitecture-independent characteristics. From
this analysis, next to revealing a detailed picture of the
distinct phase-level behaviors in these benchmark suites,
we also obtain a number of interesting high-level insights.
For example, SPEC CPU2006 turns out to be the bench-
mark suite with the largest workload space coverage, i.e.,
it covers the largest set of distinct behaviors in the work-
load space. Also, our analysis provides experimental evi-
dence supporting the intuitive understanding that domain-
specific benchmark suites cover a narrower range in the
workload space than general-purpose benchmark suites.
Finally, the BioPerf bio-informatics benchmark suite ex-
hibits a large fraction unique behaviors not observed in
the general-purpose benchmark suites, substantially more
so than the other domain-specific benchmark suites, Bio-
MetricsWorkload and MediaBench II.

1 Introduction

Computer design and research heavily rely on a bench-
marking methodology in which the performance of the fu-
ture computer system is evaluated by simulating bench-
marks. An important problem in the benchmarking pro-
cess though is to ensure that the benchmarks are represen-
tative — designing a future computer system using yester-
day’s benchmarks may lead to a suboptimal design for its
future workloads [27]. As such, it is extremely important
that performance analysts keep pace with the evolving com-
puter workloads as new application domains emerge. This
is well recognized, and in response, performance analysts
build new benchmark suites to represent future application
domains. Given the expanding number of emerging bench-
mark suites, the number of benchmarks that a researcher
or developer needs to consider increases, which in its turn
increases simulation time. As such, a methodology that
identifies the new behaviors in these emerging benchmark
suites would be most helpful in managing the simulation
time cost, while not compromising on the representative-
ness and accuracy of the performance evaluation.

In this paper, we analyze five benchmark suites —
BioPerf (bio-informatics), BioMetricsWorkload (biomet-
rics), MediaBench II (multimedia), SPEC CPU2000 and
SPEC CPU2006 — and compare their behavioral character-
istics. In order to do so, we use a workload characterization
methodology that analyzes the benchmarks’ behaviors on
a per-phase basis using microarchitecture-independent be-
havioral metrics. The end goal of the methodology is to rep-
resent the benchmarks’ inherent time-varying behaviors in a
comprehensive way: our methodology selects a representa-
tive set of distinct phase behaviors from the various bench-
marks and characterizes these prominent phase behaviors in
terms of their key inherent behavioral characteristics. As a
next step, we then study the unique and diverse phase be-
haviors observed in the existing and emerging benchmark
suites.



This paper makes two major contributions:

• We characterize the uniqueness and diversity in phase-
level program behavior as observed in existing and
emerging benchmark suites and provide a number of
novel and interesting insights. The most eye-catching
insights from this analysis are that (i) the general-
purpose SPEC CPU benchmark suites cover a much
broader part of the workload space than the domain-
specific benchmark suites, or, in other words, the
domain-specific benchmark suites cover a relatively
narrow part of the workload space, (ii) there is more di-
verse behavior to be observed in SPEC CPU2006 than
in SPEC CPU2000 and any other benchmark suite, (iii)
the BioPerf domain-specific benchmark suite exhibits
a high fraction of unique phase-level behaviors not ob-
served in the SPEC CPU benchmark suites, substan-
tially more so than BioMetricsWorkload and Media-
Bench II.

• We show that phase-level workload characterization is
feasible to do in practice, and in addition, is more in-
formative than an aggregate workload characterization
approach. The practical phase-level workload char-
acterization methodology that we present in this pa-
per gives an informative picture of the most significant
phase behaviors observed across a set of benchmarks.

2 Phase-level characterization methodology

2.1 Motivating phase-level workload characteri-
zation

There exists a plethora of approaches to characterizing
workloads. Some computer architects and performance an-
alysts characterize workloads using hardware performance
counters by running workloads on real hardware. Others
use a simulation setup, typically simulating a number of
microarchitectures or microarchitecture structures such as
caches and/or branch predictors, and subsequently report
IPC numbers and/or cache and branch predictor miss rates.
Yet others advocate collecting a number of program char-
acteristics that are microarchitecture-independent; example
characteristics are instruction mix, inherent ILP, memory
footprint sizes, memory access patterns, etc.

