




Continuous-Time Imprecise-Markov Chains: Theory and Algorithms

Thomas Krak

Doctoral dissertation submitted to obtain the academic degree of
Doctor of Computer Science Engineering

Prof. Gert De Cooman, PhD*  -  Prof. Jasper De Bock, PhD* - Prof. Arno Siebes, PhD**

* Department of Electronics and Information Systems
Faculty of Engineering and Architecture, Ghent University

** Universiteit Utrecht, the Netherlands

Supervisors

May 2021



Wettelijk depot: D/2021/10.500/34
NUR 993, 919
ISBN 978-94-6355-486-2



Members of the Examination Board

Chair

Prof. Hennie De Schepper, PhD, Ghent University

Other members entitled to vote

Prof. Koen De Turck, PhD, Ghent University
Prof. Enrique Miranda, PhD, Universidad de Oviedo, Spain

Max Nendel, PhD, Universität Bielefeld, Germany
Prof. Alain Sarlette, PhD, Ghent University

Supervisors

Prof. Gert De Cooman, PhD, Ghent University
Prof. Jasper De Bock, PhD, Ghent University
Prof. Arno Siebes, PhD, Universiteit Utrecht, the Netherlands





Address

Ghent University
Faculty of Engineering and Architecture
Department of Electronics and Information Systems
Foundations Lab for Imprecise Probabilities

Technologiepark Zwijnaarde 125
9052 Zwijnaarde
Belgium

Acknowledgements

This dissertation is part of a project that has received funding from the
European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No 722734.





Contents

Preface 11

Summary 15

Samenvatting (Dutch Summary) 21

1 Introduction 29

1.1 Motivation and Overview of Results . . . . . . . . . . . . . 30
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.3 Navigating This Dissertation . . . . . . . . . . . . . . . . . 37
1.4 Overview of the Chapters . . . . . . . . . . . . . . . . . . . 38
1.5 Publications and New Results . . . . . . . . . . . . . . . . 42
1.6 Mathematical Preliminaries . . . . . . . . . . . . . . . . . 43

2 Foundations of Stochastic Processes 45

2.1 Full Conditional Probabilities and Coherence . . . . . . . 46
2.1.1 Coherent Previsions and Conditional Expectations 51
2.1.2 Connection to Measure-Theoretic Expectations . . 56

2.2 Time, State, and Function Spaces . . . . . . . . . . . . . . 58
2.2.1 Time Domains and Sequences of Time Points . . . 58
2.2.2 States and Joint State Spaces . . . . . . . . . . . . . 61
2.2.3 Functions, Norms, and Operators . . . . . . . . . . 62

2.3 Stochastic Processes as Coherent Conditional Probabilities 64
2.4 Inferences for Stochastic Processes . . . . . . . . . . . . . 71
2.A A Gambling Interpretation of Coherence . . . . . . . . . . 80

3 Discrete-Time (Imprecise-)Markov Chains 83

3.1 Some Properties of Discrete-Time Stochastic Processes . . 85
3.2 Markov Chains and Transition Matrices . . . . . . . . . . 89
3.3 Discrete-Time Imprecise-Markov Chains . . . . . . . . . . 101



CONTENTS

3.3.1 Sets of Processes . . . . . . . . . . . . . . . . . . . . 102
3.3.2 Lower and Upper Expectations for DTIMCs . . . . 105

3.4 Lower Transition Operators . . . . . . . . . . . . . . . . . 116
3.5 Lower Expectations using Lower Transition Operators . . 121
3.A Proofs of Results in Section 3.1 . . . . . . . . . . . . . . . 125
3.B Proofs of Results in Section 3.3 . . . . . . . . . . . . . . . 130
3.C Proofs of Results in Section 3.4 . . . . . . . . . . . . . . . 137

4 Dynamics of Continuous-Time Stochastic Processes 143

4.1 Well-Behaved Stochastic Processes . . . . . . . . . . . . . 144
4.2 Corresponding Transition Matrices . . . . . . . . . . . . . 148
4.3 Transition Rate Matrices . . . . . . . . . . . . . . . . . . . 150
4.4 (Well-Behaved) Transition Matrix Systems . . . . . . . . . 156
4.5 Restricted Transition Matrix Systems . . . . . . . . . . . . 158
4.6 Outer Partial Derivatives . . . . . . . . . . . . . . . . . . . 166
4.A Proofs of Examples in Section 4.5 . . . . . . . . . . . . . . 173
4.B Proofs of Examples in Section 4.6 . . . . . . . . . . . . . . 177

5 Continuous-Time (Imprecise-)Markov Chains 181

5.1 Continuous-Time Markov Chains . . . . . . . . . . . . . . 182
5.1.1 Homogeneous Markov Chains . . . . . . . . . . . . 185
5.1.2 Non-Homogeneous Markov Chains . . . . . . . . . 187

5.2 Continuous-Time Imprecise-Markov Chains . . . . . . . . 188
5.3 Sets of Transition Matrices for CTIMCs . . . . . . . . . . . 194
5.4 Lower and Upper Expectations for CTIMCs . . . . . . . . 198
5.A Proofs of Results in Section 5.1 . . . . . . . . . . . . . . . 210
5.B Proofs of Results in Section 5.2 . . . . . . . . . . . . . . . 215
5.C Technical (In)Equalities for CT(I)MCs . . . . . . . . . . . . 227
5.D Proofs of Results in Section 5.3 . . . . . . . . . . . . . . . 232
5.E Proofs of Results in Section 5.4 . . . . . . . . . . . . . . . 253

6 Lower Transition Operators for CTIMCs 259

6.1 Induced Lower Transition Operators . . . . . . . . . . . . 260
6.2 Lower Transition Rate Operators . . . . . . . . . . . . . . 265
6.3 Exponentials of Lower Transition Rate Operators . . . . . 269

6.3.1 Construction of the Exponential . . . . . . . . . . . 270
6.3.2 Semigroups of Lower Transition Operators . . . . 273
6.3.3 Evaluating the Exponential . . . . . . . . . . . . . 275

6.4 CTIMCs and Semigroups of Lower Transition Operators . 279
6.5 A General Computational Method . . . . . . . . . . . . . . 284
6.6 A Numerical Example . . . . . . . . . . . . . . . . . . . . . 290



6.6.1 Sets of General Processes . . . . . . . . . . . . . . . 290
6.6.2 A Counterexample for Sets of Markov Chains . . . 297

6.A Proofs of Results in Section 6.2 . . . . . . . . . . . . . . . 311
6.B Proofs of Results in Section 6.3 . . . . . . . . . . . . . . . 314
6.C Proofs of Results in Section 6.4 . . . . . . . . . . . . . . . 324
6.D Proofs of Results in Section 6.5 . . . . . . . . . . . . . . . 331

7 Reduction to Discrete-Time Imprecise-Markov Chains 335

7.1 Induced Discrete-Time Imprecise-Markov Chains . . . . . 336
7.2 Correspondence of Lower Expectations . . . . . . . . . . . 338
7.3 Correspondence of Sets of Processes . . . . . . . . . . . . 345

8 Conclusions 363

A Analysis in Finite-Dimensional Normed Vector Spaces 369

A.1 The Space L (X ) . . . . . . . . . . . . . . . . . . . . . . . 379
A.2 The Dual Space of L (X ) . . . . . . . . . . . . . . . . . . . 380
A.3 Linear Maps from L (X ) to L (X ) . . . . . . . . . . . . . 383

B Norm Inequalities 391

List of Symbols and Terminology 397

Bibliography 407





Preface

“If you can say ‘I have learned’ and ‘I have loved’,
you will also be able to say ‘I have been happy’.”

Arthur C. Clarke and Gentry Lee, “Rama II”

It was a beautiful summer’s night in Prague when I was walking to
my hotel, returning from a lavish banquet held in an old monastery.
I was a first-year PhD student attending my first scientific conference.
Accompanying me from the banquet was a friendly and enthusiastic
French researcher. As we walked, he explained to me the idea behind
something called “imprecise probabilities”. I remember being con-
fused, not entirely convinced, and yet thoroughly interested. At the
time I found myself without a proper research project, although I had
been reading up on Markov chains as a potential subject. The next day
I suggested to my then-supervisor that perhaps I could combine these
two subjects, working on Markov chains in the context of imprecise
probabilities. She warned me that it would be technically challenging,
but said that she was open to the idea. I vividly remember that on the
return trip from the conference, my mind was already swirling with
ideas. It felt like I had been handed a part of a map that read, in big
bold letters, “here be dragons”. How could I possibly resist?

Fast-forward seven years, and essentially none of those early ideas
have worked out. However, I am now slightly less confused, muchmore
convinced, and still thoroughly interested. Moreover, these previously
unexplored lands turned out to be fertile ones, and I have found re-
sults that I could not even have conceived of when I set out on my
journey. The research that I have performed these past years has cul-
minated in the dissertation that You are now reading. In it, I develop
and presentmy foundational work towards a theory of continuous-time
Markov chains using imprecise probabilities.
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Preface

I am greatly indebted to many people, without whom this disserta-
tion would not exist. First and foremost, I want to thank my supervi-
sors. The winding path that I took to reach this point has caused me
to work at two universities, in three research groups, and under four
supervisors. All of this has contributed to and enriched my experience,
and so I would like to thank all those involved in chronological order.

To start, I want to thank Linda van der Gaag, who first hired me
as a PhD student in the Decision Support Systems group at Utrecht
University. I especially want to thank her for letting me stay on, when I
later found myself without a project, and for allowing me the freedom
to find my own research interests. Later, when she had become head of
the department, I switched positions to the Algorithmic Data Analysis
group—still at Utrecht University—where I continued my work under
the supervision of Arno Siebes. I remain ever grateful to both Linda
and Arno for enabling this change.

Next, I want to thank Arno, who abided my research that had rel-
atively little to do with algorithms, and even less with data analysis.
Despite my work being quite far removed from his own research, Arno
has remained ever-curious, and always concerned with my professional
development as a young researcher. During these years I had struck
up a collaboration with researchers from Ghent University—who had
independently started working on continuous-time imprecise-Markov
chains—and I had learned that a position had opened up in Ghent on
the subject we were collaborating on. So, when I found myself at the
end of my contract with Utrecht University—but very much not at the
end of my research—Arno didn’t hesitate to write a letter of recommen-
dation and to facilitate me in continuing my research at Ghent Univer-
sity. I remain ever thankful for this gracious act of selflessness.

At Ghent University, I continued my work at what is now called the
Foundations Lab for Imprecise Probabilities, under the joint supervi-
sion of Gert de Cooman and Jasper De Bock. The position in question
was that of an Early Stage Researcher on an EU Horizon 2020 project
called UTOPIAE (Uncertainty Treatment and Optimisation in Aerospace
Engineering), which would allow me to continue my theoretical re-
search while exposing me to practically relevant applications and in-
ternational collaborations. My thanks go out to Gert, for the warmth
with which he welcomed me in his research group, and for his many
words of wisdom. Many of my half-joking inquiries would be answered
by him with insights of unanticipated depth. It has been an honour to
work under one of the progenitors of the modern field of imprecise
probabilities.

And last, but certainly not least, I want to thank Jasper. It was with
him that I originally started the collaboration—when I was still based
in Utrecht—that would determine this significant part of my research
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career. And it was he who properly inaugurated me into the world
of imprecise probabilities. Certainly many of the crucial ideas con-
tained in this dissertation can be traced back to him. It is only fitting,
then, that he would become my daily supervisor when I later moved
to Ghent. In this capacity, he was always available to assist, critique,
and provide critical insights. It was not rarely that he would solve, on
the spot, problems that had stumped me for days. Ceaselessly striving
for scientific quality, mathematical rigour, and didactic clarity, working
with him has been enriching, sometimes infuriatingly frustrating, and
always immensely stimulating. I owe him many thanks.

Next, I would like to express my sincere gratitude to the members
of the Examination Board of this dissertation, for taking on the task
of evaluating its scientific merit, and for their valuable feedback and
suggestions. Any remaining errors in this work are entirely my own. I
would also like to thank them for giving me the opportunity to present
and defend my work in both our first meeting, and during the public
defense of this dissertation.

My experience has also been greatly shaped by the many colleagues
and co-workers that I’ve had the pleasure to meet over the years. Spe-
cial thanks go out to Ad Feelders, who first took me under his wing
when I was still an eager Master student. I remember barging into his
office for the first time, informing him that I was interested in machine
learning, and whether he knew of any good datasets to test some al-
gorithms? He dryly suggested that perhaps I should just enrol in his
courses. I ended up taking both of them, and Ad would wind up su-
pervising two of my research projects, one of which being my Master
thesis project. It was also Ad who introduced me to Linda. We would
later become colleagues when I started as a PhD student.

I also feel that I should thank—by name—Sébastien Destercke, that
French researcher who, all those years ago in Prague, enthused me with
the concept of imprecise probabilities. It would not be the last confer-
ence at which we met.

Slightly less wordily—but certainly not with less affection—I want
to thank all my other colleagues with whom I’ve shared my offices
and lunches over the years. In an attempt at chronological order-
ing, my thanks go out to Merel, Steven, Arnoud, Janneke, Krzysztof,
Hans, Lennart, Silja, Arthur, Stavros, Alexander, Meizhu, Natan, Si-
mon, Michiel, Alain, Arne, and Floris. I particularly want to thank
Stavros, Alexander, and Natan for our many interesting discussions
and collaborations on the subject of imprecise-Markov chains. And I
want to thank Krzysztof, for our friendship that developed first inside,
and shortly after also outside, the office.

As part of my employment on the UTOPIAE project, I have spent
three months on a research secondment to Strathclyde University in
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Glasgow. My thanks go out to Massimiliano Vasile for hosting me dur-
ing that period, and to Cristian Greco for our collaboration during that
time. I also want to thank Frank Coolen for hosting me at Durham Uni-
versity for a short time, where I explored possible applications to reli-
ability theory together with Daniel Krpelı́k. I want to thank Matthias
Troffaes and Henna Bains, also of Durham University, for our collab-
orative work. I also feel compelled to mention my fellow Early Stage
Researchers of the UTOPIAE project. It would not have been the same
without them. My thanks go out to Gianluca, Cristian, Giulio, João,
Elisa, Anabel, Zénó, Danda, Tatha, Bárbara, Margarita, Lorenzo, Dani,
and Christian.

On a more personal note, I want to thank all the friends that I’ve
made over the years. I have, over time, lost sight of some of them, which
makes me hesitant to explicitly list their names. I am nevertheless im-
mensely thankful for their impact on my life. I do, however, want to
especially mention Frank, Luke, and Yvonne, who are some of my old-
est and closest friends. My thanks also go out to Yvonne—again—and
Ramison, for being godparents to my daughter.

Finally, I want to mention my family. My deepest gratitude goes
out to my parents, Jeroen and Lea, who have always supported me in
my endeavours. I know that it cannot have been easy. My thanks also
go out to my younger brother Roeland, to my grandparents, extended
family, and in-laws. They all helped shape my path. My special thanks
go out to my parents—once more—and to my parents-in-law, Engelie
and Pieter, for their practical support in recent times.

I want to thank my daughter, Emma, who has greatly enriched my
life in the past two years. Her joyous presence has been a wonderful
addition to our family, and fatherhood has been a marvellous experi-
ence. I cannot help but wonder if she will one day read these words,
many years from now, curious what all the fuss was about.

Finally, I want to thank Maartje, my wife and very best friend. I
most certainly could not have completed this dissertation without her.
Mathematics is, I think, an inherently introspective, and at times soli-
tary, occupation—yet she has made it slightly less so. She has helped
me through the deepest valleys of motivation and witnessed my exu-
berance at breakthroughs and new discoveries. Throughout, she has
always selflessly created the conditions that enabled me to finish this
project. My dearest Maartje, I love you very much.

Tilburg, April 2021
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Summary

Imprecise-Markov chains are mathematical models that generalise
Markov chains using the theory of imprecise probabilities, which allows
them to be used when (numerical) parameters are only partially speci-
fied and/or when assumptions like Markovianity may be unwarranted.
Inferences computed with imprecise-Markov chains can be interpreted
as being robust bounds on traditional inferences of interest, in that they
are bounds with respect to all the possible variation that is implicit
in the underspecification of these parameters and structural proper-
ties. In this dissertation, we develop the foundations for a theory of
continuous-time imprecise-Markov chains: we discuss their definition,
parameterisation, and interpretation; investigate many of their struc-
tural properties; develop basic inference algorithms for a large general
class of problems; and prove a connection to existing work that allows
us to obtain—essentially for free—many specialised and more efficient
inference algorithms that were previously developed for discrete-time
imprecise-Markov chains. In the remainder of this summary, we will
further explain the concepts mentioned above, and sketch our main
results and the strategy used to obtain them.

The basis of our theory is a formalisation of general stochastic pro-
cesses; a stochastic process is a mathematical model that describes the
behaviour of some dynamical system of interest as the state of this sys-
tem evolves over time, in a manner that is uncertain. In particular,
a stochastic process describes this uncertainty with a probability dis-
tribution over the realisations of the underlying system. Our formal-
isation is based on full conditional probabilities and coherence. This is
slightly different from the more typical measure-theoretic framework,
but has the advantage that it (i) endows the theory with a clear sub-
jectivist and behavioural interpretation, and (ii) does not gratuitously
impose technical assumptions that we do not need for the results in
this work. We spend some effort on showing that at its core—despite
the philosophical differences—our characterisation essentially agrees
with what would be obtained using a measure-theoretic formalisation,
at least for the problems that we are considering here.
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Summary

A Markov chain, then, is a specific type of stochastic process: it as-
sumes that, given the “current” state of the system, the uncertainty
about the system’s future behaviour does not depend on its histori-
cal behaviour, that is, what happened before the “current” point in
time. This assumption is known as the Markov property, and it is
this crucial property that leads to Markov chains being exceptionally
tractable, while still being powerful enough to represent interesting
dynamical behaviour; consequently, Markov chains have become very
popular models throughout science and engineering. Due to the vary-
ing nature of the many applications of Markov chains, we may distin-
guish between several different types that have been developed over
the years. For instance, in this dissertation we only consider systems
with finitely many states. Another classification is based on the na-
ture of the “time domain” along which the dynamical system evolves.
Discrete-time Markov chains describe systems whose evolution occurs
in discrete steps: at every point in time, there is an unambiguous “next”
time point. Conversely, continuous-time Markov chains deal with sys-
tems for which the evolution occurs along a continuous time domain.

Imprecise-Markov chains are a generalisation of Markov chains that
is based on the theory of imprecise probabilities. These models can
be used when the (numerical) parameters of a Markov chain can only
be partially specified—for example, when one only knows that these
parameters should lie in a specific range that is “plausible”—or when
assumptions like the Markov property do not apply. In this work we
adopt the “sensitivity analysis” interpretation of imprecise probabilis-
tic models. This means that we view an imprecise-Markov chain as a
set of stochastic processes, all of whose members are in a specific sense
consistent with what is known; for example, we might take it to be the
set of all Markov chains whose numerical parameters lie in the “plau-
sible” range of values. However, we might additionally include more
complicated models in this set; for instance, general stochastic pro-
cesses that do not satisfy the Markov property. Inferences computed
from thesemodels are formalised as lower and upper expectations; these
are tight lower and upper bounds on some inference of interest, taken
with respect to the entire set of stochastic processes that constitutes the
imprecise-Markov chain.

Over the past decades, there has been a lot of development in the
field of discrete-time imprecise-Markov chains, and this theory has ma-
tured to the point where many inference problems that can be anal-
ysed and tractably computed for (traditional) discrete-time Markov
chains, can also be analysed and tractably computed for discrete-time
imprecise-Markov chains. However, work on continuous-time imprecise-
Markov chains has only begun in earnest much more recently.

It is our aim with this dissertation to develop the theory of

16



continuous-time imprecise-Markov chains to a point that is somewhat
closer to the state-of-the-art of the discrete-time theory. In particu-
lar, it is our aim to develop the formal definitions, interpretations, ba-
sic qualitative properties, and elementary inference algorithms that are
required to put future work in this field on an at least somewhat solid
footing; and to provide for such future work the tools and techniques
that can be used to attack more complicated problems. The thesis that
we develop along the way is, essentially, that many of the fundamental
results and discoveries from the discrete-time setting, carry over anal-
ogously to continuous-time models.

In order to establish this connection to the existing literature, we
spend some effort on introducing and discussing crucial elements of
the established theory of discrete-time (imprecise-)Markov chains, in
terms of our current formalisation of stochastic processes. Of im-
portance is the parameterisation of discrete-time Markov chains using
(families of) transition matrices; a transition matrix is a row-stochastic
matrix that, in this context, describes the probabilities that the sys-
tem moves from any given state to any (other) state in a single time
step. We subsequently discuss the parameterisation of discrete-time
imprecise-Markov chains using (families of) sets of transition matrices.
We discuss crucial properties of the lower and upper expectations cor-
responding to thesemodels, and illustrate in particular that they satisfy
(i) an imprecise-Markov property and (ii) a law of iterated (lower/upper)
expectation. The imprecise-Markov property states, essentially, that
although an imprecise-Markov chain can be a fairly complicated set
of stochastic processes that need not be Markovian, the correspond-
ing lower and upper expectation are history-independent in a manner
that is analogous to the traditional Markov property. It is this property
that motivates the terminology imprecise-Markov chain, and which also
makes these imprecise probabilistic models fairly tractable. The law
of iterated (lower/upper) expectation is, essentially, a decomposition
property that lies at the heart of many efficient inference algorithms
that have been developed in the literature. We discuss lower transi-
tion operators as being non-linear generalisations of transition matri-
ces, and show that they are dual representations of sets of transition
matrices. We illustrate how these lower transition operators provide an
alternative characterisation of the lower expectations for discrete-time
imprecise-Markov chains.

Having established some of the crucial properties of discrete-time
imprecise-Markov chains, we then start the work on developing the
machinery that we need to describe the more technically complicated
continuous-time models. One of the main tools to do this are transition
rate matrices; these are the continuous-time counterpart to the transi-
tion matrices that are used for discrete-time models, and they describe,
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Summary

intuitively, the speeds at which the underlying system moves between
states. We also discuss multi-index families of transition matrices
corresponding to continuous-time stochastic processes, and develop
some machinery to manipulate such families. We introduce the no-
tion of outer partial derivatives for such (families of) transition matrices.
These are essentially set-valued generalisations of traditional deriva-
tives, which may exist—in particular, be non-empty sets—even when
the traditional derivatives do not. We characterise a type of continuous-
time stochastic process, which we call well-behaved, for which such
outer partial derivatives are always non-empty and compact sets of
transition rate matrices. We illustrate how, in general, stochastic pro-
cesses can behave rather pathologically, and that such behaviour is pre-
vented by imposing this condition of well-behavedness; we spend the
remainder of the dissertation focussing on well-behaved stochastic pro-
cesses.

Next, we show how our formalisation of continuous-time Markov
chains, which is in terms of full conditional probabilities and coher-
ence, agrees in principle with more traditional characterisations. This
is also notably the case for continuous-time Markov chains that are
(time-)homogeneous, which essentially means that the description of the
system’s uncertain behaviour is the same at all points in time. Formally,
we show that such processes are uniquely characterised by the specifi-
cation of an initial distribution—a probability distribution specifying
the uncertainty about the state in which the system starts—and a sin-
gle transition rate matrix, and that the family of transition matrices
corresponding to such a process is given by the semigroup of transition
matrices that is generated by this transition rate matrix.

With these tools in hand, we then present our formalisation of
continuous-time imprecise-Markov chains. Or rather, we introduce
three distinct definitions: they are all parameterised using (i) a set of
possible initial distributions and (ii) a set of transition rate matrices;
and they are all sets of well-behaved continuous-time stochastic pro-
cesses that are consistent with these parameters. This means that the
initial distributions of their elements are contained in the parameter-
ising set of possible initial distributions, and the outer partial deriva-
tives of their families of transition matrices are contained in the pa-
rameterising set of transition rate matrices. However, the definitions
differ in terms of the structural properties that we impose on their el-
ements. Specifically, the three different versions correspond to (i) a
set of time-homogeneous Markov chains, (ii) a set of—not necessarily
time-homogeneous—Markov chains, and (iii) a set of general—not nec-
essarily Markovian or time-homogeneous—stochastic processes.

We investigate structural and qualitative properties of these differ-
ent sets of processes, and of their induced sets of corresponding tran-
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sition matrices. We introduce the corresponding lower and upper ex-
pectations for these models, and investigate their properties. We de-
rive sufficient conditions for the lower and upper expectations of all
models to satisfy an imprecise-Markov property, which again motivates
the terminology that they are imprecise-Markov chains. We argue how
the most conceptually simple of our three definitions—the model con-
taining only time-homogeneous Markov chains—is, unfortunately, the
most difficult one to work with in practice. Intuitively, the issue is
that the optimisation problem involved in the computation of its lower
and upper expectations cannot really be simplified and made tractable,
due to the strong constraint that the optimisation has to be taken over
only time-homogeneous Markov chains; perhaps surprisingly, the ad-
ditional degrees of freedom allowed by the other two models make
them easier to work with. In fact, it is only for the conceptually most
complicated model—the set of all well-behaved stochastic processes
that are consistent with the parameterising sets—that we derive a law
of iterated (lower/upper) expectation. As with discrete-time imprecise-
Markov chains, this crucial property paves the way for efficient infer-
ence algorithms. We introduce lower transition operators—which we
previously used in the discrete-time setting—also for continuous-time
imprecise-Markov chains. We show how and under which conditions
they provide an alternative characterisation of lower expectations also
for continuous-time models.

We introduce lower transition rate operators, which are non-linear
generalisations of transition rate matrices, and we show that they are
dual to sets of transition rate matrices. We discuss how to evaluate such
lower transition rate operators numerically, and in particular provide
an efficient algorithm that can be used when this operator is the dual
of a metric ball around a given transition rate matrix; this setting oc-
curs naturally in sensitivity analysis contexts. We show how a given
lower transition rate operator generates a semigroup of lower transition
operators—in analogy with the semigroup of transition matrices gen-
erated by a transition rate matrix—and we show how and when this
semigroup of lower transition operators coincides with the lower tran-
sition operators corresponding to an imprecise-Markov chain. We also
present an algorithm to evaluate the elements of this semigroup numer-
ically. This leads to a first practical algorithm for computing lower (and
upper) expectations for imprecise-Markov chains: since we already es-
tablished that lower transition operators form an alternative character-
isation of the lower expectation of functions that depend on the state
of the system at a single point in time, evaluating the elements of this
semigroup numerically therefore amounts to computing the lower ex-
pectation of such functions. We combine this computational method
with the law of iterated lower expectation, to derive a second, more
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general algorithm that can be used to compute arbitrary lower (and
upper) expectations of functions that depend on the state of the system
at arbitrarily, but finitely, many time points. We show that this algo-
rithm works for the most imprecise of our definitions of continuous-
time imprecise-Markov chains; and moreover, that it does not work,
in general, when working with sets of (potentially non-homogeneous)
Markov chains. However, this algorithm can still be used to compute
conservative bounds on the lower (and upper) expectations of such sets.

We finish by establishing a strong connection between continuous-
time and discrete-time imprecise-Markov chains. In particular, we
show how the latter can be obtained as restrictions of the former, by
taking into account only the time points in a given discrete time do-
main. We show how the lower (and upper) expectations for the original
continuous-time imprecise-Markov chain coincide with the lower (and
upper) expectations for this induced discrete-time imprecise-Markov
chain. We illustrate the value of this result, by using it to translate
to the continuous-time setting a very efficient inference algorithm for
a particular class of functions, that has previously been derived in the
literature for discrete-time imprecise-Markov chains, without having to
explicitly re-derive it.

We conclude that the most promising of our three different defi-
nitions of a continuous-time imprecise-Markov chain is conceptually
the most complicated one: the set of all continuous-time stochastic
processes that are well-behaved and consistent with a given set of ini-
tial distributions and a given set of transition rate matrices. In gen-
eral, this set will contain processes that are non-homogeneous and
non-Markovian, and that are—individually—computationally and an-
alytically very difficult to work with. Nevertheless, under some rel-
atively mild assumptions on its parameters, the lower and upper ex-
pectations for this set satisfy an imprecise-Markov property; and it
is for this set that we have been able to derive the most powerful re-
sults. Notably, many of the crucial results that make the analysis and
computations for this model tractable, in general do not hold for the
other two definitions that we considered: the set containing only time-
homogeneous Markov chains, and the set containing only (not neces-
sarily time-homogeneous) Markov chains. Specifically, it is only for
ourmost imprecisemodel—which contains possibly non-homogeneous
and non-Markovian processes—that we were able to derive a law of it-
erated lower expectation; a general inference algorithm for a large class
of problems; and a connection with discrete-time imprecise-Markov
chains that allows us to re-use, with minimal effort, many efficient and
specialised algorithms that have previously been developed in the lit-
erature.
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Samenvatting
Dutch Summary

Imprecieze Markovketens zijn wiskundige modellen die Markovketens
veralgemenen door middel van de theorie van imprecieze waarschijn-
lijkheden. Hierdoor kunnen ze gebruikt worden wanneer (numerieke)
parameters slechts gedeeltelijk gespecificeerd zijn en/of wanneer het
aannemen van een Markoviaans karakter ongegrond zou zijn. Gevolg-
trekkingen die verkregen worden met imprecieze Markovketens kun-
nen worden geı̈nterpreteerd als robuuste grenzen op traditionele ge-
volgtrekkingen waarin men geı̈nteresseerd zou zijn, in die zin dat ze
rekening houden met alle variatie die impliciet mogelijk blijft door het
slechts deels specificeren van parameters en structurele modeleigen-
schappen. In dit proefschrift ontwikkelen we een theorie van imprecieze
Markovketens in continue tijd: we bespreken hun definitie, parameteri-
sering en interpretatie; onderzoeken hun structurele eigenschappen;
ontwikkelen eenvoudige algoritmen voor het uitrekenen van een grote
generieke klasse van inferentieproblemen; en bewijzen een verband
met bestaand werk waarmee we—zonder extra moeite—beschikking
krijgen over veel gespecialiseerde en meer efficiënte algoritmen die in
het verleden ontwikkeld zijn voor imprecieze Markovketens in discrete
tijd. In de rest van deze samenvatting lichten we de bovengenoemde
concepten verder toe, en schetsen we wat onze hoofdresultaten zijn en
hoe we die verkregen hebben.

De basis van onze theorie is een formele benadering van generieke
stochastische processen: een stochastisch proces is een wiskundig model
dat het gedrag beschrijft van een dynamisch systeem waarvan de tijds-
afhankelijke toestandsontwikkeling onzeker is. In het bijzonder be-
schrijft een stochastisch proces deze onzekerheid met een waarschijn-
lijkheidsverdeling over de mogelijke realisaties van dit systeem. Onze
formele benadering is gestoeld op complete conditionele waarschijnlijk-
heden en coherentie. Deze aanpak verschilt enigzins van de meer gang-
bare maattheoretische benadering, maar heeft als voordeel dat het (i)
onze theorie een duidelijke subjectivistische en gedragsgerichte inter-
pretatie geeft, en (ii) dat het geen gratuite technische aannames intro-
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duceert die onnodig zijn voor het verkrijgen van onze resultaten. We
besteden wat aandacht aan het laten zien dat—ondanks de filosofische
verschillen—onze beschrijving in de kern overeenkomt met wat men
zou verkrijgen met een maattheoretische aanpak, althans voor de pro-
blemen die we hier beschouwen.

Een Markovketen is een specifiek soort stochastic proces: het maakt
de aanname dat, gegeven de “huidige” toestand van het systeem, de
onzekerheid over het toekomstige gedrag van het systeem niet afhangt
van het historische gedrag, dat wil zeggen, van wat er gebeurd is vóór
het “huidige” tijdstip. Deze aanname staat bekend als de Markoveigen-
schap, en het is deze cruciale eigenschap die maakt dat Markovketens
bijzonder handelbaar zijn, en toch krachtig genoeg om interessante dy-
namica te beschrijven; hierdoor zijn Markovketens zeer populaire mo-
dellen geworden in de (ingenieurs)wetenschappen. Vanwege de ver-
schillen tussen de vele mogelijke toepassingen vanMarkovketens, kun-
nen we een onderscheid maken tussen verschillende soorten, die door
de jaren heen zijn ontwikkeld. Bijvoorbeeld, in dit proefschrift beper-
ken we ons tot systemen met een eindig aantal mogelijke toestanden.
Een ander onderscheid is gebaseerd op het soort tijdsdomein waarover
het systeem zich evolueert. Markovketens in discrete tijd beschrijven
systemen waarvan de evolutie plaatsvindt met discrete stappen: op elk
moment is er een welbepaald “volgend” tijdstip. Daarentegen beschrij-
venMarkovketens in continue tijd systemenwaarvan de evolutie plaats-
vindt over een continu tijdsdomein.

Imprecieze Markovketens zijn een veralgemening van Markovketens
die zich baseert op de theorie van imprecieze waarschijnlijkheden.
Deze modellen kunnen gebruikt worden wanneer de (numerieke) pa-
rameters van een Markovketen slechts gedeeltelijk bepaald kunnen
worden—bijvoorbeeld als men slechts weet dat deze parameters in
een gegeven bereik liggen, dat “aannemelijk” wordt geacht—of wan-
neer aannames zoals de Markoveigenschap niet van toepassing zijn.
In dit werk hanteren we de “sensitiviteitsanalyse”-interpretatie van
imprecieze-waarschijnlijkheidsmodellen. Dit wil zeggen dat we een
imprecieze Markovketen zien als een verzameling van stochastische
processen, waarvan de elementen allemaal op een welbepaalde ma-
nier consistent zijn met wat wel geweten is; we zouden bijvoorbeeld
kunnen spreken over de verzameling van alle Markovketens waarvan
de numerieke parameters in een gegeven bereik van “aannemelijke”
waarden liggen. Echter, we zouden ook meer gecompliceerde model-
len in zo een verzameling kunnen opnemen; bijvoorbeeld, algemenere
stochastische processen die niet over de Markoveigenschap beschik-
ken. Gevolgtrekkingen die men met zo een model kan verkrijgen, ook
wel inferenties genoemd, worden geformaliseerd als onder- en bovenver-
wachtingswaarden; dit zijn nauwe onder- en bovengrenzen op traditio-
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nele inferenties—probabilistische verwachtingswaarden—met betrek-
king tot de volledige verzameling van stochastische processen waaruit
de imprecieze Markovketen bestaat.

Over de afgelopen decennia heeft er een hoop ontwikkeling plaats-
gevonden op het gebied van imprecieze Markovketens in discrete tijd, en
deze theorie heeft het punt bereikt waarop veel inferentieproblemen
die geanalyseerd en efficient uitgerekend kunnen worden met (traditi-
onele) Markovketens in discrete tijd, ook geanalyseerd en efficient uit-
gerekend kunnen worden met impreciezeMarkovketens in discrete tijd.
Echter, het serieus bestuderen van imprecieze Markovketens in conti-
nue tijd is pas veel recenter begonnen.

Het is ons doel met dit proefschrift om de theorie van imprecieze
Markovketens in continue tijd te ontwikkelen tot een punt dat iets
dichter ligt bij de huidige stand van zaken van de theorie in discrete
tijd. In het bijzonder is het ons doel om de formele definities, inter-
pretaties, basiseigenschappen, en elementaire inferentiealgoritmen te
ontwikkelen die nodig zijn om toekomstig werk in dit veld een solide
houvast te bieden; en om voor zulk toekomstig werk de gereedschap-
pen en technieken te voorzien die nodig zijn om ingewikkeldere pro-
blemen op te lossen. De thesis die we gaandeweg ontwikkelen is, in de
kern, dat veel van de fundamentele resultaten en ontdekkingen uit de
context in discrete tijd, analoog over te dragen zijn naar modellen in
continue tijd.

