UNIVERSITEIT GENT

The well-posedness of a mathematical model for an intermediate state between type-I and type-II superconductivity

K. Van Bockstal and M. Slodička
Ghent University
Department of Mathematical Analysis
Numerical Analysis and Mathematical Modelling Research Group

14th International Conference Computational and Mathematical Methods in Science and Engineering, July 3-7, 2014, Rota, Cadiz - Spain.

Outline

Introduction
Type-I versus type-II superconductivity
Macroscopic models for type-I superconductors
Macroscopic models for type-II superconductors
Intermediate state between type-I and type-II superconductivity
Macroscopic model for an intermediate state between type-I and type-II superconductors

Mathematical Analysis
Usefull estimates
Variational formulation
Time discretization: existence of a solution
Conclusion and further research

Features of superconductivity

- Kammerlingh Onnes (1911): perfect conductivity

For various cooled down materials the electrical resistance not only decreases with temperature, but also has a sudden drop at some critical absolute temperature T_{c}

- Meissner and Ochsenfeld (1933): perfect diamagnetism
\Rightarrow i.e. expulsion of the magnetic induction \boldsymbol{B}
- Kammerlingh Onnes (1914): threshold field
\Rightarrow restore the normal state through the application of a large magnetic field
- A way to classify superconductors: type-I and type-II
- Similar behaviour for a very weak external magnetic field when the temperature $T<T_{c}$ is fixed
- As the external magnetic field becomes stronger it turns out that two possibilities can happen \Rightarrow phase diagram in the $T-H$ plane

- Type-I (a): the \boldsymbol{B} field remains zero inside the superconductor until suddenly, as the critical field H_{c} is reached, the superconductivity is destroyed
- Type-II (b): a mixed state occurs in addition to the superconductive and the normal state (two different critical fields)
- What are the macroscopic models which are used in the modelling of type-I and type-II superconductors?

Type-I

- $\Omega \subset \mathbb{R}^{3}$: bounded Lipschitz domain, $\boldsymbol{\nu}$ unit normal vector on Γ
- The quasi-static Maxwell equations for linear materials are considered

$\nabla \times \boldsymbol{H}=\boldsymbol{J}$	Ampère's law	\boldsymbol{H}	magnetic field		
$\nabla \times \boldsymbol{E}=-\mu \partial_{t} \boldsymbol{H}$	Faraday's law	\boldsymbol{E}	electric field	$\mu>0$	magnetic permeability
$\nabla \cdot \boldsymbol{H}_{0}=0$		\boldsymbol{J}	current density		

- London and London (1935): a macroscopic description of type-I superconductors involves a two-fluid model

$$
\begin{array}{lllll}
\boldsymbol{J} & =\boldsymbol{J}_{n}+\boldsymbol{J}_{s} & & \nabla \times \boldsymbol{H}=\sigma \boldsymbol{E}+\boldsymbol{J}_{s} & \boldsymbol{J}_{n} \\
\boldsymbol{J}_{n} & =\sigma \boldsymbol{E} & \text { Ohm's law } & \nabla \times \boldsymbol{E}=-\mu \partial_{t} \boldsymbol{H} & \boldsymbol{J}_{s}
\end{array} \text { superconducting current density }
$$

- Below the critical temperature T_{c}, the current consists of superconducting electrons and normal electrons

London equations (1935) \Rightarrow local law for J_{s}

$$
\begin{aligned}
\partial_{t} \boldsymbol{J}_{s} & =\Lambda^{-1} \boldsymbol{E} \\
\nabla \times \boldsymbol{J}_{s} & =-\Lambda^{-1} \boldsymbol{B}
\end{aligned}
$$

$$
\Lambda=\frac{m_{e}}{n_{s} e^{2}} \quad-e \quad \text { electric charge of an electron }
$$

