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14.1 INTRODUCTION

14.1.1 Basic Approaches for Modeling of Hydrogen
Supply Chains

The need for the energy transition is an accepted fact worldwide. According to
the concise summary of the Hydrogen Council (2017), “hydrogen can be used as
fuel for power or in industry as feedstock, it can be produced from (renewable)
electricity and from carbon-abated fossil fuels, it produces zero emissions at
point of use, it can be stored and transported at high energy density in liquid
or gaseous form, and it can be combusted or used in fuel cells to generate heat
and electricity.” In transforming energy systems, hydrogen can serve as a clean
and safe energy carrier to pave the way toward a low-carbon economy.

Considering the slow but definite development toward a hydrogen economy,
the optimal design, planning, and operation of a hydrogen supply chain (HSC)
has come to the forefront of research interest in the last decade. Several
design and planning case studies have been carried out in the past years. This
Chapter does not intend to give a detailed review, because many really compre-
hensive review papers are already available on this topic. This introduction
refers to some of them in the context of the challenges for model-based analysis
and problem solving.

Dagdougui (2012) reviews the state of the art of the generally applied
modeling approaches in the planning and design of HSC with almost 100
references. The review distinguishes three main methodological approaches,
namely the mathematical optimization methods, the spatial (GIS based) models
and frameworks, as well as the assessment plans/transition scenarios. On the
basis of the comprehensive review, the author concludes that mathematical
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programming—based optimization methods are widely used for the design and
planning of future HSCs.

Five years later, in a recent paper Maryam (2017), reviews again the applied
modeling approaches. From the almost 100 references overviewed, around 50%
published in the period of 2013—17. Focusing on the context of the United King-
dom, similar methodologies (various mathematical optimization methods, such
as MILP, MINLP, MPP, MOP; GIS based approaches; transition models) sup-
port the tracking of progress during the last 5 years. The review confirms that
the mathematical programming—based optimization methods are still the most
widely used tools in planning and design, besides the GIS-based tools. The
author also refers to some alternatively applied System’s Dynamic and Agent
Based approaches in the overview.

As a general review (not only HSC focused) of supply chain network design,
a recent paper of Govindan et al. (2017) can be mentioned. It gives a compre-
hensive overview of more than 260 actual research papers and case studies for
supply chain network design in various fields. As uncertainty is a critical factor
of viable design decisions, the authors put the emphasis on the consideration of
uncertainty in the model and in the optimization procedure. Uncertainty, both
on the supply and demand sides, seems to be the most significant challenge also
in the design of HSCs.

Turning to other challenges in HSC optimization, managing the multiple
spatial and temporal scales can be mentioned. As Samsatli et al. (2016) high-
light, the need for the combined consideration of various temporal scales also
presents a notable challenge. While the representation of, for example, energy
storage requires a short time scale (e.g., hourly), the consideration of a long
planning horizon of many years may result in computationally intractable or
very computationally intensive models.

Consideration of multiple criteria (e.g., costs, environmental sustainability,
safety, etc.) is an obvious expectation during “green” supply chain design, but
the incorporation of these issues generates another interesting challenge to be
solved (Nurjanni et al., 2017).

14.1.2 Typical Elements of Hydrogen Supply Chains

Having studied some comprehensive case studies (De-Leon Almaraz, 2014;
De-Leon Almaraz and Azzaro-Pantel, 2017), the typical elements of Hydrogen
Supply Chains are allocated at geographically determined sites or districts that
can be identified by an appropriate grid or by specific districts in a GIS. Many
elements are time-specifically controlled by the meteorological or seasonal
characteristics. The typical elements can be classified, as follows.

e Primary renewable resources,
e Primary accumulated resources,
e Processing of primary resources,
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e Intermediate energy containing products and byproducts,
Intermediate transportations and transformations of the energy containing
products and byproducts,

Hydrogen production sources,

Hydrogen production processes,

Produced raw hydrogen,

Conditioning processes of the produced hydrogen,
Production site storage of hydrogen,

Transportation of hydrogen,

Consumption site storage of hydrogen,

Utilization of hydrogen,

Hydrogen-based produced energy and materials,

Car fuel demand,

Other pools to be taken into consideration.

Primary renewable resources of hydrogen production are solar radiation, the
wind, and hydropower generated by the environmental system. The utilization
of these resources (especially of the solar energy) needs natural or cultivated
land that is a special finite resource shared with other uses (agriculture for
food, etc.). Renewable resources and land are distributed in the districts of
the investigated territory.

The primary nonrenewable, accumulated resources are the nuclear raw
materials, the natural gas, and the coal. Nuclear raw materials need vehicles
to transport them to the specifically located power stations, while natural gas
is available from pipelines. In contrast, coal-based processing should be
installed near the mining sites.

Processing of the primary resources can be solved by many well-developed
and promising new methods, but all of them depend on hourly and seasonally
changing environmental conditions (e.g., sunshine). Direct utilization of the
solar energy is solved by various photovoltaic processes with a limited effi-
ciency and capacity. There is intensive research and development for many
new solutions, with special organisms (e.g., microalgae) or with artificial bio-
systems (e.g., artificial chloroplast). Some of them might cause revolutionary
change; accordingly, the long-term economic evaluation that is currently
applied may lead to incorrect decisions. The indirect utilization of solar energy
is realized by cultivation of energy plants, which competes with land use for
food production. The products appear seasonally.

Wind power stations and some smaller hydropower stations produce elec-
trical energy in certain (often randomly changing) periods, so their effective
use needs onsite conversion to electrical energy. Large hydropower and nuclear
stations produce easily transportable electrical energy that can contribute to
buffered hydrogen production by remote electrolysis.

The most frequently applied Steam Methane Reforming (SMR) competes
with other uses of natural gas but can produce hydrogen-containing gas
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anywhere in the vicinity of pipelines. In contrast, coal gasification has to be
conducted near the resource, while it produces more expensive hydrogen-
containing gas from a resource that has less convenient traditional applications.

There are intermediate energy containing products and byproducts in
HSC networks, which originate from many distributed districts. Energy produc-
ing biomass (energy plants), as well as some agricultural byproducts and
waste appear seasonally, however municipal biological wastes are formed
permanently.

These intermediate energy-containing materials usually need transporta-
tion, followed by transformation into hydrogen-containing gas. Biomasses
are processed by gasification, while biological wastes produce biogas by anaer-
obic fermentation. There are some experimental results on how to enrich the
hydrogen content in the fermentation process (e.g., Wang and Yin, 2017).

The energy containing, direct hydrogen producing sources are the electrical
energy, resulting from various chains, and the hydrogen-containing gas, coming
from SMR and gasification processes. The two corresponding kinds of
hydrogen producing processes are electrolysis and the different methods of
gas separation for hydrogen enrichment (e.g., membrane separation, pressure
swing adsorption, etc.).

The produced raw hydrogen has to be conditioned at the production site by
liquefaction or by compression. The resulting liquid or compressed hydrogen
product needs production site storage of liquid and gaseous hydrogen,
respectively.

The transportation of hydrogen from the production to the consumption
sites can be solved by tanker trucks, tube trailers, railway tankers, railway tube
cars, or pipelines. Optionally the gases of high hydrogen content can be added to
the available natural gas distribution pipelines.

Pure liquid or gaseous hydrogen requires consumption site storage. The utili-
zation of hydrogen is connected to these storage places. In addition to the fueling of
cars and other vehicles (e.g., aircraft), the hydrogen can be used for the genera-
tion of thermal energy, as well as for various industrial processes (e.g., ammonia
production, synthesis of organic products, metal processing, etc.).

The logistics process is controlled by the site and time dependent demands
for the fuels, heating, and other uses.

The evaluation of the various HSC process systems requires the calculation
of the effects on balances of some globally important pools, such as carbon
dioxide, oxygen, water, and thermal energy.

