
Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Microarchitecture-Independent Workload
Characterization Studies Using Pin

Pin tutorial @ IISWC-2007
September 29th 2007

Boston, MA, USA

Kenneth Hoste and Lieven Eeckhout

kenneth.hoste@elis.ugent.be - lieven.eeckhout@elis.ugent.be

ELIS, Ghent University, Belgium

mailto:kehoste@elis.ugent.be
mailto:kehoste@elis.ugent.be
mailto:lieven.eeckout@elis.ugent.be
mailto:lieven.eeckout@elis.ugent.be

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Why microarchitecture-independent?

 1/34

Prevalent workload characterization:

simulation or hardware performance
counters (IPC, cache miss rates, ...)

single machine configuration

Problems:

specific to chosen configuration(s)

can be highly misleading!

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Pitfall in prevalent workload characterization

 2/34

workloads seem similar using
dependent metrics, but are clearly
different using µarch-indep. metrics

workload pair

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

MICA to the rescue!

 3/34

Microarchitecture-Independent

Characterization of Applications

Pin tool which extracts µarch-indep. program
characteristics, i.e., independent of:

cache configuration

branch predictor

number of functional units

...

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

MICA: types of characteristics

 4/34

itypes
instruction mix

ppm
taken rate, transition rate, Markov-chain based
branch prediction

reg
distribution of register dependency distances, avg.
number of input registers, degree of use

stride
distribution of memory access address distances

memfootprint
memory footprint (# blocks/pages touched)

ilp
amount of available inherent ILP

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Using MICA is easy

 5/34

Collect µarch-indep. chars for /bin/ls:

results in a number of *pin.out files (6)

containing program characteristics

pin -t mica full all -- ls

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data extraction, data processing, insight!

 6/34

Data extraction (instrumentation):

how to extract instruction info using Pin?

Data processing:

how to compute program characteristics?

Insight:

how to gain insight?

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Part 1: Data extraction

 7/34

itypes: instruction type

ppm: branch ID, taken/non-taken

reg: register reads/writes, register ID

stride: memory reads/writes addresses

memfootprint: see stride

ilp: see reg + stride

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data extraction: instruction type

 8/34

MAIN

VOID Instruction(INS ins, VOID *v){

char cat[50]; char opcode[50];

strcpy(cat, CATEGORY_StringShort(INS_Category(ins)).c_str());

strcpy(opcode, INS_Mnemonic(ins).c_str());

if(strcmp(cat,"COND_BR") == 0)

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)condBr_ins, IARG_END);

if(strcmp(opcode,"MUL") == 0)

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)mul_ins, IARG_END);

}

INSTRUMENTATION

VOID Fini(INT32 code, VOID *v){
fprintf(stderr,”%lld cond. branches, %lld muls\n”, cond_branches, muls);

}

OUTPUT

INT64 cond_branches, muls;
VOID condBr_ins(){ cond_branches++; }
VOID mul_ins(){ muls++; }

PROCESSING

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data extraction: branch ID

9/34

MAIN

VOID Instruction(INS ins, VOID *v){

char cat[50]; strcpy(cat, CATEGORY_StringShort(INS_Category(ins)).c_str());

if(strcmp(cat,"COND_BR") == 0){

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)br,

 IARG_UINT32, br_cnt, IARG_END);

br_cnt++;

}

}

INSTRUMENTATION

VOID Fini(INT32 code, VOID *v){ UINT32 i;
for(i=0; i < br_cnt; i++) { fprintf(stderr,”branch %d: %lld\n”, i, branch[i]); }

}

OUTPUT

UINT32 br_cnt; INT64* branch;
VOID br(UINT32 id){ branch[id]++; }

PROCESSING

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data extraction: branch ID (corrected)

 10/34

MAIN

VOID Fini(INT32 code, VOID *v){ UINT32 i;

for(i=0; i < br_cnt; i++) { fprintf(stderr,”branch %d: %lld\n”, i, branch[i]); }

}

OUTPUT

VOID Instruction(INS ins, VOID *v){

char cat[50]; strcpy(cat, CATEGORY_StringShort(INS_Category(ins)).c_str());

if(strcmp(cat,"COND_BR") == 0){

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)br,
IARG_ADDRINT, INS_Address(ins), IARG_END);

}

}

INSTRUMENTATION

UINT32 br_cnt; INT64* branch;