Om de koppeling met de bestaande literatuur te maken, besteden
wewat aandacht aan het introduceren en bespreken van cruciale onder-
delen van de gevestigde theorie van (imprecieze) Markovketens in dis-
crete tijd, in termen van onze huidige formalisering van stochastische
processen. Van speciaal belang is de parameterisering van Markovke-
tens in discrete tijd door (families van) transitiematrices; een transi-
tiematrix is een rij-stochastische matrix die, in deze context, de waar-
schijnlijkheden beschrijft voor het systeem om vanuit een gegeven toe-
stand naar eender welke (andere) toestand over te gaan, in een enkele
tijdstap. Vervolgens bespreken we de parameterisering van imprecieze
Markovketens in discrete tijd door (families van) verzamelingen tran-
sitiematrices. We bespreken cruciale eigenschappen van de onder- en
bovenverwachtingswaarden die bij deze modellen horen, en illustreren
in het bijzonder dat ze voldoen aan (i) een imprecieze Markoveigenschap
en (ii) een wet van herhaalde onder- en bovenverwachtingswaarden. De
imprecieze Markoveigenschap stelt, in essentie, dat hoewel een impre-
cieze Markovketen een vrij complexe verzameling kan zijn die bestaat
uit niet noodzakelijk Markoviaanse stochastische processen, de bijbe-
horende onder- en bovenverwachtingswaarden wel geschiedenisonaf-
hankelijk zijn op een manier die volledig analoog is aan de traditionele
Markoveigenschap. Het is deze eigenschap die de terminologie impre-
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cieze Markovketenmotiveert, en het is deze eigenschap die zulke model-
len relatief hanteerbaar maakt in hun gebruik. De wet van herhaalde
onder- en bovenverwachtingswaarden is, in de kern, een decompositie-
eigenschap die ten grondslag ligt aan vele efficiënte inferentiealgorit-
men die zijn ontwikkeld in de literatuur. We beschrijven ondertransitie-
operatoren als niet-lineaire veralgemeningen van transitiematrices, en
we laten zien dat dit duale representaties zijn van verzamelingen tran-
sitiematrices. We illustreren hoe deze ondertransitieoperatoren een al-
ternatieve beschrijving geven voor de onderverwachtingswaarden van
imprecieze Markovketens in discrete tijd.

Nadat we een aantal cruciale eigenschappen van imprecieze
Markovketens in discrete tijd hebben vastgesteld, beginnen we met
de ontwikkeling van de wiskundige instrumenten die we nodig heb-
ben om de technisch ingewikkeldere modellen in continue tijd te kun-
nen beschrijven. Een van de belangrijkste gereedschappen om dit te
doen zijn transitietempomatrices; dit zijn de tegenhangers in continue
tijd van de transitiematrices gebruikt voor modellen in discrete tijd,
en in intuı̈tieve zin beschrijven ze het tempo waarmee het onderlig-
gende systeem zich tussen toestanden beweegt. Ook bespreken we
meervoudig geı̈ndexeerde families van transitiematrices die bij sto-
chastische processen in continue tijd horen, en ontwikkelen we een
aantal technieken om dit soort families te manipuleren. We introdu-
ceren partiële-afgeleideverzamelingen voor dit soort (families van) tran-
sitiematrices. Dit zijn in essentie veralgemeningen van traditionele
afgeleiden, die kunnen bestaan—in het bijzonder, die niet-lege ver-
zamelingen kunnen zijn—ook als de traditionele afgeleiden niet be-
staan. We karakteriseren een type stochastisch proces in continue
tijd, waarvan we zeggen dat het zich goed gedraagt, waarvoor zulke
partiële-afgeleideverzamelingen altijd niet-lege en compacte verzame-
lingen transitietempomatrices zijn. We illustreren hoe algemene sto-
chastische processen behoorlijk pathologisch gedrag kunnen vertonen,
en dat dit soort gedrag wordt vermeden wanneer we opleggen dat een
proces zich goed moet gedragen; we beperken ons in de rest van het
proefschrift tot processen die zich goed gedragen.

Hierna laten we zien dat onze formele benadering van Markovke-
tens in continue tijd, die in termen is van complete conditionele waar-
schijnlijkheden en coherentie, in de kern overeenkomt met meer gang-
bare karakteriseringen. Dit is ook in het bijzonder het geval voor
Markovketens in continue tijd die homogeen zijn, wat in essentie wil
zeggen dat de beschrijving van de onzekerheid over het gedrag van
het onderliggende systeem op ieder moment hetzelfde is. We tonen
formeel aan dat dit soort processen uniek bepaald worden door het
specificeren van een beginverdeling—een waarschijnlijkheidsverdeling
die de onzekerheid representeert over de toestand waarin het systeem
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begint—en een enkele transitietempomatrix, en dat de familie van tran-
sitiematrices horende bij zo een proces overeenkomt met de halfgroep
van transitiematrices die wordt voortgebracht door deze transitietempo-
matrix.

Met deze gereedschappen kunnen we dan eindelijk onze formele
benadering van imprecieze Markovketens in continue tijd introduce-
ren. Of beter gezegd, we introduceren drie verschillende definities:
ze worden allemaal geparametriseerd door (i) een verzameling van
mogelijke beginverdelingen en (ii) een verzameling transitietempoma-
trices; en het zijn allemaal verzamelingen van stochastische proces-
sen in continue tijd die zich goed gedragen en die consistent zijn met
deze parameterverzamelingen. Dit wil zeggen dat de beginverdelingen
van hun elementen bevat zijn in de parametriserende verzameling van
mogelijke beginverdelingen, en dat de partiële-afgeleideverzamelingen
van hun families van transitiematrices bevat zijn in de parametrise-
rende verzameling transitietempomatrices. De definities verschillen
echter in de structurele eigenschappen die we opleggen aan hun ele-
menten. De drie definities zijn (i) een verzameling die bestaat uit
homogene Markovketens, (ii) een verzameling van—niet noodzakelijk
homogene—Markovketens en (iii) een verzameling van generieke—
niet noodzakelijk homogene noch Markoviaanse—stochastische pro-
cessen.

We bestuderen structurele en kwalitatieve eigenschappen van deze
verschillende verzamelingen processen, en van hun geı̈nduceerde ver-
zamelingen transitiematrices. We introduceren de bijbehorende onder-
en bovenverwachtingswaarden voor deze modellen, en onderzoeken
hun eigenschappen. We vinden voldoende voorwaarden voor de onder-
en bovenverwachtingswaarden van deze modellen om te voldoen aan
een imprecieze Markoveigenschap, wat opnieuw de terminologie moti-
veert dat dit imprecieze Markovketens zijn. We beargumenteren waarom
de conceptueel eenvoudigste van onze drie definities—het model dat
uitsluitend bestaat uit Markovketens die homogeen zijn—helaas het
lastigste model is om mee te werken. De intuı̈tieve reden is dat het op-
timalisatieprobleem dat komt kijken bij het bepalen van de onder- en
bovenverwachtingswaarden niet eenvoudiger (en handelbaarder) ge-
maakt kan worden, vanwege de sterke beperking dat deze optimali-
satie moet plaatsvinden over een verzameling die uitsluitend bestaat
uit homogene Markovketens; het is misschien verrassend, maar de ex-
tra vrijheidsgraden die de andere twee modellen toestaan, maken ze
uiteindelijk makkelijker in hun gebruik. Sterker nog, het is alleen voor
ons conceptueel meest ingewikkelde model—de verzameling van alle
stochastische processen die zich goed gedragen en consistent zijn met
de parametriserende verzamelingen—dat we in staat zijn een wet van
herhaalde onder- en bovenverwachtingswaarden te bepalen. Net als voor
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imprecieze Markovketens in discrete tijd, ligt deze wet ook hier ten
grondslag aan de ontwikkeling van efficiënte inferentiealgoritmen. We
introduceren ondertransitieoperatoren—die we eerder gebruikten voor
modellen in discrete tijd—nu ook voor imprecieze Markovketens in
continue tijd. We laten zien hoe, en onder welke voorwaarden, ze een
alternatieve representatie vormen van de onderverwachtingswaarden
van modellen in continue tijd.

We introduceren ondertransitietempo-operatoren, wat niet-lineaire
veralgemeningen zijn van transitietempomatrices, en we laten zien
dat ze duale representaties zijn van verzamelingen transitietempo-
matrices. We bespreken hoe ondertransitietempo-operatoren nume-
riek geëvalueerd kunnen worden, en voorzien in het bijzonder een ef-
ficiënt algoritme dat gebruikt kan worden wanneer deze operator de
duale is van een metrische bal rond een gegeven transitietempoma-
trix; dit geval dient zich natuurlijkerwijs aan in de context van sen-
sitiveitsanalyse. We tonen hoe een ondertransitietempo-operator een
halfgroep van ondertransitieoperatoren voortbrengt—naar analogie met
de halfgroep van transitiematrices die wordt voortgebracht door een
transitietempomatrix—en we tonen hoe en onder welke voorwaarden
deze halfgroep van ondertransitieoperatoren samenvalt met de onder-
transitieoperatoren horende bij een imprecieze Markovketen in conti-
nue tijd. We voorzien een algoritme waarmee de elementen van deze
halfgroep numeriek geëvalueerd kunnen worden. Dit leidt tot een eer-
ste praktisch bruikbaar algoritme voor het berekenen van (boven- en)
onderverwachtingswaarden voor impreciezeMarkovketens in continue
tijd: aangezien we al hadden vastgesteld dat de ondertransitieoperato-
ren een alternatieve representatie zijn van de onderverwachtingswaar-
den van functies die van de toestand op één enkel tijdstip afhangen,
is het numeriek evalueren van elementen van deze halfgroep eigen-
lijk hetzelfde als het uitrekenen van de onderverwachtingswaarden van
zulke functies. We combineren deze rekenmethode met de wet van
herhaalde onderverwachtingswaarden, zodat we een tweede, algeme-
ner algoritme krijgen voor het uitrekenen van onder- en bovenverwach-
tingswaarden van functies die van de toestand op eenwillekeurig, maar
eindig, aantal tijdstippen afhangen. We tonen dat dit algoritme werkt
voor onze meest imprecieze definitie van imprecieze Markovketens in
continue tijd; en in het bijzonder, dat het niet werkt, in het algemeen,
voor verzamelingen die slechts bestaan uit (mogelijk niet-homogene)
Markovketens. Echter, dit algoritme kan wel gebruikt worden om con-
servatieve grenzen op de onder- en bovenverwachtingswaarden voor
deze andere verzamelingen uit te rekenen.

We eindigen met het beschrijven van een sterk verband tussen im-
precieze Markovketens in continue en discrete tijd. In het bijzonder
tonen we hoe modellen in discrete tijd verkregen kunnen worden als
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beperkingen vanmodellen in continue tijd, door slechts rekening te hou-
den met tijdpunten in een gegeven discreet tijdsdomein. We laten zien
hoe de onder- en bovenverwachtingswaarden voor de oorspronkelijke
imprecieze Markovketen in continue tijd samenvallen met de onder-
en bovenverwachtingswaarden van zo een geı̈nduceerde imprecieze
Markovketen in discrete tijd. We illustreren het nut van dit resultaat,
door het te gebruiken om een vertaling te maken naar continue tijd, van
een zeer efficiënt inferentiealgoritme voor een specifieke klasse func-
ties, dat eerder ontwikkeld werd voor imprecieze Markovketens in dis-
crete tijd, zonder dat we dit algoritme opnieuw expliciet hoeven af te
leiden.

We concluderen dat de meest veelbelovende van onze drie verschil-
lende definities van imprecieze Markovketens in continue tijd het con-
ceptueel meest ingewikkelde model is: de verzameling van alle sto-
chastische processen in continue tijd die zich goed gedragen en die
consistent zijn met een gegeven verzameling beginverdelingen en een
gegeven verzameling transitietempomatrices. Deze verzameling zal in
het algemeen processen bevatten die niet homogeen noch Markoviaans
zijn, en die—individueel—zeer moeilijk te analyseren en berekenen
zijn. Echter, onder een aantal relatief milde aannames over de pa-
rameters, voldoen de onder- en bovenverwachtingswaarden van deze
verzameling aan een imprecieze Markoveigenschap; en het is ook voor
deze verzameling dat we onze meest krachtige resultaten hebben kun-
nen verkrijgen. In het bijzonder zijn veel van de cruciale resultaten die
de analyse en het uitrekenen van inferenties voor dit model handelbaar
maken, in het algemeen niet van toepassing voor onze andere twee defi-
nities: de verzameling die uitsluitend bestaat uit homogene Markovke-
tens, en de verzameling die bestaat uit (niet noodzakelijk homogene)
Markovketens. Het is slechts voor ons meest imprecieze model—de
verzameling die ook niet-homogene en/of niet-Markoviaanse proces-
sen bevat—dat we een wet van herhaalde onder- en bovenverwach-
tingswaarden konden bepalen; een algemeen inferentiealgoritme kon-
den afleiden voor een grote algemene klasse van inferentieproblemen;
en een gelijkenis konden vaststellen met imprecieze Markovketens in
discrete tijd die ons in staat stelt om, zonder verdere moeite, vele ge-
specialiseerde en efficiënte inferentiealgoritmen uit de bestaande lite-
ratuur over te nemen voor imprecieze Markovketens in continue tijd.
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Introduction

“Hello, my friend. Stay awhile, and listen...”

Deckard Cain, Diablo

Imprecise-Markov chains [22,45,48,57,103] are mathematical mod-
els that generalise Markov chains [49, 55, 82] using the theory of im-
precise probabilities [3, 114], which allows them to deal with partially
specified parameters and weakened structural assumptions. These
models can be used whenever obtaining a complete, precise specifi-
cation of a traditional model is infeasible, and/or when Markovian as-
sumptions are unwarranted or in doubt. Inferences from these models
can be interpreted as being “robust”, or “cautious”, with respect to the
variation implicit in the underspecification of the parameters.

Over the past several decades, the theory of discrete-time imprecise-
Markov chains has matured significantly; both in terms of theoreti-
cal and foundational results, e.g. [19, 20, 22, 45, 47, 57, 69, 101], and
in the development of efficient inference algorithms, e.g. [18, 21, 107].
However, substantial effort towards continuous-time imprecise-Markov
chains has only started to be made much more recently [17,61,103].

In this dissertation we present our foundational work to develop a
theory of continuous-time imprecise-Markov chains: we introduce and
discuss their representation, interpretation, and basic qualitative prop-
erties; provide fundamental algorithmic solutions to elementary infer-
ence problems; and prove a correspondence to discrete-time imprecise-
Markov chains with which we can leverage existing (algorithmic) solu-
tions to more advanced inference problems.
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Introduction

1.1 Motivation and Overview of Results

AMarkov chain [49,55,82] is a particular type of stochastic process [28]:
a probabilistic model that describes the uncertain behaviour of some
dynamical system of interest as this system evolves over time. In par-
ticular, a Markov chain is a stochastic process that satisfies the epony-
mous Markov property. This means that at any point in time, and given
the system’s “current” state, themodel’s description of the system’s “fu-
ture” behaviour does not depend on its “past” behaviour. These models
are named after Andrey Markov [73], who realised that such models
are the simplest generalisation of an independent-trials process that is
powerful enough to represent interesting structural properties of the
underlying dynamical system, while still being tractable enough to de-
scribe and use in practice [49].

Because there are many distinct types of underlying systems that
might be modelled, Markov chains occur in various flavours: we may
distinguish between discrete-time and continuous-time Markov chains;
and may make a distinction based on the cardinality of the set of possi-
ble states. In this dissertation we restrict ourselves entirely to systems
with finitely many states.

A discrete-time Markov chain, then, is a stochastic process that sat-
isfies theMarkov property, and for which time evolves in discrete steps:
at every point in time there is a well-defined “next” time point. As time
evolves in this manner, so does the state of the underlying system; these
state changes are “uncertain”, and a Markov chain describes this uncer-
tainty using a probability distribution over the different possible re-
alisations of the system. Since their inception, discrete-time Markov
chains have become ubiquitous as a probabilistic model throughout
science and engineering, with applications in fields like queueing the-
ory [2,7], natural language analysis [74], DNA sequence decoding [11],
Webpage ranking [84], information theory [99], and mathematical fi-
nance [91].

A continuous-time Markov chain, unsurprisingly, models systems
with a continuous time domain; at every point in time t, we can con-
sider a time point t +∆ that lies an arbitrary amount ∆ ≥ 0 of time in
the future. Conceptually, there is not much difference with discrete-
time models: a continuous-time Markov chain specifies a probabil-
ity distribution over the possible realisations of the system. How-
ever, due to the fundamental differences between these time domains,
there are additional technical difficulties in representing and reason-
ing with continuous-time models. As with their discrete-time coun-
terparts, these models have found applications in fields as disparate
as queueing theory [2,7], mathematical finance [31,91,95], epidemiol-
ogy [30,52,67], and system reliability analysis [6,36,116].

30



1.1 Motivation and Overview of Results

The Markov property can essentially be seen as a simplifying as-
sumption that is imposed to obtain a tractable model. Another such
assumption that is often encountered in this context is that of time-
homogeneity [38, 49, 55, 82].1 Roughly speaking, this means that the
model’s description of the system’s uncertain behaviour is the same at
all time points. Under these conditions, it turns out that Markov chains
are exceptionally easy to parameterise. Regardless of the time domain,
one always needs an initial distribution: a probability distribution that
describes the uncertainty about the state in which the system starts. For
discrete-time Markov chains, it suffices to additionally supply the tran-
sition probabilities between all pairs of states (see e.g. [82, Chapter 1]);
essentially, for each state, one needs to provide the probabilities that
the system moves from that state to any (other) state in a single time
step. For continuous-time Markov chains, one instead needs to sup-
ply the transition rates between all pairs of states (see e.g. [82, Chapter
2]); these can essentially be interpreted as the speeds with which the
system moves between these states.

One other—often implicit—assumption that is required to use these
models in practice, is that one can provide the (numerical) values of
these parameters exactly. Under the above conditions, a Markov chain
is an analytically and computationally tractable model that can be used
to answer probabilistic or statistical queries of interest about the under-
lying system. Throughout this dissertation, we will use the general ter-
minology that the model is used to make (or compute) inferences about
some quantity of interest. Such an inference is typically the probability
of some event occurring—e.g. the probability P(Xt = x) that the (un-
certain) state Xt of the system at time t will be equal to the state x—or
the conditional expectation E[ f |C] of a function f whose value f (ω)
depends on the (uncertain) realisation ω of the system, given the oc-
currence of some event C.

The theory that we develop in this dissertation is predicated on,
and motivated by, situations where the above assumptions break down.
For instance, a practitioner may find it difficult to supply numeri-
cally exact parameters, because they were estimated from few or un-

1There appears to be no consensus in the literature on how to call this property.
Doob [28] refers to these models as having “stationary transition probabilities”. The
authors of [49,55] make this assumption implicitly in their definition of a Markov chain;
Howard [49] refers to models that do not satisfy it as “time-varying”, and Kemeny and
Snell [55] as “Markov processes”. Norris [82], in contrast, uses the terms “Markov chain”
and “Markov process” to distinguish between Markov models with, respectively, at most
countably and uncountably many states; but makes this assumption implicitly in both
definitions. Throughout this dissertation, we follow e.g. Grimmett and Stirzaker [38] in
using the term “homogeneous”, or “time-homogeneous” when we want to be explicit.
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reliable data, or obtained from conflicting expert elicitation. The un-
derlying system of interest may exhibit temporal correlations that are
too complex to warrant assumptions of Markovianity. Parameter esti-
mates that were obtained at different times—for example frommultiple
experiments—may differ too substantially to make time-homogeneity
plausible. Under any or all of these more difficult conditions, can we
still construct and employ models that remain analytically and compu-
tationally tractable? Crucially, if we need to introduce approximations
to capture this more complicated structure, can we guarantee in some
way that the inferences obtained from such models are in some sense
“robust” against these deviations from the traditional assumptions?

These questions, it turns out, can be answered in the affirmative—
with some caveats. Of course, it would be unreasonable to expect to
obtain numerically precise and reliable answers, from a model whose
parameters are (perhaps partially) unknown, and whose structural as-
sumptions are expected or assumed to be wrong. However, we may aim
for a more reasonable goal: to obtain the most informative answers that
are consistent with what is known, while being conservative, or “cau-
tious”, with respect to those things that are not known. To achieve this
goal, we turn to the theory of imprecise probabilities [3,114].

In his seminal work [114], Walley introduced his theory of impre-
cise probabilities; a mathematical framework for representing and rea-
soning under uncertainty which generalises and subsumes traditional
probability theory. The basis of this theory is a subjectivist and be-
havioural formalisation of the notion of uncertainty, which traces its
roots to the work of Ramsey [86], De Finetti [24], and Williams [117].
We refer to [3] for an excellent introductory treatment and overview of
work in the general field of imprecise probabilities. There are several
mathematically equivalent ways to interpret this theory; throughout
this dissertation, we will adopt the “sensitivity analysis” interpreta-
tion [114, Section 2.10], which is reminiscent of e.g. Huber’s work [50]
on robust statistics.

Under this interpretation, an imprecise-probabilistic model can be
seen as a set P whose elements are all (traditional, “precise”) proba-
bilistic models. This set P is taken to include all precise models that
are deemed, in some sense, to be “plausible”. In our current setting, for
example, we might collect in P all homogeneous Markov chains whose
parameters are obtained from (possibly conflicting) expert elicitation.
That is, if the assessments of several experts would lead to several dis-
tinct models, we could include all of these models in P . We need not
stop there, however, and could include in P also non-homogeneous
Markov chains, whose parameters can vary freely over time; provided
that at each point in time they are consistent with at least one expert’s
assessment, say. In a similar vein, we might relax the Markov assump-
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1.1 Motivation and Overview of Results

tion of the elements of this set, and include models whose behaviour
depends intricately on their history. Constructions like the above lead
to the notion of an imprecise-Markov chain [22, 45, 48, 57, 61, 103]; the
imprecise-probabilistic generalisation of traditional Markov chains.2

With such a model, the inferences of interest are no longer simply
expectations, as above, but rather (conditional) lower and upper expec-
tations. These are defined, respectively, as

E[ f |C] := inf
P∈P

EP[ f |C] and E[ f |C] := sup
P∈P

EP[ f |C] ,

where, for all P∈P , EP[ f |C] is the usual conditional expectation of the
function f , conditional on the event C, with respect to the probabilis-
tic model P. In words, the lower expectation is the infimum of—the
tightest possible lower bound on—the expectations of all precise mod-
els that are deemed to be plausible. Conversely, the upper expectation
is the supremum of—the tightest possible upper bound on—these ex-
pectations. Consequently, provided that P was constructed to contain
all plausible variations of the model that one is trying to obtain—in
terms of numerical parameters and/or structural assumptions—these
lower and upper expectations bound the range of values that the infer-
ence of interest could plausibly take. As an aside, it is useful to note
that the lower and upper expectation are mathematically conjugate: it
holds that E[ f |C] =−E[− f |C]. As a matter of convenience, therefore,
we can restrict any discussion to either of these two objects; the anal-
ogous properties carry over through this relation. In this dissertation,
we phrase our results mostly in terms of lower expectations.

Many interesting questions arise from this rough description of
imprecise-Markov chains and this general inference problem. How
might we best parameterise and represent such models, mathemati-
cally or in practical applications? To what extent can or should we
include non-homogeneous and/or non-Markovian processes in these
sets? What properties are satisfied by these lower expectations, and un-
der which conditions? When can these lower expectations be tractably

2As a brief digression on terminology, we want to point out that these objects are
usually called “imprecise Markov chains” in the available literature; see e.g. [22,61,103].
That is, most authors do not hyphenate the adjectives “imprecise” and “Markov”. How-
ever, the terminology derives from that fact that these models satisfy an imprecise ver-
sion of the Markov property; see e.g. Propositions 3.25110 and 5.28203. As such, we feel
that “imprecise-Markov”, as a compound adjective, should be hyphenated. In particular
for this current work, where we also deal with further adjectives—i.e. we discuss both
discrete-time and continuous-time imprecise-Markov chains—this helps to disambiguate
the target of the adjective “imprecise”. In previous work [61] we ourselves used the ter-
minology “imprecise continuous-time Markov chain”, something that we now regret as a
somewhat unfortunate precedent.
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computed; to what extent does this depend on the type of inference?
What about properties in the limit where time goes to infinity? And so
on and so forth. . .

We would go so far as to say that the substantial existing litera-
ture on discrete-time imprecise-Markov chains has effectively settled
most of these issues for systems with a discrete time domain, at least
for inferences that depend on the state of the system at finitely many
time points; the setting where inferences depend on the state at in-
finitely many time points—e.g. the computation of time averages or
hitting times—remains an area of active research. In particular, the
seminal work of De Cooman and Hermans [20] established that, for
certain types of discrete-time imprecise-Markov chains, the computa-
tional complexity of solving a wide class of inference problems is ef-
fectively similar to that observed for traditional Markov chains. Collo-
quially, we may say that while there is some computational overhead
to the use of imprecise-probabilistic models, this overhead does not
depend on the particular inference that is being solved; and conse-
quently, many inferences that can be computed efficiently for tradi-
tional Markov chains, can also be computed efficiently for discrete-time
imprecise-Markov chains. The thesis that we develop in this disserta-
tion is, at its core, that such results carry over, essentially identically, to
systems with a continuous time domain.

Concretely, in this dissertation we develop a number of mathe-
matical tools that allow us to describe (collections of) continuous-
time stochastic processes that may or may not be Markovian. We
introduce multiple distinct definitions of continuous-time imprecise-
Markov chains; all sets of such stochastic processes, but different in
the structural assumptions of their elements. We investigate proper-
ties of these sets and, dually, of their corresponding lower (and upper)
expectations. We argue and show that, under some conditions, these
properties mirror those of discrete-time imprecise-Markov chains.

Arguably the two most important properties that we derive for the
lower (and hence upper) expectations are sufficient conditions for these
models to satisfy (i) an imprecise-Markov property and (ii) a law of it-
erated (lower) expectation. The imprecise-Markov property states, es-
sentially, that while the imprecise-probabilistic model may be a set of
general, non-Markovian stochastic processes, the corresponding condi-
tional lower expectation is history-independent in a manner analogous
to theMarkov property. This leads to many simplifying properties. The
law of iterated (lower) expectation is a decomposition property that,
as we show, is instrumental to the development of efficient computa-
tional methods. Both of these properties are also known to hold for,
and are central to, the established theory of discrete-time imprecise-
Markov chains.
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In addition to the above, we derive an alternative characterisation of
the lower expectations in terms of lower transition operators. Such lower
transition operators are, again, also central to discrete-time imprecise-
Markov chains. We use these lower transition operators to derive a
general computational (i.e. algorithmic) method to compute arbitrary
lower (and hence upper) expectations for continuous-time imprecise-
Markov chains, at least for functions that depend on the state of the
system at finitely many time points. Additionally, we derive a spe-
cialised augmentation of this algorithm that can be used for efficient
computations in models where the parameter set is obtained by tak-
ing a region (i.e. a metric ball) around a precise numerical parameter
estimate; this setting may arise naturally in, e.g., a sensitivity analysis
context.

Finally, we prove how certain inferences in continuous-time
imprecise-Markov chains can be reduced to inferences in discrete-time
imprecise-Markov chains. We do this by, essentially, taking the re-
striction of the continuous-time model to the time points on which
this inference depends. We show how this reduction can be used to
leverage any number of more advanced algorithms from the discrete-
time imprecise-Markov chain literature, for use with continuous-time
imprecise-Markov chains. In particular, we illustrate its use in ob-
taining a very efficient inference algorithm for a particular class of
problems, without having to explicitly re-derive this result for the
continuous-time setting.

1.2 Related Work

As should hopefully already be clear from our discussion in Sec-
tion 1.130, we base ourselves in large part on previous work done on
discrete-time imprecise-Markov chains. A relatively recent overview of
such results can be found in Reference [48]; in what follows, we present
only a brief historical account. Discrete-time imprecise-Markov chains
were introduced byHartfiel, who called themMarkov set chains [44–46].
He took as his models sets of (potentially non-homogeneous) Markov
chains. Similar models were later studied by Škulj [101]. A differ-
ent type of discrete-time imprecise-Markov chain was considered by
Kozine and Utkin [57], and Campos et al. [10]; they took as their mod-
els sets of homogeneous Markov chains.

It was the work by De Cooman and Hermans [20] that first intro-
duced a third type of discrete-time imprecise-Markov chain; under our
interpretation, these models can be seen as sets of general—not neces-
sarily homogeneous or Markovian—stochastic processes. They devel-
oped these models through a connection with Shafer and Vovk’s for-
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malisation of game theoretic probabilities [97, 98]. It was this work that
ultimately paved the way for efficient inference algorithms for wide
classes of problems; we provide a (non-exhaustive) list of subsequent
work through References [18,19,21,22,47,58,64,69,71,72,106,107].

As in the discrete-time case, work on continuous-time imprecise-
Markov chains also traces its early roots back to Hartfiel [43], who in-
vestigated set-valued solutions to (sets of) differential equations that
are closely connected to (precise) continuous-time Markov chains. As
far as we are aware, there has not been much related work in the inter-
vening time until Škulj [102, 103] revisited the problem almost three
decades later. This work led to a first application by Troffaes et al. [110],
and Lopatatzidis et al. [70] investigated some computational aspects
in a special case relevant to queueing theory. It was around this time
that we started the work that forms the basis of this dissertation, which
would be published two years later [61]. In parallel, De Bock [17] anal-
ysed the long-term (ergodic) behaviour of the machinery that we were
developing.

Due to the time that has passed since then, a situation has devel-
oped where a fair amount of work has been done that is based on, or
at least strongly related to, the theory that we present in this disser-
tation. We nevertheless feel that this is “related work”, so we would
like to provide some pointers to this literature for the convenience of
interested readers. We refer to Section 1.542 further on for an overview
of subsequent work in which we were ourselves involved. Of partic-
ular note is the work by Erreygers et al. [33, 35] on the construction
of continuous-time imprecise-Markov chains with a method known as
lumping, where parameter-underspecification (and hence model im-
precision) is a consequence of a reduction from an intractably large
(but finite) state space to one with a more manageable size. This has
led to a number of more applied publications about continuous-time
imprecise-Markov chains [35, 92, 108]. We should also mention the
work by Erreygers and De Bock on computational methods [32] that
improve the ones that we presented in [61], and their work towards a
generalisation of the theory to systems with countably infinitely many
states [34]. Krpelı́k et al. [66] have investigated an application in the
context of reliability theory. Recent work by Škulj [104] investigates
possible improvements for fundamental computational aspects of ele-
mentary inferences.

A somewhat recent discovery is that there appears to be a closely
related—but independently developed—line of research in the field of
mathematical finance, based on Peng’s [85] work on nonlinear expecta-
tions and, in particular, “nonlinear Markov chains”. His theory of non-
linear expectations provides a generalised formalism for representing
uncertainty that is very similar to, but subtly different from, Walley’s
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theory of imprecise probabilities. Of particular note in this context is
Nendel’s work on nonlinear Markov chains [78, 79], as is the work by
Denk et al. [25,26].

Moreover, work that is mathematically related to, but conceptually
very different from, what we present here, can be found in the fields of
(continuous-time) Markov decision processes [40] and controlled Markov
chains [41]. There, too, one deals with parameters that may vary in
some pre-specified set. However, such sets there represent possible be-
haviours of the underlying system that can be actively chosen or con-
trolled, e.g. in such a manner as to optimise some objective function of
interest. Nevertheless, in this context we could alternatively interpret
lower and upper expectations as corresponding to inferences which an
external party—e.g. “nature”—tries to steer towards the best, or worst,
possible outcome, within the set of possible behaviours of the underly-
ing system. Because this interpretation is substantially different from
the “model uncertainty” view that we adopt here, we will not really
consider this connection in the remainder of this dissertation.

Finally, a practically important question is how one obtains the pa-
rameters that describe a continuous-time imprecise-Markov chain. To
this end, we briefly consider some methods based on perturbations of
the parameters of precise continuous-timeMarkov chains, which seems
natural from the sensitivity-analysis point of view. However, more
complicated methods are largely outside the scope of this work, and
from a theoretical standpoint we generally simply assume that the pa-
rameters are given. For some examples of related work in the literature
that addresses this question to some extent, we refer to the lumping
methods [33, 35] already mentioned above, as well as to our own pre-
liminary research into estimating these parameters from data [62].

1.3 Navigating This Dissertation

This dissertation is divided into eight chapters and two global appen-
dices, not counting sections like the summaries, the list of symbols and
terminology, and the bibliography; the latter two sections can be found
at the back. Most chapters are divided into multiple sections, which
may themselves be divided into subsections. Many of the chapters
in this work have their own appendices, in which we have collected
proofs, technical results, and explanations which we feel would detract
from the discussion in the main text. There are also many, many refer-
ences used in this dissertation. References to external work are num-
bered and delimited by square brackets, and refer to work in the liter-
ature that is listed in the bibliography; for example, Reference [3] is an
excellent introductory treatment and overview of the general theory of
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imprecise probabilities.

For ease of navigation, internal references are provided with a sub-
script that displays the page on which the referent can be found; for
instance, Proposition 5.28203 can be found on Page 203. To make them
easily distinguishable, references to equations are delimited by paren-
theses; for example, Equation (5.18)208 states the law of iterated (lower)
expectation for continuous-time imprecise-Markov chains. Rather than
explicitly list the page number, we use the subscript symbols x or y
when the referent can be found on, respectively, the previous or sub-
sequent page. In the special case where the referent is on the same
double-page spread as the reference, we omit the subscript; after all,
you can already see the start of Section 1.4 without turning the page.

1.4 Overview of the Chapters

Let us now present a brief overview of the content and main results
of the chapters in this work, as well as indicate which parts are based
on the literature and which parts constitute original work. After this
section, we will in the current introductory chapter— Chapter 129—
present an overview of our publications and, for ease of reference,
again discuss which parts of this dissertation represent substantial new
work. We then conclude this chapter with some elementary mathemat-
ical preliminaries.

In Chapter 245 we introduce the probabilistic framework that will
form the foundation of this work. In Section 2.146 we discuss full
conditional probabilities [29] and the notion of coherence [4, 24, 87,
109, 117, 118]. We formalise a notion of conditional expectations for
these objects, based on the concept of coherent conditional previ-
sions [24, 90, 109, 114, 117], and inspired by the notion of linear ex-
tension discussed in Reference [109]. We explore some connections to
measure-theoretic expectations [105] by extending a result from Refer-
ence [109]. In Section 2.258 we formalise some notions of time, state,
and function spaces, and in Section 2.364 we combine these concepts
to formally define stochastic processes with both discrete and continu-
ous time domains; the characterisation of discrete-time processes is in-
spired by Reference [69], and that of the continuous-time ones is based
on our original work published in Reference [61]. We conclude this
chapter with some elementary discussion and properties of conditional
expectations specifically for stochastic processes.