14.1.3 Challenges of Process Modeling for Hydrogen Supply
Chain Design and Operation

In the literature, the basic approach to HSC design, planning, and operation is
mathematical programming—based optimization. In these solutions, a collabo-
ration with uncertainty model is embedded in the usually superstructure-based
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multiobjective optimization program. In thinking about an alternative, uncon-
ventional approach, we try to summarize the major challenges to be addressed
by the potential methodologies. Based on the literature and the above discussed
characteristics of the typical elements in the Hydrogen Supply Chain, the chal-
lenges can be summarized, as follows:

e Considering the intensive scientific and technical development (especially
the emerging new bio-based hydrogen production methods), modeling has
to prepared for modifications involving optional new structures and process
elements;

e Extensibility of the model is another important issue. Accordingly, the step-
wise structural and functional changes of supplies and demands have to be
taken into consideration without the reformulation of the model;

e Easy consideration of multiple sites and districts (compartments) is neces-
sary (e.g., via optional connection of spatial coordinates of the elements with
an external GIS tool);

e The methodology has to tolerate also case-specific multiscale extensions
(i.e., part of the elements needs a more detailed model and/or finer spatial
or temporal resolution);

e Part of the elements and structural connections need a time-driven execution
at given points of time and/or during prescribed intervals;

e Material and energy balances have to be combined with signal and rule-
based event-driven processes;

e The model and its elements must have built-in capabilities for robust com-
munication with external (e.g., meteorological) databases and with collab-
orating (e.g., metaheuristic optimizing) programs;

e Considering the extraordinary uncertainty of the cost coefficients and some
other parameters in a longer time-horizon, the model has to support the han-
dling of the uncertain coefficients and data, and the respective collaboration
with the external optimizer;

e The embedded elementary evaluations and evaluating elements have to be
prepared for the multiobjective case, with a comprehensive set of time-
invariant natural objective functions.

14.2 PROGRAMMABLE STRUCTURE BASED
REPRESENTATION OF PROCESS SYSTEMS

The hybrid, multiscale models may be more complex than any specific math-
ematical apparatus. The presented Programmable Structures are motivated by
the need that engineering analysis, design and control of the complex, multidis-
ciplinary process systems have easily modifiable, extensible, and connectable
methodologies, with common representation of functional and structural
features.
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14.2.1 Methodology of Direct Computer Mapping Based
Programmable Structures

In Direct Computer Mapping (DCM) of process models (Csukas, 1998; Csukas
et al., 2011) the natural building blocks of the elementary states, actions, and
connections are mapped onto a unified set of building elements, which deter-
mine an executable program code, directly, without any specified mathematical
apparatus. This principle was successfully applied for various processes from
technological process systems (e.g., Csukas et al., 1999; Temesvari et al.,
2004) up to the multisectoral agri-food processes (e.g., Varga et al., 2012).

Based on these previous applications and on the recently developed multi-
disciplinary applications, it is obvious that the structure of processes is more
sophisticated than the networks in the sense of network science, on the one
hand. However, the case-specific local functionalities of the elementary build-
ing blocks of these structures are less complicated than the systems of integral
and partial differential equations, combined with discrete events, on the other
hand. As an intermediate solution, we developed Programmable Structures
(Varga et al., 2016a,b, 2017; Varga and Csukas, 2017) that can be generated
from a network description and from two functional metaprototypes. The meta-
prototypes and the derived process structures are prepared for the semantically
distinguished, but syntactically uniform representation of the “model specific
conservation law based, additive” measures, and of the “over-writable” signals.

In this approach, the usual network or net-based formalization of process
structures is extended to a special structure of unified state and transition ele-
ments, containing dedicated input and output slots for additive measures and
signals, as well as parameter slots for parameters. The actual structure is defined
by standardized connecting elements, corresponding to increases and decreases
of (extensive) measures, as well as to reading and overwriting of the intensive
properties and other qualitative or quantitative signals.

In various applications many state and transition elements can usually be
modeled with the same local programs. Accordingly, we distinguish the actual
elements and the program defining prototypes. The prototype elements contain
symbolic input, parameter, and output variables, as well as local programs,
using these variables and a limited number of global data. During the simula-
tion, the actual elements start with the initial conditions and parameters, and
the output values are recalculated stepwise with the knowledge of input and
parameter data, according to the associated local program prototype. The dis-
tinguished input and output slots for extensive/intensive data and for signals
support the combined execution of the balance-based and rule-based
functionalities.

The data flow between the elements is determined by the connections. Both
the actual elements, as well as the receiving and sending sides of the connec-
tions may be specified by a spatial identifier, determining the compartment
and/or the level and/or the scale of the given entity. Also, both the elements
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and the connections may have timing that defines temporal constraints for the
execution, supporting the combined event-driven and time-driven execution of
models.

Summarizing the methodology, the programmable structure of process
models is generated from the description of the (optionally multilevel or multi-
scale) process network and from two functional metaprototypes. The case-
specific, actual functional prototypes, containing the local models may be cop-
ied and edited from the general metaprototypes. The actual state and transition
elements are parameterized and initialized concerning their case-specific pro-
totypes. The actual model elements are executed by their associated prototypes.
This execution and the connection-based communication between the state and
transition elements of the programmed structure are solved by a general-
purpose kernel program.

In the proposed model representation, the detailed description of possibility
(design) space, as well as the measurements and the evaluating functions of
the optionally multiple objectives, may be embedded in the state and transition
elements. Accordingly, in identification and optimization tasks, the robust
simulator may easily be combined with external metaheuristic optimizers.

The major advantages of the developed methodology come from the inher-
ent and plausible coupling between the structural and functional knowledge, as
well as from the extensibility and connectivity of the models.

In line with the well-known trade-off principle between being well-
structured and effective, the major disadvantage of the methodology is less
effectiveness compared with the case-specifically developed and implemented
procedural methods and tools. These disadvantages might be compensated by
the forthcoming micro-granularly parallel hardware/software implementations
because the well-structured representation of local program prototypes supports
these implementations.

14.2.2 Recent Implementation of Programmable Structures

The code of the recent implementation is written in declarative, logical Prolog
language (GNU Prolog 1.4.4), which is a limited subset of first order predicate
calculus. Prolog makes the easy description, and the unification-based execu-
tion, of the local program prototypes possible. This feature, combined with the
applied, restricted, and standardized method of model description, supports the
application of a general kernel for the quite different actual models. In addition,
this declarative language offers a formal description thereby, which also fosters
possible future implementations.

The automatic generation of the programmable structures starts from the
GraphML-based graphical description of state and transition metaprototypes,
as well as from the textual or graphical description of the process network. Dur-
ing generation, metaprototype elements are multiplied according to the descrip-
tion of the process network, supplemented with the connections between them.
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It is to be noted, that the expert user can also start the model building with a
GraphML editor from scratch. The graphical model can be edited further by var-
ious graph editors (actually yEd Graph Editor). In this step, the expert user
makes copies from the metaprototypes and next declares the case-specific pro-
grams. This is followed by initialization and parameterization of the actual ele-
ments. Next, a Prolog program interprets the GraphML description into the facts
and clauses, declaring the dynamic model. Finally, the general-purpose Prolog
kernel program executes the various modes of dynamic simulation. This means
a cyclically repeated processing of state elements, state — transition connec-
tions, transition elements and transition — state connections.

The declarative model implementation makes possible the application of list
structures and recursive unification at any level of the description. Accordingly,
the general description of the model is prepared for an optional number of list
members, without the previous declaration of their length.

14.2.3 Previous and Ongoing Applications of Programmable
Structures

Programmable Structures were successfully applied for quite different com-
plex, multidisciplinary processes from low-scale cellular biosystems (Varga
et al., 2017) through ecological (Varga and Csukas, 2017) and technological
process systems (Csukas et al., 2013) up to Recirculating Aquaculture Systems
(Vargaetal., 2016a), and environmental process networks (Varga et al., 2016b).
The advantage of this approach is that it gives flexibility for both structural and
functional modification and extension of the process model.

The methodology supports the unified generation of reusable process
models. The generated models are reconfigurable and extensible, and the
models can be incremented from any “final” state. The robustness of dynamic
simulation is based on the built-in control mechanisms, initiated by the auto-
matic checking of feasibility bounds for the underlying “model specific conser-
vation law based” measures.

