ExpPeCTED TIME AVERAGES IN MARKOVIAN IMPRECISE JUMP PROCESSES

Supplementary Material

Our proof for Theorem 20 builds on the following intermedi-
ary lemmata. In order not to unnecessarily repeat ourselves
in this section, we fix some upper rate operator Q for the
remainder. Furthermore, we let

D = {6 € Rog: 60|l <2}

ind forall 6 € D, let 7(6) =1+ 5@; due to Lemma 12,
T(6) is an upper transition operator whenever 6 € D, and
henceforth we will use this fact implicitly.

Lemma 23 Forall5e D, f,he Landn €N,

(1 +6Q )" [A1Il < ndllf1l + Il (13)

Proof Let us prove the result by induction. For the base
case n = 1, it follows from the definition of Q ; and (T7)
that

(1 +8Q ) (ANl < 61+ IT )[R < SlLFN + 1Al

as required. For the inductive step, we assume that (13)
holds for n = k with k € N, and set out to show thit it then
also holds for n = k + 1. From the definition of Q f, (T7)
and the induction hypothesis, it follows immediately that
I +60 1) * [R]Nl < SN fII+ IT(S)(I+5Q ) [A]]
< SIfI+ NI +6Q ) [A]ll
< 6(k+ DI+ IA,

as required. |

The second intermediary lemma builds on Lemma 23.

Lemma 24 Fix some 6 € D and f,h € L. Then for all
nenN,

11 +6Q,)" [h] = hll < néey +n*6%ca, (14)

with ¢y = || | + Q2| and ¢3 = |QIIII 1l

Proof We again give a proof by induction. For the base
case n = 1, note that
17 +6Q ) [h] = hll = |6f + h+6Q[h] - h|
< SIfIl+slQINAN = dci,
which implies the inequality in the statement for n = 1.
For the inductive step, we assume that (14) holds for

n = k with k € N, and set out to verify that it holds for
n =k + 1 as well. Observe that

(I+6Q )" [h] - h

=6f+(I+6Q ) [h] = h+6Q(I+6Q ;) [h].
Recall from (R5) that

1601 +6Q ) [A]ll < SIQNIT +38Q ) [A]I.

We infer from these two observations, the induction hypoth-
esis and Lemma 23 that

(1 +6Q ) ' [h] - Al
<N fNl + (kdey + k267 ca) + 81| QII (kI f1] + 1 21])
= (k+1)dc1 + k26%cy + k6% cs.

Since k% + k < (k + 1)2, we infer from this that
(I +6Q ) [h] = k|l < (k+1)ct + (k +1)26%¢a,
which is the inequality we were after. |

Our next step is to use Lemma 24 to prove a ‘generalisa-
tion’ of Lemma E.5 in [14]. In this result, we need the fact
that Q is Lipschitz:

R7. Q[f] - Qlelll < QNI f - gll for all £,g € £L;

this is trivial if IOl = 0 and follows from Lemma 12 (with
A4 =2/|10|D) and (T8) (for I + AQ) otherwise, see also [4,
R11]or [7, LR8].

Lemma 25 Fix some 6 € D and f,h € L. Then for all

nenN,

I(2+80,)" [h] = (I +n5Q ) [A]l| < n?6%c3 + n*6ca,

with c3 = QI FIl + IQIIIAll and c4 = IQII £

Proof Our proof will be one by induction. The base case
n = 1 is trivially satisfied. For the inductive step, we assume
that the inequality in the statement holds for n = k with
k € N. To prove that the inequality in the statement holds
for n = k + 1, we observe that

(I+6Q ) ' [h] = (I + (k+1)6Q ) [1]
=6f+(I+6Q ) [h] - (1+k6Q)[h]
—8f —6Q[h] +6Q(I+6Q )" [h].

