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Features of superconductivity
I Kammerlingh Onnes (1911): perfect conductivity

For various cooled down materials
the electrical resistance not only
decreases with temperature, but
also has a sudden drop at some
critical absolute temperature Tc

I Meissner and Ochsenfeld (1933): perfect diamagnetism
⇒ i.e. expulsion of the magnetic induction B

I Kammerlingh Onnes (1914): threshold field
⇒ restore the normal state through the application of a large magnetic

field
I A way to classify superconductors: type-I and type-II
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Type-I versus type-II superconductivity

I Similar behaviour for a very weak external magnetic field when the
temperature T < Tc is fixed

I As the external magnetic field becomes stronger it turns out that two
possibilities can happen ⇒ phase diagram in the T -H plane

I Type-I (a): the B field remains zero inside the superconductor until
suddenly, as the critical field Hc is reached, the superconductivity is
destroyed

I Type-II (b): a mixed state occurs in addition to the superconductive and
the normal state (two different critical fields)

I What are the macroscopic models which are used in the modelling of type-I
and type-II superconductors?
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Macroscopic models for type-I superconductors

Type-I

I Ω ⊂ R3: bounded Lipschitz domain, ν unit normal vector on Γ

I The quasi-static Maxwell equations for linear materials are considered

∇× H = J Ampère’s law
∇× E = −µ∂t H Faraday’s law
∇ · H0 = 0

H magnetic field
E electric field
J current density

µ > 0 magnetic permeability

I London and London (1935): a macroscopic description of type-I
superconductors involves a two-fluid model

J = Jn + Js

Jn = σE Ohm’s law

∇× H = σE + Js

∇× E = −µ∂t H
∇ · H0 = 0

Jn normal current density
Js superconducting current density
σ conductivity of normal electrons

I Below the critical temperature Tc , the current consists of superconducting
electrons and normal electrons
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Macroscopic models for type-I superconductors

London equations (1935) ⇒ local law for Js

∂tJs = Λ−1E
∇× Js = −Λ−1B

Λ =
me

nse2

ns density of superelectrons
me mass of an electron
−e electric charge of an electron

⇒ Correct description of two basic properties of superconductors:
perfect conductivity and perfect diamagnetism (Meissner effect)

∇ · B = 0⇒ ∃A such that B = ∇× A and ∇ · A = 0

∇× Js = −Λ−1B ⇒ Js(x, t) = −Λ−1A(x, t), (x, t) ∈ Ω× (0,T )
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Macroscopic models for type-I superconductors

Generalization of London and London: nonlocal laws

[Pippard, 1953]

Js,p(x, t) =

∫
Ω

Q(x − x ′)A(x ′, t) dx ′, (x, t) ∈ Ω× (0,T )

with

Q(x − x ′)A(x ′, t) = −C̃ x − x ′

|x − x ′|4
[A(x ′, t) · (x − x ′)] exp

(
−|x − x ′|

r0

)
,

C̃ :=
3

4πξ0Λ
> 0, r0 :=

ξ0l
ξ0 + l

ξ0 the coherence length of the material, l is the mean free path
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Macroscopic models for type-I superconductors

[Eringen, 1984]

Js,e(x, t) =

∫
Ω

σ0 (|x − x ′|) (x − x ′)×H(x ′, t) dx ′=: −(K0 ?H)(x, t),

(x, t) ∈ Ω× (0,T )

with

σ0 (s) =

{
C̃

2s2 exp
(
− s

r0

)
s < r0;

0 s > r0
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Macroscopic models for type-I superconductors

I Pippard’s nonlocal law fails to explain the vanishing of electrical resistance
I It is possible to recover from Eringen’s law the London equations and the

form given by Pippard

⇒ Js = Js,e = −K0 ?H in
{
∇×H = σE + Js
∇× E = −µ∂tH

I Taking the curl of Ampère’s law result in

σµ∂tH +∇×∇×H +∇× (K0 ?H) = 0

I Well-posedness is studied into detail in [Slodička and Van Bockstal, 2014].
I Also the error estimates for two time-discrete schemes (an implicit and a

semi-implicit) based on backward Euler method are derived in
[Slodička and Van Bockstal, 2014].

