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PCA
 principal component analysis
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SC
 supply chain
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 supply chain management
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 supply chain network design
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10.1 INTRODUCTION

This chapter presents the different approaches that can be used for the solution

of hydrogen supply chain design problem. The reader must be aware that this

chapter constitutes a companion paper to the following chapters of this book.

The objective is to propose guidelines for the methodological choices that

emerge as the best options for solution strategies. Some of the formulations

are illustrated in the dedicated chapters of this book.

HSC analysis and design can be viewed as a multiscale and multiobjective

problem, with several criteria related to cost, environmental impact, and safety,

among others. Some of the decisions that must be made in HSC design are as

follows: what are the best places to build hydrogen production facilities? How

large should the facilities be? Where does each facility get its feedstock from?

What kinds of energy sources and production technology constitute the best

choices? Which demand centers are served by each production facility? Which

mode of hydrogen delivery is used for each demand center? These questions

must be answered by considering simultaneously the abovementioned criteria.

This chapter is divided into two sections. Section 10.2 first presents the

description of some optimization frameworks according to the type of problem

(e.g., linear, nonlinear) and some significant solution strategies that can be used.

The HSC problem can be viewed as an optimization problem with both integer

(number of production plants, storage facilities, and transport units) and contin-

uous variables (e.g., hydrogen production and flow rates). This section also dis-

tinguishes the mono and multiobjective formulations. Section 10.3 focuses on

multiobjective optimization methods because they are well suited to the HSC

problem. Special attention is paid to the chosen techniques. Some approaches

for decision support orientation based on multicriteria decision aid following

the multiobjective optimization step are also reviewed. At the end of this section

we examine how the HSC design optimization framework can be linked with a

spatially detailed infrastructure model. Finally, this chapter ends with some

guidelines that can be useful for the practitioner.
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10.2 METHODOLOGICAL FRAMEWORKS FOR SUPPLY CHAIN
DESIGN

In the design and management of a supply chain, the best global performance

should ideally be sought, so as to achieve better performance of a single link of

the chain. The decisions that must be made involve different levels of the supply

chain and need to be supported by robust tools to evaluate the impact of various

decisions prior to implementing them in the real environment. In this context,

system modelling is used to predict the behaviors of the supply chain as vari-

ations of network configurations. Supply chain modelling aims at minimizing

or maximizing an objective function through the identification of decisions

and tradeoff solutions that satisfy conflicting objectives at the same time, so that

optimization approaches, which are generally based on mathematical models,

are largely used to design supply chains (Akgul et al., 2014; Kim et al.,

2011; Liu and Papageorgiou, 2013; Pishvaee et al., 2011).

10.2.1 General Decision Levels in a Supply Chain

Several decision levels are classically considered in a supply chain related to

different time horizons:

l Strategic planning: this level refers to a long-term horizon (several years)

and has the objective of identifying strategic decisions for a production net-

work and defining the optimal configuration of a supply chain: capacity siz-

ing, technology selection, sourcing, facility location, production allocation,

and others. Future demands resource and management for the entire supply

chain must be anticipated.

l Tactical planning: this level refers to a mid-term horizon (around 1year) and

has the objective of fulfilling demand and managing material flows, with a

strong focus on the tradeoff between the service level and cost reduction:

production allocation, supply chain coordination, transportation policies,

inventory policies, safety stock sizing.

l Operational planning: this level refers to a short-term period (1day to

1year) and has the objective of determining material/logistic requirement

planning: allocation of customer demands, vehicle routing, and plant

scheduling.

10.2.2 Methods for Supply Chain (SC) Management and Design

Different methods and tools have been used and reported in the supply chain

management (SCM) and design literature (see Table 10.1 for some examples)

and are not specific to the HSC case.

The literature review shows that the most common approach in designing

and modelling supply chains is optimization through mathematical models.

As opposed to simulation based approaches, these models utilize formal



TABLE 10.1 Different Ways to Optimize SCM

Technique Reference Application

Linear
programming

Kim et al.
(2011)

Optimal design of biomass SC network
under uncertainty, in the South-eastern
region of the United States.

Liu and
Papageorgiou
(2013)

Global process SC optimization problem,
considering cost, responsiveness, and
customer service level simultaneously.

Perea-López
et al. (2003)

Predictive control strategy to find the
optimal decision variables to maximize
profit in SC with multiproduct batch plants.

Pishvaee et al.
(2011)

Robust optimization model for handling the
inherent uncertainty of input data in a
closed-loop SC network design problem in
business environment.

Soylu et al.
(2006)

Systematic approach to identify the synergy
among different energy systems.

Tsiakis and
Papageorgiou
(2008)

Optimal configuration of a production and
distribution network subject to operational
and financial constraints.

vanDyken et al.
(2010)

Biomass supply chain with different types
and the relationship between moisture and
energy.

Nonlinear
programming

Akgul et al.
(2014)

Model of carbon negative energy
generation in the UK to examine the
potential for existing power generation
assets.

Shabani and
Sowlati (2013)

SC configuration of a typical forest biomass
power plant.

Dynamic
programming
(DP)

Buffett and
Scott (2004)

Optimization of the inventory level and
minimization of the total cost.

Choi et al.
(2006)

A multiproduct supply chain under demand
uncertainty.

Gigler et al.
(2002)

DP model for an agricultural chain of
willow biomass fuel to an energy plant.

Markov chains Busse et al.
(2012)

Price interdependencies between the
German biodiesel and related agricultural
and energy markets.

Kurata and Liu
(2007)

Determination of the frequency of the price
discount, including or excluding a
supplier’s inventory decision.
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TABLE 10.1 Different Ways to Optimize SCM—cont’d

Technique Reference Application

Analytical
hierarchy (AH)

Haq and
Kannan (2006)

Evaluation of vendor selection in a
company in the southern part of India.

Analytical
network process
(ANP)

Agarwal et al.
(2006)

SC encapsulating market sensitiveness,
process integration, information driver and
flexibility measurement.

Tseng et al.
(2009)

Novel hierarchical evaluation framework to
assist the expert group for optimal supplier
selection in SC management strategy.

Network
equilibrium
model

Nagurney and
Toyasaki (2005)

Reverse supply chain management of
electronic waste, including recycling.

Game theory Bai et al. (2012) SC design incorporating farmers’ decisions
on land use and market choice into the
biofuel.

Fuzzy and
neuro-fuzzy

Shaw et al.
(2012)

Integrated approach for selecting the
appropriate supplier in the supply chain,
addressing the carbon emission issue.
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optimization techniques to allow advanced decisions to be captured and to pro-

vide comprehensive integrated solutions (Hugo et al., 2005). The aim of such

methods is to find optimal configurations according to some specific criteria

(e.g., economic, safety, environmental aspects). One of the main advantages

of this type of modelling is that mathematical models form a bridge to the

use of high-powered mathematical techniques and computers to analyze the

problems (Hillier and Lieberman, 2001).

The use of mathematical programming for designing a supply chain consists

of three major steps as reported in Grossmann et al. (2000):

i. The representation of all possibilities from which the optimal solution is

extracted by defining the so-called superstructure; a superstructure is

defined as the set of all possible connections in a network.

ii. The formulation of a mathematical model includes generally discrete and

continuous variables. The main components of a model are:
(a) the optimization criteria, which are expressed as mathematical

functions, and

(b) the constraints, which can be either of the equality or inequality type.
iii. The resolution of the mathematical model to determine one or more opti-

mal solutions.



Optimization

Nonlinear
formulation

Deterministic
methods

Mixed integer linear
programming (MILP)

Linear
programming (LP)

Linear formulation

Stochastic methods

Dynamic
programming

FIG. 10.1 Classification of the main methods of optimization (Adapted from Collette, Y.,

Siarry, P., 2003. Multiobjective Optimization: Principles and Case Studies. Springer.)
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Traditionally, the main focus of the research studies dedicated to supply chains

has been minimizing the overall cost or maximizing the total revenue as a

single-objective optimization problem.