The robust simulation fosters the dynamic model-based (sub)optimization
with various, externally implemented metaheuristic methods (e.g., Genetic
Algorithm). The basic principle, in accordance with the engineering way of
thinking, is that instead of searching for an exact global optimum with a sim-
plified model, it might be better to generate multiobjective suboptimal solutions
from a more detailed model.

14.3 PROCESS NETWORK AND EXAMPLE FOR A SIMPLIFIED
HYDROGEN SUPPLY CHAIN

14.3.1 Network and Net Representations of Process Systems

Starting from a simplified structural analysis of a process system, first we can
recognize some relationships between the various state entities within a given
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spatial compartment or between the various locations. These simplest structures
can be represented by networks, defined as a relation in the set of state elements,
as follows:

RcCSxS, S;ieS (14.1)

where R =a relation, S =the set of state characteristics, and = S is the ith state
property.

In graphical representation the elements of S correspond to the nodes, while
R designates the edges between them. It is worth mentioning that the nowadays
very popular “network science” and “network analysis” basically work with
nondirected edges (as can be seen in Fig. 14.1A) that correspond to symmetric
(compatibility) relations, while the Cartesian product according to Eq. (14.1)
assumes ordered pairs (i.e., directed edges). Considering that the transforma-
tions, transportations, and rules in process systems are usually directed, in
the process systems directed relations and edges are usually applied (see
Fig. 14.1B), while the bidirectional changes have to be symbolized by two
edges of opposite direction.

Moreover, in the process systems the transformations and rules can be repre-
sented by causally and/or stoichiometrically coupled edges (Varga et al., 2017).
Accordingly, we must define these coordinated changes by introducing a sec-
ond set (i.e., a second kind) of nodes, designating the transitions. The respective
net structures were defined by (Petri, 1977), as follows:

NC(SxT)U(TxS), S;€S, T,eT (14.2)

where N —a net relation, S =the set of state elements, 7= the set of transition
elements, S;=the ith state property, and T;=the jth transition property. The
well-known original Petri Nets (Petri, 1962) represent a special case of
these nets.

In the graph representation of the net structure (Eq. 14.2), the state and tran-
sition nodes are distinguished, for example, by dots and bars, as illustrated in
Fig. 14.1C. In these process flux networks, the transition nodes (signed with
bars) correspond to the coordinated transportations, transformations, and rules,
while the state nodes (signed with dots) represent the underlying state entities.

The net structure discussed above correctly represents the flux structure of
reaction or transportation networks, in which the state — transition and transi-
tion — state edges of conservational processes follow the respective decreasing
and increasing fluxes, but the causalities are not visible. However, in the state/
transition nets of signals and rules the state — transition and transition — state
edges follow the causalities, determined by antecedent and consequent signals.

Considering that in process modeling we use both additive quantities and
signals, in adequate process structures we must distinguish the additive mea-
sure decreasing and increasing, as well as the intensive property and other sig-
nal transferring connections. In this representation of conservation law-based
(conservational) processes (see Fig. 14.1D), the transitions read (dotted lines)
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the rate determining intensive properties of the state elements, as well as
increase (solid lines) and decrease (dashed lines) the extensive measures of
the modified states. Similarly, in the rule-based signaling (informational) pro-
cesses, the transitions read the antecedent signals and overwrite the consequent
ones. It results in a uniform and causally right structural description for both
conservational and informational processes (Varga et al., 2017; Varga and
Csukas, 2017).

Accordingly, both state and transition elements must be prepared for receiv-
ing input from, and sending output to, additive measures and signs. These input
and output connectors of the state and transition elements are called slots and
are depicted by small circles, as shown in Fig. 14.1E. In this more sophisticated
structure, the unified representation of the conservation law—based (quantita-
tive) and rule-based (qualitative) edges, as well as the input/output characteris-
tics of the nodes can be described uniformly and causally right. Accordingly, the
above outlined process nets can be defined by the relation.

N (squxTi ) u (o, < i YU (Tout, = Si ) U (o x St ) U (Tom, xS )
(14.3)
where in the indexes.
inp =input;
out = output;

int=intensive (derived from measures);
ext. =extensive (additive measure);
incr=increase (of an additive measure);
decr =decrease (of an additive measure),
sign =signal.

14.3.2 lllustration of a Simple Hydrogen Supply Chain
Process Network

The process structure of a simple Hydrogen Supply Chain, in the sense of
Eq. (14.3) and Fig. 14.1, is shown in Fig. 14.2. This is a small, enlarged part
of the example structure, discussed in Section 14.4. The names, IDs and loca-
tions of the illustrated state and transition elements are summarized in
Table 14.1. The districts, designated by 1, 2, 3, and 4 correspond to four ficti-
tious, geographically outlined territories (e.g., according to a GIS shape file, as
we combined it with a programmable structure of an environmental model
(Varga et al., 2016b).

In the process structure, the state and transition elements are symbolized by
ellipses and rectangles (Fig. 14.2), respectively. In both kind of elements, there
are two input slots (signified with small red upper dots within the elements in
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FIG. 14.2 Illustration of the process structure of a simplified part of a Hydrogen Supply Chain.

Fig. 14.2) for the input additive measures and over-writable signals, as well as
two output slots (signified with small yellow lower dots within the elements in
Fig. 14.2) for the output measure related properties and signals.

There are five kinds of connections, as follows:

e Increasing of (model-specific conservation law—based) measures: solid
edges from measure change output slots of transitions to measure input slots

of states;

e Decreasing of (model-specific conservation law—based) measures: dashed
edges from measure change output slots of transitions to measure input slots

of states;

e Reading/writing of measure-related (e.g., intensive) properties: dotted edges
from measure-related output slots of states to the measure related input slots

of transitions;
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TABLE 14.1 Elements of the Simple Example Structure

District, Where the Given
Material or Process is

Name of Element ID Involved
State Renewable resources S1 0
elements

Natural gas S3 0

Electrical energy S7 3

Hydrogen-containing S8 4

gas

Produced raw hydrogen S9 3,4

Produced compressed S10 3,4

H2

Compressed H2, S11 1,2,3,4

available for consumers

as a fuel

Car fuel demand S12 1,2,3,4

H2, utilized as car fuel S13 1,2,3,4
Transition Wind power station T3 3
elements

Steam methane T6 4

reforming

Electrolysis T9 3

Gas separation T10 4

Compression T11 3,4

Transport (tanker truck) T12 3,4

Car (vehicle) refueling T13 1,2,3,4

e Reading/writing of transition output signals: dotted edges from signaling
output slots of transitions to signaling input slots of states;

e Reading/writing of state output signals: dotted edges from signaling output
slots of states to signaling input slots of transitions.

14.4 GENERATION OF THE PROGRAMMABLE STRUCTURE
FOR A SIMPLE EXAMPLE HYDROGEN SUPPLY CHAIN

Hydrogen Supply Chains can usually be modeled by a large number of
holistically connected state and transition elements, while their detailed
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functionalities can be described by a significantly lower number of prototyped
programs. Considering this, we start the model generation from the detailed
graphical implementation of one state and one transition metaprototype, as well
as from the description of the process network. Generation means multiplying
the prototyped state and transition elements, as well as adding the connections
between them, according to the actual structure, automatically. Actually, the
graphically editable models can be generated from the GraphML definition
of metaprototypes and from the textual description of the network structure,
similarly to other process systems (Varga et al., 2017; Varga and Csukas, 2017).
In the following sections we shall use a limited Prolog syntax, in which:

upper case alphanumerical symbol =variable;

lower case alphanumerical symbol = constant;

Anything* =list of Anything;

[H|T]=list of any elements or functors with a head H and a list of tail T;
[]=empty list;

full stop=end of logical sentence;

if (or :-) implication in the sense of Horn clauses;

comma in the program body of clauses =and.

14.4.1 Declaration of the Metaprototypes

The structures of Hydrogen Supply Chains discussed above are built from state
and transition elements. Also, there are two major classes of characteristics,
namely the (often model-specific conservation law—based) extensive/intensive
properties and the signals (signs). Accordingly, the primary metaprototypes,
used for the generation of the actual structures should be prepared for the input
and output of both extensive/intensive properties and signals.