9 / 28



Introduction Macroscopic model Mathematical Analysis Conclusion and further research

Macroscopic models for type-II superconductors

Type-II
I Dependency between current density J and the electric field E

I Ohm’s law for non-superconducting metal (dashed)
I Bean’s critical-state model for type-II superconductors (fine dashed):

current either flows at the critical level Jc or not at all ⇒ not fully
applicable

I The power law by Rhyner for type-II superconductors (continuous)

E = σ−n
c |J|n−1J, n ∈ (7, 1000)
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Macroscopic models for type-II superconductors

I Take the curl of the power law and use Faraday’s law
⇒ nonlinear and degenerate partial differential equation for the magnetic
field

µ∂tH + σ−n
c ∇×

(
|∇ ×H|n−1∇×H

)
= 0

I Studied by: [Barrett and Prigozhin, 2000, Yin et al., 2002,
Prigozhin and Sokolovsky, 2004, Wei and Yin, 2005]
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Intermediate state between type-I and type-II superconductivity

I The classification into type-I and type-II is insufficient for multiband
superconductors [Babaev and Speight, 2005]

I This are superconductors with several superconducting components
I The material ‘magnesium diboride’ combines the characteristics of both

types [Nagamatsu et al., 2001]
I New kind of superconductor: type-1.5 superconductors

[Moshchalkov et al., 2009, Babaev et al., 2012]
I Allows coexistence of various properties of type-I and type-II

superconductors

Problem
Is it possible to derive macroscopic models for an intermediate state between
type-I and type-II superconductors?
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I Type-I:
µ∂tH + σ−1∇×∇×H + σ−1∇× (K0 ?H) = 0

I Type-II (n ∈ (7, 1000)):

µ∂tH + σ−n
c ∇×

(
|∇ ×H|n−1∇×H

)
= 0

I By introducing a real parameter β > 1 and a real function f (β), we
propose to combine both equations to

µ∂tH + σ−1f (β)∇×∇×H + σ−βc g(β)∇×
(
|∇ ×H|β−1∇×H

)
+ σ−1f (β)∇× (K0 ?H) = 0

with
I f ∈ C ([1,∞)) monotonically decreasing, f (1) = 1 and 0 6 f (β) 6 1 for
β > 1

I f equals zero or is very small for β > 7
I g(β) := 1− f (β)

I Intermediate state: 1 < β 6 7
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I It is assumed (for simplicity) that µ = σ = σc = 1
I The aim of this paper is to address the well-posedness of the following

problem for β > 1:
∂tH + f (β)∇×∇×H + g(β)∇×

(
|∇ ×H|β−1∇×H

)
+f (β)∇× (K0 ?H) = F in Ω× (0,T );

H × ν = 0 on Γ× (0,T );
H(x, 0) = H0 in Ω;

to design a numerical scheme for computations and to derive error
estimates for the time discretization

I Some possible choices for f :
I

f (β) =

{
(−1)α

6α (β − 7)α 1 6 β 6 7
0 β > 7

, α ∈ N

I

f (β) = exp(−kβ), k ∈ R+

I Focus on mathematical analysis, not on implementation.
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Usefull estimates

Using spherical coordinates one can deduce that
I σ0(|x|)x ∈ Lp(Ω) for p ∈ [1, 3) :∫

Ω

∣
σ0 (|x|) x

∣p dx 6

∫
B(0,r0)

C

|x|2p

∣∣∣exp

(
−
|x|

r0

)∣∣∣p |x|p dx

6 C

∫ 2π

0

dϕ

∫ π

0

sin(θ)dθ

∫ r0

0

r2−p dr 6 C

[
r3−p

3 − p

]r0

0
< ∞

I |Js(x, t)| = | (K0 ?H) (x, t)| 6 C(q) ‖H(t)‖q for q > 3
2 , ∀x ∈ Ω:

|Js (x, t)| =

∣∣∣∣∫
Ω

σ0
(∣∣x − x′

∣∣) (x − x′) × H(x′, t) dx′

∣∣∣∣ 6

∫
Ω

∣∣σ0
(∣∣x − x′

∣∣) (x − x′)
∣∣ ∣∣H(x′, t)

∣∣ dx′

6 p

√∫
Ω

∣∣σ0
(∣

x − x′
∣)

(x − x′)
∣∣p dx′ q

√∫
Ω

∣
H(x′, t)

∣q dx′ 6 C ‖H(t)‖q

I For instance, it holds that
(K0 ? h,∇× h) 6 Cε ‖h‖2 + ε ‖∇ × h‖2

, ∀h ∈ H(curl ,Ω)
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Variational formulation

The suitable choise for the space of test functions is
V0 =

{
ϕ ∈ L2(Ω) : ∇×ϕ ∈ Lβ+1(Ω) and ϕ× ν = 0 on Γ

}
⊂ H0(curl ,Ω).