The most common optimization frameworks for capturing SC problems are

summarized in Fig. 10.1. These can be classified as either linear or nonlinear
programming or dynamic programming. Initially, the majority of these studies

were based on a monoobjective formulation.
10.2.2.1 Linear Formulation

A linear formulation is used when the problem (objective functions and con-

straints) is linear (Hillier and Lieberman, 2001). Two methods can be used,

linear programming (LP) and mixed integer linear programming (MILP).

– LP models are used for the efficient allocation of limited resources in

known activities in order to meet the desired goals (for instance, maxi-

mizing profits or minimizing costs). Linear programming problems can

involve decision variables that can take integer values. When integer var-

iables are restricted to the binary variables (0–1), the corresponding prob-

lem is called the binary integer programming problem. An integer

variable can be defined such that it determines whether a processing unit

should be invested in or not.

– In the case of both integer and continuous variables, the problem is refer-

red as a mixed-integer linear programming one. Because of its capability

to naturally capture logical conditions, applications of MILP have been

widespread in areas of investment planning, supply chain, and logistics

management, energy industry planning, engineering design, and production

scheduling (Hugo et al., 2005). MILP methods consist of maximizing or

minimizing an objective function as a function of parameters, variables,

and several constraints on these variables (Haeseldonckx and

D’haeseleer, 2011).

The use of integer variables in general, and binary ones in particular, dramat-

ically broadens the capabilities of linear programming modelling, enabling the
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disjunction of constraints, the logical implication and general restrictions to

the model incorporating certain nonlinear behaviors of reality. Many practical

optimization problems lead to the consideration of an extremely large number

of feasible solutions, so that the problem can be viewed as a combinatorial one.

The solution of the system of linear equations that are involved in the prob-

lem formulation can be performed by using the Gauss-Jordan method. When

problems become larger (more parameters, variables and constraints), the

Gauss-Jordan method is generally combined with a branch-and-bound method

in order to converge to an optimal solution as quickly as possible (Haeseldonckx

and D’haeseleer, 2011).

Mathematically, the MILP problem can be expressed as follows:

Min cx + dy

subject to
Ax+By� b

L< x<U

y¼ 0, 1, 2,…f g

where x is a vector of variables that are continuous real numbers, and y is a vec-

tor composed of variables that can only take integer values. In this expression,

cx+dy is the objective function, and Ax+By�b represents the set of constraints.
L andU are vectors of lower and upper bounds on the continuous variables, and

y¼{0,1,2,…} represent the integer variables.

With regard to the solution of the MILP problems, several algebraic model-

ing languages (AML) were developed with the aim of allowing users to express

LP and other optimization problems in a natural, algebraic form similar to the

original mathematical expressions, such as AIMMS, AMPL, GAMS, etc. For

instance, GAMS includes well-known algorithms for the solution of MILP

(Geletu, 2008): Branch & Bound, Benders Decomposition, Cutting Plane

(Gomory) algorithm and Branch & Cut. Usually these algorithms are used in

combination with the simplex algorithm and/or the interior-point method.

For instance, some of the solvers that can solve MILP problems are BARON,

BDMLP, LINDO GLOBAL, MOSEK, OSL, XPRESS, and CPLEX (Mansini

et al., 2015).

It must be highlighted that linear programming is the most used technique to

optimize the SC. Several applications can be found, such as biomass supply

chains (Kim et al., 2011; van Dyken et al., 2010), the optimization of the SC

under financial constraints (Liu and Papageorgiou, 2013; Tsiakis and

Papageorgiou, 2008), in energy systems (Soylu et al., 2006), in business envi-

ronment (Pishvaee et al., 2011), or in multiproduct batch plants (Perea-López

et al., 2003).
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10.2.2.2 Nonlinear Formulation

The nonlinear formulation can be tackled by two main methods, either deter-
ministic or stochastic algorithms procedures. In the nonlinear deterministic

models, no randomness is associated. Then, given a particular input, a determin-

istic algorithm obviously produces the same type of output (Prawda, 2004).

– Mixed integer nonlinear programming (MINLP) refers to mathematical pro-

gramming with, on the one hand, continuous and discrete variables, and, on

the other hand, nonlinearities in the objective function(s) and constraints.

The use of MINLP is a deterministic approach of formulating problems

where it is necessary to simultaneously optimize the system structure

(discrete variables) and its parameters (continuous variables). MINLP prob-

lems are difficult to solve because they combine all the difficulties of both of

their subclasses: the combinatorial nature of mixed integer programs and the

difficulty in solving nonconvex (and even convex) nonlinear programs

(Bussiec and Pruessner, 2003).
The general form of a MINLP is:
Min f x, yð Þ
subject to
g x, yð Þ� 0

x2X

y2 Y

The function f(x,y) is a nonlinear objective function and g(x,y) a non-
linear constraint function. The variables x, y are the decision variables,

where y is required to be an integer vector. X and Y are bounding-box-type

restrictions on the variables. Nonlinear formulations with mathematical

MINLP can be found in Akgul et al. (2014) and Shabani and Sowlati (2013).
– Stochastic programming is used when random-valued parameters and objec-

tive functions subject to statistical perturbations are part of the problem formu-

lation (Coello et al., 2007). The stochastic models can incorporate uncertainty

in parameters, such as demand, costs, potential sites, and distances, and then

fall into probabilistic approaches and scenarios (Patay, 2008). Metaheuristics

cannot guarantee that an optimumcan be obtained. The stochasticmethods are

divided into neighborhood techniques, such as Simulated Annealing, Tabu

Search, and evolutionary algorithms, and among others genetic algorithms,

evolutionary strategies, and evolutionary programming (Tabkhi, 2007).
10.2.2.3 Dynamic Programming

Dynamic programming (DP) is an optimization approach that changes a com-

plex problem into a less complex one by separation of the problem into simpler

and smaller problems (Bellman and Dreyfus, 1962; Momoh, 2008). The method
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used by dynamic programming is recursive, which means that the method calls

itself, adding information each time, until the conditions of stopping are met.

According to Chinneck (2006), the method steps are the following ones:

1. Dividing the problem into small problems and finding the optimum solution

for each small problem.

2. Enlarging the small problem and finding the optimum solution to the next

problem using the previously found optimum solution.

3. Continuing with the second step until the enlarged problem encompasses the

entire original problem.

4. Tracking back the solution of the entire problem from the optimum solu-

tions to the small problems solved along the way.

The requirements of this technique are (Garcı́a and Moreno, 2000):

� The solution to the problem must be reached through a sequence of deci-

sions, each one in each step.

� Such sequence of decisions must satisfy the optimum principle.

Several works using dynamic programming for supply chain problems have

been reported in the dedicated literature. Williams (1983) develops a dynamic

programming algorithm for simultaneously determining the production level

and distribution batch sizes at each node within a supply chain network.

Buffett and Scott (2004) propose a technique for use in supply chain man-

agement that assists the decision making process for purchase of direct goods.

Based on projections for future prices and demand, request-for-quotes (RFQs)

are constructed and quotes are accepted that optimize the level of inventory

each day, while minimizing total cost. The problem is modeled as a Markov

decision process (MDP) and Dynamic programming is then used to determine

the optimal quote requests and accepts at each state in the MDP.

A similar approach has been adopted by Choi et al. (2006) for multiproduct

supply chains under uncertainty modelled through Markov chains. They use an

approach based on stochastic dynamic programming (DP), which can generate a

dynamic operating policy that incorporates information about the uncertainty in

the problem at each time step.

Gigler et al. (2002) have also developed a methodology for optimization of

agricultural chains using DP, taking into account quality development of a prod-

uct as a function of the process conditions. The methodology optimizes the

route of the chain that returns the minimum integral cost. DP has been firstly

applied to a supply chain of bananas (four stages) and then to a chain of willow

biomass fuel to an energy plant (7 stages).

