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Abstract

In many applications computers analyse images or image sequences which are often
contaminated by noise, and their quality can be poor (e.g. in medical imaging). We discuss
how nonlinear partial differential equations (PDEs) can be used to automatically produce
an image of much higher quality, enhance its sharpness, filter out the noise, extract shapes,
etc. The models are based on the well-known Perona-Malik image selective smoothing
equation and on geometrical equations of mean curvature flow type. Since the images are
given on discrete grids, PDEs are discretized by variational techniques, namely by the
semi-implicit finite element, finite volume and complementary volume methods in order
to get fast and stable solutions. Convergence of the schemes to variational solutions of
these strongly nonlinear problems and the extension of the methods to adaptive scheme
strategies improving computational efficiency are discussed. Computational results with
artificial and real 2D, 3D images and image sequences are presented.

1 Introduction

The aim of this paper is to present mathematical models, numerical methods and computa-
tional results in the processing of two-dimensional (2D), three-dimensional (3D) images and
image sequences. The models which we use, are based on a partial differential equations
(PDEs) approach. Namely, PDEs of nonlinear (degenerate) diffusion type are applied to
initially given images. From the mathematical point of view, the input processed image can
be modelled by a real function u°(z), u® : @ — R, where Q C R? represents a spatial domain.
Typically € is rectangular and d = 2 or 3. In the case of an input image sequence u°(z, ),
u® : Q x [0,T4] — R, it depends on the additional parameter § representing a point in a real
time interval of acquisition [0, 74].

Image processing operations involving PDEs are nonlinear image filtration, edge detec-
tion, deblurring and image enhancement, restoration, image inpainting, shape extraction and
analysis, image segmentation, motion analysis, motion based filtering etc. [1, 59, 61, 8, 46, 55].
Typical 2D examples are given by a large variety of medical images, satellite or camera sys-
tem images, old archive documents, texts pre-processed for automatic reading, old corrupted
photographs or any other digital images of poor quality. 3D examples arise in bioengineering,
medicine or in material quality control, where 3D volumetric aquisition methods are widely
used nowadays. The processing of image sequences can be found in the restoration of movies,
video sequence analysis, visual recording of growth (of human organs, leaves of plants, etc.) or
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in improvement of the quality of medical image sequences. For example, the ultrasound acqui-
sition of a beating heart in 3D echocardiography gives one interesting application. This article
is a review of models and methods which can be used in computational image processing.
The details can be found in the original papers [26, 5, 42, 22, 56, 41, 27, 6, 33, 34, 23, 24, 45].

2 Nonlinear diffusion models in image processing

The first step to use PDEs for image processing was done in the beginning of eighties [32, 65].
By the simple observation that the Gauss function
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is a fundamental solution of the linear heat (diffusion) equation, it has been possible to re-
place the classical image processing operation—convolution of an image with G, with a given
variance v = v/20 (Gaussian smoothing)—by solving the linear heat equation for a corre-
sponding time ¢ = ¢ with initial condition given by the processed image. It is well known that
Gaussian smoothing (linear diffusion) blurs edges in the images and moves their positions.
Although such a phenomenon can cause no problems in some examples of data analysis, in
image processing, where the visual impression is important and a precise localization of edges
is also necessary (e.g. to compute volumes of segmented objects), the linear image smoothing
is generally not the best choice. A way has been found to overcome these shortcomings,
namely to switch to nonlinear diffusion models.

Due to the evolutionary character of the process which controls the processing using dif-
fusion equations, application of any PDE to an initially given image is understood as its
embedding in the so-called scale space. In the case of nonlinear PDEs one speaks about
nonlinear scale space. The axioms and fundamental properties of such embeddings have
been given and studied in [1], where the notion of image multiscale analysis has been intro-
duced. The image multiscale analysis associates with a given image u%(x) a family u(t,z) of
smoothed-simplified images depending on an abstract parameter ¢ € [0, 7], the scale. As has
been proved in [1], if such a family fulfills certain basic assumptions—pyramidal structure,
regularity and local comparison principle—then u(t, z), u : [0,7]x 2 — R, can be represented
as the unique viscosity solution (in the sense of [12]) of a general second order (degenerate)
parabolic partial differential equation. This theoretical result has also an important practical
counterpart. The equations of (degenerate) parabolic type have a smoothing property, so
they are a natural tool for filtering (image simplification) by removing spurious structures,
e.g. noise. Moreover, the simplification should be “image oriented”, e.g. it should respect
edges and not blur them. Or, it should recognize motion of a structure in an image sequence,
and consequently the smoothing (diffusion) should respect the motion coherence in consecu-
tive frames. Such requirements, or even more sophisticated ones related to the geometrical
characteristics of the image, bring strong nonlinearity into the parabolic PDEs, and make
this field interesting not only because of the applications but also from a mathematical and
numerical point of view.
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2.1 Anisotropic diffusion of Perona-Malik type

Since the end of the 80s, the nonlinear diffusion equations have been used for processing of
2D and 3D images. After the pioneering work of Perona and Malik [51] who modified the
linear heat equation to nonlinear diffusion preserving edge positions, there has been a great
deal of interest in the application and analysis of such equations. At present, the following
nonlinear PDE [9] is widely used

ut — V.(g(|[VG4 * u|)Vu) =0, (2.1)

where u(t, z) is an unknown function defined in Q7 = [0, 7] x Q. The equation is accompanied
by zero Neumann boundary conditions and the initial condition

ou
E =0 on Ix BQ, (22)
u(0,z) =u’(z) in Q, (2.3)

where v is the unit normal vector to the boundary of Q. We assume that Q C R? is a bounded
rectangular domain, I = [0, 7] is a scaling interval,

g: ]R0+ — R is a nonincreasing function, g(v/s) is smooth, (2.4)
g(0) =1, and we admit g(s) — 0 for s — oo,
Gy € C*®(RY) is a smoothing kernel (e.g. the Gauss function), (2.5)
Go(z)dz =1, / VG| dz < Cy,
Rd Rd
Gy(x) — 05 for 0 — 0, 0, is the Dirac measure at the point z,
u® € Loo(9), (2.6)
and
VGo u= [ VGolz - @) (27)
R4

where @ is an extension of u to R?. One can consider the extension of v by 0 outside © or
the reflective periodic extension of the image [9].

The equation (2.1) represents a modification of the original Perona-Malik model [51, 29,
47]

ug — V.(9(|Vu|)Vu) =0, (2.8)

called also anisotropic diffusion in the computer vision community. Perona and Malik in-
troduced (2.8) in the context of edge enhancement. The equation selectively diffuses the
image in the regions where the signal has small variance in intensity in contrast with those
regions where the signal changes its tendency. Such a diffusion process is governed by the
shape of the diffusion coefficient given by the function g in (2.4) and by its dependence on
Vu, which is understood as an edge indicator [51]. Since g — 0 for large gradients, the
diffusion is strongly slowed down on edges, while outside them it provides averaging of pixel
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intensities as in the linear case. From a mathematical point of view, for practical choices of
g (e.g. g(s) =1/(1+52),g(s) = e, the original Perona-Malik equation can behave locally
like the backward heat equation. It is, in general, an ill-posed problem which suffers from
non-uniqueness and whose solvability is a difficult problem [29]. One way to overcome this
mathematical disadvantage has been proposed by Catté, Lions, Morel and Coll in [9]. They
introduced the convolution with the Gaussian kernel G, into the decision process for the
value of the diffusion coefficient. Since convolution with the Gaussian is equivalent to linear
diffusion, their model combines ideas of linear and nonlinear scale space equations. Such a
slight modification made it possible to prove the existence and uniqueness of solutions for the
modified equation, and to keep the practical advantages of the original formulation. More-
over, usage of the Gaussian gradient VG, * u combines the theoretical and implementation
aspects of the model. The convolution (with prescribed o) gives a unique way to compute
gradients of a piecewise constant image. It also bounds (depending on o) the gradient of the
solution as input of the function g in the continuous model—which corresponds to the situ-
ation in numerical implementations where gradients evaluated on a discrete grid are finite.
Also, the local edge enhancement is more understandable in the presence of noise.

