
Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

Performance Prediction based
on Inherent Program Similarity

PACT-2006
September 19th 2006

Seattle, Washington

Kenneth Hoste

‡, Aashish Phansalkar

†, Lieven Eeckhout

‡,

Andy Georges

‡, Lizy K. John

† and Koen De Bosschere

‡

‡ ELIS, Ghent University, Belgium † ECE, The University of Texas at Austin

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

The performance of a platform is
evaluated using benchmarks

slide 1/25

www.apple.com/macbook/intelcoreduo.html, May 2006

http://www.apple.com/macbook/intelcoreduo.html
http://www.apple.com/macbook/intelcoreduo.html

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

slide 2/25

How does that platform perform
for my application(s) of interest?

R (statistics)
Excel (spreadsheet)

Photoshop (image processing)
Virtual PC (Windows on Mac)

?

ubiquitous problem in benchmarking

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

slide 3/25

Evaluating several platforms for
applications of interest is troublesome

✦ Hardware availability
Playstation 3

✦ Time constraints

✦ Porting

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

slide 4/25

We estimate performance
based on program similarity

application of interest

benchmarks

benchmark space

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

slide 5/25

How do we characterize a program
without executing it on each platform?

microarchitecture-independent program characteristics

on

application
of interest

in our setup: characterization on Alpha using ATOM

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

6 categories:

‣ instruction level parallelism (ILP)
‣ instruction mix
‣ branch predictability
‣ register traffic
‣ data stream strides
‣ working set size

slide 6/25

totaling 47 program
characteristics

more details are available in the paper

Microarchitecture-independent
program characteristics

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

slide 7/25

µarch-indep

chars

performance

numbers

data

transform

build data

transform

estimate performance based

on programs in neighborhood

µarch-indep

chars

data

transform

benchmark suite

benchmark space

application

of interest

Estimating performance based on
inherent program similarity

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

Step 1

slide 8/25

collect program characteristics for the benchmark suite
by instrumenting the benchmarks using ATOM/PIN

µarch-indep

chars

performance

numbers

data

transform

build data

transform

estimate performance based

on programs in neighborhood

µarch-indep

chars

data

transform

benchmark suite

benchmark space

application

of interest

Estimating performance based on
inherent program similarity

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

slide 9/25

obtain performance numbers for each benchmark
for example, use the ones published on spec.org for SPEC CPU2000

µarch-indep

chars

performance

numbers

data

transform

build data

transform

estimate performance based

on programs in neighborhood

µarch-indep

chars

data

transform

benchmark suite

benchmark space

application

of interest

Estimating performance based on
inherent program similarity

Step 2

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

slide 10/25

build the data transformation matrix
we evaluate 3 approaches: normalization, PCA and a genetic algorithm

µarch-indep

chars

performance

numbers

data

transform

build data

transform

estimate performance based

on programs in neighborhood

µarch-indep

chars

data

transform

benchmark suite

benchmark space

application

of interest

Estimating performance based on
inherent program similarity

Step 3

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

use the program characteristics and data
transformation matrix to build the benchmark space

µarch-indep

chars

performance

numbers

data

transform

build data

transform

estimate performance based

on programs in neighborhood

µarch-indep

chars

data

transform

benchmark suite

benchmark space

application

of interest

Estimating performance based on
inherent program similarity

Step 4

slide 11/25

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

locate the application of interest
in the benchmark space

µarch-indep

chars

performance

numbers

data

transform

build data

transform

estimate performance based

on programs in neighborhood

µarch-indep

chars

data

transform

benchmark suite

benchmark space

application

of interest

Estimating performance based on
inherent program similarity

Step 5

slide 12/25

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

estimate performance of the application of interest
using the benchmarks in the neighborhood

