Supplementary Material

Our proof for Theorem 20 builds on the following intermediary lemmata. In order not to unnecessarily repeat ourselves in this section, we fix some upper rate operator \bar{Q} for the remainder. Furthermore, we let

$$
D:=\left\{\delta \in \mathbb{R}_{>0}: \delta\|\bar{Q}\| \leq 2\right\}
$$

and for all $\delta \in D$, let $\bar{T}(\delta):=I+\delta \bar{Q}$; due to Lemma 12, $\bar{T}(\delta)$ is an upper transition operator whenever $\delta \in D$, and henceforth we will use this fact implicitly.

Lemma 23 For all $\delta \in D, f, h \in \mathcal{L}$ and $n \in \mathbb{N}$,

$$
\begin{equation*}
\left\|\left(I+\delta \bar{Q}_{f}\right)^{n}[h]\right\| \leq n \delta\|f\|+\|h\| \tag{13}
\end{equation*}
$$

Proof Let us prove the result by induction. For the base case $n=1$, it follows from the definition of \bar{Q}_{f} and (T7) that

$$
\left\|\left(I+\delta \bar{Q}_{f}\right)[h]\right\| \leq\|\delta f\|+\|\bar{T}(\delta)[h]\| \leq \delta\|f\|+\|h\|
$$

as required. For the inductive step, we assume that (13) holds for $n=k$ with $k \in \mathbb{N}$, and set out to show that it then also holds for $n=k+1$. From the definition of \bar{Q}_{f}, (T7) and the induction hypothesis, it follows immediately that

$$
\begin{aligned}
\left\|\left(I+\delta \bar{Q}_{f}\right)^{k+1}[h]\right\| & \leq \delta\|f\|+\left\|\bar{T}(\delta)\left(I+\delta \bar{Q}_{f}\right)^{k}[h]\right\| \\
& \leq \delta\|f\|+\left\|\left(I+\delta \bar{Q}_{f}\right)^{k}[h]\right\| \\
& \leq \delta(k+1)\|f\|+\|h\|,
\end{aligned}
$$

as required.

The second intermediary lemma builds on Lemma 23.
Lemma 24 Fix some $\delta \in D$ and $f, h \in \mathcal{L}$. Then for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\left\|\left(I+\delta \bar{Q}_{f}\right)^{n}[h]-h\right\| \leq n \delta c_{1}+n^{2} \delta^{2} c_{2}, \tag{14}
\end{equation*}
$$

with $c_{1}:=\|f\|+\|\bar{Q}\|\|h\|$ and $c_{2}:=\|\bar{Q}\|\|f\|$.
Proof We again give a proof by induction. For the base case $n=1$, note that

$$
\begin{aligned}
\left\|\left(I+\delta \bar{Q}_{f}\right)[h]-h\right\| & =\|\delta f+h+\delta \bar{Q}[h]-h\| \\
& \leq \delta\|f\|+\delta\|\bar{Q}\|\|h\|=\delta c_{1},
\end{aligned}
$$

which implies the inequality in the statement for $n=1$.
For the inductive step, we assume that (14) holds for $n=k$ with $k \in \mathbb{N}$, and set out to verify that it holds for $n=k+1$ as well. Observe that

$$
\left(I+\delta \bar{Q}_{f}\right)^{k+1}[h]-h
$$

$$
=\delta f+\left(I+\delta \bar{Q}_{f}\right)^{k}[h]-h+\delta \bar{Q}\left(I+\delta \bar{Q}_{f}\right)^{k}[h] .
$$

Recall from (R5) that

$$
\left\|\delta \bar{Q}\left(I+\delta \bar{Q}_{f}\right)^{k}[h]\right\| \leq \delta\|\bar{Q}\|\left\|\left(I+\delta \bar{Q}_{f}\right)^{k}[h]\right\| .
$$