UINT32 lookup(ADDRINT a) { // find index for instr. address or create new }

VOID br(ADDRINT a){ UINT32 id = lookup(a); branch[id]++; }

PROCESSING

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data extraction: branch ID (faster)

 11/34

MAIN

VOID Fini(INT32 code, VOID *v){ int UINT32 i;
for(i=0; i < br_cnt; i++) { fprintf(stderr,”branch %d: %lld\n”, i, branch[i]); }

}

OUTPUT

VOID Instruction(INS ins, VOID *v){

UINT32 id;

char cat[50]; strcpy(cat, CATEGORY_StringShort(INS_Category(ins)).c_str());

if(strcmp(cat,"COND_BR") == 0){

id = lookup(INS_Address(ins));

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)br, IARG_UINT32, id,

IARG_END);

}

}

INSTRUMENTATION

UINT32 br_cnt; INT64* branch;
UINT32 lookup(ADDRINT a) { // find index for instr. address or create new }
VOID br(UINT32 id){ branch[id]++; }

PROCESSING

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data extraction: branch (not-)taken rate

 12/34

MAIN

VOID Instruction(INS ins, VOID *v){

char cat[50]; strcpy(cat, CATEGORY_StringShort(INS_Category(ins)).c_str());

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)instr,
 IARG_ADDRINT, INS_Address(ins), IARG_END);

if(strcmp(cat,"COND_BR") == 0)

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)br,

 IARG_ADDRINT, INS_NextAddress(ins), IARG_END);

}

INSTRUMENTATION

VOID Fini(INT32 code, VOID *v){
fprintf(stderr,”%lf taken, %lf not taken\n”, (double)t/brCnt, (double)nt/brCnt);

}

OUTPUT

ADDRINT ba; INT64 brCnt, t, nt; BOOL last_br;
VOID br(ADDRINT na){ brCnt++; ba = na; last_br = true; }
VOID instr(ADDRINT a) { if(last_br) { if (a != ba) { t++; } else { nt++; }

 last_br = false;} }

PROCESSING

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data extraction: register reads/writes

13/34

MAIN

VOID Instruction(INS ins, VOID *v){

UINT32 i; UINT32 max = INS_MaxNumRRegs(ins);

for(i=0; i < max; i++) {

const REG reg = INS_RegR(ins, i);

if(REG_valid(reg)){ // ALL registers (segment, fp, gen. purp., ...)

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)regRead, IARG_END);

}

}

}

INSTRUMENTATION

VOID Fini(INT32 code, VOID *v){
fprintf(stderr,”%lld register reads\n”,reg_reads);

}

OUTPUT

INT64 reg_reads;
VOID regRead() { reg_reads++; }

PROCESSING

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

14/34

Data extraction: register ID

MAIN

VOID Instruction(INS ins, VOID *v){
UINT32 i; UINT32 max = INS_MaxNumRRegs(ins);
for(i=0; i < max; i++){

const REG reg = INS_RegR(ins, i);

if(REG_valid(reg)){
INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)reg_read,

 IARG_UINT32, reg, IARG_END);
}

}

}

INSTRUMENTATION

VOID Fini(INT32 code, VOID *v){ UINT32 i;

 for (i=0; i < MAX_REG; i++) {

 if (reg_reads[i] > 0) fprintf(stderr,”[%s] %lld\n”,

 REG_StringShort((REG)i).c_str(), reg_reads[i]); }

}

OUTPUT

INT64* reg_reads;
VOID reg_read(UINT32 id) { reg_reads[id]++; }

PROCESSING

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data extraction: memory reads/writes

15/34

MAIN

VOID Instruction(INS ins, VOID *v){

if(INS_IsMemoryRead(ins)){

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)read_ins, IARG_END);

if(INS_HasMemoryRead2(ins))

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)read, IARG_END);

}

if(INS_IsMemoryWrite(ins)){

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)write_ins, IARG_END);

}

}

INSTRUMENTATION

VOID Fini(INT32 code, VOID *v){
 fprintf(stderr,”%lld load ins (%lld loads), %lld store ins\n”, ri, rs, wi);
}

OUTPUT

INT64 ri, wi, rs;
VOID read_ins() { ri++; rs++; } VOID read() { rs++; } VOID write_ins() { wi++; }

PROCESSING

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data extraction: memory addresses

