
An Introduction to Gtk2Hs, a Haskell

GUI Library

by Kenneth Hoste 〈kenneth.hoste@UGent.be〉

This article is an introduction to Gtk2Hs, one of many Haskell GUI libraries. We
introduce the library by means of a small example, which we will build from scratch
during this article. The emphasis is on the Gtk2Hs related code.

Introduction

Since this article is an introduction to Gtk2Hs, we will start with some words on the
library itself: the structure of the library, its advantages and disadvantages, and how to
install and use it.

In order to make the explanation of the basic principles behind Gtk2Hs a little bit
easier, we use an example application: the Memory game. The code needed to run the
application was written to serve as example code for this article, and thus is not meant
to be fully working, or even bug-free.

Because one of the big advantages of the Gtk2Hs library is the support of Glade, we
show how we can access a GUI description created with Glade. The main part discusses
the Gtk2Hs related functionality of the Memory application. This includes setting up
communication between the different parts of the program. We show how we can ensure
the interaction with the user runs smoothly.

To conclude the article, we review the important items we discussed, and try to see
what the future could bring us.

What is Gtk2Hs?

As we mentioned above, Gtk2Hs is a GUI library for Haskell. It is based on Gtk+

(version 2.6), a multi-platform toolkit for creating graphical user interfaces. Some of its
features we use in this article include nearly complete coverage of the Gtk+ toolkit, API
documentation (still in development), bindings for several Gnome modules (more specif-
ically: libglade for loading GUIs from xml files at runtime, GConf for storing application

1



The Monad.Reader

preferences and SourceView, a source code editor widget with syntax highlighting), sup-
port for GNU/Linux, MacOS X and Windows platforms, . . .

The library has reached version 0.9.7, and thus is still largely under development.
Support for using the library can be found on the Gtk2Hs mailinglist. When this article is
published, a fully working 0.9.7.1 build for Windows should be available. Instructions on
how to install Gtk2Hs on Windows are available on the website (http://gtk2hs.source
forge.net/archives/2005/02/17/installing-on-windows). The API is quite useful
already, although it doesn’t contain all the desired information.

When talking about a GUI library, it is often useful to first explain some of the used
terminology, as we do not expect everybody to be familiar with several of the UI terms
we use in this article, such as (cfr. Wikipedia):

I widget: a component of a graphical user inferface that the user interacts with.
Examples: button, label, scroll bar, . . .

I container: a widget which is able to contain other widgets
I box: a container which aligns all of its widgets either in a vertical or horizontal

way
To use Gtk2Hs in a Haskell program, you should install Gtk2Hs and import the

Gtk2Hs modules you need. For the Windows platform (and maybe others too), this
installation will require Gtk+ to be installed (to install Gtk+ on the Windows platform,
see gladewin32.sourceforge.net), and to be able to use the Glade functionality, you should
also have Glade installed (more information, see the ’Using Glade’ section).

Once everything is installed properly, it should suffice to add an import statement at
the beginning of the program code, i.e.:

import Graphics.UI.Gtk

This lets the Haskell compiler know we want to use the functionality provided by the
Gtk2Hs package.

Some people would argue that there are dozens of Haskell GUI libraries out there, so
why would this one be any better than the rest? To point out the advantages of Gtk2Hs
over other Haskell GUI libraries, we give a brief overview of what Gtk2Hs does better
than most of the other libraries:

I Glade support First of all, using Glade you can design a GUI visually rather than
having to write code. This allows one to follow the HIG (the Gtk/Gnome Human
Interface Guidelines: http://developer.gnome.org/projects/gup/hig) much
more easliy. It also allows Gtk2Hs to read the GUI definition at runtime. When
the user wants to change some small things about the GUI, or even completely
re-design it, no recompiling of the Haskell code is needed. Just make sure the new
*.glade file has the same name as the last one, and contains the same widgets (with
the same names) as the last GUI definition.

I API reference documentation An API is a tool which every serious developer
needs. The Gtk2Hs tool which is available now, isn’t complete yet, but several
people are putting a lot of effort into it. The Gtk+ API (http://gtk.org/api)
could also be of some help, since Gtk2Hs is a mapping of the Gtk+ functionality
to Haskell.