µarch-indep

chars

performance

numbers

data

transform

build data

transform

estimate performance based

on programs in neighborhood

µarch-indep

chars

data

transform

benchmark suite

benchmark space

application

of interest

Estimating performance based on
inherent program similarity

Step 6

slide 13/25

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

problem:
program characteristics vary in range

ILP vs instruction mix

Euclidean distance measure will be biased

solution:
normalize characteristics

mean = 0, variance = 1

data transformation:

subtract mean and divide by standard deviation

Building the data transformation matrix

slide 14/25

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

problem:
program characteristics are correlated
➡ Euclidean distance gives a higher weight to

correlated characteristics

solution:
obtain uncorrelated characteristics using
Principal Components Analysis (PCA)

Building the data transformation matrix

slide 15/25

data transformation:

perform PCA on norm. chars, and normalize PCs

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

problem:
some program characteristics are more important
for estimating performance than others

branch predictability n vs % multiply operations

solution: genetic algorithm
learning how to scale the characteristics so
that distance in the benchmark space
correlates with difference in performance

Building the data transformation matrix

slide 16/25

data transformation:

weigh normalized characteristics

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

proxy i

di

weight for each proxy i

marks alleviates this issue. Normalization gives an equal weight to
all the microarchitecture-independent characteristics.

2.2.2 Principal Components Analysis
A second important issue is that some dimensions in the bench-

mark space (even after normalization) can be correlated. The Eu-
clidean distance gives higher weight to correlated characteristics.
In other words, the underlying program characteristic that causes
the microarchitecture-independent characteristics to correlate, gets
a higher weight in the Euclidean distance. Principal components
analysis (PCA) [7] is a statistical data analysis technique that ex-
tracts uncorrelated dimensions from a data set.

The input to PCA is a matrix in which the rows are the cases and
the columns are the variables. In this paper, the cases are the vari-
ous benchmarks; the columns are the 47 normalized microarchitec-
ture-independent characteristics. PCA computes new variables, cal-
led principal components, which are linear combinations of the
original variables, such that all principal components are uncorre-
lated. PCA tranforms the p variables X1, X2, . . . , Xp into p prin-
cipal components Z1, Z2, . . . , Zp with Zi =

Pp
j=1

aijXj . This
transformation has the properties (i) V ar[Z1] ≥ V ar[Z2] ≥ . . . ≥
V ar[Zp] — this means Z1 contains the most information and Zp

the least; and (ii) Cov[Zi, Zj] = 0, ∀i #= j — this means there
is no information overlap between the principal components. Note
that the total variance in the data (variables) remains the same be-
fore and after the transformation, namely

Pp
i=1

V ar[Xi] =
Pp

i=1
V ar[Zi]. In this paper, Xi is the ith microarchitecture-

independent characteristic; Zi then is the ith principal component
after PCA. V ar[Xi] is the variance of the original microarchitecture-
independent characteristic Xi computed over all benchmarks. Like-
wise, V ar[Zi] is the variance of the principal component Zi over
all benchmarks.

Some of the principal components account for a higher variance
than others. By removing the principal components with the low-
est variance from the analysis, we can reduce the dimensionality of
the data set while controlling the amount of information that is lost.
We retain q principal components which is a significant information
reduction since q $ p in most cases. To measure the fraction of in-
formation retained in this q-dimensional space, we use the amount
of variance (

Pq
i=1

V ar[Zi])/(
Pp

i=1
V ar[Xi]) accounted for by

these q principal components. For example, criteria such as ‘80%
of the total variance should be explained by the retained principal
components’ could be used for data reduction. An alternative cri-
terion is to retain all principal components for which the individual
retained principal component explains a fraction of the total vari-
ance that is at least as large as the minimum variance of the original
variables.

The output obtained from PCA is a matrix in which the rows
are the various benchmarks and the columns are the retained prin-
cipal components. We subsequently normalize the principal com-
ponents, i.e. we rescale the principal components to unit variance.
This gives equal weight to all of the principal components [5].