It follows from this, the induction hypothesis, (R7) and
Lemma 24 that

(1 +6Q ) [h] = (I + (k + 1)5Q ) [R] |
< (k2(52€3 + k363C4)
+ 61101111 +6Q ;)" [1] - hll
< (K*6%c3 + kK283 cy) + 6|01 (kécy + k252¢))
= (k2 +k)6%c3 + (K3 + k*)83¢y
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< (k+1)%6%c3+ (k+1)°8%¢cy,
which is the inequality we were after. |

As a final intermediary step, we generalise Lemma 25;
this result is to Lemma 25 what Lemma E.6 is to Lemma E.5
in [14].

Lemma 26 Fix some § € D, f,h € L and k € N. Then
foralln € N,
263

< n62C3 +n°07cy,

S— nk .
(5] 1 -asog,rm

with c3 and c4 as in Lemma 25.

Proof Let us prove the result by induction. For the base
case n = 1, we apply Lemma 25 (with 6/k € D here as §
there and k here as n there) to find that

17+ S8 k] = (1 + K28 1]

2 3
6 0
< kz(—k) €3+ k3(—k) ca=08"cy+dcy.

For the inductive step, we assume that the inequality
in the statement holds for n = € with € € N, and set out
to establish the inequality in the statement for n = € + 1.
Observe that

5 \ (DK .
1+, t-aragptim

k tk
s— \* —
- (HEQf) (1+50)" [A]

5=\ _
+ (I+ %Qf) (I+5Qf)f[h]
—(1+6Q7)(I+6Q ) [h].

Let us denote the norm of the first two terms on the right
hand side by 11.» and that of the last two terms by 773.4, such
that

[h] = (I +6Q,) " [h]

(C+)k
) < N2 +1n34.

Since T(é/ﬁ) satisfies (T8) because §/k € D, the same
is true for T(6/k)ss/x — we leave this for the reader to

check — and therefore also for T((S/k)éf/k (I+¢ Qf) ;

consequently,

N2 <

5 \Ck _
(+5,) - ag, i

< 05%c5 + 0283 ¢y,

where the second inequality is exactly the induction hy-
pothesis. Moreover, it follows from Lemma 25 (with
I+ 5§f)€[h] here as h there, k here as n there and
6/k € D here as 6 there) and Lemma 23 (with ¢ here as n
there) that

M3 < S (IQIIAI+ QIR +6Q ) [hIl) + &7ca
< S (IQIILA+ IQIPEs A1l + QI Al +6°ca

= 52C3 + 5536‘4 + 53C4.

Combining our observations, we find that

(6+1)k B
) [h] = (I+6Q ) [A]

I+-0
[1+7e
< 56203 + 526364 + 6263 + 56364 + 536‘4

= (L+1)8%c3+ (P +C+1)5%cy
< (L+1)8%c3+ (C+1)*8%¢cy,

which is the inequality we were after. |

Proving Theorem 20 is now simply a matter of combining
(6) and Lemma 26.
Proof of Theorem 20 Fix some n € N. Then for all k € N

_ A— n’
e"9r[h] - (1 + 50 f) [h]
_ A — kn3
= "9 (1] - (1+ 30s ) [h]
kn? A— n’
+( kn3Qf) [h]_(l"'fo) (7]
From (6) with r = 4n, we know that

_ A k
™97 [h] = lim (I+—Qf) [A]

k—+co

—+00

kn?

Furthermore, if 4]|Q|| < 2n2, it follows from Lemma 26
(withd = 4/ n? and n> here as n there) that for all k € N,

3

kn’ n
(1+ﬂ§f) [h]—(nééf) (4]

3A2 6A3
SnﬁC3+n;C4

1
= —A2C3 + A3C4.
n
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Combining the preceding and taking the limit for k —
+oo gives that, for all n € N such that 4||Q|| < 2n?,

_ A n’ 1 1
L enAQ_f[h] _ (1 + _2§f) [A]]] < —2AC3 + —A2C4.
ns n n

The right hand side of this inequality vanishes as n — +oo,
which implies the statement. |
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