16/34

MAIN

VOID Instruction(INS ins, VOID *v){

if(INS_IsMemoryRead(ins)){

 INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)r_mem,
 IARG_MEMORYREAD_EA, IARG_END);

 if(INS_HasMemoryRead2(ins))

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)r_mem,
 IARG_MEMORYREAD2_EA, IARG_END);

}

if(INS_IsMemoryWrite(ins))

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)w_mem,
 IARG_MEMORYWRITE_EA, IARG_END);

}

INSTRUMENTATION

VOID Fini(INT32 code, VOID *v){ } OUTPUT

VOID r_mem(ADDRINT a) { fprintf(stderr,”memory read @ %x\n”,a); }
VOID w_mem(ADDRINT a) { fprintf(stderr,”memory write @ %x\n”,a); }

PROCESSING

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Part 2: Data processing

17/34

Detailed description for:

Markov-chain based PPM predictor

instruction-level parallelism (ILP)

How much time is needed to collect the data?

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: PPM-predictors

18/34

INPUTS
branch id
taken/not taken?

OUTPUTS
misprediction rate using:

per-address/global predictor tables
with global/local history
different history lengths (4/8/12)

previous prediction
correct?

compare branch direction
with previous prediction,
keep track of number of

mispredictions

update pattern history tables
for different predictors

adjust saturating counter for branch
history (global or local history, per-

address or global table)

predict next branch direction
for each predictor

base prediction on branch history
and value of saturating counter
(> 0 ⇒ taken, < 0 ⇒ not-taken)

Prediction by Partial Match (PPM)
branch direction is predicted using a set of Markov chains;

longest matching branch history delivers prediction;
idealistic model for most common branch predictors

more details, see “Analysis of Branch Prediction via Data Compression” by Chen et al., ASPLOS 1996

for each conditional branch:

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: PPM-predictors

19/34

1

2

3

0 1 0 1 0 0

0 0 1 0 0 1

0 1

branch history
1: 01010
2: 001001
3: 01

PAg (per-address history, global table)

hist. length history value pred.

0 - -2 NT

1 “0” 3 T

“1” -1 NT

2 “00” 2 T

“01” -2 -3 NT

“10” 0 -

“11” 0 -

pred.: 12 13
mispred.: 4

predictor: 2

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: PPM-predictors

19/34

1

2

3

0 1 0 1 0 0

0 0 1 0 0 1

0 1

branch history
1: 010100
2: 001001
3: 01

PAg (per-address history, global table)

pred.: 13 14
mispred.: 4 5

predictor: 1

hist. length history value pred.

0 - -2 NT

1 “0” 3 2 T

“1” -1 NT

2 “00” 2 T

“01” -3 NT

“10” 0 -1 -

“11” 0 -

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: amount of inherent ILP

INPUTS
memory read/write addresses
register read/write ids

OUTPUTS
amount of inherent ILP for various
instruction window sizes (32,64,128,256)

inherent ILP
amount of instruction-level parallelism while assuming perfect
caches, perfect branch prediction, etc.; only limiting factors
are data dependencies and instruction window size

register/memory read

adjust issue time for this instr. according to
time when reg./mem. block is available

for each instruction:

register/memory write

set time when reg./mem. block is available
to current issue time + 1 clock cycle

add instruction to tail of instruction window
if window is full:

increment clock time
commit instructions which are ready from head of instr. window

20/34

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: amount of inherent ILP

21/34

instruction stream

i1: read 0xDE; write r1
i2: read r1; write r2
i3: read 0xAD; write r3
i4: read r2,r3 ; write 0xDE
i5: read r1, r2; write r3

clock: 0 cycles
instr. count: 1 instr.
issue time: 0

register time avail.

r1 1

r2 0

r3 0

mem. addr. time avail.

OxAD 0

OxDE 0

i1: 0

instruction window:

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: amount of inherent ILP

21/34

instruction stream

i1: read 0xDE; write r1
i2: read r1; write r2
i3: read 0xAD; write r3
i4: read r2,r3 ; write 0xDE
i5: read r1, r2; write r3

clock: 0 cycles
instr. count: 2 instr.
issue time: 1

register time avail.

r1 1

r2 2

r3 0

mem. addr. time avail.