2.2.3 Genetic Algorithm
Since we use the Euclidean distance as a distance measure in the

benchmark space, we implicitly assume that the Euclidean distance
in the (microarchitecture-independent) benchmark space is propor-
tional to the performance differences across a variety of platforms.
Normalization and PCA only partially address this issue. Normal-
ization assumes that all normalized microarchitecture-independent
characteristics have an equal impact on overall performance; PCA
assumes that all normalized underlying (and uncorrelated) program
characteristics have an equal impact. However, some program char-

acteristics have a much larger impact on performance than others.
For example, the branch prediction accuracy typically has a much
larger impact on overall performance than the fraction multiply op-
erations. As such, an appropriate distance measure should give a
higher weight to the branch prediction accuracy metric than to the
fraction multiply operations.

A higher or lower impact to a particular program characteristic
can be given by multiplying the program characteristic by a given
factor. This scaling gives a higher or lower weight to the given
program characteristic when computing the Euclidean distance in
the benchmark space.

We propose a genetic algorithm (GA) for computing these weights.
A genetic algorithm is an evolutionary optimization method that
starts from a population of solutions. For each solution in the popu-
lation, a fitness score is computed and the solutions with the highest
fitness score are selected for constructing the next generation. This
is done by applying mutation and crossover on the selected solu-
tions from the previous generation. Mutation randomly changes a
single solution; crossover generates new solutions by mixing exist-
ing solutions. This algorithm is repeated, i.e., new generations are
constructed, until no more improvement is observed for the fitness
score.

The fitness score that we use here is the prediction accuracy
of our framework to predict performance speedups across a wide
range of machines. As such, the genetic algorithm learns how the
distance measure in the benchmark space correlates with perfor-
mance across a variety of platforms. The genetic algorithm thus
uses performance numbers for building the data transformation ma-
trix; the normalization and PCA approaches do not use perfor-
mance numbers.

2.3 Performance Prediction
Once the data transformation matrix is computed using one of

the approaches discussed in the previous section, we transform
the raw data matrix by multiplying it with the data transformation
matrix. Each benchmark then is a point in the multidimensional
benchmark space. Predicting performance for an application of in-
terest then requires that microarchitecture-independent character-
istics are measured and that these characteristics are transformed
using the data transformation matrix. This locates the application
of interest in the benchmark space.

Predicting performance for the application of interest is done by
taking a weighted average over the performance numbers of the
benchmarks in the neighborhood of the application of interest. All
the benchmarks that are part of the neighborhood are called prox-
ies of the application of interest. The weighting is done based on
the distance between the proxy and the application of interest. In
fact, the weight wi is inversely proportional to the distance di. The
weight wi is computed as

wi =

Pn
i=1

1

di

di
, (1)

with n being the number of proxies of the application of interest.
In this paper, we focus on predicting performance speedups, rather
than predicting raw performance. Predicting relative performance
differences is often more important in practice. The performance
speedup of the application of interest is computed as the weighted
harmonic average over the speedups of the proxies:

S =
1

Pn
i=1

wi

Si

. (2)

marks alleviates this issue. Normalization gives an equal weight to
all the microarchitecture-independent characteristics.

2.2.2 Principal Components Analysis
A second important issue is that some dimensions in the bench-

mark space (even after normalization) can be correlated. The Eu-
clidean distance gives higher weight to correlated characteristics.
In other words, the underlying program characteristic that causes
the microarchitecture-independent characteristics to correlate, gets
a higher weight in the Euclidean distance. Principal components
analysis (PCA) [7] is a statistical data analysis technique that ex-
tracts uncorrelated dimensions from a data set.