We infer from these two observations, the induction hypothesis and Lemma 23 that

$$
\begin{aligned}
& \|(I+ \\
& \left.\quad \delta \bar{Q}_{f}\right)^{k+1}[h]-h \| \\
& \quad \leq \delta\|f\|+\left(k \delta c_{1}+k^{2} \delta^{2} c_{2}\right)+\delta\|\bar{Q}\|(k \delta\|f\|+\|h\|) \\
& \quad=(k+1) \delta c_{1}+k^{2} \delta^{2} c_{2}+k \delta^{2} c_{2} .
\end{aligned}
$$

Since $k^{2}+k \leq(k+1)^{2}$, we infer from this that

$$
\left\|\left(I+\delta \bar{Q}_{f}\right)^{k+1}[h]-h\right\| \leq(k+1) \delta c_{1}+(k+1)^{2} \delta^{2} c_{2}
$$

which is the inequality we were after.
Our next step is to use Lemma 24 to prove a 'generalisation' of Lemma E. 5 in [14]. In this result, we need the fact that \bar{Q} is Lipschitz:
R7. $\|\bar{Q}[f]-\bar{Q}[g]\| \leq\|\bar{Q}\|\|f-g\|$ for all $f, g \in \mathcal{L}$;
this is trivial if $\|\bar{Q}\|=0$ and follows from Lemma 12 (with $\Delta=2 /\|\bar{Q}\|$) and (T8) (for $I+\Delta \bar{Q}$) otherwise, see also [4, R11] or [7, LR8].

Lemma 25 Fix some $\delta \in D$ and $f, h \in \mathcal{L}$. Then for all $n \in \mathbb{N}$,

$$
\left\|\left(I+\delta \bar{Q}_{f}\right)^{n}[h]-\left(I+n \delta \bar{Q}_{f}\right)[h]\right\| \leq n^{2} \delta^{2} c_{3}+n^{3} \delta^{3} c_{4},
$$

with $c_{3}:=\|\bar{Q}\|\|f\|+\|\bar{Q}\|^{2}\|h\|$ and $c_{4}:=\|\bar{Q}\|^{2}\|f\|$.
Proof Our proof will be one by induction. The base case $n=1$ is trivially satisfied. For the inductive step, we assume that the inequality in the statement holds for $n=k$ with $k \in \mathbb{N}$. To prove that the inequality in the statement holds for $n=k+1$, we observe that

$$
\begin{aligned}
& \left(I+\delta \bar{Q}_{f}\right)^{k+1}[h]-\left(I+(k+1) \delta \bar{Q}_{f}\right)[h] \\
& =\delta f+\left(I+\delta \bar{Q}_{f}\right)^{k}[h]-\left(I+k \delta \bar{Q}_{f}\right)[h] \\
& \quad-\delta f-\delta \bar{Q}[h]+\delta \bar{Q}\left(I+\delta \bar{Q}_{f}\right)^{k}[h] .
\end{aligned}
$$

It follows from this, the induction hypothesis, (R7) and Lemma 24 that

$$
\begin{aligned}
\|(I+ & \left.\delta \bar{Q}_{f}\right)^{k+1}[h]-\left(I+(k+1) \delta \bar{Q}_{f}\right)[h] \| \\
& \leq\left(k^{2} \delta^{2} c_{3}+k^{3} \delta^{3} c_{4}\right) \\
& \quad+\delta\|\bar{Q}\|\left\|\left(I+\delta \bar{Q}_{f}\right)^{k}[h]-h\right\| \\
\leq & \left(k^{2} \delta^{2} c_{3}+k^{3} \delta^{3} c_{4}\right)+\delta\|\bar{Q}\|\left(k \delta c_{1}+k^{2} \delta^{2} c_{2}\right) \\
& =\left(k^{2}+k\right) \delta^{2} c_{3}+\left(k^{3}+k^{2}\right) \delta^{3} c_{4}
\end{aligned}
$$

$$
\leq(k+1)^{2} \delta^{2} c_{3}+(k+1)^{3} \delta^{3} c_{4},
$$

which is the inequality we were after.
As a final intermediary step, we generalise Lemma 25; this result is to Lemma 25 what Lemma E. 6 is to Lemma E. 5 in [14].
Lemma 26 Fix some $\delta \in D, f, h \in \mathcal{L}$ and $k \in \mathbb{N}$. Then for all $n \in \mathbb{N}$,