Chapter 383 then takes a short digression into the theory of
(imprecise-)Markov chains in discrete time. As we have repeatedly
claimed in Section 1.130, this well-established theory has strong con-
nections to the theory of continuous-time imprecise-Markov chains

38



1.4 Overview of the Chapters

that we will develop in this work, and many of the results that we
obtain are inspired by, and can be seen as extensions of, results from
this theory. Due to the comparatively straightforward intuition of
the discrete time domain that is used here, this chapter also lets us
ease the reader into some of the more involved concepts that we
will encounter later. We start in Section 3.185 by stating some gen-
eral properties of discrete-time processes, that were initially proved
in [69]. In Section 3.289, we discuss discrete-time (precise) Markov
chains [39, 54, 82, 96]—of particular importance here is their param-
eterisation using (families of) transition matrices. We consider various
different characterisations of discrete-time imprecise-Markov chains in
Section 3.3101, based on previous work in References [10,20–22,27,44–
46,48,57,69,101]. Of central importance here, is their characterisation
using (families of) sets of transition matrices. We investigate properties
of their corresponding lower and upper expectation operators, by dis-
cussing some results that conceptually originate from [20–22, 48, 69].
In Section 3.4116 we discuss lower transition operators [22,23,48], which
are essentially nonlinear generalisations of the linear maps represented
by transition matrices, and we demonstrate how they can be seen as
dual representations of sets of transition matrices. In Section 3.5121, we
discuss some results based on References [22,48], that show how these
lower transition operators form an alternative characterisation of the
lower expectations of discrete-time imprecise-Markov chains.

Many of the subtleties of working with continuous-time stochastic
processes are discussed in Chapter 4143. This chapter is mostly based
on original work that was previously published in Reference [61]. In
Section 4.1144 we introduce the notion of well-behaved stochastic pro-
cesses; intuitively, processes that cannot move between states instanta-
neously. In Section 4.2148 we introduce an operator-theoretic frame-
work for describing the behaviour of such processes. The basis of this
framework are multi-index families of transition matrices induced by
continuous-time stochastic processes. We then spend some effort on
developing machinery that lets us construct, manipulate, and com-
bine such families. As discussed in Section 4.3150, a crucial building
block of these families are semigroups of transition matrices [111] gener-
ated by transition rate matrices; these are essentially matrices contain-
ing the transition rates that constitute the parameters of homogeneous
continuous-time Markov chains [82]. In Sections 4.4156 and 4.5158, we
develop the machinery to manipulate such families of transition ma-
trices. We conclude this chapter with Section 4.6166, where we discuss
generalised derivatives of the time-evolving transition probabilities of
general continuous-time stochastic processes, which are central to our
definition of continuous-time imprecise-Markov chains.

In Chapter 5181, we finally introduce the continuous-time
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imprecise-Markov chains that are the subject of this dissertation; it
is mostly based on original work that was previously published in Ref-
erence [61]. We start in Section 5.1182 by introducing continuous-time
(precise) Markov chains, based on our formalism of full and coher-
ent conditional probabilities. In Section 5.2188, we introduce three
distinct definitions of what could reasonably be called continuous-
time imprecise-Markov chains. These three definitions are sets of
processes with increasingly weaker structural assumptions on their
elements; they correspond to sets of homogeneous Markov chains, sets
of—possibly non-homogeneous—Markov chains, and sets of general—
possibly non-homogeneous and non-Markovian—stochastic processes.
We spend some effort in analysing structural properties of these sets of
processes. The content of Section 5.3194 is largely novel work that has
so far been unpublished, and we there investigate structural properties
of the induced sets of transition matrices. We conclude this chapter
with Section 5.4198, in which we provide a discussion about the corre-
sponding lower (and upper) expectations of these imprecise-Markov
chains. Here we derive some first results about sufficient conditions for
these models to satisfy an imprecise-Markov property, as well as a law of
iterated lower expectation.

In Chapter 6259 we introduce lower transition operators—which we
previously discussed for discrete-time models—also in the continuous-
time context. This chapter is mostly original work, containing in part
some new and unpublished results, but being otherwise largely based
on Reference [61]. In Section 6.1260, we use the structural properties
of the induced sets of transition matrices, as well as the law of iterated
lower expectation, to derive an alternative characterisation of the lower
expectations of our most imprecise type of continuous-time imprecise-
Markov chains, in terms of these corresponding lower transition opera-
tors. In Section 6.2265 we introduce lower transition rate operators, which
are to transition rate matrices as lower transition operators are to tran-
sition matrices; and we establish a duality between such lower transi-
tion rate operators and sets of transition rate matrices. In Section 6.3269
we use these lower transition rate operators to construct a semigroup of
lower transition operators, and we discuss how this construction has a
connection to previous work in References [17,78,81,103]. We present
an algorithm to evaluate the elements of this semigroup, and present
some new, unpublished, results for when the parameters are obtained
from a perturbation model, in which case this evaluation can be per-
formed fairly efficiently. In Section 6.4279, we then derive sufficient
conditions for this semigroup of lower transition operators to coincide
with lower transition operators corresponding to our continuous-time
imprecise-Markov chains. This yields an improved sufficient condi-
tion for our most imprecise type of continuous-time imprecise-Markov
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chain to satisfy an imprecise-Markov property. In Section 6.5284, we
use the correspondence between the lower expectations of continuous-
time imprecise-Markov chains, their lower transition operators, and
the generated semigroup of lower transition operators, to develop a
general computational (i.e. algorithmic) method to compute arbitrary
inferences that depend on the state of the system at finitely many time
points. We conclude this chapter with Section 6.6290, in which we both
illustrate the use of this computational method on a numerical exam-
ple, and also establish that this computational approach only works for
sets of general stochastic processes. In particular, we provide a novel,
previously unpublished, example that demonstrates that the lower ex-
pectations of this model can differ from the lower expectations for sets
of Markov chains.

The final technical chapter of this dissertation is Chapter 7335,
and it mostly contains novel, previously unpublished, results. There,
we discuss a connection between discrete-time and continuous-time
imprecise-Markov chains. In particular, in Section 7.1336 we show
how the parameters of a continuous-time imprecise-Markov chain can
also be used to describe a discrete-time imprecise-Markov chain. We
demonstrate in Section 7.2338 that this characterisation is such, that
the lower expectations of these two models coincide. We demonstrate
the use of this result in obtaining an especially efficient inference algo-
rithm for a particular class of functions, that was previously derived for
discrete-time imprecise-Markov chains—without explicitly re-deriving
it for the continuous-time setting. We conclude this chapter with Sec-
tion 7.3345, in which we provide this discrete-time imprecise-Markov
chain with an alternative characterisation, as being the set of restricted
continuous-time stochastic processes corresponding to the elements of
the continuous-time imprecise-Markov chain with the same parame-
ters.

We conclude with Chapter 8363, in which we summarise the main
results, provide some outlook on future work, and give our closing
thoughts on the thesis developed in this dissertation.

In addition to the above chapters in the main text, we have included
two appendices to this dissertation. In Appendix A369 we present and
summarise some well-known technical definitions and results that are
crucial for analysis in (finite-dimensional) normed vector spaces, on
which we rely throughout this dissertation. This appendix is mostly
based on results from References [9,51,100]. Appendix B391 contains a
number of technical inequalities on which we rely in multiple chapters,
but which presented some difficulty to prove in the chronological order
of their use.

41



Introduction

1.5 Publications and New Results

This dissertation represents the culmination of the research performed
during my time as a PhD student. This research has resulted in the
publication of nine papers and one book chapter. One of these papers
was published as a journal article, and it is only this paper that forms
the basis of my dissertation:

• Thomas Krak, Jasper De Bock, and Arno Siebes. Imprecise
continuous-time Markov chains. International Journal of Approxi-
mate Reasoning, 88:452–528, 2017 [61].

This dissertation presents the core results from this publication, but
with more discussion and contextualisation. Moreover, a fairly sub-
stantial part of this dissertation consists of new results that have not
been published previously. Of particular note are the following, which
I feel are substantial contributions in their own right and which I hope
in the future to publish as (part of) research articles:

• The results in Section 5.3194 about sets of transition matrices in-
duced by continuous-time imprecise-Markov chains;

• The efficient computational method presented by Proposi-
tion 6.21278, for evaluating the lower transition rate operator ob-
tained from a metric ball around a single transition rate matrix;

• The results in Section 6.6.2297 demonstrating that lower expec-
tations for sets of (non-homogeneous) Markov chains can differ
from those for sets of general stochastic processes;

• The correspondence between discrete-time and continuous-time
imprecise-Markov chains presented in Chapter 7335.

In addition to the above, I have (co-)authored six full-paper con-
tributions related to imprecise-Markov chains, which were presented
at—and included in the proceedings of—international conferences. Al-
though the results from these publications are not included in this dis-
sertation, I list them here in reverse chronological order:

• Thomas Krak. Computing expected hitting times for imprecise
Markov chains. Accepted for publication in Proceedings of UQOP
2020, forthcoming [58].

• Natan T’Joens, Thomas Krak, Jasper De Bock, and Gert de
Cooman. A recursive algorithm for computing inferences in im-
precise Markov chains. Lecture Notes in Artificial Intelligence,
Vol. 11726 (Proceedings of ECSQARU 2019), pages 455–465,
2019 [107].
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• Thomas Krak, Natan T’Joens, and Jasper De Bock. Hitting times
and probabilities for imprecise Markov chains. Proceedings of Ma-
chine Learning Research, Vol. 103 (Proceedings of ISIPTA 2019),
pages 265–275, 2019 [64].

• Matthias Troffaes, Thomas Krak, and Henna Bains. Two-state im-
precise Markov chains for statistical modelling of two-state non-
Markovian processes. Proceedings of Machine Learning Research,
Vol. 103 (Proceedings of ISIPTA 2019), pages 394–403, 2019 [108].

• Thomas Krak, Alexander Erreygers, and Jasper De Bock. An im-
precise probabilistic estimator for the transition rate matrix of
a continuous-time Markov chain. Uncertainty Modelling in Data
Science (Proceedings of SMPS 2018), pages 124–132, 2018 [62].

• Thomas Krak, Jasper De Bock, and Arno Siebes. Efficient compu-
tation of updated lower expectations for imprecise continuous-
time hidden Markov chains. Proceedings of Machine Learning
Research, Vol. 62 (Proceedings of ISIPTA 2017), pages 193–204,
2017 [60].

Additionally, I have written a chapter contribution to a book:

• Thomas Krak. An introduction to imprecise Markov chains. In
Massimiliano Vasile, editor, Optimization Under Uncertainty with
Applications to Aerospace Engineering, chapter 5. Springer Nature,
2021 [59].

In addition to my work on imprecise-Markov chains, I have
(co-)authored two papers on unrelated topics; I have included them
here for completeness:

• Thomas Krak and Ad Feelders. Exceptional model mining with
tree-constrained gradient ascent. Proceedings of SIAM ICDM
2015, pages 487–495, 2015 [63].

• Thomas Krak and Linda C. van der Gaag. Knowledge-based bias
correction – a case study in veterinary decision support. Fron-
tiers in Artificial Intelligence and Applications (Proceedings of ECAI
2014), pages 489–494, 2014 [65].

1.6 Mathematical Preliminaries

Let us conclude this introductory chapter with some preliminary dis-
cussion of mathematical notation and terminology on which we will
rely throughout this dissertation.

43



Introduction

We denote the reals as R, the non-negative reals as R≥0, the positive
reals as R>0, and the negative reals as R<0. For any c∈R, R≥c, R>c, and
R<c have a similar meaning. The positive and non-negative integers are
denoted by Z>0 and Z≥0, respectively. The rationals are denoted by Q.

Infinite sequences of quantities will be denoted {ai}i∈Z>0
, possibly

with limit statements of the form {ai}i∈Z>0
→ c, which should be in-

terpreted as limi→+∞ ai = c. If the elements of such a sequence belong
to a space that is endowed with an ordering relation, we may write
{ai}i∈Z>0

→ c+ or {ai}i∈Z>0
→ c− if the limit is approached from above

or below, respectively.
When working with suprema and infima, we will sometimes use the

shorthand notation sup{·} < +∞ to mean that there is some c ∈ R such
that sup{·}< c, and similarly for inf{·}>−∞.

For any set A and any superset C of A, we use IA to denote the in-
dicator of A, defined for all a ∈ C by IA(a) := 1 if a ∈ A and IA(a) := 0,
otherwise. If A is a singleton A = {a}, we instead write Ia := I{a}.

Finally, for any finite or countably infinite set A, a probability mass
function on A is a map p : A→R such that ∑a∈A p(a) = 1 and p(a)≥ 0 for
all a ∈ A.
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“Who are you?”

This was not an encouraging opening for a conversation.

Alice replied, rather shyly, “I–I hardly know, sir, just at present–at least
I know who I was when I got up this morning, but I think I must have
been changed several times since then.”

Lewis Carroll, “Alice’s Adventures in Wonderland”

Consider some system or object whose state Xt evolves in some un-
certain manner as time t progresses. This describes in rough terms the
concept of a stochastic process, which is ultimately the kind of mathe-
matical object that we aim to study in this dissertation. To formalise
these ideas, we will need some machinery to describe what, exactly, we
mean by notions like “state”, “uncertain”, and “time”. To this end, we
develop in this chapter the foundational elements that we will need
throughout the remainder of this work. We start in Section 2.1y by in-
troducing the basic formalism to represent uncertainty, on which we
will rely throughout: this is the framework of full conditional prob-
abilities and coherence. This provides a language for talking about
“things”—in the broadest sense—whose behaviour we are uncertain
about in one way or another. Notably, this framework is distinct from
the measure-theoretic one that is most often employed in the litera-
ture; we discuss some of the important differences as they come up,
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and provide the interested reader with a behavioural interpretation of
this formalism in Appendix 2.A80 to this chapter.

In Section 2.258 we introduce some notation and conventions for
reasoning about points in time, about states that a system can be in,
and about functions of these states. We tie these concepts together in
Section 2.364, where we use this framework for reasoning about uncer-
tainty to formally define the notion of a stochastic process. As we will
see, this provides a mathematical model for reasoning about the be-
haviour of some abstract underlying system of interest, which evolves
in time in a manner about which we are uncertain.

We end this chapter with Section 2.471, where we formally discuss
the inferences that we want to make about the system of interest; these
are statements about quantities of interest that depend on the state or
behaviour of the system. We will discuss how these inferences are rep-
resented as (conditional) expectations of functions, taken with respect
to the coherent (conditional) probabilities that we introduced earlier.

2.1 Full Conditional Probabilities and Coherence

Let us first turn our attention to how to represent and reason about
uncertainty; broadly speaking, this is a particular epistemological state
that a subject can be in. That is, we take uncertainty to be a subjective
notion that derives from a subject’s knowledge (or rather, lack thereof)
about some topic to which this uncertainty pertains. To illustrate this,
consider a variable X that takes values ω in some non-empty—possibly
infinite—outcome space Ω. A subject may be uncertain about the ac-
tual value of X , in the sense that she does not know it. An exam-
ple of this, which we borrow from Walley [114], is the throwing of a
thumb tack,1 and the question of whether it lands pin-up or pin-down.
Then Ω = {pin-up, pin-down} are orientations that the thumb tack can
be in, and the variable X represents the resulting orientation after the
throw. For various reasons, it seems reasonable for a subject to say that
she is uncertain about X before learning the outcome of the throw.2

1Another classical example is the flipping of a coin, but we feel that this brings with
it an implied and unneeded—indeed, undesired—sense of symmetry.

2It is not really our intention to give an exhaustive philosophical overview of what
it might mean to be uncertain, or where one’s uncertainty might derive from, or in
which way quantified degrees of uncertainty could derive from particular epistemolog-
ical states. Instead, we simply proceed axiomatically with Definition 2.1. Nevertheless,
the closely related notion of coherence, which is introduced formally in Definition 2.248,
can be provided with a behavioural interpretation that we sketch in Appendix 2.A80. If
one insists on a label, this would provide the formalism that we use with a behavioural
subjectivist semantics. We refer to Appendix 2.A80 and the references contained therein
for further information.
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To formalise this mathematically, we call any subset E of Ω an
event, we use E (Ω) to denote the set of all such events, and we let
E (Ω)⊃ /0 := E (Ω) \ { /0} be the set of all non-empty events. A subject’s
uncertainty about the value of X may then be described by means of a
full conditional probability [29].

Definition 2.1 (Full Conditional Probability). A full conditional prob-
ability P is a map from E (Ω)× E (Ω)⊃ /0 to R that satisfies the following
axioms. For all A,B ∈ E (Ω) and all C,D ∈ E (Ω)⊃ /0:

F1: P(A|C)≥ 0;

F2: P(A|C) = 1 if C ⊆ A;

F3: P(A∪B|C) = P(A|C)+P(B|C) if A∩B = /0;

F4: P(A∩D|C) = P(A|D∩C)P(D|C) if D∩C 6= /0.

For any A ∈ E (Ω) and C ∈ E (Ω)⊃ /0, we call P(A|C) the probability of A

conditional on C. Also, for any A ∈ E (Ω), we use the shorthand notation
P(A) := P(A|Ω) and then call P(A) the probability of A.

A number of additional properties follow readily from F1–F3.

Proposition 2.1. Let P be a full conditional probability. Then for all A ∈
E (Ω) and all C ∈ E (Ω)⊃ /0, it holds that

F5: 0≤ P(A|C)≤ 1;

F6: P(A|C) = P(A∩C|C);

F7: P( /0|C) = 0;

F8: P(Ω|C) = 1.

Proof. Consider any A ∈ E (Ω) and C ∈ E (Ω)⊃ /0. It then follows from F2
and F3 that

P(A|C) = P(A∪C|C)−P(C \A|C) = 1−P(C \A|C) (2.1)

and

P(A∩C|C) = P(C|C)−P(C \A|C) = 1−P(C \A|C). (2.2)

F5 follows from Equation (2.1) and F1. F6 follows from Equations (2.1)
and (2.2). F7 follows from F3, by letting B := /0. F8 follows from F2.
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Basically, F1x–F4x are just the standard rules of probability. How-
ever, there are four rather subtle differences with the more traditional
approach. The first one is that a full conditional probability takes con-
ditional probabilities as its basic entities: P(A|C) is well-defined even
when P(C) = 0. The second difference, which is related to the first, is
that Bayes’s rule—F4x—is stated in a multiplicative form; it is not re-
garded as a definition of conditional probabilities, but rather as a prop-
erty that connects joint- and conditional probabilities. The third differ-
ence is that we consider all events, and do not restrict ourselves to some
specific subset of events—such as a σ-algebra. The fourth difference,
which is related to the third, is that we only require finite additivity—
F3x—and do not impose σ-additivity.

The “full” in full conditional probability refers to the fact that the
domain of P is the complete set E (Ω)× E (Ω)⊃ /0. At first sight, this
might seem unimportant, and one might be inclined to introduce a
similar definition for functions P whose domain is some subset C of
E (Ω)× E (Ω)⊃ /0. However, unfortunately, as our next example illus-
trates, such a definition would not guarantee the possibility of extend-
ing the function to a larger domain C ∗, with C ⊆ C ∗ ⊆ E (Ω)×E (Ω)⊃ /0.

Example 2.1. Let Ω = {1,2,3,4,5,6} be the set of possible values for
the throw of a—possibly unfair—die and let C := {(Eo,Ω),(Ee,Ω)} ⊆
E (Ω)×E (Ω)⊃ /0, where the events Eo = {1,3,5} and Ee = {2,4,6} corre-
spond to an odd or even outcome of the die throw, respectively. The
map P : C → R that is defined by

P(Eo) := P(Eo|Ω) = 2/3 and P(Ee) := P(Ee|Ω) = 2/3

then satisfies F1x–F4x on its domain. However, if we extend the do-
main by adding the trivial couple (Ω,Ω), it becomes impossible to sat-
isfy F1x–F4x, because F2x and F3x would then require that

1 = P(Ω|Ω) = P(Eo|Ω)+P(Ee|Ω) = 2/3+ 2/3 = 4/3,

which is clearly a contradiction. ♦

In order to avoid the situation in this example, that is, in or-
der to guarantee the possibility of extending the domain of a con-
ditional probability in a sensible way, we use the concept of coher-
ence [4,24,87,109,117,118].

Definition 2.2 (Coherent conditional probability). Let P be a real-valued
map from C ⊆ E (Ω)×E (Ω)⊃ /0 to R. Then P is said to be a coherent con-
ditional probability on C if, for all n ∈ N and every choice of (Ai,Ci) ∈ C
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and λi ∈ R, i ∈ {1, . . . ,n},3

max

{

n

∑
i=1

λiICi
(ω)
(

P(Ai|Ci)− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C0

}

≥ 0,

with C0 := ∪n
i=1Ci.

The interested reader is invited to take a look at Appendix 2.A80,
where we provide this abstract concept with an intuitive gambling in-
terpretation. However, for our present purposes, this interpretation is
not required. Instead, our motivation for introducing coherence stems
from the following two results. First, if C = E (Ω)×E (Ω)⊃ /0, then coher-
ence is equivalent to the axioms of probability, that is, properties F147–
F447.

Theorem 2.2 ([87, Theorem 3]). Let P be a real-valued map from E (Ω)×
E (Ω)⊃ /0 to R. Then P is a coherent conditional probability if and only if it
is a full conditional probability.

Secondly, for coherent conditional probabilities on arbitrary do-
mains, it is always possible to extend their domain while preserving
coherence.

Theorem 2.3 ([87, Theorem 4]). Let P be a coherent conditional probabil-
ity on C ⊆ E (Ω)×E (Ω)⊃ /0. Then for any C ⊆ C ∗ ⊆ E (Ω)×E (Ω)⊃ /0, P can
be extended to a coherent conditional probability on C ∗.

In particular, it is therefore always possible to extend a coherent
conditional probability P on C , to a coherent conditional probability on
E (Ω)×E (Ω)⊃ /0. Due to Theorem 2.2, this extension is a full conditional
probability. The following makes this explicit.

Corollary 2.4. Let P be a real-valued map from C ⊆ E (Ω)×E (Ω)⊃ /0 to R.
Then P is a coherent conditional probability if and only if it can be extended
to a full conditional probability.

3Many authors replace the maximum in this expression by a supremum, and also
impose an additional inequality, where the maximum—supremum—is replaced by a
minimum—infimum—and where the inequality is reversed [4, 5, 87]. This is completely
equivalent to our definition. First of all, if the maximum is replaced by a supremum,
then since n is finite and because, for every i ∈ {1, . . . ,n}, IAi

and ICi
can only take two

values—0 or 1—it follows that this supremum is taken over a finite set of real numbers,
which implies that it is actually a maximum. Secondly, replacing the maximum by a
minimum and reversing the inequality is equivalent to replacing the λi in our expression
by their additive inverses, which is clearly allowed because the coefficients λi can take
any arbitrary real value.
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Proof. First assume that P can be extended to a full conditional proba-
bility P∗. Theorem 2.2x then implies that P∗ is a coherent conditional
probability, and therefore, since P is the restriction of P∗ to C , it follows
from Definition 2.248 that P is a coherent conditional probability.

Conversely, if P is a coherent conditional probability onC , it follows
from Theorem 2.3x that P can be extended to a coherent conditional
probability P∗ on E (Ω)×E (Ω)⊃ /0, which, because of Theorem 2.2x, is a
full conditional probability.

Note, therefore, that if P is a coherent conditional probability on
C , we can equivalently say that it is the restriction of a full condi-
tional probability. Hence, any coherent conditional probability on C is
guaranteed to satisfy properties F147-F447. However, as was essentially
already illustrated in Example 2.148, and as our next example makes
explicit, the converse is not true.

Example 2.2. Let Ω, C , Eo, Ee and P : C → R be defined as in Exam-
ple 2.148. Then as we have seen in that example, P satisfies F147-F447
on its domain C . However, P is not a coherent conditional probabil-
ity on C , because if it were, then according to Corollary 2.4x, P could
be extended to a full conditional probability. Since E (Ω)×E (Ω)⊃ /0 in-
cludes (Ω,Ω), the argument at the end of Example 2.148 implies that
this is impossible. The same conclusion can be reached by verifying
Definition 2.248 directly; we will demonstrate this in what follows.

Let A1 := Ee and A2 := Eo, and let λ1 := λ2 := −1. Then
(A1,Ω),(A2,Ω)∈C and λ1,λ2 ∈R. Now consider the function G : Ω→R,
defined for all ω ∈Ω as

G(ω) :=
2

∑
i=1

λiIΩ(ω)
(

P(Ai |Ω)− IAi
(ω)
)

.

According to Definition 2.248, to show that P is not coherent it suffices
to show that maxω∈Ω G(ω) < 0. To this end, fix any ω ∈ Ω. It clearly
holds that IΩ(ω) = 1. Moreover, note that A1 ∩ A2 = /0 and A1 ∪ A2 =
Ω; hence we have that either ω ∈ A1, or ω ∈ A2, and therefore either
IA1

(ω) = 1 and IA2
(ω) = 0, or IA1

(ω) = 0 and IA2
(ω) = 1. Hence, in either

case, we find that

2

∑
i=1

λiIΩ(ω)
(

P(Ai |Ω)− IAi
(ω)
)

=−
(

P(A1 |Ω)+P(A2 |Ω)−1
)

=−1/3 ,

whence G(ω)< 0 for every ω ∈Ω; it follows that P is not coherent. ♦

50



2.1 Full Conditional Probabilities and Coherence

2.1.1 Coherent Previsions and Conditional Expectations

In this section we provide a general definition for conditional expec-
tations taken with respect to the coherent conditional probabilities in-
troduced above. Conceptually, these conditional expectations are anal-
ogous to their counterparts in a more traditional probabilistic frame-
work; for a given coherent conditional probability P, a conditional ex-
pectation with respect to P is a functional EP, where for all f : Ω→ R,
we are aiming for a definition of the form

EP[ f |C] :=
∫

Ω
f (ω)P(dω |C) . (2.3)

Which is to say, the expected value of some real-valued function f of the
possible outcomes Ω, is a convex combination of this function’s values;
where the value f (ω) in every possible realisation ω is weighted by the
(potentially infinitesimal) probability of that realisation occurring.

The obvious difficulty is how to rigorously define the integral on the
right-hand side of this expression. The approach that we choose will
determine the interpretation of our notion of (conditional) expectation,
and will determine for which functions it is well-defined. For instance,
as we know from traditional (measure-theoretic) probability theory, if
we were to interpret these integrals in the Lebesgue sense,4 then we
cannot really have a definition that works for any function; this is why
attention is then restricted to measurable functions.

In our present setting, where we are working with coherent
conditional probabilities that can be given a natural behavioural
interpretation—again, see Appendix 2.A80—it seems appropriate to
use the notion of coherent (conditional) previsions [24,90,109,114,117]
to set up the general definition of the expectation operators that we
are after. This concept of prevision is mathematically analogous to the
(measure-theoretic) notion of expectation, but is provided with a be-
havioural interpretation that is strongly connected to the notion of co-
herence for probabilities. As was the case with coherent conditional
probabilities, the notion of coherence for previsions can be understood
to stipulate constraints that a rational agent must follow when making
decisions under uncertainty.

Here and in what follows, we will only consider conditional previ-
sions (and expectations) on the set B of real-valued functions on Ω that

4Supposing that we could even do that; since we are explicitly not imposing σ-
additivity, P need not necessarily be a measure; see e.g. [54, 105]. Since integration in
the Lebesgue sense is typically defined with respect to a measure (ibid.), this approach
may encounter some difficulty. If one insists on this interpretation, there are however
ways around this; see e.g. [109, Section 8.6] for how to define this integral when P( · |C)
is defined on an algebra.
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are bounded, meaning that sup f <+∞ and −∞ < inf f for all f ∈ B. The
key concept moving forward will, as mentioned, be that of a coherent
conditional prevision:

Definition 2.3 ([87, Definition 1]). Let E be a map from D ⊆ B×E (Ω)⊃ /0

to R. Then E is called a coherent conditional prevision on D if, for all
n ∈ Z>0 and every choice of ( fi,Ci) ∈ D and λi ∈ R, i ∈ {1, . . . ,n}, it holds
that5

sup

{

n

∑
i=1

λiICi
(ω)
(

E[ fi |Ci]− fi(ω)
)

∣

∣

∣

∣

ω ∈C0

}

≥ 0 ,

with C0 := ∪n
i=1Ci.

A coherent conditional prevision satisfies the following properties.

Proposition 2.5 ([87, Section 2]). Let E be a coherent conditional prevision
on D ⊆ B× E (Ω)⊃ /0. Then, for all ( f ,C),(g,C) ∈ D , all λ ∈ R, and all
D ∈ E (Ω)⊃ /0,

E1: infω∈C f (ω)≤ E[ f |C]≤ supω∈C f (ω)

E2: E[ f +g |C] = E[ f |C]+E[g |C] whenever ( f +g,C) ∈D

E3: E[λ f |C] = λE[ f |C] whenever (λ f ,C) ∈D

E4: E[ID f |C] = E[ f |C∩D] ·E[ID |C]

whenever all of (ID f ,C),( f ,C∩D), (ID,C) ∈D .

In the previous section, we discussed the crucial Theorem 2.349 stat-
ing that any coherent conditional probability on C can be coherently
extended to an arbitrary larger domain C ⊆ C ∗ ⊆ E (Ω)×E (Ω)⊃ /0. An
analogous property is true for coherent conditional previsions.6

Theorem 2.6 ([87, Theorem 4]). Let E be a coherent conditional prevision
onD ⊆B×E (Ω)⊃ /0. Then for anyD ⊆D∗⊆B×E (Ω)⊃ /0, E can be extended
to a coherent conditional prevision on D∗.

It will be useful to introduce the following. For any C ⊆ E (Ω)×
E (Ω)⊃ /0, we let

DC :=
{

(IA,C)
∣

∣

∣
(A,C) ∈ C

}

.

5In contrast to our remark in the footnote in Definition 2.248, we cannot here replace
the supremum with a maximum; to see this, observe that the image of each fi under C0

need not be closed.
6It follows relatively straightforwardly from Proposition 2.7 further on that Theo-

rem 2.6 implies Theorem 2.349. In fact, we used this implicitly to provide the reference
for Theorem 2.349.
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Note that DC ⊂ B×E (Ω)⊃ /0. This allows us to state the following cor-
respondence between coherent conditional probabilities and coherent
conditional previsions.

Proposition 2.7. Let P be a real-valued map on C ⊆ E (Ω)×E (Ω)⊃ /0, and
let E be a real-valued map on DC such that E[IA |C] := P(A |C) for all
(A,C) ∈ C . Then E is a coherent conditional prevision if and only if P is
a coherent conditional probability.

Proof. On the domain DC of E, Definitions 2.248 and 2.3 coincide.

This correspondence between coherent conditional probabilities
and coherent conditional previsions can be generalised; we will use the
following definition.

Definition 2.4. Let P be a coherent conditional probability on C ⊆ E (Ω)×
E (Ω)⊃ /0, and let DC ⊆ D ⊆ B×E (Ω)⊃ /0. Then a coherent conditional pre-
vision E on D is said to correspond to P, if E[IA |C] = P(A |C) for all
(A,C) ∈ C .

The next result tells us that for any coherent conditional probability
P on C , there always is a corresponding coherent conditional prevision
on arbitrary domains that include DC .

Proposition 2.8. Let P be a coherent conditional probability on C ⊆
E (Ω)× E (Ω)⊃ /0, and choose any DC ⊆ D ⊆ B× E (Ω)⊃ /0. Then there is
a coherent conditional prevision E on D , that corresponds to P.

Proof. Let Ẽ be the real-valued map on DC such that Ẽ[IA |C] := P(A |C)
for all (IA,C) ∈ DC . It follows from Proposition 2.7 and Definition 2.4
that Ẽ is a coherent conditional prevision that corresponds to P. Let
E be any coherent extension of Ẽ to D ; such an E exists due to The-
orem 2.6. Because E extends Ẽ and Ẽ corresponds to P, it holds that
E[IA |C] = Ẽ[IA |C] = P(A |C) for all (A,C) ∈ C , whence E corresponds
to P by Definition 2.4.

We want to emphasise that the previous result establishes that a cor-
responding coherent conditional prevision always exists, but not that it
is unique. In fact, there are typicallymany corresponding coherent con-
ditional previsions, provided that the domain C of P is small enough,
and the domain D of E large enough. It is worth mentioning, then, that
if the domain of P is sufficiently large, it will typically have a unique
corresponding coherent conditional prevision—this is in particular the
case when P is a full conditional probability; see also [109, 117] for
further discussion. However, even a coherent conditional probability
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that is only defined on C ⊆ E (Ω)×E (Ω)⊃ /0, will typically uniquely de-
termine the value of the corresponding coherent conditional prevision
on some functions in B×E (Ω)⊃ /0. In fact, this is by definition the case
on DC . In what follows, we will define the conditional expectation cor-
responding to a given coherent conditional probability P, exactly for
those functions for which the corresponding coherent conditional pre-
vision is uniquely determined. We will collect these functions in the
set DP ⊆B×E (Ω)⊃ /0, which constitutes the domain of definition for the
conditional expectations EP corresponding to P.

Definition 2.5. Let P be a coherent conditional probability on C ⊆ E (Ω)×
E (Ω)⊃ /0. We collect in DP ⊆ B×E (Ω)⊃ /0 all pairs ( f ,C) ∈ B×E (Ω)⊃ /0 for
which there is some EP[ f |C] ∈ R such that

EP[ f |C] = E[ f |C] ,

for all coherent conditional previsions E that correspond to P and that are
defined on any D ⊆ B×E (Ω)⊃ /0 with ( f ,C) ∈D and DC ⊆D .

We call the map EP : DP→R : ( f ,C) 7→EP[ f |C] the conditional expec-
tation corresponding to P. We use the shorthand EP[ f ] := EP[ f |Ω] for all
( f ,Ω) ∈DP to denote the (unconditional) expectation.

In light of the above discussion, the following result should not be
surprising.

Lemma 2.9. For any coherent conditional probability P on C ⊆ E (Ω)×
E (Ω)⊃ /0 it holds that DC ⊆DP.

Proof. Fix any ( f ,C) ∈ DC , and let E be any coherent conditional pre-
vision on DC ⊆ D ⊆ B× E (Ω)⊃ /0 that corresponds to P; then triv-
ially ( f ,C) ∈ D . Since ( f ,C) ∈ DC , there is some (A,C) ∈ C such that
( f ,C) = (IA,C). Because E corresponds to P it holds that

E[ f |C] = E[IA |C] = P(A |C) .

Because this is true for all coherent conditional previsions E that corre-
spond to P, it follows from Definition 2.5 that ( f ,C) ∈ DP and, in par-
ticular, that EP[ f |C] = P(A |C). Because this is true for all ( f ,C) ∈DC it
follows that DC ⊆DP.

Moreover, as the next result shows, the conditional expectation EP

corresponding to any coherent conditional probability P is, itself, a co-
herent conditional prevision; in particular, therefore, it satisfies Prop-
erties E152–E452.

Proposition 2.10. For any coherent conditional probability P on C ⊆
E (Ω)×E (Ω)⊃ /0, its corresponding conditional expectation EP is the unique
coherent conditional prevision on DP that corresponds to P.
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Proof. By Lemma 2.9 it holds that DC ⊆ DP. By Proposition 2.853 it
follows that there is a coherent conditional prevision E on DP that cor-
responds to P. Due to Definition 2.5, it follows that EP[ f |C] = E[ f |C]
for all ( f ,C) ∈ DP, which implies that EP = E. Because E is a coher-
ent conditional prevision on DP, it follows that EP is also a coherent
conditional prevision on DP.

To show the uniqueness, let E ′ be any coherent conditional previ-
sion on DP that corresponds to P. Then it follows from Definition 2.5
that E ′[ f |C] = EP[ f |C] for all ( f ,C) ∈DP, and hence E ′ = EP.

As is probably not surprising, the domain DP is the largest set on
which P has a unique corresponding coherent conditional prevision.

Corollary 2.11. For any coherent conditional probability P on C ⊆ E (Ω)×
E (Ω) /0, the set DP is the largest subset of B×E (Ω)⊃ /0 on which there is a
unique coherent conditional prevision that corresponds to P.

Proof. Consider any DC ⊆ D ⊆ B×E (Ω)⊃ /0 for which there is a unique
coherent conditional prevision EP on D that corresponds to P. We will
show that D ⊆DP.

