

The well-posedness of a mathematical model for an intermediate state between type-I and type-II superconductivity

K. Van Bockstal and M. Slodička

Ghent University Department of Mathematical Analysis Numerical Analysis and Mathematical Modelling Research Group

14th International Conference Computational and Mathematical Methods in Science and Engineering, July 3-7, 2014, Rota, Cadiz - Spain.

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		0 000 00000	

Outline

Introduction

Type-I versus type-II superconductivity Macroscopic models for type-I superconductors Macroscopic models for type-II superconductors Intermediate state between type-I and type-II superconductivity

Macroscopic model for an intermediate state between type-I and type-II superconductors

Mathematical Analysis

Usefull estimates Variational formulation Time discretization: existence of a solution

Conclusion and further research

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		0 000 00000	

Features of superconductivity

Kammerlingh Onnes (1911): perfect conductivity

For various cooled down materials the electrical resistance not only decreases with temperature, but also has a sudden drop at some critical absolute temperature T_c

- ► Meissner and Ochsenfeld (1933): perfect diamagnetism ⇒ i.e. expulsion of the magnetic induction B
- Kammerlingh Onnes (1914): threshold field

 \Rightarrow restore the normal state through the application of a large magnetic field

A way to classify superconductors: type-I and type-II

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
• 00000 00 0		0 000 00000	

Type-I versus type-II superconductivity

- Similar behaviour for a very weak external magnetic field when the temperature T < T_c is fixed
- As the external magnetic field becomes stronger it turns out that two possibilities can happen ⇒ phase diagram in the *T*-*H* plane

- ► Type-I (a): the **B** field remains zero inside the superconductor until suddenly, as the critical field H_c is reached, the superconductivity is destroyed
- Type-II (b): a mixed state occurs in addition to the superconductive and the normal state (two different critical fields)
- What are the macroscopic models which are used in the modelling of type-I and type-II superconductors?

Introduction	Macroscopic model	Mathematical Analysis O OOO OOOOO	Conclusion and further research	
Marrassonis madels for two Leurerranductors				

Type-I

- $\Omega \subset \mathbb{R}^3$: bounded Lipschitz domain, u unit normal vector on Γ
- ► The quasi-static Maxwell equations for linear materials are considered

$ abla imes oldsymbol{H} = oldsymbol{J}$	Ampère's law	н	magnetic field		
$ abla imes \mathbf{E} = -\mu \partial_t \mathbf{H}$	Faraday's law	Ε	electric field	$\mu > 0$	magnetic permeability
$ abla \cdot \pmb{H}_0 = 0$		J	current density		

London and London (1935): a macroscopic description of type-I superconductors involves a two-fluid model

- $\begin{array}{c} {J} = {J}_n + {J}_s \\ {J}_n = \sigma {E} \end{array} \quad \begin{array}{c} \nabla \times {H} = \sigma {E} + {J}_s \\ \nabla \times {E} = -\mu \partial_t H \\ \nabla \cdot {H}_0 = 0 \end{array} \quad \begin{array}{c} {J}_n \quad \text{normal current density} \\ {J}_s \quad \text{superconducting current density} \\ \sigma \cdot {H}_0 = 0 \end{array}$
- Below the critical temperature T_c, the current consists of superconducting electrons and normal electrons

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research	
○ ○●○○○ ○		0 000 00000		
Macroscopic models for type-I superconductors				

London equations (1935) \Rightarrow local law for J_s

 $\begin{array}{ll} \partial_t \boldsymbol{J}_s = \boldsymbol{\Lambda}^{-1} \boldsymbol{E} & n_s & \text{density of superelectrons} \\ \nabla \times \boldsymbol{J}_s = -\boldsymbol{\Lambda}^{-1} \boldsymbol{B} & m_e & \text{mass of an electron} \\ \boldsymbol{\Lambda} = \frac{m_e}{n_s e^2} & -e & \text{electric charge of an electron} \end{array}$

 \Rightarrow Correct description of two basic properties of superconductors: perfect conductivity and perfect diamagnetism (Meissner effect)