Even if dynamic programming is a very elegant framework for analyzing

supply chain systems, it is mostly used at a theoretical level to characterize

the optimal policy. This approach is yet limited in its applicability; as the num-

ber of state variables increases, the state space size grows exponentially, a phe-

nomenon known as the curse of dimensionality, rendering the standard dynamic

programming approach impractical.
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10.2.2.4 Other Methods for Supply Chain Modelling

In contrast to optimization methods, many researchers have developed an equi-

librium model of competitive supply chain networks (Nagurney et al., 2002).

The equilibrium model captures both the independent behavior of the various

decision makers as well as the effect of their interactions. The equilibrium

model is drawn from economics and, in particular, from network economics.

Nagurney et al. (2002) developed a supply chain network equilibrium model

for the case of consumers demand for the product that can be expressed as a

deterministic function.

– Queuing models, such asMarkov chains, have also been used to investigate
supply chain problems for many years (e.g., Toktaş-Palut and €Ulengin,
2010), in the determination of biodiesel prices (Busse et al., 2012) or dis-

counted prices (Kurata and Liu, 2007).
Markov chains can be described as follows. Let us denote S a set of

states, S¼{s1, s2,…, sr}. The process starts in one of these states and moves

successively from one state to another. Each move is called a step. If the

chain is currently in state s1, then it moves to state sj at the next step with

a probability denoted by pij, and this probability does not depend upon the

states the chain was in before the current state. In some SCs, the probabilities

are used to model the times of some tasks.
– Game theory can be defined as “the study of mathematical models of con-

flict and cooperation between intelligent rational decision makers.” It pro-

vides general mathematical techniques for analyzing situations in which two

ormore individuals make decisions that will influence one another’s welfare

(Myerson, 2013). In SC, for example, Majumder and Groenevelt (2001) pre-

sent a two-period model of remanufacturing. An original equipment manu-

facturer competes with a local remanufacturer under many reverse logistics

configurations. Another example is support in the decision between land use

and market choice for biofuel (Bai et al., 2012).

– Neural networks and fuzzy systems combine the advantages of fuzzy systems

(e.g., interpretability, use of vague or inexact data) with the learnability of

neural networks, so that the parameters of fuzzy systems can be learnt by

neural networks according to existing requirements. In Marx-Gomez

et al. (2002), fuzzy logic is used to forecast the prognoses for the amount

of time of returned product, and in Shaw et al. (2012) to select the correct

supplier.
10.2.2.5 Multiobjective Formulation

Multiobjective optimization is now a popular approach to modelling supply

chains, especially green supply chains (Srivastava, 2007), and in particular

for sustainable design of distributed energy supply systems because it allows

for the antagonistic objectives of economic and environmental performance



Multiobjective optimization

A posteriori
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Metaheuristic
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constraint method
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FIG. 10.2 Multiobjective optimization methods.
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to be evaluated and optimized simultaneously. Tradeoff solutions are found

through this approach giving the decision makers a way to incorporate many

objectives and preferences in a single decision framework.

The general formulation of a multiobjective optimization problem is:

Min f1 xð Þ, f2 xð Þ,…, fk xð Þ½ �
subject to
g xð Þ� 0

h xð Þ¼ 0

x2 S

where fi (with i¼1 to k) is a function of Rn1� [0,1]n2 in R, g(x)2Rm, h(x)2Rp
and x is an element of S. Rn1� [0,1]n2 in R.
Such an optimization scheme is implied when there is a conflict between

two or more objectives, even if the most profitable infrastructure may not nec-

essarily be the least environmentally damaging. Because of this tradeoff, there

is no single solution to this class of problem, but rather a set of nondominated

solutions called Pareto front. A solution belonging to the Pareto front is said to

be Pareto-optimal if there are no other solutions that can better satisfy all of the

objectives simultaneously and any improvement in one objective leads to the

worsening of at least one other objective.

Several solution methods have been developed for multiobjective optimiza-

tion problems and can be classified as the a priori, a posteriori, and hybrid
methods (Collette and Siarry, 2003), including scalar, interactive, fuzzy, and

meta-heuristic methods (see Fig. 10.2).

A Priori Preference Methods

With these methods, the decision maker defines the tradeoff to be applied (pref-

erences) before running the optimization method. The aggregative methods

belong to this family (in which the objective functions are gathered into one

objective function). More precisely, the weighted sum, goal programming,

and lexicographic methods (among others) can be mentioned (Collette and

Siarry, 2003). The drawback is that the decision maker never sees the whole



360 PART II Exploring Methods and Tools for HSC design
picture (the set of efficient solutions). Hence, the most preferred solution is

“most preferred” in relation to what the decision maker has for comparison

so far (Mavrotas, 2007, 2009).

l Weighted sum

The goal of the weighted sum is to transform the problem so that it turns

into a monoobjective optimization problem, for which various methods of

solution exist. The simplest way to proceed is to take each objective func-

tion, associate a weight with the objective function, and then take a weighted

sum of objective functions. Hence, a new, unique objective function is

obtained. The weighting factors are assigned a priori, and are modified to

obtain the Pareto front, with all nondominated solutions (or satisfactory

solutions). The major problem with this method is the variation of the

weighting factors, which often leads to Pareto fronts with a low density

of solutions (Hernandez-Rodriguez, 2011). It can be used only when the fea-

sible space of values of the objective function is convex. In the weighting

method, the weighted sum of the objective functions is optimized. The prob-

lem is stated as follows:
Min w1� f1 xð Þ+w2� f2 xð Þ+…+wp� fp xð Þ� �

subject to
g xð Þ� 0

h xð Þ¼ 0

x2 S

By varying the weights wi it is possible to obtain different efficient
solutions.
l Lexicographic method

Lexicographic problems arise naturally when conflicting objectives

exist in a decision problem but for reasons outside the control of the decision

maker, the objectives have to be considered in a hierarchical manner

(Khorram et al., 2010). This method can be viewed as an “a priori” approach

with aggregation using constraints in a decoupled method. In the lexico-

graphic ordering, the objectives are ranked according to the order of impor-

tance. The optimization process starts minimizing the most important

objective and proceeds according to the assigned order of importance of

the criteria. An alternative is to randomly select an objective when there

is no more rank available. One disadvantage of this method is that it tends

to favor certain objectives, making the Pareto front converge to a particular

region. The main advantage is its simplicity and computational efficiency,

making it competitive with other ideas, such as weighted sum of objectives



Methods and Tools for Hydrogen Supply Chain Design Chapter 10 361
(Collette and Siarry, 2003). In general, the lexicographic problem can be

expressed as follows:
Lexmin f1 xð Þ, f2 xð Þ,…, fr xð Þf g
subject to
g xð Þ� 0

h xð Þ¼ 0

x2 S

To solve the problem, the following procedure, known as the sequential
method, is adopted. First, f1(x) is minimized, and an optimal solution x∗ is

determined (f1(x∗)¼β1). The problem is then solved minimizing f2(x)
subject to f1(x

∗)¼β1, and so on at the q iteration:
Lexmin fq xð Þ : fi xð Þ� βi, i¼ 1,…, q�1
� �

subject to
g xð Þ� 0

h xð Þ¼ 0

x2 S

If either the last equation has a unique optimum or q¼ r, then its optimal
solution is a preemptive optimum. Otherwise, one proceeds to iteration q+1
(Khorram et al., 2010).
A Posteriori Preference Methods

With these methods, the decision maker chooses the solution by examining

solutions computed by the optimization model. Methods belonging to this fam-

ily produce, at the end of the optimization, a tradeoff surface (Collette and

Siarry, 2003). This kind of method produces many solutions, whereas only

one will be chosen by the decision maker, and a lot of time may be invested

to find the Pareto front. The value of using this kind of method within a multi-

criteria optimization framework is that it does not require the a priori articula-

tion of preferences by the decision maker. Instead, the aim is to generate the full

set of tradeoff solutions and not to present only one single “best” alternative.