$$
\left\|\left(I+\frac{\delta}{k} \bar{Q}_{f}\right)^{n k}[h]-\left(I+\delta \bar{Q}_{f}\right)^{n}[h]\right\| \leq n \delta^{2} c_{3}+n^{2} \delta^{3} c_{4},
$$

with c_{3} and c_{4} as in Lemma 25.
Proof Let us prove the result by induction. For the base case $n=1$, we apply Lemma 25 (with $\delta / k \in D$ here as δ there and k here as n there) to find that

$$
\begin{aligned}
& \|\left(I+\frac{\delta}{k} \bar{Q}_{f}\right)^{k} {[h]-\left(I+k \frac{\delta}{k} \bar{Q}_{f}\right)[h] \| } \\
& \leq k^{2}\left(\frac{\delta}{k}\right)^{2} c_{3}+k^{3}\left(\frac{\delta}{k}\right)^{3} c_{4}=\delta^{2} c_{3}+\delta^{3} c_{4}
\end{aligned}
$$

For the inductive step, we assume that the inequality in the statement holds for $n=\ell$ with $\ell \in \mathbb{N}$, and set out to establish the inequality in the statement for $n=\ell+1$. Observe that

$$
\begin{aligned}
\left(I+\frac{\delta}{k}\right. & \left.\bar{Q}_{f}\right)^{(\ell+1) k}[h]-\left(I+\delta \bar{Q}_{f}\right)^{\ell+1}[h] \\
= & \left(I+\frac{\delta}{k} \bar{Q}_{f}\right)^{k}\left(I+\frac{\delta}{k} \bar{Q}_{f}\right)^{\ell k}[h] \\
& -\left(I+\frac{\delta}{k} \bar{Q}_{f}\right)^{k}\left(I+\delta \bar{Q}_{f}\right)^{\ell}[h] \\
& +\left(I+\frac{\delta}{k} \bar{Q}_{f}\right)^{k}\left(I+\delta \bar{Q}_{f}\right)^{\ell}[h] \\
& -\left(I+\delta \bar{Q}_{f}\right)\left(I+\delta \bar{Q}_{f}\right)^{\ell}[h] .
\end{aligned}
$$

Let us denote the norm of the first two terms on the right hand side by $\eta_{1: 2}$ and that of the last two terms by $\eta_{3: 4}$, such that

$$
\left\|\left(I+\frac{\delta}{k} \bar{Q}_{f}\right)^{(\ell+1) k}[h]-\left(I+\delta \bar{Q}_{f}\right)^{\ell+1}[h]\right\| \leq \eta_{1: 2}+\eta_{3: 4} .
$$

Since $\bar{T}(\delta / k)$ satisfies (T8) because $\delta / k \in D$, the same is true for $\bar{T}(\delta / k)_{\delta f / k}$ - we leave this for the reader to check - and therefore also for $\bar{T}(\delta / k)_{\delta f / k}^{k}=\left(I+\frac{\delta}{k} \bar{Q}_{f}\right)^{k}$; consequently,

$$
\eta_{1: 2} \leq\left\|\left(I+\frac{\delta}{k} \bar{Q}_{f}\right)^{\ell k}[h]-\left(I+\delta \bar{Q}_{f}\right)^{\ell}[h]\right\|
$$

$$
\leq \ell \delta^{2} c_{3}+\ell^{2} \delta^{3} c_{4}
$$

where the second inequality is exactly the induction hypothesis. Moreover, it follows from Lemma 25 (with $\left(I+\delta \bar{Q}_{f}\right)^{\ell}[h]$ here as h there, k here as n there and $\delta / k \in D$ here as δ there) and Lemma 23 (with ℓ here as n there) that

$$
\begin{aligned}
\eta_{3: 4} & \leq \delta^{2}\left(\|\bar{Q}\|\|f\|+\|\bar{Q}\|^{2}\left\|\left(I+\delta \bar{Q}_{f}\right)^{\ell}[h]\right\|\right)+\delta^{3} c_{4} \\
& \leq \delta^{2}\left(\|\bar{Q}\|\|f\|+\|\bar{Q}\|^{2} \ell \delta\|f\|+\|\bar{Q}\|^{2}\|h\|\right)+\delta^{3} c_{4} \\
& =\delta^{2} c_{3}+\ell \delta^{3} c_{4}+\delta^{3} c_{4} .
\end{aligned}
$$

