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Abstract— This article explains how bubbles and droplets can be simu-
lated using partitioned solvers. The flow in the liquid is simulated with a
black box fluid solver. A structural solver calculates the interface position.
As the interaction between both solvers is strong, implicit coupling with im-
plicit stepping in the coupling iterations of a time step is required to avoid
divergence. Therefore, a reduced order model of the black box fluid solver,
based on modal analysis, is build up during the coupling iterations. This
model is applied to an oscillating liquid droplet, a bubble rising in stag-
nant liquid and the formation of a bubble at the end of a vertical needle,
submerged in quiescent water.
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I. INTRODUCTION

THE dynamics of bubbles and droplets result from the inter-
action of surface tension on the interface, conceived as a

zero thickness structure, and the fluid flow on both sides of the
interface. The point of view of Fluid-Structure Interaction (FSI)
algorithms is thus a logical choice. Using the FSI nomencla-
ture, most techniques commonly used to simulate bubbles and
droplets are monolithic schemes. The position of the interface
and the fluid flow are calculated in a single code.

Here, a partitioned approach is presented. The flow in the
liquid is simulated using a black box commercial code. The
position of the interface is calculated with a structural solver.
The solvers for axisymmetric problems without mass transfer
between the gas and the liquid are defined in Section II. As the
interaction between both solvers is strong, subsequent calls of
the structural solver and the fluid solver, lead to divergence. Im-
plicit stepping in the coupling iterations requires the Jacobian of
the fluid solver. The Jacobian of the black box fluid solver is not
available. Thus, a reduced order model, based on modal anal-
ysis, is build up during the coupling iterations of a time step in
order to have an approximation for the Jacobian. This coupling
procedure, developed by Vierendeels [1], is explained in Section
III. Some results are presented in Section IV.

II. SOLVERS

A. Structural solver

If viscous stresses on the interface and the variation of the
surface tension coefficient σ are neglected, equation (1) must be
satisfied on the interface.

P + σκ = 0 (1)

with P the pressure jump across the interface and κ the surface
curvature, which is calculated from the principal radii of curva-
ture, R1 and R2.
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The interface of an axisymmetric bubble or droplet is repre-
sented with a curve in a meridional plane, discretised with N
nodes. The coordinates of the nodes are placed in a vector X ,
the pressure jump P in the nodes make up the vector P . The left
hand side of equation (1), evaluated in node i is further indicated
as g1,i(X,P ). A second equation g2,i(X) = 0 in node i keeps
the nodes equidistant. The expressions g1 and g2 for all nodes
on the interface are written as a vector:

G(X,P ) = 0 (2)

The code to solve equation (2) for X is called the structural
solver.

B. Fluid solver

The pressure in the gas is modelled uniform in space. When
the gas is the surrounding fluid, the pressure is constant. For
a bubble, the gas pressure is calculated from the mass, volume
(X) and temperature using the ideal gas law.

To calculate the pressure distribution on the liquid side of the
interface, Fluent 6.1 is used. However, the motion of the
boundary representing the bubble or droplet is not known in ad-
vance. The solver must be capable to compute the pressure dis-
tribution on the liquid side of the interface, given a deformation
of this interface.

The call of Fluent, followed by the conversion of the pres-
sure distribution on the liquid side of the interface into P , is
called the fluid solver, represented by equation (3).

P = F(X) (3)

III. COUPLING PROCEDURE

The calculations start from time step n so Xn, P n and V n

are known, with V denoting the vector with the node velocities.
Next, a subscript k is used to indicate the coupling iteration in a
time step. Now is explained how Xn+1 and P n+1 are obtained:
• First coupling iteration (k = 1)
A first guess for the position of the interface in time-step n +
1, denoted Xn+1

1 , is calculated using an explicit forward Euler
scheme:

Xn+1
1 = Xn + V n∆t (4)

with ∆t the time step. P n+1
1 is obtained from the fluid solver:

P n+1
1 = Fn+1

(
Xn+1

1

)
(5)

• Second coupling iteration (k = 2)
To simplify notation, the superscript n + 1 is dropped. With
P = P 1, Newton’s method is used to solve equation (2) for X̃2.