From the set of alternatives, the decision maker can then further investigate

interesting tradeoffs and ultimately select a particular strategy that satisfies

his/her willingness to compromise (Hugo et al., 2005). In the a posteriori

method, the solutions of the problem are generated and then the decision maker

is involved, in order to select among them, the most preferred one.
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l Metaheuristic methods

Metaheuristic methods can be used as a nonaggregative approach. They

are particularly useful to treat problems known as “black box” ones in which

no mathematical property of the problem is known (Boix, 2011). This cat-

egory includes genetic algorithms, tabu search, simulated annealing, ant col-

onies, neural networks, etc. In the case of the HSC, this method has been

rarely used (Nepal et al., 2011) because linear constraints and equality con-

straints (balance equations must be satisfied with a small tolerance, gap infe-

rior to 0.001%) are involved in a major way in the formulation.
l The ε-constraint method

In the ε-constraint method, introduced by Haimes et al. (1971), all but

one of the objectives are converted into constraints by setting an upper or

lower bound to each of them, and only one objective is to be optimized

(Liu and Papageorgiou, 2013). By varying the numerical values of the upper

bounds, a Pareto front can be obtained. The ε-constraint technique fits into
the family of “a posteriori” approaches with aggregation using constraints in

a decoupled method (Collette and Siarry, 2003). This method presents some

advantages compared to the a priori methods, for example, for linear prob-

lems, the weighting method is applied to the original feasible region and

results in a corner solution (extreme solution), thus generating only efficient

extreme solutions. Yet, the ε-constraint method alters the original feasible

region and can produce nonextreme efficient solutions. An additional

advantage of the ε-constraint method is that the number of the generated

efficient solutions can be controlled by properly adjusting the number of

grid points in each one of the objective function ranges.

In the ε-constraint method, one of the objective functions is optimized

using the other objective functions as constraints, incorporating them in

the constraint part of the model as shown below:
Min f1 xð Þ
subject to
f2 xð Þ� ε2

f3 xð Þ� ε3

fp xð Þ� εp

x2 S

By parametrical variation in the right-hand-side (RHS) of the con-
strained objective functions (εi), the efficient solutions of the problem are

obtained. This method is yet easy to implement even if, in some cases,

an intensive computation time is required.

However, one of its key disadvantages is that the generated solution

largely depends on the selected vector ε (Liu and Papageorgiou, 2013).
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Themain difficulty of this method lies in determining Nadir points (in which

the criteria are their worst values). To tackle this problem, a hybrid method

can be used as the augmented ε-constraint method (AUGMECON) proposed

by Mavrotas (2007, 2009).
Hybrid Methods

The works reported in Mavrotas (2007, 2009) shed new light on determining

Nadir points combining the ε-constraint method with the lexicographic one.

According to Liu and Papageorgiou (2013), the decision makers may not have

any preference for any objective, that is, all the objectives are equally important.

In this case, it is crucial to generate a fair solution in which all normalized objec-

tive function values are as close to each other as possible. In order to generate

such solutions, the lexicographic can easily be coupled to the ε-constraint
method.

The AUGMECONmethod (Mavrotas, 2007, 2009) is an effort to effectively

implement the ε-constraint method for producing efficient solutions. To deter-

mine Utopia and Nadir points in the classical ε-constraint method, the most

common approach is to take upper and lower bounds from the payoff table

(the table with the results from the individual optimization of the p objective

functions). In a minimization problem, the Nadir value is usually approximated

with the maximum of the corresponding column. However, even in this case, it

must be sure that the obtained solutions from the individual optimization of the

objective functions are efficient solutions. In order to overcome this limitation,

the AUGMECON method proposes the use of lexicographic optimization for

every objective function in order to construct the payoff table with only efficient

solutions. A simple remedy to bypass the difficulty of estimating the Nadir

values of the objective functions is to define reservation values for the objective

functions. The reservation value acts like a lower (or upper for minimization

objective functions) bound. Values worse than the reservation value are not

allowed.

10.2.2.6 Multiple Criteria Decision-Making Approaches

Designing sustainable supply chains requires complex decision support models

that must deal with multiple dimensions of sustainability while taking into

account specific characteristics of products and their supply chain. When the

decision space involves continuous variables, multiobjective optimization tech-

niques, such as mathematical programming problems with multiple objective

functions, can be used as abovementioned. Yet multiobjective optimization

techniques lead to a set of alternatives, among which the decision maker has

to choose a solution for implementation purposes. In that context, multicriteria

decision making (MCDM) that deals with discrete decision spaces where the

decision alternatives are predetermined is a useful approach to quantify trade-

offs between economic, social, and environmental criteria. The analysis of the
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dedicated literature shows that the use of MCDM approaches for designing SCs

is a rather new, but emerging, research field (Banasik et al., 2016). Many of the

MCDMmethods share the concepts of alternatives and attributes. A set of finite

alternatives represent different choices of action available to the decision

maker. Alternatives need to be prioritized with respect to the multiple attributes

with which the MCDM problems are associated. Attributes are also referred

to as goals or decision criteria, and may be in conflict with each other, may

not be easily represented in a quantitative way and may be stochastic or fuzzy.

Without being exhaustive, some of the most used MCDM methods are the

following ones:

AHP/ANP: Analytic hierarchy process (AHP) is a pairwise comparison-

based method proposed by Saaty (1980). AnMCDMproblem is first formulated

as a hierarchy including several levels. The first level represents the goal, the

second level shows the main decision criteria, the next levels show the subcri-

teria, and the last level indicates the alternatives. The elements of each level are

compared in a pairwise fashion forming a pairwise comparison matrix.

The analytic network process (ANP) developed by Saaty (1996) is a multi-

stage decomposition method used to solve decision making problems involving

more than one criterion. It is a comprehensive decision making technique that

captures the outcome of the dependence and feedback within and between the

clusters of elements. Analytical hierarchy process (AHP) (Saaty, 1980) serves

as a starting point for ANP. ANP consists of two steps, the first is a control

hierarchy or network of criteria controlling the interactions and the second is

a network of influences among the elements and clusters. It can be said that

ANP uses a network without levels, as it is used in AHP (Ravi et al., 2005).

Typically, in AHP the top element of the hierarchy is the overall goal for the

decision model. ANP can treat complex problems with strong dependencies

among factors (Sarkis, 1999).

ELECTRE: The ELECTRE (elimination and choice translating reality)

method was introduced by Roy (1968). The basic concept of the ELECTRE

method is to deal with “outranking relations” by using pairwise comparisons

among alternatives under each one of the criteria separately. The decision

maker is requested to assign weights or importance factors in order to express

their relative importance. The ELECTRE method elicits the so-called con-

cordance index, defined as the amount of evidence to support the conclusion

that alternative Aj outranks or dominates alternatives Ai, as well as the discor-

dance index, the counterpart of the concordance index. The ELECTRE method

is sometimes unable to identify the most preferred alternative. It only produces a

core of leading alternatives. This method has a clearer view of alternatives by

eliminating less favorable ones. This method is especially convenient when

there are decision problems that involve a few criteria with a large number

of alternatives as it saves much time.

TOPSIS/M-TOPSIS: TOPSIS (Technique for Order Preference by Similarly

to Ideal Solution) was developed by Hwang and Yoon (1981) as an alternative
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to the ELECTRE method: the basic concept of this method is that the selected

alternative should have the shortest distance from the Positive Ideal Solution

(PIS) and the farthest distance from the Negative Ideal Solution (NIS) in a geo-

metrical sense. Yet, one of the problems related to TOPSIS is that it can cause

the phenomenon known as rank reversal (Garcı́a-Cascales and Lamata, 2012),

in which the alternative order of preference changes when an alternative is

added to or removed from the decision problem.