To this end, fix any ( f ,C) ∈ D . Let E be any coherent conditional
prevision that corresponds to P and that is defined on D ′ ⊆ B×E (Ω)⊃ /0

with DC ⊆D ′ and ( f ,C)∈D ′. Let E∗ be any coherent conditional previ-
sion on B×E (Ω)⊃ /0 that extends E, which exists by Theorem 2.652. Let
E∗P be the restriction of E∗ to D . Then it follows from Definition 2.352
that E∗P is a coherent conditional prevision on D , which implies that
E∗P = EP because EP is the unique coherent conditional prevision on D .
Therefore, and because E∗P is the restriction of E∗ and E∗ is the exten-
sion of E, it follows that

E[ f |C] = E∗[ f |C] = E∗P[ f |C] = EP[ f |C] .

Because this is true for all coherent conditional previsions E that corre-
spond to P and that are defined on any D ′ ⊆ B×E (Ω)⊃ /0 with DC ⊆D ′

and ( f ,C) ∈D ′, it follows from Definition 2.5 that ( f ,C) ∈DP. Because
( f ,C) ∈D is arbitrary we conclude that D ⊆DP.

This approach to define conditional expectations only on this do-
main, generalises to the conditional case the concept of linear exten-
sion discussed in [109, Chapters 8 and 9]. We emphasise that this only
provides a definition of conditional expectation for functions whose
coherent conditional prevision is uniquely determined by the specifi-
cation of P. Indeed, one might be interested in providing a more gen-
eral definition that covers a larger part of the domain B×E (Ω)⊃ /0—or
even consider unbounded functions—but the rationality criteria behind
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coherence do not provide us with enough guidance to uniquely deter-
mine a “sensible” value of those other functions’ conditional expecta-
tion; this is essentially what Corollary 2.11x says. Possible approaches
to extend this definition would be to impose further criteria that one
might deem desirable, e.g. certain continuity properties of the result-
ing conditional expectation, but the current definition suffices for the
results of this work. We briefly revisit these issues in Chapter 8363.

Next, let us point out that DP always includes a particular class of
functions, whose conditional expectation is explicitly given by the sim-
ple formula in Equation (2.4) below. As we will discuss in Section 2.471,
these functions play an important role in this work.

Proposition 2.12. Let P be a coherent conditional probability on C ⊆
E (Ω)× E (Ω)⊃ /0 and let EP be its corresponding conditional expectation.
Consider any C ∈ E (Ω)⊃ /0 and n ∈ Z≥0 and, for all i ∈ {1, . . . ,n}, consider
any λi ∈R and Ai ∈ E (Ω) such that (Ai,C) ∈ C . Then for f := ∑

n
i=1 λiIAi

we
have that ( f ,C) ∈DP, and

EP[ f |C] =
n

∑
i=1

λiP(Ai |C) . (2.4)

Proof. Let E be any coherent conditional prevision corresponding to P

that is defined on D ⊆ B×E (Ω)⊃ /0 with DC ⊆D and ( f ,C) ∈D ; such an
E exists by Proposition 2.853. Then it holds that

E[ f |C] = E

[

n

∑
i=1

λiIAi

∣

∣

∣

∣

∣

C

]

=
n

∑
i=1

λiE[IAi
|C] =

n

∑
i=1

λiP(Ai |C) ,

where we used Properties E252 and E352 for the second step, and that
E corresponds to P for the last step. Since this holds for any coherent
conditional prevision E corresponding to P, on any D ⊆ B× E (Ω)⊃ /0

with DC ⊆ D and ( f ,C) ∈ D , it follows from Definition 2.554 that
EP[ f |C] = ∑

n
i=1 λiP(Ai |C) and ( f ,C) ∈DP.

2.1.2 Connection to Measure-Theoretic Expectations

It is worth pointing out that, intuitively, the functions for which Propo-
sition 2.12 provides a simple expression for their conditional expecta-
tion are, essentially, the functions which are known as the simple func-
tions that are measurable with respect to C . Unfortunately, the concept
of measurability—typically a measure-theoretic notion, see e.g. [105,
Definition 1.4.32]—is a bit difficult to translate to our current set-
ting where C is a structureless domain of conditional events. Refer-
ence [109, Section 1.8] discusses a notion of measurability for finitely-
additive probabilities, but still assumes that the underlying domain is
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an algebra, which is a structural assumption that we are not currently
using.

In an attempt to provide intuition, rather than rigour, let us mostly
ignore the part where we are dealing with conditional expectations.
So, simply fix C ∈ E (Ω)⊃ /0 and let (Ω,ΣC,µC) be a probability space,
with ΣC a σ-algebra over Ω and µC a probability measure on the mea-
surable space (Ω,ΣC). Following [105, Definition 1.4.32], f is called
ΣC-measurable, if f−1(U) ∈ ΣC for all open U ⊆ R. According to [105,
Definition 1.4.35], f is called simple if it is ΣC-measurable and if it
only takes on finitely many values, say λ1, . . . ,λn with n ∈ Z>0. Setting
Ai := f−1({λi}) for all i = 1, . . . ,n, it is easily seen that f then admits a
representation of the form f = ∑

n
i=1 λiIAi

, and, following [105, Defini-
tion 1.4.34 and Definition 1.4.37], it holds that

∫

Ω
f dµC =

n

∑
i=1

λiµC(Ai) ,

where the integral on the left-hand side is understood in the usual
(Lebesgue) sense to be taken with respect to the measure µC. Provided
then that also (Ai,C) ∈ C for all i = 1, . . . ,n, we obtain the correspon-
dence with the conditional expectation formula from Equation (2.4),
where the terms P(Ai |C) replace the terms µC(Ai) in the sum above.

If we want to obtain a workable notion of measurability in our
present setting, we have to be careful about which preimages of f we
require to be in C ; because C is structureless—as opposed to e.g. ΣC

above, which is a σ-algebra—we cannot simply work with preimages
of open sets. With the aim of obtaining the result in Proposition 2.13
below, let us simply say that a function f : Ω→ R is C -measurable con-
ditional on C ∈ E (Ω)⊃ /0, if the level sets { f ≥ t} := {ω ∈Ω : f (ω)≥ t} of
f satisfy ({ f ≥ t},C) ∈ C for all t ∈ [inf f ,sup f ].

Let us now conclude this section with a straightforward integral
formula for the conditional expectation of arbitrary bounded functions
that are measurable in this sense, and that should look recognizable
to readers that are mostly familiar with measure-theoretic probability.
This result is a straightforward generalisation of [109, Theorem 8.18] to
the conditional case; the heavy lifting for this result is performed there.

Proposition 2.13. Let P be a coherent conditional probability on C ⊆
E (Ω)× E (Ω)⊃ /0 and let EP be its corresponding conditional expectation.
Suppose that f ∈ B is C -measurable conditional on C ∈ E (Ω)⊃ /0. Then
( f ,C) ∈DP, and

EP[ f |C] = inf f +
∫ sup f

inf f
P
(

{ f ≥ t}
∣

∣C
)

dt , (2.5)

where the integral is understood in the Riemann sense.
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Proof. FixC∈ E (Ω)⊃ /0 such that f ∈B isC -measurable conditional onC.
Let Ẽ be any coherent conditional prevision that corresponds to P and
that is defined on D ⊆B×E (Ω)⊃ /0 with DC ⊆D and ( f ,C)∈D . Let E be
a coherent extension of Ẽ to B×E (Ω)⊃ /0, which exists by Theorem 2.652.
Because Ẽ corresponds to P and because E extends Ẽ, clearly also E

corresponds to P. Consider the map EC : B→ R that is defined, for all
g ∈ B, as EC(g) := E[g |C]. Then, because E is a coherent conditional
prevision, and using [109, Definition 4.11 and Theorem 4.12], EC is a
coherent (unconditional) prevision on B. Let µ : E (Ω)→ R be defined
as µ(A) := EC(IA) for all A ∈ E (Ω). Then, according to [109, Definition
8.21 and Corollary 8.23], µ is a probability charge on E (Ω), and EC

is the unique coherent prevision on B such that EC(IA) = µ(A) for all
A ∈ E (Ω). Therefore, and because E (Ω) is an algebra of sets, it follows
from [109, Theorem 4.42 and Theorem 8.18] that

EC( f ) = inf f +
∫ sup f

inf f
EC

(

I{ f≥t}
)

dt .

Now, because f is C -measurable conditional on C, we obtain for any
A := { f ≥ t} with t ∈ [inf f ,sup f ] that P(A |C) = E[IA |C] = EC(IA), where
we used that E corresponds to P in the first equality, so that we obtain

Ẽ[ f |C] = E[ f |C] = EC( f ) = inf f +
∫ sup f

inf f
P
(

{ f ≥ t}|C
)

dt ,

where for the first equality we used that ( f ,C)∈D and that E extends Ẽ.
Because the coherent conditional prevision Ẽ corresponding to P and
its domain D ⊆ B×E (Ω)⊃ /0 with DC ⊆ D and ( f ,C) ∈ D are arbitrary,
we conclude from Definition 2.554 that ( f ,C) ∈ DP and that EP[ f |C] =

Ẽ[ f |C] = inf f +
∫ sup f

inf f P({ f ≥ t}|C)dt.

2.2 Time, State, and Function Spaces

This section introduces some notation that will be fundamental in the
remainder of this work. In Section 2.2.1, we introduce notation for,
and operations on, (finite) sequences of time points. Notation for state
spaces is introduced in Section 2.2.261, and elementary concepts for
functions on these state spaces are discussed in Section 2.2.362.

2.2.1 Time Domains and Sequences of Time Points

Fundamental to any discussion about dynamical systems is a notion of
time, i.e., a dimension along which the states of such systems evolve.
A time domain is simply an index set for the trajectory of a dynamical
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system. We will reserve the symbol H to denote a generic time domain,
for which we use the following definition.

Definition 2.6 (Time Domain). A time domain is a set H ⊆ R≥0 such
that minH exists and supH=+∞.

In this definition, the requirements that minH exists and that
supH=+∞ are made to guarantee that the system’s initial state is well-
defined, and that “time never stops”.

Although the above provides a general definition, we will restrict
attention to two particular types of time domains in this work. The
first of these is whenH=R≥0, which we call the continuous time domain.
A dynamical system (resp. stochastic process, Markov chain, etcetera)
with time domain H=R≥0 is called a continuous-time dynamical system
(resp. stochastic process, Markov chain, etcetera). The other type that
we consider are discrete time domains. Although there is no unique
discrete time domain, the prototypical one is arguably H = Z≥0. We
will use the following general definition in the remainder of this work.

Definition 2.7 (Discrete Time Domain). Let D be a time domain such
that there is a strictly monotone bijection from Z≥0 to D. Then D is called a
discrete time domain.

Here, the existence of a bijection from Z≥0 to D guarantees that D is
countably infinite, which is to say, that it is indeed a discrete set. The
requirement that such a bijection (can be chosen to) be strictly mono-
tone is largely made for convenience; given a time point t ∈D, it ensures
the existence of a unique “next” time point in D:

Lemma 2.14. Let D be a discrete time domain. Then for any t ∈ D, there
is a unique s ∈ D for which t < s and such that there is no r ∈ D for which
t < r < s (using the natural ordering of D as a subset of R≥0).

Proof. Let τ be a monotone bijection from Z≥0 to D, which exists by
Definition 2.7. Fix any t ∈ D. Then because τ is a bijection from Z≥0

to D, there is some unique n ∈ Z≥0 such that τ(n) = t. Let s := τ(n+1).
Then s ∈ D is well-defined because τ is a bijection, and t < s because
n < n+1 and τ is strictly monotone.

Now fix any r ∈ D; we will show that it does not hold that t < r < s.
Clearly, we may proceed under the assumption that t 6= r and s 6= r.
Then there is some unique m ∈ Z≥0 such that τ(m) = r. Because r 6= t it
follows from the fact that τ is a bijection that m 6= n. Similarly, m 6= n+1

because r 6= s. We now consider two remaining cases. First, suppose
that m < n. Then also r = τ(m)< τ(n) = t because τ is strictly monotone,
and hence it does not hold that t < r < s. For the other case, suppose that
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n+ 1 < m. Then s = τ(n+ 1) < τ(m) = r because τ is strictly monotone,
and then also not t < r < s.

To show the uniqueness, let s′ be any element of D such that t < s′,
and such that there is no r ∈ D for which t < r < s′. Because there is
no r ∈ D for which t < r < s, it follows that in particular either s′ ≤ t,
or s ≤ s′. Because t < s′ by assumption, we must have s ≤ s′. Since by
assumption it does not hold that t < s < s′, it follows that s = s′.

The following proposition establishes that the bijection in Defini-
tion 2.7x is unique.

Proposition 2.15. Let D be a discrete time domain, and let τ and τ ′ be two
strictly monotone bijections from Z≥0 to D. Then τ = τ ′.

Proof. Because D is a time domain, there is some c ∈ H such that
minD= c. This implies that τ(0) = c = τ ′(0) because τ and τ ′ are strictly
monotone bijections from Z≥0 toD. Now suppose ex absurdo that τ 6= τ ′.
Then there is some n ∈ Z≥0 such that τ(n) 6= τ ′(n). Let us suppose with-
out loss of generality that τ(n)< τ ′(n).

Because τ ′ is a bijection, there is some m∈Z≥0 such that τ ′(m)= τ(n).
Moreover, because τ ′ is strictly monotone, and because τ ′(m) = τ(n) <
τ ′(n), we know that m < n. Because also τ is strictly monotone, this
implies that τ(m) < τ(n). Hence we conclude that also τ(m) < τ ′(m)
with m < n. We can now keep repeating this argument, finding k < m

such that τ(k) < τ ′(k), and so on, until we reach the conclusion that
τ(0)< τ ′(0). This is a contradiction with the argument at the beginning
of this proof.

Later on, we will need to make explicit use of this unique bijection.
We use the following terminology in the remainder of this work.

Definition 2.8. Let D be a discrete time domain, and let τ : Z≥0→D repre-
sent the unique strictly monotone bijection from Z≥0 to D, whose existence
is guaranteed by Definition 2.7x and Proposition 2.15. Then we call τ the
canonical time index for D, and, for all n ∈ Z≥0, we denote its value in n

as τn.

Analogous to the continuous-time setting, when D is a discrete time
domain, we call a dynamical system (resp. stochastic process, Markov
chain, etcetera) with time domainH=D a discrete-time dynamical system
(resp. stochastic process, Markov chain, etcetera).

Because most of this work is concerned with continuous-time sys-
tems, we will take the case H = R≥0 to be the implicit default. Hence,
where appropriate, we will in the remainder simplify notation if no
confusion should arise.
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Moving on, for the remainder of this section, fix any time domainH.
We next discuss some ways to manipulate finite sequences of time
points; a time point is simply an element of H. A finite sequence of
time points is either empty, or of the form u:=t0, t1, . . . , tn, with n ∈ Z≥0

and, for all i ∈ {0, . . . ,n}, ti ∈ H. These sequences are taken to be or-
dered, meaning that for all i, j ∈ {0, . . . ,n} with i < j, it holds that ti ≤ t j.
Let U H denote the set of all such finite (or empty) sequences in H that
are non-degenerate, meaning that for all u ∈ U H with u = t0, . . . , tn, it
holds that ti 6= t j for all i, j ∈ {0, . . . ,n} such that i 6= j. We also define
U H
⊃ /0 := U H \{ /0}.
For any non-empty finite sequence u of time points, let maxu :=

max{ti : i ∈ {0, . . . ,n}}. For any time point t ∈ H, we then write t > u

if t > maxu, and similarly for other inequalities. If u = /0, then t > u is
taken to be trivially true, regardless of the value of t. We use U H

<t to de-
note the subset ofU H that consists of those sequences u∈U H for which
u< t, and similarly for other inequalities. Moreover, for any u1,u2 ∈U H

such that u1 6= /0 and u2 6= /0, we write u1 < u2 if maxu1 < minu2. If either
u1 or u2 is empty then u1 < u2 is taken to be trivially true.

Since a sequence u ∈ U H is a subset of H, we can use set-theoretic
notation to operate on such sequences. The result of such operations
is again taken to be ordered. For example, for any u,v ∈ U H, we use
u∪v to denote the ordered union of u and v. In particular, for any s ∈H
and any u ∈U H

<s with u = t0, . . . , tn, we use u∪{s} to denote the sequence
t0, . . . , tn,s. In the trivial case that u is empty, we of course simply have
that the sequence u∪{s} equals s.

Finally, for the special case that H = R≥0, we consider finite se-
quences of time points that partition a given time interval [t,s] ⊂ R≥0,
with t,s ∈ R≥0 such that t ≤ s. Such a sequence is taken to include
the end-points of this interval. Thus, the sequence is of the form
t = t0 < t1 < · · ·< tn = s. We denote the set of all such sequences byU

R≥0

[t,s]
,

and note that this set never contains the empty sequence. Since we take
these sequences to be non-degenerate, it follows that U

R≥0

[t,t]
consists of

the single sequence u = {t}.
For any u ∈U

R≥0

[t,s]
with t < s and u = t0, . . . , tn, we define the se-

quential differences ∆u
i := ti − ti−1, for all i ∈ {1, . . . ,n}. We then use

σ(u) := max{∆u
i : i ∈ {1, . . . ,n}} to denote the maximum such difference,

which is also called the mesh of u. For notational convenience, for any
sequence u ∈ U[t,t], which as discussed above consists of a single time
point u = {t}, we let σ(u) := 0.

2.2.2 States and Joint State Spaces

Throughout this work, we will consider some fixed finite state space X .
A generic element of this set is called a state and will be denoted by x.
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For a given time domain H, we will often find it convenient to ex-
plicitly indicate the time point t ∈H that is being considered, in which
case we write Xt := X to denote the state space at time t, and xt to de-
note a state at time t. This notational trick also allows us to introduce
some notation for the joint state at (multiple) explicit time points. For
any finite sequence of time points u ∈U H such that u = t0, . . . , tn, we use

Xu :=×
t∈u

Xt

to denote the joint state space at the time points in u. A joint state
xu ∈Xu is a tuple (xt0 , . . . ,xtn) ∈Xt0 × ·· ·×Xtn that specifies a state xtk

for every time point tk in u. Note that if u only contains a single time
point t, then we simply have that Xu = X{t} = Xt = X . If u = /0, then
x /0 ∈X /0 is a “dummy” placeholder, which typically leads to statements
that are vacuously true.

2.2.3 Functions, Norms, and Operators

We collect all real-valued functions f : X → R on X in the set L (X ).
Note that, if we were to fix an ordering on X , then L (X ) could be
identified with the space R|X |. However, we do not really need this
identification and therefore proceed without explicitly fixing such an
ordering. It should also be noted that L (X ) is a vector space under
the usual operations of addition and scalar multiplication. For that
reason, we will in the sequel use the terms “function” and “vector”
interchangeably when referring to elements of L (X ).

For any time domain H and any u ∈ U H
⊃ /0, we use L (Xu) to denote

the set of all real-valued functions on Xu. We equip L (Xu) with the
supremum norm, so, for any f ∈L (Xu) the norm ‖ f‖ is defined as

‖ f‖ := ‖ f‖∞ := max
xu∈Xu

| f (xu)| .

Note that this is agnostic about the particular time domain that is being
used; what matters to determine Xu—and therefore f and ‖ f‖—is only
the cardinality of u, which is finite for any u ∈ U H

⊃ /0; the semantics of
the time domain do not matter. Moreover, observe that we have ‖ f‖ =
max{| f (x)| : x ∈X } for any f ∈L (X ) as a special case.

Linear maps from L (X ) to L (X ) will play an important role in
this work, and we collect them in the set M. For any T ∈M, we use the
notation T f ∈ L (X ) to denote the image of f ∈ L (X ) under T . As
is well-known—and as we explain in detail in Appendix A.3383—these
linear maps can be equivalently represented using matrices, whose x,y-
entry T (x,y) is identified by T (x,y) := T Iy(x), where Iy is the indicator
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of y, and with x,y ∈ X . For any x ∈ X , we use T (x, ·) to denote the
x-row of this matrix representation of T .

Because the state space X is taken to be fixed, we will always con-
sider square, real-valued matrices with dimension |X |× |X |. In terms
of this matrix representation, it holds that T f (x) = ∑y∈X T (x,y) f (y) for
all f ∈L (X ) and all x∈X , which shows that T f is simply the matrix-
vector product of T with f . Analogously, for any T,S ∈ M and any
x,y ∈X it holds that T S(x,y) = ∑z∈X T (x,z)S(z,y), which represents the
composition T S of T and S in terms of their matrix product. We will
henceforth identically and interchangeably refer to the elements of M
as “matrices” without cause for confusion. The symbol I will be re-
served throughout to refer to the identity matrix; this is the identity
map on L (X ) and satisfies I(x,x) = 1 and I(x,y) = 0 for all x,y ∈X

with x 6= y.
Because we will also be interested in non-linear maps, we consider

as a more general case operators that are non-negatively homogeneous.
An operator T from L (X ) to L (X ) is non-negatively homogeneous
if T (λ f ) = λT f for all f ∈L (X ) and all λ ∈ R≥0. We emphasise that
this includes matrices as a special case.

For any non-negatively homogeneous operator T from L (X ) to
L (X ), we consider the induced operator norm

‖T‖ := sup
{

‖T f‖ : f ∈L (X ),‖ f‖= 1
}

. (2.6)

For any matrix T ∈ M, it is well-known—and proved in Proposi-
tion A.32389 for completeness—that then

‖T‖= max
x∈X ∑

y∈X
|T (x,y)| . (2.7)

We note that the space M equipped with this norm is a finite-
dimensional normed vector space under the usual operations of ad-
dition and scalar multiplication, and therefore in particular, due to
Proposition A.7374, it is a Banach space; a complete metric space un-
der the metric induced by this norm. This implies that any sequence
in M that is convergent with respect to this norm, has a limit that is
also in M. For these and other concepts that are needed for the anal-
ysis in the normed spaces L (X ) and M, and on which we rely inten-
sively throughout this work, we refer to Appendix A369. Moreover, we
there also present some results about (real-valued) linear functionals
on L (X ), which are relevant in some of our proofs.

To conclude this section, we note that the norms introduced above
satisfy the following properties; Reference [17] provides a proof for the
non-trivial ones.
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Proposition 2.16. For all f ,g ∈ L (X ), all T,S from L (X ) to L (X )
that are non-negatively homogeneous, all λ ∈ R and all x ∈X , we have
that

N1: ‖ f‖ ≥ 0

N2: ‖ f‖= 0⇔ f = 0

N3: ‖ f +g‖ ≤ ‖ f‖+‖g‖

N4: ‖λ f‖= |λ |‖ f‖

N5: | f (x)| ≤ ‖ f‖

N6: ‖T‖ ≥ 0

N7: ‖T‖= 0⇔ T = 0

N8: ‖T +S‖ ≤ ‖T‖+‖S‖

N9: ‖λT‖= |λ |‖T‖

N10: ‖T S‖ ≤ ‖T‖‖S‖

N11: ‖T f‖ ≤ ‖T‖‖ f‖

2.3 Stochastic Processes as Coherent Conditional
Probabilities

We will now use the machinery introduced in the previous sections
to define stochastic processes formally. In particular, a stochastic pro-
cess with time domain H is simply a coherent conditional probability
on a specific domain C SP

H , or equivalently, the restriction of a full con-
ditional probability to this domain C SP

H —see Definition 2.1268 further
on. However, before we get to this definition, let us first provide some
intuition.

Basically, a stochastic process describes the behaviour of a system as
it moves through the—finite—state space X over the time domain H.
A single realisation of this movement is called a path or a trajectory.
We are typically uncertain about the specific path that will be followed,
and a stochastic process quantifies this uncertainty by means of a prob-
abilistic model, which, in our case, will be a coherent conditional prob-
ability. These ideas are formalised as follows.

A path ω is a function from H to X , and we denote with ω(t) the
value of ω at time t ∈ H. For any sequence of time points u ∈ U H and
any path ω , we will write ω|u to denote the restriction of ω to u ⊂ H.
Using this notation, we write for any xu ∈Xu that ω|u = xu if, for all
t ∈ u, it holds that ω(t) = xt .

An outcome space ΩH of a stochastic process with time domain H is
a set of paths. Some authors impose properties on these paths that may
depend onH; some commonly considered choices are to let ΩZ≥0

be the
set of all paths, and to let ΩR≥0

be either the set of all paths, the set
of all right-continuous paths [82], or the set of all càdlàg paths (right-
continuous paths with left-sided limits) [90]. However, our results do
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2.3 Stochastic Processes as Coherent Conditional Probabilities

not require such a specific choice. For the purposes of this work, we
will use the following definition:

Definition 2.9. For any time domain H, an outcome space ΩH of a
stochastic process with time domain H is a set of paths ω : H→X that
satisfies:

(∀u ∈U
H
⊃ /0)(∀xu ∈Xu)(∃ω ∈ΩH) ω|u = xu . (2.8)

Thus, an outcome space ΩH must be chosen in such a way that, for
any non-empty finite sequence of time points u ∈U H

⊃ /0 and any state as-
signment xu ∈Xu on those time points, there is at least one path ω ∈ΩH

that agrees with xu on u. This assumption, although fairly minimal, is
nevertheless crucial for many of our results and we will often refer to
it in our proofs. That said, in the remainder of this work we will typi-
cally assume implicitly that the outcome space ΩH for a stochastic pro-
cess with time domain H is fixed and chosen arbitrarily, provided that
Equation (2.8) is satisfied.

For any set of events E ⊆ E (ΩH), we use 〈E 〉 to denote the algebra
that is generated by them. That is, 〈E 〉 is the smallest subset of E (ΩH)
that contains all elements of E , and that is furthermore closed under
complements in ΩH and finite unions, and therefore also under finite
intersections. Moreover, for any t ∈ H and x ∈X , we define the ele-
mentary event

(Xt = x)H := {ω ∈ΩH : ω(t) = x} ,
and, for any u ∈U H, we let

E
H
u := {(Xt = x)H : x ∈X , t ∈ u∪H>u}

be the set of elementary events whose time point either follows or be-
longs to u, and we let A H

u := 〈E H
u 〉 be the algebra that is generated by

this set of elementary events. It will be useful to characterise a bit more
explicitly the structure of such algebras of events. To this end, we give
the following two results.

Lemma 2.17 ([80, Proposition 1.2.2]). Let Ω be a set and let C be a col-
lection of subsets of Ω, i.e. let E ⊆ Ω for all E ∈ C . For any E ⊆ Ω, let
Ec := Ω\E denote the complement of E in Ω. Now let

C0 := C ∪
{

Ec : E ∈ C
}

∪{ /0,Ω}

be the set containing all elements of C , their complements, and /0 and Ω, let

C1 :=
{

∩n
i=1Ei : Ei ∈ C0 for all i = 1, . . . ,n, n ∈ Z>0

}

,

be the set of all finite intersections of elements of C0, and let

A :=
{

∪n
i=1Ei : Ei∩E j = /0,Ei,E j ∈ C1 for all i, j ∈ {1, . . . ,n}, n ∈ Z>0

}

,
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be the set of all finite unions of pairwise disjoint elements of C1.
Then A = 〈C 〉 is the algebra generated by C .

Essentially, the above result tells us that we can write events in a
generated algebra in a kind of “normal form”, viz. as unions of inter-
sections of elementary events and their complements (and the entire
and empty set). For the specific kind of algebras that we consider here,
we can use this result to obtain even simpler expressions for their ele-
ments, as shown by the following result.

Proposition 2.18. Let H be a time domain, and fix any u ∈ U H and any
A ∈ A H

u . Then there are v ∈ U H and S ⊆Xv such that v ⊂ u∪H>u and
A = ∪xv∈S(Xv = xv)H.

Proof. Because A H
u = 〈E H

u 〉, it follows from Lemma 2.17x that there
is some n ∈ Z>0 and, for all i = 1, . . . ,n, some ni ∈ Z>0 and, for all j =
1, . . . ,ni, some Ei, j such that either Ei, j ∈ { /0,ΩH}, Ei, j ∈ E H

u , or Ec
i, j ∈ E H

u ,

for which A = ∪n
i=1∩

ni
j=1 Ei, j. Moreover, for all Ei, j there are ti, j ∈ u∪H>u

and Si, j ⊆X such that Ei, j = ∪x∈Si, j(Xti, j = x)H. In particular, if Ei, j ∈ E H
u

then Ei, j = (Xti, j = x)H for some x∈X , whence in that case Si, j = {x}. On

the other hand, if Ec
i, j ∈ E H

u then Ei, j = (Xti, j = x)c
H for some x ∈X , and

then Si, j = X \{x}. For the final two cases, if Ei, j = /0 then Si, j = /0, and
if Ei, j = ΩH then Si, j = X ; and in both of these latter cases ti, j ∈ u∪H>u

may be taken arbitrarily.
Now let v ∈ U H be the ordered union of all {ti, j}, with i = 1, . . . ,n

and j = 1, . . . ,ni; then clearly v ⊂ u∪H>u. Fix any i ∈ {1, . . . ,n} and
j ∈ {1, . . . ,ni}, and let S∗i, j :=

{

xv ∈Xv : xti, j ∈ Si, j

}

. Then it holds that

Ei, j =
⋃

x∈Si, j

(Xti, j = x)H =
⋃

xv∈S∗i, j

(Xv = xv)H .

Hence it follows that A = ∪n
i=1 ∩

ni
j=1 ∪xv∈S∗i, j(Xv = xv)H. Now let Si :=

⋂ni
j=1 S∗i, j. Let us now show that

ni
⋂

j=1

⋃

xv∈S∗i, j

(Xv = xv)H =
⋃

xv∈Si

(Xv = xv)H .

To see this, first fix any ω ∈ ∪xv∈Si
(Xv = xv)H. Then there is some x′v ∈ Si

such that ω|v = x′v. Because x′v ∈ Si it follows that x′v ∈ S∗i, j for all j =
1, . . . ,ni, which implies that ω ∈ ∪xv∈S∗i, j(Xv = xv)H for all j = 1, . . . ,ni.

This implies that ω belongs to ∩ni
j=1∪xv∈S∗i, j (Xv = xv)H. Conversely, fix

any ω ∈ ∩ni
j=1 ∪xv∈S∗i, j (Xv = xv)H. Then for all j = 1, . . . ,ni it holds that

ω ∈ ∪xv∈S∗i, j(Xv = xv)H, which implies that there is some x
( j)
v ∈ S∗i, j such
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2.3 Stochastic Processes as Coherent Conditional Probabilities

that ω|v = x
( j)
v . Let x′v := ωv. Then x

( j)
v = ω|v = x′v for all j = 1, . . . ,ni.

Hence it follows that x′v ∈ S∗i, j for all j = 1, . . . ,ni, and therefore that x′v ∈
Si. Because ω|v = x′v it follows that ω belongs to ∪xv∈Si

(Xv = xv)H. Hence
we have found that

A =
n
⋃

i=1

ni
⋂

j=1

⋃

xv∈S∗i, j

(Xv = xv)H =
n
⋃

i=1

⋃

xv∈Si

(Xv = xv)H .

Now simply let S := ∪n
i=1Si. Then S⊆Xv, and A = ∪xv∈S(Xv = xv)H.

Consider now any u ∈U H. Then on the one hand, for any A ∈A H
u ,

it clearly holds that A ∈ E (ΩH). On the other hand, for any xu ∈Xu, the
event

(Xu = xu)H := {ω ∈ΩH : ω|u = xu}

belongs to E (ΩH)⊃ /0, because it follows from Equation (2.8)65 that this
event is non-empty. Now, if for any A ∈ A H

u and xu ∈ Xu we let
(A,Xu = xu)H :=

(

A,(Xu = xu)H
)

, then it follows that (A,Xu = xu)H ∈
E (ΩH)× E (ΩH)⊃ /0. It is also worth noting that if u = /0, then ω|u = xu

is vacuously true, which implies that in that case, (Xu = xu)H = ΩH.
We can now introduce the domains of the stochastic processes that

we consider, as follows.

Definition 2.10 (Domain). We let

C
SP
R≥0

:=
{

(A,Xu = xu)R≥0
: u ∈U

R≥0 , xu ∈Xu, A ∈A
R≥0

u

}

be the set of conditional events that will constitute the domain of
continuous-time stochastic processes. Conversely, for any discrete time do-
main D with canonical time-index τ , we let

C
SP
D :=
{

(A,Xu = xu)D : u ∈
{

{τ0, . . . ,τn}|n ∈ Z≥0

}

∪{ /0}, xu ∈Xu, A ∈A
D

u

}

be the set of conditional events that will constitute the domain of discrete-
time stochastic processes with time domain D.

When we do not want or need to distinguish between continuous- or
discrete time domains, we generically letH∈ {R≥0,D}, for any discrete time
domain D, and then write C SP

H to denote the domain of stochastic processes
with time domain H; see Definition 2.11y below.

Due to our above considerations, it holds that C SP
H is a subset of

E (ΩH)× E (ΩH)⊃ /0, regardless of whether H = R≥0 or H = D for some
discrete time domain D. However, it should be noted that the sets
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C SP
R≥0

and C SP
D are not entirely structurally similar. In particular, C SP

D
contains only events (A,Xu = xu)D for which the conditioning event
(Xu = xu)D depends on all time-points u= τ0, . . . ,τn up to τn (or is trivial).
Conversely, the events (A,Xu = xu)R≥0

are such that u is either empty, or
u is a finite subset of R≥0; thus there are always time-points between
the time-points on which the conditioning event (Xu = xu)R≥0

depends.
Consequently, we can slightly simplify the characterisation of C SP

D .

Lemma 2.19. For any discrete time domain D with canonical time index τ ,

C
SP
D =
{

(A,Xu = xu)D : u ∈
{

{τ0, . . . ,τn}|n ∈ Z≥0

}

∪{ /0}, xu ∈Xu, A ∈A
D
/0

}

.

Proof. Clearly, it suffices to prove that, for any u = τ0, . . . ,τn, with n ∈
Z≥0, it holds that A D

u = A D
/0 . To this end, we first note that /0∪D> /0 =D,

and hence
E

D
/0 =

{

(Xt = x)D : x ∈X , t ∈ D
}

.

Next we use that, by definition, τ is a strictly monotone bijection from
Z≥0 to D, to write

u∪D>u = {τ0, . . . ,τn}∪
{

τm : m ∈ Z≥0,m > n}= {τm : m ∈ Z≥0}= D .

Hence it follows that E D
u = E D

/0 , whence A D
u = 〈E D

u 〉= 〈E D
/0 〉= A D

/0 .

Moving on, we can now finally formalise our definition of a stochas-
tic process.

Definition 2.11 (Stochastic Process). Let H be a time domain such that
either H = R≥0 or H = D, where D is a discrete time domain. A stochastic
process with time domain H is a coherent conditional probability on C SP

H .
We denote the set of all stochastic processes with time domain H by PH.

Corollary 2.20. LetH be a time domain such that eitherH=R≥0 orH=D,
where D is a discrete time domain, and let P be a real-valued map from C SP

H
to R. Then P is a stochastic process if and only if it is the restriction of a full
conditional probability on E (ΩH)×E (ΩH)⊃ /0.

Proof. Trivial consequence of Corollary 2.449.

The following two definitions provide us with the particular
stochastic processes that are of interest in this work.

Definition 2.12 (Continuous-Time Stochastic Process). Let P be a
stochastic process with time domain H = R≥0. Then P is called a
continuous-time stochastic process.
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2.3 Stochastic Processes as Coherent Conditional Probabilities

For notational brevity, when no confusion should arise, we drop the
time domain H from our notation when talking about continuous-time
stochastic processes: a continuous-time stochastic process is a coherent
conditional probability on the domain C SP; continuous-time paths are
collected in the set Ω; continuous-time events are denoted (Xt = x); and
so forth. Moreover, in these cases we also often simply write “stochastic
processes” to mean “continuous-time stochastic processes”.

