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ABSTRACT
Current practice in benchmarking commercial computer systems
is to run a number of industry-standard benchmarks and to report
performance numbers. The huge amount of machines and the large
number of benchmarks for which performance numbers are pub-
lished make it hard to observe clear performance trends though. In
addition, these performance numbers for specific benchmarks do
not provide insight into how applications of interest that are not
part of the benchmark suite would perform on those machines.

In this work we build a methodology for analyzing published
commercial machine performance data sets. We apply statistical
data analysis techniques, more in particular principal components
analysis and cluster analysis, to reduce the amount of information
to a manageable amount to facilitate its understanding. Visuali-
zing SPEC CPU2000 performance numbers for 26 benchmarks and
1000+ machines in just a few graphs gives insight into how com-
mercial machines compare against each other.

In addition, we provide a way of relating inherent program be-
havior to these performance numbers so that insights can be gained
into how the observed performance trends relate to the behavioral
characteristics of computer programs. This results in a methodo-
logy for the ubiquitous benchmarking problem of predicting per-
formance of an application of interest based on its similarities with
the benchmarks in a published industry-standard benchmark suite.

Categories and Subject Descriptors
C.4 [Performance of systems]: Modeling techniques

General Terms
Design, Performance, Experimentation

Keywords
Performance analysis, benchmark similarity, performance predic-
tion

1. INTRODUCTION
In order to characterize commercial machines, current practice is

to run industry-standard benchmarks on those machines and to pub-
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licly report performance numbers. This practice is adopted by va-
rious benchmarking consortiums and corporations such as EEMBC
for embedded systems, TPC for database systems and SPEC for
high-performance computer systems. The information obtained
from these benchmarking experiments provide valuable informa-
tion for comparing existing commercial machines across a broad
range of applications. This enables computer buyers to make ap-
propriate decisions when purchasing a computer system.

The information provided by these performance evaluation stu-
dies consists of performance numbers for individual benchmarks
on all of the reported machines. There are two consequences to
this. First, given the large amount of data provided, it is difficult to
get a good understanding on how performance on the various ma-
chines is affected by inherent program behavior. Second, the data
presented by these sources show performance numbers for specific
benchmarks. This may not provide a clue though about the perfor-
mance of a given application of interest.

The goal of our work is to address these two concerns. First, we
propose the use of statistical data analysis techniques such as prin-
cipal components analysis (PCA) to identify performance trends
across the various machines and benchmarks. The important be-
nefit of using PCA is that a large data set is reduced to a tractable
amount of information, just a few graphs visualizing how machines
perform on the various benchmarks. This enables the easy under-
standing of how commercial machines compare against each other.
As a second step, we use this information to build models for pre-
dicting performance of an application of interest. This is done by
clustering machines that show similar behavior across benchmarks,
and by building performance models per group of similarly beha-
ving machines. These performance models use a genetic algorithm
to learn how to relate inherent program behavior to performance.
The performance of an application of interest on a machine of in-
terest is then estimated by (i) profiling the inherent program behav-
ior of the application of interest, (ii) using the performance model
to find to which benchmarks in the benchmark suite the application
of interest most closely resembles, and (iii) weighting the perfor-
mance numbers for the most similar benchmarks to come up with
a performance estimate for the application of interest on the ma-
chines of interest.

2. PERFORMANCE ANALYSIS
Our data set contains performance numbers for the industry-

standard benchmarks on a number of commercial machines. The
commercial machine performance numbers that we use in this pa-
per are real hardware speedup numbers reported on the SPEC CPU
website. In total, there are 26 performance numbers (one per bench-
mark) for 1000+ machines in our data set.

For gaining insight in this large data set, we use principal com-



Figure 1: Framework for predicting performance of an application of interest based on its microarchitecture-independent program
behavior and its similarity with benchmarks from a reference benchmark suite.

Figure 2: Visualizing the PCA space obtained from the SPEC
CPU2000 performance numbers. The various symbols reflect
different ISAs.

ponents analysis (PCA). PCA computes so called principal com-
ponents, which are linear combinations of the original variables,
such that all principal components are uncorrelated. PCA trans-
forms the p variables X1, X2, . . . , Xp into p principal components
Z1, Z2, . . . , Zp with Zi =

Pp
j=1 aijXj . This transformation has

the properties (i) V ar[Z1] ≥ V ar[Z2] ≥ . . . ≥ V ar[Zp] — this
means Z1 contains the most information and Zp the least; and (ii)
Cov[Zi, Zj ] = 0, ∀i 6= j — this means there is no information
overlap between the principal components.

Figure 2 shows the 1000+ machines plotted in a two-dimensional
space built up by the two most significant principal components.
The first and second principal components explain 80.1% and 9.1%
of the total variance, respectively. Interpreting the meaning of the
principal components shows that a high value along the first princi-
pal component indicates high average performance across all bench-
marks; and a high value along the second principal component in-
dicates a high average performance for the floating-point bench-
marks. This means that machines, such as the AMD64 and EM64T
machines, having a high score along the first principal component
and a low score along the second principal component achieve high
average performance, more so for integer than for floating-point
benchmarks. The PowerPC and IA-64 machines on the other hand
have a high score along the second principal component indica-
ting that they achieve relatively higher performance for the floating-
point than for the integer benchmarks.

3. PERFORMANCE PREDICTION
We now take this performance analysis methodology one step

further in order to predict performance for an application of inter-
est based on its inherent program similarity with the benchmarks
in the industry-standard benchmark suite. The performance pre-
diction framework that we propose is to first apply cluster ana-
lysis to identify groups of similarly behaving machines based on
the reported processor performance numbers — Figure 2 illustrates
that groups of machines exist. As a second step, for each cluster
of machines, we then build a performance model using a genetic
algorithm that learns how to relate microarchitecture-independent
characteristics to performance.

Figure 1 illustrates how we build the performance model — we
refer to [1] for a more detailed description since we will only briefly
summarize the method in what follows. Our approach assumes a
collection of programs which we call the benchmark suite. For each
of these benchmarks, we have a collection of microarchitecture-
independent characteristics as well as performance numbers on a
(number of) platform(s). These microarchitecture-independent char-
acteristics along with the performance numbers are then used to
compute data transformation weights to weight the original microar-
chitecture-independent characteristics. We use a genetic algorithm
to compute the data transformation weights. The key observation
that motivates us using a genetic algorithm is that when using the
Euclidean distance in the unscaled microarchitecture-independent
benchmark space, all microarchitecture-independent characteristics
are implicitly assumed to have the same impact on overall perfor-
mance. By multiplying program characteristics by the weights ob-
tained through the genetic algorithm, a higher or lower impact can
be given to particular characteristics. In other words, the goal of the
genetic algorithm is to learn how to weight the various microarchitec-
ture-independent characteristics so that the Euclidean distance in
the rescaled benchmark space is a good measure for the perfor-
mance (in)differences between benchmarks across the machines.

For an application of interest for which we want to predict perfor-
mance, we then compute the set of microarchitecture-independent
characteristics and subsequently weight these microarchitecture-in-
dependent characteristics. This locates the application of interest
in the benchmark space. Performance is then predicted by appro-
priately weighting the performance numbers of the benchmarks,
called proxies, in the neighborhood of the application of interest.
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