2

http://gtk2hs.source
forge.net/arch ives/2005/02/17/installing-on-windows
http://developer.gnome.org/projects/gup/hig
http://gtk.org/api


Kenneth Hoste: An Introduction to Gtk2Hs, a Haskell GUI Library

I Unicode support
I Memory managment
I Bindings for the Mozilla browser rendering engine

To conclude this section, we list some of the other Haskell GUI libraries avaible.
I wxHaskell (wxhaskell.sourceforge.net) - built on top of wxWidgets, a comprehen-

sive C++ library across all major GUI platforms, including Gtk, Windows, X11
and MacOS X

I FranTk (haskell.org/FranTk) - a declarative library for building GUIs in Haskell,
running on top of Tcl-Tk (working via TclHaskell)

I HToolKit (htoolkit.sourceforge.net) - a portable Haskell library for writing graph-
ical user inferfaces. To ensure portability, the library is built upon a low-level
interface PORT, which is currently implemented for Gtk and Windows.

I Other (haskell.org/libraries/#guigs) - check here for information about other Haskell
GUI library projects

The example program: Memory, the game

Before we show how to code the example we’re using, let’s see what it is supposed to do.

The Memory game is a simple card game. The goal of the game is find all pairs of
equal images on the cards, which are all upside down when the game starts. We will
allow the user to set the game level between 1 and 9. The level indicates how many pairs
the deck of cards has: level 1 means just one pair (very easy), level 9 means nine pairs
(quite ’hard’). When the user has set a level, he should be able to start a new game.
We will use a control panel to provide this functionality.

In order to play the game, the player must be able to flip cards over, and see what
picture is on them. Once he has flipped over two cards (and thus has tried to find a
pair), the program should decide whether the cards match or not. When the player flips
over another card, the game should visualise the match by means of some picture (in
our case, a smiley icon), or just flip the cards back again when there was no match.

As a teaser, we show a screenshot of the Memory game which we have written. Some
cards have been matched, two cards are flipped over (but no match is found), and the
rest of the cards are upside down. On the right, the control panel is shown where the
user can adjust the game level and/or start a new game.

The GUI: Using Glade

Glade is a tool to create XML descriptions of a graphical user interfaces. Using Glade,
it is not necessary to write application code to construct GUIs. Moreover, it lets us
redesign the GUI appearance without having to touch the code. No knowledge of Glade
is needed to be able to understand this article. It was used to demonstrate one of many
features of Gtk2Hs.

3



The Monad.Reader

Figure 1: Screenshot of the Memory game

For more information about the use of Glade see http://glade.gnome.org for GNU/
Linux, or http://gladewin32.sourceforge.net for the Windows platform).

The code: reading the glade description

After using Glade to create the GUI, it is necessary to load the description of the various
widgets in the GUI before they can be used, e.g. to define the communication between
widgets, in an interactive application written in Haskell.

To make the Glade functionality available in Haskell, we should import the Glade
module defined in the Gtk2Hs library first:

import Graphics.UI.Gtk.Glade

The first thing to do before loading the widgets defined in the Glade description, is to
load the description itself. Because the *.glade file is needed to run the application, we
include a check too see whether the description file can be found where it is expectedx.
As such, we can inform the user with an appropriate error message if no conforming
Glade file is available.

The load the file, we use the xmlNew function provided by the Glade module in the
Gtk2Hs library. The Maybe module makes an excellent tool to help us check if the file
was available. If it was, we use the description it contains. Otherwise, we throw an
error, which will inform the user of what went wrong.

windowXmlM <- xmlNew "memory.glade"

let windowXml = case windowXmlM of

4

http://glade.gnome.org
http://gladewin32.sourceforge.net


Kenneth Hoste: An Introduction to Gtk2Hs, a Haskell GUI Library

(Just windowXml) -> windowXml

Nothing -> error "Can’t find the glade file \"memory.glade\"

in the current directory"

Now we are able to access the GUI description from within our code. This allows us
the load the widgets defined in the description, using the xmlGetWidget function. When
using Glade, one should try to define the widget as it should appear, only using Glade.
That way, no adjustments have to be made when loading the widgets in Haskell.