 $\nabla \cdot \boldsymbol{B} = 0 \Rightarrow \exists \boldsymbol{A} \text{ such that } \boldsymbol{B} = \nabla \times \boldsymbol{A} \text{ and } \nabla \cdot \boldsymbol{A} = 0$ $\nabla \times \boldsymbol{J}_{s} = -\Lambda^{-1} \boldsymbol{B} \quad \Rightarrow \quad \boldsymbol{J}_{s}(\boldsymbol{x}, t) = -\Lambda^{-1} \boldsymbol{A}(\boldsymbol{x}, t), \quad (\boldsymbol{x}, t) \in \Omega \times (0, T)$

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
		0 000 00000	

Macroscopic models for type-I superconductors

Generalization of London and London: nonlocal laws

[Pippard, 1953]

$$\boldsymbol{J}_{\boldsymbol{s},\boldsymbol{\rho}}(\boldsymbol{x},t) = \int_{\Omega} Q(\boldsymbol{x}-\boldsymbol{x}') \boldsymbol{A}(\boldsymbol{x}',t) \, \mathrm{d}\boldsymbol{x}', \qquad (\boldsymbol{x},t) \in \Omega \times (0,T)$$

with

$$Q(\mathbf{x} - \mathbf{x}')\mathbf{A}(\mathbf{x}', t) = -\widetilde{C} \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^4} \left[\mathbf{A}(\mathbf{x}', t) \cdot (\mathbf{x} - \mathbf{x}')\right] \exp\left(-\frac{|\mathbf{x} - \mathbf{x}'|}{r_0}\right),$$
$$\widetilde{C} := \frac{3}{4\pi\xi_0\Lambda} > 0, \qquad r_0 := \frac{\xi_0 I}{\xi_0 + I}$$

 ξ_0 the coherence length of the material, / is the mean free path

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
		0 000 00000	

Macroscopic models for type-I superconductors

[Eringen, 1984]

$$\begin{aligned} \mathbf{J}_{s,e}(\mathbf{x},t) &= \int_{\Omega} \sigma_0 \left(|\mathbf{x} - \mathbf{x}'| \right) \left(\mathbf{x} - \mathbf{x}' \right) \times \mathbf{H}(\mathbf{x}',t) \, \mathrm{d}\mathbf{x}' =: -(\mathcal{K}_0 \star \mathbf{H})(\mathbf{x},t), \\ & (\mathbf{x},t) \in \Omega \times (0,T) \end{aligned}$$

with

$$\sigma_0(s) = \begin{cases} \frac{\widetilde{C}}{2s^2} \exp\left(-\frac{s}{r_0}\right) & s < r_0; \\ 0 & s \ge r_0 \end{cases}$$

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research	
○ ○○○○○ ○		0 000 00000		
Macroscopic models for type-I superconductors				

- Pippard's nonlocal law fails to explain the vanishing of electrical resistance
- It is possible to recover from Eringen's law the London equations and the form given by Pippard

$$\Rightarrow \mathbf{J}_{s} = \mathbf{J}_{s,e} = -\mathcal{K}_{0} \star \mathbf{H} \quad \text{in} \quad \left\{ \begin{array}{l} \nabla \times \mathbf{H} &= \sigma \mathbf{E} + \mathbf{J}_{s} \\ \nabla \times \mathbf{E} &= -\mu \partial_{t} \mathbf{H} \end{array} \right.$$

Taking the curl of Ampère's law result in

$$\sigma \mu \partial_t \boldsymbol{H} + \nabla \times \nabla \times \boldsymbol{H} + \nabla \times (\mathcal{K}_0 \star \boldsymbol{H}) = \boldsymbol{0}$$

- Well-posedness is studied into detail in [Slodička and Van Bockstal, 2014].
- Also the error estimates for two time-discrete schemes (an implicit and a semi-implicit) based on backward Euler method are derived in [Slodička and Van Bockstal, 2014].