\Rightarrow Correct description of two basic properties of superconductors: perfect conductivity and perfect diamagnetism (Meissner effect)

$$
\nabla \cdot \boldsymbol{B}=0 \Rightarrow \exists \boldsymbol{A} \text { such that } \boldsymbol{B}=\nabla \times \boldsymbol{A} \text { and } \nabla \cdot \boldsymbol{A}=0
$$

$$
\nabla \times \boldsymbol{J}_{s}=-\Lambda^{-1} \boldsymbol{B} \quad \Rightarrow \quad \boldsymbol{J}_{s}(x, t)=-\Lambda^{-1} \boldsymbol{A}(\boldsymbol{x}, t), \quad(x, t) \in \Omega \times(0, T)
$$

Generalization of London and London: nonlocal laws

[Pippard, 1953]

$$
J_{s, p}(x, t)=\int_{\Omega} Q\left(x-x^{\prime}\right) \boldsymbol{A}\left(x^{\prime}, t\right) \mathrm{d} \boldsymbol{x}^{\prime}, \quad(x, t) \in \Omega \times(0, T)
$$

with

$$
\begin{aligned}
& Q\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \boldsymbol{A}\left(\boldsymbol{x}^{\prime}, t\right)=-\widetilde{C} \frac{\boldsymbol{x}-\boldsymbol{x}^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{4}}\left[\boldsymbol{A}\left(\boldsymbol{x}^{\prime}, t\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)\right] \exp \left(-\frac{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}{r_{0}}\right), \\
& \widetilde{C}:=\frac{3}{4 \pi \xi_{0} \Lambda}>0, \quad r_{0}:=\frac{\xi_{0} l}{\xi_{0}+l}
\end{aligned}
$$

ξ_{0} the coherence length of the material, I is the mean free path
[Eringen, 1984]

$$
\begin{aligned}
\boldsymbol{J}_{s, e}(\boldsymbol{x}, t)=\int_{\Omega} \sigma_{0}\left(\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|\right)\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right) \times \boldsymbol{H}\left(\boldsymbol{x}^{\prime}, t\right) \mathrm{d} \boldsymbol{x}^{\prime}=: & -\left(\mathcal{K}_{0} \star \boldsymbol{H}\right)(\boldsymbol{x}, t), \\
& (\boldsymbol{x}, t) \in \Omega \times(0, T)
\end{aligned}
$$

with

$$
\sigma_{0}(s)= \begin{cases}\frac{\widetilde{C}}{2 s^{2}} \exp \left(-\frac{s}{r_{0}}\right) & s<r_{0} \\ 0 & s \geqslant r_{0}\end{cases}
$$

- Pippard's nonlocal law fails to explain the vanishing of electrical resistance
- It is possible to recover from Eringen's law the London equations and the form given by Pippard

$$
\Rightarrow \boldsymbol{J}_{s}=\boldsymbol{J}_{s, e}=-\mathcal{K}_{0} \star \boldsymbol{H} \quad \text { in } \quad \begin{cases}\nabla \times \boldsymbol{H} & =\sigma \boldsymbol{E}+\boldsymbol{J}_{s} \\ \nabla \times \boldsymbol{E} & =-\mu \partial_{t} \boldsymbol{H}\end{cases}
$$

- Taking the curl of Ampère's law result in

$$
\sigma \mu \partial_{t} \boldsymbol{H}+\nabla \times \nabla \times \boldsymbol{H}+\nabla \times\left(\mathcal{K}_{0} \star \boldsymbol{H}\right)=\mathbf{0}
$$

- Well-posedness is studied into detail in [Slodička and Van Bockstal, 2014].
- Also the error estimates for two time-discrete schemes (an implicit and a semi-implicit) based on backward Euler method are derived in [Slodička and Van Bockstal, 2014].