Most of these published workload characterization stud-
ies present an aggregate characterization, i.e., the charac-
teristics are reported as average numbers across the entire
program execution. This can be misleading though. Con-
sider for example the case where a workload characteriza-
tion study would report that for a given application of in-
terest, 30% of the instructions executed are memory (load
or store) instructions. This would make a computer archi-
tect conclude that about one third of the functional units

being load/store units would suffice for the given program
to achieve good performance. However, during the first half
of the program execution, there may be only 10% mem-
ory instructions executed; and during the second half of the
program execution, there may be 50% memory instructions
in the dynamic instruction stream. (On average over the
entire program execution, this results in 30% memory in-
structions.) Obviously, one third of load/store units (based
on the aggregate analysis) would yield good performance
for the first part of the program execution, but would yield
sub-optimal and less than expected performance for the sec-
ond part. A phase-level characterization showing that there
are two major program phases each exhibiting different be-
havioral characteristics would be more accurate and more
informative.

Although the notion of time-varying behavior is well
known to computer architects, and although there is a lot
of recent work done on detecting and exploiting phase be-
havior, most workload characterization papers are limited
to an aggregate workload analysis and do not study time-
varying program behavior. The key reason is that a phase-
level characterization study involves a very large data set,
up to the point where it becomes intractable. For example,
in our study which involves five benchmark suites, we deal
with over 1 million instruction intervals characterized using
69 program metrics. Obviously, getting insight from such a
large data set is far from trivial.

2.2 Overview of the methodology

In this paper, we propose and use a tractable phase-level
workload characterization methodology. The general flow
of our phase-level characterization process consists of the
following steps:

1. We characterize instruction intervals in all of our
benchmarks in a microarchitecture-independent man-
ner. In our setup we measure 69 characteristics and
consider 100M-instruction intervals.

2. A fixed number of instruction intervals is randomly se-
lected per benchmark across all of its inputs. In our
setup we select 1,000 intervals per benchmark.

3. Applying principal components analysis (PCA) re-
duces the dimensionality of the data set while retaining
most of the information.

4. We apply cluster analysis to identify the most repre-
sentative phase behaviors, i.e., we identify 100 promi-
nent phase behaviors which, collectively, cover most
of the phase behaviors observed across the entire set
of benchmarks.



category # description
instruction mix 10 percentage memory reads, memory writes, branches, arithmetic operations, multiplies, etc.
ILP 4 IPC that can be achieved for an idealized processor (with perfect caches and branch predictor)

for a given window size of 32, 64, 128 and 256 in-flight instructions
register traffic 9 average number of register input operands per instruction, average degree od use (number of

register reads per register write), distribution (measured in buckets) of the register dependency distance,
or, number of instructions between the production and consumption of a register instance

memory footprint 4 number of unique 64-byte blocks and 4KB memory pages touched by the instruction and
data stream

data stream strides 28 distribution of global and local strides; global stride is the difference in memory addresses
between two consecutive memory accesses; local stride is similar but is restricted to two
consecutive memory accesses by the same static instruction; this is measured
separately for memory reads and writes; these distributions are measured in buckets

branch predictability 14 average branch transition and taken rate, along with branch misprediction rate for the theoretical
PPM predictor [3]; we consider both global and local history predictors, and both per-address and
global predictors; we also consider different maximum history lengths (4, 8 and 12)

Table 1. Microarchitecture-independent characteristics.

5. To ease the understanding of the behavior of these
prominent phases, a genetic algorithm identifies the
key microarchitecture-independent characteristics.

6. We plot all 100 prominent phase behaviors as kiviat
diagrams with the axes being these key characteristics,
and in addition, we also show in which benchmarks the
prominent phase behaviors are observed.

This is a practical methodology that is both computation-
ally feasible, and informative in its results. This methodol-
ogy scales our prior microarchitecture-independent charac-
terization methodology presented in [11, 12] from an aggre-
gate to a phase-level program analysis methodology. This
involves a number of novel steps to the methodology to
enable efficiently handling large phase-level data sets. In
particular, the novelties are interval sampling (step 2 from
above), and trading off coverage versus per-cluster variabil-
ity to identify prominent phase behaviors (step 4). We will
now discuss each step in this methodology in more detail in
the following subsections.

2.3 Microarchitecture-independent characteriza-
tion

Following the observation in [11] that a
microarchitecture-dependent characterization can be
misleading, we use a microarchitecture-independent ap-
proach in order to capture a program’s inherent behavior,
independent of a particular hardware platform. Table 1
summarizes the 69 microarchitecture-independent charac-
teristics that we measure: instruction mix, inherent ILP,
register traffic, memory footprint sizes, memory access
strides and branch predictability. We use PIN [20], a
dynamic binary instrumentation tool, to collect these
characteristics per 100M instruction interval. The MICA
(Microarchitecture-Independent Characterization of Ap-
plications) PIN tool used for this analysis is available at
http://www.elis.ugent.be/∼kehoste/mica/.

