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Abstract— Understanding the behavior of emerging workloads
is important for designing next generation microprocessors.
For addressing this issue, computer architects and performance
analysts build benchmark suites of new application domains and
compare the behavioral characteristics of these benchmark suites
against well-known benchmark suites. Current practice typically
compares workloads based on microarchitecture-dependent char-
acteristics generated from running these workloads on real hard-
ware. There is one pitfall though with comparing benchmarks
using microarchitecture-dependent characteristics, namely that
completely different inherent program behavior may yield similar
microarchitecture-dependent behavior.

This paper proposes a methodology for characterizing bench-
marks based on microarchitecture-independent characteristics.
This methodology minimizes the number of inherent program
characteristics that need to be measured by exploiting correlation
between program characteristics. In fact, we reduce our 47-
dimensional space to an 8-dimensional space without compro-
mising the methodology’s ability to compare benchmarks. The
important benefits of this methodology are that (i) only a limited
number of microarchitecture-independent characteristics need to
be measured, and (ii) the resulting workload characterization
is easy to interpret. Using this methodology we compare 122
benchmarks from 6 recently proposed benchmark suites. We
conclude that some benchmarks in emerging benchmark suites
are indeed similar to benchmarks from well-known benchmark
suites as suggested through a microarchitecture-dependent char-
acterization. However, other benchmarks are dissimilar based
on a microarchitecture-independent characterization although a
microarchitecture-dependent characterization suggests the oppo-
site to be true.

I. INTRODUCTION

The types of applications that are being run on our computer
systems is constantly evolving. The reason is twofold. First,
computer users constantly come up with new desires which
drives software companies into the development of new appli-
cations. Second, advances in technology constantly improve
compute power which drives the development of applications
with increased capabilities.

Computer architects and performance analysts are well
aware of this phenomenon and are therefore constantly looking
for new emerging workloads so that their newly designed
microprocessor performs well on these new application areas.
Whenever an emerging workload is identified, computer archi-
tects and performance analysts typically collect a number of
benchmarks that represents this emerging workload. Examples
of recently introduced benchmark suites covering emerging
workloads are MediaBench [1] for multimedia workloads,

MiBench [2] and EEMBC1 for embedded workloads, BioMet-
ricsWorkload [3] for biometrics workloads, BioInfoMark [4]
and BioPerf [5] for bioinformatics workloads, etc. The key
question however is how different these workloads are com-
pared to already existing, and well known benchmark suites.
Answering this question is important for a number of reasons.
First, it provides insight into whether the next generation
microprocessors need to be designed differently compared to
today’s machines because of the emerging workloads. Second,
if the new workload domain is not significantly different
from well-known benchmark suites, then there is no need for
including those benchmarks in the design process. Simulating
those additional benchmarks would only add to the overall
simulation time without providing additional insight.

In order to answer the question of how different these
emerging workloads are from already existing benchmark
suites, researchers typically characterize the emerging work-
load benchmark suite by comparing the characteristics of
these benchmarks versus the characteristics of well-known
benchmark suites. Current practice in comparing benchmark
suites is to characterize the suites in terms of a number of
microarchitecture-dependent metrics. Most workload charac-
terization papers run the benchmark suite that represents the
emerging workload on a given microprocessor while mea-
suring program characteristics using hardware performance
counters; others use simulation for deriving similar results.
The program characteristics typically being measured are
instruction mix along with a number of microarchitecture-
dependent characteristics such as IPC, cache miss rates, branch
misprediction rates, TLB miss rates, etc. These studies then
conclude by saying that two workloads are dissimilar if the
hardware performance counter characteristics are dissimilar
to each other; and reverse, two workloads are similar if the
hardware performance counter characteristics are similar to
each other.

There is one major pitfall though with this approach.
Program characteristics measured using hardware performance
counters may hide the underlying inherent program behavior,
i.e., although the hardware performance counter metrics may
be similar to each other, the inherent program behavior can
be different. And this can be misleading for driving micro-
processor design, especially when today’s processors are used
for characterizing emerging workloads that will eventually run
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on future processors [6]. As a solution to this problem, we
propose to characterize benchmarks using microarchitecture-
independent characteristics in order to capture the true inherent
program behavior. The downside of using microarchitecture-
independent characteristics however is that simulation or in-
strumentation is needed for collecting these characteristics;
this is substantially slower than collecting hardware perfor-
mance counter values. In order to address this issue, we
show how to exploit the correlation that exists between
microarchitecture-independent characteristics for reducing the
number of microarchitecture-independent characteristics that
need to be measured. In fact, we reduce the 47-dimensional
workload space to an 8-dimensional space with the eight
dimensions being eight key inherent program characteristics.
As such, only 8 program characteristics need to be measured
which is an approximate 3X speedup compared to measuring
all 47 program characteristics.