window <- xmlGetWidget windowXml castToWindow "window"

onDelete window deleteEvent

onDestroy window destroyEvent

controlPanel <- xmlGetWidget windowXml castToVBox "control panel"

entry <- xmlGetWidget windowXml castToEntry "number of pictures"

button <- xmlGetWidget windowXml castToButton "new game button"

label <- xmlGetWidget windowXml castToLabel "message label"

labelSetText label "\nNothing set."

boardAlignment <- xmlGetWidget windowXml castToAlignment "board content"

board <- xmlGetWidget windowXml castToVBox "cards"

As you can see, some extra code is needed besides simply loading the widgets.
Because a window doesn’t react on click actions by default, we have to define what

has to happen when the user closes the window. E.g. when a window is closed, the
delete-event is thrown by Gtk+. For handling this event, the onDelete function is used
to define which function should be executed when the window is closed.

We also have to define the deleteEvent function, which is called whenever a delete-
event is thrown. Our implementation is quite simple: there is nothing we need to do
when the user closes the window, besides killing the process showing it. To achieve this,
we can simply return False, which will result in a destroy-event being thrown for the
window. This behavior is the same as the default behavior, so if we wouldn’t provide
this, the window would be destroyed anyway. We mention it here explicitly to illustrate
how the system works.

deleteEvent :: Event -> IO Bool

deleteEvent _ = do return False

In order to catch this destroy-event, we should use the onDestroy function (see above),
in combination with the definition of the destroyEvent function (analogous to the
delete-event). The latter just executes mainQuit (provided in the General module of
Gtk2Hs), which will result in exiting the main loop (and thus killing the application).

destroyEvent :: IO()

destroyEvent = do mainQuit

The last line of extra code, is quite straightforward. It sets the default text on the
messagelabel to “Nothing set.”, to show the user the application has just started, and no
game level is set yet (which we will need in order to start a new game).

5



The Monad.Reader

The code: what’s after Glade

When all the widgets are loaded, there’s still some work to do before we can show the
GUI. Because we are building an interactive game application, we should be able to track
what the user is doing (i.e. keep track of the game state). Haskell provides a handy
’tool’ for that purpose: IORef. Because we are building a GUI, most of our code will be
executed in the IO monad. Therefore, we can’t just pass along some variable and expect
every function to notice the change. The IORef module (available in the Data package of
Haskell), provides a solution for this problem. We can read and write from/to a IORef,
and thus share the variable with different functions.

The use of IORef is what distinguishes low/medium level libraries like Gtk2Hs and
wxHaskell from high level libraries like FranTk and Fruit. The latter have various
abstractions to avoid or hide the use of IORefs.

Throughout the program, we use a single IORef variable to keep track of the state.
At the start of the program, we put this IORef in a well known state:

state <- newIORef (State Nothing Nothing 0)

In the IORef, we use a new data type State, that contains all the information we
need about the game state, and which is declared as follows:

data State = State (Maybe ToggleButton)

(Maybe (Bool,ToggleButton, ToggleButton)) Int

The first of its arguments may contain a card which is flipped (or nothing when no
card is flipped, that’s why we use the Maybe monad). The second argument may contain
a pair of cards which was tested for a match the last time (or again, nothing when no
pair is available). The result of the match test is also available is this argument. The
last argument contains the number of pairs of cards left to find, in order to be able to
detect when the game is finished (i.e. when no pairs are left to find).

To complete the definition of main, we should add the following code:

onClicked button ...

widgetShowAll window

mainGUI

The onClicked part is discussed in the next section. The two last lines of code are
needed to show all the widgets in the window, including the window itself (widgetShowAll
window) and preparing the GUI for user interaction (mainGUI).

The code: setting up communication

The only piece of code of the main function we have not discussed yet, is the onClicked
part mentioned earlier. This part defines what should happen when the “New game”

6



Kenneth Hoste: An Introduction to Gtk2Hs, a Haskell GUI Library

button is pressed. Obviously, when there’s more than one button in the GUI, the function
onClicked should be defined for every button.