As mentioned before, the other type of stochastic process in which
we are interested are the discrete-time ones. We give the general defini-
tion here, but will study these processes in more depth in Chapter 383.

Definition 2.13 (Discrete-Time Stochastic Process). Let D be a discrete
time domain, and let P be a stochastic process with time domain H = D.
Then P is called a discrete-time stochastic process with time domain D.

Let us now turn to the motivation for our definition(s) of stochas-
tic processes. There are two reasons why we restrict ourselves to the
domain C SP

H . The most important reason is simply that all of the im-
portant results in this work can be expressed using only this domain,
because they are all concerned with events or functions that depend on a
finite number of time points.

The second reason is that this restriction will allow us to state
uniqueness results that do not necessarily extend to larger domains; see
for example Corollary 5.5186. However, it is important to realise that
our restriction of the domain does not impose any real limitations, be-
cause, as we know from Theorem 2.349, the domain of a coherent con-
ditional probability—and hence also a stochastic process—can always
be extended. Hence, if one is interested in results on larger domains, it
suffices to work with these extensions. The cost that one pays for this,
however, is potentially a loss of uniqueness; some results may only hold
for certain extensions. We briefly touch on some of these questions in
Chapter 8363.

A third reason is that, in particular for the discrete-time setting,
the domain C SP

D allows us to connect our models to other results in the
literature; we will rely on these connections for some of the core results
in Chapter 383.

Finally, we would like to point out that it is also possible to use a
different—yet equivalent—definition for stochastic processes. Indeed,
due to Corollary 2.20, a stochastic process can also be defined as the re-
striction of a full conditional probability to C SP

H , regardless of whether
H = R≥0 or H = D, where D is any discrete time domain. Of course,
given this observation, one may start to wonder why we have gone
through the trouble of introducing coherence, because this alternative
definition would not require this concept. The reason why we never-
theless need coherence, is that it allows us to establish the existence of
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stochastic processes that have certain properties, which will often be
necessary in the proofs of our results.

For instance, for the sake of providing an illustration, suppose that
we are given an arbitrary function p : R>0→ [0,1], and that we want to
know if there is a continuous-time stochastic process P for which, for
some x,y ∈X ,

P(Xt = y |X0 = x) = p(t) for all t ∈ R>0. (2.9)

Had we defined a continuous-time stochastic process as the restriction
of a full conditional probability to C SP, without introducing coherence,
then answering this question would have been entirely non-trivial, be-
cause it would essentially require us to construct a full conditional
probability that coincides with p on the relevant part of its domain.

In contrast, as illustrated by the following example, the introduc-
tion of coherence takes care of most of the heavy lifting in such an
existence proof.

Example 2.3. Let X be a state space that contains at least two states,
fix any two—possibly equal—states x,y∈X , and consider any function
p : R>0 → [0,1]. The aim of this example is to prove that there is a
(continuous-time) stochastic process P that satisfies Equation (2.9).

The crucial step of the proof is to consider a smaller (than C SP) do-
main

C := {(Xt = y,X0 = x) : t ∈ R>0} ,
and a function P̃ that is defined by

P̃(Xt = y|X0 = x) := p(t) for all (Xt = y,X0 = x) ∈ C , (2.10)

and to prove that this function is a coherent conditional probability on
C , or equivalently, that it satisfies Definition 2.248.

So consider any n ∈ Z>0 and, for all i ∈ {1, . . . ,n}, some (Xti = y,X0 =
x) ∈ C and λi ∈ R. According to Definition 2.248, we now have to show
that

max

{

n

∑
i=1

λiIx(ω(0))
(

P̃(Xti = y|X0 = x)− Iy(ω(ti))
)

∣

∣

∣

∣

∣

ω ∈C0

}

≥ 0,

(2.11)
with C0 :=

⋃n
i=1(X0 = x) = (X0 = x). In doing so, we can assume without

loss of generality that i 6= j implies ti 6= t j, because if ti = t j for some
i 6= j, then we can simply sum the corresponding two summands in
Equation (2.11).

Let z ∈X be any state such that z 6= y, let u := (0, t1, . . . , tn) ∈U , and
let xu ∈Xu be the unique state assignment such that x0 := x and

xti :=

{

y if λi < 0

z if λi ≥ 0
for all i ∈ {1, . . . ,n}.
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Furthermore, let N<0 := {i ∈ {1, . . . ,n} : λi < 0} and N≥0 := {i ∈
{1, . . . ,n} : λi ≥ 0}. Since n is finite, Equation (2.8)65 now guarantees
that there is some ω ∈ Ω such that ω|u = xu. Evaluating the sum in
Equation (2.11) using this ω , we find that

n

∑
i=1

λiIx(ω(0))
(

P̃(Xti = y|X0 = x)− Iy(ω(ti))
)

=
n

∑
i=1

λi

(

P̃(Xti = y|X0 = x)− Iy(ω(ti))
)

= ∑
i∈N<0

λi

(

P̃(Xti = y|X0 = x)−1
)

+ ∑
i∈N≥0

λiP̃(Xti = y|X0 = x)

≥ ∑
i∈N<0

λi

(

P̃(Xti = y|X0 = x)−1
)

= ∑
i∈N<0

|λi|
(

1− P̃(Xti = y|X0 = x)
)

≥ 0,

where the two inequalities follow from the fact that P̃(Xti = y|X0 = x) =
p(ti)∈ [0,1] . Furthermore, because ω(0) = x, we also have that ω ∈ (X0 =
x) = C0. Therefore, we find that Equation (2.11) indeed holds. Hence,
we conclude that P̃ is a coherent conditional probability on C .

The rest of the proof is now straightforward. Since P̃ is a coher-
ent conditional probability on C , and because C is a subset of C SP, it
follows from Theorem 2.349 that P̃ can be extended to a coherent con-
ditional probability P on C SP, or equivalently, to a stochastic process P.
Since this stochastic process P is an extension of P̃, Equation (2.9) is
now an immediate consequence of Equation (2.10). ♦

2.4 Inferences for Stochastic Processes

With the formalisms to represent stochastic processes in place, let us
conclude this chapter by discussing how to use these models to reason
about their behaviour. In the sequel, we will refer to this as making
inferences about them. Broadly speaking, an inference is a quantified
statement about the system of interest, taking into account both our
knowledge of, and our uncertainty about, the system’s behaviour. For-
mally, an inference will typically be a conditional expectation of a func-
tion of interest, taken with respect to the coherent conditional proba-
bilities that constitute our uncertainty model.

As explained in Section 2.1.151, our general definition of condi-
tional expectations only covers functions whose corresponding coher-
ent conditional prevision follows uniquely from the coherent condi-
tional probabilities that are specified. It is therefore important to know
for which functions this is the case. The vast majority of this dis-
sertation focusses on a particular type of functions, which we call u-
measurable functions. As we will see in Proposition 2.2373 further on,
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the conditional previsions (and thus expectations) of such functions are
uniquely and easily determined, at least for suitably chosen condition-
ing events. Let us start with developing this result.

Definition 2.14. Let H be a time domain. A real-valued function on ΩH is
called u-measurable, for a specific u ∈U H

⊃ /0, if for all ω,ω ′ ∈ ΩH for which
ω|u = ω ′|u, it holds that f (ω) = f (ω ′).

So, a function is called u-measurable, if its value in ω ∈ ΩH only
depends on the value of ω|u ∈Xu. Such functions are bounded:

Proposition 2.21. Let H be a time domain, and consider any u ∈ U H
⊃ /0.

Then any u-measurable function is bounded.

Proof. Because any particular u ∈ U H
⊃ /0 is finite, with u = t0, . . . , tn and

n ∈ Z≥0, say, a u-measurable function can take at most |X |n+1 different
values, all of which are in R. Hence this function obtains its extremal
values in R, and thus is bounded.

There is an obvious correspondence between elements of the set
L (Xu) and u-measurable functions on ΩH. The following definition
introduces the requisite notation to obtain this correspondence.

Definition 2.15. Let H be a time domain. For any u ∈ U H
⊃ /0 and any f ∈

L (Xu), we introduce the function f (Xu) : ΩH → R that is defined, for all
ω ∈ΩH, as f (Xu)(ω) := f (ω|u).

Proposition 2.22. Let H be a time domain. For any u ∈ U H
⊃ /0, the map

f 7→ f (Xu) is a bijection from L (Xu) to the set of u-measurable functions
on ΩH.

Proof. Fix any u∈U H
⊃ /0, and first choose any f ∈L (Xu). Then it follows

from Definition 2.15 that f (Xu) is u-measurable, according to Defini-
tion 2.14. So the map is indeed from L (Xu) to the set of u-measurable
functions on ΩH.

Now consider any g ∈L (Xu), and suppose that f (Xu) = g(Xu). Fix
any xu ∈Xu and any ω ∈ ΩH such that ω|u = xu; this ω exists due to
Equation (2.8)65. Then it holds that

f (xu) = f (ω|u) = f (Xu)(ω) = g(Xu)(ω) = g(ω|u) = g(xu) ,

from which it follows that f = g because xu ∈Xu was arbitrary. Thus
the map is injective (i.e., one-to-one).

For the other direction, fix any u-measurable function f on ΩH.
We now identify g ∈ L (Xu) by setting, for all xu ∈ Xu, its value
g(xu) := f (ω), for any ω ∈ ΩH such that ω|u = xu; this ω exists due to
Equation (2.8)65. Note that g(xu) is then uniquely determined because
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f is u-measurable, thus the specific choice of ω does not matter here.
Specifically, because f is u-measurable it follows that, for any ω ∈ ΩH,
it holds that g(ω|u) = f (ω). Let g(Xu) be the u-measurable function
identified by g ∈L (Xu). Then it follows that, for any ω ∈ΩH, it holds
that g(Xu)(ω) = g(ω|u) = f (ω), whence g(Xu) = f , and thus the map is
surjective (i.e., onto).

We can use this mapping between functions f ∈ L (Xu) on a
stochastic process’ state space Xu at a finite number of time points,
and functions f (Xu) on this process’ realisations, to talk about expecta-
tions of these functions f on the states at specific points in time. Con-
versely, given a u-measurable function on ΩH, we can identify with it
an element of L (Xu) whose value f (xu) denotes the common value of
this u-measurable function in all ω ∈ ΩH for which ω|u = xu. We then
write f (Xu) to emphasise this u-measurable function’s dependence on
the time points u. In the sequel, we will often make these identifica-
tions implicitly.

The following result provides an explicit and straightforward ex-
pression for the kind of conditional expectations with which we will be
most concerned in the remainder of this work.

Proposition 2.23. Let H be a time domain such that either H = R≥0 or
H = D, where D is a discrete time domain, and let P ∈ PH be a stochastic
process. Then, for any u,v ∈ U H such that v 6= /0 and v ⊂ u∪H>u, any
f ∈L (Xv), and any xu ∈Xu, it holds that

EP[ f (Xv) |Xu = xu] = ∑
yv∈Xv

f (yv)P(Xv = yv |Xu = xu) ,

provided that if H= D, it also holds that either u = /0 or u = τ0, . . . ,τn, with
n ∈ Z≥0, where τ is the canonical time index of D.

Proof. Let us first prove that

(Xv = yv,Xu = xu)H ∈ C
SP
H for all yv ∈Xv. (2.12)

Because v ⊂ u∪H>u it follows that (Xv = yv)H ∈ A H
u for all yv ∈ Xv.

Hence it follows from Definition 2.1067 that Equation (2.12) is satis-
fied, where, if H = D is a discrete time domain with canonical time
index τ , we use the additional assumption that u = /0 or u = τ0, . . . ,τn,
with n ∈ Z≥0.

Now consider the function F : ΩH→ R, defined for all ω ∈ΩH as

F(ω) := ∑
yv∈Xv

f (yv)I(Xv=yv)H(ω) . (2.13)
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Then, using Equation (2.12)x, it follows from Proposition 2.1256 that

EP[F |Xu = xu] = ∑
yv∈Xv

f (yv)P(Xv = yv |Xu = xu) .

It remains to show that the function F in Equation (2.13)x is exactly
f (Xv). To this end, fix any ω ∈ΩH. It is clear that I(Xv=yv)H(ω) = 1 if and
only if ω|v = yv. Hence

F(ω) = ∑
yv∈Xv

f (yv)I(Xv=yv)H(ω) = f (ω|v) ,

and therefore F = f (Xv) by Definition 2.1572.

Let us next state the following property, which is well-known to
hold for expectations as they are typically defined, but which is worth
verifying for our current formalism.

Proposition 2.24. Let H be a time domain such that either H = R≥0 or
H = D, where D is a discrete time domain, and let P ∈ PH be a stochastic
process. Then for any u,v ∈U H

⊃ /0 such that v⊆ u, any f ∈L (Xv), and any
xu ∈Xu, it holds that

EP[ f (Xv) |Xu = xu] = f (xv) ,

provided that if H= D, it also holds that either u = /0 or u = τ0, . . . ,τn, with
n ∈ Z≥0, where τ is the canonical time index of D.

Proof. Because v⊆ u it follows that v⊂ u∪H>u. Therefore, and because
v 6= /0, it follows from Proposition 2.23x that

EP[ f (Xv) |Xu = xu] = ∑
yv∈Xv

f (yv)P(Xv = yv |Xu = xu) . (2.14)

Because v ⊆ u it holds that (Xu = xu)H ⊆ (Xv = xv)H, and hence it fol-
lows from Property F247 that P(Xv = xv |Xu = xu) = 1. Due to Proper-
ties F147, F347, and F847 this implies that P(Xv = yv |Xu = xu) = 0 for all
yv ∈Xv with yv 6= xv. By combining this with Equation (2.14) we find
that

EP[ f (Xv) |Xu = xu] = f (xv)P(Xv = xv |Xu = xu) = f (xv) ,

which concludes the proof.

The following notational convention will also be useful.

Definition 2.16. Let H be a time domain. For any u,v ∈ U H such that
v 6= /0 and u∩ v = /0, any f ∈L (Xu∪v), and any xu ∈Xu, we define f (xu,Xv)
to be the v-measurable function whose value in ω ∈ΩH is f (xu,ω|v).7

7In the special case that u = /0, we will adopt the convention that f (xu,Xv) = f (x /0,Xv)
should simply represent f (Xu∪v) = f (Xv) itself, so that its value in ω is f (x /0,ω|v) := f (ω|v).
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Now, Proposition 2.24 already gave us a simple expression for con-
ditional expectations of functions that depend on the state at time
points that are fully contained in the conditioning event. Defini-
tion 2.16 allows us to extend this result to the case where only part
of these time points are in the conditioning event, as follows.

Proposition 2.25. LetH be a time domain such that eitherH=R≥0 orH=
D, where D is a discrete time domain, and let P ∈ PH be a stochastic process.
Then for any u,v ∈ U H such that v 6= /0 and u < v, any f ∈L (Xu∪v), and
any xu ∈Xu, it holds that

EP[ f (Xu,Xv) |Xu = xu] = EP[ f (xu,Xv) |Xu = xu] ,

provided that if H= D, it also holds that either u = /0 or u = τ0, . . . ,τn, with
n ∈ Z≥0, where τ is the canonical time index of D.

Proof. Because v 6= /0 it follows that u∪ v 6= /0. Moreover, because u < v it
follows that v ⊂ u∪H>u and, hence, that u∪ v ⊂ u∪H>u. Therefore, it
follows from Proposition 2.2373 that

EP[ f (Xu,Xv) |Xu = xu] = ∑
yu∪v∈Xu∪v

f (yu∪v)P(Xu∪v = yu∪v |Xu = xu) . (2.15)

Now first suppose that u = /0. Then u∪ v = v, whence it follows that

∑
yu∪v∈Xu∪v

f (yu∪v)P(Xu∪v = yu∪v |Xu = xu) = ∑
yv∈Xv

f (yv)P(Xv = yv |Xu = xu)

= EP[ f (Xv) |Xu = xu]

= EP[ f (xu,Xv) |Xu = xu] ,

where for the second equality we used Proposition 2.2373, which is
valid since v 6= /0 and because we already established that v ⊂ u∪H>u,
and where for the third equality we used the convention that f (xu,Xv) =
f (x /0,Xv) = f (Xv) established in Definition 2.16. This concludes the
proof for the case where u = /0.

Before we consider the case u 6= /0, we next prove that

(Xv = yv,Xu = xu)H ∈ C
SP
H for all yv ∈Xv. (2.16)

Because we already established that v ⊂ u∪H>u it follows that (Xv =
yv)H ∈A H

u for all yv ∈Xv. Hence it follows from Definition 2.1067 that
Equation (2.16) is satisfied, where, if H = D is a discrete time domain
with canonical time index τ , we use the additional assumption that
u = /0 or u = τ0, . . . ,τn, with n ∈ Z≥0.
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Let us now consider the case that u 6= /0. Fix any yu ∈Xu and yv ∈Xv.
We consider two cases: yu = xu, and yu 6= xu. So first suppose that yu = xu;
it then holds that

P(Xu = yu,Xv = yv |Xu = xu) = P(Xu = xu,Xv = yv |Xu = xu)

= P(Xv = yv |Xu = xu) ,

where we used Property F647 for the second equality, and where we use
Equation (2.16)x to ensure that these quantities are well-defined.

For the other case, suppose that yu 6= xu. Then it holds that

(Xu = yu,Xv = yv)H∩ (Xu = xu)H = /0 ,

and hence by Property F647 we find that

P(Xu = yu,Xv = yv |Xu = xu) = P( /0 |Xu = xu) = 0 ,

using Property F747 for the final equality. In summary, we have found
that

P(Xu = yu,Xv = yv |Xu = xu) =

{

P(Xv = yv |Xu = xu) if yu = xu, and
0 otherwise .

By combining this with Equation (2.15)x, we find that

EP[ f (Xu,Xv) |Xu = xu] = ∑
yv∈Xv

∑
yu∈Xu

f (yu∪v)P(Xu∪v = yu∪v |Xu = xu)

= ∑
yv∈Xv

f (xu,yv)P(Xv = yv |Xu = xu) .

Using Definition 2.1674, and because we already established that v ⊂
u∪H>u, it now follows from Proposition 2.2373 that

EP[ f (xu,Xv) |Xu = xu] = ∑
yv∈Xv

f (xu,yv)P(Xv = yv |Xu = xu)

= EP[ f (Xu,Xv) |Xu = xu] ,

which concludes the proof.

We note that for any u,v ∈ U H
⊃ /0 and any f ∈ L (Xv), the con-

ditional expectation EP[ f (Xv) |Xu = xu]—provided it exists—is a real-
valued function of xu ∈ Xu. As such, we can associate with it the u-
measurable function EP[ f (Xv) |Xu], whose value in ω ∈ΩH we define as
EP[ f (Xv) |Xu](ω) :=EP[ f (Xv) |Xu =ω|u]. Using this notation, we can state
the following result, which is known as the law of iterated expectation.
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Proposition 2.26. Let H be a time domain such that either H = R≥0 or
H = D, where D is a discrete time domain, and let P ∈ PH be a stochastic
process. Then for any u ∈U H and any v,w ∈U H

⊃ /0 such that u < v < w, any
f ∈L (Xu∪v∪w), and any xu ∈Xu, it holds that

EP[ f (Xu∪v∪w) |Xu = xu] = EP

[

EP[ f (Xu∪v∪w) |Xu∪v]
∣

∣

∣
Xu = xu

]

,

provided that ifH=D, it also holds that either u = /0 and v = τ0, . . . ,τm with
m ∈ Z≥0, or u = τ0, . . . ,τn and v = τ(n+1), . . . ,τm with n,m ∈ Z≥0 such that
n < m, where τ is the canonical time index of D.

Proof. First note that because u < v < w it holds that u∪v⊂ u∪H>u, that
u∪ v∪w ⊂ u∪H>u, and that u∪ v∪w ⊂ (u∪ v)∪H>(u∪v), and hence it
follows from Definition 2.1067 that

(Xu∪v = yu∪v,Xu = xu)H ∈ C
SP
H for all yu∪v ∈Xu∪v, (2.17)

that

(Xu∪v∪w = yu∪v∪w,Xu = xu)H ∈ C
SP
H for all yu∪v∪w ∈Xu∪v∪w, (2.18)

and that

(Xu∪v∪w = yu∪v∪w,(Xu = xu,Xv = yv))H ∈ C
SP
H for all yu∪v∪w ∈Xu∪v∪w,

(2.19)
where if H= D, we use the additional assumption that either u = /0 and
v = τ0, . . . ,τm with m ∈ Z≥0, or u = τ0, . . . ,τn and v = τ(n+1), . . . ,τm with
n,m ∈ Z≥0 such that n < m, where τ is the canonical time index of D.

Now because u < v < w it follows that w⊂ (u∪v)∪H>(u∪v). Hence, it
follows from Propositions 2.2575 and 2.2373 that, for all yv ∈Xv,

EP[ f (Xu∪v∪w) |Xu = xu,Xv = yv]

= EP[ f (xu,yv,Xw) |Xu = xu,Xv = yv]

= ∑
zw∈Xw

f (xu,yv,zw)P(Xw = zw |Xu = xu,Xv = yv)

= ∑
zw∈Xw

f (xu,yv,zw)P(Xu = xu,Xv = yv,Xw = zw |Xu = xu,Xv = yv) ,

(2.20)

where we used Property F647 for the final equality, together with the
fact that all relevant events are in the domain C SP

H of P, due to Equa-
tion (2.19).

Next let g ∈L (Xu∪v) be defined, for all yu∪v ∈Xu∪v, as

g(yu∪v) := EP[ f (Xu∪v∪w) |Xu∪v = yu∪v] . (2.21)
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Because u < v it follows that v⊂ u∪H>u. Hence, it follows from Propo-
sitions 2.2575 and 2.2373 that

EP[g(Xu∪v) |Xu = xu] = EP[g(xu,Xv) |Xu = xu]

= ∑
yv∈Xv

g(xu,yv)P(Xv = yv |Xu = xu)

= ∑
yv∈Xv

g(xu,yv)P(Xu = xu,Xv = yv |Xu = xu) , (2.22)

where we used Property F647 for the final equality, together with the
fact that all relevant events are in the domain C SP

H of P, due to Equa-
tion (2.17)x.

Combining Equations (2.21)x, (2.22), and (2.20)x, we obtain

EP

[

EP[ f (Xu∪v∪w) |Xu∪v]
∣

∣

∣
Xu = xu

]

= ∑
yv∈Xv

P(Xu = xu,Xv = yv |Xu = xu)EP[ f (Xu∪v∪w) |Xu = xu,Xv = yv]

= ∑
yv∈Xv

P(Xu = xu,Xv = yv |Xu = xu)

∑
zw∈Xw

f (xu,yv,zw)P(Xu = xu,Xv = yv,Xw = zw |Xu = xu,Xv = yv)

= ∑
yv∈Xv

∑
zw∈Xw

f (xu,yv,zw)P(Xu = xu,Xv = yv,Xw = zw |Xu = xu)

= EP[ f (Xu∪v∪w) |Xu = xu] ,

where we used Property F447 for the third equality, together with the
fact that all relevant events are in the domain C SP

H of P, due to Equa-
tion (2.18)x; and where we used Proposition 2.2373 for the final equal-
ity, which is valid because u < v < w implies that u∪v∪w⊂ u∪H>u.

Let us conclude this section by stating some generally useful prop-
erties of conditional expectations of u-measurable functions, that we
will use repeatedly in the remainder of this work.

Proposition 2.27. Let H be a time domain such that either H = R≥0 or
H = D, where D is a discrete time domain, and let P ∈ PH be a stochastic
process. Then, for any u,v ∈ U H such that v 6= /0 and v ⊂ u∪H>u, any
f ,g ∈L (Xv), any λ ,µ ∈ R, and any xu ∈Xu, it holds that

CE1: minyv∈Xv
f (yv)≤ EP[ f (Xv) |Xu = xu]≤maxyv∈Xv

f (yv);

CE2: EP[ f (Xv)+g(Xv) |Xu = xu] = EP[ f (Xv) |Xu = xu]+EP[g(Xv) |Xu = xu];

CE3: EP[λ f (Xv) |Xu = xu] = λEP[ f (Xv) |Xu = xu];

CE4: f ≤ g⇒ EP[ f (Xv) |Xu = xu]≤ EP[g(Xv) |Xu = xu];
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CE5: EP[µ |Xu = xu] = µ ;

CE6: EP[ f (Xv)+µ |Xu = xu] = EP[ f (Xv) |Xu = xu]+µ ;

provided that if H= D, it also holds that either u = /0 or u = τ0, . . . ,τn, with
n ∈ Z≥0, where τ is the canonical time index of D.

Proof. Because f ,g, f + g,λ f , and f + µ are all in L (Xv), Proposi-
tion 2.2373 implies that the expectations of f (Xv), f (Xv)+g(Xv),λ f (Xv),
and f (Xv) + λ , conditional on Xu = xu, are well-defined, whence
(

f (Xv),Xu = xu

)

,
(

g(Xv),Xu = xu

)

,
(

( f +g)(Xv),Xu = xu

)

,
(

λ f (Xv),Xu = xu

)

,
and

(

f (Xv)+µ,Xu = xu

)

are all necessarily elements of DP due to Defi-
nition 2.554.

Therefore, and due to Proposition 2.1054, Property CE1 follows
from Property E152 and Definition 2.1572; Property CE2 follows from
Property E252; and Property CE3 follows from Property E352.

For Property CE4, assume that f ≤ g. Then it follows from Proposi-
tion 2.2373 that

EP[ f (Xv) |Xu = xu] = ∑
yv∈Xv

f (yv)P(Xv = yv |Xu = xu)

≤ ∑
yv∈Xv

g(yv)P(Xv = yv |Xu = xu) = EP[g(Xv) |Xu = xu] ,

where the inequality used Property F147 and the assumption that f ≤ g.
For Property CE5, note that µ ∈ R is trivially identified with the

constant function in L (Xv)whose value in all yv ∈Xv equals µ . Hence
it follows from Proposition 2.2373 that

EP[µ |Xu = xu] = ∑
yv∈Xv

µP(Xv = yv |Xu = xu) = µ ,

where the final equality used Properties F347 and F847.
Property CE6 now follows by combining Properties CE2 and CE5.
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Appendix

2.A A Gambling Interpretation of Coherence

In this short appendix we aim to provide a basic exposition of the gam-
bling interpretation for coherent conditional probabilities. A more ex-
tensive discussion, which also provides some historical context, can be
found, amongst others, in References [4,5,87,109,112,117,118].

Basically, the idea is to interpret P as a set of gambles on the actual—
but unknown—value of X in Ω, which some bettor is willing to either
buy or sell, and to impose a rationality criterion on this set of gambles.

Concretely, for every pair (A,C) ∈ C , P(A|C) is interpreted as a bet-
tor’s fair price for a ticket that yields a reward of one currency unit to
its holder if the event A occurs, and zero if it does not; provided that
C also happens. In other words, the bettor is willing to either sell or
buy such a ticket at this price, provided that the bet is called off if C

does not happen. If a bet is called off, the bettor is refunded and no
reward is obtained. Furthermore, it is also assumed that the bettor’s
utility is linear, which implies that she is willing to vary the stakes of
her bets arbitrarily, and that multiple bets can be combined through
summation.

Suppose for example that the actual value of X ends up being ω .
For each ticket that the bettor sold, she has then received P(A|C) cur-
rency units in advance, but after the value of X is revealed, she loses
one currency unit if A has happened, that is, she loses IA(ω) currency
units. Because the bet is called off if C does not happen, her net profit
is IC(ω)(P(A|C)− IA(ω)), with negative profit being loss. Note that if C

does not happen, that is, if IC(ω) = 0, the bet is called off and she nei-
ther gains nor loses anything. Since we also allow for arbitrary stakes,
we conclude that for any λ ∈ R≥0, the bettor is willing to accept the
uncertain net profit λ IC(ω)(P(A|C)− IA(ω)).

Similarly, for each ticket that the bettor buys, she first has to pay
P(A|C) to buy the ticket, but will then receive one unit of currency if
A happens. Her profit is then IA(ω)−P(A|C) per ticket. However, she
only receives this profit if eventC also came to pass, and otherwise gets
refunded. Hence, if we again take into account that the stake can be
chosen arbitrarily, we find that for any λ ∈ R≥0 the bettor is willing to
accept the uncertain net profit λ IC(ω)(IA(ω)−P(A|C)).

By combining the arguments for selling and buying, we conclude
from the above that for any λ ∈ R, the bettor is willing to accept a bet
in which she receives the uncertain net profit λ IC(ω)(P(A|C)− IA(ω)),
with negative profit being loss.

Because the bettor’s utility was assumed to be linear, it follows that
the bettor must be willing to combine any finite number of such trans-
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actions. That is, if we consider any n ∈ Z>0 and, for every i ∈ {1, . . . ,n},
some λi ∈R and (Ai,Ci) ∈ C , then the bettor is willing to accept a bet in
which her net profit is equal to

n

∑
i=1

λiICi
(ω)(P(Ai|Ci)− IAi

(ω)) .

The coherence of P is now equivalent to requiring that any such
bet avoids sure loss, in the sense that there should be at least one “non-
trivial” outcome ω for which her total profit is non-negative, the trivial
case being when none of the events Ci happen—ω /∈ ∪n

i=1Ci—because
then all bets are called off and she gets refunded completely.

Incidentally, the interpretation of coherent conditional previsions,
which we discussed in Section 2.1.151, is similar: essentially, any
bounded function f : Ω→ R can be understood as a ticket that yields
a reward of f (ω) currency units when the value of X turns out to be
ω ∈ Ω (again, with negative profit being loss). A conditional prevision
E[ f |C] can then be interpreted as a bettor’s fair price for f , provided
that the bet is called off if C does not happen, in which case the bettor
is again refunded and no reward is obtained. In relation to the condi-
tional expectations that we discussed in Section 2.1.151, this fair price is
therefore the expectation, or the expected value of f , conditional on the
eventC obtaining. As above, the coherence condition of the conditional
prevision requires that the bettor cannot be forced into accepting a (fi-
nite) collection of such transactions, which jointly would lead to her
incurring a sure loss regardless of the actual outcome ω .
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3

Discrete-Time

(Imprecise-)Markov Chains

“We are here and it is now.
The way I see it is, after that, everything tends towards guesswork.”

Terry Pratchett, “Small Gods”

We discussed in Chapter 245 that stochastic processes can be used
to represent and reason about dynamical systems that behave in a man-
ner about which we are uncertain. Markov chains are a particular type
of stochastic process: they satisfy the so-called Markov property. This
is a particular independence condition, which essentially states that
the future behaviour of the system is independent of its historical be-
haviour, given its current state. Symbolically, in a discrete-time setting
the Markov property may be written as saying that

P(Xn+1 = xn+1 |X0 = x0, . . . ,Xn = xn) = P(Xn+1 = xn+1 |Xn = xn) .

It is this crucial independence assumption that leads to these models
being relatively easy to parameterise and tractable from both a compu-
tational and analytical point of view. For those reasons, Markov chains
have arguably become one of the most popular and successful types of
stochastic process, both in theory and in applications.

Like general stochastic processes, Markov chains have both
continuous-time and discrete-time variants. Although the continuous-
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time setting is of primary interest in this dissertation, this current chap-
ter focusses solely on discrete-time Markov chains. We do this for sev-
eral reasons. First, from a didactic point of view: we find discrete-time
models to be simply easier to work with and conceptualise. Because
there are many analogies between these two settings, we can introduce
some concepts here that we will need later, without worrying about the
technical details surrounding continuous time domains.

Secondly, the imprecise-probabilistic generalisation of discrete-
time Markov chains has already been studied extensively in the lit-
erature. As such, the content of this chapter should be viewed
mostly as a collection and summary of results from the discrete-time
(imprecise-)Markov chain literature, with an emphasis on concepts
that will be useful when we study continuous-time imprecise-Markov
chains in later chapters. Indeed, although we have included many
proofs for didactic reasons, and because we felt it easier to prove them
in our notation than to provide the translation to external work, the
content of this chapter should not really be understood as novel. As we
will explain throughout, we base ourselves in large part on develop-
ments in References [20–22, 69], and the origin of the ideas presented
in this chapter can be found there.

Our final reason for including the discussion in this chapter, is with
the aim of providing the (hitherto) unpublished results from Chap-
ter 7335, which in many ways provide a unification of the theories of
imprecise-Markov chains in discrete and continuous time. These re-
sults require a formal basis also for discrete-time Markov chains, and
one that is slightly more general than what is typically encountered in
the literature; specifically, we need to deal with arbitrary discrete time
domains, rather than just the natural numbers as is usually done. This
slight generalisation is fairly straightforward, as the crucial observa-
tion is only this: any discrete time domain D is simply a re-labelling
of the prototypical discrete time domain Z≥0. Nevertheless, we will be
careful throughout in stating our results and proofs under this minor
generalisation.

In terms of content, we start in Section 3.1 by introducing and dis-
cussing some concepts that are specific to the discrete-time setting, and
that we did not want to include in Chapter 245. We also make the
connection there to the work in [69], which provides the formal ba-
sis for many of our technical results. In Section 3.289, we then finally
define discrete-time Markov chains using our formalism of stochastic
processes. We discuss how they can be parameterised using (families
of) transition matrices: row-stochastic matrices that encode the transi-
tion probabilities of these Markov chains. We also discuss how the linear
maps encoded by these transition matrices can be used to represent the
conditional expectations of Markov chains.

84



3.1 Some Properties of Discrete-Time Stochastic Processes

We finally come to the generalisation to imprecise-Markov chains
in Section 3.3101. There we discuss and study sets of transition matri-
ces and sets of stochastic processes, and investigate their corresponding
lower- and upper expectations. In Section 3.4116, we study lower transi-
tion operators. As we shall see, these are essentially non-linear general-
isations of transition matrices; in particular, we discuss their relation-
ship with lower envelopes of sets of transition matrices. Having stud-
ied these objects in the abstract, we relate them to imprecise-Markov
chains in Section 3.5121, where we show that lower transition opera-
tors can be used to represent lower expectations of imprecise-Markov
chains, in a manner analogous to how transition matrices are used for
(precise) Markov chains.

3.1 Some Properties of Discrete-Time Stochastic Pro-
cesses

In this section we discuss some concepts that will set up the results in
the remainder of this chapter. In particular, we describe some simplify-
ing concepts and expressions for the domain of discrete-time stochastic
processes, and introduce the machinery that connects our formalism
and results to those in the literature. Let us start by introducing some
shorthand notation that will be exceptionally helpful in the remainder
of this chapter. For any discrete time domain D with canonical time in-
dex τ , we will write τ0:n := τ0, . . . ,τn for any n ∈ Z≥0. Moreover, we will
adopt the convention that τ0:(−1) := /0.

To relate some of our technical results to existing work in the litera-
ture, we will mostly base ourselves on the results in [69]. To make this
connection, we first introduce the notion of a situation; this is an event
of the form (Xu = xu)D, with u = τ0:n, n ∈ Z≥0, and xu ∈Xu, where τ is
the canonical time index of D. Because D is discrete, such a situation
fully describes the realisation of a stochastic process up to time τn. For
notational convenience, we also consider the “initial” situation, corre-
sponding to u = /0. In the sequel, we use the following definition:

Definition 3.1 (Situations). Let D be a discrete time domain with canon-
ical time index τ . Then we define the set SD of situations (with time do-
main D) as

SD :=
{

(Xu = xu)D : u ∈ {τ0:n |n ∈ Z≥0}∪{ /0},xu ∈Xu

}

.

The following two results establish the connection between the1 do-

1In fact, Reference [69] considers many different domains for stochastic processes,
but we primarily concern ourselves with the one defined in [69, Equation 3.14].
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main of discrete-time stochastic processes as they are defined in [69],
and as we have defined them in Chapter 245. For the remainder of this
section, we have moved the proofs of some results to Appendix 3.A125.