Introduction O O O O O	Macroscopic model	Mathematical Analysis O OOO OOOOO	Conclusion and further research	
Margarenic models for two II superconductors				

Type-II

Dependency between current density J and the electric field E

- Ohm's law for non-superconducting metal (dashed)
- ▶ Bean's critical-state model for type-II superconductors (fine dashed): current either flows at the critical level J_c or not at all ⇒ not fully applicable
- ► The power law by Rhyner for type-II superconductors (continuous)

$$E = \sigma_c^{-n} |J|^{n-1} J, \qquad n \in (7, 1000)$$

Introduction O O O O O	Macroscopic model	Mathematical Analysis O OOO OOOOO	Conclusion and further research	
Macroscopic models for type-II superconductors				

► Take the curl of the power law and use Faraday's law ⇒ nonlinear and degenerate partial differential equation for the magnetic field

$$\mu \partial_t \boldsymbol{H} + \sigma_c^{-n} \nabla \times \left(|\nabla \times \boldsymbol{H}|^{n-1} \nabla \times \boldsymbol{H} \right) = \boldsymbol{0}$$

 Studied by: [Barrett and Prigozhin, 2000, Yin et al., 2002, Prigozhin and Sokolovsky, 2004, Wei and Yin, 2005]

Introduction O O O O O O O O	Macroscopic model	Mathematical Analysis O OOO OOOOO	Conclusion and further research	
Intermediate state between type-I and type-II superconductivity				

- The classification into type-I and type-II is insufficient for multiband superconductors [Babaev and Speight, 2005]
- > This are superconductors with several superconducting components
- The material 'magnesium diboride' combines the characteristics of both types [Nagamatsu et al., 2001]
- New kind of superconductor: type-1.5 superconductors [Moshchalkov et al., 2009, Babaev et al., 2012]
- Allows coexistence of various properties of type-I and type-II superconductors

Problem

Is it possible to derive macroscopic models for an intermediate state between type-I and type-II superconductors?

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		0 000 00000	

► Type-I:

$$u\partial_t \boldsymbol{H} + \sigma^{-1} \nabla \times \nabla \times \boldsymbol{H} + \sigma^{-1} \nabla \times (\mathcal{K}_0 \star \boldsymbol{H}) = \boldsymbol{0}$$

▶ Type-II (*n* ∈ (7, 1000)):

$$\mu \partial_t \boldsymbol{H} + \sigma_c^{-n} \nabla \times \left(|\nabla \times \boldsymbol{H}|^{n-1} \nabla \times \boldsymbol{H} \right) = \boldsymbol{0}$$

By introducing a real parameter β ≥ 1 and a real function f(β), we propose to combine both equations to

$$\mu \partial_t \boldsymbol{H} + \sigma^{-1} f(\beta) \nabla \times \nabla \times \boldsymbol{H} + \sigma_c^{-\beta} g(\beta) \nabla \times (|\nabla \times \boldsymbol{H}|^{\beta - 1} \nabla \times \boldsymbol{H}) + \sigma^{-1} f(\beta) \nabla \times (\mathcal{K}_0 \star \boldsymbol{H}) = \boldsymbol{0}$$

with

- ▶ $f \in C([1,\infty))$ monotonically decreasing, f(1) = 1 and $0 \leqslant f(\beta) \leqslant 1$ for $\beta > 1$
- f equals zero or is very small for $\beta > 7$
- $g(\beta) := 1 f(\beta)$
- Intermediate state: $1 < \beta \leqslant 7$

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		0 000 00000	

- It is assumed (for simplicity) that $\mu = \sigma = \sigma_c = 1$
- \blacktriangleright The aim of this paper is to address the well-posedness of the following problem for $\beta \geqslant 1$:

$$\begin{array}{l} \partial_t \boldsymbol{H} + f(\beta) \nabla \times \nabla \times \boldsymbol{H} + g(\beta) \nabla \times \left(|\nabla \times \boldsymbol{H}|^{\beta-1} \nabla \times \boldsymbol{H} \right) \\ + f(\beta) \nabla \times (\mathcal{K}_0 \star \boldsymbol{H}) &= \boldsymbol{F} & \text{ in } \Omega \times (0, T); \\ \boldsymbol{H} \times \boldsymbol{\nu} &= \boldsymbol{0} & \text{ on } \Gamma \times (0, T); \\ \boldsymbol{H}(\boldsymbol{x}, 0) &= \boldsymbol{H}_0 & \text{ in } \Omega; \end{array}$$

to design a numerical scheme for computations and to derive error estimates for the time discretization