OxAD 0

OxDE 0

i1: 0 i2: 1

instruction window:

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: amount of inherent ILP

21/34

instruction stream

i1: read 0xDE; write r1
i2: read r1; write r2
i3: read 0xAD; write r3
i4: read r2,r3 ; write 0xDE
i5: read r1, r2; write r3

clock: 0 cycles
instr. count: 3 instr.
issue time: 0

register time avail.

r1 1

r2 2

r3 1

mem. addr. time avail.

OxAD 0

OxDE 0

i1: 0 i2: 1 i3: 0

instruction window:

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: amount of inherent ILP

21/34

instruction stream

i1: read 0xDE; write r1
i2: read r1; write r2
i3: read 0xAD; write r3
i4: read r2,r3 ; write 0xDE
i5: read r1, r2; write r3

clock: 1 cycles
instr. count: 3 instr.
issue time: 0

register time avail.

r1 1

r2 2

r3 1

mem. addr. time avail.

OxAD 0

OxDE 0

i2: 1 i3: 0

instruction window:

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: amount of inherent ILP

21/34

instruction stream

i1: read 0xDE; write r1
i2: read r1; write r2
i3: read 0xAD; write r3
i4: read r2,r3 ; write 0xDE
i5: read r1, r2; write r3

clock: 1 cycles
instr. count: 4 instr.
issue time: 0

register time avail.

r1 1

r2 2

r3 1

mem. addr. time avail.

OxAD 0

OxDE 3

i2: 1 i3: 0 i4: 2

instruction window:

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: amount of inherent ILP

21/34

instruction stream

i1: read 0xDE; write r1
i2: read r1; write r2
i3: read 0xAD; write r3
i4: read r2,r3 ; write 0xDE
i5: read r1, r2; write r3

clock: 2 cycles
instr. count: 4 instr.
issue time: 0

register time avail.

r1 1

r2 2

r3 1

mem. addr. time avail.

OxAD 0

OxDE 3

i4: 2

instruction window:

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: amount of inherent ILP

21/34

instruction stream

i1: read 0xDE; write r1
i2: read r1; write r2
i3: read 0xAD; write r3
i4: read r2,r3 ; write 0xDE
i5: read r1, r2; write r3

clock: 2 cycles
instr. count: 5 instr.
issue time: 2

register time avail.

r1 1

r2 2

r3 3

mem. addr. time avail.

OxAD 0

OxDE 3

i4: 2 i5: 2

instruction window:

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: amount of inherent ILP

21/34

instruction stream

i1: read 0xDE; write r1
i2: read r1; write r2
i3: read 0xAD; write r3
i4: read r2,r3 ; write 0xDE
i5: read r1, 0xAD; write r2

clock: 3 cycles
instr. count: 5 instr.
ILP: 1.666

register time avail.

r1 1

r2 4

r3 1

mem. addr. time avail.

OxAD 0

OxDE 3

instruction window:

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: how long does it take?

22/34

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Part 3: Insight!

23/34

Performance estimation

how can we use benchmarks to learn something about our own
application of interest?

how do µarch.-indep. program characteristics relate to
performance metrics?

Comparing benchmark suites

how can we identify key program characteristics?

how can we easily gain insight into inherent program behavior?

Future work

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

24/34

http://www.apple.com/macbook/intelcoreduo.html, May 2006

Insight: Performance estimation
What does benchmarking tell us?

Excel
(spreadsheet)

Photoshop
(image processing)

R
(statistics)

Virtual PC
(Windows on Mac)

?

http://www.apple.com/macbook/intelcoreduo.html
http://www.apple.com/macbook/intelcoreduo.html

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Insight: Performance estimation

25/34

Can we do the benchmarking ourselves?

✦ Hardware availability
Playstation 3

✦ Porting

✦ Time constraints

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Insight: Performance estimation

26/34

Estimate performance for application of interest

application of interest

benchmark space

benchmarks

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Insight: Performance estimation

27/34

Performance estimation framework

µarch-indep

chars

performance

numbers

data

transform

build data

transform

estimate performance based

on programs in neighborhood

µarch-indep

chars

data

transform

benchmark suite

benchmark space

application

of interest

based on program similarity
relate program characteristics to performance to scale benchmark space
estimation allows finding the best machine for a given application
more details, see

“Performance Prediction Based on Inherent Program Similarity” (PACT’06)

“Analyzing Commercial Processor Performance Numbers for Predicting Performance of
Applications of Interest (SIGMETRICS’07)

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

28/34

Insight: Comparing benchmark suites
Comparing benchmarks is easy... right?