Ren et al. (2007) presented a novel, modified TOPSIS (M-TOPSIS) method

to evaluate the quality of the alternative and to deal the rank reversal problem. In

M-TOPSIS, the positive ideal solution (D+
i ) and negative ideal solution (D

�
i ) in

finite planes are found (as in the TOPSISMethod) first and then theD+D� plane

is constructed. D+ is the x-axis and D� is the y-axis. The point (D+
i , D

�
i ) repre-

sents each alternative (i¼1, 2…, n). The point A (min(D+
i ), max(D�

i )) is the

“optimized ideal reference point.” Finally, the relative distance from each eval-

uated alternative to the ideal reference point (A) is calculated to determine the

ranking order of all alternatives.
10.2.2.7 Supply Chain Network Design Under Uncertainty

Uncertainty in the supply chain is an issue that is difficult to deal with, and that

increases the complexity of a supply network. Supply chain uncertainty can be

defined by the lack of information about the environment of the supply chain,

about the processing capacities or the lack of prediction of the impact of some

control actions (van der Vorst and Beulens, 2002).

Three sources of uncertainty can be identified as upstream (supply) uncer-

tainty, internal (process) uncertainty, and downstream (demand) uncertainty

(Davis, 1993). Among these three sources, the demand is seen as the most

severe parameter due to its volatile nature and the consequences of an inaccu-

rate forecast. In addition, because some of the relevant technologies are still in

the process of maturing, many important parameters, such as processing costs

and yields, are highly uncertain. There are also uncertainties regarding the

future course of energy policies, such as carbon taxes.

Grossmann and Guill�en-Gosálbez (2010) reviewed major contributions in

process synthesis and supply chain management, including the handling of

uncertainty and the multiobjective optimization of economic and environmental

objectives, and highlighted the need to develop sophisticated optimization and

decision support tools to help in exploring diverse system alternatives under

uncertainty.

The majority of the approaches to managing these sources of uncertainty

seek to reduce uncertainty at its source, and to cope with it, thereby minimizing

its impact on performance (Simangunsong et al., 2012).

Table 10.2 shows the different techniques to treat the uncertainty of the

demand. Three distinct methods are frequently mentioned for representing

uncertainty (Chen and Lee, 2004). First, the distribution-based approach, in



TABLE 10.2 Different Ways to Model Demand Uncertainty

Technique Reference

Scenario based
approach

Tsiakis et al. (2001), Chen and Lee (2004), Almansoori and
Shah (2012), Kim et al. (2008), Nunes et al. (2015)

Distribution based
approach

Gupta and Maranas (2003), You and Grossmann (2008)

Demand generator Jung et al. (2004)

Fuzzy based approach Chen and Lee (2004), Peidro et al. (2009)

Spatially aggregated
demand model

Dayhim et al. (2014)
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which the normal distribution with specified mean and standard deviation is

widely used for modelling uncertain demands and/or parameters. For example,

You and Grossmann (2008) used normal distributions and triangular distribu-

tions to model the demand, transforming the disjunction of the triangular dis-

tribution into MINLP constraints. Second, in the fuzzy-based approach, the

forecast parameters are considered as fuzzy numbers with accompanied mem-

bership functions. Third and finally, the scenario-based approach is a classical

approach, in which several discrete scenarios with associated probability levels

are used to describe the expected occurrence of particular outcomes. Yet, the

creation of scenarios with their associated probabilities could be a problematic

and cumbersome task, especially in real-life SC problems. Also, the use of an

adequate number of scenarios could lead to a large-scale optimization problem

that may be computationally time consuming.

The objective of any SCND under uncertainty is to achieve a configu-

ration with a good performance even if uncertain parameters are involved.

In general, the uncertainty sources include the existing uncertainty in

parameters, such as supply, demand, and cost, that are inherently uncertain,

and the uncertainty caused by natural or manmade disruptions (Govindan

et al., 2017).
10.3 DESIGN OF HYDROGEN SUPPLY CHAINS

This section highlights the current trends for HSC design regarding the general

context of supply chain modelling and the typical features of HSC.

Hydrogen-based energy systems have been widely studied and modelled

(see Table 10.3). The dominant models used to describe them are supply chain

models as opposed to equilibriummodels and are quasi exclusively based on the

MILP formulation.



TABLE 10.3 Taxonomy of HSC Studies

Territorial Scale Time Scale Objective
Energy

Source Approach

Uncertain

Parameters ObservationsRegion Country Monoperiod Multiperiod Monoobjective Multiobjective

Agnolucci

et al. (2013)

Great

Britain

9

(2020–2060)

Financial Coal, Natural

gas, Biomass

(CCS),

renewable

MILP Development

of a spatially-

explicit MILP

model, called

SHIPMod

(Spatial

Hydrogen

Infrastructure

Mode)

Almansoori

and

Betancourt-

Torcat

(2016)

Germany x Financial Natural gas,

Coal (CCS),

Biomass

MILP

Almansoori

and Shah

(2006)

Great

Britain

x Financial Natural gas,

coal,

biomass,

other

renewable

sources

MILP

Almansoori

and Shah

(2009)

Great

Britain

5

(2005–2034)

Financial Natural gas,

coal,

biomass,

renewable

MILP

Continued



TABLE 10.3 Taxonomy of HSC Studies—cont’d

Territorial Scale Time Scale Objective
Energy

Source Approach

Uncertain

Parameters ObservationsRegion Country Monoperiod Multiperiod Monoobjective Multiobjective

Almansoori

and Shah

(2012)

Great

Britain

3

(2005–2022)

Financial Natural gas,

coal,

biomass,

other

renewable

sources

MILP Demand Demand

uncertainty is

modelled using

scenario-

based-

approach

De-León

Almaraz

et al. (2013)

Great

Britain

x Cost, Ecological,

Safety risk

Natural gas,

coal, biomass

MILP ε-constraint
method for the

multiperiod

problem

De-León

Almaraz

et al. (2014)

Midi-

Pyr�en�ees

France 4

(2010–2050)

Cost, Ecological,

Safety risk

Natural gas,

photovoltaic,

wind, hydro,

nuclear

MILP ε-constraint
method for the

multiperiod

problem

Gondal and

Sahir (2013)

Pakistan x Financial Biomass MINLP-GIS

Guill�en

Gosálbez

et al. (2010)

Great

Britain

5 (5years) Cost, Ecological Natural gas,

coal, biomass

MILP The Pareto

front is

obtained by the

ε-constraint
method



Han et al.

(2013)

Korea x Financial,

Ecological, Risk

Natural gas

(CCS),

renewable

sources

Fuzzy

multiple

objective

programming

Hugo et al.

(2005)

x 5

(2004–2038)

Financial,

Ecological

Natural gas,

coal,

biomass,

other

renewable

sources

MILP The territorial

scale is not

specified, only

defined as a

“geographical

region”

Kamarudin

et al. (2009)

Malaysia x Cost Natural gas,

coal,

biomass,

water

electrolysis

MILP Two methods

for demand

determination:

one based on

the prediction

of vehicle

numbers and

the other based

on the supply

of gasoline and

diesel

Kim and

Moon

(2008)

Korea x Financial, Safety Natural gas,

renewable

sources

MILP The relative

risk index

proposed is

based on the

relative risks of

individual

components of

hydrogen

infrastructure

Continued



TABLE 10.3 Taxonomy of HSC Studies—cont’d

Territorial Scale Time Scale Objective
Energy

Source Approach

Uncertain

Parameters ObservationsRegion Country Monoperiod Multiperiod Monoobjective Multiobjective

Kim et al.

(2008)

Korea x Financial Natural gas,

renewable

sources

MILP Demand Demand

uncertainty is

modelled using

scenario-

based-

approach

Li et al.

(2008)

China 5

(2010–2034)

Financial,

Ecological

Natural gas,

coal,

biomass, and

other

renewable

sources

MILP

Ochoa

Robles et al.