Some possible choices for *f*:

$$f(eta) = egin{cases} rac{(-1)^lpha}{6^lpha} (eta-7)^lpha & 1\leqslanteta\leqslant7\ 0 & eta>7 \end{cases}, \quad lpha\in\mathbb{N}$$

 $f(\beta) = \exp(-k\beta), \quad k \in \mathbb{R}^+$

► Focus on mathematical analysis, not on implementation.

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		• • • • • • • •	

Usefull estimates

Using spherical coordinates one can deduce that

• $\sigma_0(|\mathbf{x}|)\mathbf{x} \in \mathbf{L}^p(\Omega)$ for $p \in [1,3)$:

$$\begin{split} \int_{\Omega} \left| \sigma_{0}\left(|\mathbf{x}| \right) \mathbf{x} \right|^{p} \, \mathrm{d}\mathbf{x} &\leq \int_{\mathcal{B}\left(\mathbf{0}, r_{0} \right)} \frac{C}{|\mathbf{x}|^{2p}} \left| \exp\left(- \frac{|\mathbf{x}|}{r_{0}} \right) \right|^{p} |\mathbf{x}|^{p} \, \mathrm{d}\mathbf{x} \\ &\leq C \int_{0}^{2\pi} \mathrm{d}\varphi \int_{0}^{\pi} \sin(\theta) \mathrm{d}\theta \int_{0}^{r_{0}} r^{2-p} \mathrm{d}\mathbf{r} \leqslant C \left[\frac{r^{3-p}}{3-p} \right]_{0}^{r_{0}} < \infty \end{split}$$

 $\blacktriangleright |\mathbf{J}_{s}(\mathbf{x},t)| = |(\mathcal{K}_{0} \star \mathbf{H})(\mathbf{x},t)| \leqslant C(q) \|\mathbf{H}(t)\|_{q} \text{ for } q > \frac{3}{2}, \quad \forall \mathbf{x} \in \Omega:$

$$\begin{aligned} |J_{\mathfrak{s}}(\mathbf{x},t)| &= \left| \int_{\Omega} \sigma_{0} \left(\left| \mathbf{x} - \mathbf{x}' \right| \right) (\mathbf{x} - \mathbf{x}') \times \mathbf{H}(\mathbf{x}',t) \, \mathrm{d}\mathbf{x}' \right| \leq \int_{\Omega} \left| \sigma_{0} \left(\left| \mathbf{x} - \mathbf{x}' \right| \right) (\mathbf{x} - \mathbf{x}') \right| \, \left| \mathbf{H}(\mathbf{x}',t) \right| \, \mathrm{d}\mathbf{x}' \\ &\leq \sqrt[p]{\int_{\Omega} \left| \sigma_{0} \left(\left| \mathbf{x} - \mathbf{x}' \right| \right) (\mathbf{x} - \mathbf{x}') \right|^{p} \, \mathrm{d}\mathbf{x}'} \sqrt[q]{\int_{\Omega} \left| \mathbf{H}(\mathbf{x}',t) \right|^{q} \, \mathrm{d}\mathbf{x}'} \leq C \left\| \mathbf{H}(t) \right\|_{q} \end{aligned}$$

For instance, it holds that

$$\left(\mathcal{K}_{\mathbf{0}}\star\boldsymbol{h},\nabla\times\boldsymbol{h}\right)\leqslant \textit{C}_{\varepsilon}\left\|\boldsymbol{h}\right\|^{2}+\varepsilon\left\|\nabla\times\boldsymbol{h}\right\|^{2},\quad\forall\boldsymbol{h}\in\mathsf{H}(\mathsf{curl}\,,\Omega)$$