Type-II

- Dependency between current density \boldsymbol{J} and the electric field \boldsymbol{E}

Electric Field

- Ohm's law for non-superconducting metal (dashed)
- Bean's critical-state model for type-II superconductors (fine dashed): current either flows at the critical level \boldsymbol{J}_{c} or not at all \Rightarrow not fully applicable
- The power law by Rhyner for type-II superconductors (continuous)

$$
\boldsymbol{E}=\sigma_{c}^{-n}|\boldsymbol{J}|^{n-1} \boldsymbol{J}, \quad n \in(7,1000)
$$

- Take the curl of the power law and use Faraday's law \Rightarrow nonlinear and degenerate partial differential equation for the magnetic field

$$
\mu \partial_{t} \boldsymbol{H}+\sigma_{c}^{-n} \nabla \times\left(|\nabla \times \boldsymbol{H}|^{n-1} \nabla \times \boldsymbol{H}\right)=\mathbf{0}
$$

- Studied by: [Barrett and Prigozhin, 2000, Yin et al., 2002, Prigozhin and Sokolovsky, 2004, Wei and Yin, 2005]
- The classification into type-I and type-II is insufficient for multiband superconductors [Babaev and Speight, 2005]
- This are superconductors with several superconducting components
- The material 'magnesium diboride' combines the characteristics of both types [Nagamatsu et al., 2001]
- New kind of superconductor: type-1.5 superconductors [Moshchalkov et al., 2009, Babaev et al., 2012]
- Allows coexistence of various properties of type-I and type-II superconductors

Problem

Is it possible to derive macroscopic models for an intermediate state between type-I and type-Il superconductors?

- Type-I:

$$
\mu \partial_{t} \boldsymbol{H}+\sigma^{-1} \nabla \times \nabla \times \boldsymbol{H}+\sigma^{-1} \nabla \times\left(\mathcal{K}_{0} \star \boldsymbol{H}\right)=\mathbf{0}
$$

- Type-II $(n \in(7,1000))$:

$$
\mu \partial_{t} \boldsymbol{H}+\sigma_{c}^{-n} \nabla \times\left(|\nabla \times \boldsymbol{H}|^{n-1} \nabla \times \boldsymbol{H}\right)=\mathbf{0}
$$

- By introducing a real parameter $\beta \geqslant 1$ and a real function $f(\beta)$, we propose to combine both equations to

$$
\begin{aligned}
\mu \partial_{t} \boldsymbol{H}+\sigma^{-1} f(\beta) \nabla \times \nabla \times \boldsymbol{H}+\sigma_{c}^{-\beta} g(\beta) & \nabla
\end{aligned} \begin{aligned}
& \left(|\nabla \times \boldsymbol{H}|^{\beta-1} \nabla \times \boldsymbol{H}\right) \\
& +\sigma^{-1} f(\beta) \nabla \times\left(\mathcal{K}_{0} \star \boldsymbol{H}\right)=\mathbf{0}
\end{aligned}
$$

with

- $f \in C([1, \infty))$ monotonically decreasing, $f(1)=1$ and $0 \leqslant f(\beta) \leqslant 1$ for $\beta>1$
- f equals zero or is very small for $\beta>7$
- $g(\beta):=1-f(\beta)$
- Intermediate state: $1<\beta \leqslant 7$
- It is assumed (for simplicity) that $\mu=\sigma=\sigma_{c}=1$
- The aim of this paper is to address the well-posedness of the following problem for $\beta \geqslant 1$:

$$
\left\{\begin{array}{rlll}
\partial_{t} \boldsymbol{H}+f(\beta) \nabla \times \nabla \times \boldsymbol{H}+g(\beta) \nabla \times\left(|\nabla \times \boldsymbol{H}|^{\beta-1} \nabla \times \boldsymbol{H}\right) & & \\
+f(\beta) \nabla \times\left(\mathcal{K}_{0} \times \boldsymbol{H}\right) & =\boldsymbol{F} & \text { in } \Omega \times(0, T) ; \\
\boldsymbol{H} \times \boldsymbol{\nu} & =\mathbf{0} & \text { on } \Gamma \times(0, T) ; \\
\boldsymbol{H}(\boldsymbol{x}, 0) & =\boldsymbol{H}_{0} & \text { in } \Omega ;
\end{array}\right.
$$

to design a numerical scheme for computations and to derive error estimates for the time discretization

- Some possible choices for f :

$$
\begin{gathered}
f(\beta)=\left\{\begin{array}{ll}
\frac{(-1)^{\alpha}}{6^{\alpha}}(\beta-7)^{\alpha} & 1 \leqslant \beta \leqslant 7 \\
0 & \beta>7
\end{array}, \quad \alpha \in \mathbb{N}\right. \\
f(\beta)=\exp (-k \beta), \quad k \in \mathbb{R}^{+}
\end{gathered}
$$

- Focus on mathematical analysis, not on implementation.