(2016)

Midi-

Pyr�en�ees

France 4

(2010–2050)

Cost, Ecological,

Safety risk

Natural gas,

renewable

sources

Genetic

Algorithms

Samsatli

et al. (2016)

Great

Britain

4 (seasons) Financial Wind,

renewable

sources

MILP

Sabio et al.

(2010)

Spain 8 Financial Risk Natural gas,

coal (CCS),

Biomass,

other

renewable

sources

MILP Fuel price The

uncertainty is

associated to

the operating

costs



Woo et al.

(2016)

Jeju

Island

Korea 12 (months) Financial Biomass MILP A sensitivity

analysis is

conducted to

provide

insights into

the efficient

management

of the B2H2

supply chain

Zhou et al.

(2013)

Financial,

Ecological

MINLP The Pareto

front is

obtained by an

adaptive

weighted-sum

method
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A variety of potential hydrogen supply chain pathways can be found that

make the problem original compared to more classical supply chain problems:

l the variety of feedstock and/or the major energy source from which the

hydrogen is produced. These include fossil resources, such as natural gas

and coal, as well as renewable resources, such as biomass with input from

renewable energy sources (e.g., sunlight, wind, wave, or hydropower). The

studied cases do not yet include all combinations of the factors. Intermittent

technologies (wind, photovoltaics) can be used independently or in

combination;

l the variety of technologies to produce (including chemical, biological, elec-

trolytic, photolytic, and thermo-chemical) store and distribute hydrogen.

l the size of the facility at which the hydrogen is produced and the transpor-

tation requirements to deliver it to the customer;

l the state of the technology used, whether current or to be improved by future

developments; most hydrogen and fuel cell technologies are still in the early

stages of commercialization. The generation of hydrogen from fossil

resources (such as natural gas), its transmission, distribution, and use within

industry and the refining sector are based on mature technologies and

applied on a large scale, and are not the main focus of this work, but mean-

while, they can help to build early markets and infrastructure. Major differ-

ences in the degree of maturity of some technologies must be highlighted;

although alkaline electrolyzers are a mature and affordable technology,

PEM and SO electrolyzers show a greater potential to reduce capital costs

and to increase efficiency;

l differences also exist, for example, whether or not the carbon dioxide (CO2)

byproduct is sequestered when hydrogen is produced from fossil fuel;

l various markets with multiple uses (mobility, power, industry, buildings,

and others);

l multiple stakeholders: policy and government decision makers, strategic

investors, stakeholders of hydrogen technologies for production, distribu-

tion, and storage.

l integration of different geographical scales: regional and national levels to

develop hydrogen solutions.
10.3.1 Problem Formulation for HSC Design

As presented in Table 10.3, several methods can be chosen to present the tax-

onomy of HSC problems. Following the guidelines of the general presentation

on SCmodelling, some typical features of HSC are highlighted in what follows.

10.3.1.1 Deterministic Optimization Approaches for HSC Design

Not surprisingly, following the general trends that have been previously

observed for SC problems, the optimization formulation is the classical way
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to tackle HSC design with a specific focus on MILP, as can be observed in

Table 10.3. The inputs of such models are constituted by a set of options for

the production, storage, and transportation, while the outputs are relative to

the type, numbers, location, and capacity of the production, storage, and

transportation.

The network design problem can be characterized according to different

levels of interest:

� type of problem: location, allocation, routing, location-allocation, location

routing,

� planning level considering the strategic, tactical, or operational aspects,

� temporal dimension, for example, either static or dynamic,

� type of data (deterministic, stochastic),

� type of approach (optimization, simulation),

� time horizon (short, medium, or long term),

� geographic dimension according to the problem definition.

It must be emphasized that the application of hydrogen to vehicle use serves as

an incentive to deploy HSC. Several energy sources are generally considered,

whether based on fossil fuels or renewable origins.

The model developed in Almansoori and Shah (2006) can be considered as a

precursor model to the optimal design of a network (production, transportation,

and storage) for vehicle use in which the network is demand driven. The model

was applied to a case study in Great Britain. The model was then extended in

2009 by the same authors (Almansoori and Shah, 2009) to consider the avail-

ability of energy sources and their logistics, as well as the variation of hydrogen

demand over a long-term planning horizon, leading to phased infrastructure

development as well as the possibility of selecting different scales of production

and storage technologies. Other works (Almansoori and Shah, 2012) take into

account demand uncertainty arising from long-term variation in hydrogen

demand using a scenario-based approach. The model adds another echelon,

including refueling stations and local distribution of hydrogen, minimizing

the total daily cost.

Guill�en Gosálbez et al. (2010) design an HSC for vehicle use. The design

task is formulated as a bi-criterion MILP problem. A case study in Great

Britain is introduced to illustrate the capabilities of the proposed approach.

The model optimizes an economic and environmental objective. The eco-

nomic objective is given by the total discounted cost, and the environmental

impact is measured by its contribution to climate change. The problem is

decomposed into two levels. The first level is represented by the original

MILP model, while the second level refers to the original problem without

the variables of production and storage facilities, adding some binary vari-

ables to represent the selection of the different technologies. The advantage

of this methodology is the reduction of combinatorial complexity of the

problem, and thus, its computational effort.
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Sabio et al. (2010) also design an HSC for vehicle use. The objective is to

determine the optimal design of the production-distribution network. Themodel

is formulated as an MILP problem, controlling the variation of the economic

performance of the hydrogen network. A case study in Spain is applied. The

uncertainty in the fuel price is introduced into the operating costs of the

network.

Recent models have been focusing on the integration of carbon capture and

storage technologies, as well as on the utilization of pipelines, resulting in sev-

eral scenarios of centralized HSCs using fossil fuels instead of renewable ener-

gies, if CCS technology is available. One example is the SHIPMod developed

by Agnolucci et al. (2013), that is an optimization-based framework involving a

multiperiod spatially-explicit MILP formulation, for the design of HSC and

CCS pipeline networks over a long planning horizon. These authors have

highlighted that varying the level and the spatial pattern of demand has signif-

icant impacts on both the optimal supply system and on the overall costs of

delivered hydrogen. In the work of Moreno-Benito et al. (2016), the SHIPMod

model has included additional options, such as hydrogen imports in the United

Kingdom for a multiperiod problem until 2070 in order to minimize the present

value of the total infrastructure cost using a discounted cash flow analysis.

These works have also developed a hierarchical procedure to reduce the com-

putational time by initializing the solutions in a two-stage approach.

Almansoori and Betancourt-Torcat (2016) propose an approach for the

design of the HSC under emission constraints, taking into account the use of

carbon capture storage. The problem is formulated as an MILP model. The

objective to be optimized is the total network cost, and it was applied to the

future supply chain in Germany in the year 2030, showing that the carbon emis-

sion target and CO2 tax are effective strategies for reducing emissions.

Samsatli et al. (2016) present a model that integrates wind-hydrogen elec-

tricity networks using an MILP formulation, comprising wind turbines, electro-

lyzers, fuel cells, and compressors. Some constraints linked to the installation of

wind turbines were added. The objective is the total cost of the network, and it

was applied in Great Britain, showing the optimal path to install the pipeline

network throughout the country.

Some reported works for the optimal design of an HSC involve a mixed inte-

ger nonlinear programming (MINLP) formulation. Most of the problems of

optimization of the HSC are MINLP because of the nonlinear nature of the

objectives, more particularly, the cost objective. For example, Zhou et al.