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		○ ● ○○ ○○○○○○	

Variational formulation

The suitable choise for the space of test functions is

$$\boldsymbol{\mathsf{V}}_0 = \left\{\boldsymbol{\varphi} \in \boldsymbol{\mathsf{L}}^2(\Omega) \,:\, \nabla \times \boldsymbol{\varphi} \in \boldsymbol{\mathsf{L}}^{\beta+1}(\Omega) \text{ and } \boldsymbol{\varphi} \times \boldsymbol{\nu} = \boldsymbol{\mathsf{0}} \text{ on } \boldsymbol{\mathsf{\Gamma}} \right\} \subset \boldsymbol{\mathsf{H}}_0(\boldsymbol{\mathsf{curl}}\,,\Omega).$$

This is a closed subspace of the space

$$\mathbf{V} = \left\{ \boldsymbol{\varphi} \in \mathbf{L}^2(\Omega) \, : \, \nabla \times \boldsymbol{\varphi} \in \mathbf{L}^{\beta+1}(\Omega) \right\} \subset \mathbf{H}(\mathbf{curl}\,, \Omega),$$

and is endowed with the same graph norm

$$\|\varphi\|_{\mathbf{V}} = \|\varphi\|_{\mathbf{V}_0} = \|\varphi\|_{\mathsf{L}^2(\Omega)} + \|\nabla \times \varphi\|_{\mathsf{L}^{\beta+1}(\Omega)}$$

Definition

Let $\beta \ge 1$, $H_0 \in \mathbf{V}$ and $\mathbf{F} \in L^2((0, T), \mathbf{L}^2(\Omega))$. The variational formulation of (14) reads as: find $\mathbf{H} \in C([0, T], \mathbf{L}^2(\Omega))$ with $\nabla \times \mathbf{H} \in L^{\beta+1}((0, T), \mathbf{L}^{\beta+1}(\Omega))$ and $\partial_t \mathbf{H} \in L^2([0, T], \mathbf{L}^2(\Omega))$ such that

$$\begin{split} (\partial_t \boldsymbol{H}(t), \varphi) + f(\beta) \left(\nabla \times \boldsymbol{H}(t), \nabla \times \varphi \right) + g(\beta) \left(|\nabla \times \boldsymbol{H}(t)|^{\beta - 1} \nabla \times \boldsymbol{H}(t), \nabla \times \varphi \right) \\ &+ f(\beta) \left(\mathcal{K}_0 \star \boldsymbol{H}(t), \nabla \times \varphi \right) = (\boldsymbol{F}(t), \varphi), \quad \forall \varphi \in \boldsymbol{V}_0, \end{split}$$

for a.e. $t \in [0, T]$.

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0			

Variational formulation

Lemma (reflexivity)

The vector spaces V and V_0 are reflexive Banach spaces.

Lemma (monotonicity)

Let $\beta \ge 1$. There exists a positive constant $C_0(\beta) = \frac{1}{4 \cdot 12^{\frac{\beta+1}{2}}}$ such that for any $H_1, H_2 \in V$ hold

$$\begin{split} \left(|\nabla \times \boldsymbol{H}_1|^{\beta-1} \nabla \times \boldsymbol{H}_1 - |\nabla \times \boldsymbol{H}_2|^{\beta-1} \nabla \times \boldsymbol{H}_2, \nabla \times (\boldsymbol{H}_1 - \boldsymbol{H}_2) \right) \\ & \geqslant C_0(\beta) \left\| \nabla \times (\boldsymbol{H}_1 - \boldsymbol{H}_2) \right\|_{\mathbf{L}^{\beta+1}(\Omega)}^{\beta+1}. \end{split}$$

Theorem (uniqueness)

The problem (14) admits at most one solution $\partial_t \mathbf{H} \in L^2([0, T], \mathbf{L}^2(\Omega))$ with $\nabla \times \mathbf{H} \in L^{\beta+1}((0, T), \mathbf{L}^{\beta+1}(\Omega))$ if $\mathbf{H}_0 \in \mathbf{L}^2(\Omega)$.