Lemma 3.1. Let D be a discrete time domain, and let SD be the set of
situations with time domain D. Then A D

/0 = 〈SD〉.

Lemma 3.2. Let D be a discrete time domain, let SD be the set of situations
with time domain D, and consider the set

C
∗
D :=

{

(A,C)D : A ∈ 〈SD〉,C ∈SD

}

. (3.1)

Then C ∗D = C SP
D .

Proof. Using Lemma 2.1968 and Definition 3.1x, we see that

C
SP
D =

{

(A,C)D : A ∈A
D
/0 ,C ∈SD

}

.

Hence, and because 〈SD〉 = A D
/0 by Lemma 3.1, it follows from Equa-

tion (3.1) that C ∗D = C SP
D .

Moreover, the result from Proposition 2.1866 that events can be
written in a kind of “normal form”, has a convenient corollary that
states that discrete-time events can always be expressed as a union of
situations, as follows.

Lemma 3.3. Let D be a discrete time domain with canonical time index τ
and consider any A ∈A D

/0 . Then there is some n ∈ Z≥0 and some S ⊆Xτ0:n
,

such that A = ∪xτ0:n
∈S(Xτ0:n

= xτ0:n
)D.

Now, one other concept that we need from the literature is that of
a probability tree [69, Section 3.3]. For a given discrete time domain D,
this is a map

p : X ×SD :
(

x,(Xu = xu)D
)

7→ p(x |xu)

such that, for all (Xu = xu)D ∈SD, p(x |xu), as a function of x ∈X , is a
probability mass function (on X ). It can be interpreted as describing
a stochastic process with time domain D, in that for every situation
(Xu = xu)D ∈SD with u = τ0:n, it gives the probability p(x |xu) that the
process will be in state x at time τn+1. Formally, we use the following
definition.

Definition 3.2. Let D be a discrete time domain with canonical time in-
dex τ , let P ∈ PD be a discrete-time stochastic process with time domain D,
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and let p : X ×SD→ R be a probability tree with time domain D. We say
that P corresponds to p if, for all x ∈X ,

P(Xτ0
= x) = p(x |x /0) (3.2)

and, for all (Xu = xu)D ∈SD for which u = τ0:n, with n ∈ Z≥0,

P(Xτn+1
= x |Xu = xu) = p(x |xu) . (3.3)

As the following result makes clear, any discrete-time stochastic
process that corresponds to a given probability tree in the manner
above, has a convenient expression for the conditional probabilities
that it assigns to situations. Our proof of this result is based on, and
conceptually essentially the same as, the second part of the proof of [69,
Lemma 14]; we here only provide the argument explicitly to deal with
our slightly more general setting.

Lemma 3.4. Let D be a discrete time domain with canonical time index τ ,
and let p be a probability tree with time domain D. Let P ∈ PD be a discrete-
time stochastic process with time domain D that corresponds to p. Consider
any n,m ∈ Z≥0 and let u := τ0:(n−1) and v := τ0:m. Then for all xu ∈Xu and
yv ∈Xv, it holds that

P(Xv = yv |xu = xu) =







∏
m
i=n p(yτi

|yτ0:(i−1)
) if n≤ m and yu = xu

1 if m < n and yv = xv

0 otherwise.

We note that it follows from Lemmas 3.1, 3.2 and 3.3 that for any
conditional event (A,C)D ∈ C SP

D , there are some n,m ∈ Z≥0 and, with
u := τ0:(n−1) and v := τ0:m, some xu ∈Xu and S⊆Xv, such that C = (Xu =
xu)D and A = ∪yv∈S(Xv = yv)D, and it follows from Lemma 3.2 that (Xv =
yv,Xu = xu)D ∈ C SP

D for all yv ∈ S. Therefore, and because any discrete-
time stochastic process P ∈ PD is a coherent conditional probability by
Definition 2.1369, it follows from Property F347 that

P(A |C) = ∑
yv∈S

P(Xv = yv |Xu = xu) ,

which, together with Lemma 3.4, provides an explicit expression for
the conditional probability assigned to any conditional event (A,C)D by
a discrete-time stochastic process P that corresponds to a given proba-
bility tree p.

We note that, so far, we have not yet shown that there exist discrete-
time stochastic processes that correspond to a given probability tree.
The following result confirms that this is indeed the case. In fact, as
is perhaps unsurprising in light of the preceding discussion, such pro-
cesses are uniquely determined (on C SP

D ) by the probability tree.
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Theorem 3.5. Let D be a discrete time domain, and let p be a probability
tree with time domain D. Then there is a unique discrete-time stochastic
process P ∈ PD that corresponds to p.

Lemmas 3.286 and 3.4x and Theorem 3.5 together complete the
connection with the work in Reference [69]. In particular, [69, Lemma
14] states these results for the special case where the time domain
D = Z>0, and where ΩZ>0

is the set of all paths with time domain Z>0.
This is reflective of the typical literature on discrete-time stochastic
processes, where one typically considers either Z>0 or Z≥0 as the time
domain, and where this choice for the outcome space ΩZ>0

is common.
Contrariwise, in this work we want to consider general discrete time
domains D and general outcome spaces ΩD; in particular for the time
domains, we need this level of generality to later make the connection
with continuous-time stochastic processes where, essentially, we con-
sider the embedding of D in R≥0. As for the choice of the outcome
spaces, we simply have no need to impose a stronger assumption than
that used in Definition 2.965, in order to obtain our results.

To conclude this section, we note that Theorem 3.5 implies that
discrete-time stochastic processes are uniquely determined by their
value on the events that form the domain of a probability tree:

Corollary 3.6. Let D be a discrete time domain with canonical time index
τ , and consider two discrete-time stochastic processes P,P′ ∈ PD such that,
for all x ∈X ,

P(Xτ0
= x) = P′(Xτ0

= x) , (3.4)

and, for all n ∈ Z≥0, all xτ0:n
∈Xτ0:n

, and all x ∈X ,

P(Xτn+1
= x |Xτ0:n

= xτ0:n
) = P′(Xτn+1

= x |Xτ0:n
= xτ0:n

) . (3.5)

Then P = P′.

Proof. Let p : X ×SD → R be the probability tree that is defined, for
all x ∈X and (Xu = xu)D ∈SD as

p(x |xu) :=

{

P(Xτ0
= x) if u = /0

P(Xτn+1=x |Xu = xu) if u = τ0:n with n ∈ Z≥0.

Then it follows from Theorem 3.5 that P is the unique element of PD

that corresponds to p. However, due to Equations (3.4) and (3.5) it
holds, for all x ∈X and (Xu = xu)D ∈SD, that

p(x |xu) =

{

P′(Xτ0
= x) if u = /0

P′(Xτn+1=x |Xu = xu) if u = τ0:n with n ∈ Z≥0.

It follows from Theorem 3.5 that P′ is also the unique element of PD

that corresponds to p, and therefore P = P′.
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3.2 Markov Chains and Transition Matrices

Let us nowmove on to the discussion of Markov chains. AMarkov chain
is simply a stochastic process that satisfies a particular independence
condition; for the discrete-time case, this is given by Equation (3.6)
below.

Definition 3.3 (Discrete-Time Markov Chain). Let D be a discrete time
domain with canonical time index τ . A stochastic process P ∈ PD sat-
isfies the Markov property if for all n ∈ Z≥0 and all xτn ,xτn+1

∈ X ,
there is some real number P(Xτn+1

= xτn+1
|Xτn = xτn) ∈ R such that, for all

xτ0:(n−1)
∈Xτ0:(n−1)

,

P(Xτn+1
= xτn+1

|Xτ0:n
= xτ0:n

) = P(Xτn+1
= xτn+1

|Xτn = xτn) . (3.6)

If P satisfies this property then it is called a (discrete-time) Markov chain.
We denote the set of all Markov chains with time domainD as PD,M. For any
Markov chain P ∈ PD,M, we refer to the quantities on the right-hand side of
Equation (3.6) as the transition probabilities of P.

As Equation (3.6) makes clear, the behaviour of a Markov chain at
time τn+1 only depends on the state of the process at time τn. In other
words, given the state Xτn , the future behaviour of the system is proba-
bilistically independent of the history of the system before time τn. It is
this crucial property that makes Markov chains tractable to work with;
as we shall see later on this chapter, this property leads to straightfor-
ward expressions for their conditional expectations, and makes them
relatively straightforward to parameterise.

Note that the phrasing of the above definition is perhaps a bit
awkward, in the sense that on the right-hand side of Equation (3.6),
the transition probability P(Xτn+1

= xτn+1
|Xτn = xτn) appears to have

no direct connection with the process P, despite notational appear-
ances. Indeed, both notationally and conceptually, this quantity is
read as “the probability that P assigns to the conditional event (Xτn+1

=
xτn+1

,Xτn = xτn)D ∈ E (ΩD)×E (ΩD)⊃ /0”. We cannot however use this in-
terpretation formally, as this conditional event is not in the domain
C SP
D of P. Nevertheless, as the next result shows, this interpretation

can be made exact: for any Markov chain P, its transition probability
P(Xτn+1

= xτn+1
|Xτn = xτn) is the unique value assigned to the conditional

event (Xτn+1
= xτn+1

,Xτn = xτn)D ∈ E (ΩD)×E (ΩD)⊃ /0 by any coherent con-
ditional probability P∗ that extends P and has this event in its domain.

Proposition 3.7. Let D be a discrete time domain with canonical time
index τ , and let P ∈ PD,M be a discrete-time Markov chain. Then for
any n ∈ Z≥0, any xτn ,xτn+1

∈ X , and any coherent conditional probabil-

ity P∗ on C that extends P, with C SP
D ⊆ C ⊆ E (ΩD)×E (ΩD)⊃ /0 such that
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(Xτn+1
= xτn+1

,Xτn = xτn)D ∈ C , it holds that

P∗(Xτn+1
= xτn+1

|Xτn = xτn) = P(Xτn+1
= xτn+1

|Xτn = xτn) , (3.7)

where the right-hand side denotes the transition probabilities of P.

Proof. If n = 0 then (Xτ1
= xτ1

,Xτ0
= xτ0

)D ∈ C SP
D and therefore, since P∗

extends P, Equation (3.7) follows immediately.
So let us suppose that n > 0, and let u := τ0:(n−1). Let P̃∗ be any

full conditional probability on E (ΩD)×E (ΩD)⊃ /0 that extends P∗, which
exists by Corollary 2.449. Then it holds that

P∗(Xτn+1
= xτn+1

|Xτn = xτn)

= P̃∗(Xτn+1
= xτn+1

|Xτn = xτn)

= P̃∗
(

⋃

xu∈Xu

(Xτn+1
= xτn+1

,Xu = xu)D

∣

∣

∣

∣

∣

Xτn = xτn

)

= ∑
xu∈Xu

P̃∗(Xτn+1
= xτn+1

,Xu = xu |Xτn = xτn)

= ∑
xu∈Xu

P̃∗(Xτn+1
= xτn+1

|Xτn = xτn ,Xu = xu)P̃
∗(Xu = xu |Xτn = xτn)

= ∑
xu∈Xu

P(Xτn+1
= xτn+1

|Xτn = xτn ,Xu = xu)P̃
∗(Xu = xu |Xτn = xτn)

= ∑
xu∈Xu

P(Xτn+1
= xτn+1

|Xτn = xτn)P̃
∗(Xu = xu |Xτn = xτn)

= P(Xτn+1
= xτn+1

|Xτn = xτn) ∑
xu∈Xu

P̃∗(Xu = xu |Xτn = xτn)

= P(Xτn+1
= xτn+1

|Xτn = xτn) ,

where we used that P̃∗ extends P∗ for the first equality; Prop-
erty F347 for the third equality; Property F447 for the fourth
equality; the fact that P̃∗ extends P∗, that P∗ extends P, and
that (Xτn+1

= xτn+1,(Xτn = xτn ,Xu = xu))D ∈ C SP
D for the fifth equality; the

fact that P is a Markov chain together with the definition of its tran-
sition probabilities for the sixth equality; the fact that the transition
probabilities do not depend on xu for the seventh equality; and Proper-
ties F347 and F847 for the last equality.

Note that Proposition 3.7x holds even if P(Xτn = xτn) = 0; if this
probability is strictly positive then the claim follows trivially from
Bayes’s rule—Property F447— which makes the identification

P∗(Xτn+1
= xτn+1

|Xτn = xτn) =
P∗(Xτn+1

= xτn+1
, Xτn = xτn)

P∗(Xτn = xτn)
,
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provided that P∗(Xτn = xτn) > 0. Since the events in both the numera-
tor and denominator in this right-hand side are in the domain C SP

D of P,
this then provides the unique way to identify P∗(Xτn+1

= xτn+1
|Xτn = xτn)

for any P∗ that extends P. However, our use of full and coherent condi-
tional probabilities—which, as explained in Chapter 245, takes condi-
tional probabilities as elementary, rather than derived, entities—allows
us sometimes to still make this unique identification even when the
conditioning event has probability zero; Proposition 3.789 establishes
that P being a Markov chain is a sufficient condition to do this.

Moving on, let us next introduce another property that is often en-
countered whenworking withMarkov chains: that of time-homogeneity.

Definition 3.4. Let D be a discrete time domain with canonical time index
τ , and let P ∈ PD,M be a discrete-time Markov chain.

Then P is called (time-)homogeneous if

P
(

Xτn+1
= y
∣

∣Xτn = x
)

= P
(

Xτ1
= y
∣

∣Xτ0
= x
)

, (3.8)

for all n ∈ Z≥0 and all x,y ∈ X . We use PD,HM to denote the set of all
homogeneous Markov chains with time domain D.

So, for a Markov chain that is time-homogeneous—that satisfies
Equation (3.8)—the probability of moving from a state x∈X at time τn

to a state y ∈X at time τn+1, is the same for all n ∈ Z≥0. In other words,
its transition probabilities do not depend on the point in time at which
they are considered.

It will be useful to consider a different way to describe the transition
probabilities of Markov chains. To this end, let us introduce the notion
of a transition matrix. As the following definition makes explicit, a tran-
sition matrix T is simply a matrix that is row-stochastic, meaning that,
for each x ∈X , the row T (x, ·) is a probability mass function on X .

Definition 3.5 (Transition Matrix). A real-valued matrix T is said to be a
transition matrix if

T1: ∑y∈X T (x,y) = 1 for all x ∈X ;

T2: T (x,y)≥ 0 for all x,y ∈X .

We will use T to denote the set of all transition matrices.

The following property of transition matrices will be crucial in the
remainder of this dissertation.

Proposition 3.8. For any two transition matrices T,S ∈ T, their product
T S is also a transition matrix.
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Proof. The proof is elementary, but since the result is so crucial we will
verify it here. First fix any x ∈X . Then, using the properties of matrix
multiplication, we have that

∑
y∈X

(T S)(x,y) = ∑
y∈X

∑
z∈X

T (x,z)S(z,y)

= ∑
z∈X

∑
y∈X

T (x,z)S(z,y)

= ∑
z∈X

T (x,z) ∑
y∈X

S(z,y) = ∑
z∈X

T (x,z) = 1 ,

where for the last two equalities we used that ∑y∈X S(z,y) = 1 for all
z ∈ X and ∑z∈X T (x,z) = 1 due to Property T1x. Because x ∈ X is
arbitrary, this means that T S satisfies Property T1x.

Now, fix any x,y ∈X . Then it holds that

(T S)(x,y) = ∑
z∈X

T (x,z)S(z,y)≥ 0 ,

where the equality used the properties of matrix multiplication, and
where the inequality follows from the fact that T (x,z)≥ 0 and S(z,y)≥ 0

for all z ∈X due to Property T2x. Because x,y ∈X are arbitrary, this
means that T S satisfies Property T2x.

Hence, because T S satisfies both Property T1x and T2x, it is a tran-
sition matrix by Definition 3.5x.

We will also need the following straightforward property.

Lemma 3.9. For any transition matrix T it holds that ‖T‖= 1.

Proof. Using Equation (2.7)63, we find that

‖T‖= max
x∈X ∑

y∈X
|T (x,y)|= max

x∈X ∑
y∈X

T (x,y) = 1 ,

where we used Property T2x for the second equality and Property T1x
for the third equality.

As another general result on transition matrices, it will be useful to
note that T is a complete metric space:

Proposition 3.10. T is complete under the metric induced by our norm ‖·‖.

Proof. Let {Ti}i∈Z>0
be any Cauchy sequence in T; as discussed in

Appendix A.3383, the space M is a finite-dimensional normed vec-
tor space, which is complete due to Proposition A.7374. Since T ⊆M
the limit T∗ := limi→+∞ Ti therefore exists in M. We need to show
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that also T∗ ∈ T. So fix any x,y ∈ X , and suppose ex absurdo that
T∗(x,y)< 0. Then because T∗= limi→+∞ Ti there is some n∈Z>0 such that
‖Tn−T∗‖<−T∗(x,y). Because Tn ∈ T it follows from Property T291 that
Tn(x,y) ≥ 0, and therefore, because T∗(x,y) < 0, that Tn(x,y)−T∗(x,y) =
|Tn(x,y)−T∗(x,y)|. Hence it follows that

Tn(x,y)−T∗(x,y) = |Tn(x,y)−T∗(x,y)|
≤ ∑

z∈X
|Tn(x,z)−T∗(x,z)| ≤ ‖Tn−T∗‖<−T∗(x,y) ,

using Equation (2.7)63 for the second inequality. Adding T∗(x,y) to
both sides of this equation yields Tn(x,y) < 0, which contradicts Prop-
erty T291 and the fact that Tn ∈ T. Hence T∗(x,y) ≥ 0 and, because the
x,y ∈X were arbitrary, it follows that T∗ satisfies property T291.

Next, fix any x ∈X , and let f ∈ L (X ) be such that f (y) := 1 for
all y ∈X . Then T∗ f (x) = ∑y∈X T∗(x,y) f (y) = ∑y∈X T∗(x,y), so in order
to obtain Property T191 it suffices to prove that T∗ f (x) = 1. Note that,
for all i ∈ Z>0, it holds that Ti f (x) = 1 because Ti satisfies Property T191
since Ti ∈ T. Because T∗ = limi→+∞ Ti it follows from Lemma A.34390
that T∗ f = limi→+∞ Ti f and therefore, since Ti f (x) = 1 for all i∈Z>0, that
T∗ f (x) = limi→+∞ Ti f (x) = 1. Because x ∈X is arbitrary, this means that
T∗ also satisfies Property T191.

Corollary 3.11. T is a compact and convex subset of the Banach space M.

Proof. To show the compactness, first note that it follows from
Lemma 3.9 that ‖T‖= supT∈T ‖T‖= 1, and hence T is bounded by S5376.
Moreover, by Proposition 3.10, any Cauchy sequence in T converges
to a limit in T. Because, using Definition A.11374, any convergent
sequence of matrices is a Cauchy sequence, it follows from Proposi-
tion A.8376 that T is closed. Hence it follows that T is compact by
Corollary A.12378.

To see that T is convex, fix any T,S ∈ T and any λ ∈ [0,1]; we need
to show that λT +(1−λ )S ∈ T. So fix any x ∈X . Then because T and
S are both transition matrices, it follows from Definition 3.591 that

∑
y∈X

λT (x,y)+(1−λ )S(x,y) = λ ∑
y∈X

T (x,y)+(1−λ ) ∑
y∈X

S(x,y) = 1 ,

where for the final equality we used that T and S both satisfy Prop-
erty T191. This implies that λT +(1−λ )S also satisfies Property T191.
Similarly, for any y ∈X it holds that

λT (x,y)+(1−λ )S(x,y)≥ 0 ,

since λ ∈ [0,1] and because T and S both satisfy Property T291. This
implies that λT +(1−λ )S also satisfies Property T291 and therefore, by
Definition 3.591, that λT +(1−λ )S ∈ T.
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So let us now move on to the connection between transition matri-
ces, and the transition probabilities of Markov chains. The easiest case
to consider is that of homogeneous Markov chains, for which we can
consider a single corresponding transition matrix, as follows.

Definition 3.6 (Corresponding Transition Matrix). Let D be a discrete
time domain with canonical time index τ , and let P ∈ PD,HM be a homo-
geneous discrete-time Markov chain. Then the transition matrix corre-
sponding to P is a matrix T that is defined, for all x,y ∈X , as

T (x,y) := P
(

Xτ1
= y
∣

∣Xτ0
= x
)

.

Proposition 3.12. LetD be a discrete time domain, let P∈PD,HM be a time-
homogeneous discrete-time Markov chain, and let T be its corresponding
transition matrix. Then T is a transition matrix.

Proof. Simply check both of the properties.

The connection between non-homogeneous Markov chains and
transition matrices is a bit more subtle, in that their transition prob-
abilities do depend on the point in time at which they are considered.
As such, we need to introduce a similar kind of time-dependency when
considering their corresponding transition matrices. We will use the
following definition.

Definition 3.7. Let D be a discrete time domain with canonical time index
τ , and let P ∈ PD,M be a discrete-time Markov chain. Then the family of
transition matrices corresponding to P is a family (Tn) of matrices Tn that
are defined, for all n ∈ Z≥0 and all x,y ∈X , as

Tn(x,y) := P
(

Xτn+1
= y
∣

∣Xτn = x
)

.

Note that in the above definition, the family of transition matrices
(Tn)might bemore explicitly written as (Tn)n∈Z≥0

; we drop the reference
to its index set for notational brevity, when no confusion should arise.
This convention will be especially helpful when we later consider more
complicated families, like those introduced in Definition 3.8101 further
on.

In any case, the following result should not be surprising.

Proposition 3.13. Let D be a discrete time domain, let P ∈ PD,M be a
discrete-time Markov chain, and let (Tn) be its corresponding family of tran-
sition matrices. Then, for all n ∈ Z≥0, Tn is a transition matrix.

Proof. Simply check both of the properties.
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We note that a time-homogeneous discrete-time Markov
chain P ∈ PD,HM has both a corresponding transition matrix T , and
a corresponding family of transition matrices (Tn). It follows from
Definition 3.491 that, for homogeneous Markov chains, these transition
matrices satisfy Tn = T for all n ∈ Z≥0.

Moving on, the above discussion tells us that every discrete-time
Markov chain has a corresponding family of transition matrices, that
captures the transition probabilities of the system. As the next result
shows, the converse statement is also true: every family (Tn)n∈Z≥0

of
transition matrices has a corresponding discrete-time Markov chain as-
sociated with it. Moreover, this Markov chain P is uniquely determined
by (Tn)n∈Z≥0

up to the specification of its initial distribution P(X0).

Proposition 3.14. Let D be a discrete time domain with canonical time
index τ , consider any family (Tn)n∈Z≥0

of transition matrices, and any prob-
ability mass function q on X . Then there is a unique discrete-time Markov
chain P ∈ PD,M that has (Tn)n∈Z≥0

as its corresponding family of transition
matrices, and that satisfies P(Xτ0

= x) = q(x) for all x ∈X .

Proof. Let SD denote the set of situations with time domain D. Define
the function p : X ×SD, for all x ∈X and all (Xu = xu)D ∈S , as

p(x |xu) :=

{

q(x) if u = /0, and
Tn(xτn ,x) if u = τ0:n for some n ∈ Z≥0.

(3.9)

Because q is a probability mass function on X and because, for all
n ∈ Z≥0 and xτn ∈X , Tn(xτn ,x), as a function of x ∈X , is also a prob-
ability mass function on X , it follows that p is a probability tree,
as defined in Section 3.185. Therefore, by Theorem 3.588, there is a
unique discrete-time stochastic process P ∈ PD that corresponds to p,
and which therefore satisfies Equations (3.2)87 and (3.3)87.

Because P satisfies Equation (3.2)87, and using the definition of p, it
follows that for all x ∈X it holds that

P(Xτ0
= x) = p(x |x /0) = q(x) .

Moreover, because P satisfies Equation (3.3)87, and using the definition
of p, it follows that for all x ∈X and all (Xu = xu)D ∈SD with u = τ0:n,
n ∈ Z≥0, it holds that

P(Xτn+1
= x |Xu = xu) = p(x |xu) = Tn(xτn ,x) .

Hence, it follows from Definition 3.389 that P is a Markov chain, with
transition probabilities given by

P(Xτn+1
= y |Xτn = x) = Tn(x,y) ,

95



Discrete-Time (Imprecise-)Markov Chains

for all x,y ∈X and all n ∈ Z≥0. Hence, it has a corresponding family of
transition matrices, (Sn), say, and, for all n ∈ Z≥0 and all x,y ∈X ,

Sn(x,y) = P(Xτn+1
= y |Xτn = x) = Tn(x,y) ,

from which we conclude that (Tn)n∈Z≥0
= (Sn), whence P has (Tn)n∈Z≥0

as its corresponding family of transition matrices. In summary, we
have shown the existence of a discrete-time Markov chain P ∈ PD,M

with corresponding family of transition matrices (Tn)n∈Z≥0
and such

that P(Xτ0
= x) = q(x) for all x∈X . It remains to show that this Markov

chain is unique.
To this end, consider any discrete-time Markov chain P∗ ∈ PD,M

whose corresponding family of transitionmatrices is given by (Tn)n∈Z≥0
,

and that satisfies P∗(Xτ0
= x) = q(x) for all x ∈ X ; we will show that

P∗=P. First, for all x∈X it follows from the fact that P∗(Xτ0
= x) = q(x),

together with Equation (3.9)x, that

P∗(Xτ0
= x) = q(x) = p(x |x /0) ,

whence P∗ satisfies Equation (3.2)87. Similarly, for all x ∈ X and
(Xu = xu)D ∈SD with u = τ0:n, n ∈ Z≥0, it follows from the fact that P∗ is
a Markov chain, that

P∗(Xτn+1
= x |Xu = xu) = P∗(Xτn+1

= x |Xτn = xτn) = Tn(xτn ,x) = p(x |xu) ,

where we used the definition of the corresponding transition matrix
Tn for the second equality, and Equation (3.9)x for the third equality.
Hence it follows that P∗ also satisfies Equation (3.3)87. This implies
that P∗ corresponds to p. Because, by Theorem 3.588, P is the unique el-
ement of PD that corresponds to p, and because PD,M ⊆ PD, we conclude
that P∗ = P.

We note that the above result is well-known, and that we do not
intend to present it as novel. In fact, the result is so well-known that
some textbooks do not even bother with the existence proof. However,
similar statements—usually based on other formalisms—can be found
throughout the literature. The measure-theoretic construction is typi-
cally based on Kolmogorov’s Extension Theorem, see e.g. [96], or [54]
for a more abstract treatment. Reference [69] considers the problem
using both coherent conditional probabilities and game-theoretic prob-
abilities [97, 98] as the underlying formalism, but without introducing
transition matrices explicitly. In any case, the above result should be
interpreted as a mere translation of those well-known results to the
formalisation of Markov chains that we employ here.

In summary, we have seen above that (families of) transition ma-
trices can be used to, essentially, parameterise discrete-time Markov
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chains. However, this is not the only reason that transition matrices are
a useful tool when working with Markov chains. Because matrices are
linear algebraic objects, we can also use them as computational tools. We
will present some of these results in what follows; again, these proper-
ties are well-known in other formalisms—c.f. [39, 54, 82, 96]—but we
repeat them here to show that they also hold for our current defini-
tions.

Proposition 3.15. Let D be a discrete time domain with canonical time
index τ , and let P ∈ PD,M be a discrete-time Markov chain with correspond-
ing family of transition matrices (Tn). Then for any u = τ0:n, n ∈ Z≥0, any
xu ∈Xu, any m ∈ Z≥0 such that m > n, and any y ∈X , it holds that

P(Xτm = y |Xu = xu) =

(

m−1

∏
k=n

Tk

)

(xτn ,y) . (3.10)

Proof. We give a proof by induction on m. For the induction base, if
m = n+1 then the result is immediate from Definitions 3.389 and 3.794.

So for the induction step, let us consider that m > n+ 1, and as the
induction hypothesis let us suppose that

P(Xτm−1
= xτm−1

|Xu = xu) =

(

m−2

∏
k=n

Tk

)

(xτn ,xτm−1
) for all xτm−1

∈X .

Define v := τ(n+1):(m−1) and w := v\{τm−1}. Then it follows that

P(Xτm = y |Xu = xu) = ∑
xv∈Xv

P(Xτm = y,Xv = xv |Xu = xu)

= ∑
xv∈Xv

P(Xτm = y |Xu∪v = xu∪v)P(Xv = xv |Xu = xu)

= ∑
xv∈Xv

Tm−1(xτm−1
,y)P(Xv = xv |Xu = xu)

= ∑
xw∈Xw

∑
xτm−1

∈Xτm−1

Tm−1(xτm−1
,y)P(Xv = xv |Xu = xu)

= ∑
xτm−1

∈Xτm−1

Tm−1(xτm−1
,y) ∑

xw∈Xw

P(Xv = xv |Xu = xu)

= ∑
xτm−1

∈Xτm−1

Tm−1(xτm−1
,y)P(Xτm−1

= xτm−1
|Xu = xu) ,

where we used Property F347 for the first equality, Property F447 for
the second equality, Definitions 3.389 and 3.794 for the third equality,
and Property F347 for the sixth equality. Hence, using the induction
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hypothesis, we get

P(Xτm = y |Xu = xu) = ∑
xτm−1

∈Xτm−1

Tm−1(xτm−1
,y)P(Xτm−1

= xτm−1
|Xu = xu)

= ∑
xτm−1

∈Xτm−1

Tm−1(xτm−1
,y)

(

m−2

∏
k=n

Tk

)

(xτn ,xτm−1
)

=

(

m−1

∏
k=n

Tk

)

(xτn ,y) ,

using the properties of matrix multiplication.

To put the previous result into words, consider that the transition
matrix Tn of a Markov chain describes the probabilities that the sys-
tem will move from any state at time τn, to any state at time τn+1. In
other words, they contain the one-step transition probabilities. Equa-
tion (3.10)x, then, tells us that if we are interested in the probabilities
of moving between states in multiple steps, it suffices to look at prod-
ucts of these transition matrices. Equation (3.10)x is also known as the
Chapman-Kolmogorov equation in the Markov chain literature. This re-
sult has a specialisation for homogeneous Markov chains that provides
an even simpler expression.

Corollary 3.16. Let D be a discrete time domain with canonical time index
τ , and let P ∈ PD,HM be a discrete-time homogeneous Markov chain with
corresponding transition matrix T . Then for any u = τ0:n, n ∈ Z≥0, any
xu ∈Xu, any m ∈ Z≥0 such that m > n, and any y ∈X , it holds that

P(Xτm = y |Xu = xu) = T m−n(xτn ,y) ,

where the term T m−n denotes the (m−n)-th matrix power of T .

Proof. Recall that for a homogeneous Markov chain, its corresponding
family of transition matrices (Tn) satisfies Tn = T for all n ∈ Z≥0. Now
apply Proposition 3.15x.

The above results can further be generalised to yield expressions
for conditional expectations with respect to Markov chains, in terms of
products of their transition matrices. This elementary but fundamental
result will be crucial further on.

Proposition 3.17. Let D be a discrete time domain with canonical time
index τ , and let P ∈ PD,M be a discrete-time Markov chain with correspond-
ing family of transition matrices (Tn). Then for any u = τ0:n, n ∈ Z≥0, any
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xu ∈Xu, any m ∈ Z≥0 such that m > n, and any f ∈L (X ), it holds that

EP[ f (Xτm) |Xu = xu] =

(

m−1

∏
k=n

Tk

)

f (xτn) . (3.11)

Proof. It holds that τm ∈ D = τ0:n∪D>τ0:n
and therefore, it follows from

Proposition 2.2373—with v = {τm}—that

EP[ f (Xτm) |Xu = xu] = ∑
y∈X

f (y)P(Xτm = y |Xu = xu) .

Applying Proposition 3.1597, we obtain

EP[ f (Xτm) |Xu = xu] = ∑
y∈X

f (y)P(Xτm = y |Xu = xu)

= ∑
y∈X

f (y)

(

m−1

∏
k=n

Tk

)

(xτn ,y) =

(

m−1

∏
k=n

Tk

)

f (xτn) ,

using the properties of matrix-vector products for the last equality.

A special case of the previous result (with m = n+1) states that

EP[ f (Xτn+1
) |Xτ0:n

= xτ0:n
] = Tn f (xτn) . (3.12)

We see that the right-hand side does not depend on the full history xτ0:n
,

but only on the state xτn at time τn. This suggests that we can formulate
a “Markov property” also in terms of conditional expectations. The
following result provides the required setup.

Proposition 3.18. Let D be a discrete time domain with canonical time in-
dex τ , and let P ∈ PD,M be a discrete-time Markov chain with corresponding
family of transition matrices (Tn). Then for any n∈Z≥0, any xτn ∈Xτn , and
any f ∈L (X ), it holds that

EP[ f (Xτn+1
) |Xτn = xτn ] = Tn f (xτn) .

Proof. Let E be any coherent conditional prevision corresponding
to P that is defined on D ⊆ B × E (ΩD)⊃ /0 with D

C SP
D
⊆D and

( f (Xτn+1
),(Xτn = xτn)D) ∈D . Let E∗ be any coherent extension of E toB×

E (ΩD)⊃ /0, which exists by Theorem 2.652. Let C := E (ΩD)×E (ΩD)⊃ /0;
then DC ⊆ B× E (ΩD)⊃ /0. Let Ẽ∗ be the restriction of E∗ to DC ; be-
cause E∗ is a coherent conditional prevision it follows from Defini-
tion 2.352 that Ẽ∗ is a coherent conditional prevision on DC . Let P∗

be the real-valued map on C that is defined by P∗(A |C) := Ẽ∗[IA |C] for
all (A,C)D ∈ C . Then because Ẽ∗ is a coherent conditional prevision, it
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follows from Proposition 2.753 that P∗ is a coherent conditional prob-
ability. Moreover, because E corresponds to P, because E∗ extends E,
and because Ẽ∗ is the restriction of E∗ to DC , it follows that for all
(A,C)D ∈ C SP

D ⊆ C it holds that

P(A |C) = E[IA |C] = E∗[IA |C] = Ẽ∗[IA |C] = P∗(A |C) , (3.13)

which implies that P∗ extends P.
Using the same line of reasoning as used in the proof of Propo-

sition 2.2373, we represent the τn+1-measurable function f (Xτn+1
) as

∑y∈X f (y)I(Xτn+1
=y)D . It follows that

E[ f (Xτn+1
) |Xτn = xτn ] = E∗[ f (Xτn+1

) |Xτn = xτn ]

= E∗
[

∑
y∈X

f (y)I(Xτn+1
=y)D

∣

∣

∣
Xτn = xτn

]

= ∑
y∈X

f (y)E∗
[

I(Xτn+1
=y)D

∣

∣Xτn = xτn

]

= ∑
y∈X

f (y)P∗(Xτn+1
= y |Xτn = xτn) ,

where for the first equality we used that E∗ extends E and that
(

f (Xτn+1
),(Xτn = xτn)D

)

∈ D ; for the third equality we used the linear-
ity of E∗, i.e. Properties E252 and E352; and for the last equality we
used Equation (3.13). Because P∗ extends P and because (Xτn+1

= y,Xτn =
xτn)D ∈ C for all y ∈X , it follows from Proposition 3.789 that

E[ f (Xτn+1
) |Xτn = xτn ] = ∑

y∈X
f (y)P∗(Xτn+1

= y |Xτn = xτn)

= ∑
y∈X

f (y)P(Xτn+1
= y |Xτn = xτn)

= ∑
y∈X

f (y)Tn(xτn ,y) = Tn f (xτn) ,

where for the third equality we used Definition 3.794.
Because the coherent conditional prevision E corresponding

to P and its domain D ⊆ B × E (ΩD)⊃ /0 with D
C SP
D
⊆ D and

( f (Xτn+1
),(Xτn = xτn)D) ∈D are arbitrary, it follows from Defini-

tion 2.554 that EP[ f (Xτn+1
) |Xτn = xτn ] = Tn f (xτn).