2.4 Interval sampling

As a second step, we sample instruction intervals: we
select a fixed number of intervals per benchmark across all
of its inputs. In our setup, we select 1,000 instruction in-
tervals per benchmark — for benchmarks with less than
1,000 instruction intervals, this means that instruction inter-
vals will appear multiple times in the data set. This results
in 77,000 instruction intervals in our setup — there are 77
benchmarks in total, as we will describe later. The motiva-
tion for the interval sampling step is to give equal weight to
all the benchmarks in the subsequent analysis steps — with-
out interval sampling, benchmarks with a larger number of
inputs and/or a larger dynamic instruction count would get a
higher weight in the overall analysis. This is an experimen-
tal design choice though: e.g., if the experimenter wants
to give equal weight to all benchmark suites, he/she should
select a fixed number of intervals per benchmark suite.

2.5 Principal components analysis (PCA)

As a third step, we apply principal components analysis
(PCA) [15] to identify the key uncorrelated dimensions in
the data set. We then retain the most significant dimensions
which reduces the dimensionality of the data set.

The input to PCA is a matrix in which the rows are the
instruction intervals and the columns the microarchitecture-
independent characteristics. PCA computes new variables,
called principal components, which are linear combinations
of the microarchitecture-independent characteristics, such
that all principal components are uncorrelated. In other
words, PCA tranforms the p microarchitecture-independent
characteristics X1, X2, . . . , Xp into p principal components
Z1, Z2, . . . , Zp with Zi =

∑p
j=1 aijXj . This transforma-

tion has the properties (i) V ar[Z1] ≥ V ar[Z2] ≥ . . . ≥
V ar[Zp] — this means Z1 contains the most information
and Zp the least; and (ii) Cov[Zi, Zj ] = 0,∀i 6= j — this
means there is no information overlap between the principal
components.



Some principal components have a higher variance than
others. By removing the principal components with the
lowest variance from the analysis, we reduce the dimension-
ality of the data set while controlling the amount of informa-
tion that is thrown away. We retain all principal components
with a standard deviation greater than one; for our data set,
this means 13 principal components which collectively ex-
plain 85.4% of the total variance in the data set.

In PCA, one can either work with a normalized or a non-
normalized input data set — the data set is normalized when
the mean of each variable is zero and its variance is one. In
a workload characterization method as presented here, it is
appropriate to normalize the data set prior to PCA to put
all characteristics on a common scale. Also after PCA, it
is appropriate to normalize the data set to put all principal
components on a common scale — the principal compo-
nents represent underlying program characteristics and we
want to give equal weight to all underlying program char-
acteristics. We call the resulting space the rescaled PCA
space.

2.6 Clustering

The fourth step in our workload analysis is to apply clus-
ter analysis (CA) [15] in the rescaled PCA space. The k-
means clustering algorithm is an iterative process that first
randomly selects k cluster centers, and then works in two
steps per iteration. The first step is to compute the distance
of each point in the multi-dimensional space to each cluster
center. In the second step, each point gets assigned to the
closest cluster. As such, new clusters are formed and new
cluster centers are to be computed. This algorithm is iter-
ated until convergence is observed, i.e., cluster membership
ceases to change across iterations.

We evaluate a number of randomly chosen initial clus-
ter centers and then retain the clustering with the highest
Bayesian Information Criterion (BIC) score. The BIC score
is a measure that trades off goodness of fit of the clustering
to the given data set versus the number of clusters. The
end result of this clustering algorithm is k clusters with the
highest BIC score. For each cluster we then select the in-
struction interval that is closest to the cluster center as the
cluster representative. Each cluster representative then gets
a weight assigned that is proportional to the number of in-
struction intervals it represents.

The final goal of this clustering step is to yield a lim-
ited number of representative phases that collectively cover
a sufficiently large fraction of the total entire set of bench-
marks. This involves making a trade-off between coverage
and variability within a cluster. To illustrate this, consider
the following example. Say the ultimate goal for the work-
load characterization study is to come up with 100 promi-
nent phases. One option would be to apply k-means cluster-

ing with k = 100; this will yield 100 prominent phases with
a 100% coverage, i.e., all instruction intervals in the data set
will be represented by a phase representative. Another op-
tion is to apply k-means clustering for k > 100; in this
case, the 100 most prominent phases will account for less
than 100% coverage. However, the variability within each
cluster will be substantially smaller than for the k = 100
case. In other words, we can select the most prominent
phase behaviors that collectively account for a large fraction
of the entire benchmark suite while minimizing the variabil-
ity represented by each prominent phase. In our setup, we
set k = 300 and select 100 prominent phases; these 100
prominent phases collectively cover 87.8% of the entire set
of benchmarks.