The input to PCA is a matrix in which the rows are the cases and
the columns are the variables. In this paper, the cases are the vari-
ous benchmarks; the columns are the 47 normalized microarchitec-
ture-independent characteristics. PCA computes new variables, cal-
led principal components, which are linear combinations of the
original variables, such that all principal components are uncorre-
lated. PCA tranforms the p variables X1, X2, . . . , Xp into p prin-
cipal components Z1, Z2, . . . , Zp with Zi =

Pp
j=1

aijXj . This
transformation has the properties (i) V ar[Z1] ≥ V ar[Z2] ≥ . . . ≥
V ar[Zp] — this means Z1 contains the most information and Zp

the least; and (ii) Cov[Zi, Zj] = 0, ∀i #= j — this means there
is no information overlap between the principal components. Note
that the total variance in the data (variables) remains the same be-
fore and after the transformation, namely

Pp
i=1

V ar[Xi] =
Pp

i=1
V ar[Zi]. In this paper, Xi is the ith microarchitecture-

independent characteristic; Zi then is the ith principal component
after PCA. V ar[Xi] is the variance of the original microarchitecture-
independent characteristic Xi computed over all benchmarks. Like-
wise, V ar[Zi] is the variance of the principal component Zi over
all benchmarks.

Some of the principal components account for a higher variance
than others. By removing the principal components with the low-
est variance from the analysis, we can reduce the dimensionality of
the data set while controlling the amount of information that is lost.
We retain q principal components which is a significant information
reduction since q $ p in most cases. To measure the fraction of in-
formation retained in this q-dimensional space, we use the amount
of variance (

Pq
i=1

V ar[Zi])/(
Pp

i=1
V ar[Xi]) accounted for by

these q principal components. For example, criteria such as ‘80%
of the total variance should be explained by the retained principal
components’ could be used for data reduction. An alternative cri-
terion is to retain all principal components for which the individual
retained principal component explains a fraction of the total vari-
ance that is at least as large as the minimum variance of the original
variables.

The output obtained from PCA is a matrix in which the rows
are the various benchmarks and the columns are the retained prin-
cipal components. We subsequently normalize the principal com-
ponents, i.e. we rescale the principal components to unit variance.
This gives equal weight to all of the principal components [5].

2.2.3 Genetic Algorithm
Since we use the Euclidean distance as a distance measure in the

benchmark space, we implicitly assume that the Euclidean distance
in the (microarchitecture-independent) benchmark space is propor-
tional to the performance differences across a variety of platforms.
Normalization and PCA only partially address this issue. Normal-
ization assumes that all normalized microarchitecture-independent
characteristics have an equal impact on overall performance; PCA
assumes that all normalized underlying (and uncorrelated) program
characteristics have an equal impact. However, some program char-

acteristics have a much larger impact on performance than others.
For example, the branch prediction accuracy typically has a much
larger impact on overall performance than the fraction multiply op-
erations. As such, an appropriate distance measure should give a
higher weight to the branch prediction accuracy metric than to the
fraction multiply operations.

A higher or lower impact to a particular program characteristic
can be given by multiplying the program characteristic by a given
factor. This scaling gives a higher or lower weight to the given
program characteristic when computing the Euclidean distance in
the benchmark space.

We propose a genetic algorithm (GA) for computing these weights.
A genetic algorithm is an evolutionary optimization method that
starts from a population of solutions. For each solution in the popu-
lation, a fitness score is computed and the solutions with the highest
fitness score are selected for constructing the next generation. This
is done by applying mutation and crossover on the selected solu-
tions from the previous generation. Mutation randomly changes a
single solution; crossover generates new solutions by mixing exist-
ing solutions. This algorithm is repeated, i.e., new generations are
constructed, until no more improvement is observed for the fitness
score.

The fitness score that we use here is the prediction accuracy
of our framework to predict performance speedups across a wide
range of machines. As such, the genetic algorithm learns how the
distance measure in the benchmark space correlates with perfor-
mance across a variety of platforms. The genetic algorithm thus
uses performance numbers for building the data transformation ma-
trix; the normalization and PCA approaches do not use perfor-
mance numbers.

2.3 Performance Prediction
Once the data transformation matrix is computed using one of

the approaches discussed in the previous section, we transform
the raw data matrix by multiplying it with the data transformation
matrix. Each benchmark then is a point in the multidimensional
benchmark space. Predicting performance for an application of in-
terest then requires that microarchitecture-independent character-
istics are measured and that these characteristics are transformed
using the data transformation matrix. This locates the application
of interest in the benchmark space.