By combining Equation (3.12)x and Proposition 3.18x, we obtain
the equality

EP[ f (Xτn+1
) |Xτ0:n

= xτ0:n
] = EP[ f (Xτn+1

) |Xτn = xτn ] , (3.14)
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which is the stated “Markov property” formulated in terms of condi-
tional expectations (c.f. Definition 3.389).

Let us conclude this section with a final definition, that captures the
transition matrices corresponding to general discrete-time stochastic
processes. Because such processes do not necessarily satisfy theMarkov
property, we need to index this family also in terms of the process its
historical behaviour. This does not really lead to any nice properties
like the ones discussed above, but we need this definition to streamline
our notation for future results.

Definition 3.8. Let D be a discrete time domain with canonical time index
τ , and let P ∈ PD be a discrete-time stochastic process. Then the family
of history-dependent transition matrices corresponding to P is a multi-
index family

(

Tn,xu

)

of matrices Tn,xu with u = τ0:(n−1) for all n ∈ Z≥0, that
are defined, for all n ∈ Z≥0 and xu ∈Xu, and all x,y ∈X , as

Tn,xu(x,y) := P
(

Xτn+1
= y
∣

∣Xτn = x,Xu = xu

)

.

As before, it should be clear that each history-dependent transition
matrix Tn,xu is, indeed, a transition matrix. Moreover, since any Markov
chain P ∈ PD,M is a stochastic process, it has both a corresponding fam-
ily of transition matrices (Tn), and a family of history-dependent tran-
sition matrices (Tn,xu). It follows from Definition 3.389 that Tn = Tn,xu

for all n ∈ Z≥0 and all xu ∈Xu, with u = τ0:(n−1). If this Markov chain
is moreover homogeneous, then its corresponding transition matrix T

will satisfy T = Tn = Tn,xu for all n∈Z≥0 and all xu ∈Xu, with u= τ0:(n−1).

3.3 Discrete-Time Imprecise-Markov Chains

Having formally introduced the concept of Markov chains using our
current formalism for stochastic processes, we can now finally start
with the generalisation of these models to imprecise-Markov chains,
which are actually the objects that we aim to study in this work.
We have already briefly explained in Chapter 129 that imprecise-
probabilistic models can be viewed as, essentially, being sets of tradi-
tional (“precise”) probabilistic models. So let us now consider how to
apply these ideas when the precise models that we are working with are
Markov chains, or more generally stochastic processes. We start in Sec-
tion 3.3.1y by defining imprecise-Markov chains as sets of stochastic
processes. We show how to parameterise these models using (families
of) sets of transition matrices, and study some of their properties. In
Section 3.3.2105 we introduce and study the lower- and upper expec-
tations for these discrete-time imprecise-Markov chains, which, as we
discussed in Chapter 129, are the inferences in which we are interested
when working with imprecise probabilities.
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3.3.1 Sets of Processes

The aim of this section is to introduce the definition and parameterisa-
tion of imprecise-Markov chains, and to study some of the properties of
the resulting sets of models. We have seen in Section 3.289 that Markov
chains can, essentially, be parameterised using (families of) transition
matrices. Analogously, imprecise-Markov chains will be parameterised
using sets of transition matrices, or, more generally, families of sets of
transition matrices.

To this end, we introduce the notion of consistency of a process, with
such a family of sets, as follows.

Definition 3.9. Let D be a discrete time domain with canonical time in-
dex τ , and consider any family (Tn)n∈Z≥0

of sets Tn of transition matri-

ces. We say that a discrete-time stochastic process P ∈ PD is consistent
with (Tn)n∈Z≥0

if its corresponding family of history-dependent transition
matrices (Tn,xu) satisfies Tn,xu ∈ Tn for all n ∈ Z≥0 and all xu ∈ Xu, with
u = τ0:(n−1). If P is consistent with (Tn)n∈Z≥0

, we write P∼ (Tn)n∈Z≥0
.

Before we can proceed, let us recall from Section 3.289 that (fami-
lies of) transition matrices only identify discrete-time Markov chains P

up to the specification of their initial distribution P(Xτ0
). We need a

similar construction for imprecise-Markov chains. To this end, for any
set M of probability mass functions on X , and for any discrete-time
stochastic process P ∈ PD, we will say that P is consistent with M , and
write P∼M , if the map p : X → R : x 7→ P(Xτ0

= x) satisfies p ∈M ,
where τ is the canonical time index of D.

We now have all the elements that we need to formally define
discrete-time imprecise-Markov chains. Perhaps unsurprisingly, these
are sets of discrete-time stochastic processes that are consistent with
some given family of sets of transition matrices, and with some given
set of probability mass functions. Let us first define the following.

Definition 3.10 (Set of Consistent Processes). Let D be a discrete time
domain, and consider any family (Tn)n∈Z≥0

of sets Tn of transition ma-
trices, and any set M of probability mass functions on X . Then for any
set P ⊆ PD we define the subset of P that is consistent with both (Tn)n∈Z≥0

and M , which we denote as P(Tn),M , as

P(Tn),M :=
{

P ∈P
∣

∣P∼ (Tn)n∈Z≥0
and P∼M

}

.

Note that for notational brevity, we have removed the explicit mention of the
index set of the family (Tn)n∈Z≥0

in the first subscript ofP(Tn),M . Moreover,
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if M is the set of all probability mass functions on X , then we will simply
write P(Tn) for the subset of P that is consistent with (Tn)n∈Z≥0

.2

The reason that we use this level of generality for P in Defini-
tion 3.10 is that the definition of imprecise-Markov chains in the lit-
erature is a bit ambiguous; there are different sets of discrete-time
stochastic processes that have been studied in the literature, and that
one might call (and have been called) imprecise-Markov chains.

For starters, we might consider the set PD,M
(Tn),M

, which is the set of
all Markov chains (with time domain D) that are consistent with both
(Tn)n∈Z≥0

and M . This set contains Markov chains that are, in general,
non-homogeneous. Essentially, it captures those Markov chains whose
(time-dependent) transitionmatrix Tn is contained inTn, for all n∈Z≥0.
Albeit under slightly different formalisations of the underlying pro-
cesses, this model has been studied in, amongst others, [48,101]. It was
first introduced by Hartfiel, who called themMarkov set chains [44–46].
Readers who are familiar with the general theory of graphical models
for imprecise probabilities (e.g. [13, 16]) might find it helpful to note
that these are sometimes called imprecise-Markov chains under com-
plete independence [14],3 as is explained in, for example, [69].

A different model that one could consider is the set PD,HM

(Tn),M
, i.e. the

set of all homogeneousMarkov chains consistent with M and (Tn)n∈Z≥0
.

Because, as we have seen in Section 3.289, a homogeneous Markov
chain P is identified by a single transition matrix T , we can only have

P ∈ PD,HM

(Tn),M
if T ∈Tn for all n ∈ Z≥0, or in other words, if T ∈ ∩n∈Z≥0

Tn.

So, in this setting we can parameterise the transition matrices using a
single set T , and it is more convenient to focus on the model

PD,HM
T ,M :=

{

P ∈ PD,HM : TP ∈T ,P∼M

}

,

where, for all P ∈ PD,HM, TP is the transition matrix corresponding to P.
This model has been studied in, amongst others, [10, 57]. However,
as noted in e.g. [69], this model is generally very difficult to perform
inferences with. Nevertheless, for some classes of problems the model
is tractable. This is in particular the case with inferences for which
these different notions of imprecise-Markov chains coincide in terms
of their lower expectations; see e.g. the results in [64,69].

2Consistency with M is trivial if M contains all probability mass functions on X .
3Reference [48] refers to this condition as strong independence. As explained in [14],

strong independence requires the set of distributions to be convex. While convexity of

the set PD,M
(Tn),M

at a global level seems non-obvious, Reference [48] spends some effort

in showing that its induced set of distributions for each separate Xτn is convex, under
certain conditions on (Tn)n∈Z≥0

and M .
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Finally, yet another definition of an imprecise-Markov chain—and
the one that we will mainly use in the remainder of this work—is the
set PD

(Tn),M
of all stochastic processes consistent with (Tn)n∈Z≥0

and M .
This type of imprecise-Markov chain has been studied in, amongst oth-
ers, [20–22, 27, 48, 69]. Again from an imprecise graphical model per-
spective, it can be viewed as an imprecise-Markov chain under epis-
temic irrelevance: a conditional independence property for imprecise
probabilities that is weaker than the notion of complete independence
that we mentioned above [14]. We refer to [48] for further informa-
tion on this perspective. From here on out, unless we explicitly men-
tion otherwise, we will use the following definition when we refer to a
discrete-time imprecise-Markov chain:

Definition 3.11 (Discrete-Time Imprecise-Markov Chain). Let D be a
discrete time domain, consider any family (Tn)n∈Z≥0

of non-empty sets of
transition matrices, and let M be a non-empty set of probability mass func-
tions on X . Then we define the corresponding discrete-time imprecise-
Markov chain (DTIMC) PD

(Tn),M
to be the set of all discrete-time stochastic

processes with time domain D, that are consistent with both (Tn)n∈Z≥0
and

M , following the notation from Definition 3.10102.

Wewould like to provide some intuition at this point to explain why
we call this model an imprecise-“Markov” chain, while we explicitly do
not impose Markovianity on its constituent processes. This is because,
as we will show in, e.g., Proposition 3.25110 further on, this model nev-
ertheless satisfies an imprecise-Markov property, in the sense that infer-
ences derived from it are history-independent in a manner analogous to
the Markov property. Although we must postpone explaining the tech-
nical details until we get to these results further on, one intuitive way
to see this is that the sets Tn, n∈Z>0, that parameterise the DTIMC, are
in fact history-independent.

Moving on, in Definition 3.11 we restrict attention to sets of tran-
sition matrices, and sets of probability mass functions, that are non-
empty; this simply serves to prevent trivialities by ensuring that
PD
(Tn),M

is non-empty. Let us start with an auxiliary result before for-

malising this statement.

Lemma 3.19. Let D be a discrete time domain with canonical time index
τ , and let PD

(Tn),M
be a discrete-time imprecise-Markov chain. Then for all

p∈M , there is some P∈ PD
(Tn),M

such that P(Xτ0
= x) = p(x) for all x∈X .

Proof. Fix any p ∈M and, for all k ∈ Z≥0, any Tk ∈ Tk; this is possible
because M and Tk, k ∈ Z≥0, are non-empty by Definition 3.11.

By Proposition 3.1495, there is a discrete-time Markov
chain P ∈ PD,M such that P(Xτ0

= x) = p(x) for all x ∈ X , and that
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has (Tk)k∈Z≥0
as its corresponding family of transition matrices. Be-

cause p ∈M and Tk ∈Tk for all k ∈ Z≥0, and since PD,M ⊆ PD, it follows
from Definition 3.11 that P ∈ PD

(Tn),M
.

Hence that PD
(Tn),M

is non-empty now follows immediately:

Lemma 3.20. Let D be a discrete time domain and let PD
(Tn),M

be a discrete-
time imprecise-Markov chain. Then PD

(Tn),M
6= /0.

Proof. This is an immediate consequence of Lemma 3.19 together with
the fact that M is non-empty by Definition 3.11.

3.3.2 Lower and Upper Expectations for DTIMCs

We have already mentioned in Chapter 129 that computing infer-
ences for imprecise-probabilistic models essentially involves comput-
ing the lower (or upper) envelopes over the inferences of the precise-
probabilistic models that constitute these sets: these are the corre-
sponding lower- and upper expectations. Let us formalise this here for
discrete-time imprecise-Markov chains.

Definition 3.12. Let D be a discrete time domain, and let PD
(Tn),M

be a
discrete-time imprecise-Markov chain. Then we define its corresponding
(conditional) lower- and upper expectations, respectively, as

ED
(Tn),M

[· | ·] := inf
P∈PD

(Tn),M

EP[· | ·] and E
D
(Tn),M [· | ·] := sup

P∈PD
(Tn),M

EP[· | ·] ,

whose domain(s) we take to be the intersection of the domains DP of the
conditional expectations EP corresponding to the elements P ∈ PD

(Tn),M
.

Note that the domain of the lower (and upper) expectation is sim-
ply such, that the precise expectations EP are well-defined for all P ∈
PD
(Tn),M

. Following Definition 2.554, the domain of EP depends strongly

on P, despite all elements of PD
(Tn),M

having the same domain C SP
D . This

makes the domain of the lower and upper expectation somewhat diffi-
cult to write explicitly. Nevertheless, it follows from Proposition 2.2373
that all u-measurable functions, for u ∈ U D

⊃ /0, are in this domain, pro-
vided that care is taken that the conditioning events are situations. The
following result makes this explicit.

Lemma 3.21. Let D be a discrete time domain with canonical time index τ ,
and let PD

(Tk),M
be a discrete-time imprecise-Markov chain. Then for all

v ∈ U D
⊃ /0, all f ∈ L (Xv), and all (Xu = xu)D ∈ SD, the lower and upper
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expectations ED
(Tk),M

[ f (Xv) |Xu = xu] and E
D
(Tk),M

[ f (Xv) |Xu = xu] are well-

defined. In particular, it holds that

ED
(Tk),M

[ f (Xv) |Xu = xu] = inf
P∈PD

(Tk),M

∑
xv∈Xv

f (xv)P(Xv = xv |Xu = xu) (3.15)

and

E
D
(Tk),M

[ f (Xv) |Xu = xu] = sup
P∈PD

(Tk),M

∑
xv∈Xv

f (xv)P(Xv = xv |Xu = xu) . (3.16)

Proof. Because (Xu = xu)D is a situation, it follows that either u= /0 or u=
τ0:n for some n∈Z≥0. Moreover, it holds that v⊂D= u∪D>u. Therefore,
it follows from Proposition 2.2373 that, for all P ∈ PD

(Tk),M
,

EP[ f (Xv) |Xu = xu] = ∑
xv∈Xv

f (xv)P(Xv = xv |Xu = xu) . (3.17)

Hence in particular EP[ f (Xv) |Xu = xu] is well-defined for all P ∈ PD
(Tk),M

,
whence ED

(Tk),M
[ f (Xv) |Xu = xu] and E

D
(Tk),M

[ f (Xv) |Xu = xu] are well-
defined by Definition 3.12x. Equations (3.15) and (3.16) now follow
immediately from Equation (3.17) and Definition 3.12x.

We recall from Chapter 129 the important conjugacy relation be-
tween lower- and upper expectations, which in our current setting can
be written as

E
D
(Tn),M [· | ·] =−ED

(Tn),M
[−· | ·] .

Because this relation means that we can always translate results about
lower expectations to results about upper expectations (and vice versa),
this implies that we can mostly content ourselves with discussing ei-
ther. Hence, in the sequel, we will mostly phrase results in terms of
lower expectations, but these results can always be translated to also
hold for upper expectations using the above conjugacy relation.

Moreover, we note that lower- and upper probabilities can always
be expressed using the lower- and upper expectations of indicators of
events; for any (A,C)D ∈ C SP

D it holds that

PD
(Tn),M

(A |C) := inf
P∈PD

(Tn),M

P(A |C) = ED
(Tn),M

[IA |C] ,

where we used Proposition 2.1256 for the equality. Upper probabili-
ties are derived analogously using upper expectations, and can there-
fore be obtained from lower expectations using the above-mentioned
conjugacy relation. Hence, because lower- and upper probabilities can
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always be derived using lower expectations,4 we will in the sequel ex-
press our results mostly in terms of the latter.

We next translate Proposition 2.2575 to the imprecise setting.

Lemma 3.22. Let D be a discrete time domain and let PD
(Tk),M

be a discrete-
time imprecise-Markov chain. Then for all (Xu = xu)D ∈SD, all v ∈U D

⊃ /0

such that u < v, and all f ∈L (Xu∪v), it holds that

ED
(Tk),M

[ f (Xu∪v) |Xu = xu] = ED
(Tk),M

[ f (xu,Xv) |Xu = xu] ,

with f (xu,Xv) as in Definition 2.1674.

Proof. It follows from Lemma 3.21105 that E
D
(Tk),M

[ f (Xu∪v) |Xu = xu] and
ED
(Tk),M

[ f (xu,Xv) |Xu = xu] are both well-defined. Because (Xu = xu)D ∈
SD, it follows from Definition 3.185 that either u = /0 or u = τ0:n for
some n ∈ Z≥0. Therefore, and because v 6= /0 and u < v, it follows from
Proposition 2.2575 that for all P ∈ PD

(Tk),M
it holds that

EP

[

f (Xu∪v)
∣

∣Xu = xu

]

= EP

[

f (xu,Xv)
∣

∣Xu = xu

]

.

Hence it follows from Definition 3.12105 that

ED
(Tk),M

[ f (Xu∪v) |Xu = xu] = inf
P∈PD

(Tk),M

EP

[

f (Xu∪v)
∣

∣Xu = xu

]

= inf
P∈PD

(Tk),M

EP

[

f (xu,Xv)
∣

∣Xu = xu

]

= ED
(Tk),M

[ f (xu,Xv) |Xu = xu] ,

which concludes the proof.

The following technical observation will be useful: it verifies that
the conditional lower expectation of any u-measurable function is real-
valued; and hence, in particular, that it is bounded.

Lemma 3.23. Let D be a discrete time domain and let PD
(Tk),M

be a discrete-
time imprecise-Markov chain. Then for all v ∈U D

⊃ /0, all f ∈L (Xv), and all
(Xu = xu)D ∈SD, it holds that E

D
(Tk),M

[ f (Xv) |Xu = xu] ∈ R. In particular,

min
yv∈Xv

f (yv)≤ ED
(Tk),M

[ f (Xv) |Xu = xu]≤ max
yv∈Xv

f (yv) .

4In contrast with “precise” probabilistic models, for which the expectation operators
are linear—see e.g. the statement and proof of Proposition 2.1256—the converse is in
general not true: one cannot always recover the lower- and upper expectation operators
from the specification of the lower- and upper probabilities [114, Section 2.7]. On the
other hand, there are known sufficient conditions under which this is possible (ibid.), but
we will not consider the technical details here.
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Proof. Because (Xu = xu)D ∈SD, it follows from Lemma 3.286 that

(Xv = xv,Xu = xu)D ∈ C
SP
D for all xv ∈Xv.

Hence, by Property CE178 we find that, for all P ∈ PD
(Tk),M

, it holds that

min
yv∈Xv

f (yv)≤ EP[ f (Xv) |Xu = xu]≤ max
yv∈Xv

f (yv) . (3.18)

Note that because f is v-measurable, it follows from Proposition 2.2172
that it is bounded, i.e. it obtains its extremal values in R, whence the
minimum and maximum operations in the inequalities above are well-
defined. Because Equation (3.18) holds for all P ∈ PD

(Tk),M
it follows

from Definition 3.12105 that

min
yv∈Xv

f (yv)≤ ED
(Tk),M

[ f (Xv) |Xu = xu] .

Moreover, by Lemma 3.20105, PD
(Tk),M

is non-empty. Hence there is
some P ∈ PD

(Tk),M
such that, using Definition 3.12105,

ED
(Tk),M

[ f (Xv) |Xu = xu]≤ EP[ f (Xv) |Xu = xu]≤ max
yv∈Xv

f (yv) ,

and hence ED
(Tk),M

[ f (Xv) |Xu = xu] ∈ R.

The next result provides us with an expression for the conditional
lower expectations of discrete-time Markov chains, in terms of the sets
of transition matrices that parameterise them.

Proposition 3.24. Let D be a discrete time domain with canonical time
index τ , and let PD

(Tk),M
be a discrete-time imprecise-Markov chain. Then

for all f ∈L (X ), all n ∈ Z≥0, and all xτ0:n
∈Xτ0:n

, it holds that

ED
(Tk),M

[ f (Xτn+1
) |Xτ0:n

= xτ0:n
] = inf

T∈Tn

T f (xτn) . (3.19)

Proof. We first note that, due to Lemma 3.21105, the lower expecta-
tion ED

(Tk),M
[ f (Xτn+1

) |Xτ0:n
= xτ0:n

] is well-defined. Now consider an ar-

bitrary family (Tk)k∈Z≥0
such that Tk ∈ Tk for all k ∈ Z≥0, and choose

any p ∈M . Due to Proposition 3.1495, there is then a unique Markov
chain P ∈ PD,M ⊆ PD that has (Tk)k∈Z≥0

as its corresponding family of
transition matrices, and such that P(Xτ0

= x) = p(x) for all x∈X . More-
over, it is immediately clear that P ∈ PD

(Tk),M
, since p ∈M and Tk ∈ Tk

for all k ∈ Z≥0. Due to Proposition 3.1798, it holds that

EP[ f (Xτn+1
) |Xτ0:n

= xτ0:n
] = Tn f (xτn) ,
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so it follows from Definition 3.12105 that

ED
(Tk),M

[ f (Xτn+1
) |Xτ0:n

= xτ0:n
]≤ EP[ f (Xτn+1

) |Xτ0:n
= xτ0:n

] = Tn f (xτn) .

Because Tn ∈Tn was arbitrary, it follows that also

ED
(Tk),M

[ f (Xτn+1
) |Xτ0:n

= xτ0:n
]≤ inf

T∈Tn

T f (xτn) .

To get the inequality in the other direction, fix any ε > 0. Then,
because ED

(Tk),M
[ f (Xτn+1

) |Xτ0:n
= xτ0:n

] is real-valued by Lemma 3.23107,

and because PD
(Tk),M

is non-empty due to Lemma 3.20105, and using

Definition 3.12105, there is some P ∈ PD
(Tk),M

with corresponding con-
ditional expectation EP, such that

EP[ f (Xτn+1
) |Xτ0:n

= xτ0:n
]< ED

(Tk),M
[ f (Xτn+1

) |Xτ0:n
= xτ0:n

]+ ε . (3.20)

Because P ∈ PD
(Tk),M

, its corresponding history-dependent transition
matrix Tn,xu , with u = τ0:(n−1), satisfies Tn,xu ∈ Tn due to Defini-
tions 3.11104 and 3.9102 and, by Definition 3.8101, it holds for all y ∈X

that
Tn,xu(xτn ,y) = P(Xτn+1

= y |Xτ0:n
= xτ0:n

) .

Therefore, and using Proposition 2.2373, it holds that

EP[ f (Xτn+1
) |Xτ0:n

= xτ0:n
] = ∑

y∈X
f (y)P(Xτn+1

= y |Xτ0:n
= xτ0:n

)

= ∑
y∈X

f (y)Tn,xu(xτn ,y) = Tn,xu f (xτn) ,

using the properties of matrix-vector multiplication. Because Tn,xu ∈Tn,
it therefore follows that

inf
T∈Tn

T f (xτn)≤ Tn,xu f (xτn) = EP[ f (Xτn+1
) |Xτ0:n

= xτ0:n
] .

Hence it follows from Equation (3.20) that

inf
T∈Tn

T f (xτn)≤ EP[ f (Xτn+1
) |Xτ0:n

= xτ0:n
]

< ED
(Tk),M

[ f (Xτn+1
) |Xτ0:n

= xτ0:n
]+ ε .

Because ε > 0 is arbitrary, this implies that also

inf
T∈Tn

T f (xτn)≤ ED
(Tk),M

[ f (Xτn+1
) |Xτ0:n

= xτ0:n
] ,

which concludes the proof.
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Note that the right-hand side of Equation (3.19)108 only depends
on the state xτn at time τn, and not on the entire history xτ0:n

as the
left-hand side of that equation does. In other words, this implies that
this model satisfies an imprecise-Markov property, which motivates the
terminology that this model is an imprecise-Markov chain. The next
result makes this even more notationally explicit, in analogy with the
(precise) Markov property formulated in terms of (precise) conditional
expectations, as stated in Equation (3.14)100. Because the proof is fairly
long, we have deferred it to Appendix 3.B130.

Proposition 3.25. Let D be a discrete time domain with canonical time
index τ , and let PD

(Tk),M
be a discrete-time imprecise-Markov chain. Then

for all f ∈L (X ), all n ∈ Z≥0, and all xτ0:n
∈Xτ0:n

, it holds that

ED
(Tk),M

[ f (Xτn+1
) |Xτ0:n

= xτ0:n
] = ED

(Tk),M
[ f (Xτn+1

) |Xτn = xτn ] ,

whenever the lower expectation ED
(Tk),M

[ f (Xτn+1
) |Xτn = xτn ] is well-defined.

Let us now introduce the convention that for any n ∈ Z≥0, any
f ∈ L (Xτ0:(n+1)

), and any xτ0:n
∈ Xτ0:n

, we can consider the function

f (xτ0:n
, ·) ∈L (Xτn+1

), which is a projection of f onto L (Xτn+1
), defined

such that f (xτ0:n
, ·)(xτn+1

) := f (xτ0:(n+1)
) for all xτn+1

∈Xτn+1
. Comparing

this with Definition 2.1674, this essentially identifies the element of
L (Xτn+1

) corresponding to the τn+1-measurable function f (xτ0:n
,Xτn+1

).
With this notation, we can generalise Proposition 3.24108 as follows.

Corollary 3.26. Let D be a discrete time domain with canonical time index
τ , and let PD

(Tk),M
be a discrete-time imprecise-Markov chain. Then for all

n ∈ Z≥0, all f ∈L (Xτ0:(n+1)
), and all xτ0:n

∈Xτ0:n
, it holds that

ED
(Tk),M

[ f (Xτ0:(n+1)
) |Xτ0:n

= xτ0:n
] = inf

T∈Tn

[

T f (xτ0:n
, ·)
]

(xτn) .

Proof. By combining Lemma 3.22107 and Proposition 3.24108 we find
that

ED
(Tk),M

[ f (Xτ0:(n+1)
) |Xτ0:n

= xτ0:n
] = ED

(Tk),M
[ f (xτ0:n

,Xτn+1
) |Xτ0:n

= xτ0:n
]

= inf
T∈Tn

[

T f (xτ0:n
, ·)
]

(xτn) ,

using the notational convention for f (xτ0:n
, ·) as established above.

Let us now introduce some important terminology that we will need
in the sequel; the definition below characterises a structural property
of sets of (transition) matrices that is instrumental in obtaining certain
decomposition properties (e.g., Corollary 3.28112) of lower expectations
for imprecise-Markov chains that are parameterised by these sets.
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Definition 3.13. Let T be the set of all transition matrices, and consider
any set T ⊆ T. We then say that T has separately specified rows if it
holds that

T =
{

T ∈ T
∣

∣∀x ∈X : T (x, ·) ∈Tx

}

,

where, for all x ∈ X , Tx :=
{

T (x, ·) |T ∈ T
}

is the set of x-rows of the
elements of T .

This property is often encountered in the literature on imprecise-
Markov chains; see e.g. [48, 101]. It requires, effectively, that one can
recombine the elements of T by their rows, and that T is closed under
this recombination. Formally, if T has separately specified rows then
if for all x ∈X we select any matrix Tx ∈T , and if we define S ∈ T such
that S(x, ·) := Tx(x, ·) for all x ∈ X , then it holds that also S ∈ T . As
we will see below, this property is crucial in obtaining some important
properties of imprecise-Markov chains.5

To state these results, we note that, as in the discussion preced-
ing Proposition 2.2677, for a fixed function f in its domain, the con-
ditional lower expectation ED

(Tk),M
[ f |Xτ0:n

= xτ0:n
] can be viewed as a

function of xτ0:n
∈Xτ0:n

. In other words, we can associate with this con-
ditional lower expectation a τ0:n-measurable function, which we denote
by ED

(Tk),M
[ f |Xτ0:n

], and whose value in ω ∈ΩD is given by

ED
(Tk),M

[ f |Xτ0:n
](ω) := ED

(Tk),M
[ f |Xτ0:n

= ω|τ0:n
] .

The following important result serves as the crucial step to stating a
version of Proposition 2.2677 in the imprecise setting; this will provide
a law of iterated lower expectations. This property of imprecise-Markov
chains is well-known in the literature, see e.g. [20–22,48,69,107]. Our
proof, which can be found in Appendix 3.B130, uses the terminology
and notation from this current work, but is based on—and conceptu-
ally essentially the same as—the proof of [69, Theorem 21].

Lemma 3.27. Let D be a discrete time domain with canonical time index τ ,
and let PD

(Tk),M
be a discrete-time imprecise-Markov chain such that Tk has

separately specified rows for all k ∈ Z≥0. Then for all n,m ∈ Z≥0 such that

5Incidentally, as noted in [101], the concept of separately specified rows has a counter-
part in the theory of imprecise graphical models—to which, as noted in Section 3.3.1102,
imprecise-Markov chains are related—in which sets of probabilities are said to be sepa-
rately specified [15].
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n≥ m, all f ∈L (Xτ0:n
), and all xτ0:(m−1)

∈Xτ0:(m−1)
, it holds that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

= ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

]
∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

.

(3.21)

The next statement can be understood as more fully describing this
law of iterated lower expectations:

Corollary 3.28. Let D be a discrete time domain with canonical time index
τ , and let PD

(Tk),M
be a discrete-time imprecise-Markov chain such that Tk

has separately specified rows for all k ∈ Z≥0. Then for all n, ℓ,m ∈ Z≥0 such
that n > ℓ≥ m, all f ∈L (Xτ0:n

), and all xτ0:(m−1)
∈Xτ0:(m−1)

it holds that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

= ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:ℓ

]
∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

.

Proof. If ℓ= n−1 then it holds that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:ℓ

] = ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

] ,

and the result is then an immediate consequence of Lemma 3.27x.
So let us assume that ℓ < n− 1, and fix any yτ0:ℓ

∈Xτ0:ℓ
. Applying

Lemma 3.27x we find that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:ℓ

= yτ0:ℓ
]

= ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

]
∣

∣

∣
Xτ0:ℓ

= yτ0:ℓ

]

.

(3.22)

Now if ℓ= n−2 it holds that n−1 = ℓ+1, and since yτ0:ℓ
∈Xτ0:ℓ

is arbi-
trary, this implies that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:ℓ

] = ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(ℓ+1)

]
∣

∣

∣
Xτ0:ℓ

]

.

(3.23)

Conversely, if ℓ < n − 2, we use the fact that in the right-hand
side of Equation (3.22), the inner conditional lower expectation
ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

] is a τ0:(n−1)-measurable function (which is real-

valued due to Lemma 3.23107), and because ℓ < n−2, we can again ap-
ply Lemma 3.27x to find

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:ℓ

= yτ0:ℓ
]

= ED
(Tk),M

[

ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

]
∣

∣

∣
Xτ0:(n−2)

]∣

∣

∣
Xτ0:ℓ

= yτ0:ℓ

]

.
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By continuing in this way, after a total of n− ℓ− 1 applications of
Lemma 3.27111 we find that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:ℓ

= yτ0:ℓ
]

= ED
(Tk),M

[

ED
(Tk),M

[

· · ·ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

] · · ·
∣

∣

∣
Xτ0:(ℓ+1)

]∣

∣

∣
Xτ0:ℓ

= yτ0:ℓ

]

,

and because this is true for all yτ0:ℓ
∈Xτ0:ℓ

, it follows that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:ℓ

]

= ED
(Tk),M

[

ED
(Tk),M

[

· · ·ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

] · · ·
∣

∣

∣
Xτ0:(ℓ+1)

]∣

∣

∣
Xτ0:ℓ

]

,

(3.24)

which is essentially the more general version of Equation (3.23).
Now for notational brevity, let u := τ0:(m−1). We proceed sim-

ilarly by repeatedly expanding the conditional lower expectation
ED
(Tk),M

[ f (Xτ0:n
) |Xu = xu] using Lemma 3.27111, until we obtain

ED
(Tk),M

[ f (Xτ0:n
) |Xu = xu]

= ED
(Tk),M

[

ED
(Tk),M

[

· · ·ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

] · · ·
∣

∣

∣
Xτ0:ℓ

]∣

∣

∣
Xu = xu

]

.

(3.25)

Substituting Equation (3.24) (or Equation (3.23) in case ℓ = n− 2) into
Equation (3.25) yields

ED
(Tk),M

[ f (Xτ0:n
) |Xu = xu] = ED

(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:ℓ

]
∣

∣

∣
Xu = xu

]

,

which, since u = τ0:(m−1), concludes the proof.

One particular reason that Corollary 3.28 is so useful, is that it al-
lows us to, essentially, separately consider time points on which a func-
tion depends, and recursively deal with the resulting lower expecta-
tions. We will next present some results that illustrate the use of this
machinery to separately deal with the initial distribution—that is, the
state at time τ0—which allows us to express unconditional lower ex-
pectations in a more convenient manner. We start by establishing the
following crucial property:

Lemma 3.29. Let M be a non-empty set of probability mass functions on
X . Then for all f ∈L (X ) it holds that

min
x∈X

f (x)≤ inf
p∈M ∑

x∈X
p(x) f (x)≤max

x∈X
f (x) .

113



Discrete-Time (Imprecise-)Markov Chains

Proof. For any p ∈M it holds that

∑
x∈X

p(x) f (x)≥ ∑
x∈X

p(x) min
y∈X

f (y) = min
y∈X

f (y) ,

where we used that p is a probability mass function on X . Because this
is true for all p∈M it follows that minx∈X f (x)≤ infp∈M ∑x∈X p(x) f (x).
Similarly, because M is non-empty there is some q ∈ M such that
infp∈M ∑x∈X p(x) f (x)≤ ∑x∈X q(x) f (x), which implies that

inf
p∈M ∑

x∈X
p(x) f (x)≤ ∑

x∈X
q(x) f (x)≤ ∑

x∈X
q(x)max

y∈X
f (y) = max

y∈X
f (y) ,

where we used that q is a probability mass function on X .

This allows us to provide the following definition, which in effect
represents the lower expectation for the initial distribution only in
terms of M , without further reference to the set PD

(Tk),M
. We note that

Lemma 3.29x ensures that this map is indeed real-valued.

Definition 3.14. For any non-empty set M of probability mass functions
on X , we define the map EM : L (X )→ R : f 7→ EM [ f ] where, for all
f ∈L (X ), we let

EM [ f ] := inf
p∈M ∑

x∈X
p(x) f (x) .

Moreover, for notational convenience, for any discrete time domain D with
canonical time index τ , and any τ0-measurable function f (Xτ0

) : ΩD → R,
we let EM [ f (Xτ0

)] := EM [ f ], where f is the element of L (X ) correspond-
ing to f (Xτ0

), as described in Section 2.471.

The following result shows that the map EM properly captures the
lower expectation of functions that depend only on the state at time τ0,
for the discrete-time imprecise-Markov chain PD

(Tk),M
.

Proposition 3.30. Let D be a discrete time domain with canonical time
index τ , and let PD

(Tk),M
be a discrete-time imprecise-Markov chain. Then

for all f ∈L (X ) it holds that

ED
(Tk),M

[ f (Xτ0
)] = EM [ f (Xτ0

)] .

Proof. It follows from Lemma 3.21105 (with u = /0 and v = {τ0}) that

ED
(Tk),M

[ f (Xτ0
)] = inf

P∈PD
(Tk),M

∑
x∈X

f (x)P(Xτ0
= x) .

Now, for any P ∈ PD
(Tk),M

it holds that P∼M due to Definition 3.11104
which, by the definition in Section 3.3.1102, implies that there is some
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p ∈M such that p(x) = P(Xτ0
= x) for all x ∈X . Conversely, it follows

from Lemma 3.19104 that for all p ∈M , there is some P ∈ PD
(Tk),M

such

that P(Xτ0
= x) = p(x) for all x ∈X . This implies that

inf
P∈PD

(Tk),M

∑
x∈X

f (x)P(Xτ0
= x) = inf

p∈M ∑
x∈X

f (x)p(x) .