This paper makes the following contributions:
• We show that measuring benchmark similarity based on

program characteristics obtained from hardware perfor-
mance counters can be misleading. In fact, we present
a case study showing benchmarks that exhibit similar
behavior in terms of the hardware performance counter
metrics, however, the underlying inherent program beha-
vior is quite different.

• We present a workload characterization methodology
based on microarchitecture-independent characteristics
that is more efficient than previously proposed method-
ologies using principal components analysis (PCA) [7],
[8], [9]. There are two major advances over this prior
work: (i) the characterization itself is done faster because
fewer characteristics need to be measured, and (ii) the
dimensions in the workload space have a more intuitive
meaning.

• Using this methodology we compare 122 benchmarks
from 6 recently introduced benchmark suites based on
their inherent behavior. We conclude that many bench-
marks from the BioInfoMark, BioMetricsWorkload and
CommBench benchmark suites exhibit dissimilar beha-
vior from SPEC CPU. Benchmarks from MediaBench
and MiBench on the other hand, tend to exhibit similar
behavior compared to SPEC CPU2000.

II. EXPERIMENTAL SETUP

We use the benchmarks as shown in Table I. There are 122
benchmarks in total from 6 benchmark suites: BioInfomark [4]
covering a bioinformatic workload, BioMetricsWorkload [3]
covering a biometric workload, CommBench [10] covering a
telecommunication workload, MediaBench [1] covering a mul-
timedia workload, MiBench [2] covering embedded workloads
and SPEC CPU20002 covering general-purpose workloads.
For all benchmarks we use the largest available input. All
benchmarks are compiled for the Alpha ISA using the Compaq
cc compiler v6.3-025 for the C benchmarks, the GCC g++
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v2.95.2 for the C++ benchmarks and the Compaq f77 com-
piler X5.3-1155 for the Fortran benchmarks. The optimization
flags were set to -O3 -ifo.

III. PROGRAM CHARACTERIZATION METHODOLOGIES

We use two data sets in this paper, namely a
microarchitecture-independent data set and a data set obtained
from hardware performance counter profiling. These data sets
are detailed in the following two subsections.

A. Microarchitecture-independent characterization

Table II summarizes the 47 microarchitecture-independent
characteristics that we use in this paper. The range of
microarchitecture-independent characteristics is fairly broad in
order to cover all major program behaviors such as instruction
mix, inherent ILP, working set sizes, memory strides, branch
predictability, etc. We use ATOM [11] for collecting these
characteristics. ATOM is a binary instrumentation tool that al-
lows for instrumenting functions, basic blocks and instructions.
The instrumentation itself is done offline, i.e., an instrumented
binary is stored on disk. Then the program characteristics are
measured by running the instrumented binary.

We include the following characteristics:
Instruction mix. We include the percentage of loads, stores,

control transfers, arithmetic operations, integer multiplies and
floating-point operations.

ILP. In order to quantify the amount of instruction-level
parallelism (ILP), we consider an out-of-order processor model
in which everything is idealized and unlimited except for the
window size — we assume perfect caches, perfect branch
prediction, infinite number of functional units, etc. We measure
the amount of IPC that can be achieved for an idealized
processor with a given window size of 32, 64, 128 and 256
in-flight instructions.

Register traffic characteristics. We collect a number of
characteristics concerning registers [12]. Our first characteris-
tic is the average number of input operands to an instruction.
Our second characteristic is the average degree of use, or the
average number of times a register instance is consumed (reg-
ister read) since its production (register write). The third set
of characteristics concerns the register dependency distance.
The register dependency distance is defined as the number of
dynamic instructions between writing a register and reading
it.

Working set. We characterize the working set size of the
instruction and data stream. For each benchmark, we count
how many unique 32-byte blocks were touched and how many
unique 4KB pages were touched for both instruction and data
accesses.