X2 is then obtained as X1 + ω
(
X̃2 −X1

)
, with ω = 0.05.

P 2 is calculated with the fluid solver.

P 2 = F (X2) (6)

• Coupling iteration k + 1 (k ≥ 2)
At this point, k positions of the interface with the correspond-
ing pressure distributions are known. They can be converted in
k− 1 displacement mode(s) vm = Xm −Xk, with m running
from 1 to k − 1, and the associated mode(s) wm = P m − P k

describing the corresponding change in pressure jump. Any dis-
placement ∆Xk+1 = Xk+1 −Xk can be projected on the set
of displacement modes, with a remainder term ∆Xremainder.

∆Xk+1 =
k−1∑
m=1

αmvm + ∆Xremainder (7)

The coefficients αm are determined with the least-squares tech-
nique, so that the remainder term is minimized. α1

...
αk−1

 =

 vT
1 v1 . . . vT

1 vk−1
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. . .

...
vT
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(8)
The distribution of the pressure jump corresponding to the posi-
tion Xk+1 can be estimated from:

P̂ k+1 = P k +
k−1∑
m=1

αmwm = F̂(Xk+1) (9)

In this way, a reduced order model F̂ for the fluid solver
is obtained. To distinguish between P coming from the re-
duced order model and from the actual fluid solver, a hat is
used. The Jacobian of this reduced order model is given by[
w1 . . . wk−1

]
multiplied by the right hand side of equa-

tion (8), without ∆Xk+1. Using the reduced order model and
its Jacobian, we can solve equation (2) implicitly using New-
ton’s method:

Xk+1,s+1 = Xk+1,s −

(
∂G
∂X

+
∂G
∂P

∂P̂

∂X

)−1

Gk+1,s (10)

with Gk+1,s = G
(
Xk+1,s, P̂ k+1,s

)
.

Starting from the second time step, modes of the previous time
step are used to get a better reduced order model. This greatly
accelerates convergence.

IV. RESULTS

A. Oscillating droplet

The small amplitude oscillation of an axisymmetric and left-
right symmetric water droplet in air has been simulated. The
value found for the angular frequency of the small amplitude
oscillation of a water droplet with equilibrium radius R0 =
1.48 mm is ω = 417.49 rad/s, which differs only 0.2 % from
the linear approximation by Lamb [2].

Large amplitude oscillation has also been studied. Grid inde-
pendence of the result has been proved.

B. Rising bubble

Bubble A in Table I from Hnat et al. [3], an air bubble rising
in mineral oil due to gravity, has been simulated in a moving ref-
erence frame. The steady-state bubble shape is shown in Figure
1. The terminal rise velocity of 0.2390 m/s differs 11 % from the
experimental value.

Fig. 1. Comparison of the experimental (left) and numerical (right) steady-state
shape of bubble A in Table I from Hnat et al. [3].

C. Bubble detachment from a needle

The growth and detachment of an air bubble at the end of
a vertical needle, submerged in quiescent water has also been
studied. For the gas flow through the needle, a model from Og̃uz
et al. [4] has been used. A specific case studied experimentally
by Longuet-Higgins et al. [5], has been simulated. The experi-
mental and numerical results are compared in Figure 2.

(a) (b) (c)

Fig. 2. Comparison of the experimental (left) and numerical (right) bubble
shape at (a) -2 ms, (b) at detachment and (c) 2 ms afterwards, for a case
studied experimentally by Longuet et al. [5].

V. CONCLUSIONS

The ALE description allows a very accurate representation of
the interface of bubbles and droplets. The position of the inter-
face is calculated with a structural solver using a reduced order
model for the black box fluid solver. The reduced order model
allows efficient implicit coupling of the partitioned solvers. The
model has succesfully been applied to an axisymmetric water
droplet oscillating in air and an air bubble growing and detach-
ing from a vertical needle, submerged in quiescent water. For
an air bubble rising in stagnant mineral oil, less agreement with
experiments is obtained.
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