Introduction O OOOOO OO	Macroscopic model	Mathematical Analysis O OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Conclusion and further research
0			

Variational formulation

Proof uniqueness:

Assume that we have two solutions H_1 and H_2 . Set $H = H_1 - H_2$. Subtract the variational equation for $H = H_1$ from for $H = H_2$, set $\varphi = H$ into the resulting equation and integrating in time for $t \in (0, T)$:

$$\begin{split} \left\|\boldsymbol{H}(t)\right\|^{2} + f(\beta) \int_{0}^{t} \left\|\nabla \times \boldsymbol{H}\right\|^{2} + g(\beta)C_{0} \int_{0}^{t} \left\|\nabla \times \boldsymbol{H}\right\|_{\boldsymbol{\mathsf{L}}^{\beta+1}(\Omega)}^{\beta+1} \\ \leqslant -f(\beta) \int_{0}^{t} \left(\mathcal{K}_{0} \star \boldsymbol{H}, \nabla \times \boldsymbol{H}\right) \leqslant C_{\varepsilon} \int_{0}^{t} \left\|\boldsymbol{H}\right\|^{2} + \varepsilon \int_{0}^{t} \left\|\nabla \times \boldsymbol{H}\right\|^{2}. \end{split}$$

We consider four cases:

- ▶ $\beta = 1$: then $f(\beta) = 1$ and $g(\beta) = 0$. Fixing a sufficiently small positive ε and applying the Grönwall argument, we get that H = 0 a.e. in Q_T ;
- ▶ $1 < \beta < 7$: then f and g are strict positive $\Rightarrow H = 0$ a.e. in Q_T ;
- $\beta \ge 7$ and $f(\beta) = 0$ for $\beta \ge 7$: H = 0 a.e. in Q_T ;
- ▶ $\beta \ge 7$ and $f(\beta) > 0$ for $\beta \ge 7$ but very small: analogously as the case $1 < \beta < 7$.

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		○ ○○○ ●○○○○	

Time discretization: existence of a solution

Numerical scheme to approximate the solution

▶ Rothe's method [Kačur, 1985]: divide [0, T] into $n \in \mathbb{N}$ equidistant subintervals (t_{i-1}, t_i) for $t_i = i\tau$, where $\tau = T/n < 1$ and for any function z

$$z_i pprox z(t_i) ext{ and } \quad \partial_t z(t_i) pprox \delta z_i := rac{z_i - z_{i-1}}{ au}$$

• Convolution explicitly (from the previous time step):

$$\begin{array}{l} \left(\delta \boldsymbol{h}_{i},\boldsymbol{\varphi}\right)+f(\beta)\left(\nabla\times\boldsymbol{h}_{i},\nabla\times\boldsymbol{\varphi}\right)\\ +g(\beta)\left(|\nabla\times\boldsymbol{h}_{i}|^{\beta-1}\nabla\times\boldsymbol{h}_{i},\nabla\times\boldsymbol{\varphi}\right) &=\left(\boldsymbol{f}_{i},\boldsymbol{\varphi}\right)-f(\beta)\left(\mathcal{K}_{0}\star\boldsymbol{h}_{i-1},\nabla\times\boldsymbol{\varphi}\right);\\ \boldsymbol{h}_{0} &=\boldsymbol{H}_{0} \end{array}$$

Monotone operator theory [Vainberg, 1973]:

Theorem (uniqueness on a single time step)

Assume $H_0 \in L^2(\Omega)$ and $F \in L^2((0, T), L^2(\Omega))$. Then there exists a $\tau_0 > 0$ such that the variational problem has a unique solution for any i = 1, ..., n and any $\tau < \tau_0$.

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		0 000 0●000	

Time discretization: existence of a solution

Convergence: a priori estimates as uniform bounds Suppose that $\mathbf{F} \in L^2((0, T), \mathbf{L}^2(\Omega))$

(i) Let $H_0 \in L^2(\Omega)$. Then, there exists a positive constant C such that

$$\max_{1\leqslant i\leqslant n} \|\boldsymbol{h}_i\|^2 + \sum_{i=1}^n \|\boldsymbol{h}_i - \boldsymbol{h}_{i-1}\|^2 + \sum_{i=1}^n \|\nabla \times \boldsymbol{h}_i\|_{\mathsf{L}^{\beta+1}(\Omega)}^{\beta+1} \tau \leqslant C$$

for all $\tau < \tau_0$.