Figure 1: Smoothing of the noisy image keeping the edges using anisotropic diffusion. Shown
are the Oth, 10th, 20th, 30th, 40th and 50th discrete steps of a semi-implicit finite volume
algorithm [41].

We present applications of the regularized Perona-Malik equation (2.1) in the following
three examples. First, the artificial image (Fig. 1, 256 x 256 pixels) with additive noise is
processed by our finite volume scheme [41]; then nonlinear multiscale analysis of the medical
image (Fig. 2, 463 x 397 pixels) computed by the co-volume discretization [24] is given;
and finally, there is an application of the 3D adaptive finite element method [5, 6] to 3D
echocardiographic image of one moment of the cardiac cycle with the left ventricle in open
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Figure 2: Initial image (left); result after 20 steps of regularized Perona-Malik filtering (right)
using semi-implicit complementary volume discretization [24].

phase. In Fig. 3, one can see a visualization of the isosurface representing the boundary
between blood and muscle forming an edge in 3D image intensity.

2.2 Curvature-driven equations in image processing

In rather general situations, the edges are related to level lines (level surfaces in 3D) of
the image intensity function. For example, as one can see in Fig. 4, the edge representing
the blood-cardiac muscle interface corresponds also to an isosurface of the greylevel image
intensity function. In the three subfigures, the corresponding isolines are visible in 2D cutting
slices. The isoline gives a curve in 2D plane representing the boundary of the left ventricle in
the slice. The curve is non-smooth because of the errors in the acquisition. One would like to
smooth it in order to remove the large acquisition errors. One way how to proceed is to move
the curve (surface in 3D) in the direction of its inner normal with the velocity proportional
to its (mean) curvature. The motion of convex and concave pieces is opposite due to the
sign of the curvature, and the large fingers shrink much faster than the smoother parts, due
to the curvature dependence of the flow. The motion by (mean) curvature is governed by a
heat equation (Gaussian smoothing), but applied in the intrinsic curve (surface) geometry. In
Fig. 5 we present the smoothing effect of such geometrical diffusion. On the left, the cuttings
of unfiltered iso-surfaces are plotted, on the right the filtered ones (all after binarization with
the same treshold). We can see an immediate extinction of small structures (noise) due to
their high curvature, and a smoothing of the larger structures in the image.

The motion by curvature is used in numerous of applications related to the so-called free-
boundary problems and interphase dynamics [59]. There exists a mathematical theory for
such problems [16, 11]; also, numerical methods are available and in further development.
From the computational point of view there are two main approaches for solving curve or
surface evolution governed by curvature. In the so-called Lagrangean approach [14, 15, 43,
44, 45, 13], the curve, respectively surface, itself is discretized. Then a system of algebraic
equations is derived for the new position of discrete points [14, 15, 43, 44, 31], or the equations
are given for their intrinsic characteristics like curvature and tangential angle [40, 39, 45].
This system is solved to get the new curve (surface) position in the next discrete time step.
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Figure 3: Smoothing of the human left ventricle by anisotropic diffusion. We visualize cor-
responding level surfaces in the Oth, 2nd, 4th and 8th discrete steps of the semi-implicit
adaptive finite element algorithm [6].

i

Figure 4: 2D orthogonal slices crossing in the centre of the 3D echocardiographic cube with
the image of the human left ventricle.
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Figure 5: 2D cuts of the result of 3D processing by geometrical diffusion of mean curvature
flow type.

In such a way numerically evolving curves are used e.g. in image segmentation [45]. The
Lagrangean approach is an efficient and computationally fast method but, because of the
parametric representation of the curves (surfaces), it can hardly handle the evolution through
singularities, splitting and merging of the curves or surfaces during the evolution. In spite
of that, the so-called Eulerian approach implicitly handles the curvature-driven motion by
passing the problem to a higher dimensional space and solving there the evolution equation
for a graph whose evolving level sets correspond to the evolving curve or surface. The phase-
field equations (see e.g. [48, 7]) and level set methods [50, 58, 59] are approaches of that type.
Especially, the level set equation of Osher and Sethian,

= |Vu|V. <|§“|> (2.9)

for curvature-dependent motion is well suited for image processing applications, since all
geometrical information about image level lines or level surfaces is handled in once. As can
be seen in Fig. 5 it provides denoising and silhouette smoothing at the same time. The level
set equation not only moves each level set with the velocity proportional to its normal mean
curvature field, but it also fulfills the so-called morphological principle: if u is a solution then,
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for any nondecreasing function ¢, ¢(u) is a solution as well. This contrast invariant property
has large significance in the axiomatic theory of image processing [1]. It also means that level
sets move independently of each other; they diffuse only intrinsically, there is no diffusion
across them in the normal direction. Thus it is a natural tool for directional smoothing of
the image along its level lines. This idea was used in [3], where the equation

Vu
= | = 2.1
w = o(1VGy ) Tl () (210

has been suggested for computational image and shape analysis. It is accompanied by the
same boundary and initial conditions (2.2)—(2.3) as in the case (2.1). Equation (2.10) can
be used for image silhouettes smoothing (g = 1, see e.g. [1, 2, 42, 22]), or it can be used for
edge-preserving smoothing in a similar way as equation (2.1). The Perona-Malik function
g(s) depending on |VG, * u| is used to strongly slow down the motion of silhouettes which
are at the same time edges. The regions between them are smoothed by the mean curvature
flow.

Figure 6: Ventricular shape extraction using the level set equation [42].

In Fig. 6 we present smoothing of the left ventricular iso-surface by the level set equation.
In Fig. 7 we smooth an initial 321 x 373 pixel image (ancient coat-of-arms of the Slovak town
Kremnica shown on the left), scanned from a book with neither paper nor colors of good
quality. Also shown are the results after 5 and 10 discrete scale steps of the co-volume scheme
for equation (2.10) with g(s) = 1/(1 + s2). We also present Fig. 8, where two chromosomes
are extracted from an initial noisy 3D image of a human cell by image selective smoothing
(2.10) with the same g.

To end of this section, let us mention a general useful use of viewing gradient-dependent
nonlinear diffusion equations. The nonlinear diffusion term V.(g(|Vu|)Vu) can be rewritten
in 2D as

V.(9(IVul)Vu) = g(|Vul)uge + H'(|Vu] )ty

where H(s) = sg(s) and £,n are tangential and orthogonal vectors to the level line, respec-
tively. From this form one can clearly see how diffusion works along and across the image
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Figure 7: Initial image (left); result of smoothing after 5 (middle) and 10 (right) scale steps
using equation (2.10) and co-volume discretization [23].

Figure 8: Extraction of two chromosomes in a human cell using geometrical diffusion (2.10)
[22].
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silhouettes with different choices of g. There is always positive, but possibly strongly slowed-
down (depending on the shape of g) diffusion along level lines. Across level lines there can
be forward diffusion (when H'(s) is positive), zero diffusion (e.g. in the Rudin-Osher-Fatemi
model [53] dealing with total variation denoising, and also in the mean curvature flow equa-
tion in the level set formulation), or backward diffusion (in the original Perona-Malik model
[51, 47, 29]).