Predicting performance for the application of interest is done by
taking a weighted average over the performance numbers of the
benchmarks in the neighborhood of the application of interest. All
the benchmarks that are part of the neighborhood are called prox-
ies of the application of interest. The weighting is done based on
the distance between the proxy and the application of interest. In
fact, the weight wi is inversely proportional to the distance di. The
weight wi is computed as

wi =

Pn
i=1

1

di

di
, (1)

with n being the number of proxies of the application of interest.
In this paper, we focus on predicting performance speedups, rather
than predicting raw performance. Predicting relative performance
differences is often more important in practice. The performance
speedup of the application of interest is computed as the weighted
harmonic average over the speedups of the proxies:

S =
1

Pn
i=1

wi

Si

. (2)

weighted harmonic mean

Estimating performance
using application proxies

slide 17/25

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

1

2
3

current practice:
rank machines based on average performance

Determine the hardware platform
ranking based on estimated performance

slide 18/25

our approach:
✦ estimate performance of the application of

interest for each machine considered
✦ rank machines based on estimated performance

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

• full SPEC CPU2000 benchmark suite (26 benchmarks)

methodology is evaluated using crossvalidation
n-1 benchmarks form benchmark suite,
nth benchmark is application of interest

• speedup numbers for 36 machines
✦ different ISAs, processor, configurations and manufacturers
✦ taken from SPEC website (http://www.spec.org)

Experimental setup

slide 19/25

http://spec.org
http://spec.org

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

slide X/Y

Spearman rank correlation coefficient

a value between -1 and 1
quantifies the quality of the estimated ranking

1: perfect
0: random

-1: worst possible (reverse)

Comparing the estimated ranking with
the actual ranking of the machines

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

Our methodology outperforms
current practice

current practice norm. PCA

genetic algorithm 23/26 16/26 16/26

slide 21/25

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

a
m

m
p

a
p

p
lu

a
p

si a
rt

b
zi

p
2

cr
a

fty

e
o

n

e
q

u
a

ke

fa
ce

re
c

fm
a

3
d

g
a

lg
e

l

g
a

p

g
cc

g
zi

p

lu
ca

s

m
cf

m
e

sa

m
g

ri
d

p
a

rs
e

r

p
e

rl
b

m
k

si
xt

ra
ck

sw
im

tw
o

lf

vo
rt

e
x

vp
r

w
u

p
w

is
e

a
vg

S
p

e
a

rm
a

n
co

rr
e

la
tio

n
co

e
ffi

ci
e

n
t average speedup normalization PCA w/ 6PCs genetic algorithm

Figure 3: The Spearman correlation coefficients for estimating the ranks for the average benchmark suite speedup results, and the
normalization, PCA and GA data transformation methods.

avg speedup normalization PCA GA
normalization 21 – 17 10
PCA 17 9 – 10
GA 23 16 16 –

Table 3: Summarizing the number of benchmarks out of the
26 SPEC CPU benchmarks for which a data transformation
method in the rows outperforms a data transformation method
in the columns.

the best results. The baseline Spearman rank correlation coefficient
that we compare against is obtained from a rank based on average
speedup numbers across all benchmarks. This baseline rank corre-
lation coefficient is 0.83 on average. The normalization and PCA
data transformation methods achieve a higher average correlation
coefficient, namely 0.889 and 0.876, respectively. The genetic al-
gorithm achieves a slightly higher correlation coefficient, namely
0.892. Also important, next to achieving a good average correlation
coefficient, is that the minimum correlation coefficient for our data
transformation techniques (0.80 for normalization, 0.77 for PCA
and 0.79 for the genetic algorithm) is significantly higher than the
minimum correlation coefficient for the average speedup method
(0.64).