The graphical representation of the general state and transition metaproto-
types is shown in Fig. 14.3. In line with the representation of process models in
Figs. 14.1E and 14.2, the state and transition prototypes are depicted by an
ellipse and a rectangle, respectively. The outside communication and inside
functionality related data structures, as well as the place for the local program
codes are contained in the slots, as follows:

e Dbalance measure and signal related input and data storage slots (small red
dots),

e predefined general classes of local parameters (small red rectangles),

e place for the locally executable (actually declarative) program code of the
various prototypes (small yellow diamonds), and

e Dbalance measure and signal related data storage and output slots (small yel-
low dots),

e the reporting slot of the transitions that makes it possible to forward case
specific data to the output stream of the simulation.
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State metaprototype Transition metaprototype
@si1 @si2 @11 @Ti2
Msp1 Msp2 WTp1 WTp2 WTp3 WTps
< Program < Program
©Oso1 OS02 OTo1 OTo2 OTo3

Heading {e(p,y,state,'Spatial state, Temporal', Possibilities', Evaluations)}|  {e(a,y,trans,'Spatial' trans, Temporal', Possibilities', Evaluations')}

Si1  {i(comp,dl,'TnpComps')} Tit  {i(conc,dl,'TnpConcs')}
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FIG. 14.3 Metaprototypes of state and transition elements.

The e(.) heading of the elements specifies:

the type (p=passive state or a=active transition),

the switchable existence (y =yes or n=no),

the name of the metaprototype (for this application ‘state’ or ‘trans’),

the actual spatial scale (variable Spatial, unifying with a list of integers),

the name of the prototype (in the metaprototype it replies the name of the

metaprototype that has to be changed for the name of the derived prototypes

in the course of editing the generated structure),

the timing (variable Temporal),

e the design space (Possibilities, an empty list for the optional description of
possibilities, associated with the given elements) and

e a list of data for the calculation of objectives (Evaluations).

The input, parameter, and output slots contain i(), c(), and o() functors. The i(),
¢(), and o() functors are described by a name, a data type (actually dl), and a list
of the respective data. In case of data type dl, the data sets are described by lists
of triplets.

d(Identifier, Variable_1list, Instructions)
where.

Identifier =a symbol or a list, determining an identifying name;
Variable_list =a list of variables; and.
Instructions =instruction for the use (e.g., dimension, specification, etc.).

The program slot contains an empty place, starting with the program (’ and end-
ing with the ’) character sequences. In the course of the editing process, this
place has to be filled with the declaration of case-specific prototypes.
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The slots of the actually used state metaprototype (state, see Fig. 14.3 left)

are the following:

The balance measure input slot “comp” declares an empty or predefined list
InpComps, for an optional number of d(.) triplets for the balance measure
variables that summarize the increases and decreases, for the same d() trip-
let, as well as optionally new triplets that can be added or removed. The
respective data come from the various transitions, via the connections, as
can be seen in Fig. 14.2;

The signaling input slot “inp” declares an empty or predefined list InpSigns,
for an optional number of d(.) triplets for the sign variables that may be over-
written by new signs, as well as optionally new triplets that can be added or
removed. The respective data come from the various transitions, via the con-
nections, as can be seen in Fig. 14.2;

The parameter slot “param” declares an empty list for the optional state
parameters (described by d(.) triplets in the list Parameters);

The condition slot “cond” declares an empty list for the optional conditions
(described by d(.) triplets in the list Conditions);

The measure-related output slot “conc” declares an empty list OutConcs,
for an optional number of d(.) triplets for the calculated properties
(e.g., available quantities, concentrations, temperature, etc.). The respective
data are forwarded to the various transitions via the connections, as illus-
trated in Fig. 14.2. In addition, all of the output data can be optionally
forwarded to the output recording;

The signaling output slot “out” declares an empty list OutSigns for an
optional number of d(.) triplets for the determined output signs. The respec-
tive data are forwarded to the various transitions via the connections, as
illustrated in Fig. 14.2. In addition, all of the output data can optionally
be forwarded to the output recording;

The program code is to bind (to determine) all of the output variables
(OutComps, OutSigns, Report) with the knowledge of the bound input
(Spatial, Temporal, InpConcs, InpSigns) and parameter (Parameters, Ante-
cedent, Consequence, Conditions) values. The expert-defined local proto-
type programs have to be prepared for the actual cases in edition of the
generated programmable structure (see Section 14.5).

The slots of the actually used transition metaprototype (transition, see Fig. 14.3
right) are the following:

The measure-related input slot “conc” declares an empty list InpConcs for
an optional number of d(.) triplets for the variables, used for the calculation
of the transitions. The respective data come from the various states, via the
connections, as can be seen in Fig. 14.2;

The signaling input slot “inp” declares an empty or predefined list InpSigns
for an optional number of d(.) triplets for the sign variables, used for the
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calculation of the transitions. The respective data come from the various
transitions, via the connections, as can be seen in Fig. 14.2;

e The parameter slot “param” declares an empty list for the optional state
parameters (described by d(.) triplets in the list Parameters);

e The antecedent slot “antecedent” declares an empty list for the optional
antecedent signals (described by d(.) triplets in the list Antecedent);

e The consequence slot “consequence” declares an empty list for the conse-
quence signals (described by d(.) triplets in the list Consequence);

e The condition slot “cond” declares an empty list for the optional conditions
(described by d(.) triplets in the list Conditions);

e The measure change related output slot “comp” declares an empty list Out-
Comps for an optional number of d(.) triplets for the calculated increases and
decreases of measures. The respective data are forwarded to the various
states via the connections, as illustrated in Fig. 14.2;

e The signaling output slot “out” declares an empty list OutSigns for an
optional number of d(.) triplets for the determined output signs. The respec-
tive data are forwarded to the various states via the connections, as illus-
trated in Fig. 14.2;

e The reporting slot “report” declares an empty list Report for an optional
number of d(.) triplets to forward case-specific data to the output stream
of the simulation;

e The program code is to bind (to determine) all of the output variables
(OutComps, OutSigns, Report) with the knowledge of the bound input
(Spatial, Temporal, InpConcs, InpSigns) and parameter (Parameters, Ante-
cedent, Consequence, Conditions) values. The expert-defined local proto-
type programs have to be prepared for the actual cases in edition of the
generated programmable structure (see later on in Section 14.5).

The definition of the metaprototypes can be saved in GraphML files for
further processing. We can also define other metaprototypes, however, the
solution described above proved to be quite general in various applications
(e.g., Varga et al., 2017).

14.4.2 Definition of an Example Network

The names, IDs, short symbolic names, and locations of the building elements
of an illustrative, fictitious HSC example network are summarized in
Table 14.2. The short symbolic names, used in the databases and programs,
are written according to the Prolog syntax with lower case capitals. The dis-
tricts, designated by 1, 2, 3, and 4 correspond to four fictitious, GIS represented
territories.

The declaration of the process structure follows the definition Eq. (14.3), as
well as the architecture of the metaprototypes discussed above. Accordingly, to



478 PART | 1l Exploring Methods and Tools for HSC design

TABLE 14.2 State and Transition Elements of the Fictitious Example HSC

State
elements

Name of
Element

Renewable
resources

Cultivated land
Natural gas

Nuclear energy
raw materials

Energy
producing
biomass

Biological
wastes
Electrical
energy
Hydrogen-
containing gas
Produced raw
hydrogen
Produced
compressed H2

Compressed
H2, available
for consumers
as a fuel

Car fuel
demand

H2, utilized as
car fuel

Heating energy

Carbon-
dioxide

Oxygen

S1

S2
S3
S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14
S15

S16

Short
Symbol in
the Model

raw_renew

raw_land
raw_gas

raw_nucl

biomass

biowaste

eleng

h2contgas

hydrogen

h2prod

h2cons

demand

h2carfuel

h2heating

co2

02

District, Where
the Given
Material or
Process is
Involved

0

IS

o o N~

1,2,3, 4

1,2,3,4

1,2,3 4

1,2,3,4

1,2,3, 4
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TABLE 14.2 State and Transition Elements of the Fictitious Example
HSC —cont'd