(*ii*) If $\nabla \cdot \boldsymbol{H}_0 = 0 = \nabla \cdot \boldsymbol{f}_i$ then $\nabla \cdot \boldsymbol{h}_i = 0$ for all $i = 1, \dots, n$. (*iii*) If $\boldsymbol{H}_0 \in \boldsymbol{V}$ then

$$\max_{1 \leq i \leq n} \|\nabla \times \boldsymbol{h}_i\|_{\boldsymbol{\mathsf{L}}^{\beta+1}(\Omega)}^{\beta+1} + \sum_{i=1}^n \|\delta \boldsymbol{h}_i\|^2 \tau \leq C$$

for all $\tau < \tau_0$.

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		○ ○○○ ○○●○○	
Time discretization: existence of a solution			

- H_n : piecewise linear in time spline of the solutions h_i , i = 1, ..., n
- ▶ \overline{H}_n : piecewise constant in time spline of the solutions h_i , i = 1, ..., n
- The variational formulaton on a single timestep can be rewritten on the whole time frame as

$$\begin{aligned} (\partial_t \boldsymbol{H}_n(t), \boldsymbol{\varphi}) + f(\beta) \left(\nabla \times \overline{\boldsymbol{H}}_n(t), \nabla \times \boldsymbol{\varphi} \right) \\ &+ g(\beta) \left(|\nabla \times \overline{\boldsymbol{H}}_n(t)|^{\beta - 1} \nabla \times \overline{\boldsymbol{H}}_n(t), \nabla \times \boldsymbol{\varphi} \right) \\ &= \left(\overline{\boldsymbol{F}}_n(t), \boldsymbol{\varphi} \right) - f(\beta) \left(\mathcal{K}_0 \star \overline{\boldsymbol{H}}_n(t - \tau), \nabla \times \boldsymbol{\varphi} \right). \end{aligned}$$

Convergence of the sequences *H_n* and *H_n* to the unique weak solution is proved if *τ* → 0 or *n* → ∞

Introduction O OOOOO OO O	Macroscopic model	Mathematical Analysis ○ ○○○ ○○○●○	Conclusion and further research

Time discretization: existence of a solution

Main ideas of the proof:

Compact embedding [Palatucci et al., 2013, Lemma 10]:

$$\mathbf{H}^{\frac{1}{2}}(\Omega) \hookrightarrow \mathbf{L}^{2}(\Omega) \cong \mathbf{L}^{2}(\Omega)^{*} \hookrightarrow \mathbf{H}_{0}^{-1}(\mathbf{curl}\,,\Omega)$$

implies [Kačur, 1985]

$$H_n \rightarrow H$$
 in $C([0, T], L^2(\Omega))$

and

$$\overline{\boldsymbol{H}}_n \to \boldsymbol{H} \text{ in } L^2\left([0,T], \boldsymbol{L}^2(\Omega)\right)$$

- Minty-Browder's trick for the convergence of the nonlinear term
- H is the weak solution of the problem

Theorem (Existence solution)

Let $\mathbf{H}_0 \in \mathbf{V}$ and $\mathbf{F} \in L^2((0, T), \mathbf{L}^2(\Omega))$. Assume that $\nabla \cdot \mathbf{H}_0 = 0 = \nabla \cdot \mathbf{F}(t)$ for any time $t \in [0, T]$. Then there exists a weak solution $\mathbf{H} \in C([0, T], \mathbf{L}^2(\Omega))$ with $\partial_t \mathbf{H} \in L^2((0, T), \mathbf{L}^2(\Omega))$.