Data stream strides. The data stream is characterized with
respect to local and global data strides [13]. A global stride
is defined as the difference in the data memory addresses
between temporally adjacent memory accesses. A local stride
is defined identically except that both memory accesses come
from a single instruction — this is done by tracking memory
addresses for each memory operation. When computing the



TABLE I
BENCHMARKS USED IN THIS PAPER ALONG WITH THEIR INPUTS AND DYNAMIC INSTRUCTION COUNT (IN MILLIONS).

suite program input I-cnt (M)

BioInfoMark

blast protein 81,092
ce ce 4,816
clustalw clustalw 884,859
fasta fasta34 759,654
glimmer 004663 26,610
hmmer build 321

calibrate 43,048
search (artemia) 47
search (sprot) 1,785,862

phylip dnapenny 184,557
promlk 557,514

predator predator 804,859

BioMetricsWorkload

csu Bayesian (project) 403,313
Bayesian (train) 28,158
PreprocessNormalize 4,059
SubspaceProject (LDA) 6,054
SubspaceProject (PCA) 6,098
SubspaceTrain (LDA) 51,297
SubspaceTrain (PCA) 41,729

speak decode 46,648

CommBench

cast decode 130
encode 130

drr drr 235
frag frag 49
jpeg decode 238

encode 339
reed decode 1,298

encode 912
rtr rtr 1,137
tcp tcp 58
zip decode 50

encode 322

suite program input I-cnt (M)

MediaBench

epic test1 205
test2 2,296

unepic test1 35
test2 876

g721 decode 323
encode 343

ghostscript gs 868
mesa mipmap 32

osdemo 10
texgen 86

mpeg2 decode 149
encode 1,528

MiBench

CRC32 large 612
FFT fft (large) 237

fftinv (large) 217
adpcm rawcaudio 758

rawdaudio 639
basicmath large 1,523
bitcount large 681
blowfish decode 495

encode 498
dijkstra large 252
ghostscript large 868
ispell large 1,027
jpeg cjpeg 121

djpeg 24
lame large 1,199
mad large 345
patricia large 399
pgp decode 111

encode 48
qsort large 512
rsynth say (large) 775
sha large 114
susan corners (large) 29

edges (large) 73
smoothing (large) 300

tiff 2bw 143
2rgba 268
dither 1,228
median 763

typeset lout 609

suite program input I-cnt (M)

SPEC2000

ammp ref 388,534
applu ref 336,798
apsi ref 361,955
art ref-110 77,067

ref-470 84,660
bzip2 graphic 157,003

program 136,389
source 122,267

crafty ref 194,311
eon cook 100,552

kajiya 131,268
rush 73,139

equake ref 158,071
facerec ref 249,735
fma3d ref 312,960
galgel ref 326,916
gap ref 310,323
gcc 166 46,614

200 106,339
expr 11,847
integrate 13,019
scilab 60,784

gzip graphic 113,400
log 42,506
program 161,726
random 91,961
source 84,366

lucas ref 134,753
mcf ref 59,800
mesa ref 314,449
mgrid ref 440,934
parser ref 530,784
perlbmk splitmail.535 69,857

splitmail.704 73,966
splitmail.850 142,509
splitmail.957 122,893
diffmail 43,327
makerand 2,055
perfect 29,791

sixtrack ref 452,446
swim ref 221,868
twolf ref 397,222
vortex ref1 129,793

ref2 151,475
ref3 145,113

vpr place 117,001
route 82,351

wupwise ref 337,770

TABLE II
MICROARCHITECTURE-INDEPENDENT CHARACTERISTICS.

category no. characteristic
instruction mix 1 percentage loads

2 percentage stores
3 percentage control transfers
4 percentage arithmetic operations
5 percentage integer multiplies
6 percentage fp operations

ILP 7 32-entry window
8 64-entry window
9 128-entry window
10 256-entry window

register traffic 11 avg. number of input operands
12 avg. degree of use
13 prob. register dependence = 1
14 prob. register dependence ≤ 2
15 prob. register dependence ≤ 4
16 prob. register dependence ≤ 8
17 prob. register dependence ≤ 16
18 prob. register dependence ≤ 32
19 prob. register dependence ≤ 64

working set size 20 D-stream at the 32B block level
21 D-stream at the 4KB-page level
22 I-stream at the 32B block level
23 I-stream at the 4KB page level

category no. characteristic
data stream strides 24 prob. local load stride = 0

25 prob. local load stride ≤ 8
26 prob. local load stride ≤ 64
27 prob. local load stride ≤ 512
28 prob. local load stride ≤ 4096
29 prob. global load stride = 0
30 prob. global load stride ≤ 8
31 prob. global load stride ≤ 64
32 prob. global load stride ≤ 512
33 prob. global load stride ≤ 4096
34 prob. local store stride = 0
35 prob. local store stride ≤ 8
36 prob. local store stride ≤ 64
37 prob. local store stride ≤ 512
38 prob. local store stride ≤ 4096
39 prob. global store stride = 0
40 prob. global store stride ≤ 8
41 prob. global store stride ≤ 64
42 prob. global store stride ≤ 512
43 prob. global store stride ≤ 4096

branch predictability 44 GAg PPM predictor
45 PAg PPM predictor
46 GAs PPM predictor
47 PAs PPM predictor

data stream strides we make a distinction between loads and
stores.