2.3 Some generalized models

The following generalization of the Perona-Malik equation has been introduced in [27]:
aib(z,u) — V.(9(IVGo * B(z,u) ) VB(z,u)) = f(u’ - u). (2.11)

The functions b and 8 represent new nonlinearities which make the image multiscale analysis
locally dependent on values of the intensity function u and on the position in the image z.
Such a generalization is useful in any situation where properties of the image or requirements
to the image processing operation can be expressed in dependence on z and u. For example,
if a different speed of the diffusion process is desirable in different parts of the image or for
different ranges of the intensity function, then equation (2.11) can be used. In the points,
where the derivative 3, is small (), is large), the diffusion process is slowed down, while
where f3], is large (b!, is small) the diffusion process is speeded up. Degenerate cases from
the point of view of the theory of parabolic PDEs, when either £, or b), is equal 0 or oo, can
also be included. The degenerate cases can be interpreted as total stopping of diffusion, or as
diffusion with the infinite speed in some image regions. Applying the regularized anisotropic
diffusion (2.1) improves some set of edges. On the other hand, it destroys details which are
under the edge threshold (given by g¢) or undistinguished from the noise at some scale. If
such details are contained in certain ranges of greylevels, then they can be conserved by a
special choice of the function 8 or b. As a demonstration we present Fig. 9. In that image,
the colors of Flora’s face are demaged only. We present the reconstruction of the original
(left image) by anisotropic diffusion accompanied with the slow diffusion effect (image on
the right). Using the proper choice of 8 (b is linear), which is constant for darker (lower)
greylevels and linear for the upper range of u, the face is selectively smoothed and the details
around it are conserved. For theory and numerical algorithm we refer to [27]. The right-hand
side of (2.11) with nondecreasing function f can be used to force the solution to be close
to original u° [49]. The Lipschitz continuous f causes no important difference in numerical
analysis compared to the zero right-hand side.

Weickert (see e.g. [61, 63]) introduced a generalization of the Perona-Malik equation of
the form

ug — V.(DVu) =0, (2.12)

where D is a matrix depending on the eigenvalues and eigenvectors of the so-called structure
tensor Vu(Vu)?. The dependence is such that diffusion strongly prefers direction of line
structures in the image. That idea has also been used by Preusser and Rumpf in multiscale
flow field visualization in computational fluid dynamics [52].

There exist generalizations of the basic equations from the previous two subsections to the
processing of color images. An RGB image can be viewed as a composition of three greyscale
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Figure 9: Processing of a color image using slowed anisotropic diffusion [27].

images representing the levels of intensity for red, green and blue colors. Then it is natural
to consider a Perona-Malik-type system of equations adapted to the RGB image. The idea is
not to apply the Perona-Malik anisotropic diffusion equation to each channel independently
(which would be the simplest possibility), but to synchronize the diffusion in each channel by
computing a common diffusion coefficient depending on the information coming from all three
colors. In [64, 63, 34|, dealing with color images and vector valued diffusion, the following
system of nonlinear partial differential equations has been considered:

O —V.(dVu;) =0, 1=1,2,3, (2.13)
3

d=g > IVGyxuyl|. (2.14)
j=1

The equations are accompanied by initial and zero Neumann boundary conditions for each
color. In the case (2.13)—(2.14), the edges of a highly destroyed channel can be recovered by
information coming from the remaining channels [34]. A geometrical model based on minimal
surfaces and curvature-driven motion for processing of color images is given in [30].
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2.4 Space-time filtering algorithm

A given 3D space-time image sequence (e.g. in 3D echocardiography) u°(z, §) is a special 4D
image where a motion coherence of subsequent frames is present. Usually, the aim is to extract
relevant motion information from the sequence, filter out the noise, and enhance moving
structures. To that end, it seems reasonable to use additional information (in comparison
with still image processing) given by the motion correspondence in the image sequence.

We assume that certain objects acquired at different times, and thus being in different
frames of the sequence, are formed by points that preserve their intensity along the motion
trajectory. Such objects are called Lambertian structures. Moreover, we assume that motion
is smooth in time, and thus the motion trajectories are close to straight lines locally. Designing
the model we consider the following quantity [1, 2] proposed by Guichard [19]:

. 1
Cltu(t,l‘,9) = HI)IlnuIle W(Ae ‘<V’U:(t,$,0),w1 - w?)l
+ u(t,z —wy,0 — AB) — u(t, z,0)|
+ |u(t, z + we, 6 + AO) — u(t, z,0)|)

(2.15)

where w1, wy are arbitrary vectors in RY and A# is a time increment. The scalar function
clt, will introduce a measure of coherence in time for the moving structures. It consists of the
sum of three positive parts and we want to find the minimum in all possible directions wy, wo.
The last two terms in the sum on the right-hand side of (2.15) are related to the differences
in the intensities of end-points of the candidate Lambertian velocity vectors wi,ws. To find
the directions of such vectors, we look at the points whose intensity value is closest to the
intensity u(t,z,6) in the previous frame (term |u(t,z — w1,0 — Af) — u(t,z,0)|) and in the
next frame (term |u(t, z + we, 0+ A6) —u(t, z,0)|). Those differences are scaled by the factor
1/(Af)2. Note that if we find corresponding Lambertian points, then both terms vanish.
The first term in the sum, namely [(Vu(t,z,0), w1 — ws)|/(AB), corresponds to the so-called
apparent acceleration, i.e. to the difference between the candidate Lambertian velocity vectors
w; and we in the direction of Vu. For details and some more background from the optical
flow point of view we refer to [1, 2, 19]. The quantity clt,, is thus related to the curvature of
the space-time level curve passing through the space-time point (z, ) in the scale ¢ (curvature
of the Lambertian trajectory). The value of clt, vanishes for the Lambertian points that are
in uniform motion. This is consistent with the purpose not to alter such trajectories. On
the other hand, for the noisy points there is no motion coherence and thus clt, will be large
there.

Concerning the space coherence, we assume that distinguished structures are located in
the regions with a certain mean value of the image intensity, and that the object boundary
forms an edge in the image. In order to construct a spatial diffusion process we thus require
specific behavior on the edges as in the Perona-Malik anisotropic diffusion equation.

To combine time coherence of moving objects with their spatial localization we consider
the following equation for the processing of image sequences [56]:

up = ct,V.(g(|[VG4 * u|) Vu). (2.16)

As an application, we are dealing with a phantom-like image sequence consisting of ex-
panding, slightly deforming and moving ellipses with the inner structure in the form of qua-
trefoils. We add impulsive (salt & pepper), Gaussian noise and blurring to the frames of
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Figure 10: 2D phantom-original (left), noisy (middle) and processed (right) images.
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the image sequence. The original six-frame sequence and its destroyed version are shown in
the first two columns of Fig. 10. The reconstruction of any noisy frame of this sequence by
a standard (still image) filtering algorithm is very difficult task (by our experience impossi-
ble). The right-hand column of Fig. 10 represents the results of (2.16) applied to the noisy
sequence after 10 discrete scale steps of the numerical implementation from [56].

Next we have applied the method to 3D echocardiographic sequence. In Figs. 11-12 the
iso-surfaces corresponding to the blood-muscle interface have been visualized. Figs. 11-12
consist of three sub-figures. For each row, on the left we show the echo-volume visualized
using the original noisy data, in the middle the result after three discrete scale steps, and on
the right after nine discrete scale steps of the model (2.16).

Figure 11: The multiscale analysis of the 1st frame of a 3D-echocardiographic image sequence
by the equation (2.16) [56].

Figure 12: The multiscale analysis of the 7th frame of a 3D-echocardiographic image sequence
by the equation (2.16) [56].