Using spherical coordinates one can deduce that

- $\sigma_{0}(|\boldsymbol{x}|) \boldsymbol{x} \in \mathbf{L}^{p}(\Omega)$ for $p \in[1,3)$:

$$
\begin{aligned}
\int_{\Omega}\left|\sigma_{0}(|x|) x\right|^{p} \mathrm{dx} \leqslant & \int_{B\left(0, r_{0}\right)} \frac{c}{\frac{1}{|x|^{2 p}}}\left|\exp \left(-\frac{|x|}{r_{0}}\right)\right|^{p}|x|^{p} \mathrm{dx} \\
& \leqslant c \int_{0}^{2 \pi} \mathrm{~d} \varphi \int_{0}^{\pi} \sin (\theta) \mathrm{d} \theta \int_{0}^{r_{0}} r^{2-p_{\mathrm{d} r} \leqslant c\left[\frac{r^{3-p}}{3-p}\right]_{0}^{r_{0}}<\infty}
\end{aligned}
$$

- $\left|\boldsymbol{J}_{s}(\boldsymbol{x}, t)\right|=\mid\left(\mathcal{K}_{0}\right.$ 大 $\left.\boldsymbol{H}\right)(\boldsymbol{x}, t) \mid \leqslant C(q)\|\boldsymbol{H}(t)\|_{q}$ for $q>\frac{3}{2}, \quad \forall \boldsymbol{x} \in \Omega$:

$$
\begin{aligned}
\left|S_{s}(x, t)\right|=\mid & \left|\int_{\Omega} \sigma_{0}\left(\left|x-x^{\prime}\right|\right)\left(x-x^{\prime}\right) \times H\left(x^{\prime}, t\right) d x^{\prime}\right| \leqslant \int_{\Omega}\left|\sigma_{0}\left(\left|x-x^{\prime}\right|\right)\left(x-x^{\prime}\right)\right|\left|H\left(x^{\prime}, t\right)\right| d x^{\prime} \\
& \leqslant \sqrt[p]{\int_{\Omega}\left|\sigma_{0}\left(\left|x-x^{\prime}\right|\right)\left(x-x^{\prime}\right)\right|^{p} d x^{\prime}} \sqrt{\int_{\Omega}\left|H\left(x^{\prime}, t\right)\right| q \mathrm{~d} x^{\prime}} \leqslant c\|\boldsymbol{H}(t)\|_{q}
\end{aligned}
$$

- For instance, it holds that

$$
\left(\mathcal{K}_{0} \star \boldsymbol{h}, \nabla \times \boldsymbol{h}\right) \leqslant C_{\varepsilon}\|\boldsymbol{h}\|^{2}+\varepsilon\|\nabla \times \boldsymbol{h}\|^{2}, \quad \forall \boldsymbol{h} \in \mathbf{H}(\text { curl }, \Omega)
$$

The suitable choise for the space of test functions is

$$
\mathbf{V}_{0}=\left\{\varphi \in \mathbf{L}^{2}(\Omega): \nabla \times \varphi \in \mathbf{L}^{\beta+1}(\Omega) \text { and } \varphi \times \boldsymbol{\nu}=\mathbf{0} \text { on } \Gamma\right\} \subset \mathbf{H}_{0}(\text { curl }, \Omega) .
$$

This is a closed subspace of the space

$$
\mathbf{V}=\left\{\varphi \in \mathbf{L}^{2}(\Omega): \nabla \times \varphi \in \mathbf{L}^{\beta+1}(\Omega)\right\} \subset \mathbf{H}(\mathbf{c u r l}, \Omega)
$$

and is endowed with the same graph norm

$$
\|\boldsymbol{\varphi}\|_{\mathbf{V}}=\|\boldsymbol{\varphi}\|_{\mathbf{V}_{0}}=\|\boldsymbol{\varphi}\|_{\mathbf{L}^{2}(\Omega)}+\|\nabla \times \boldsymbol{\varphi}\|_{\mathbf{L}^{\beta+1}(\Omega)} .
$$