We first give the entire definition of the onClicked function, and then dissect is
piecewise.

onClicked button $ do

entryText <- entryGetText entry

let text = filter (not.isSpace) entryText

check = (not $ null text) && null (tail text) && isDigit

(head text)

if (check) then do board <- vBoxNew True 1

cards <- startNewGame (read text :: Int) label

state

gameBoard <- createBoard cards state

boxPackStart board gameBoard PackNatural 0

children <- containerGetChildren boardAlignment

if (not $ null children) then containerRemove

boardAlignment

(head children)

else return()

containerAdd boardAlignment board

widgetShowAll window

else do children <- containerGetChildren boardAlignment

if (not $ null children) then containerRemove

boardAlignment

(head children)

else return()

widgetShowAll window

Before the level entered by the user is used, it is paramount to check if the text entered
in the entry field is correct.

We could avoid this with using a spin box (which would allow only values between 1
and 9) instead of an entry field. This would be much easier, but using an entry field
allows us to show some additional aspects of Gtk2Hs (removing widgets from a box,
what to do when unexpected user input is given, . . . ).

First of all, we filter out all the spaces (to avoid unneccesary error messages).

entryText <- entryGetText entry

let text = filter (not.isSpace) entryText

To check if the entered text is correct, we use the boolean variable check. First of all,
we check if the text (without spaces) is 1 character long (because we only allow a level
between 1 and 9). Then, we check if the character is a digit, using the isDigit function
provided in the Char module.

7



The Monad.Reader

check = (not $ null text) && null (tail text) && isDigit (head text)

Depending on the value of check, we decide what to do.
When the text entered is not correct (for example when a word is entered, or some

non-numeric symbol), we should clear the game board (because it is possible another
game was being played when the new game is started, and the current game should be
removed from the board).

labelSetText label ("\nPlease enter a level between\n1 and 9 to set

the game level.")

children <- containerGetChildren boardAlignment

if (length children > 0) then containerRemove boardAlignment

(head children)

else return()

widgetShowAll window

To clear the board, we simply remove all the widgets on it. In our impementation, the
game board itself is created in a frame (a Gtk widget). On this frame, we have put a box
container, in which all the cards are aligned. To clear the game board, it is thus sufficient
to remove (and redraw) that box. For obtaining said box, the containerGetChildren

function is used. This function returns a list of all the widgets that have been added to
a container (an argument of the function). As shown above, the box is contained in a
frame, and thus the box can be found among the children of the frame aligment. Since
removing the box from the alignment actually equates to clearing the board, we must
make sure the alignment is not empty before we try to obtain the first element of its
children. Obviously, if that case, the code would try to take the head of an empty list,
which would result in an abnormal termination of the program, or at least in a runtime
error. Finally, to show the change, we add a call to the widgetShowAll function, with
the entire window as its argument. The new widgets are created in a hidden state,
so a function should be called in order to make them visible. We could have called
widgetShowAll only on new widgets, but to avoid clutter, we chose the implementation
shown above.

To inform the user what went wrong, we also show a suitable message on the provided
label, using the labelSetText function.

When the entered text was correct, we need to show a new game board ready to play
the game with the desired number of cards. In order to do this, we have to clear the
board (analogous to the other case above) and add the new deck of cards.

let level = (read text :: Int)

labelSetText label ("\nNew game started (level: "++

(show level)++").")

cards <- buildNewGame level state

cardsBox <- fillBox cards state

children <- containerGetChildren boardAlignment

8



Kenneth Hoste: An Introduction to Gtk2Hs, a Haskell GUI Library

if (length children > 0) then containerRemove boardAlignment

(head children)

else return()

containerAdd boardAlignment cardsBox

widgetShowAll window

To ensure our code remains readable, we implemented the process of showing a new
board in several separate functions. First we describe what happens, then we take a
closer look at the steps taken to get the desired result.

The game level is entered as text, i.e. a string, and thus must be converted to an
integer value. Next to that, we want to show a nice message on the label we provided for
this purpose. The buildNewGame function yields the requested deck of cards. This deck
is then used to build the box, which was mentioned earlier and which will contain the
game cards. Building this box is done by the fillBox function. It is paramount that
we pass along the IORef representing the game state, because this state will be needed
by the function that deals with ‘card clicks’.