3 Variational computational methods

The aim of this chapter is to present numerical schemes for solving the nonlinear diffu-
sion equations presented in the previous sections. Since images are given on a discrete grid
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(pixel/voxel structure), we discretize the PDEs to get a numerical scheme implemented on the
computer. One can use a wide range of methods devoted to the numerical solution of PDEs.
Semi-implicit schemes [9, 26, 5, 6, 62, 63, 41, 33, 34, 52, 42, 22, 23, 24, 13], where the nonlin-
ear terms of the equation are treated from the previous discrete scale step, and linear terms
are considered at the current scale level, have favorable stability and efficiency properties.
For space discretization either finite element method [26, 5, 6, 52, 13], finite/complementary
volume method [41, 33, 34, 23] or finite difference methods [9, 62, 63] can be used. In this
paper we discuss discretization in space by variational techniques, i.e. using finite element
and finite/complementary volume methods. They are based on integral (weak, variational)
formulations of the initial-boundary value problems for PDEs. Variational methods have a
strong physical background since they are based on principles like minimization of energy (fi-
nite element method) or conservation laws (finite and complemetary volume methods). They
allow a clear and physically meaningful derivation of difference equations which are local and
easy to implement. Convergence of the schemes to solutions of the PDEs can be proved.

For our presentation we have chosen two representative geometry-driven diffusion models:
the regularized Perona-Malik anisotropic diffusion equation (2.1), and the nonlinear degen-
erate diffusion equation of mean curvature flow type (2.10) due to Alvarez, Lions and Morel.
They are accompanied by the boundary and initial conditions (2.2)—(2.3), and for both equa-
tions we assume the hypotheses (2.4)—(2.6). Both models represent a similar view to image
selective smoothing, in the sense that edge positions are preserved in the image multiscale
analysis.

Remark In the next paragraphs, we will use the standard notations for the functional
spaces L,(Q), p > 1, and C¥(Q). By V we denote the Sobolev space W2(Q) of La(f)-
functions with square integrable weak derivates. The absolute value will be denoted by | - |
and the norm by || - || with a subscript given by the corresponding functional space. By C we
denote a general (large) constant.

3.1 Semi-discretizations in scale

We start by the semi-discretizations in scale of the problems given by (2.1) and (2.10),
respectively. Choosing N € N we obtain the length of the uniform discrete scale step k =
T/N. We replace the scale derivative in (2.1), (2.10) by backward difference. The nonlinear
terms of the equations are treated from the previous scale step while the linear terms are
considered at the current scale level—this means semi-implicitness of the method. Let us
start with approximation in scale of equation (2.1) (see [9, 26, 41]).

Semi-discrete linear scheme for solving equation (2.1) Let N € N, k = T/N and
o > 0 be fized numbers, and let u® be given by (2.3). For everyn =1,...,N, we look for a
function u™ which is a solution of the equation

n __ un—l

k

¢ — V.(g(|VGy * u™ 1) Vum) = 0. (3.1)



16 K. Mikula

It is not difficult to see that there exist unique variational solutions u™ of (3.1) at every
discrete scale step for which the stability estimates

™ |o@) < M6°lio@)s I lpw(@) S 16 Lw@)y  n=1,...,N,
N N
MAVe ik <C Dl —u N[, < G
n=1 =

hold [26, 6]. Moreover, if we construct the so-called Rothe’s step function @™ (t) = u™,
(n — 1)k < t < nk, one can prove its convergence in Lo(Qr) to the unique weak solution of
(2.1) ([26]; see also [25] for the comprehensive theory and applications of the so-called Rothe’s
method in the numerical analysis of PDEs).

In spite of equation (2.1), the equation (2.10) is not in divergence form. For second order
partial derivatives, as is usual in variational methods, we would like to use integration by
parts or the divergence theorem to get an integral formulation (see the next sections). Thus,
we first move the term in front of the divergence to the time derivative, and then we write
semi-implicit discretization of (2.10) in scale [23].

Semi-discrete linear scheme for solving equation (2.10) Let N € N, k =T/N and
o > 0 be fivred numbers, and let u® be given by (2.3). For everyn =1,..., N, we look for a
function u™ which is a solution of the equation

]. fu,n — un_]- vun
—Velrggno ) = 3.2
9(|VGs x un=H)|[Vur—1| k v (|Vun—1|> (3.2)

Since in the general situation there can be zero in the denominators of (3.2), we will
regularize this equation in the sense of Evans and Spruck [16]. We approximate |Vu™ | ~
Ve + |Vur—1]2 (with € a small real number) in the implementation, and study the behavior
of this regularization for € tending to zero [23]. Let us denote

gt ti= 9(|VG, * u"il\). (3.3)

To see stability of (3.2) (formally, without regularization at this point), multiply it by " —
u™ 1, then integrate over Q. Using

1 1

1
a(a — b) = §a2 - §b2 + i(a —b)?, (3.4)
we get
( |vun|2 n—1|2 + |Vu” _ Vun—llZ -
/ g 1|V n— 1|d T+ g / Va1 dz = 0.
Since
- R A 7L RN
v = G = (9 = (Va2 4 (D - ) 19 9
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we get
) il /\Vu"P [V = (V"] = [Vu"H])?
kg" 1IVu" 1| Q |Vur—t|
(IVu"| — |[Vun—1))2 / vur  vurl
dr " dzx = 0.
1 R 2 Jo W] ™ v ) [Vl =0

Due to the positivity of the other terms we get for the second term

|Vu"| |Vt — [Vu 12
<
/ = dx <0,
which gives
IVu™ |z, ) < IV 20 (3.5)
and thus
IVu ||, @) <IIVElllL @), 1<n<N, (3.6)

which is a W stability estimate for the linear semi-implicit scheme (3.2), i.e. an estimate of
the decay of total variation of the semi-discrete solutions. This estimate is a basic property
of the flow by mean curvature and of a solution of the level set equation as well [60], and can
also be interpreted as a curve shortening property [14, 40] of level sets.

3.2 Space discretizations

A discrete image is given on structure of pixels/voxels with rectangular shape in general (but
it is not necessary for the methods presented in this paper). We will use this image structure
to create a computational grid for the spatial discretization methods. Concerning the relation
of the computational grid to the pixel structure, there will be a difference between the finite
element and the complementary volume methods on the one hand, and the finite volume
method on the other. The difference is related to the type of approximation of the solution
of the partial differential equations assumed in those methods. While in the finite volume
method the approximation of the solution is assumed to be piecewise constant [17], in the
complementary volume and finite element methods it is assumed to be continuous piecewise
linear. Thus, in the finite volume method, the computational grid will directly be taken to
be the pixel structure of the image. The initially given and subsequently computed values of
discrete intensity are considered as approximations of average of continuous intensity function
on pixels. On the other hand, in the finite element and complementary volume methods, the
initially given values of discrete intensity, and also the computed values, are considered as
approximations of the continuous intensity function in the centers of pixels. The centers
of pixels then correspond to the nodes of the finite element or the complementary volume
triangulation. We can get such a triangulation by connecting the centers of pixels by a new
rectangular mesh and then dividing every rectangle into two triangles (or six tetrahedra in
3D). It also means that in these two methods the computational domain §2 is given as the
union of all triangles constructed in this way (2 thus corresponds to the image domain minus
the outer half of every boundary pixel)—see Fig. 13. Let us note that the splitting of every
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pixel into two triangles, as depicted in Fig. 13, is not the only possibility. The orientation of
triangles can change locally, e.g. following an edge direction, or it can be given by a refinement
procedure in a bisection algorithm [5]. We will assume that the constructed triangulation
has no interior angle larger than w/2. Then, for the complementary volume method, we will
construct a dual mesh. This dual mesh will again, in a sense, copy the pixel structure of the
image. Let us note that in the finite element method we will use just the triangulation, in
the complementary volume method we use both the triangulation and the dual mesh, and in
the finite volume method we use just the pixel structure of the image corresponding to the
dual mesh. Let us note also the possibility to use the center of pixels (and the corresponding
rectangular mesh) to construct a bilinear finite element solution of the problem [52].
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Figure 13: The image pixels (solid lines) corresponding to the finite volume mesh and to the
dual mesh for the complementary volume method. Triangulation (dashed lines) for the finite
element and complementary volume methods, with nodes (round points) corresponding to
the centers of pixels.