TABLE I

MICROARCHITECTURE-INDEPENDENT CHARACTERISTICS COLLECTED TO CHARACTERIZE WORKLOAD BEHAVIOR.

Category # Description

instruction mix 6 percentage loads, stores, branches, arithmetic operations, multiplies, and floating-point operations

ILP 4 IPC that can be achieved for an idealized processor (with perfect caches and branch predictor) for a given window size of 32, 64, 128

and 256 in-flight instructions

register traffic 9 average number of register input operands per instruction, average number of register reads per register write, distribution

(measured in buckets) of the register dependency distance, or, number of instructions between the production and consumption

of a register instance

working set 4 number of unique 32 byte blocks and 4KB memory pages touched for both the instruction and data stream

data stream strides 20 distribution of global and local strides; global stride is the difference in memory addresses between two consecutive memory accesses;

local stride is similar but is restricted to two consecutive memory accesses by the same static instruction; this is measured

separately for memory reads and writes; these distributions are measured in buckets

branch predictability 4 branch prediction accuracy for the theoretical PPM predictor [6]; we consider both global and local history predictors,

and both per-address and global predictors

TABLE II

CASE STUDY COMPARING MICROARCHITECTURE-DEPENDENT AND MICROARCHITECTURE-INDEPENDENT CHARACTERISTICS FOR gzip-graphic AND

fasta. THE ‘MAXIMUM’ COLUMN SHOWS THE MAXIMUM VALUE OBSERVED ACROSS ALL BENCHMARKS.

Microarchitecture-dependent characteristics

gzip fasta maximum

CPI on Alpha 21164 1.01 0.92 14.04

CPI on Alpha 21264 0.63 0.66 5.22

L1 D-cache misses per instruction 1.61% 1.90% 22.58%

L1 I-cache misses per instruction 0.15% 0.18% 6.44%

L2 cache misses per instruction 0.78% 0.25% 17.59%

Microarchitecture-independent characteristics

gzip fasta maximum

data working set in 32-byte blocks 3,857,693 438,726 31,709,065

data working set in 4KB pages 46,199 4,058 248,108

instruction working set in 32-byte blocks 1,394 3,801 24,377

instruction working set in 4KB pages 33 79 341

probability for a local load stride = 0 0.67 0.30 0.91

probability for a local store stride = 0 0.64 0.05 0.99

probability for a global load stride ≤ 64 0.26 0.18 0.86

probability for a global store stride ≤ 64 0.35 0.93 0.99

the L1 D-cache miss rate, the L1 I-cache miss rate and the L2

cache miss rate on the EV56.

We also measure a set of microarchitecture-independent

characteristics organized into six categories: instruction mix,

amount of ILP for a given instruction window size, inter-

instruction dependence distance distributions, working set

sizes, memory access patterns and branch predictability for

the theoretical Prediction by Partial Matching (PPM) branch

predictor [6]. Table I summarizes these characteristics; we

refer the interested reader to [7] for a more detailed descrip-

tion. Collecting these microarchitecture-independent character-

istics can be done through binary instrumentation using tools

such as ATOM, Pin, Valgrind, DynamoRIO, etc. Note these

characteristics are microarchitecture-independent but not ISA-

and compiler-independent, however, in our prior work [8] we

observed that these characteristics provide a fairly accurate

characterization picture even across platforms.

Out of the 118 benchmarks in our data set, we now

consider two benchmarks, namely SPEC CPU2000’s gzip-

graphic versus BioInfoMark’s fasta for our case study il-

lustrating the pitfall in microarchitecture-dependent workload

characterization; we found multiple couples of benchmarks

that could serve as a case study but we limit ourselves here to

a single illustrative example. Table II shows microarchitecture-

dependent and microarchitecture-independent characteristics

for both benchmarks and also shows the maximum value

observed across all the benchmarks for each of these char-

acteristics (just to put the values for gzip and fasta into

perspective). The microarchitecture-dependent characteristics,

CPI and cache miss rates, are fairly similar for gzip and fasta

(especially when compared to the maximum values observed

across the entire data set). The microarchitecture-independent

characteristics on the other hand are quite different. The

fasta benchmark has a data working set that is one order of

magnitude smaller than for gzip (although its dynamic in-

struction count is about 6.7 times larger). The memory access

patterns are also very much different for both benchmarks. For

example, the probability for the same static load addressing the

same memory location at consecutive executions — local load

stride equal to zero — is more than twice as large for gzip

as for fasta; and the probability for the difference in memory

addresses of consecutive memory writes — the global load

stride — to be smaller than 64, is more than 2.5 times as

large for fasta as for gzip.