Branch predictability. The final characteristic we want to
capture is branch behavior. The most important aspect would
be how predictable the branches are for a given benchmark. In
order to capture branch predictability in a microarchitecture-
independent manner we used the Prediction by Partial Match-

ing (PPM) predictor proposed by Chen et al. [14], which is
a universal compression/prediction technique. In this paper,
we consider four variations of the PPM predictor: GAg, PAg,
GAs and PAs. ‘G’ means global branch history whereas ‘P’
stands for per-address or local branch history; ‘g’ means one
global predictor table shared by all branches and ‘s’ means
separate tables per branch. We want to emphasize that these



Fig. 1. Distance in the hardware performance counter space versus the
distance in the microarchitecture-independent space.

characteristics for computing the branch predictability are
microarchitecture-independent. The reason is that the PPM
predictor is to be viewed as a theoretical basis for branch
prediction rather than an actual predictor that is to be built in
hardware.

B. Hardware performance counter characterization

The hardware performance counter metrics that we use in
this paper are typical for what is being observed in many work-
load characterization papers. We collect hardware performance
counter values for IPC, branch misprediction rate, L1 D-cache
miss rate, L1 I-cache miss rate, L2 cache miss rate and D-TLB
miss rate. The machine on which we collect these hardware
performance counter values is the Alpha 21164A processor.
The Alpha 21164A (EV56) processor in an in-order dual-
pipeline superscalar processor. We use the dcpi-tool [15] for
collecting these hardware performance counter values. Next
to the above hardware counter values we also collect the IPC
on the Alpha 21264A (EV67) which is an out-order four-wide
superscalar processor. The reason we do not have cache miss
rates and branch misprediction rates on the Alpha 21264A
is that the dcpi-tool does not allow for directly measuring
cache miss rates and branch misprediction rates on the Alpha
21264A processor.

IV. PITFALL IN HARDWARE PERFORMANCE COUNTER
BASED PROGRAM CHARACTERIZATION

As mentioned in the introduction, comparing bench-
marks based on microarchitecture-dependent characteristcs
can be misleading. The fundamental reason is that differ-
ent inherent (microarchitecture-independent) program beha-
vior can yield similar microarchitecture behavior. The pitfall
of microarchitecture-dependent characterization is that the
conclusions taken based on this microarchitecture-dependent
characterization may not be generalized to other microarchi-
tectures.

In order to quantify this we have done the following ex-
periment. We build two workload spaces, a microarchitecture-
dependent workload space using the hardware performance
counter metrics from section III-B and a microarchitecture-
independent workload space using the metrics from section III-
A. These spaces are built up by normalizing both the hardware
performance counter data set as well as the microarchitecture-
independent data set, i.e., the mean is zero and the standard
deviation is one for all characteristics across all benchmarks.
The goal of this normalization step is to put all characteristics
on a common scale. In both spaces, we then compute the Eu-
clidean distance between all benchmark tuples. Figure 1 shows
the distance in the hardware performance counter space on
the vertical axis versus the distance in the microarchitecture-
independent space on the horizontal axis. Each dot represents
a benchmark tuple. We observe that the correlation between
the distance in the hardware performance counter space and
the microarchitecture-independent space is modest with a
correlation coefficient of 0.46.

As a subsequent step in the analysis, we classify all bench-
mark tuples into four categories according to the distances in
the hardware performance counter space versus the distance
in the microarchitecture-independent workload space, see also
Figure 1. The threshold distance in the hardware performance
counter space and microarchitecture-independent space are
20% of the maximum distance observed in both spaces. Ob-
viously, these thresholds are subjective, however, we believe
these thresholds are reasonable for the purpose of identifying
program similarity in terms of microarchitecture-dependent
and microarchitecture-independent behavior. A distance in the
hardware performance counter space is called to be large in
case the distance is larger than 20% of the maximum dis-
tance observed; likewise for the microarchitecture-independent
space, a distance is called to be large if the distance is larger
than 20% of the maximum distance observed. A benchmark
tuple is categorized as a true positive in case a large distance
in the hardware performance counter space occurs along with
a large distance in the microarchitecture-independent space;
a benchmark tuple is categorized as a true negative in case
a small distance in the hardware performance counter space
occurs along with a small distance in the microarchitecture-
independent space. Likewise we can define a false positive as
well as a false negative.