This is a closed subspace of the space
V =

{
ϕ ∈ L2(Ω) : ∇×ϕ ∈ Lβ+1(Ω)

}
⊂ H(curl ,Ω),

and is endowed with the same graph norm
‖ϕ‖V = ‖ϕ‖V0

= ‖ϕ‖L2(Ω) + ‖∇ ×ϕ‖Lβ+1(Ω) .

Definition
Let β > 1, H0 ∈ V and F ∈ L2

(
(0,T ), L2(Ω)

)
. The variational formulation of (14) reads as:

find H ∈ C
(

[0,T ], L2(Ω)
)

with ∇×H ∈ Lβ+1
(

(0,T ), Lβ+1(Ω)
)

and
∂tH ∈ L2

(
[0,T ], L2(Ω)

)
such that

(∂t H(t),ϕ) + f (β) (∇×H(t),∇× ϕ) + g(β)
(
|∇ ×H(t)|β−1∇×H(t),∇× ϕ

)
+ f (β) (K0 ?H(t),∇× ϕ) = (F(t),ϕ) , ∀ϕ ∈ V0,

for a.e. t ∈ [0,T ].

.
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Variational formulation

Lemma (reflexivity)
The vector spaces V and V0 are reflexive Banach spaces.

Lemma (monotonicity)
Let β > 1. There exists a positive constant C0(β) = 1

4·12
β+1

2
such that for any

H1,H2 ∈ V hold(
|∇ ×H1|β−1∇×H1 − |∇ ×H2|β−1∇×H2,∇× (H1 −H2)

)
> C0(β) ‖∇ × (H1 −H2)‖β+1

Lβ+1(Ω) .

Theorem (uniqueness)
The problem (14) admits at most one solution ∂tH ∈ L2 ([0,T ],L2(Ω)

)
with

∇×H ∈ Lβ+1 ((0,T ),Lβ+1(Ω)
)

if H0 ∈ L2(Ω).
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Variational formulation

Proof uniqueness:
Assume that we have two solutions H1 and H2. Set H = H1 −H2. Subtract
the variational equation for H = H1 from for H = H2, set ϕ = H into the
resulting equation and integrating in time for t ∈ (0,T ):

‖H(t)‖2 + f (β)

∫ t

0
‖∇ ×H‖2 + g(β)C0

∫ t

0
‖∇ ×H‖β+1

Lβ+1(Ω)

6 −f (β)

∫ t

0
(K0 ?H,∇×H) 6 Cε

∫ t

0
‖H‖2 + ε

∫ t

0
‖∇ ×H‖2

.

We consider four cases:
I β = 1: then f (β) = 1 and g(β) = 0. Fixing a sufficiently small positive ε

and applying the Grönwall argument, we get that H = 0 a.e. in QT ;
I 1 < β < 7: then f and g are strict positive ⇒ H = 0 a.e. in QT ;
I β > 7 and f (β) = 0 for β > 7: H = 0 a.e. in QT ;
I β > 7 and f (β) > 0 for β > 7 but very small: analogously as the case

1 < β < 7.
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Time discretization: existence of a solution

Numerical scheme to approximate the solution
I Rothe’s method [Kačur, 1985]: divide [0,T ] into n ∈ N equidistant

subintervals (ti−1, ti ) for ti = iτ , where τ = T/n < 1 and for any function
z

zi ≈ z(ti ) and ∂tz(ti ) ≈ δzi :=
zi − zi−1

τ
I Convolution explicitly (from the previous time step):{

(δhi ,ϕ) + f (β) (∇× hi ,∇× ϕ)

+g(β)
(
|∇ × hi |β−1∇× hi ,∇× ϕ

)
= (f i ,ϕ)− f (β) (K0 ? hi−1,∇× ϕ) ;

h0 = H0

I Monotone operator theory [Vainberg, 1973]:

Theorem (uniqueness on a single time step)
Assume H0 ∈ L2(Ω) and F ∈ L2 ((0,T ),L2(Ω)

)
. Then there exists a τ0 > 0

such that the variational problem has a unique solution for any i = 1, . . . , n and
any τ < τ0.
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Time discretization: existence of a solution

Convergence: a priori estimates as uniform bounds
Suppose that F ∈ L2 ((0,T ),L2(Ω)