Table 3 summarizes the number of benchmarks for which one
data transformation method achieves a higher rank correlation co-
efficient than another data transformation method. The genetic al-
gorithm which outperforms the normalization and PCA data trans-
formation methods for 16 out of the 26 benchmarks, and outper-
forms the average speedup method for 23 of the 26 benchmarks,
clearly is the best performing data transformation method.

In order to further quantify the significance of our results, we
have done the following experiment. We quantified the perfor-
mance loss by picking the machine with the highest rank according
to the average speedup method compared to the best performing
machine for a given application of interest. The average perfor-
mance loss using this approach is 20%. Using the genetic algo-
rithm to point to the machine with the highest rank yields a perfor-
mance loss of only 13.6%. Doing the same experiment with the top
3 highest machine ranks yields 19.7% versus 11.1% performance
loss, respectively. As such, we conclude that the small differences
in rank correlation coefficient can make a big difference in practice.

4.2 Number of proxies
As mentioned in section 2.3, we compute the estimated speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 10 15 all

number of proxies

S
p

e
a

rm
a

n
c
o

rr
e

la
ti
o

n
c
o

e
ff
ic

ie
n

t

mean

wors t

Figure 4: The average and worst Spearman rank correlation
coefficient as a function of the number of proxies.

for the application of interest as a weighted average over a number
of proxies. Figure 4 quantifies the average and the worst Spearman
rank correlation coefficient as a function of the number of proxies.
Using a single proxy for the application of interest yields relatively
poor results; the worst rank correlation coefficient is 0.48. The best
results are obtained for three proxies — and we used three prox-
ies for all the other results presented in this paper. More proxies
degrade the prediction accuracy.

Table 4 shows the three proxies along with their weights for all
of the SPEC CPU2000 benchmarks. It is interesting to observe that
the weights for all of the proxies are very close to 1/3. In other
words, the distance between the proxies and the application of in-
terest is fairly uniform. There are a few exceptions though, see for
example art and galgel. These two benchmarks are substantially
closer to each other than any of the other benchmarks. Another
interesting note is that some benchmarks do not appear as a proxy
in this table, such as gcc, mcf, lucas and swim. This is because
these benchmarks are isolated in the benchmark space, or in other
words, these benchmarks exhibit a unique inherent program be-
havior. Other benchmarks are very popular proxies (bzip2 being
the most notable example) and hence are similar to several other
benchmarks.

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

• a single proxy is not enough
• too many proxies degrades performance
• 3 proxies seems optimal

(and is used in further evaluation)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

a
m

m
p

a
p

p
lu

a
p

si a
rt

b
zi

p
2

cr
a

fty

e
o

n

e
q

u
a

ke

fa
ce

re
c

fm
a

3
d

g
a

lg
e

l

g
a

p

g
cc

g
zi

p

lu
ca

s

m
cf

m
e

sa

m
g

ri
d

p
a

rs
e

r

p
e

rl
b

m
k

si
xt

ra
ck

sw
im

tw
o

lf

vo
rt

e
x

vp
r

w
u

p
w

is
e

a
vg

S
p

e
a

rm
a

n
co

rr
e

la
tio

n
co

e
ffi

ci
e

n
t average speedup normalization PCA w/ 6PCs genetic algorithm

Figure 3: The Spearman correlation coefficients for estimating the ranks for the average benchmark suite speedup results, and the
normalization, PCA and GA data transformation methods.

avg speedup normalization PCA GA
normalization 21 – 17 10
PCA 17 9 – 10
GA 23 16 16 –

Table 3: Summarizing the number of benchmarks out of the
26 SPEC CPU benchmarks for which a data transformation
method in the rows outperforms a data transformation method
in the columns.

the best results. The baseline Spearman rank correlation coefficient
that we compare against is obtained from a rank based on average
speedup numbers across all benchmarks. This baseline rank corre-
lation coefficient is 0.83 on average. The normalization and PCA
data transformation methods achieve a higher average correlation
coefficient, namely 0.889 and 0.876, respectively. The genetic al-
gorithm achieves a slightly higher correlation coefficient, namely
0.892. Also important, next to achieving a good average correlation
coefficient, is that the minimum correlation coefficient for our data
transformation techniques (0.80 for normalization, 0.77 for PCA
and 0.79 for the genetic algorithm) is significantly higher than the
minimum correlation coefficient for the average speedup method
(0.64).