(2013) study the environmental impact of hydrogen consumption, especially

the greenhouse gas (GHG) emissions, and propose a hydrogen network integra-

tion (HNI) for refinery hydrogen management. They present a systematic math-

ematical modelling methodology for the optimal synthesis of sustainable

refinery hydrogen networks. The proposed mixed integer nonlinear program-

ming (MINLP) model accounts for both the economic and the environmental

aspect of the hydrogen network. The total annual cost is employed to evaluate
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the economic efficiency of the network, while the environmental performance

is assessed by the total CO2 emission of the network. A multiobjective optimi-

zation is carried out via the Pareto front generation, which is obtained by an

adaptive weighted-sum method. Then a superstructure-based mixed integer

optimization methodology is proposed for the integration of the hydrogen net-

work integration aimed at balancing the economic and environmental objec-

tives for sustainable development.
10.3.1.2 Multiobjective Optimization and MCDM

Initially, HSC modelling was mainly tackled by monoobjective optimization

(see Table 10.3). In these studies, the objective to be considered has been based

on cost considerations. Considering a multiobjective formulation, the problem

decision support for HSC design will have to encompass cost consideration,

environmental impact, and risk, for which several models exist, such as life

cycle costing (LCC), life cycle assessment (LCA), and risk assessment (RA).

The literature analysis shows that only significant criteria belonging to each cat-

egory are considered in the methodological frameworks developed.

Environmental impact in terms of life cycle assessment (LCA) has been con-

sidered by Guill�en Gosálbez et al. (2010). The risk of combustion or explosion

of leaked H2 in hydrogen infrastructure has been investigated in several studies

(Kim and Moon, 2008; Landucci et al., 2010; Rosyid et al., 2007). Kim et al.

(2008) have integrated the safety hazard risks with the economic cost of hydro-

gen supply chains.

The literature survey also reveals that the multiobjective optimization prob-

lem is often solved with an ε-constraint method, or less frequently with the

weighted-sum method (Zhou et al., 2013), and produces Pareto-optimal curves

that reveal the tradeoffs among the three objectives.

Guill�en Gosálbez et al. (2010) proposed a bi-criterion formulation that con-

siders simultaneously the total cost and life cycle impact of the hydrogen infra-

structure and developed an efficient solution method that overcomes the

numerical difficulties associated with the resulting large-scale MILP. More pre-

cisely, the cost criterion is represented by the total discounted cost, calculated as

the summation of the discounted costs associated with each time period,

whereas the environmental impact is measured through its contribution to cli-

mate change.

Hugo et al. (2005) represents the financial objectives as the Net Present

Value (NPV) and the environmental objective as the greenhouse gas (GHG)

emissions. These authors have developed an optimization-based formulation

that investigates different hydrogen pathways in Germany. The model identifies

the optimal infrastructure in terms of both investment and environmental cri-

teria for many alternatives of H2 configurations. This model has been extended

and considered as a basis for other works (Li et al., 2008) for a case study in

China. At the same time, in Iran, Qadrdan et al. (2008) examined a model
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for the investigation of an optimal hydrogen pathway and the evaluation of the

environmental impacts of the hydrogen supply system. Another study also con-

sidered hydrogen from water, using electricity from hydro and geothermal

power in Iceland for exportation (Ingason et al., 2008).

Sabio et al. (2011) take into account eight environmental indicators in a two-

step method based on a combination of MILP multiobjective optimization with

a postoptimal analysis by principal component analysis (PCA) to detect and

omit redundant environmental indicators.

The work of Dagdougui (2011) describes the risk hazards (delimitation and

explanation of potential risks in some parts of the hydrogen infrastructure: pipe-

line and storage tank) to demonstrate the consequences of a hydrogen accident

in the case of future infrastructure operation. The risk is integrated into the HSC

to minimize the global risk to population and the environment. The model is

applied to regional case studies in the region of Liguria (North of Italy) and

Morocco. A GIS based methodology was coupled based on the clean feedstock

for hydrogen production. Then, the minimization of the cost of installation of

new onsite hydrogen refueling stations, the cost of conversion of existing gas-

oline to hydrogen stations, and the cost of transporting hydrogen fuel to offsite

stations is taken into account. The objective of this work was to develop a deci-

sion support system for the localization of hydrogen refueling stations, consid-

ering the potential of production within a specific boundary region.

The work of De-León Almaraz et al. (2013) involves a formulation-based on

mixed integer linear programming with a multicriteria approach in which three

objectives have to be optimized simultaneously, i.e., cost, global warming

potential, and safety risk, either at the national or regional scale. This problem

is solved by implementing lexicographic and Ɛ-constraint methods. The solu-

tion consists of a Pareto front, corresponding to different design strategies in the

associated variable space. Multiple choice decision making based on

M-TOPSIS (Modified Technique for Order Preference by Similarity to Ideal

Solution) analysis is then selected to find the best compromise. The mathemat-

ical model is applied to a case study in Great Britain reported in Almansoori and

Shah (2006) for validation purposes, comparing the results between the mono

and multiobjective approaches. In the regional case, the modelling and optimi-

zation of the HSC in the Midi-Pyr�en�ees region was carried out in the framework

of the project “H2 as a green fuel” (see Fig. 10.3). The sensitivity of geograph-

ical scale was analyzed in De-León Almaraz et al. (2014) to solve a real problem

of the HSC in the former “Midi-Pyr�en�ees” region in France. In order to analyze
the economies of scale and the real geographical implications, a comparison

between a regional and a national case for France is discussed in De-León

Almaraz et al. (2015).

The decision making trial and evaluation laboratory (DEMATEL) method,

used to study and solve the complicated and intertwined problem group, has

been used by Ren et al. (2013) to analyze the cause-effect relationships among

the factors that influence the sustainability of hydrogen supply. The interest of
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this method, based on graph theory, is to divide multiple criteria into a cause-

and-effect group, and the causal relationships in a network relationship map.

Four aspects were evaluated: economic, technological, environmental, and

societal. A study case was developed in China, and the results are consistent

with the current conditions.

Although the weighted-sum method and the ε-constraint method are the

most used when solving multiobjective problems, it must be emphasized that

assigning a set of compatible objectives, as cost efficiency and safety level,

is difficult without knowledge of their possible values (Han et al., 2013), lead-

ing to a vague final objective and thus an invalid solution. To overcome this

difficulty, fuzzy linear programming with multiple objectives constitutes an

interesting alternative. In general, in a fuzzy set methodology, it is assumed that

there may be a fuzzy goal for each of the objective functions (Sakawa, 2012).

The fuzzy set concept can be adopted to provide a clearer theoretical analysis

than the others methods (Han et al., 2013). The fuzzy set method consists of

minimizing the distance between the ideal and the desired solutions. Following

this approach, Han et al. (2013) designed the HI (H2 infrastructure) considering

economic cost efficiency, safety, and low CO2 emissions simultaneously. An

optimization modelling approach is thus proposed to address such multiple

objectives in the HI design. The proposed model employs fuzzy multiple objec-

tive programming to compute a compromising solution among multiple objec-

tives. Three objective functions are considered: (1) minimization of the total

supply cost of the H2 of the HSC, (2) minimization of the total relative risk

of the HSC, (3) minimization the total mitigation cost of CO2 for the HSC.

The potential of genetic algorithms (GA) via a variant of NSGA-II has also

been explored to cope with the multiobjective formulation, in order to produce

compromise solutions automatically (Ochoa Robles et al., 2016). In this work,

cost and global warming potential have been simultaneously optimized so that

the Pareto Front has been directly obtained. The interest of such an approach is

that nonlinearities that may be involved in the formulation of the HSC problem

can also be taken into account with a generic framework.
10.3.1.3 Multiperiod Nature

Initially, static models for HSC were developed (Agnolucci et al., 2013;

Almansoori and Betancourt-Torcat, 2016; Almansoori and Shah, 2006, 2009,

2012; Gondal and Sahir, 2013; Kamarudin et al., 2009; Kim et al., 2008;

Samsatli et al., 2016). Beyond these static models, planning models over mul-

tiple periods have been developed. HSC design has to be considered under

dynamic conditions with demand exhibiting different realization at each period

from deployment to maturity. This is generally modelled through a multiperiod

approach in which the demand profiles vary from one period to another, cap-

turing market dynamics.
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In energy supply planning and design, coupling between investment/design

decisions and operating decisions constitutes an interesting challenge due to the

multiscale nature of the problem. Capacity investment and design decisions are

typically made on a much longer time scale than operation decisions, while the

operation of existing capacities requires decisions on a much faster time scale.