2.7 Genetic algorithm

After the clustering algorithm, we are left with a num-
ber of prominent phase behaviors. The end goal now is to
visualize these phase behaviors in terms of their key pro-
gram characteristics. This is challenging though. Visualiz-
ing a phase behavior as a point in a 69-dimensional space
(in terms of all the microarchitecture-independent charac-
teristics), is difficult and likely not very helpful. One so-
lution may be to plot these phase behaviors in terms of the
most significant principal components; the greatly reduced
dimensionality will facilitate the understanding of the data
set. However, the problem with a characterization based
on principal components is that interpreting the principal
components may be difficult, although the dimensionality
is much smaller than the original data set. The principal
components are linear combinations of the original charac-
teristics which complicates intuitive reasoning. Instead we
use a genetic algorithm, following [11, 12], to select a lim-
ited number of key microarchitecture-independent charac-
teristics. We then visualize the prominent phase behaviors
in terms of these key characteristics.

A genetic algorithm is an evolutionary optimization
method that starts from populations of solutions. For each
solution in each population, a fitness score is computed and
the solutions with the highest fitness score are selected for
constructing the next generation. This is done by applying
mutation, crossover and migration on the selected solutions
from the previous generation. Mutation randomly changes
a single solution; crossover generates new solutions by mix-
ing existing solutions; and migration allows solutions to
switch populations. This algorithm is repeated, i.e., new
generations are constructed, until no more improvement is
observed for the fitness score.

A solution in our case, is a series of 69 0’s and 1’s, one
per microarchitecture-independent characteristic. A ‘1’ se-
lects a program characteristic and a ‘0’ excludes a program
characteristic. The fitness score equals the Pearson corre-
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Figure 1. Correlation coefficient of the dis-
tance in the workload space built from the
retained characteristics through the genetic
algorithm versus the distance in the workload
space built from all characteristics.

1 average branch transition rate
2 branch misprediction rate for the GAs PPM predictor with 4-bit history
3 percentage string instructions
4 percentage shift instructions
5 instruction memory footprint at 64-byte block level
6 data memory footprint at 64-byte block level
7 probability for a local store stride≤ 32K
8 probability for a local store stride≤ 64
9 probability for a global load stride≤ 256K
10 probability for a global load stride≤ 64
11 average degree of use of register values
12 average number of register operands

Table 2. The microarchitecture-independent
characteristics retained by the genetic algo-
rithm.

lation coefficient of the distances between the prominent
phases in the original data set (with all microarchitecture-
independent characteristics) versus the distances between
the prominent phases in a reduced data set with only the
selected microarchitecture-independent characteristics, i.e.,
only the characteristics with a ‘1’ assigned are included in
the reduced data set. Computing the distance in the original
data set as well as in the reduced data set is done through
PCA, i.e., we normalize both data sets, apply PCA on both
data sets, retain the principal components with a variance
greater than one, normalize the principal components and
finally compute the distances between the prominent phases
in the rescaled PCA spaces. The reason for this additional
PCA step when computing the distance is to discount the
correlation between program characteristics in the data set
from the distance measure. The end result of the genetic
algorithm is a limited number of program characteristics
that allow for an accurate and intuitive microarchitecture-
independent program characterization of the most promi-
nent phase behaviors.

It is up to the experimenter to determine how many

microarchitecture-independent characteristics to retain.
This can be done based on the desired correlation coeffi-
cient of the distances in the reduced dimensionality space
versus the distances in the original space. Figure 1 shows
this correlation coefficient as a function of the number of
selected characteristics. We pick 12 key microarchitecture-
independent characteristics which result in a 0.82 cor-
relation coefficient. These 12 key microarchitecture-
independent characteristics are shown in Table 2. The
key microarchitecture-independent characteristics include
a range of behavioral properties covering instruction mix,
branch predictability, register traffic, memory footprint and
memory access patterns.

2.8 Kiviat plots

Our final step is to visualize the prominent phase be-
haviors in terms of their key microarchitecture-independent
characteristics. To this end, we use kiviat plots which are
helpful to visualize multidimensional data. In addition to
these kiviat plots, we also show pie charts displaying which
benchmarks are represented by each phase behavior and by
what fraction. Together, the kiviat plots and the pie charts,
give an insightful understanding of the prominent phase be-
haviors and how they represent the various benchmarks in
the workload.