Table 3 summarizes the number of benchmarks for which one
data transformation method achieves a higher rank correlation co-
efficient than another data transformation method. The genetic al-
gorithm which outperforms the normalization and PCA data trans-
formation methods for 16 out of the 26 benchmarks, and outper-
forms the average speedup method for 23 of the 26 benchmarks,
clearly is the best performing data transformation method.

In order to further quantify the significance of our results, we
have done the following experiment. We quantified the perfor-
mance loss by picking the machine with the highest rank according
to the average speedup method compared to the best performing
machine for a given application of interest. The average perfor-
mance loss using this approach is 20%. Using the genetic algo-
rithm to point to the machine with the highest rank yields a perfor-
mance loss of only 13.6%. Doing the same experiment with the top
3 highest machine ranks yields 19.7% versus 11.1% performance
loss, respectively. As such, we conclude that the small differences
in rank correlation coefficient can make a big difference in practice.

4.2 Number of proxies
As mentioned in section 2.3, we compute the estimated speedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 10 15 all

number of proxies
S

p
e

a
rm

a
n

c
o

rr
e

la
ti
o

n
c
o

e
ff
ic

ie
n

t

mean

wors t

Figure 4: The average and worst Spearman rank correlation
coefficient as a function of the number of proxies.

for the application of interest as a weighted average over a number
of proxies. Figure 4 quantifies the average and the worst Spearman
rank correlation coefficient as a function of the number of proxies.
Using a single proxy for the application of interest yields relatively
poor results; the worst rank correlation coefficient is 0.48. The best
results are obtained for three proxies — and we used three prox-
ies for all the other results presented in this paper. More proxies
degrade the prediction accuracy.

Table 4 shows the three proxies along with their weights for all
of the SPEC CPU2000 benchmarks. It is interesting to observe that
the weights for all of the proxies are very close to 1/3. In other
words, the distance between the proxies and the application of in-
terest is fairly uniform. There are a few exceptions though, see for
example art and galgel. These two benchmarks are substantially
closer to each other than any of the other benchmarks. Another
interesting note is that some benchmarks do not appear as a proxy
in this table, such as gcc, mcf, lucas and swim. This is because
these benchmarks are isolated in the benchmark space, or in other
words, these benchmarks exhibit a unique inherent program be-
havior. Other benchmarks are very popular proxies (bzip2 being
the most notable example) and hence are similar to several other
benchmarks.

proxy i

di

How many proxies should we retain?

slide 22/25

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

small differences in rank correlation coefficient can
make a big difference in practice

top 3 machines:
current practice: 19.7%

our approach: 11.1%
1

2
3

best machine:
current practice: 20%

our approach: 13.6%
win
ne
r

Evaluating the average
performance loss

slide 23/25

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

✦ gcc, mcf and swim never appear as proxy

✦ bzip2 is a frequent proxy

✦ microarchitecture-independent characteristics seem
to be able to capture program behavior across ISAs

Some interesting observations

slide 24/25

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

Conclusions
✦ identifying the best machine should be done using

the characteristics of the application of interest

✦ our methodology using the genetic algorithm is able
to scale the benchmark space according to
performance differences

✦ some benchmarks have very specific behavior (gcc,
mcf, swim), others exhibit average behavior (bzip2)

✦ although program characteristics are measured on
one particular ISA, they seem to capture program
behavior over different ISAs fairly well

slide 25/25

Performance Prediction based on Inherent Program Similarity – Kenneth Hoste – 2006-09-19
Faculty of Engineering – Department of Electronics and Information Systems (ELIS)

Questions?