Table III summarizes the result of this experiment. The
fraction benchmark tuples is shown for all four categories.
There are a number of interesting observations to be made
from this analysis. First, the number of benchmark tuples
categorized as a false negative is small, less than 1%. This
shows that the microarchitecture-independent workload anal-
ysis is capable of identifying program similarity: very few
benchmark tuples that are found to behave similarly in terms of
microarchitecture-independent characteristics show dissimilar
behavior in terms of their hardware performance counter
behavior. Second, we observe that there is a large fraction
of benchmark tuples categorized as a false positive (41% of
all benchmark tuples). This corresponds to similarly behav-



TABLE III
CLASSIFYING BENCHMARK TUPLES ACCORDING TO THEIR HARDWARE PERFORMANCE COUNTER BEHAVIOR VERSUS THEIR

MICROARCHITECTURE-INDEPENDENT BEHAVIOR.

small distance in uarch-indep space large distance in uarch-indep space
large distance in hardware performance counter space false negative: 0.2% true positive: 56.9%
small distance in hardware performance counter space true negative: 1.8% false positive: 41.1%

ing benchmarks in the hardware performance counter space
while exhibiting dissimilar behavior in the microarchitecture-
independent space. The fact that this fraction is fairly large
explains the modest correlation coefficient in Figure 1 and
illustrates that program characterization based on hardware
performance counter values can be misleading in a fair amount
of cases.

We now further illustrate this pitfall in hardware perfor-
mance counter program characterization by looking into an
example, namely SPEC CPU’s bzip2 versus BioInfoMark’s
blast. Figures 2 and 3 show normalized metrics in the hard-
ware performance counter space and the microarchitecture-
independent space, respectively; normalization is done per
individual characteristic by dividing the measured value by
the maximum value observed across the various benchmark
tuples. Note that we use the instruction mix here as part of
the hardware performance counter characterization as is done
in many workload characterization papers. Figure 2 shows
that the hardware performance counter metrics are similar be-
tween bzip2 and blast. However, the other microarchitecture-
independent program characteristics are fairly different, as
illustrated in Figure 3. The most strikingly different character-
istics are the working set sizes for both the instruction stream
and the data stream. Also the branch predictability based on
global history seems to be fairly dissimilar; another example of
dissimilar inherent program behavior is the amount of global
store strides.

V. TOWARDS AN EFFICIENT
MICROARCHITECTURE-INDEPENDENT WORKLOAD

CHARACTERIZATION METHODOLOGY

Since characterizing benchmarks based on program met-
rics obtained from hardware performance counters can
be misleading, we propose the use of microarchitecture-
independent program characteristics. However, the down-
side of microarchitecture-independent program characteriza-
tion compared to using hardware performance counters is
that it requires extensive instrumentation or simulation runs
which can be time-consuming. Instrumentation and simulation
are several orders of magnitude slower than native hard-
ware execution. For example, in our setup, measuring all
the microarchitecture-independent characteristics from Table II
through instrumentation takes about 110 machine-days on a
600MHz Alpha 21264A machine. Measuring the hardware
performance counter values on the Alpha 21164A machine
takes only 4 machine-days. Note that we had to run the
benchmarks multiple times in order to collect all hardware per-
formance counter values and microarchitecture-independent
characteristics.

In order to reduce the time required during
microarchitecture-independent program characterization,
we propose to reduce the number of microarchitecture-
independent characteristics that are to be measured. We
propose and evaluate two approaches for achieving this.

A. Correlation elimination

The first approach, called correlation elimination, works
as follows. For each program characteristic, we compute the
correlation coefficient with all the other program characteris-
tics and subsequently take the average over these correlation
coefficients. All program characteristics are then ranked by
their average correlation coefficient. The program character-
istic that shows the highest average correlation coefficient
thus contains the least additional information compared to
all the other program characteristics. This motivates us to
remove this program characteristic from the data set which
reduces the N -dimensional data set to an (N−1)-dimensional
space. This process is iterated by progressively removing pro-
gram characteristics. By eliminating highly correlated program
characteristics, we reduce the dimensionality of the data set
without loosing the insight that the workload characterization
provides.