District, Where

the Given
Short Material or

Name of Symbol in Process is

Element 1D the Model Involved
Transition Land T1 t_cultivation 2,4
elements cultivation

Photovoltaic T2 t_photovolt 1,2,3,4

process

Wind power T3 t_wind 2,3

station

Hydropower T4 t_hydro 3,4

station

Nuclear energy T5 t_nucl 1

station

Steam methane T6 tsmr 2,4

reforming

Biomass T7 t_gasify 2,4

gasification

Anaerobic T8 t_ferment 2,4

fermentation

Electrolysis T9 t_electrolysis 1,2,3,4

Gas separation T10 t_gassep 2,4

Compression T11 t_compression 1,2,3,4

Transport T12 t_tankertruck 1,2,3,4

(tanker truck)

Car (vehicle) T13 t_h2refuel 1,2,3,4

refueling

Heat T14 t_h2heat 1,2,3,4

production

the applied transition-based model description (e.g., Varga and Csukas, 2017)
the actual structure can be declared by the listing of state and transition
elements, as well as by the declaration of the individual transitions by the state
elements being connected to the different input and output slots of them. In the
simplest models, all of the state and transition elements are in the same spatial
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location (with the same Spatial identifier, say Spatial =[]), accordingly the
structure can be defined in Prolog syntax as follows:

states([],Statelist).
Statelist =State*
transitions([],Transitionlist).
Transitionlist=Transition*
trans(Transition, InpConcs,QutComps, InpSigns,QutSigns).
InpConcs; InpSigns; QutComps; OutSigns =Part_of_Statelist
Part_of_Statelist =State*

InpConcs, InpSigns, OutComps and OutSigns contain the names of states con-
nected with measure input, signal input, measure output and signal output slots
of transition.

In generation of multicompartment and/or multilevel and/or multiscale
models, the states and transitions are declared with their respective Spatial coor-
dinates, as follows:

states(Coordl,Statelistl).

states(Coord2,Statelistl).

...etc.

transitions(Coordl,Transitionlistl).

transitions(Coord2,Transitionlist2).
.etc.

Accordingly, the transition-based declaration of the structures is as follows:

trans(Transition, InpConcs,OutComps, InpSigns,OutSigns).
InpConcs; InpSigns; OutComps; OutSigns =Specified_State*
Specified_State=n(Coord,State)

This solution makes possible the use of the same state names in the various com-
partments, levels, or scales, because they are identified by the spatial coordinate
and the name together.

The declaration of the fictitious example HSC, using the short symbolic
names from Table 14.2 is as follows:

states([0],[raw_renew,raw_gas,raw_nucl,h2heating,co02,02]).
states([1],[h2cons,demand,h2carfuel,eleng,hydrogen,h2prod]).
states([2],[h2cons,demand,h2carfuel,raw_land,biomass,biowaste,
eleng,h2contgas,hydrogen,h2prod]).
states([3],[eleng,hydrogen,h2prod,h2cons,demand,h2carfuel]).
states([4],[h2contgas,hydrogen,h2prod,h2cons,demand,h2carfuel,
raw_land,biomass,biowaste,eleng]).

transitions([0],[1).
transitions([1],[t_h2refuell,t_photovoltl,t_nucll,t_electrolysisl,
t_compressionl,t_tankertruckll,t_hZheatl]).
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transitions([2],[t_h2refuel2,t_cultivation2,t_photovolt2,t_wind2,
t_smr2,t_gasify2,t_ferment2,t_electrolysis2,
t_gassep2,t_compression2,t_tankertruck22,
t_h2heat2]).
transitions([3],[t_wind3,t_electrolysis3,t_compression3,
t_h2refueld,t_tankertruck33,
t_tankertruck3l,t_tankertruck32,t_photovolt3,t_hydro3,t_hzheat3]).
transitions([4],[t_smr4,t_gassepd,t_compressiond,t_h2refueld,
t_tankertruck44,t_tankertruck4l,t_tankertruck4?2,
t_cultivationd,t_photovolt4,t_hydro4,t_gasify4,
t_ferment4,t_electrolysisd,t_h2heat4]).

trans(t_h2refuell,[n([1],h2cons)],[n([1],h2cons),n([1],h2carfuel)],
[n([1],demand)],[]).
trans(t_h2refuel2,[n([2],h2cons)],[n([2],h2cons),n([2],h2carfuel)],
[n([2],demand)],[]).
trans(t_h2refuel3,[n([3],h2cons)],[n([3],h2cons),n([3],h2carfuel)],
[n([3],demand)],[1).
trans(t_h2refuel4,[n([4]1,h2cons)],[n([4],h2cons),n([4],h2carfuel)],
[n([4],demand)]1,[1).
trans(t_tankertruckll,[n([1],h2prod)],[n([1],h2prod),n([1],
h2cons)],[n([1],h2cons)],[1).
trans(t_tankertruck22,[n([2],h2prod)],[n([2],h2prod),n([2],
h2cons)],[n([2],h2cons)]1,[1).
trans(t_tankertruck33,[n([3]1,h2prod)],[n([3],h2prod),n([3],
h2cons)J,[n([3]1,h2cons)T,[1).
trans(t_tankertruck3l,[n([3],h2prod)],[n([3],h2prod),n([1],
h2cons)],[n([1],h2cons)],[]).
trans(t_tankertruck32,[n([3],h2prod)],[n([3],h2prod),n([2],
h2cons)],[n([2],h2cons)]1,[1).
trans(t_tankertruck44,[n([4],h2prod)],[n([4],h2prod),n([4],
h2cons)],[n([4],h2cons)],[]).
trans(t_tankertruck4l,[n([4],h2prod)],[n([4],h2prod),n([1],
h2cons)],[n(L[1],h2cons)],[1).
trans(t_tankertruck42,[n([4],h2prod)],[n([4],h2prod),n([2],
h2cons)J,[n([2],h2cons)],[1).
trans(t_compressionl,[n([1],hydrogen)],[n([1],hydrogen),
n([11,h2prod)1,01,[1).
trans(t_compression2,[n([2],hydrogen)],[n([2],hydrogen),
n(f21,h2prod)1,01,01).
trans(t_compression3,[n([3],hydrogen)],[n([3],hydrogen),
n(C31,h2prod)1,0L]1,0[1).
trans(t_compression4,[n([4],hydrogen)],[n([4],hydrogen),
n(f4]1,h2prod)1,01,[1).
trans(t_electrolysisl,[n([1],eTeng)],[n([1],eTeng),n([1],
hydrogen)],[n([1],h2prod)],[]1).
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trans(t_electrolysis2,[n([2],eleng)],[n([2],eleng),n([2],
hydrogen)],[n([2],h2prod)],[1).
trans(t_electrolysis3,[n([3],eleng)],[n([3],eleng),n([3],
hydrogen)],[n([3],h2prod)],[1).
trans(t_electrolysis4,[n([4],eleng)],[n([4],eleng),n([4],
hydrogen)],[n([4],h2prod)],[1).
trans(t_photovoltl,[],[n([1],eleng)],[1,[n([0],raw_renew)]).
trans(t_photovolt2,[],[n([2],eleng)],[],[n([0],raw_renew)]).
trans(t_photovolt3,[]1,[n([3],eleng)],[],[n([0],raw_renew)]).
trans(t_photovolt4,[],[n([4],eleng)],[1,[n([0],raw_renew)]).
trans(t_wind2,[1,[n([2],eleng)],[1,[n(L0],raw_renew)]).
trans(t_wind3,[],[n([3],eleng)],[1,[n([0],raw_renew)]).
trans(t_nucll,[n([0],raw_nucl)]1,[n(L0],raw_nucl),n([1],eleng)],
[n([1],eleng)],[1).
trans(t_hydro3,[]1,[n([3],eleng)],[1,[n(L0],raw_renew)]).
trans(t_hydro4,[]1,[n([4],eleng)],[1,[n(L0],raw_renew)]).
trans(t_gassep2,[n([2],h2contgas)],[n([2],h2contgas),n([2],
hydrogen)],[n([2],h2prod)],[1).
trans(t_gassep4,[n([4],h2contgas)],[n([4],h2contgas),n([4],
hydrogen)],[n([4],h2prod)],[]1).
trans(t_smr2,[n([0],raw_gas)],[n([0],raw_gas),n([2],h2contgas)],
[n([2],h2contgas)],[1).
trans(t_smr4,[n([0],raw_gas)],[n([0],raw_gas),n([4],h2contgas)],
[n([4],h2contgas)],[1).
trans(t_ferment2,[n([2],biowaste)],[n([2],biowaste),n([2],
h2contgas)],[n([2],h2contgas)],[]).
trans(t_ferment4,[n([4],biowaste)],[n([4],biowaste),n([4],
h2contgas)],[n([4],h2contgas)],[]).
trans(t_gasify2,[n([2],biomass)],[n([2],biomass),n([2],h2contgas)],
[n([2],h2contgas)],[1).
trans(t_gasify4,[n([4],biomass)],[n([4],biomass),n([4],h2contgas)],
[n([4],h2contgas)],[1).
trans(t_cultivation2,[n([2],raw_land)],[n([2],raw_land),n([0],co02),
n([0]1,02),n([2],biomass)],[n([2],biomass)],[1).
trans(t_cultivationd,[n([4],raw_land)],[n([4],raw_land),n([0],c02),
n([0],02),n([4],biomass)],[n([4],biomass)],[1).
trans(t_h2heatl,[n([1],hydrogen)],[n([1],hydrogen),
n(L0],h2heating)],[1,0[1).
trans(t_h2heat2,[n([2],hydrogen)],[n([2],hydrogen),
n([0],h2heating)],[]1,[1).
trans(t_h2heat3,[n([3],hydrogen)],[n([3],hydrogen),
n([01,h2heating)1,[1,[1).
trans(t_h2heat4,[n([4]1,hydrogen)],[n([4],hydrogen),
n([0],h2heating)1,[1.[1).
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14.4.3 Generation of the Programmable Structure
Into a Graphml File