In conclusion, the pitfall in microarchitecture-

dependent workload characterization is that although

the microarchitecture-dependent behavior is fairly similar,

the inherent program behavior may be very different.

And this can be misleading for driving microprocessor

design: although two workloads behave similar on one

microarchitecture, they may exhibit different behavior and

performance on other microarchitectures. We thus advocate

TABLE I

MICROARCHITECTURE-INDEPENDENT CHARACTERISTICS COLLECTED TO CHARACTERIZE WORKLOAD BEHAVIOR.

Category # Description

instruction mix 6 percentage loads, stores, branches, arithmetic operations, multiplies, and floating-point operations

ILP 4 IPC that can be achieved for an idealized processor (with perfect caches and branch predictor) for a given window size of 32, 64, 128

and 256 in-flight instructions

register traffic 9 average number of register input operands per instruction, average number of register reads per register write, distribution

(measured in buckets) of the register dependency distance, or, number of instructions between the production and consumption

of a register instance

working set 4 number of unique 32 byte blocks and 4KB memory pages touched for both the instruction and data stream

data stream strides 20 distribution of global and local strides; global stride is the difference in memory addresses between two consecutive memory accesses;

local stride is similar but is restricted to two consecutive memory accesses by the same static instruction; this is measured

separately for memory reads and writes; these distributions are measured in buckets

branch predictability 4 branch prediction accuracy for the theoretical PPM predictor [6]; we consider both global and local history predictors,

and both per-address and global predictors

TABLE II

CASE STUDY COMPARING MICROARCHITECTURE-DEPENDENT AND MICROARCHITECTURE-INDEPENDENT CHARACTERISTICS FOR gzip-graphic AND

fasta. THE ‘MAXIMUM’ COLUMN SHOWS THE MAXIMUM VALUE OBSERVED ACROSS ALL BENCHMARKS.

Microarchitecture-dependent characteristics

gzip fasta maximum

CPI on Alpha 21164 1.01 0.92 14.04

CPI on Alpha 21264 0.63 0.66 5.22

L1 D-cache misses per instruction 1.61% 1.90% 22.58%

L1 I-cache misses per instruction 0.15% 0.18% 6.44%

L2 cache misses per instruction 0.78% 0.25% 17.59%

Microarchitecture-independent characteristics

gzip fasta maximum

data working set in 32-byte blocks 3,857,693 438,726 31,709,065

data working set in 4KB pages 46,199 4,058 248,108

instruction working set in 32-byte blocks 1,394 3,801 24,377

instruction working set in 4KB pages 33 79 341

probability for a local load stride = 0 0.67 0.30 0.91

probability for a local store stride = 0 0.64 0.05 0.99

probability for a global load stride ≤ 64 0.26 0.18 0.86

probability for a global store stride ≤ 64 0.35 0.93 0.99

the L1 D-cache miss rate, the L1 I-cache miss rate and the L2

cache miss rate on the EV56.

We also measure a set of microarchitecture-independent

characteristics organized into six categories: instruction mix,

amount of ILP for a given instruction window size, inter-

instruction dependence distance distributions, working set

sizes, memory access patterns and branch predictability for

the theoretical Prediction by Partial Matching (PPM) branch

predictor [6]. Table I summarizes these characteristics; we

refer the interested reader to [7] for a more detailed descrip-

tion. Collecting these microarchitecture-independent character-

istics can be done through binary instrumentation using tools

such as ATOM, Pin, Valgrind, DynamoRIO, etc. Note these

characteristics are microarchitecture-independent but not ISA-

and compiler-independent, however, in our prior work [8] we

observed that these characteristics provide a fairly accurate

characterization picture even across platforms.