We now define quantities which will be used in descriptions of fully discrete schemes
(see also [60, 17, 10]). Let us assume that we are given a triangulation 7 (e.g. given by a
previous construction). The dual mesh will consist of cells p (also called complementary or
finite volumes) associated with the pth node of the triangulation 7, p =1,..., M. The dual
mesh will be denoted by 7. The co-volume p is bounded by the lines (planes in 3D) that
bisect and are perpendicular to the edges emanating from the node. By m(p) we denote
measure in R? of p. We will denote the edge of 7 connecting the pth node to the gth by
Opg, and its length by d,,. We denote by E,, the set of simplices having 0,4 as an edge, i.e.,
E,g = {T € T|opy C T}. Let epq denote the co-edge that is the perpendicular bisector of
Opg, and let z,, be a point of intersection of e,, and o,,. By m(ep,) we denote the measure
of eyq in R4=1. For each T € Epg, let cgq be the length of the portion of ey, that is in T,
ie., ¢, = m(epgNT). Let S(p) be the set of simplices that have the pth node as a vertex,
and for each node of T let N(p) denote the set of nodes g, ¢ # p, which are connected to the
pth node by an edge and for which m(e,q) # 0. In the situation depicted in Fig. 13, N(p)
consists of four neighbouring nodes ¢ in the direction of the coordinate axes, for every inner
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node p of the triangulation. We denote by £ the set of pairs of adjacent finite volumes,

&= {(pa q) € T27 p # q, m(ePQ) 7é 0}

Given a triangulation 7, we define the set V;, C V of piecewise linear finite elements, i.e.,
Vi =Vi(T) := {v € C°Q)| v|r € P, for all T € T}.

For any v, € V}j, we will use the notation v, := vj(z,), where z,, is the coordinate vector of the
pth node of the triangulation. Let ul = I,(u®) € V,(T) be the nodal interpolant of u°. This
will be the initial function for the finite element and complementary volume methods. In the
finite volume method we denote by %, the representative value for the cell (the bar indicates
that we mean the average value in the cell and not a nodal value). The initial condition for
the finite volume scheme is then assumed to be

0 1

Uy, = ) /puo(af:) dz, peT. (3.7)

Before going to spatial discretizations, let us make the following remark on the realization
of the convolution included in the evaluation of the Perona-Malik function g in either (3.1)
r (3.2). We use two strategies. The first is the following: Using the Gauss function G, as
the smoothing kernel, one can replace the term G, * ™! by solving the linear heat equation
for time o with the initial condition given by w™~!. This linear equation can be solved
numerically at the same grid by just one implicit step with length o. Thus, as a realization of
the convolution, we look for a function u¢ which is a solution of the heat equation discretized
in time by the backward Euler method with step o:

c n—1

v-w Auf, (3.8)
o
where A denotes the Laplace operator. This strategy is very suitable for the finite element
and complementary volume methods, since in this case, the numerical solution u° of (3.8) is
piecewise linear on triangles, its gradients are constant, and thus we can simply evaluate the
Perona-Malik function on every triangle.

In the finite volume method we can use another approach. Since we will consider piece-
wise constant spatial approximations %y in every discrete scale step n, we can replace the
convolution (integral) by a sum over pixels. For the gradient of the convolution term at any

point z we get

VG, xu" Hz) =) 1/VG ) (3.9)

where we used the convolution derivative property

0 1 0Gy .1
(G r (@) = P e @)
e G,
o n—1 _ o _ —n—1
oz, xu"(z) = o O, Z(z — s)u™ ' (s)ds = Z azz ( — s)ds.
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The sum in (3.9) is evaluated over control volumes r which surround the point z. If we choose
a compactly supported smoothing kernel with support in a ball B, (0) with radius o*, e.g.
the function

1 . .
Gy(z) = Ee\wﬁ/(\zwz—oz)’

where ¢* = o and the constant Z is chosen so that G, has unit mass, then the sum is restricted
only to the control volumes contained in B,«(z), the ball centered at z. If the point z is
close to the boundary of the image domain, we use an extension of a discrete solution. The
coefficients [ VGy(z — s)ds in (3.9) can be computed in advance using a computer algebra
system, e.g. Mathematica [66]. The same situation arises when we use the Gauss function
and consider as the ball B,~(0) a “numerical support” of the Gauss function (i.e., we consider
a domain in which the values of the Gauss function are above some treshold). Then, again,
just a finite sum is evaluated in (3.9).

3.3 Finite element method in image processing

To describe the ideas of finite element space discretization, let us consider the equation (2.1)
[26, 5]. Let k,o be given numbers. Before the discretization we use approach (3.8) for the
realization of the convolution, and then we write (3.1) as a couple of integral identities (weak
formulations):

/u”vdx+k/g(|Vuc|)Vu”Vvdx:/un_lvdm, (3.10)
Q Q Q

/ucvda:—l—o/VuCVvda::/u”_lvdm (3.11)
Q Q Q

that hold for all v € V. Then, at each scale level n, we look for a continuous piecewise linear
function up € V;,(7T) satisfying

/ o, d + k / (Yl ) Vel Vo do = / Loy da (3.12)
Q Q Q
for all vy, € Vj,(T), with u§ € V,,(T) being the solution of

/u,czvhdw%—o/VquVvhdm:/uzlvhdw, Yo € Vi (T). (3.13)
Q Q Q

Considering the standard Lagrangian base functions ¢, € V3(7), ¢ = 1,..., M, given by
0q(zp) = dgp (Kronecker delta) for all nodes of T, the functions u, u§ are given by

M M
up = Zuggop, ufp, = Zuf,(pp. (3.14)
p=1 p=1

Then using (3.14)) in (3.12)-(3.13) and taking vy, = ¢4, ¢ = 1,..., M, as test functions, we
get two Ritz-Galerkin systems of linear equations for the nodal values uy, uy, p=1,..., M,
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of the piecewise linear functions uj, uf, respectively:

M
Z (/ Oppq dz + k/ 9(|Vug ) Ve, Ve, dx) Uy = / ul logdz, q=1,...,M, (3.15)
o1 WO Q Q

M
Z (/ Pppg dx + 0’/ VeV, da:) u, = / uz_l(pq de, q=1,..., M. (3.16)
o1 MO Q Q
Thus, in every discrete scale step we need to solve two linear systems with the matrices M+
kA (g(|Vus|)), M+oA(1), respectively, where My, = [, ¢p@q dz is the so-called mass matrix
and A(w)gp = [qwVepVp,de is the stiffness matrix, which are symmetric and positive
definite. The discrete solutions can be found efficiently by the preconditioned conjugate
gradient method. It is also customary to use the so-called lumped (diagonalized) mass matrix
M,, = Z/Jg\il op(Tr)pq(2k) [o vr dz in the systems (3.15)—(3.16). In order to improve the
efficiency of the finite element method, a choice of different (coarsened) triangulations 7, in
subsequent scale steps n = 1,..., N, is possible (see [5, 6, 52] and the next subsection).

The same ideas as above can be used for the finite element discretization of equation
(2.10). The only difference will be in the facts that the mass matrix M(w) will depend on
w =1/(g(|Vu§|)|Vul!|), the stiffness matrix A (w) will depend on w = 1/|Vu}~'|, and that
Evans-Spruck regularization is used in the denominators.

3.4 Adaptivity in the finite element method

We can improve efficiency of the finite element method by the use of adaptively chosen grids at
each scale step. Usually, for time-dependent problems, a modification consisting of refinement
and coarsening steps is necessary to adjust the grid at a given time step [4]. However, for
the problem (2.1) it is sufficient to coarsen the initial grid successively. There is no spatial
movement of edges, hence no refinements of the grids are needed. This access may reduce
the computational effort considerably, since with the increasing scale the solution tends to
be more flat in large sub-regions of the image. The coarsening of the computational grids
rapidly reduces the number of unknowns in the linear systems to be solved at the discrete
scale steps of the method.