2.9 Discussion

The phase-level characterization methodology presented
in this paper requires a number of settings to be deter-
mined in the various steps of the methodology, such as
determining how many principal components to retain,
how many prominent phases to select, and how many
key microarchitecture- independent characteristics to select
through the genetic algorithm for building the kiviat plots.
Basically, these parameter settings trade off coverage ver-
sus accuracy. We made such a trade-off in our experiments
when boiling down more than 1 million intervals to 100 rep-
resentative intervals, however, making the appropriate pa-
rameter settings is up to the experimenter when making the
coverage/accuracy trade-off.

Note also that in this paper, we consider 100M instruc-
tion intervals, however, our methodology can be applied
to any interval granularity of interest, and could even be
applied to variable-length intervals. A smaller instruction
interval size would result in a more fine-grain phase-level
characterization; a larger instruction interval size would re-
sult in a more coarse-grain characterization. We use 100M-
instruction intervals because this interval size is an appro-
priate interval size for detailed simulation. At the 100M-
instruction interval granularity (and larger), microarchitec-
ture state warmup is less of an issue [24]. This is also the



suite benchmark cnt

BioMetricsWorkload

face 13,534
finger 27,296
gait 3,718
hand 10,789
speak 2,847

BioPerf

blast 1,902
ce 42
clustalw 2,709
fasta 169,911
glimmer 338
grappa 43,013
hmmer 5,330
phylip 20,172
predator 7,127
t-coffee 2,741

MediaBench II

h263 224
h264 1,505
jpeg2000 14
jpeg 2
mpeg2 177
mpeg4 23
mpeg4-mmx 8

suite benchmark cnt

SPECint2000

bzip2 2,871
crafty 1,852
eon 2,047
gap 2,220
gcc 1,298
gzip 3,215
mcf 529
parser 3,353
perlbmk 3,318
twolf 2,843
vortex 2,963
vpr 2,076

SPECfp2000

ammp 3,578
applu 3,495
apsi 4,548
art 1,516
equake 1,525
facerec 3,366
fma3d 3,121
galgel 3,689
lucas 2,458
mesa 2,882
mgrid 4,822
sixtrack 7,042
swim 2,285
wupwise 4,286

suite benchmark cnt

SPECint2006

astar 13,530
bzip2 23,144
gcc 11,739
gobmk 16,927
h264ref 36,123
hmmer 31,765
libquantum 39,490
mcf 3,782
omnetpp 7,704
perlbench 23,056
sjeng 23,531
xalancbmk 12,348

SPECfp2006

bwaves 21,826
cactusADM 30,466
calculix 74,593
dealII 22,701
gamess 56,550
gemsFDTD 19,242
gromacs 25,597
lbm 18,455
leslie3d 17,387
milc 12,150
namd 31,371
povray 12,234
soplex 8,292
sphinx3 30,246
tonto 35,062
wrf 31,737
zeusmp 22,285

Table 3. The benchmarks used in this paper, along with the number of 100M instruction intervals.

reason why industry uses relatively large interval sizes, see
for example the Intel PinPoints approach [22].

3 Experimental setup

In our experimental setup we consider five benchmark
suites, namely SPEC CPU2000 (ref), SPEC CPU2006 (ref),
BioPerf (medium) [1], BioMetricsWorkloads (s100) [4] and
MediaBench II [19]. There are 77 benchmarks in total, and
1,103,953 100M-instruction intervals in total (or over 110
trillion dynamically executed instructions), see also Table 3.
All of these benchmarks are compiled using the Intel com-
piler kit version 9.1.051 on a 32-bit Linux/x86 Intel Pentium
4 machine with the -static -O2 compiler flags; Bio-
MetricsWorkload’s gait and SPEC CPU2000’s gap were
compiled using the GNU C compiler v4.1.2 with -O2 be-
cause of compilation problems with the Intel compiler on
our platform.

4 Phase-Level Characterization of Existing
and Emerging Benchmark Suites

Before analyzing the coverage, uniqueness and diver-
sity of the benchmark suites, we first discuss the fine-grain
phase-level results that are obtained from our methodology.
In addition, we also discuss how these results enable gain-
ing insight into individual phase behaviors.

4.1 Workload visualization

Figures 2 and 3 show the 100 most prominent phases
when applying the proposed phase-level workload charac-
terization methodology on the benchmark suites considered
in this paper.

Each prominent phase is characterized by the following:

• Cluster weight. The weight that each cluster has in the
overall analysis is shown above each cluster represen-
tation. For example, the top-left cluster representation
in Figure 2 covers 4.87% of the overall analysis, i.e.,
4.87% of the total execution of all the benchmarks is
represented by this cluster. These cluster weights sum
up to 87.8%, which is the coverage of the 100 promi-
nent phases in the entire data set.