Out of the 118 benchmarks in our data set, we now

consider two benchmarks, namely SPEC CPU2000’s gzip-

graphic versus BioInfoMark’s fasta for our case study il-

lustrating the pitfall in microarchitecture-dependent workload

characterization; we found multiple couples of benchmarks

that could serve as a case study but we limit ourselves here to

a single illustrative example. Table II shows microarchitecture-

dependent and microarchitecture-independent characteristics

for both benchmarks and also shows the maximum value

observed across all the benchmarks for each of these char-

acteristics (just to put the values for gzip and fasta into

perspective). The microarchitecture-dependent characteristics,

CPI and cache miss rates, are fairly similar for gzip and fasta

(especially when compared to the maximum values observed

across the entire data set). The microarchitecture-independent

characteristics on the other hand are quite different. The

fasta benchmark has a data working set that is one order of

magnitude smaller than for gzip (although its dynamic in-

struction count is about 6.7 times larger). The memory access

patterns are also very much different for both benchmarks. For

example, the probability for the same static load addressing the

same memory location at consecutive executions — local load

stride equal to zero — is more than twice as large for gzip

as for fasta; and the probability for the difference in memory

addresses of consecutive memory writes — the global load

stride — to be smaller than 64, is more than 2.5 times as

large for fasta as for gzip.

In conclusion, the pitfall in microarchitecture-

dependent workload characterization is that although

the microarchitecture-dependent behavior is fairly similar,

the inherent program behavior may be very different.

And this can be misleading for driving microprocessor

design: although two workloads behave similar on one

microarchitecture, they may exhibit different behavior and

performance on other microarchitectures. We thus advocate

instr. memory footprint
instr. memory footprint

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

29/34

Insight: Comparing benchmark suites
Time is of the essence, insight is what we aim for

Measuring microarchitecture-independent program characteristics takes a
lot longer than collecting data using hardware performance counters...

... but they give you a lot more insight into inherent program behavior!

To close the gap regarding needed time:

 identify key microarchitecture-independent program characteristics

!

!

!

!

!

!

!

!
!

!
!

!
!

! ! !
! ! ! ! ! !

! ! !
!

!
! ! ! ! !

!
!

! ! ! ! ! ! ! ! !

0 10 20 30 40

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

number of retained characteristics

P
e
a
rs

o
n
 c

o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t

Fig. 1. Correlation coefficient of the distance in the space built from the selected characteristics
through the genetic algorithm versus the distance in the space built from all characteristics.

A genetic algorithm is an evolutionary optimization method that starts from popu-
lations of solutions. For each solution in each population, a fitness score is computed
and the solutions with the highest fitness score are selected for constructing the next
generation. This is done by applying mutation, crossover and migration on the selected
solutions from the previous generation. Mutation randomly changes a single solution;
crossover generates new solutions by mixing existing solutions; and migration allows
solutions to switch populations. This algorithm is repeated, i.e., new generations are
constructed, until no more improvement is observed for the fitness score.

A solution in our case, is a series of 69 0’s and 1’s, one per microarchitecture-
independent characteristic. A ‘1’ selects a program characteristic and a ‘0’ excludes
a program characteristic. The fitness score equals the correlation coefficient of the dis-
tances between the prominent phases in the original data set (with all microarchitecture-
independent characteristics) versus the distances between the prominent phases in a re-
duced data set with only the selected microarchitecture-independent characteristics, i.e.,
only the characteristics with a 1 assigned are included in the reduced data set. Comput-
ing the distance in the original data set as well as in the reduced data set is done through
PCA, i.e., we first apply PCA on both data sets, retain the principal components with a
variance greater than one, normalize the principal components and finally compute the
distances between the prominent phases in the rescaled PCA space. The reason for this
additional PCA step when computing the distance is to discount the correlation in the
data set from the distance measure while accounting for the most important underlying
program characteristics. The end result of the genetic algorithm is a limited number of
program characteristics that allow for an accurate microarchitecture-independent pro-
gram characterization of the most prominent phase behaviors.

It is up to the experimenter to determine how many microarchitecture-independent
characteristics to retain. This can be done based on the desired correlation coefficient
of the distances in the reduced dimensionality space versus the distances in the orig-
inal space. Figure ?? shows this correlation coefficient as a function of the number

6

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

30/34

Insight: Comparing benchmark suites
Visualizing program behavior

key characteristics reveal inherent program behavior

data mem. footprint (32-byte block level)

% multiply operations

PAg PPM

prob. register dep. dist ≤ 16

prob. global load stride ≤ 8

prob. local store stride ≤ 8

prob. local load stride = 0

prob. local store stride ≤ 4096

mean + std. dev.

mean - std. dev.