Definition

Let $\beta \geqslant 1, \boldsymbol{H}_{0} \in \mathbf{V}$ and $\boldsymbol{F} \in \mathrm{L}^{2}\left((0, T), \mathbf{L}^{2}(\Omega)\right)$. The variational formulation of (14) reads as: find $\boldsymbol{H} \in C\left([0, T], \mathbf{L}^{2}(\Omega)\right)$ with $\nabla \times \boldsymbol{H} \in L^{\beta+1}\left((0, T), \mathbf{L}^{\beta+1}(\Omega)\right)$ and $\partial_{t} \boldsymbol{H} \in L^{2}\left([0, T], \mathbf{L}^{2}(\Omega)\right)$ such that

$$
\begin{aligned}
\left(\partial_{t} \boldsymbol{H}(t), \varphi\right)+f(\beta)(\nabla \times \boldsymbol{H}(t), \nabla \times \varphi) & +g(\beta)\left(|\nabla \times \boldsymbol{H}(t)|^{\beta-1} \nabla \times \boldsymbol{H}(t), \nabla \times \varphi\right) \\
& +f(\beta)\left(\mathcal{K}_{0} \star \boldsymbol{H}(t), \nabla \times \varphi\right)=(\boldsymbol{F}(t), \varphi), \quad \forall \varphi \in \mathbf{V}_{0}
\end{aligned}
$$

for a.e. $t \in[0, T]$.

Lemma (reflexivity)

The vector spaces \mathbf{V} and \mathbf{V}_{0} are reflexive Banach spaces.

Lemma (monotonicity)

Let $\beta \geqslant 1$. There exists a positive constant $C_{0}(\beta)=\frac{1}{4 \cdot 11^{\frac{\beta+1}{2}}}$ such that for any $\boldsymbol{H}_{1}, \boldsymbol{H}_{2} \in \mathbf{V}$ hold

$$
\begin{aligned}
\left(\left|\nabla \times \boldsymbol{H}_{1}\right|^{\beta-1} \nabla \times \boldsymbol{H}_{1}-\left|\nabla \times \boldsymbol{H}_{2}\right|^{\beta-1} \nabla\right. & \left.\times \boldsymbol{H}_{2}, \nabla \times\left(\boldsymbol{H}_{1}-\boldsymbol{H}_{2}\right)\right) \\
& \geqslant C_{0}(\beta)\left\|\nabla \times\left(\boldsymbol{H}_{1}-\boldsymbol{H}_{2}\right)\right\|_{\mathbf{L}^{\beta+1}(\Omega)}^{\beta+1}
\end{aligned}
$$

Theorem (uniqueness)

The problem (14) admits at most one solution $\partial_{t} \boldsymbol{H} \in L^{2}\left([0, T], \mathbf{L}^{2}(\Omega)\right)$ with $\nabla \times \boldsymbol{H} \in L^{\beta+1}\left((0, T), \mathbf{L}^{\beta+1}(\Omega)\right)$ if $\boldsymbol{H}_{0} \in \mathbf{L}^{2}(\Omega)$.

Proof uniqueness:
$\overline{\text { Assume that we have two solutions } \boldsymbol{H}_{1} \text { and } \boldsymbol{H}_{2} \text {. Set } \boldsymbol{H}=\boldsymbol{H}_{1}-\boldsymbol{H}_{2} \text {. Subtract } 1 \text {. }{ }^{\text {a }} \text {. }}$ the variational equation for $\boldsymbol{H}=\boldsymbol{H}_{1}$ from for $\boldsymbol{H}=\boldsymbol{H}_{2}$, set $\boldsymbol{\varphi}=\boldsymbol{H}$ into the resulting equation and integrating in time for $t \in(0, T)$:

$$
\begin{aligned}
\|\boldsymbol{H}(t)\|^{2} & +f(\beta) \int_{0}^{t}\|\nabla \times \boldsymbol{H}\|^{2}+g(\beta) C_{0} \int_{0}^{t}\|\nabla \times \boldsymbol{H}\|_{L^{\beta+1}(\Omega)}^{\beta+1} \\
& \leqslant-f(\beta) \int_{0}^{t}\left(\mathcal{K}_{0} \star \boldsymbol{H}, \nabla \times \boldsymbol{H}\right) \leqslant C_{\varepsilon} \int_{0}^{t}\|\boldsymbol{H}\|^{2}+\varepsilon \int_{0}^{t}\|\nabla \times \boldsymbol{H}\|^{2}
\end{aligned}
$$

We consider four cases:

- $\beta=1$: then $f(\beta)=1$ and $g(\beta)=0$. Fixing a sufficiently small positive ε and applying the Grönwall argument, we get that $\boldsymbol{H}=\mathbf{0}$ a.e. in Q_{T};
- $1<\beta<7$: then f and g are strict positive $\Rightarrow \boldsymbol{H}=\mathbf{0}$ a.e. in Q_{T};
- $\beta \geqslant 7$ and $f(\beta)=0$ for $\beta \geqslant 7: \boldsymbol{H}=\mathbf{0}$ a.e. in Q_{T};
- $\beta \geqslant 7$ and $f(\beta)>0$ for $\beta \geqslant 7$ but very small: analogously as the case $1<\beta<7$.

Numerical scheme to approximate the solution

- Rothe's method [Kačur, 1985]: divide [0, T] into $n \in \mathbb{N}$ equidistant subintervals $\left(t_{i-1}, t_{i}\right)$ for $t_{i}=i \tau$, where $\tau=T / n<1$ and for any function z

$$
z_{i} \approx z\left(t_{i}\right) \text { and } \quad \partial_{t} z\left(t_{i}\right) \approx \delta z_{i}:=\frac{z_{i}-z_{i-1}}{\tau}
$$

- Convolution explicitly (from the previous time step):

$$
\left\{\begin{aligned}
&\left(\delta \boldsymbol{h}_{i}, \boldsymbol{\varphi}\right)+f(\beta)\left(\nabla \times \boldsymbol{h}_{i}, \nabla \times \varphi\right) \\
&+g(\beta)\left(\left|\nabla \times \boldsymbol{h}_{i}\right|^{\beta-1} \nabla \times \boldsymbol{h}_{i}, \nabla \times \boldsymbol{\varphi}\right)=\left(\boldsymbol{f}_{i}, \boldsymbol{\varphi}\right)-f(\beta)\left(\mathcal{K}_{0} \star \boldsymbol{h}_{i-1}, \nabla \times \boldsymbol{\varphi}\right) ; \\
& \boldsymbol{h}_{0}=\boldsymbol{H}_{0}
\end{aligned}\right.
$$

- Monotone operator theory [Vainberg, 1973]:

Theorem (uniqueness on a single time step)

Assume $\boldsymbol{H}_{0} \in \mathbf{L}^{2}(\Omega)$ and $\boldsymbol{F} \in L^{2}\left((0, T), \mathbf{L}^{2}(\Omega)\right)$. Then there exists a $\tau_{0}>0$ such that the variational problem has a unique solution for any $i=1, \ldots, n$ and any $\tau<\tau_{0}$.

Convergence: a priori estimates as uniform bounds
Suppose that $\boldsymbol{F} \in L^{2}\left((0, T), \mathbf{L}^{2}(\Omega)\right)$
(i) Let $\boldsymbol{H}_{0} \in \mathbf{L}^{2}(\Omega)$. Then, there exists a positive constant C such that

$$
\max _{1 \leqslant i \leqslant n}\left\|\boldsymbol{h}_{i}\right\|^{2}+\sum_{i=1}^{n}\left\|\boldsymbol{h}_{i}-\boldsymbol{h}_{i-1}\right\|^{2}+\sum_{i=1}^{n}\left\|\nabla \times \boldsymbol{h}_{i}\right\|_{\mathbf{L}^{\beta+1}(\Omega)}^{\beta+1} \tau \leqslant C
$$