Now, let’s look at the definition of the buildNewGame and fillBox functions.

buildNewGame :: Int -> IORef State -> IO Board

buildNewGame n state = do

writeIORef state (State Nothing Nothing n)

let imagesPart = take n getImages

images = imagesPart ++ imagesPart

case n of

1 -> return (Board 2 1 images)

2 -> return (Board 2 2 images)

...

9 -> return (Board 5 4 images)

The buildNewGame function returns all the information needed to visualize the game
board with a certain level (the number of different card pairs). For that purpose, we
defined a Board datatype, containing the number of rows and columns of the game
board, and a list of the names of the images for every card on the game board.

data Board = Board Int Int [String]

First, buildNewGame sets the game-state to a well-known default value, and builds a
list of image-names, as many as needed according to the chosen game level. To keep the
example simple, we use a function which returns a static list of image-names.

getImages :: [String]

getImages = ["1.jpg","2.jpg","3.jpg","4.jpg","5.jpg","6.jpg",

"7.jpg","8.jpg"," 9.jpg"]

9



The Monad.Reader

Depending on the chosen game level, the board layout will be chosen (the number of
rows/columns).

The other function we need to define, is the fillBox function.

fillBox :: Board -> IORef State -> IO VBox

fillBox (Board w 1 list) state = do

...

fillBox (Board w 2 list) state = do

...

fillBox (Board w 3 list) state = do

vBox <- vBoxNew True 1

addHBoxToVBox w vBox (take w list) state

addHBoxToVBox w vBox (take w (drop w lis t)) state

addHBoxToVBox w vBox (drop (2*w) list) s tate

return vBox

fillBox (Board w 4 list) state = do

...

This function will use the list of image names in the Board datatype to fill the box that
represents the game board. The definition of fillBox depends on the number of rows
needed to represent the game board. Every board consists of a vertical box containing
a number of horizontal boxes of equal width. We show the definition of fillBox for a
game board with 3 rows. A new vertical box is created, and then the horizontal boxes
are added using the addHBoxToVBox function. We have to make sure we provide the
right sublist containing the image-names.

addHBoxToVBox :: Int -> VBox -> [String] -> IORef State -> IO()

addHBoxToVBox w vBox list state = do hBox <- hBoxNew True w

fillRow hBox list state

boxPackStartDefaults vBox hBox

The addHBoxToVBox function just creates a new horizontal box of given width w, fills
it with togglebuttons (using the fillRow function), and adds it to the vertical box also
provided.

fillRow :: HBox -> [String] -> IORef State -> IO()

fillRow box [] state = do return ()

fillRow box (l:ls) state = do button <- toggleButtonNew

widgetSetName button $ l

containerSetBorderWidth button 2

image <- imageNewFromFile "back.jpg"

containerAdd button image

10



Kenneth Hoste: An Introduction to Gtk2Hs, a Haskell GUI Library

onToggled button (buttonToggled button state)

boxPackStartDefaults box button

fillRow box ls state

The fillRow function creates a new togglebutton for every string in the given list with
image-names. The name of the button is set to the image name (using widgetSetName),
so when the togglebutton is clicked, we are able to show the image ’hidden’ behind
it. To start with, a default image is added to the togglebutton. We also define which
function should be executed when the button is toggled (buttonToggled, see below),
and of course the button is added to the horizontal box provided.

The code: playing the game

buttonToggled :: ToggleButton -> IORef State -> IO()

buttonToggled button stateRef = do

state <- readIORef stateRef

name <- widgetGetName button

pressed <- toggleButtonGetActive button

treatClick stateRef name button state pressed

The buttonToggled function just collects some information about the button which
was toggled: the name of the button and the state of the button (pressed/unpressed).
We also need the current game state. The actual actions which need to be executed
when a button was toggled, are defined in the handleClick function.

handleClick :: IORef State -> String -> ToggleButton

-> State -> Bool -> IO()

Because this function has several cases, we will treat them one by one.