Combining our observations, we find that

$$
\begin{aligned}
\|(I+ & \left.\frac{\delta}{k} \bar{Q}_{f}\right)^{(\ell+1) k}[h]-\left(I+\delta \bar{Q}_{f}\right)^{\ell+1}[h] \| \\
& \leq \ell \delta^{2} c_{3}+\ell^{2} \delta^{3} c_{4}+\delta^{2} c_{3}+\ell \delta^{3} c_{4}+\delta^{3} c_{4} \\
& =(\ell+1) \delta^{2} c_{3}+\left(\ell^{2}+\ell+1\right) \delta^{3} c_{4} \\
& \leq(\ell+1) \delta^{2} c_{3}+(\ell+1)^{2} \delta^{3} c_{4},
\end{aligned}
$$

which is the inequality we were after.

Proving Theorem 20 is now simply a matter of combining (6) and Lemma 26.

Proof of Theorem 20 Fix some $n \in \mathbb{N}$. Then for all $k \in \mathbb{N}$

$$
\begin{aligned}
e^{n \Delta \bar{Q}_{f}} & {[h]-\left(I+\frac{\Delta}{n^{2}} \bar{Q}_{f}\right)^{n^{3}}[h] } \\
& =e^{n \Delta \bar{Q}_{f}}[h]-\left(I+\frac{n \Delta}{k n^{3}} \bar{Q}_{f}\right)^{k n^{3}}[h] \\
& \quad+\left(I+\frac{n \Delta}{k n^{3}} \bar{Q}_{f}\right)^{k n^{3}}[h]-\left(I+\frac{\Delta}{n^{2}} \bar{Q}_{f}\right)^{n^{3}}[h]
\end{aligned}
$$

From (6) with $t=\Delta n$, we know that

$$
\begin{aligned}
e^{n \Delta \bar{Q}_{f}}[h] & =\lim _{k \rightarrow+\infty}\left(I+\frac{n \Delta}{k} \bar{Q}_{f}\right)^{k}[h] \\
& =\lim _{k \rightarrow+\infty}\left(I+\frac{n \Delta}{k n^{3}} \bar{Q}_{f}\right)^{k n^{3}}[h] .
\end{aligned}
$$

Furthermore, if $\Delta\|\bar{Q}\| \leq 2 n^{2}$, it follows from Lemma 26 (with $\delta=\Delta / n^{2}$ and n^{3} here as n there) that for all $k \in \mathbb{N}$,

$$
\begin{aligned}
& \left\|\left(I+\frac{n \Delta}{k n^{3}} \bar{Q}_{f}\right)^{k n^{3}}[h]-\left(I+\frac{\Delta}{n^{2}} \bar{Q}_{f}\right)^{n^{3}}[h]\right\| \\
& \quad \leq n^{3}\left(\frac{\Delta}{n^{2}}\right)^{2} c_{3}+n^{6}\left(\frac{\Delta}{n^{2}}\right)^{3} c_{4} \\
& \quad=\frac{1}{n} \Delta^{2} c_{3}+\Delta^{3} c_{4} .
\end{aligned}
$$

Combining the preceding and taking the limit for $k \rightarrow$ $+\infty$ gives that, for all $n \in \mathbb{N}$ such that $\Delta\|\bar{Q}\| \leq 2 n^{2}$,

$$
\frac{1}{n \Delta}\left\|e^{n \Delta \bar{Q}_{f}}[h]-\left(I+\frac{\Delta}{n^{2}} \bar{Q}_{f}\right)^{n^{3}}[h]\right\| \leq \frac{1}{n^{2}} \Delta c_{3}+\frac{1}{n} \Delta^{2} c_{4} .
$$

The right hand side of this inequality vanishes as $n \rightarrow+\infty$, which implies the statement.