for all $\tau<\tau_{0}$.
(ii) If $\nabla \cdot \boldsymbol{H}_{0}=0=\nabla \cdot \boldsymbol{f}_{i}$ then $\nabla \cdot \boldsymbol{h}_{i}=0$ for all $i=1, \ldots, n$.
(iii) If $\boldsymbol{H}_{0} \in \mathbf{V}$ then

$$
\max _{1 \leqslant i \leqslant n}\left\|\nabla \times \boldsymbol{h}_{i}\right\|_{L^{\beta+1}(\Omega)}^{\beta+1}+\sum_{i=1}^{n}\left\|\delta \boldsymbol{h}_{i}\right\|^{2} \tau \leqslant C
$$

for all $\tau<\tau_{0}$.

- \boldsymbol{H}_{n} : piecewise linear in time spline of the solutions $\boldsymbol{h}_{i}, i=1, \ldots, n$
- $\overline{\boldsymbol{H}}_{n}$: piecewise constant in time spline of the solutions $\boldsymbol{h}_{i}, i=1, \ldots, n$
- The variational formulaton on a single timestep can be rewritten on the whole time frame as

$$
\begin{aligned}
\left(\partial_{t} \boldsymbol{H}_{n}(t), \boldsymbol{\varphi}\right)+f(\beta) & \left(\nabla \times \overline{\boldsymbol{H}}_{n}(t), \nabla \times \boldsymbol{\varphi}\right) \\
+g(\beta) & \left(\left|\nabla \times \overline{\boldsymbol{H}}_{n}(t)\right|^{\beta-1} \nabla \times \overline{\boldsymbol{H}}_{n}(t), \nabla \times \boldsymbol{\varphi}\right) \\
& =\left(\overline{\boldsymbol{F}}_{n}(t), \boldsymbol{\varphi}\right)-f(\beta)\left(\mathcal{K}_{0} \star \overline{\boldsymbol{H}}_{n}(t-\tau), \nabla \times \boldsymbol{\varphi}\right)
\end{aligned}
$$

- Convergence of the sequences \boldsymbol{H}_{n} and \boldsymbol{H}_{n} to the unique weak solution is proved if $\tau \rightarrow 0$ or $n \rightarrow \infty$
- Main ideas of the proof:
- Compact embedding [Palatucci et al., 2013, Lemma 10]:

$$
\mathbf{H}^{\frac{1}{2}}(\Omega) \hookrightarrow \hookrightarrow \mathbf{L}^{2}(\Omega) \cong \mathbf{L}^{2}(\Omega)^{*} \hookrightarrow \mathbf{H}_{0}^{-1}(\operatorname{curl}, \Omega)
$$

implies [Kačur, 1985]

$$
\boldsymbol{H}_{n} \rightarrow \boldsymbol{H} \text { in } C\left([0, T], \mathbf{L}^{2}(\Omega)\right)
$$

and

$$
\overline{\boldsymbol{H}}_{n} \rightarrow \boldsymbol{H} \text { in } L^{2}\left([0, T], \mathbf{L}^{2}(\Omega)\right)
$$

- Minty-Browder's trick for the convergence of the nonlinear term
- \boldsymbol{H} is the weak solution of the problem

Theorem (Existence solution)

Let $\boldsymbol{H}_{0} \in \mathbf{V}$ and $\boldsymbol{F} \in L^{2}\left((0, T), \mathbf{L}^{2}(\Omega)\right)$. Assume that $\nabla \cdot \boldsymbol{H}_{0}=0=\nabla \cdot \boldsymbol{F}(t)$ for any time $t \in[0, T]$. Then there exists a weak solution $\mathbf{H} \in C\left([0, T], \mathbf{L}^{2}(\Omega)\right)$ with $\partial_{t} \boldsymbol{H} \in L^{2}\left((0, T), \mathbf{L}^{2}(\Omega)\right)$.