The generation of the editable graphical model utilizes the GraphML descrip-
tion of metaprototypes and the textual definition of the structure discussed
above. The generating algorithm first takes the list of state elements and
appends the GraphML file with the appropriately modified copies of the state
metaprototype. Next, the algorithm takes the list of transition elements and
appends the GraphML file with the appropriately modified copies of the tran-
sition metaprototype. Finally, the program takes the individual transitions, one
after the other, and appends the GraphML file with the description of the edges.
The resulting GraphML file contains the two prototypes and the “empty” struc-
ture of the whole process model.

The example structure, generated from the two metaprototypes and from the
example structure (having already extended by some edited prototypes), can be
seen in Fig. 14.4. The GraphML-based graphical model can be edited further by
various graph editors (actually yEd Graph Editor).

For better understanding and visualization, the edited process structure is
shown in Fig. 14.5.

14.5 PROGRAMMING AND INITIALIZATION OF THE
EXAMPLE STRUCTURAL MODEL

The generated GraphML file can be further edited, for example, with the yEd
graph editor. The GraphML representation of the process structure supports any
graphical modifications and extensions of the model, as well as the addition of
editable texts, declaring the local programs, actualizing of initial values and of
the various model parameters.

If we start from the automatic generation, then first we have to prepare the
editable prototypes from the general metaprototypes. This requires making cop-
ies from the metaprototypes, followed by the declaration of the local program of
the prototypes. The definition of the state and transition prototype elements
needs the creative knowledge of the modelers (advantageously the collaborat-
ing field and model experts) about the investigated process. Nevertheless, the
implementation is supported by the metaknowledge embedded in the metapro-
totypes, as well as in the generated process structure.

The variables in prototypes are described by alphanumeric symbols, starting
with a capital letter (and written within apostrophes in the graphical interface).
The i(), c(), and o() functors are described by a name, by a data type (actually
dl), and by a list of the respective variables. Recently, the variables have been
described by lists of triplets d(Identifier, Variable list, Instructions), as was
shown in Section 14.4.1.

In the case of the case-specific prototypes, the content of the state and tran-
sition elements has to be actualized. This can be done by setting the initial
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FIG. 14.4 Generated programmable structure of the fictitious example HSC.
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FIG. 14.5 Edited process structure of the fictitious example HSC.

conditions (i.e., the input parameters of the state elements), as well as by defin-
ing the parameters (i.e., the actual values of the parameter slots both in state and
in transition elements). Also, the name of the prototype that was actually used
has to be overwritten in the heading e(.) of each element. This name refers to the
local program to be executed for the given element.

The original metaprototypes and the a few actual prototypes of the fictitious
example process are also shown in Figs. 14.4 and 14.5. In the illustrative HSC
example given, the metaprototypes and prototypes are the following:

e Transition metaprototype: trans;
e Transition prototypes: prot_compr, prot_electrol, prot_nucl, prot_hotovolt,
prot_refueling, prot_truck, prot_wind;
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e State metaprototype: state;
e State prototypes: prot_demand, prot_storage, prot_condstorage.

In the following, the programming of the prototypes and the initialization of the
respective actual elements will be illustrated by simplified examples.
Programming and initialization of transition prototypes and elements.
The transition metaprototype corresponds to the following Prolog clause
with an “almost empty” program in the body:

v(y,trans,Spatial,trans,Temporal,Possibilities,Evaluations,
[c(antecedent,dl,Antecedent),c(consequence,dl,Consequence),
c(cond,dl,Conditions),c(param,dl,Parameters)],
[i(inp,d1,InpSigns),i(conc,dl,InpConcs)],
[o(comp,dl,0utComps),o(out,dl,0utSigns),o(report,dl,Report)]) :-

OutComps =11, OQutSigns=1[1, Report=1[1.

When programming of a case-specific transition prototype via the graphical
interface, the identifier “trans” has to be replaced by the prototype name (in case
of a wind power station “prot_wind”), while the empty program has to be
replaced for the respective code, as follows:

Parameters =[d(coeff,[Coeff]l,nd),d(number,[Nul,nd)],
time(_,T,_),
abs_time(T,Y,M,D),
meteo(Y,M,D,_,Windspeed
g(dt,DT),

Eis Nu*Coeff*((0.62*Windspeed)**3)*DT,
Report =[d(energy,[E],kWh) ],

QutComps = [d(eleng,[E],kWh)],
OutSigns=1[1].

EJN S S -

[T3PR L)

(It is to be noted that in Prolog syntax “is” signifies assignment, “="" refers to
unification, and g(dt,DT) calls for the time step.)

Simultaneously in every actual wind power station defining element, the
prototype name and the parameters used in the program have to be overwritten
(supported by the graph editor, of course), as is signified by bold italics in the
following example:

aly,t_wind3,[3],prot_wind,[1,[1,[],
[c(antecedent,dl,[]),c(consequence,dl,[]1),c(cond,dl,[]),
c(param,dl, [d(coeff,[30],nd),d(number,[200],nd)])],
[i(inp,d1,[]1),i(conc,d1,[1)],
Lo(comp,d1,[]),0Cout,d1,[]),o(report,dl,[1)]).

Programming and initialization of state prototypes and elements.
The state metaprototype corresponds to the following Prolog clause with an
“almost empty” program in the body:
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m(y,Spatial,state,Temporal,Possibilities,Evaluations,
[c(param,dl,Parameters),c(cond,dl,Conditions)],
[i(comp,dl,InpComps),i(inp,dl,InpSigns)],
[o(conc,dl,0QutConcs),o(out,dl,0utSigns)],) :-
QutConcs=1[1], OutSigns=1[1].

When programming of a case-specific state prototype via the graphical inter-
face, the identifier “state” has to be replaced by the prototype name (in the case
of conditional storage “prot_condstorage”), while the empty program has to be
replaced for the respective code, as follows:

Conditions =[d(1limit,[Limit],Dim),d(destinations,[Place]l,nd)],
InpComps = [d(Material,[M],Dim)],

needed(Limit,M,Need),

OutConcs = [d(Material,[M],Dim)],

OutSigns =[d(Place,[Need],Dim)].

needed(Limit,M,Need) : -

Limit > M,
Need is Limit-M,!.
needed(_,_,0).