handleClick _ _ _ (State _ _ (-1)) _ = return ()

handleClick _ _ _ (State Nothing (Just (True,p1,p2)) 0) _ =

do showImageOnButton p1 "found.jpg"

showImageOnButton p2 "found.jpg"

handleClick _ "found" _ _ _ = return ()

In handleClick, we distinguish several cases, handled separately by using pattern
matching on the arguments of the function. The first case, where the total number of
cards left in the game state is set to -1, is used when the game board should not react to
any clicks. This is necessary when one button toggle results in ’un-toggling’ another but-
ton, otherwise the un-toggling would trigger another execution of handleClick. When
the the number of pairs to match is zero, and the last attempt to match succeeded, the

11



The Monad.Reader

game is finished. Here, we just make sure that the last pair of images are also replaced
by smiley faces, but other actions can be added (showing a dialog box, adjusting the
message in the control panel, . . . ). The third case is executed when a button is toggled
which contains a card that had already matched. Here, no changes must be made to the
game state or the button which was clicked.

handleClick ref name button (State (Just lastButton) _ tot) False =

do writeIORef ref (State Nothing Nothing tot)

showImageOnButton button "back.jpg"

When a button is clicked, but the user decides to choose another card to start with,
i.e. he clicks the same button again, the state should be set to the state the game
was in before to the first click. Obviously, this case must be handled before the others,
otherwise a match will be found, which is clearly wrong.

handleClick ref name button (State Nothing Nothing tot) _ =

do writeIORef ref (State (Just button) Nothing tot)

showImageOnButton button name

This case occurs when a button is clicked while the game is in the ’empty’ state. When
this happens, the game is adjusted (it should show which button is currently clicked), and
the image which belongs to the clicked button is shown, using the showImageOnButton

function. This last function is discussed at the end of this section.

handleClick ref name button (State Nothing (Just (False,p1,p2)) tot) _ =

do writeIORef ref (State (Just button) Nothing tot)

showImageOnButton button name

showImageOnButton p1 "back.jpg"

showImageOnButton p2 "back.jpg"

handleClick ref name button (State Nothing (Just (True,p1,p2)) tot) _ =

do writeIORef ref (State (Just button) Nothing tot)

showImageOnButton button name

showImageOnButton p1 "found.jpg"

showImageOnButton p2 "found.jpg"

When the last attempt to match two images failed, and a new button was clicked, the
first case will be executed. The game state is adjusted, so the currently clicked button
is in it, and the last attempt to match is removed. The image of the clicked button is
shown, and the images of the last two buttons which were clicked are reset to the default
image.

When the last attempt did succeed, the same actions will be executed, but instead
of resetting the images of the clicked button to the default one, the images are set to a
’found’-image (i.e. a smiley face).

12



Kenneth Hoste: An Introduction to Gtk2Hs, a Haskell GUI Library

handleClick ref name button (State (Just prevBut) _ tot) True =

do last <- widgetGetName prevBut

let matched = (name == last)

writeIORef ref (State Nothing Nothing (-1))

toggleButtonSetActive False button

toggleButtonSetActive False prevBut

prevName <- widgetGetName prevBut

showImageOnButton button name

if (matched) then do

widgetSetName button "found"

widgetSetName prevBut "found"

writeIORef ref (State Nothing

(Just (matched,button,prevBut))

(tot-1))

if (tot-1 == 0)

then toggleButtonSetActive True button

else return ()

else writeIORef ref (State Nothing

(Just (matched,button,prevBut))

tot)

When some button has already been clicked, and a second is clicked, the definition
of handleClick above is used. Because the toggle of both buttons is set to False, we
have temporarily adjusted the game state, so no clicks will be accepted. The image of
the second button is shown, so the user can see if the match succeeded or failed. Then,
using the names of the buttons, we check if the match succeeded. When it did, the
name of the button is adjusted to ’found’, and the state is adjusted accordingly. When
this matched pair was the last pair (which we can check using the number of pairs left
to match), we force a button click, to make sure the ’found’-image is shown on both
buttons. When the match failed, all we have to do is adjust the game state. Because
the name of the buttons wasn’t changed, the images will be reset to the default image
when the next button is clicked.