• Kiviat plot. The axes of the kiviat plots represent the
twelve key microarchitecture-independent characteris-
tics, see the legend shown at the bottom of Figure 2.
The various rings within a kiviat plot represent the
mean value minus one standard deviation, the mean
value, and the mean value plus one standard deviation
along each dimension; the center point and the outer
ring represent the minimum and maximum, respec-
tively1. The prominent phase behaviors are character-
ized by connecting their key characteristics to form a

1The maximum value can be smaller than the mean value plus one stan-
dard deviation, and likewise, the minimum value can be larger than the
mean value minus one standard deviation, as is the case for some charac-
teristics, see the legend of Figure 2.



dark gray area; this dark gray area visualizes a phase’s
inherent behavior.

• Benchmark list. Next to each kiviat plot we also show
a box with a list of the benchmarks that are represented
by the given cluster. The percentage between brackets
denotes the fraction of the benchmark’s execution that
is represented by the given cluster. For example, see
the top-left cluster representation in Figure 2, 31.56%
of Fasta’s execution is represented by the given clus-
ter. The benchmarks for which this fraction is less than
2% are grouped under the ‘other’ label.

• Pie chart. The pie chart next to each kiviat plot shows
the weight that each represented benchmark has in the
cluster. For example, the top-left cluster representation
in Figure 2 shows that Fasta accounts for 100% of the
cluster, i.e., there are no other benchmarks that it rep-
resents. As another example, the bottom-right cluster
representation in Figure 3 shows that GemsFDTD ac-
counts for 37% of the cluster, while soplex accounts
for 61%, and 6 other benchmarks account for 2% col-
lectively.

4.2 Getting insight

This visualization provides a number of interesting in-
sights. To facilitate the discussion and to illustrate the
level of insight these kiviat plots can provide, we organized
the cluster representations in Figures 2 and 3 along three
groups. We make a distinction between benchmark-specific
clusters (clusters which represent phase behaviors for a sin-
gle benchmark), suite-specific clusters (clusters which rep-
resent phase behaviors from multiple benchmarks from a
single benchmark suite), and mixed clusters (clusters which
represent phase behaviors from multiple benchmarks from
multiple benchmark suites).

The benchmark-specific clusters represent unique behav-
iors not observed in other benchmarks. The BioPerf and
SPEC CPU2006 benchmark suites, and to a lesser extent
also the SPECfp2000 and BioMetricsWorkload benchmark
suites, exhibit a number of unique behaviors (see Figure 2)
and the kiviat plots provide insight into why these behaviors
are unique. For example, most of BioPerf’s Grappa execu-
tion exhibits a large number of string operations along with
a large number of global small-distance strides (smaller
than 64).

These kiviat plots also present an interesting view on per-
benchmark phase behavior. For example, SPEC CPU2006’s
astar seems to be partitioned across two prominent phase
behaviors (see the top-left cluster representation in the
SPECint2006 subgroup of Figure 2 and the rightmost clus-
ter representation on the fourth row of the mixed clusters
group in Figure 3). In particular, 23.22% and 62.08% of

the dynamic instruction stream of astar is represented by
these clusters, respectively. The kiviat plots provide an
easy-to-understand view on how these phase behaviors dif-
fer from each other: the mixed-cluster phase in astar shows
significantly better data locality (see the global load stride
probabilities) and better branch predictability, along with a
smaller transition rate compared to the benchmark-specific
phase. In fact, the benchmark-specific phase in astar shows
the worst branch predictability overall.

The mixed clusters show prominent phase behaviors ob-
served across various benchmarks (from various benchmark
suites); in general, these mixed clusters represent more
average behavior than the benchmark-specific and suite-
specific clusters. One interesting mixed cluster example is
the ‘hmmer’ cluster which includes the SPEC CPU2006
integer hmmer benchmark and the BioPerf Hmmer bench-
mark (see the rightmost cluster representation on the sec-
ond row of the mixed clusters group in Figure 3 and the
Hmmer cluster in the BioPerf benchmark-specific group in
Figure 2, respectively). A major part (68.06%) of the SPEC
CPU2006 version resembles only a small part (5.07%) of
the BioPerf version. The remaining major part (59.44%) of
the BioPerf version shows dissimilar behavior compared to
the SPEC CPU2006 version in terms of branch predictabil-
ity and number of register operands, see Figure 2.