Error estimates for the time discretization

Theorem (Error)
Suppose that $\boldsymbol{F} \in \operatorname{Lip}\left([0, T], \mathbf{L}^{2}(\Omega)\right)$. If $\mathbf{H}_{0} \in \mathbf{V}$ then

$$
\max _{t \in[0, T]}\left\|\boldsymbol{H}_{n}(t)-\boldsymbol{H}(t)\right\|^{2}+\int_{0}^{T}\left\|\nabla \times\left[\overline{\boldsymbol{H}}_{n}-\boldsymbol{H}\right]\right\|_{\mathbf{L}^{\beta+1}(\Omega)}^{\beta+1} \leqslant C \tau .
$$

Please note that the positive constant C in this estimates is of the form $C e^{C T}$.

Conclusion:

- Macroscopic model for an intermediate state between type-I and type-II superconductivity is proposed
- Well-posedness is proved
- Numerical scheme for calculations is provided

Future research:

- Numerical implementation
- Comparison with available results about neither type-I nor type-II superconductors

References I

Babaev, E., Carlström, J., Garaud, J., Silaev, M., and Speight, J. (2012).
Type-1.5 superconductivity in multiband systems: Magnetic response, broken symmetries and microscopic theory - a brief overview.
Physica C: Superconductivity, 479(0):2-14.
Proceedings of $\{$ VORTEX $\}$ \{VII $\}$ Conference.

Babaev, E. and Speight, M. (2005).
Semi-meissner state and neither type-I nor type-II superconductivity in multicomponent superconductors.
Phys. Rev. B, 72:180502.
Barrett, J. and Prigozhin, L. (2000).
Bean's critical-state model as the $p \rightarrow \infty$ limit of an evolutionary p-laplacian equation. Nonlinear Anal. Theory Methods Appl, 6:977-993.

References II

圊 Eringen，A．（1984）．
Electrodynamics of memory－dependent nonlocal elastic continua．
J．Math．Phys．，25：3235－3249．
Kačur，J．（1985）．
Method of Rothe in evolution equations，volume 80 of Teubner Texte zur Mathematik． Teubner，Leipzig．
嘓 Moshchalkov，V．，Menghini，M．，Nishio，T．，Chen，Q．H．，Silhanek，A．V．，Dao，V．H．， Chibotaru，L．F．，Zhigadlo，N．D．，and Karpinski，J．（2009）．
Type－1．5 superconductivity．
Phys．Rev．Lett．，102：117001．
囯 Nagamatsu，J．，Nakagawa，N．，Muranaka，T．，Zenitani，Y．，and Akimitsu，J．（2001）． Superconductivity at 39 K in magnesium diboride．
Nature，410：63－64．

References III

Palatucci, G., Savin, O., and Valdinoci, E. (2013).
Local and global minimizers for a variational energy involving a fractional norm.
Annali di Matematica Pura ed Applicata, 192(4):673-718.
DOI: 10.1007/s10231-011-0243-9.
Pippard, A. B. (1953).
An experimental and theoretical study of the relation between magnetic field and current in a superconductor.
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 216(1127):547-568.

Prigozhin, L. and Sokolovsky, V. (2004).
Ac losses in type-II superconductors induced by nonuniform fluctuations of external magnetic field.
IEEE Transactions on Applied Superconductivity, 14(1):69-81.

References IV

Slodička, M. and Van Bockstal, K. (2014).
A nonlocal parabolic model for type-I superconductors.
Numerical Methods for Partial Differential Equations, pages n/a-n/a.

Vainberg, M. M. (1973).
Variational method and method of monotone operators in the theory of nonlinear equations. translated from russian by a. libin. translation edited by d. louvish.
A Halsted Press Book. New York-Toronto: John Wiley \& Sons; Jerusalem- London: Israel Program for Scientific Translations. xi, 356 p. (1973).

Wei, W. and Yin, H.-M. (2005).
Numerical solutions to bean's critical-state model for type-II superconductors. International Journal of Numerical Analysis and Modeling, 2.

Yin, H.-M., Li, B., and Zou, J. (2002).
A degenerate evolution system modeling bean's critical-state type-II superconductors.
Discrete and Continuous Dynamical Systems, 8:781-794.