To conclude the discussion of the code, we show the function, which is used to show
a certain image on a button.

showImageOnButton :: Button -> String -> IO()

showImageOnButton button file = do

children <- containerGetChildren button

containerRemove button (head children)

image <- imageNewFromFile file

containerAdd button image

widgetShowAll button

13



The Monad.Reader

Because another image is already added to the button, we will remove it first, anal-
ogous to the way we removed the game board when a new game is started. Using the
string which contains the path of the new image to be shown, we obtain the desired
image, add it to the button, and show the new widgets added to the button using
widgetShowAll.

The code: playing with efficiency

Because the example application we have written is quite small, efficiency isn’t a real
issue. Still, we would like to show how to improve the efficiency of our application.

The problem is that each time a button is pushed, the image the button hides is loaded
from disk. Because our images are small, no real delay can be noticed. To avoid the
images being loaded from disk every time, we could load them once, when the application
is started. Then, when a button is pushed, we only have to replace the current image
with another image already loaded.

Another thing we can improve, is the way how we change an image shown on a button.
In the implementation above, we explicitly remove the current image, and add a new
image to the button. A better way would be to change the image, rather than replacing
it.

To kill two birds with one stone, we use the Pixbuf datatype, which contains all the
information needed to create an image.

Loading all the images before they are needed, requires a way to make the loaded
images accessible when needed. One way is to use a map, which is built at the beginning
of the program:

type Images = [(String, Pixbuf)]

Now, when we need to ’load’ an image, we can use the lookup function, which is
defined in the Haskell Prelude.

Because we are using Pixbuf, there is no need to replace the image on a button, we
can just change it. To illustrate, we show how the showImageOnButton function could
look like:

showImageOnButton :: ToggleButton -> Images -> String -> IO ()

showImageOnButton button images imageName = do

let Just image = lookup imageName images

imageWidget <- liftM castToImage $ binGetChild button

imageSetFromPixbuf imageWidget image

This implementation is both simpler and cheaper in terms of resources. Credits go to
Duncan Coutts for this suggestion.

14



Kenneth Hoste: An Introduction to Gtk2Hs, a Haskell GUI Library

The game: really playing it

As you may have noticed when trying to play the game, it is quite easy to play, too
easy really. The reason is simple: the list containing the image-names, and thus the
list which determines the sequence of the cards on the board, is never shuffled. In
order to implement the game as it is meant to be played, we should provide a shuffle

function, which simply shuffles the list containing the image-names. We didn’t bother to
implement such a function, because it has nothing to do with the Gtk2Hs functionality.

Conclusion

Gtk2Hs is a powerful, user-friendly Haskell GUI library. The use of Glade to create a
GUI allows the developer of the application to concentrate on the interaction part of
the application, instead of making sure it looks good (just try to create the same layout
as in the memory game, using only Haskell code, you’ll see what I mean). The only
drawback when using Glade, is that the *.glade file should always be available, which
makes distribution of the application more difficult.

The current API available is very useful already, and since Gtk2Hs hasn’t reached 1.0
yet, it will only improve. This article could serve as a Gtk2Hs tutorial for people who
are not familiar with Gtk2Hs, and hopefully is a stimulation for other people working
with Gtk2Hs to write a tutorial of their own. This way, the support for Gtk2Hs will
increase, which will stimulate the growth of the library.

As a disclaimer, I would like to state the code isn’t meant to be the most efficient
code possible, neither to be bugfree. Improvements, suggestions and comments are
always welcome, and the code is free to use in any way.

I hope this article has convinced the reader of the benefits of using Gtk2Hs as a Haskell
GUI library, and has contributed to its popularity. Special thanks to Shae Matijs Erisson
(the editor), Duncan Coutts (one of the Gtk2Hs people who made some suggestions) and
Andy Georges (who proofread this article, and suggested a lot of improvements, mostly
language related).

15


	Introduction
	What is Gtk2Hs?
	The example program: Memory, the game
	The GUI: Using Glade
	The code: reading the glade description
	The code: what's after Glade
	The code: setting up communication
	The code: playing the game
	The code: playing with efficiency
	The game: really playing it
	Conclusion