5 Comparing the Uniqueness and Diversity
of Benchmark Suites

We now use the results obtained from the phase-level
characterization to study the coverage, diversity and unique-
ness of the various benchmark suites — for this purpose,
we now consider all 300 phase-level behaviors, not just the
100 most prominent phase behaviors as done in the previous
section. Subsequently, we then discuss the implications of
these observations for simulation-based performance evalu-
ation.

5.1 Coverage and diversity

As a first step, we quantify a benchmark suite’s work-
load space coverage, or how much a benchmark suite cov-
ers the entire workload space. Figure 4 shows the number
of clusters (out of the 300) that represent some part of the
benchmark suite, e.g., 136 and 158 of the clusters represent
(at least one interval from) SPECint2006 and SPECfp2006,
respectively. We observe that both the SPEC CPU2000
and SPEC CPU2006 benchmark suites cover the largest
part of the workload space; and CPU2006 does even more
so than CPU2000, for both the integer and floating-point
benchmarks. This reflects SPEC CPU’s property of being a
general-purpose application benchmark suite. The emerg-
ing benchmark suites, BioPerf, BioMetricsWorkload and
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Figure 2. Kiviat plots (part I) presenting the phase-level workload characterization.
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Figure 3. Kiviat plots (part II) presenting the phase-level workload characterization.
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Figure 4. Workload space coverage per
benchmark suite.
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Figure 5. Cumulative coverage per bench-
mark suite as a function of the number of
clusters.

MediaBench II, cover a much narrower part of the work-
load space, reflecting the fact that these benchmark suites
are tied to a specific application domain.

As a subsequent step, we quantify the diversity within
a benchmark suite. This is done by computing the cumu-
lative number of clusters needed to represent a given frac-
tion of the given benchmark suite. The results are shown in
Figure 5: the cumulative coverage is shown per benchmark
suite as a function of the number of clusters. For example,
this graph shows that about 20 clusters are required to cover
80% of the SPECfp2006 benchmark suite; or, only 5 clus-
ters are required to cover 90% of the BioPerf benchmark
suite. The lower the curve for a given benchmark suite, the
more clusters are required to cover a given percentage of
the entire benchmark suite, and thus the higher the diversity.
We observe that the domain-specific benchmark suites show
a relatively low diversity compared to the general-purpose
benchmark suites.

We thus conclude from this section that BioPerf, Bio-
MetricsWorkload and MediaBench II cover a much nar-
rower part of the workload space than SPEC CPU, and
in addition, the number of distinct behaviors within these
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Figure 6. Fraction of a benchmark suite that
represents unique program behavior not ob-
served in the other benchmark suites.

benchmark suites is much smaller than for SPEC CPU. This
analysis thus provides experimental evidence for the intu-
itive understanding that domain-specific benchmark suites
represent a smaller part of the workload space than general-
purpose benchmark suites do.

5.2 Uniqueness

We now quantify a benchmark suite’s uniqueness with
respect to the other benchmark suites. To do so, we compute
the fraction of a given benchmark suite that is represented
by clusters that contain data for the given benchmark suite
only, see Figure 6. For example, 65% of the BioPerf bench-
mark suite execution is represented by either benchmark-
specific or suite-specific clusters. In other words, 65% of
the BioPerf benchmark suite exhibit unique program be-
havior not observed in other benchmark suites. This is the
highest fraction observed among the benchmark suites an-
alyzed. Also SPEC CPU2006 exhibits a fairly large frac-
tion of unique program behavior, namely 39% and 51% for
SPECint2006 and SPECfp2006, respectively. The floating-
point SPEC CPU benchmark suites exhibit more unique be-
havior than the integer SPEC CPU benchmark suites, for
both CPU2000 and CPU2006. The other domain-specific
benchmark suites, MediaBench II and BioMetricsWork-
load, represent substantially less unique program behavior
with fractions of unique program behavior, namely 19% and
29%, respectively.

5.3 Implications

The results obtained in the previous sections present a
number of implications to performance evaluation. First,
since SPEC CPU2006 exhibits a slightly larger diversity
than its predecessor (see Figure 5), this implies that only
a slightly larger number of representative samples or sim-



ulation points need to be simulated for CPU2006 as for
CPU2000 in order to cover all major phase-level behaviors
in the benchmark suite. Second, BioPerf shows a large frac-
tion unique behavior not observed in the other benchmark
suites. For this reason, BioPerf is a good candidate bench-
mark suite for performance evaluation, i.e., because the
MediaBench II and BioMetricsWorkload benchmark suites
represent much less unique behaviors than CPU2006 and
BioPerf, in case one is pressed on simulation time, it may
not be worth the effort to simulate MediaBench II and Bio-
MetricsWorkload; the additional insights may not pay off
the additional simulation time.