mean

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

31/34

Insight: Comparing benchmark suites
Visualizing program behavior

inherent behavior might be very similar across inputs,
somewhat different,

or very different

data mem. footprint (32-byte block level)

% multiply operations

PAg PPM

prob. register dep. dist ≤ 16

prob. global load stride ≤ 8

prob. local store stride ≤ 8

prob. local load stride = 0

prob. local store stride ≤ 4096

mean + std. dev.

mean - std. dev.

mean

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

32/34

Insight: Comparing benchmark suites
Visualizing program behavior

extreme behavior is easy to spot

more details, see
“Comparing Benchmarks Using Key Microarchitecture-Independent Characteristics” (IISWC’06)

“Microarchitecture-Independent Workload Characterization” (IEEE Micro Hot Tutorials May/June 2007)

data mem. footprint (32-byte block level)

% multiply operations

PAg PPM

prob. register dep. dist ≤ 16

prob. global load stride ≤ 8

prob. local store stride ≤ 8

prob. local load stride = 0

prob. local store stride ≤ 4096

mean + std. dev.

mean - std. dev.

mean

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

33/34

phase-level performance estimation
collect program characteristics and IPCs for intervals of
instructions, use machine learning to improve current methodology

comparing benchmarks with real applications
how different are commonly used applications from benchmarks
used by academia?

study multithreaded applications
characterize multithreaded applications using thread-safe MICA
(and additional characteristics?)

the next level: ISA-independent (LLVM?)

Insight: Future work
What else do we have up our sleeve?

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Obtaining and using MICA

34/34

http://www.elis.ugent.be/~kehoste/mica

released under BSD license

do what you want with it, just don’t pretend it’s yours

updates and news: see website

only tested on Linux/x86

bug reports/fixes welcome (SVN coming soon)

http://www.elis.ugent.be/~kehoste/mica
http://www.elis.ugent.be/~kehoste/mica

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

?
Kenneth Hoste (kehoste@elis.ugent.be)

http://www.elis.ugent.be/~kehoste

Lieven Eeckhout (leeckhou@elis.ugent.be)

http://www.elis.ugent.be/~leeckhou

mailto:kehoste@elis.ugent.be
mailto:kehoste@elis.ugent.be
http://www.elis.ugent.be/~kehoste
http://www.elis.ugent.be/~kehoste
mailto:leeckhou@elis.ugent.be
mailto:leeckhou@elis.ugent.be

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

BACKUP

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: register traffic

INPUTS
instruction reg. op. cnt
register ids
read/write?

OUTPUTS
average degree of use
average number of input reg. operands
probability dependency distance < D,
D = 2n, n = [0,6]

register dependency distance
distance (in number of dynamic instructions) between production of a

register value and consumption of the same register value

register read

increase bucket counter
for dependency distance
increase degree of use
for this register

register write

set time stamp for register write
add degree of use to total over
all instructions

all instructions

count number of register
operands, add to total
over all instructions

determine dependency distance count < D
divide by total number of register dependencies (D = 2n, n = [0,6])

output:

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: distr. of mem. acc. strides
global memory stride

difference in memory addresses between two consecutive memory accesses
by any two instructions

local memory stride
difference in memory addresses between two consecutive memory accesses

by the same static instruction
(measured separately for memory reads and writes)

INPUTS
memory addresses
read/write?

OUTPUTS
probability memory stride < D,
D = 23n, n = [0,6]
both for local and global
memory strides

compute difference with previous memory address (local/global)
increase count for resulting memory stride

for each memory read/write:

determine local/global memory read/write stride count < D
divide by total number of memory reads/writes (D = 23n, n = [0,6])

output:

Microarchitecture-Independent Workload Characterization Using Pin
Kenneth Hoste – 2007-09-29 Pin tutorial @ IISWC-2007 (Boston, MA, USA)
Faculty of Engineering – Department of Electronics and Information Systems (ELIS) - Ghent University

Data processing: touched blocks/pages

INPUTS
memory read/write addresses

OUTPUTS
number of 32-byte blocks / 4KB pages
touched by data/instr. mem. accesses

memory footprint: set of memory locations used by program
 (cache blocks or main memory pages)

for each memory access (data/instr.):

determine address for 32-byte block
determine address for 4KB page
set ‘touched’ bit in hash tables (mem. efficiency)

output:

count number of blocks/pages touched by running over touched bits in hash tables