Simultaneously, in every actual element executed according to this program, the
prototype name, the parameters, and the necessary initial values used in the pro-
gram have to be overwritten, as is signified by bold italics in the following
example:

p(y,h2prod,[3],prot_condstorage,[1,[1,[1,
[c(param,d1,[]),c(cond,dl,[d(1imit,[5000],kg),d(destina-
tions,[electrolysis3],nd)])],

[i(comp,dl,[d(h2prod, [2000],kg)]),i(inp,d1,[1)],
[o(conc,dl,[]1),0Cout,d1,[1)]).

14.6 INTERPRETATION OF THE EXAMPLE MODEL AND
PREPARATION FOR SIMULATION-BASED PROBLEM SOLVING

The programming and initialization of the process structure is followed by its
interpretation into the executable dynamic databases of the given model. In this
step, the facts and clauses of the executable Prolog model definitions are gen-
erated from the edited GraphML file automatically. First, the general interpreter
reads the GraphML text, while it generates and saves:

e all of the facts describing the actual state and transition elements in the
“user” file,

e all of the facts determining state — transition and transition — state connec-
tions in the “user” file, and

e all of the clauses, declaring the program prototypes in the “expert” file.
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The resulting user and expert files contain the detailed description of the process
model, including the locally executable program prototypes and the actual ele-
ments and connections containing the initial data and the case-specific
parameters.

Having finished the model generation, the executable code has to be supple-
mented by the (optionally scale-specific) global data. They can be declared for
example by the following global facts:

g(timescale,day). declares the applied absolute (day, hour,
minute, second) or relative (rel) time (inmultiscale application scale-
specific time steps may be applied);

g(starttime,at(2020,1,1,0,0,0)). declares the absolute starting

time;

g(direction,f). declares the direction of the simulation
(f=forward, b=backward);

g(dt,1). the initial time step;

g(dur,3652). the duration of the simulation;

g(ndto,1). the time step of the output data recording
(NDTO >=DT);

Also, the simulator is prepared for the communication with the necessary
optional external databases and applications. For example, in the studied
Hydrogen Supply Chain application the model has to communicate:

e with a Geographical Information System, specifying the various districts
and locations, as well as assisting with the optionally embedded routing
algorithm;

e with a market related database, containing data about the time varying
and location specific demand for the hydrogen, and for the optional other
products of the model investigated;

e with ameteorological (or climate scenario) database, supplying location and
time depending meteorological data for the consideration of the natural
resource related processes; and

e with an optional external metaheuristic optimizer (see more detailed in
Section 18.8).

An example architecture for combining Programmable Structures with GIS and
meteorological databases was published in (Varga et al., 2016b).

14.7 EXECUTION OF THE DYNAMIC SIMULATION
OF PROGRAMMABLE STRUCTURE

Dynamic simulation is organized by a general executing kernel, by default com-
prising the cyclically repeated processing of state elements, state — transition
connections, transition elements and transition — state connections.

The simulation starts at the globally determined relative or absolute initial time
with the previously initiated data (i.e., input variables of states, parameters of states
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and transitions) and with the initial time step. The algorithm checks the Temporal
constraints of the given elements and only the allowed procedures are executed.
The Temporal constraints may determine prescribed time intervals, discrete points
of time, and specific time steps for the given elements, as follows:

Temporal =Timing* (may contain any number of timings)
Timing=t(Start, End, Timelist,TimeStep)
Start = the prescribed starting time
End =the prescribed ending time
Timelist = Time* (may contain any number of discrete
times)
Time = prescribed discrete points of time for
execution
TimeStep = the prescribed time interval of the execution

The balance checking of the “model specific conservation law—based
measures” helps to recognize the infeasible states (e.g., negative amounts) that
may cause serious numerical problems. The sequentially executed state and
transition elements, connected by the sequentially executed standalone connec-
tions, make it possible to develop robust models, as well as to fine-tune the dis-
cretized execution in runtime (e.g., with an automatic time step control, based
on feasibility bounds). In some logistic problem solving, the negative values
may also be meaningful, and accordingly the time step control is switched off.

During the execution of the local state programs, the state facts are matched
with their respective state prototypes. The unification of input and parameter
variables is followed by the calculation of the local program, resulting in the
values for the output variables.

Analogously, during the execution of the local transition programs, the tran-
sition facts are matched with their respective transition prototypes. The unifi-
cation of input and parameter variables is followed by the calculation of the
local program, resulting in the values for the output variables.

The applied architecture makes it possible to save the whole model (together
with the actual local and global values) in a file, from which the simulation can
be continued later. This feature makes it possible to continue the interrupted
simulation with optionally modified parameters to test the effect of various
changes. The same option also supports the stepwise communication of the sim-
ulation model with external applications (e.g., external control algorithms, addi-
tional data sources, etc.).

The simulation models, described by additive measures, are suitable for the
causally right reversed (backward) simulation. In this case, the simulation can
start from a realistic (or simulated) “future” state with decrementing (backward)
time steps, while the increases and extensions of additive measures are replaced
with decreases and removals, respectively. Similarly, instead of the decreases
and removals of additive measures, increases and extensions are calculated,
vice versa. It is to be noted that the functionalities are calculated with the same
(i.e., causally right) programs.
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FIG. 14.6 Stepwise increasing demand for hydrogen in the investigated districts.

The detailed output is written in CSV files, to be elaborated further in the
case of specifically prepared MS EXCEL workbooks.

In the following we illustrate the results from simulation of a simplified part
of the fictitious HSC generated above.

In this case we start from a stepwise, yearly increase of the demand for
hydrogen car fueling, as can be seen in Fig. 14.6. Suppose there is an estimated
increase in the number of stations and hydrogen-powered cars in the investi-
gated districts in the future time period from 2020 until 2030.

We assume an available capacity of photovoltaic and wind power stations
that produce electrical energy, depending on the meteorological situation (solar
radiation and wind speed). Unfortunately, the available climate scenarios do not
contain data for radiation and wind speed. That is why we used meteorological
data from the past 10 years to imitate some realistic fluctuation tendencies. The
calculated change of the electrical energy generated in the photovoltaic process
is illustrated in Fig. 14.7.

In Fig. 14.8, the contribution of energy generated in the photovoltaic process
to the total energy demand of the electrolytic hydrogen production of the
necessary car fuel is shown.

Similarly, the calculated change in the electrical energy generated by wind
power is illustrated in Fig. 14.9.

Photovoltaic based electrical energy
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FIG.14.7 The electrical energy generated in the photovoltaic process in the districts investigated.
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FIG. 14.8 Percentage of photovoltaic-generated energy in the total energy demand of the electro-
lytic hydrogen production.
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Wind power produced electrical energy
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FIG. 14.9 Electrical energy generated by wind power in the investigated districts.

Percentage of the wind power based hydrogen production in the whole amount
2500
2000
1500
R
1000
500

0
2019.02.04 20200618  2021.10.31 2023.03.15  2024.07.27  2025.12.09  2027.0423  2028.09.04  2030.01.17  2031.06.01
Time, day

FIG.14.10 Percentage of electrical energy generated by wind power in the total energy demand of
the electrolytic hydrogen production.

In Fig. 14.10 the contribution of energy generated by wind power to the total
energy demand of the electrolytic hydrogen production of the necessary car fuel
is shown.

It can be seen that in the given districts, wind power can produce more elec-
trical energy than the photovoltaic systems, however, this production fluctuates
wildly. In case of lower car fuel demand (in the first years) the solar energy—
based renewable resources can produce more energy, and consequently more
hydrogen, than the requirement of the car fueling stations. The extraordinary
surplus amounts are produced in randomly appearing short periods. The contri-
bution of photovoltaic systems is smoother, with a characteristic seasonal
change. Increasing demands for electrolytic hydrogen production requires
more renewable energy production or additional electrical energy (e.g., from
nuclear power stations, from Steam Methane Reforming, from biomass gasifi-
cation, etc.)