Concerning the adaptive algorithm, first we generate a triangulation 7y corresponding
to a pixel/voxel structure of the image by (globally) refining a coarse grid 7, the so-called
macro triangulation. The refinement procedure generates a sequence 7°, 7%, 72, ... of finer
and finer meshes until the desired structure is reached. Then Ty := 7% where kg is the last
refinement step. For the refinement we have chosen the so called bisection method, which
allows easily for coarsening [4].

Refinement of the grid by bisection [4] Before starting the refinement process, one
edge of every triangle of the triangulation at kth refinement level is marked (Fig. 14). This
edge is called the refinement edge (a good choice is the longest one). To divide a single
triangle, it is cut through the midpoint of the refinement edge and the vertex opposite to the
refinement edge. The new refinement edges are chosen opposite to the new vertex (Fig. 15).

Let us start with 70. Then for every bisection level k& let 31 be the set of those triangles
which have to be divided (X* = T* in case of uniform refinement). Then one bisection step
(see also Fig. 16) at level k is given by:
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while ¥ # () do

e bisect all T € ¥ as described above, obtain an
intermediate triangulation 7% (possibly non-conforming)

e let now LT be the set of those tetrahedra with a
non-conforming node.

endwhile

ThH .= TF

Figure 14: Triangle with refinement edge

Figure 15: Bisection of a single triangle
To provide a local coarsening, we make the following definitions:
(i) A simplex T € T has level | if T was obtained after / refinement steps.

(ii) A simplex T is said to have locally finest level if the levels of all neighbours are less
than or equal to the level of T.

(iii) Let T' € T, and let T” be the father of T. A vertex P of T which was inserted while
bisecting T” is called the coarsening node of T.

(iv) Let K be an edge of the triangulation 7 and K’ the “father”-edge of K with midpoint
Q. Set M :={T € TITNK' # 0}. If Q is the coarsening node for all T' € M, then M
is called a resolvable patch (Fig. 17).

If M is a resolvable patch, then all T € M can be coarsened without interfering with
T" € T outside M. Therefore resolvable patches are the configurations which we allow to be
coarsened. This guarantees that the coarsening process stays local.

Coarsening of the grid [4] Let 7, be a triangulation obtained by refinement and coars-
ening steps. Let X~ C 7, be the set of triangles to be derefined. Then one coarsening step
consists of:
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Figure 16: 7°, 70 and 7!

Figure 17: Resolvable patch M with coarsening node ) and coarsened patch

for each T' € ¥~ do
if T belongs to a resolvable patch M then
if " e ¥~ for all T' € M then
derefine M
endif
endif
enddo

Coarsening criterion and our adaptive method [5] As the local behavior of VG, * u
determines the evolution process and is an indicator for edges, the coarsening criterion is
based on this value. Let € > 0 be a given tolerance. For the nth scale step and uj, the
corresponding numerical solution on the grid 7, we allow all triangles T € T,, to be coarsened,
if

hr|Vup| <e on T,

where hr is the diameter of triangle 7'. Thus we have the following adaptive scheme:
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Let 76,u,01 be given.

for n=1,2,...N do
define X~ := {T € Tp_1;hr|Vu}'| <€ on T}
derefine 7;L,1 accordlng to X7 to obtain 7,
set up the matrix M+ ocA(1)
compute uj € V,(Ty)
set up the matrix M+ kA(g(|Vuf|))
compute up € Vi(Tn)

enddo

The same adaptive algorithm can be used in the 3D case, just changing triangles to tetra-
hedra. For 3D implementation and computational results we refer to [6]. There exist finite
element software packages (see e.g. [57]) based on the bisection refinement and coarsening
method, thus the adaptivity described above can be implemented also in such an environe-
ment.

3.5 Complementary volume spatial discretization

In this subsection we will discretize equation (2.10) or, more precisely, the semi-discrete
approximation (3.2) by means of the complementary volume method [23]. In order to derive
the complementary volume spatial discretization [60], we integrate (3.2) over a co-volume p

u —u
dr. .1
/ n— 1|vun 1|k /V <|vun 1|> Tz (3 7)

Using the divergence theorem on the right-hand side we get
Vau" 1 u”
— | dz = ds. 3.18
/pv<\w—1|> o= [, e = [ wea (319

If up € V3, (T) is a continuous piecewise linear function on a triangulation 7" and if its nodal
values are denoted by uy; = uj (7;), then

1 auh ck u —ul
ds Pa 4__P 3.19
2 / ST ® 2| 2 wa | T, (3.19)

geN(p) geEN(p) \T€Ep,

where |Vuj '| denotes the constant value of the gradient of u} ' in the simplex T. The
complementary volume method approximates the left-hand side of (3.17) by

()l — 1)
bV IVur ] (3:20)

where |Vug_1|, |Vug| denote an approximation of the gradient in co-volume p. For that
purpose we have chosen the average value of gradients in the co-volume [60]

m(T Np
Vup| = > %Wuﬂ. (3.21)
Tesp)
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Figure 18: Processing of a noisy image by the adaptive finite element method for the
anisotropic diffusion equation (2.1). Upper part: Original image and its noise-corrupted
version; lower part: smoothed image after 8 discrete scale steps and corresponding 2D trian-
gulation which is fine only along edges [5].
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If we denote

_ m(p)
e 1_
(v 5\)\V}3 ik

1
71_
a, I‘E: (3.23)
EFpq

(3.22)

we can write the

Linear fully discrete complementary volume scheme for solving equation (2.10)
Forn=1,...,N we look for uy, p=1,..., M, satisfying the equation

by lup +k > ap — ) = byl (3.24)
gEN(p)

Of course, before solving (3.24), we have to put [Vug| into (3.22). The function uj € V(7))
is found by the same idea as given in (3.17)—(3.20) applied to (3.8); i.e., we solve (3.24) with
uy, replaced by up, and with b;j_l = by, = m(p), agq_l = apg = m(epq)/dpg- Then |Vug| is
computed by (3.21) and put into the Perona-Malik function g. The system (3.24) gives a
symmetric positive definite M-matrix with diagonal dominance, so standard or preconditioned
linear solvers can be used.

Using the nonnegativeness of bgfl, a” ' we can get a uniform L..-stability estimate for

Pq
the fully discrete scheme (3.24) in the form

minud < minu” < maxu” < maxud, 1<n <N, (3.25)
pET P pET PET peET D
which means
[uhllLoo@) < hllLw@), 1<n<N. (3.26)

To see (3.25), let us rewrite (3.24) in the form

k _
ug + n—1 Z zr)Lq l(up - UZ) = u; 17 (327)
P ¢enN(p)

and let max u} = max;¢, u; be achieved in the node p. Then the second term is nonnegative
and thus ug < ug_l < maxyer uf‘l, which gives the result for max. The relation for min is
derived in a similar way.

Already in the description of semidiscrete schemes we mentioned the use of the Evans-
Spruck regularization [16], |Vu|. = /€ + |Vu|?, instead of |Vu| everywhere in the schemes
to prevent possible zero gradients in the denominators. One can observe that the Evans-
Spruck regularization is well suited for image smoothing purposes. For zero gradients such
regularized discretization (3.24) reduces to a discretization of the linear heat equation. This
is quite desirable at points with small change in intensity. On the other hand, the influence of
€ can be neglected, and thus we have a curvature-driven flow of level lines, for large gradients.
All results which were (formally) derived so far for fully discrete or semi-discrete schemes,
namely the Lo, and Wh! estimates (3.25) and (3.6), are valid also for the e-regularization.
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Moreover, they do not depend on the regularization parameter . Thus, we can pass to
the limit and understand the solution of (3.24) in a generalized sense (see [23] for details).
Concerning the computational point of view, if € is very small the diagonal dominance of
the system can be very weak. In [23] efficient linear solvers also for such a situation are
studied. Fig. 19 gives an example of an application of the complementary volume scheme to
a mammogram image (171 x 192 pixels).