B. Genetic algorithm

The second approach that we evaluate for reducing the
number of microarchitecture-independent characteristics uses
a genetic algorithm. A genetic algorithm is an evolutionary
optimization method that starts from a population of solutions.
For each solution in the population, a fitness score is computed
and the solutions with the highest fitness score are selected
for constructing the next generation. This is done by applying
mutation and crossover on the selected solutions from the
previous generation. Mutation randomly changes a single
solution; crossover generates new solutions by mixing existing
solutions. This algorithm is repeated, i.e., new generations are
constructed, until no more improvement is observed for the
fitness score.

A solution in our case, is a series of N 0’s and 1’s,
with N being the number of microarchitecture-independent
characteristics. A ‘1’ selects a program characteristic and
a ‘0’ excludes a program characteristic. The fitness score
f = ρ · (1 − n/N) that we use here consists of two factors.
The first factor is the correlation coefficient ρ of the distance
between the benchmark tuples in the original data set versus
the distance between the benchmark tuples in the reduced
data set. In other words, the genetic algorithm tries to find
a subset of the program characteristics in the original data
set that correlates well with the original data set. The second



Fig. 2. Comparing the hardware performance counter characteristics for bzip2 versus blast.

Fig. 3. Comparing the microarchitecture-independent characteristics for bzip2 versus blast. Note that the various microarchitecture-independent characteristics
appear in the same order as they appear in Table II.

factor is (1 − n/N) with n being the number of selected
program characteristics, or in other words, the number of
1’s. The purpose of this second factor is to minimize the
number of program characteristics to be selected in the reduced
space. The end result of the genetic algorithm is a limited
number of program characteristics that allow for an accurate
microarchitecture-independent program characterization.

C. Discussion

The goal of these two methods, correlation elimination
and the genetic algorithm, is to select a number of key
microarchitecture-independent program characteristics. This is
an advance over prior work done on characterizing workloads
through principal components analysis (PCA) [7], [8], [9],
[16], [17]. The goal of PCA is to remove correlation from
a data set so that the original data set can be faithfully

represented by a lower-dimensional data set. The methods
presented here are different in two ways. First, although
all three methods reduce the dimensionality of the data set,
PCA still requires that all original program characteristics be
measured. As such, collecting all program characteristics as
required by PCA takes longer than collecting the program
characteristics determined by correlation elimination and the
genetic algorithm. The second advantage of the methods
presented here in this paper is that the dimensions of the
lower-dimensional data set are easier to interpret because the
dimensions are microarchitecture-independent program char-
acteristics. For PCA on the other hand, the dimensions are
linear combinations of program characteristics which is more
difficult to get an intuitive understanding.



Fig. 4. ROC curves for the all characteristics methods, the correlation
elimination method and the genetic algorithm.

D. Evaluation

We now evaluate the correlation elimination and genetic
algorithm methods for identifying key microarchitecture-
independent program characteristics. This evaluation is done
using the receiver operating characteristic (ROC) curve be-
cause the ROC curve quantifies how well a workload char-
acterization method is capable of identifying similar program
behavior. A ROC curve is a well known method originating
from signal detection theory that plots the sensitivity versus
one minus the specificity. In our context, the sensitivity or the
true positive rate is defined as the fraction benchmark tuples
for which a large distance is observed in the microarchitecture-
independent space in case a large distance is observed in
the hardware performance counter space. The specificity is
the fraction of benchmark tuples where a small distance is
observed in the microarchitecture-independent space in case
the distance is also small in the hardware performance counter
space. Ideally, we want both the sensitivity and the specificity
to be close to 1. However, for the purpose of finding program
similarity, the key point is to minimize the fraction of false
negatives, or in other words, to increase the probability that
similar microarchitecture-independent behavior corresponds to
similar microarchitecture-dependent behavior. In practice, this
means that the sensitivity should be high along with a low
specificity.

Figure 4 shows the ROC curves for various workload char-
acterization methods. The more a ROC curve approaches the
point (0, 1) (the left upper corner) in this plot, the better. The
classification threshold in the hardware performance counter
space is fixed and is set to 20% of the maximum distance
observed over all benchmark tuples. The various points on
each ROC curve represent different classification thresholds in
the microarchitecture-independent space. We observe that the
ROC curve for the genetic algorithm outperforms the ROC
curves for the correlation elimination method; the ROC curve
for the genetic algorithm approaches the ‘all characteristics’

Fig. 5. The correlation coefficient of the distances between all benchmark tu-
ples for the ‘all characteristics’ method versus the distances for the correlation
elimination method and the genetic algorithm.

TABLE IV
THE MICROARCHITECTURE-INDEPENDENT CHARACTERISTICS SELECTED

BY THE GENETIC ALGORITHM.