6 Related work

A large body of related work has been done which we
summarize in this section.

6.1 Phase behavior

It is well known that a computer program typically goes
through a number of phases during its execution. A pro-
gram phase is characterized by its relatively homogeneous
behavior within the phase while showing distinct behav-
ior across phases. Different approaches have been pro-
posed in the recent literature to identify program phases.
Duesterwald et al. [7] identify and predict program phase
behavior based on microarchitecture-dependent character-
istics such as IPC, cache miss rates, branch misprediction
rates, etc. Other researchers characterize program phase
behavior in a microarchitecture-independent manner. The
advantage of a microarchitecture-independent characteriza-
tion is that it applies across different microarchitectures —
this is especially valuable when using program phase be-
havior to drive software or hardware optimization. Several
approaches to characterizing program phase behavior in a
microarchitecture-independent manner have been proposed.
Dhodapkar and Smith [5] track the instruction footprint to
detect program phase transitions. Sherwood et al. [24] com-
pute Basic Block Vectors (BBV) — a BBV computes the
number of times a basic block has been executed in a given
instruction interval. Lau et al. [17] found that BBVs cor-
relate strongly with performance characteristics. Huang et
al. [14] relate phase behavior to methods and loops being
executed. Yet other papers identify phase behavior based
on other microarchitecture-independent characteristics such
as memory access patterns [18, 23] or a wide variety of
program characteristics [8] — the advantage of these ap-
proaches over instruction footprints and BBVs is that they
can be used to compare phase behaviors across benchmarks.

Various researchers have proposed to exploit phase be-
havior for a variety of applications. One application to
phase analysis is hardware adaptation for energy saving [2,

6, 14, 25]. The idea there is to adapt the hardware on a per-
phase basis so that energy consumption is reduced while
not affecting overall performance. Another application is
software profiling and optimization [10, 21]. Yet another
application is simulation acceleration [8, 22, 24] by pick-
ing and simulating only one representative simulation point
per phase. SimPoint [22, 24] identifies simulation points
by analyzing program behavior within a single benchmark.
Eeckhout et al. [8] identify simulation points across bench-
marks by exploiting phase-level program similarity across
benchmarks — this results in a smaller overall number of
representative phases than using SimPoint.

6.2 Workload characterization

Many workload characterization studies characterize
workload behavior in terms of microarchitecture-dependent
metrics such as IPC, cache miss rates, branch mispredic-
tion rates, etc. To do so, most of these studies employ
hardware performance counters or rely on simulation [26].
We advocate characterizing workload behavior in terms
of microarchitecture-independent workload characteristics,
see also our prior work [11, 12, 13, 16]. These charac-
teristics can then serve as input to a PCA-based work-
load analysis methodology to select a limited set of rep-
resentative benchmarks to represent a much broader spec-
trum of benchmarks [8, 9, 16]. Such a methodology has
a number of applications, such as program behavior char-
acterization [11], simulation time reduction [8], benchmark
suite composition [9], performance prediction [13] and an-
alyzing benchmark drift [16]. This paper differs from
this prior work in its aim at visualizing microarchitecture-
independent program behavior at the phase level in an easy-
to-understand manner. There are two primary reasons mo-
tivating this approach. For one, a phase-level characteri-
zation provides more information compared to an aggre-
gate analysis. Second, the characterization data at the phase
level is valuable as a complement to simulation results to
gain insight into how inherent program characteristics affect
performance — because simulating a complete benchmark
execution is too time-consuming, simulation is done at the
phase level anyway.

7 Conclusion

Phase-level workload characterization is more informa-
tive than aggregate program analysis because it provides in-
sight into a program’s time-varying behavior. This paper
described a methodology to characterize general-purpose
and domain-specific benchmark suites at the phase level in
a microarchitecture-independent manner. The key feature
of this phase-level workload characterization methodology
is that it gives insight into the inherent behavior of the most



prominent phase behaviors across a set of benchmarks. Ap-
plying this methodology to characterize existing and emerg-
ing benchmark suites (SPEC CPU2000, SPEC CPU2006,
BioPerf, BioMetricsWorkload and MediaBench II) leads
to a number of interesting conclusions. For one, SPEC
CPU2006 has a larger workload space coverage than its pre-
decessor, SPEC CPU2000, and any of the other benchmark
suites included in our setup. Second, the domain-specific
benchmark suites cover a narrower subspace in the work-
load space than general-purpose benchmark suites. Third,
the BioPerf domain-specific benchmark suite exhibits a
large fraction unique phase-level behaviors, more so than
any other benchmark suite included in this work.
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