Figure 19: Initial image (left), result of multiscale analysis by equation (2.10) after 30 (middle)
and 100 (right) discrete scale steps [23].

Using the integration (3.17) and the relation (3.19), one can also derive a complementary
volume discretization of equation (2.1) or, more precisely, for the semi-discrete coupling (3.1),
(3.8). In such a way, we get the system (3.24) with

) L1
byt =mip),  apt == ) ue(Vuf), (3.28)
P4 TR,

where uj is computed in the same way as above. Let us note that such a discretization
of (2.1) can be considered as a special mass lumping approximation in the finite element
method.

3.6 Finite volume discretization

In this subsection we will consider the finite volume discretization of equation (2.1) only.
In our approach, the finite volume grid corresponds to the dual mesh 7, and finite volumes
correspond to co-volumes as they are identical with the pixel/voxel structure of the image. In
general, the finite volume can be either a simplex of the triangulation or a co-volume of the
dual mesh [17]; we use the second strategy. The main difference as compared to the comple-
mentary volume technique, is that the approximating functions in the finite volume method
are not in V,(7), but they are just piecewise constant on finite volumes. Thus, we cannot
work directly with gradients or normal derivatives since they are either zero (inside finite
volumes) or infinite (on their boundaries). The derivation of the finite volume scheme follows
the ideas of the last paragraph in the previous subsection. We integrate the equation (2.1)
in every finite volume p. Then, by means of u, representing an approximate value of the
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solution inside the finite volume p,p € 7, we approximate fluxes through the boundary of p
(compare (3.19)). The value of diffusion coefficient along ep, is approximated by its value at
the point xp,. We denote by Tpy = m(epq)/dpg the transmissivity coefficient, and get the

Linear fully discrete finite volume scheme for solving equation (2.1) [41] Let
NeN, k=T/N and o > 0 be fized numbers, t, =nk, n=0,...,N. Forn=1,...,N we
look for uy,p € T, satisfying

Ptk D g Ty (T — ) = mp)my (3.29)
g€N(p)
starting with
o),
—0 0
Uy = u° (z) dx, €T, 3.30
P~ m(p) ) () p ( )
where
9pa t=9(VG, * Up e (Tpg, tn—1)|) (3.31)

and ap, i is an extension of the piecewise constant function Gy, (h = maxpec, diam(p)) defined
as follows

k(1) Z Z Uy X{2€p} X {tn—1 <t<tn} (3.32)

n=0 pET

1 if A is true

0 elsewhere.

The function %@y, ;, constructed using discrete values given by the scheme (3.29), is con-
sidered as the approximation of the solution and its convergence to a unique weak solution
of (2.1) as h,k — 0 can be proved ([41], see also the next subsection for the main ideas).
It is clear that (3.29) gives a linear system with a symmetric, strictly diagonally dominant
M-matrix, so there exists a unique discrete solution at every discrete scale step. Moreover,
using the same trick as in (3.27), we get Loo-stability of the scheme

with the boolean function x4} = {

min%) < min%? < maxa? < max@., 1<n<N. (3.33)
PET pPET P pPET P PET P’

3.7 Convergence of the finite volume scheme

3.1 Definition A weak solution of the regularized Perona-Malik problem (2.1)—(2.3) is a
function u € Lo(I,V) satisfying the identity

T
/ /u— (z,1) da:dt+/ o(z)p(z,0) d.’E—/ /g(|VG,,*u|)Vqu0dwdt:0 (3.34)
Q 0 Ja
for all ¢ € ¥, where ¥ is the space of smooth test functions

T ={peC*(Qx[0,T]),Ve. ™ =0 on 0 x (0,T),¢(-,T) = 0}. (3.35)
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n [9] Catté, Lions, Morel and Coll proved that there exists a unique weak solution of (2.1)—
(2.3) which is also the classical solution of the problem at the same time. To get the existence
they used Schauder’s fixed point theorem with iterations in entire parabolic equations. In [41]
we look for that solution in a computationally natural and efficient way using a semi-implicit
finite volume scheme. In this subsection we give the main ideas of the proof of the convergence
of the finite volume solution to the weak solution of (2.1)—(2.3). The strategy is to prove
some a priori estimates of the numerical solution, using the scheme (3.29). These estimates
will lead to the so-called space and time translate estimates for the approximate solution %y, j.
The space and time translate estimates are specific formulations of the equicontinuity in the
following well-known criterion (see e.g. [35]):

Kolmogorov’s relative compactness criterion in Ly(Qr) The set K C Lo(Qr) is
relatively compact if and only if

(i) K is bounded, i.e., there exists C > 0 such that ||f|| < C for every f € K;

(ii) K is mean equicontinous, i.e., for every ¢ > 0 there exists § > 0 such that

/ (F(z+7) - f(@) do < &2

T

for each f € K and v with || < 4.

Proving relative compactness one gets that there exists a limit function u € Ly(Q7) of the
sequence Uy as h,k — 0. Moreover, the space translates give that this limit is in Ly(I,V),
so it is a good candidate for the weak solution. It will be the last step of the convergence
proof that u fulfills the weak identity (3.34).

3.2 Lemma (a priori estimates) There exists a positive constant C, independent of h
and k, such that

(i) maxo<n<n Dope, (@) *m(p) <
(i) o,k Y waree Toa@y —T5)? < C;
(i) Yon) Yy, (@ — 1) 2m(p) < C.

Proof Let us multiply the scheme (3.29) by @} to obtain

@y —up apm(p) =k Y gur Tpe(un — up)uy. (3.36)
geN(p)

Using (3.4) on the left-hand side of (3.36) and summing over p € 7, we have that

S S @ mi) — 5 @ mip) + 5 S~ w ) mip)

PET pPET PET

=k Y g5 Ty (uy — wy)un.

PET geN(p)

(3.37)
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The following trick is often used in the finite volume technique for anti-symmetric a,q; = —ag:
Z Z apgbp = Z apgbp = Z agpbg = — Z apgby;
PET gEN(p) (p.a)€E (a:p)EE (p,g)e€

hence

22 Z apgbp = — Z apq(bg — bp) (3.38)

PET geN(p) (p9)€€
whence
Z Z 9pa" ™~ Tpa )ty = =3 Z 9pa ™ Tpq(; —g)°. (3-39)
PET gEN(p) (p q)€E
Applying (3.39) in (3.37) and summing over n = 1,...,m < N, we have

S )+ 35 ) 53k Y o el -

pe'r n lpET n 1 (paq)eg

- %Z(aO)Qm@)

PET

Since u® € Lo () we get the results (i)and (iii). We also have
B <
R4

a—l‘iGU * '&h,k(~77pqa tn—l)
Because of (3.33) we have that |VG, * @ k(Tpg, tn—1)| < 0o, which in turn implies that

0
B—%Gg(qu_g)ﬁ'(é’tn—l) df < C ||’LL( n— 1)||Loo (Q2)-

there exists a positive constant o such that gg,}nfl > « > 0, from which one can deduce the
assertion (ii) of the lemma. O

In order to apply Kolmogorov’s compactness criterion we have to estimate the integral
/ (@ k(e + &t + 5) = Upp(x,1)) do dt
Qr

< 2/ (ﬂhyk(:v—i-&,t—l-s) —ﬂh7k(.’13,t+8))2 d.’l?dt-i—?/ (ﬂh,k(.’lt,t-l-s) —ﬂh7k(.’13,t))2 dz dt.
Qr Q

T

Using an extension of the solution it is sufficient to restrict the two integrals on the right-
hand side to domains Q¢ x (0,T) with Q¢ = {z € Q,[z,2 + ] € Q} and Q x (0,T — s) with
€ (0,T), respectively [17, 41].