14.8 REPRESENTATION OF POSSIBILITY (DESIGN) SPACE
AND EVALUATIONS IN THE PROGRAMMABLE STRUCTURE

The robust simulation framework makes possible dynamic model-based (sub)-
optimization, for example, with various externally implemented metaheuristic
methods (e.g., Genetic Algorithm). The basic principle, in accordance with the
engineering way of thinking, is that instead of searching for an exact global opti-
mum with a simplified model, it might be better to generate suboptimal solu-
tions with a more detailed model. This principle was successfully applied for
the solution of various design problems by the previous version of the Direct
Computer Mapping—based simulator (e.g., Csukas et al., 2013).

Using Programmable Structures, the possibility (design) space and the eval-
uations can be adequately defined within the model elements. This extended
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simulation model can communicate with various external optimizing tools by
means of special evaluating and configuring connections. The evaluations
(i.e., calculated objective functions for the optimizing program) come from
the output variables of the evaluating elements, while the new configurations
(i.e., the formal suggestions of the optimizer) are processed by the configuring
elements of the simulation model. The advantage of this solution is that inter-
facing between the detailed model and the external optimizer can be organized
within the model, with the knowledge of the model-specific details. At the same
time, the optimizer may work with a number of evaluating objectives and with
an abstract possibility (design) space, formally. The collaboration between the
simulator and the optimizer is determined by the respective evaluation
feedback.

In combining Programmable Structure of Hydrogen Supply Chains with
metaheuristic optimizers:

e the possibility (design) space and the components of evaluations are defined
within the state and transition elements, while the model is extended with
special configuring and evaluating elements;

e the simulator initializes the formal connection with optional optimizers at
the beginning of the run;

e the (optionally in-parallel running) model(s) organize the repeated config-
uration and evaluation of the communication with the metaheuristic
optimizer.

The uncertainty of model parameters and/or evaluations (e.g., cost coefficients)
can be taken into consideration with an additional objective for minimizing the
standard deviation of the (e.g., economic) objective, using a set of range-based,
randomly generated parameters for each scenario. This method was applied for
the optimization of a methane producing anaerobic fermentor of sugar beet
slices (Varga, 2009).

14.8.1 Embedding Possibilities in the State and Transition
Elements

The Possibilities, belonging to a given element, can be declared by the follow-
ing data set:

Possibilities =Possibility*
Possibility = pos(PosID,Variableldentifier,Type,Mode,PossibleValues,
SuggestedValue)

where:

PosID =identifies the given modification in the possibility (design) space,
Variableldentifier = identifies the variable to be modified in the given model
element,



Metamodeling of Hydrogen Supply Chains Chapter | 14 493

Type =determines the type of the variable (symbol, integer, real or timing).

Mode = defines the method of modification (select or range),

PossibleValues =defines the possibilities (alternatives) for the given
variable,

SuggestedValue =the actually proposed upgraded value (initialized by a
default value).

The most important configurable characteristics of model elements are the
followings:

existence of state and transition elements (Type =symbol);
initial input measures of the state elements (Type =real);
initial input signs of the state elements (Type =symbol);
state parameters (Type =symbol, integer or real);
transition parameters (Type =symbol, integer or real);
timing of transitions: (Type =timing); etc.

In accordance with the above model properties, the possible alternatives can be
defined, as follows:

e Dby a set of symbols to select an actual one (Mode =select);

e by a set of integers to select an actual one (Mode =select);

e Dby arange of integers, and its initial resolution to determine the prescribed
granularity that can be refined stepwise (Mode =range);

e by a range of real numbers, and its initial resolution to determine the pre-
scribed granularity that can be refined stepwise (Mode =range);

e by a set of possible timings in sense of Eq. 6 to select an actual one
(Mode =select or range); etc.

In case of (Mode =select) PossibleValues are defined by the set of possible
values, while in case of (Mode =range).

PossibleValues =[Min,Max,Resolution]

where Min = the minimal value, Max = the maximal value and Resolution =the
suggested initial resolution of the range (that can be modified by the external
optimizer).

At the beginning of the optimizing cycle, the domain of the possibility
(design) space is translated for the external optimizer. It should be emphasized
that the optimizer does not know about the meaning of the data to be modified
and considers only their formal representation. Accordingly, an actual Possibil-
ity is transformed into the tuple.

(PosID,Number,Min,Max,Resolution)

where PosID =the identifier of the change, Number =the number of possible
values or 0, Min—=the minimal value or 0, Max —the maximal value or 0
and Resolution =the suggested initial resolution within the range or 0.
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The decisions from the optimizer come in the form of:
(PosID,0Ordinal_number,SuggestedValue)

where Ordinal_number =the respective element of the set or 0, Suggested
Value =the suggested value from the range or 0, while these formal messages
are interpreted according to PosID.

14.8.2 Embedding Elementary Evaluations in the State
and Transition Elements

In addition to the very uncertain economic objectives, the optimal design and
operation of an HSC requires multiple natural objectives (utilized solar energy,
carbon-dioxide balance, hydrogen production of biological wastes, the food-
related part of land use, etc.). Accordingly, evaluations have to be embedded
into the elements of the more detailed dynamic models.

The Evaluations, belonging to a given element, can be declared by the
following data set:

Evaluations=Evaluation*.
Evaluation=ev(EvallD,EvaluationName,Variableldentifier,Mode,
Measurements).

where:

EvalID =an integer identifier of the corresponding objective (used by all of
the respective measurements);

EvaluationName =a symbol, describing the objective function;
Variableldentifier=a simulated variable corresponding to the measured
data or nil;

Mode =mode of the use (e.g., ident, max, min, etc.); and.

Measurements =set of (Time;,Value;) pairs for the respective variable,
while Value means the measured data at Time.

The individual evaluations are executed by the objective defining transitions
that calculate the objective functions individually. Considering the above kinds
of objectives, there are three modes of evaluations, as follows:

e for identification according to the supplemented measurements
(Mode =ident);

e for maximization of an objective function (Mode =max);

e for minimization of an objective function (Mode =min).

At the beginning of the optimizing cycle, the identifiers of objectives are trans-
formed for the external optimizer. It should be emphasized that the optimizer
does not know about the meaning of the objective functions and considers only
their formal representation. Accordingly, an Evaluation for the optimizer is
described by the pair of.

(EvalID,EvaluationName).
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The most important data of the model elements, used for objective evaluations
are the following:

e intensive properties at the output of the state elements;

e special output data of the transition elements: for example, the reported rate
of a given transformation or transportation; and

e state and transition parameters for the calculation of objective functions.

The individual evaluating components, identified by an EvallD, are collected
during and/or at the end of simulation by the respective evaluating objectives.
At the end of the individual simulations these special evaluating elements
calculate the values of the objective functions and forward them to the optimizer
in the form of:

(EvalID,Calculated_Objective)

where EvallD =the identifier of the objective and Calculated_evaluation =the
value of this objective function after the simulation.

14.9 CONCLUSIONS AND FURTHER WORK

Besides the well-developed mathematical programming—based optimization
methods, the design and operation of the large-scale, long-term processes of
Hydrogen Supply Chains might also require easily extensible, generic dynamic
simulation. We have introduced a nonconventional modeling and simulation
methodology, developed in other multidisciplinary fields.

Keeping in mind the challenges of Hydrogen Supply Chain design and oper-
ation, we explained Programmable Structure for experts of the given field to
promote possible future collaboration. Programmable Structure of process
models can be generated from the description of a process network (optionally
geographically determined and multiscale) and from two general functional
metaprototypes. The case-specific, actual functional prototypes are copied from
the metaprototypes, and they are associated with locally executable declarative
programs in a graphical editor. Simultaneously, the actual state and transition
elements are parameterized and initialized concerning their case-specific
prototypes. The execution of the programmed structures is solved by a
general-purpose kernel program, while the actual model elements are executed
according to their prototypes. In the proposed model representation, the detailed
description of possibility (design) space, as well as the components of the eval-
uating functions may be embedded in the state and transition elements.

The methodology has been illustrated with a fictitious and simple example
in the context of Hydrogen Supply chains.

The major points of the work planned for the future, in collaboration with
HSC experts, are the following:

e to test the framework for a realistic case study;
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e to investigate the application of repeated forward/backward simulation
based balancing algorithms;

e to combine Programmable Structures with metaheuristic optimizers for the
multiobjective optimization of HSC design and operation.
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