Time discretization: existence of a solution

Error estimates for the time discretization

Theorem (Error)

Suppose that $\mathbf{F} \in \operatorname{Lip}([0, T], \mathbf{L}^2(\Omega))$. If $\mathbf{H}_0 \in \mathbf{V}$ then

$$\max_{t\in[0,T]} \left\| \boldsymbol{H}_n(t) - \boldsymbol{H}(t) \right\|^2 + \int_0^T \left\| \nabla \times [\overline{\boldsymbol{H}}_n - \boldsymbol{H}] \right\|_{\boldsymbol{\mathsf{L}}^{\beta+1}(\Omega)}^{\beta+1} \leqslant C\tau.$$

Please note that the positive constant C in this estimates is of the form Ce^{CT} .

Introduction M	Vlacroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		0 000 00000	

Conclusion:

- Macroscopic model for an intermediate state between type-I and type-II superconductivity is proposed
- Well-posedness is proved
- Numerical scheme for calculations is provided

Future research:

- Numerical implementation
- Comparison with available results about neither type-I nor type-II superconductors

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		0 000 00000	

References I

Babaev, E., Carlström, J., Garaud, J., Silaev, M., and Speight, J. (2012).

Type-1.5 superconductivity in multiband systems: Magnetic response, broken symmetries and microscopic theory - a brief overview.

Physica C: Superconductivity, 479(0):2 – 14. Proceedings of {VORTEX} {VII} Conference.

Babaev, E. and Speight, M. (2005).

Semi-meissner state and neither type-I nor type-II superconductivity in multicomponent superconductors.

Phys. Rev. B, 72:180502.

Barrett, J. and Prigozhin, L. (2000).

Bean's critical-state model as the $p \rightarrow \infty$ limit of an evolutionary *p*-laplacian equation. Nonlinear Anal. Theory Methods Appl, 6:977–993.

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		0 000 00000	

References II

Eringen, A. (1984).

Electrodynamics of memory-dependent nonlocal elastic continua.

J. Math. Phys., 25:3235-3249.

Kačur, J. (1985).

Method of Rothe in evolution equations, volume 80 of Teubner Texte zur Mathematik. Teubner, Leipzig.

Moshchalkov, V., Menghini, M., Nishio, T., Chen, Q. H., Silhanek, A. V., Dao, V. H., Chibotaru, L. F., Zhigadlo, N. D., and Karpinski, J. (2009).

Type-1.5 superconductivity.

Phys. Rev. Lett., 102:117001.

Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J. (2001). Superconductivity at 39K in magnesium diboride. *Nature*, 410:63–64.

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		0 000 00000	

References III

Palatucci, G., Savin, O., and Valdinoci, E. (2013).

Local and global minimizers for a variational energy involving a fractional norm.

Annali di Matematica Pura ed Applicata, 192(4):673–718. DOI: 10.1007/s10231-011-0243-9.

Pippard, A. B. (1953).

An experimental and theoretical study of the relation between magnetic field and current in a superconductor.

Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 216(1127):547–568.

Prigozhin, L. and Sokolovsky, V. (2004).

Ac losses in type-II superconductors induced by nonuniform fluctuations of external magnetic field.

IEEE Transactions on Applied Superconductivity, 14(1):69-81.

Introduction	Macroscopic model	Mathematical Analysis	Conclusion and further research
0 00000 00 0		0 000 00000	

References IV

Slodička, M. and Van Bockstal, K. (2014).

A nonlocal parabolic model for type-I superconductors.

Numerical Methods for Partial Differential Equations, pages n/a-n/a.

Vainberg, M. M. (1973).

Variational method and method of monotone operators in the theory of nonlinear equations. translated from russian by a. libin. translation edited by d. louvish.

A Halsted Press Book. New York-Toronto: John Wiley & Sons; Jerusalem- London: Israel Program for Scientific Translations. xi, 356 p. (1973).

Wei, W. and Yin, H.-M. (2005).

Numerical solutions to bean's critical-state model for type-II superconductors.

International Journal of Numerical Analysis and Modeling, 2.

Yin, H.-M., Li, B., and Zou, J. (2002).

A degenerate evolution system modeling bean's critical-state type-II superconductors. *Discrete and Continuous Dynamical Systems*, 8:781–794.