1 percentage loads
2 average number of input operands
3 probability for a register dependence distance ≤ 8
4 probability for a local load stride ≤ 64
5 probability for a global load stride ≤ 512
6 probability for a local store stride ≤ 4096
7 D-stream working set size at the 4KB page level
8 ILP for a 256-entry window

ROC curve more closely than the correlation elimination ROC
curves do. This can be quantified using the area under the ROC
curve. The area under the ‘all characteristics’ ROC curve is
0.72; the area under the genetic algorithm ROC curve is 0.69
and the area under the correlation elimination ROC curve
is 0.67 and 0.64 when 17 and 12/7 metrics are retained,
respectively.

To further evaluate the benefit of the genetic algorithm
over the correlation elimination method for identifying key
microarchitecture-independent characteristics, we also com-
pare the correlation coefficient of the distances between all
benchmark tuples in the original space versus the distances in
the reduced spaces. This is shown in Figure 5. The correlation
coefficient for the genetic algorithm equals 0.876 whereas the
correlation coefficient for the correlation elimination method
quickly drops when multiple program characteristics are re-
moved from the data set. For example, with 17 metrics
retained from the data set through correlation elimination,
the correlation coefficient equals 0.823 which is smaller than
0.876 for the 8 retained metrics using the genetic algorithm.
As such, we conclude that the genetic algorithm outperforms
the correlation elimination method.

Table IV lists the eight microarchitecture-independent char-
acteristics retained by the genetic algorithm. The above anal-
yses show that these eight characteristics include almost the
same information as the original data set including all 47 char-
acteristics. The important benefit though is that collecting these
eight characteristics takes approximately 37 machine-days on
a single Alpha 21264A machine which is an approximate 3X
speed improvement over collecting all program characteristics.



Fig. 6. Kiviat diagrams for the various benchmarks categorized into 15 clusters based on key microarchitecture-independent characteristics.



VI. COMPARING EXISTING BENCHMARK SUITES

We now compare the 122 benchmarks from the 6 benchmark
suites, see Table I, using the microarchitecture-independent
methodology from the previous section. We use clustering in
the 8-dimensional workload space obtained from the genetic
algorithm for grouping benchmarks into similarly behaving
benchmark clusters. More in particular, we use k-means clus-
tering for a number of K values (from 1 to 70) and determine
the K value that yields a Bayesian Information Criterion (BIC)
score [18] within 90% of the maximum score. We then gener-
ate kiviat plots [19] for all benchmarks, see Figure 6, in which
the axes are the microarchitecture-independent characteristics.
These kiviat plots are ordered per cluster of similarly behaving
benchmarks; there are 15 clusters in total.

There are several interesting insights to be obtained from
these kiviat plots. First, a number of benchmarks seem to
be isolated. These benchmarks exhibit program characteristics
that are very dissimilar to any of the other benchmarks which
makes them appear as singleton clusters; note that for some
of these singleton clusters (clusters 3 and 6) there is only
isolated behavior for particular inputs. Examples are blast
(cluster 2), tiff (cluster 3), mcf (cluster 4), adpcm (cluster
6), art (cluster 12), gcc (cluster 13) and csu (cluster 14). The
reason for their particular program behavior can be derived
from looking into the various dimensions of the kiviat plots.
For example, the reason for blast to be isolated is its large
working set. A second interesting note to be made is that a
majority of the floating-point SPEC CPU2000 benchmarks,
namely 9 out of the 14, appear in a single cluster (cluster
10), without any benchmarks from other benchmark suites.
A third interesting observation to be made is that some
benchmarks from recently introduced benchmark suites exhibit
dissimilar inherent behavior compared to SPEC CPU2000,
i.e., these benchmarks do not appear in a cluster that also
contains SPEC CPU2000 benchmarks. This is especially the
case for benchmarks from the BioInfoMark benchmark suite
such as blast, fasta, hmmer, phylip (for the promlk input)
and predator; this is also the case for the csu benchmark
from the BioMetricsWorkload suite, as well as for some of the
CommBench benchmarks, see drr, frag, jpeg and reed. For
the MediaBench and MiBench benchmark suites there are only
a couple benchmarks that exhibit dissimilar behavior compared
to SPEC CPU2000.