The coupling between these decisions makes the overall decision problem a

multiscale one (Lee, 2014).
10.3.1.4 HSC Supply Chain Uncertainty

Stochastic modelling tools are classical approaches to the incorporation of dif-

ferent sources of uncertainty into the decision making process. The demand has

been the most studied source of uncertainty (Almansoori and Shah, 2012; Chen

and Lee, 2004; Dayhim et al., 2014; Gupta andMaranas, 2003; Jung et al., 2004;

Kim et al., 2008; Nunes et al., 2015; Peidro et al., 2009; Tsiakis et al., 2001; You

and Grossmann, 2008), whereas other uncertainties, especially those appearing

in the coefficients of the objective function (product prices, operating cost, etc.)

have received much less attention (Sabio et al., 2010).

Traditionally, stochastic models that consider the variability of the uncertain

parameters typically optimize the expected economic performance of the sys-

tem. These approaches can lead to solutions that perform well on average but

have a high probability of unfavorable solutions.

The modelling of the uncertainty represents a major issue in the HSC

because it deals with the lack of information or forecasts due to the novel nature

of the network.

For example, to solve the stochastic mathematical model, the scenario-based

approach is employed in Kim et al. (2008). The scenarios emerge from the

assumption that the hydrogen demands are “above average,” “average,” or

“below average.” Numerically, “above average” and “below average” scenarios

are assumed as +20% and�20% of the average values, respectively. First-stage

decisions are generally hydrogen production quantities. All the other decision

variables are considered as second-stage decisions, which are defined for each

scenario.

Nunes et al. (2015) propose the sample average approximation (SAA) tech-

nique to manage the large number of scenarios, which enables the calculation of

estimates for the objective function value using Monte Carlo simulations while

providing statistically certified quality. This technique consists of repeatedly

optimizing a set of random sample scenarios, generating different possible solu-

tions for the problem. Then, these solutions are evaluated using new scenarios to

allow the calculation of the statistical properties, evaluating their quality regard-

ing the optimality of the problem.

The previous studies of Almansoori and Shah (2012) and Dayhim et al.

(2014) proposed to represent the logistic infrastructure, considering the uncer-

tainty in the demand forecast and sought to evaluate different investment
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alternatives. Comparing the new model with that presented by Almansoori and

Shah (2012), there is a reduction in the number of variables, which illustrates the

effect of the proposed reformulation of the mathematical model and the data

analysis performed.

10.3.1.5 Sensitivity Analysis

The parameter values and assumptions of any model are subject to change and

error. Sensitivity analysis is the investigation of these potential changes and

errors and their impacts on conclusions to be drawn from the model

(Pannell, 1997).

A detailed sensitivity analysis using design of experiments methodology is

presented in Ochoa Robles et al. (2015). The importance of hydrogen demand is

significantly highlighted, because this factor strongly conditions the optimiza-

tion criterion of the HSC model. Because the demand for the future HSC is not

yet known, its uncertainty is an important issue to be taken into account. The

Production Capital Cost is, at a lower level, another significant factor on hydro-

gen production cost.

Woo et al. (2016) present a new optimization-based approach for design and

operation of a renewable hydrogen system from diverse types of biomass,

mostly because some works only evaluate technologies that use renewable

energy sources in their models, for example, renewable electricity Kim and

Kim (2016). The model is tested on an upcoming biomass-to-hydrogen

(B2H2) supply chain for HFCVs at Jeju Island, South Korea by estimating

the expected hydrogen demand in 2040. A sensitivity analysis is conducted

to provide insights into the efficient management of the B2H2 supply chain.

10.3.1.6 Geographical Information System (GIS)

Literature review reveals that few researchers have used the spatial dimension

to construct the infrastructure for hydrogen. In that context, Geographic infor-

mation systems (GIS), massive software packages providing a range of func-

tions for creating, acquiring, integrating, transforming, visualizing,

analyzing, modelling, and archiving information about the surface and near-

surface of the earth (Goodchild, 2009), constitute a powerful tool to develop

energy supply chain models. Some examples of geographic approaches include

the study of Ball et al. (2006) who developed the MOREHyS (Model for Opti-

mization of Regional Hydrogen Supply) approach to the energy system with the

integration of geographic aspects in the analysis by the GIS-based method for

Germany. This model identifies the cost-optimal way for constructing and

implementing an (initial) hydrogen supply infrastructure, as well as possible tra-

deoffs between hydrogen production and electricity generation within a

country-specific context (high degree of regionalization) (Ball et al., 2006).

Johnson et al. (2008) also used GIS for modelling regional hydrogen infra-

structure deployment using detailed spatial data and applied the methodology to
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the case study of a potential coal-based hydrogen transportation system in Ohio

with CCS. The objective of this work was to optimize hydrogen infrastructure

design for the entire state. TheMARKALmodel has been applied to the UK and

used to develop a GIS-based spatial model to represent the layout of hydrogen

infrastructure (Yang and Ogden, 2013).

In the model proposed by Gondal and Sahir (2013), the pipeline network of

the natural gas distribution companies has been interfaced with a GIS system.

The objective function used is based on profit maximization. An integrated

renewable hydrogen model based on a MINLP formulation has been developed

based on biomass feedstocks as the input material for hydrogen production in

Pakistan because of the strong agrarian economy there. The model involves a

statistical database and an up-to-date geographical information system to pre-

sent accurate and logical results for effective energy planning.

There are very few contributions that have reported to date on hydrogen

infrastructure modelling across spatial scales, even if the resulting hydrogen

network would depend heavily on the country/region-specific conditions.

The framework proposed in De-León Almaraz et al. (2015) has addressed

the national and regional scales by linking geographic constraints found by

the GIS model to the MILP model.
10.4 CONCLUSIONS

A key point in the development of the hydrogen supply chain is the demonstra-

tion of the feasibility of its infrastructure, while many technical, economic, and

social obstacles must be overcome. Some strategic roadmaps are currently pub-

lished about the energy potentialities of hydrogen at the European, national, and

regional levels. Their main objective is to evaluate some industrial, technolog-

ical, environmental, and social issues and to identify the main obstacles asso-

ciated with the hydrogen economy. A literature review of recent dedicated

scientific publications revealed that authors agree on the need to develop sys-

temic studies in order to demonstrate the feasibility of the sector and to validate

the technical and economic interest in the production and recovery of hydrogen

produced from renewable sources. Such works involve the development of

models based on economic scenarios for hydrogen deployment.

Following these guidelines, this chapter has presented the various existing

approaches to modelling and optimization of the hydrogen supply chain.

Designing the hydrogen supply chain in not a trivial task because different alter-

natives to produce, store, and distribute H2 exist.

Most works devoted to hydrogen supply chain modelling are based on math-

ematical programming approaches and are generally limited to monoobjective

(cost minimization) or bi-criteria assessment, generally based on either cost-

environment or cost-safety. This is not enough when sustainable development

must be taken into account in the strategic stage of any new project, when social,

economic, and environmental impacts are interconnected. The spatial- or
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GIS-based approach cannot be considered as a general methodology for finding

the optimal HSC configuration but can be coupled to mathematical program-

ming to design the HSC. Very few contributions have reported to date on

hydrogen infrastructure modelling across spatial scales.

Stochastic methods and genetic algorithms, in particular, have been used

more recently for HSC optimization and are well suited to handle multiobjec-

tive optimization problems because they are able to search for Pareto solutions

simultaneously. More efforts toward robust and sophisticated methods are nec-

essary to deal with demand uncertainty, which is a significant parameter in HSC

design.
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