)
(i) Let H0 ∈ L2(Ω). Then, there exists a positive constant C such that

max
16i6n

‖hi‖2 +
n∑

i=1
‖hi − hi−1‖2 +

n∑
i=1
‖∇ × hi‖β+1

Lβ+1(Ω) τ 6 C

for all τ < τ0.
(ii) If ∇ ·H0 = 0 = ∇ · f i then ∇ · hi = 0 for all i = 1, . . . , n.
(iii) If H0 ∈ V then

max
16i6n

‖∇ × hi‖β+1
Lβ+1(Ω) +

n∑
i=1
‖δhi‖2

τ 6 C

for all τ < τ0.
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Time discretization: existence of a solution

I Hn: piecewise linear in time spline of the solutions hi , i = 1, . . . , n
I Hn: piecewise constant in time spline of the solutions hi , i = 1, . . . , n
I The variational formulaton on a single timestep can be rewritten on the

whole time frame as

(∂tHn(t),ϕ) + f (β)
(
∇×Hn(t),∇×ϕ

)
+ g(β)

(
|∇ ×Hn(t)|β−1∇×Hn(t),∇×ϕ

)
=
(
F n(t),ϕ

)
− f (β)

(
K0 ?Hn(t − τ),∇×ϕ

)
.

I Convergence of the sequences Hn and Hn to the unique weak solution is
proved if τ → 0 or n→∞
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Time discretization: existence of a solution

I Main ideas of the proof:
I Compact embedding [Palatucci et al., 2013, Lemma 10]:

H
1
2 (Ω) ↪→↪→ L2(Ω) ∼= L2(Ω)∗ ↪→ H−1

0 (curl ,Ω)

implies [Kačur, 1985]

Hn → H in C
(

[0,T ],L2(Ω)
)

and
Hn → H in L2 ([0,T ],L2(Ω)

)
I Minty-Browder’s trick for the convergence of the nonlinear term
I H is the weak solution of the problem

Theorem (Existence solution)
Let H0 ∈ V and F ∈ L2 ((0,T ),L2(Ω)

)
. Assume that ∇ ·H0 = 0 = ∇ · F (t)

for any time t ∈ [0,T ]. Then there exists a weak solution H ∈ C
(
[0,T ],L2(Ω)

)
with ∂tH ∈ L2 ((0,T ),L2(Ω)

)
.
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Time discretization: existence of a solution

Error estimates for the time discretization

Theorem (Error)
Suppose that F ∈ Lip([0,T ],L2(Ω)). If H0 ∈ V then

max
t∈[0,T ]

‖Hn(t)−H(t)‖2 +

∫ T

0

∥∥∇× [Hn −H]
∥∥β+1

Lβ+1(Ω)
6 Cτ.

Please note that the positive constant C in this estimates is of the form CeCT .
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Conclusion:
I Macroscopic model for an intermediate state between type-I and type-II

superconductivity is proposed
I Well-posedness is proved
I Numerical scheme for calculations is provided

Future research:
I Numerical implementation
I Comparison with available results about neither type-I nor type-II

superconductors
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Slodička, M. and Van Bockstal, K. (2014).
A nonlocal parabolic model for type-I superconductors.
Numerical Methods for Partial Differential Equations, pages n/a–n/a.

Vainberg, M. M. (1973).
Variational method and method of monotone operators in the theory of nonlinear
equations. translated from russian by a. libin. translation edited by d. louvish.
A Halsted Press Book. New York-Toronto: John Wiley & Sons; Jerusalem- London:
Israel Program for Scientific Translations. xi, 356 p. (1973).

Wei, W. and Yin, H.-M. (2005).
Numerical solutions to bean’s critical-state model for type-II superconductors.
International Journal of Numerical Analysis and Modeling, 2.

Yin, H.-M., Li, B., and Zou, J. (2002).
A degenerate evolution system modeling bean’s critical-state type-II superconductors.
Discrete and Continuous Dynamical Systems, 8:781–794.

28 / 28


	Introduction
	Type-I versus type-II superconductivity
	Macroscopic models for type-I superconductors
	Macroscopic models for type-II superconductors
	Intermediate state between type-I and type-II superconductivity

	Macroscopic model for an intermediate state between type-I and type-II superconductors
	Mathematical Analysis
	Usefull estimates
	Variational formulation
	Time discretization: existence of a solution

	Conclusion and further research