VII. RELATED WORK

We are not the first to study the correlation be-
tween microarchitecture-independent program behavior and
microarchitecture-dependent program behavior. In fact, there
exists a large body of work on the subject. A first thread
of research on the subject has shown that there exists a
strong correlation between the code that is executed versus
performance [13], [18], [20], [21], [22]. The SimPoint tool
builds on this notion for selecting sampling units to be used
during sampled simulation. They found that execution intervals
that are executing similar code behave similarly according to
various microarchitecture-dependent program characteristics

such as cache miss rates, branch misprediction rates, IPC, etc.
Code signatures thus allow for identifying microarchitecture-
independent program phases for a given benchmark and a
given input.

Code signatures cannot be used though for identifying
program similarity across programs. Researchers instead use
a collection of program characteristics for comparing bench-
marks. For example, Weicker [23] characterize benchmarks
at the programming language level by counting the num-
ber of assignments, the number of if-then-else statements,
the number of function calls, the number of loops, etc.
Saavedra and Smith [24] use various program character-
istics at the Fortran programming language level such as
operation mix, number of function calls, number of ad-
dress computations, etc. More recent work on studying pro-
gram similarity uses statistical data analysis techniques on
lower-level program characteristics. Some papers on the sub-
ject use microarchitecture-dependent characteristics only [25];
others use a mixture of microarchitecture-dependent and
microarchitecture-independent characteristics [7]; yet others
advocate the use microarchitecture-independent characteristics
solely (as we do in this paper) [9], [16]. A completely different
approach was presented by Yi et al. [26] for identifying
program similarity based on a Placket-Burman design of ex-
periment. Namely, they classify benchmarks based on how the
benchmarks stress the same processor components to similar
degrees. The important contribution of this paper over this
prior work is that we show that microarchitecture-dependent
program characterization can be misleading. In addition, we
show that an easy-to-understand and efficient-to-measure set of
microarchitecture-independent characteristics can be obtained
by focusing on non-correlating program characteristics.

In our prior work [8], we also used genetic algorithms for
learning how to scale microarchitecture-independent charac-
teristics so that accurate machine rankings can be obtained
for an application of interest based on its inherent program
similarity with a set of previously profiled benchmarks. The
focus of the current paper is different though. We now focus on
identifying a limited number of microarchitecture-independent
characteristics that provide an accurate picture of the inherent
program behavior; in our prior work though, we use a much
larger number of program characteristics and learn how to
weight each of those.

Recent work in workload characterization also focused on
better understanding how benchmarks evolve over time. For
example, Joshi et al. [17] have studied how the SPEC CPU
benchmark suites evolved over its four generations (CPU89,
CPU92, CPU95 and CPU2000). They concluded that none of
the inherent program characteristics changed as dramatically
as the dynamic instruction count. They also concluded that the
temporal data locality has become increasingly poor over time;
other characteristics have remained more or less the same. Yi
et al. [6] went one step further and studied how benchmark
drift affects processor design. They conclude that benchmark
drift can have a significant impact on the performance of next
generation processors if the design of the next generation



processors is driven solely by yesterday’s benchmarks. This
observation also motivates the subject of the current paper,
namely that an accurate workload characterization method-
ology is required for comparing emerging workloads against
existing workloads, so that the next generation processors
perform well on future workloads.

VIII. CONCLUSION

This paper showed that a workload characterization based
on microarchitecture-dependent characteristics can be mislead-
ing because it does not reveal the true inherent behavior
of an application. In fact, two benchmarks may look sim-
ilar in terms of their microarchitecture-dependent behavior,
however, the inherent program behavior may be dissimilar.
This motivates us for proposing a workload characterization
methodology based on microarchitecture-independent program
behavior. The disadvantage of microarchitecture-independent
program characterization however is the time needed for
profiling an application. For addressing this issue we proposed
two approaches for limiting the number of microarchitecture-
independent characteristics that need to be measured, namely
correlation elimination and a genetic algorithm. The key
idea for both approaches is to remove characteristics that
show good correlation with other characteristics. Our ex-
periments show that the genetic algorithm outperforms the
correlation elimination method. The end result is a limited
set of program characteristics that characterizes an application
nearly as accurate as using a much broader set of char-
acteristics, yet is faster to collect. Using this efficient and
accurate workload characterization method we then compare
122 benchmarks from 6 benchmark suites, BioInfoMark, Bio-
MetricsWorkload, CommBench, MediaBench, MiBench and
SPEC CPU2000. This characterization is done in terms of
eight key microarchitecture-independent program characteris-
tics. From this analysis we conclude that various benchmarks
from the BioInfoMark, BioMetricsWorkload and CommBench
suites are dissimilar with respect to SPEC CPU2000. Most
of the MediaBench and MiBench benchmarks though show
similar behavior with at least some of the SPEC CPU2000
benchmarks.
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