3.3 Lemma (Space translate estimates) For any vector ¢ € RY there exists a positive
constant C such that

/ (s (2 + 1) — Ty ()2 der dt < CJe[(€] + 2), (3.40)
Qe x(0,T)

where Q¢ = {z € Q,[z,z + &] € Q}.
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Proof Let ¢ € R? be a given vector. For all (p,q) € &, let us denote &py = £/|€|.npq. For all
z € (¢, we denote by E(x,p,q) the function defined as follows:

1 if the segment [z, + ] intersects epq, p and ¢, and &g > 0

E(z,p,q) = {

0 otherwise.

For any t € (0,T) there exists n € N such that (n — 1)k < ¢ < nk. Then for almost all z € €
we can see that

Un,k(T +&51) = Unk(@,8) = Uppye) — Up(y) = Z E(z,p,q)(uy — 1),
(pa)€€
where p(z) is the volume of p € 7 and z € p. By the Cauchy-Schwarz inequality we obtain
(@ (x + &, 1) — Tp (1))
( —un)? (3.41)
< Z E(z,p,9)¢pqdpq Z E(z,p,q 5 -4 &
(pa)€€ (p.g)e€ paTrd
and using the fact that &,qdpg = &/|€].npedpg = £/|€|-(z4 — z,) We have
£
> E(z,p,q)épqdpg = m'(xp(;c—l—&) — Tp(z)) < |Tpo+e) — Tp(z)| < 2k + €]
(pa)€€

Now, we integrate the relation (3.41) on Q¢ x (0,T) :

/ (@i ( + &,1) — Ty ple,1))? da dt
Q¢ x(0,T)

N @ —m (3.42)
<@R+END kY E(x,p,q) dz.
n=1

=1 (pqe€ qu Pq Q¢

Taking into account the area of a parallelogram we have

o E(z,p,q)dz < m(epq)g-npq = m(epq)éj-npqm = m(epq)|§|§pqa
(3

and applying this result in (3.42) we obtain

N
/Q (OT)(ﬂh,k(erE,t)—ﬂh,k(x,t))dedtg(2h+|§\)\§|2k 37 Tye(ar —ap)? (3.43)
g)(

n=l(p,q)e€
Finally, using a priori estimate (ii) of Lemma 3.2 we complete the proof. |

In a more technical way, but basically using again the a priori estimate (ii) of Lemma 3.2
we get:

3.4 Lemma (Time translate estimate) There ezists a positive constant C such that
/ (Tt + 8) — Ty (s 1)) dz dt < Cs
Qx(0,7—s)

for all s € (0,T).
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3.5 Lemma (Convergence of Gy ) There ezists u € Lo(Qr) such that for some subse-
quence of Up p,
Uk — U mn LQ(QT)

as h,k — 0. Moreover, this limit function is in La(I,V).

Proof From the estimate (i) of Lemma 3.2 we have that |[@p kl|1,(q,) < C, so the space
and time translate estimates allow us to use Kolmogorov’s relative compactness criterion in
Ly(Qr) and we have the first assertion of the lemma.

Let ¢ € C§°(Qr), € > 0 and p(z,t) = 0 if |z — 00| < e. Let 0 < |{| < e. Then by the
Cauchy-Schwarz inequality

Tnk(@ + &,8) = Uni(;) CIENE[+ )
’ : dpdt < YZS0LIT .
/Qx(OT) €] Pz, t)dzdt < €] lellzo(@r)

For the limit function u we have

u(z +¢&,t) —ulz,t
/ (z +&,t) — uf )(P(x,t)d:cdtﬁ\/5||<P||L2(QT)'
Ax(0.1) €]

On the other hand, by a changing of the variables y = z + £ we get
t) — t
Qx(0,T)

€]
- —&t)dydt - dy d
/QX(O,T) |€| oly =& 1) dy dt /QX(O,T) €] ©(y,t) dy dt
ax(0,17) I3
< Cllellny(@r)-

Let ¢ = we;, where ¢; is i-th coordinate vector, and let w — 0. Then

Op(z,t o
[ 2Dy drde < Cllelaans Vo € CRO).
x(0,T) L4

Thus u has generalized spatial derivatives in Lo(Q7r), so it is in Lo(I, V). O

The last step is to prove that u given in Lemma 3.5 fulfills the weak identity (3.34) from
Definition 3.1, and thus is a weak solution of the regularized Perona-Malik problem. Since
such a solution is unique [9], not only a subsequence of @y but the whole sequence will
converge to u. Let ¢ € ¥ be given. We obtain a discrete analogy of the weak solution
identity multiplying the finite volume scheme

(uy — )=k Z gp" L T( (uy — uy)
geEN(p

by ¢(zp,tn—1) and summing the resulting identity over allp € 7 and n =1,..., N:

Zkz ('Tpa n— 1 Zkz Z O'n lT up)w(mpatnfl)-

n=1 peT n=1 pET geN(p)
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Next we perform a discrete integration by parts

N N
Z(an _ an—l)bn—l — aNbN _ aObO _ Zan(bn o bn—l)
n=1 n=1

on the left-hand side, and a rearrangement of the sum
Z Z apgbp = —5 Z apg(bg — bp)
PET geN(p) (p,Q)EE

on the right-hand side, which together with ¢(zp,ty) = 0 gives

N
(10 Z 7 (p(x ) 1
>k 3 syt Stinteng) & 3 ot 0
n=1 peET, PETH
1 N
Rk B G Tl ) et )l 1) =0

=1 (pg)e€

The correspondence of the discrete terms of the previous equation and the continuous integral
terms of the weak identity (3.34) can be clearly seen, and the convergence as h,k — 0 can
be proved (see [41] for details). Thus we get:

3.6 Theorem The sequence Uy converges strongly in La(Qr) to the unique weak solution
u of (2.1)~(2.3) as h,k — 0.

3.8 Adaptivity in the finite volume method

Similarly as in the finite element method we can accelerate the numerical solution of the
finite volume scheme using adaptive (coarsened) grids. For the adaptive grid construction we
choose an approach based on quadtrees, where the adaptive grid is represented by the leaves
of a quadtree structure [33, 34]. We consider the coarsening criterion to merge quadruples
of pixels if the difference in intensities is below a prescribed tolerance €. The example of the
adaptive grid is given in Fig. 20. One can see so-called hanging nodes in the grid, which
can cause some troubles in the finite element approach, but can be handled naturally in the
finite volume scheme. Our adjustment of the finite volume scheme (3.29) to adaptive grids
is the following. In the definition of gpy'~ Li n (3.31), x4 will be the midpoint of the common
boundary of two neighboring cells (with possibly unequal areas). Then the difference will
be that the sum in (3.9) can be evaluated over unequal control volumes. However, we again
compute all possible coefficients of the sum in advance for every larger candidate cell on higher
levels of the hierarchy. Let us mention that we allow only the so-called balanced grids where
the ratio of the sides of neighbouring cells is 1 : 1, 1 : 2 or 2 : 1. If the solution is piecewise
constant on non-uniform cells, we can assume exchange of intensity between neighbours just
in a strip of unit thickness along a cell boundary (assuming unit size of the cells in the case
of a uniform rectangular grid). Then we can define

Tpq = min{lp, ls}, (3.44)
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where [, and [, are the lengths of the sides of two adjacent cells p, g. With these adjustments
the scheme (3.29) gives a linear system with a symmetric and strictly diagonally dominant
M-matrix which guarantees existence of a unique solution. Moreover, Lo.-stability can be
easily proved in every discrete scale step.

Figure 20: Processing of a medical image [33]; original (top left), multiscale analysis after 25
scale steps (top right), corresponding adaptive finite volume grid (bottom).
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