Hence it follows from Definition 3.14 that

ED
(Tk),M

[ f (Xτ0
)] = inf

P∈PD
(Tk),M

∑
x∈X

f (x)P(Xτ0
= x)

= inf
p∈M ∑

x∈X
f (x)p(x) = EM [ f ] .

Finally, again due to Definition 3.14, it holds that EM [ f (Xτ0
)] = EM [ f ]

because f (Xτ0
) is the τ0-measurable function corresponding to f .

The next result now uses Corollary 3.28112 to isolate the lower ex-
pectation for the initial model, when considering unconditional lower
expectations of functions that depend on multiple time points.

Corollary 3.31. Let D be a discrete time domain with canonical time in-
dex τ , and let PD

(Tk),M
be a discrete-time imprecise-Markov chain such that

Tk has separately specified rows for all k ∈ Z≥0. Then for all n ∈ Z>0 and all
f ∈L (Xτ0:n

), it holds that

ED
(Tk),M

[ f (Xτ0:n
)] = EM

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0

]
]

.

Proof. Because, for all k ∈ Z≥0, Tk has separately specified rows, and
because n > 0, it follows from Corollary 3.28112 (with ℓ= m = 0) that

ED
(Tk),M

[ f (Xτ0:n
)] = ED

(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0

]
]

.

The inner conditional lower expectation on the right-hand side of this
equality is clearly a τ0-measurable function (which is real-valued due
to Lemma 3.23107), whence it follows from Proposition 3.30 that

ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0

]
]

= EM

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0

]
]

,

which concludes the proof.

Effectively, Corollary 3.31 tells us that when working with uncondi-
tional lower expectations ED

(Tk),M
[ f (Xτ0:n

)], we can separately deal with

the lower expectation at time τ0—through EM—and with the condi-
tional lower expectation ED

(Tk),M
[ f (Xτ0:n

) |Xτ0
]. In the remainder of this

chapter, we will introduce some machinery that allows us to further
simplify the expressions for such conditional lower expectations.
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3.4 Lower Transition Operators

We discussed in Section 3.289 that transition matrices play an impor-
tant role in the theory of Markov chains, and that they can be used
both for parameterisation and as a computational tool. We also dis-
cussed in Section 3.3101 how to parameterise imprecise-Markov chains
using sets of transition matrices. Some crucial results of that section—
Propositions 3.24108 and 3.25110 in particular—showed that imprecise-
Markov chains satisfy an imprecise-Markov property, in the sense that
their conditional lower expectations are history-independent. Proposi-
tion 3.24108 derived an expression for these history-independent lower
expectations of a function f as an infimum infT∈T T f (x), which is also
called the lower envelope of the set T of transition matrices.

As we will discuss in this section, such lower envelopes are a par-
ticular type of lower transition operators; essentially, these are (non-
linear) generalisations of the transition matrices that we discussed be-
fore [22, 48]. We will here study such objects on a relatively abstract
level. Although we prove some properties explicitly, we do not aim to
present the results in this section as novel. In Section 3.5121 we then
connect back to discrete-time imprecise-Markov chains, where we will
use these lower transition operators to provide expressions for lower
expectations. Let us now start with the general definition. We fol-
low [23, Definition 8]6 and [17, Definition 1] in providing the follow-
ing, relatively abstract, definition.

Definition 3.15 ([23, Definition 8]). A map T from L (X ) to L (X ) is
called a lower transition operator if, for all f ,g∈L (X ), all λ ∈R≥0, and
all x ∈X :

LT1: T f (x)≥miny∈X f (y); (lower bounds)

LT2: T ( f +g)(x)≥ T f (x)+T g(x); (super-additivity)

LT3: T (λ f )(x) = λT f (x). (non-negative homogeneity)

We will use T to denote the set of all lower transition operators.

Such operators furthermore satisfy the following properties.

6The authors of [23] consider more generally what they call coherence preserving maps,
but they note in [23, Section 7.2] that the lower transition operators in e.g. [22] are a
special case of these. As far as we know this is the earliest reference that considers such
maps in this context, whence we provide the reference here for historical context, even if
the authors did not refer to them explicitly as (only) being lower transition operators.
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Proposition 3.32 ([17]). For any lower transition operator T ,
any f ,g ∈L (X ), any µ ∈ R and any two non-negatively homogeneous
operators A,B from L (X ) to L (X ):

LT4: ‖T‖ ≤ 1; (at most unit norm)

LT5: f ≤ g ⇒ T f ≤ T g; (monotonicity)

LT6: T ( f +µ) = T f +µ ; (constant additivity)

LT7: ‖T A−T B‖ ≤ ‖A−B‖.

Moreover, as the next result shows, compositions of lower transition
operators are also, themselves, lower transition operators. Although
the result is well-known—see e.g. [23, Proposition 2]—we provide an
explicit proof below because we believe it has some didactic value.

Proposition 3.33 ([23, Proposition 2]). For any two lower transition op-
erators T ,S ∈ T, their composition T S is again a lower transition operator.

Proof. Consider any f ,g ∈L (X ), λ ∈ R≥0 and x ∈X . Since T and S

are lower transition operators, they both satisfy LT1, and therefore, we
find that

T S f (x)≥ min
y∈X

S f (y)≥ min
y∈X

min
z∈X

f (z) = min
z∈X

f (z),

which implies that T S satisfies LT1 as well. Similarly, T S satisfies LT2
because

T S( f +g)(x)≥ T (S f +Sg)(x)≥ T S f (x)+T Sg(x),

where the first inequality follows from LT5 and the fact that S satis-
fies LT2, and where the second inequality follows from the fact that T

satisfies LT2. Finally, since T and S both satisfy LT3, it follows that T S

also satisfies LT3, because

T S(λ f )(x) = T (λS f )(x) = λT S f (x).

We conclude that T S satisfies LT1–LT3, and therefore, because of Defi-
nition 3.15, it is a lower transition operator.

It is important to note that any transition matrix T is also a lower
transition operator. To see this, observe that T is a linear map from
L (X ) to L (X ), and hence satisfies both property LT2 (with equal-
ity) and property LT3116 (even if λ < 0). To see that it also satisfies
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property LT1116, note that it follows from Definition 3.591 that, for any
f ∈L (X ) and any x ∈X ,

T f (x) = ∑
y∈X

T (x,y) f (y)≥ ∑
y∈X

T (x,y)min
z∈X

f (z) = min
z∈X

f (z) ,

where the inequality used property T291 and the final equality used
property T191. Hence, it is therefore clear that lower transition opera-
tors are a generalisation of transition matrices.

In order to motivate this specific generalisation, let us now intro-
duce the lower envelope of a given set of transition matrices. We need
the following result to introduce it.

Lemma 3.34. For any non-empty set T of transition matrices, any
f ∈L (X ), and any x ∈X , it holds that infT∈T T f (x) ∈ R. In particu-
lar, it holds that miny∈X f (y)≤ infT∈T T f (x)≤maxy∈X f (y).

Proof. Fix any T ∈ T . Then we know from the discussion above
that T is a lower transition operator, and hence it follows from Prop-
erty LT1116 that T f (x) ≥ miny∈X f (y). Moreover, because T is a linear
operator on L (X ) it holds that −T f = T (− f ), and hence it follows
from Property LT1116 that

−T f (x) = T (− f )(x)≥ min
y∈X
− f (y) =−max

y∈X
f (y) ,

using the conjugacy property max{·} = −min{−·}. Hence, reordering
terms, we find that T f (x)≤maxy∈X f (y).

Because this is true for all T ∈ T , it follows that miny∈X f (y) ≤
infT∈T T f (x). Moreover, and because T is non-empty, there is some
S ∈T such that infT∈T T f (x)≤ S f (x)≤maxy∈X f (y).

In summary, we found that miny∈X ≤ infT∈T T f (x) ≤ maxy∈X f (y).
Since f ∈L (X ), and becauseX is finite, it holds that both miny∈X f (y)
and maxy∈X f (y) are real-valued, and hence infT∈T T f (x) ∈ R.

Let us now give the definition of the lower envelope of T ; note that
Lemma 3.34 ensures that the codomain of this map is indeed L (X ).

Definition 3.16 (Lower Envelope). For any non-empty set T of transi-
tion matrices, we define its lower envelope T : L (X )→L (X ) : f 7→ T f

where, for all f ∈L (X ) and all x ∈X , we let T f (x) := infT∈T T f (x).

The next result is well-known in the imprecise-Markov chain litera-
ture, but because it is so crucial we will prove it here for completeness.

Proposition 3.35 ([23, Proposition 4]). For any non-empty set T of tran-
sition matrices, its lower envelope T is a lower transition operator.
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Proof. Fix any x ∈X and any f ∈L (X ), and consider any T ∈T . Be-
cause, as we have seen above, T is a lower transition operator, it satisfies
property LT1116, and hence T f (x) ≥ miny∈X f (y). Because this is true
for all T ∈ T , it follows that T f (x) = infT∈T T f (x) ≥ miny∈X f (y). Be-
cause x ∈X and f ∈ L (X ) are arbitrary, this means that T satisfies
property LT1116.

Properties LT2116 and LT3116 follow directly from the properties of
the infimum and the fact that the elements T ∈T are linear maps. That
is, for any f ,g ∈L (X ) and any x ∈X ,

[

T ( f +g)
]

(x) = inf
T∈T

[

T ( f +g)
]

(x)

= inf
T∈T

(

T f (x)+T g(x)
)

≥ inf
T∈T

T f (x)+ inf
T∈T

T g(x) = T f (x)+T g(x) ,

whence T satisfies property LT2116.
Similarly, for any f ∈L (X ), λ ∈ R≥0, and x ∈X it holds that

[

T (λ f )
]

(x) = inf
T∈T

[

T (λ f )
]

(x) = inf
T∈T

λT f (x)

= λ inf
T∈T

T f (x) = λT f (x) ,

and hence T satisfies property LT3116.
Because T satisfies properties LT1116–LT3116, it is a lower transition

operator by Definition 3.15116.

Due to Proposition 3.35, we also refer to the lower envelope T of a
given set T of transition matrices, as the lower transition operator corre-
sponding to T .

The following result provides sufficient conditions on the set T for
the value of T f to be reached by T f , for some T ∈ T , where T is the
lower transition operator corresponding to T . In other words, under
those conditions the lower envelope is actually a minimum, rather than
an infimum; and in particular, this minimum is achieved uniformly
over all elements of X .

Proposition 3.36. Let T be a non-empty and closed set of transition ma-
trices that has separately specified rows, and let T be its corresponding lower
transition operator. Then for all f ∈L (X ), there is some T ∈T such that
T f (x) = T f (x) for all x ∈X .

Proof. Fix any f ∈L (X ) and x ∈X , and consider a sequence {εi}i∈Z>0

in R≥0 such that limi→+∞ εi = 0. Then, for all i ∈ Z>0, because of Defini-

tion 3.16, there is some T
(i)

x ∈T such that T f (x)≤ T
(i)

x f (x)< T f (x)+εi.
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Note that the setT is bounded because, using Lemma 3.992, it holds
that ‖T ‖= supT∈T ‖T‖= 1. SinceT is also closed by assumption, it fol-
lows from Corollary A.12378 that it is sequentially compact. Hence, the

sequence {T (i)
x }i∈Z>0

in T has a convergent subsequence, {T (ik)
x }k∈Z>0

,

say, and limk→+∞ T
(ik)

x =: T ∗x ∈T .
Moreover, for all k ∈ Z>0 it holds that

T f (x)≤ T
(ik)

x f (x)< T f (x)+ εik ,

and hence T ∗x f (x) = T f (x) because also limk→+∞ εik = 0.
Now, because T has separately specified rows, there is some T ∈

T such that T (x, ·) = T ∗x (x, ·) for all x ∈ X . Because of the above, it
therefore holds that T f (x) = T f (x) for all x ∈X .

So, we have seen above that any set T has a corresponding lower
transition operator. We will now reason in the opposite direction; given
an arbitrary lower transition operator T , is there a set T of transition
matrices that corresponds to it? To this end, we consider the set of tran-
sition matrices that dominate this lower transition operator, as follows.

Definition 3.17. For any lower transition operator T , we define its domi-
nating set of transition matrices TT as

TT :=
{

T ∈ T
∣

∣T f ≥ T f for all f ∈L (X )
}

.

It turns out that this set of dominating transition matrices satis-
fies a number of convenient properties. This result is also well-known
in the literature, although it is not often proved explicitly. Hence, we
here provide a proof for the sake of completeness; because it is a bit
involved, however, it is deferred to Appendix 3.C137.

Proposition 3.37. For any lower transition operator T , its dominating set
of transition matricesTT is a non-empty, closed, and convex set of transition
matrices that has separately specified rows, and that has T as its correspond-
ing lower transition operator.

These properties characterise TT completely, in the sense that no
other set satisfies them.

Corollary 3.38. Let T be a non-empty, closed, and convex set of transition
matrices that has separately specified rows, and that has T as its correspond-
ing lower transition operator. Then T = TT .

We conclude this section with some results about the set T of all
lower transition operators. In particular, we will later be interested in
sequences, and limits of sequences, of lower transition operators. The
following technical results will therefore be helpful.
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Lemma 3.39. [17, Proposition 1] Consider any sequence {T i}i∈Z>0
of

lower transition operators such that T f = limi→+∞ T i f for all f ∈L (X ).
Then T is a lower transition operator.

Lemma 3.40. [17, Proposition 2] Let T be a lower transition operator,
and consider any sequence {T i}i∈Z>0

of lower transition operators. Then,
T = limi→+∞ T i if and only if T f = limi→+∞ T i f for all f ∈L (X ).

Proposition 3.41. T is complete under the metric induced by our norm ‖·‖.

Proof. Consider any sequence {T i}i∈Z>0
of lower transition operators

that is Cauchy with respect to the operator norm ‖·‖. We will prove
that {T i}i∈Z>0

converges to a limit T : L (X )→L (X ) that is itself a
lower transition operator.

Consider any f ∈L (X ) and x∈X . For any k, ℓ∈Z>0, (N11)64 then
implies that

|T k f (x)−T ℓ f (x)| ≤ ‖T k f −T ℓ f‖= ‖(T k−T ℓ) f‖ ≤ ‖T k−T ℓ‖‖ f‖ .

Therefore, and because {T i}i∈Z>0
is Cauchy with respect to the

norm ‖·‖, it follows that {T i f (x)}i∈Z>0
is Cauchy with respect to the

norm |·|. Hence, since R is (well known to be) complete with respect
to the topology that is induced by |·|, we find that {T i f (x)}i∈Z>0

con-
verges to a limit in R, which we will denote by T f (x). Let T f be the
unique function in L (X ) that has T f (x), x ∈X , as its components.
Then clearly, T f = limi→+∞ T i f .

Let T : L (X ) → L (X ) be the unique operator that maps any
f ∈L (X ) to T f . It then follows from Lemma 3.39 that T is a lower
transition operator. Therefore, and because we already know that
T f = limi→+∞ T i f for all f ∈L (X ), it now follows from Lemma 3.40
that limi→+∞ T i = T .

3.5 Lower Expectations using Lower Transition Opera-
tors

Let us now connect the lower transition operators that we discussed
in the previous section, to the discrete-time imprecise-Markov chains
that we introduced earlier. Again, the results in this section are well-
known in the imprecise-Markov chain literature. Let us start with the
following result, which shows that we can write the one-step condi-
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tional lower expectations of an imprecise-Markov chain, using the cor-
responding lower transition operators.7

Proposition 3.42. Let D be a discrete time domain with canonical time
index τ , and let PD

(Tk),M
be a discrete-time imprecise-Markov chain. For all

k ∈ Z≥0, let T k denote the lower transition operator corresponding to Tk.
Then for all f ∈L (X ), all n ∈ Z≥0, and all xτ0:n

∈Xτ0:n
, it holds that

ED
(Tk),M

[ f (Xτn+1
) |Xτ0:n

= xτ0:n
] = T n f (xτn) . (3.26)

Proof. By Proposition 3.24108 and Definition 3.16118, it holds that

ED
(Tk),M

[ f (Xτn+1
) |Xτ0:n

= xτ0:n
] = inf

T∈Tn

T f (xτn) = T n f (xτn) ,

which concludes the proof.

We now recall from the discussion preceding Corollary 3.26110 the
notational convention that, for any f ∈L (Xτ0:(n+1)

) and any xτ0:n
∈Xτ0:n

,

we write f (xτ0:n
, ·) for the projection of f onto L (Xτn+1

) obtained by
fixing xτ0:n

, i.e. the element of L (Xτn+1
) corresponding to the τn+1-

measurable function f (xτ0:n
,Xτn+1

). With a slight abuse of notation,
let us now introduce the following notational trick, which will be
very convenient in the sequel: for any lower transition operator T :

L (X ) → L (X ), and for any discrete time domain D with canoni-
cal time index τ , we introduce for any n ∈ Z≥0 an associated operator
T : L (Xτ0:(n+1)

)→L (Xτ0:n
). We define this map, for all f ∈L (Xτ0:(n+1)

)

and all xτ0:n
∈Xτ0:n

, as

T f (xτ0:n
) :=

[

T f (xτ0:n
, ·)
]

(xτn) ,

where, on the right-hand side, we have applied the (original) opera-
tor T : L (X )→L (X ) to f (xτ0:n

, ·). All of this is just a formal way
of saying that we allow the operator T to be applied to f , by apply-
ing it a specific projection of f onto L (Xτn+1

). Because this projection
depends on the value of xτ0:n

, the resulting function T f is an element
of L (Xτ0:n

).
Using this notation, we can reformulate Corollary 3.26110 using

lower transition operators, as follows.

7Although the result here is derived, Reference [22] actually took the equality (3.26)
as the definition of the lower transition operator corresponding to an imprecise-Markov
chain, without reference to any set of transition matrices. However, because of the corre-
spondence between lower transition operators and sets of transition matrices, which we
discussed in Section 3.4116, this turns out to be equivalent.
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Corollary 3.43. Let D be a discrete time domain with canonical time index
τ , and let PD

(Tk),M
be a discrete-time imprecise-Markov chain such that Tk

has corresponding lower transition operator T k, for all k ∈Z≥0. Then for all
n ∈ Z≥0, all f ∈L (Xτ0:(n+1)

), and all xτ0:n
∈Xτ0:n

, it holds that

ED
(Tk),M

[ f (Xτ0:(n+1)
) |Xτ0:n

= xτ0:n
] = T n f (xτ0:n

) .

Proof. By Lemma3.22107 it holds that

ED
(Tk),M

[ f (Xτ0:(n+1)
) |Xτ0:n

= xτ0:n
] = ED

(Tk),M
[ f (xτ0:n

,Xτn+1
) |Xτ0:n

= xτ0:n
] ,

and it follows from Proposition 3.42 that

ED
(Tk),M

[ f (xτ0:n
,Xτn+1

) |Xτ0:n
= xτ0:n

] =
[

T n f (xτ0:n
, ·)
]

(xτn) .

Using the notation that we introduced above that allows us to apply T n

directly to f , we have by definition that

T n f (xτ0:n
) =

[

T n f (xτ0:n
, ·)
]

(xτn) ,

and hence

ED
(Tk),M

[ f (Xτ0:(n+1)
) |Xτ0:n

= xτ0:n
] = T n f (xτ0:n

) ,

which concludes the proof.

Finally, we can use the above notational convention to formulate
the law of iterated lower expectations using lower transition operators.
This result is also well-known in the literature; see e.g. [22, Theorem
3.1] or [48, Theorem 11.2] for analogous results. Although, as noted
above, these references use a slightly differ manner to derive the cor-
responding lower transition operators, the result itself is conceptually
essentially the same.

Proposition 3.44. Let D be a discrete time domain with canonical time
index τ , and let PD

(Tk),M
be a discrete-time imprecise-Markov chain such

that Tk has separately specified rows and corresponding lower transition
operator T k, for all k ∈ Z≥0. Then for all n,m ∈ Z≥0 such that n > m, all
f ∈L (Xτ0:n

), and all xτ0:m
∈Xτ0:m

, it holds that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:m

= xτ0:m
] = T mT m+1 · · ·T n−1 f (xτ0:m

) .

Proof. Because, for all k ∈ Z≥0, Tk has separately specified rows, using
Lemma 3.27111 it holds that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:m

= xτ0:m
]

= ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

]
∣

∣

∣
Xτ0:m

= xτ0:m

]

.

(3.27)
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Using Corollary 3.43x, we find that for any yτ0:(n−1)
∈Xτ0:(n−1)

it holds

that
ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

= yτ0:(n−1)
] = T n−1 f (yτ0:(n−1)

) .

Because this is true for all yτ0:(n−1)
∈Xτ0:(n−1)

, it follows that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

] = T n−1 f (Xτ0:(n−1)
) ,

where the right-hand side denotes the τ0:(n−1)-measurable function cor-
responding to the element T n−1 f of L (Xτ0:(n−1)

). Substituting this into

Equation (3.27)x we obtain

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:m

= xτ0:m
] = ED

(Tk),M

[

T n−1 f (Xτ0:(n−1)
)
∣

∣

∣
Xτ0:m

= xτ0:m

]

.

Here, the right-hand side is a conditional lower expectation of the
τ0:(n−1) measurable function T n−1 f (Xτ0:(n−1)

). We can now proceed by

repeatedly using the above argumentation to expand these functions,
until we find that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:m

= xτ0:m
]

= ED
(Tk),M

[

T m+1 · · ·T n−1 f (Xτ0:(m+1)
)
∣

∣

∣
Xτ0:m

= xτ0:m

]

.

Here, the right-hand side is taken over the τ0:(m+1)-measurable function
T m+1 · · ·T n−1 f (Xτ0:(m+1)

), so one last use of Corollary 3.43x yields

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:m

= xτ0:m
] = T mT m+1 · · ·T n−1 f (xτ0:m

) ,

which concludes the proof.

Proposition 3.44x essentially tells us that we can use compositions
of lower transition operators, to compute lower expectations of func-
tions that depend on the state of an imprecise-Markov chain at multi-
ple time points. This observation is especially important, since it forms
the basis of many efficient inference algorithms that have been pub-
lished in the literature, see e.g. [107] for a general result that captures a
wide variety of inference problems, or [18] for an application to hidden
imprecise-Markov chains.

Finally, by combining this result with Corollary 3.31115, we find that
for any n∈Z>0 we can also express the unconditional lower expectation
of any f ∈L (Xτ0:n

) as

ED
(Tk),M

[

f (Xτ0:n
)
]

= EM

[

T 0 · · ·T n f (Xτ0
)
]

.

Using this identity, it is possible to leverage the efficient inference al-
gorithms mentioned above, also when computing unconditional lower
expectations for the imprecise-Markov chain PD

(Tk),M
.
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Appendix

3.A Proofs of Results in Section 3.1

Proof of Lemma 3.186. Let us recall from Section 2.364 that A D
/0 = 〈E D

/0 〉.
Because two generated algebras are equal when they contain each
other’s generators, it therefore suffices to show that E D

/0 ⊆ 〈SD〉 and
SD ⊆A D

/0 .
So, for the first inclusion, fix any (Xτn = xτn)D ∈ E D

/0 , with n∈Z≥0 and
xτn ∈X . Then, for all xτ0:(n−1)

∈Xτ0:(n−1)
, it follows from Definition 3.185

that (Xτ0:n
= xτ0:n

)D ∈SD. Moreover, we have that

(Xτn = xτn)D =
⋃

xτ0:(n−1)
∈Xτ0:(n−1)

(Xτ0:n
= xτ0:n

)D .

Because Xτ0:(n−1)
is finite since n ∈ Z≥0, and because 〈SD〉 is closed un-

der finite unions, it follows that (Xτn = xτn)D ∈ 〈SD〉. This concludes the
argument in the first direction.

For the other direction, fix any (Xu = xu)D ∈SD. Then if u= /0 it holds
that (Xu = xu)D = ΩD, in which case we trivially have (Xu = xu)D ∈ A D

/0

since A D
/0 is an algebra. So, let us suppose that u = τ0:n, with n ∈ Z≥0.

Then, for all i ∈ {0, . . . ,n} it holds that (Xτi
= xτi

)D ∈ E D
/0 . Moreover, we

have

(Xu = xu)D =
n
⋂

i=0

(Xτi
= xτi

)D ,

from which it follows that (Xu = xu)D ∈ A D
/0 since n is finite and A D

/0 is
closed under finite intersections. This concludes the argument in the
second direction.

Proof of Lemma 3.386. Because A ∈ A D
/0 it follows from Proposi-

tion 2.1866 that there are v ∈ U D and S ⊆Xv such that A = ∪xv∈S(Xv =
xv)D. Now let n ∈ Z≥0 be such that τn = maxv—this is always possible
since v⊂ D—and let

S′ :=
{

xτ0:n
∈Xτ0:n

: xv ∈ S
}

,

i.e. we collect in S′ all elements of Xτ0:n
whose value in the time points

in v belongs to S. Then, clearly,

⋃

xτ0:n
∈S′

(Xτ0:n
= xτ0:n

)D =
⋃

xv∈S

(Xv = xv)D = A ,

which concludes the proof.
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Proof of Lemma 3.487. First suppose that m < n and yv = xv. Then v⊆ u,
and hence

(Xu = xu)D = (Xv = xv)D∩ (Xu\v = xu\v)D

= (Xv = yv)D∩ (Xu\v = xu\v)D ⊆ (Xv = yv)D .

Therefore, and because P∈ PD is a coherent conditional probability due
to Definition 2.1369, it follows that P(Xv = yv |xu = xu) = 1 due to Prop-
erty F247.

Next, suppose that n ≤ m and yu = xu. Then for all i ∈ {n, . . . ,m} it
holds that

P(Xτ0:i
= yτ0:i

|Xu = yu)

= P(Xτi
= yτi

|Xτ0:(i−1)
= yτ0:(i−1)

)P(Xτ0:(i−1)
= yτ0:(i−1)

|Xu = yu)

= p(yτi
|yτ0:(i−1)

)P(Xτ0:(i−1)
= yτ0:(i−1)

|Xu = yu) ,

where for the first equality we use Property F447 and that P is a co-
herent conditional probability, and for the second equality we use that
P corresponds to p, as in Definition 3.286. Because this is true for all
i ∈ {n, . . . ,m}, it follows that

P(Xτ0:m
= yτ0:m

|Xu = yu) = P(Xu = yu |Xu = yu)
m

∏
i=n

p(yτi
|yτ0:(i−1)

)

=
m

∏
i=n

p(yτi
|yτ0:(i−1)

) ,

where for the second equality we use Property F247. Because yu = xu

and v = τ0:m we therefore conclude that

P(Xv = yv |Xu = xu) =
m

∏
i=n

p(yτi
|yτ0:(i−1)

) .

Finally, suppose that either n≤m and yu 6= xu, or m< n and yv 6= xv. In
either case we have that (Xu = xu)D∩(Xv = yv)D = /0, and hence it follows
from the fact that P is a coherent conditional probability, together with
Properties F647 and F747, that

P(Xv = yv |Xu = xu) = P( /0 |Xu = xu) = 0 ,

which concludes the proof.

The following result is expressed for general time domainsH rather
than just discrete time domains; this is with the aim of re-using it later
to prove some results in Chapter 5181.
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Lemma 3.45. Let H be a time domain, choose any m ∈ Z≥0 and
let w = {w0,w1, . . . ,wm} ⊂H be a finite set of time points such that
w0 < w1 < · · ·< wm. Let Pw be a real-valued function on

Cw :=
{

(Xw j
= y,Xu = xu)H : j ∈ {0, . . . ,m}, u = {w0, . . . ,w j−1},y ∈X , xu ∈Xu

}

such that, for any j ∈ {0, . . . ,m}, u = {w0, . . . ,w j−1} and xu ∈ Xu,
Pw(Xw j

= x |Xu = xu), as a function of x ∈X , is a probability mass function
on X . Then Pw is a coherent conditional probability.

Proof. We provide a proof by induction on m. So choose any 0≤ m and
suppose that the statement is true for all m′ ∈ Z≥0 with m′ < m; this
is trivially true for m = 0, which provides the induction base for the
argument. We will show that this implies that the statement is also
true for m.

Consider any n ∈ Z>0 and, for all i ∈ {1, . . . ,n}, choose (Ai,Ci)H ∈ Cw

and λi ∈ R. We need to show that

max

{

n

∑
i=1

λiICi
(ω)
(

Pw(Ai|Ci)− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C0

}

≥ 0, (3.28)

with C0 := ∪n
i=1Ci.

For any i∈ {1, . . . ,n}, since (Ai,Ci)H ∈Cw, there is some ji ∈ {0, . . . ,m}
and, for all ℓ ∈ {0, . . . , ji}, some zℓ,i ∈X such that

Ai = (Xw ji
= z ji,i)H and Ci = (Xw0

= z0,i, . . . ,Xw ji−1
= z ji−1,i)H.

Let S = {i ∈ {1, . . . ,n} : ji < m}. If S 6= /0, then by the induction hypothe-
sis, we know that

max

{

∑
i∈S

λiICi
(ω)
(

Pw(Ai|Ci)− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C∗0

}

≥ 0,

with C∗0 := ∪i∈SCi. It follows that there is some ω∗ ∈C∗0 ⊆C0 such that

∑
i∈S

λiICi
(ω∗)

(

Pw(Ai|Ci)− IAi
(ω∗)

)

≥ 0. (3.29)

If S = /0, then let ω∗ be any element of C0. Equation (3.29) is then triv-
ially satisfied. Hence, in all cases, we have found some ω∗ ∈ C0 that
satisfies Equation (3.29).

Let C∗ := ∩0≤ℓ<m

(

Xwℓ
= ω∗(wℓ)

)

H and S∗ := {i ∈ {1, . . . ,n} : Ci = C∗}.
Then by the assumptions of this lemma, there is some probability mass
function p on X such that, for all x ∈X , Pw(Xwm = x|C∗) = p(x). For all
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x ∈X , let λx := ∑{i∈S∗ : zm,i=x}λi. Now let y∗ be any element of X such

that miny∈X λy = λy∗ (since X is finite, this is always possible). Since p

is a probability mass function, it then follows that

∑
i∈S∗

λiPw(Ai|C∗) = ∑
x∈X

λx p(x)≥ ∑
x∈X

λy∗ p(x) = λy∗ .

Let ω∗∗ be any path in ΩH such that ω∗∗ ∈C∗ and ω∗∗(wm) = y∗; Equa-
tion (2.8)65 guarantees that this ω∗∗ ∈ΩH exists. Then

∑
i∈S∗

λi

(

Pw(Ai|C∗)− IAi
(ω∗∗)

)

≥ min
y∈X

λy− ∑
i∈S∗

λiIAi
(ω∗∗) = λy∗ −λy∗ = 0,

where the first equality holds because Ai = (Xwm = zm,i)H for all i ∈ S∗.
Let S∗∗ := {1, . . . ,n}\ (S∪S∗). Since ω∗∗ ∈C∗, we find that ICi

(ω∗∗) =
ICi

(ω∗) and IAi
(ω∗∗) = IAi

(ω∗) for all i ∈ S, that ICi
(ω∗∗) = 1 for all

i ∈ S∗, and that ICi
(ω∗∗) = 0 for all i ∈ S∗∗. Hence, it follows from Equa-

tion (3.29)x that

n

∑
i=1

λiICi
(ω∗∗)

(

Pw(Ai|Ci)− IAi
(ω∗∗)

)

≥ ∑
i∈S∗

λi

(

Pw(Ai|C∗)− IAi
(ω∗∗)

)

.

By combining this inequality with the previous one, we find that
in order to show that Equation (3.28)x holds, it suffices to prove
that ω∗∗ ∈C0.

In order to prove this, it suffices to notice that the question of
whether or not a path ω ∈ΩH belongs toC0, only depends on the values
ω(t) of ω at time points t ∈ {w0, . . . ,wm−1}. Indeed, since we infer from
ω∗∗ ∈C∗ that the value of ω∗ and ω∗∗ at these time points is the same,
and because ω∗ ∈C0, this implies that ω∗∗ ∈C0.

Proof of Theorem 3.588. Consider the set

C :=
{

(Xτn = xτn ,Xτ0:(n−1)
= xτ0:(n−1)

)D ∈ C
SP
D

∣

∣

∣
n ∈ Z≥0, xτ0:n

∈Xτ0:n

}

,

(3.30)
and define P∗ : C → R, for all (Xτn = xτn ,Xτ0:(n−1)

= xτ0:(n−1)
)D ∈ C , as

P∗
(

Xτn = xτn

∣

∣Xτ0:(n−1)
= xτ0:(n−1)

)

:= p
(

xτn

∣

∣xτ0:(n−1)

)

. (3.31)

We will first show that P∗ is a coherent conditional probability on C . So
fix any n ∈ Z>0 and, for all i ∈ {1, . . . ,n}, any (Ai,Ci)D in C and λi ∈ R.
According to Definition 2.248, we need to show that

max

{

n

∑
i=1

λiICi
(ω)
(

P∗(Ai |Ci)− IAi
(ω)
)

∣

∣

∣
ω ∈C0

}

≥ 0 , (3.32)
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with C0 := ∪n
i=1Ci. Now for any i ∈ {1, . . . ,n}, because (Ai,Ci)D ∈ C ,

it follows from Equation (3.30) that there is some ni ∈ Z≥0 such that
Ai = (Xτni

= xτni
)D and Ci = (Xτ0:(ni−1)

= xτ0:(ni−1)
)D for some xτ0:ni

∈Xxτ0:ni
.

Let m := maxi∈{1,...,n} ni, define w := τ0:m, and consider the set

Cw :=
{

(Xτ j
= xτ j

,Xτ0:( j−1)
= xτ0:( j−1)

)D : j ∈ {0, . . . ,m}, xτ0: j
∈Xτ0: j

}

.

Then it follows from Equation (3.30) that Cw ⊆ C and, in particular, for
all i ∈ {1, . . . ,n}, that (Ai,Ci)D ∈ Cw because m≥ ni.

Let P′∗ be the restriction of P∗ to Cw. Then since p is a probability
tree, and because of Equation (3.31) and the fact that P′∗ is the restric-
tion of P∗, it follows that P′∗ satisfies the conditions of Lemma 3.45127
and, hence, by Lemma 3.45127, that P′∗ is a coherent conditional prob-
ability on Cw. Because (Ai,Ci)D ∈ Cw for all i ∈ {1, . . . ,n}, it therefore
follows from Definition 2.248 that

max

{

n

∑
i=1

λiICi
(ω)
(

P′∗(Ai |Ci)− IAi
(ω)
)

∣

∣

∣
ω ∈C0

}

≥ 0 ,

which, because P∗(Ai |Ci) = P′∗(Ai |Ci) for all i ∈ {1, . . . ,n} since P′∗ is the
restriction of P∗, implies that Equation (3.32) is also satisfied. This im-
plies that P∗ is a coherent conditional probability on C .

Because P∗ is a coherent conditional probability on C , and because
C ⊂ C SP

D , it follows from Theorem 2.349 that P∗ can be extended to a
coherent conditional probability P on C SP

D which, by Definition 2.1369,
implies that P ∈ PD is a discrete-time stochastic process with time do-
main D. Moreover, it follows from Equation (3.31) and the fact that P

extends P∗, that P satisfies Equations (3.2)87 and (3.3)87 and therefore,
by Definition 3.286, that P corresponds to p.

It remains to prove that P is the unique element of PD that corre-
sponds to p. To this end, consider any P′ ∈ PD that corresponds to p; we
will show that P = P′. So, consider any (A,C)D ∈ C SP

D . Then it follows
from Lemma 3.286 thatC∈SD, which implies that there is some n∈Z≥0

and, with u := τ0:(n−1), some xu ∈Xu, such thatC =(Xu = xu)D. Moreover,

it follows from Lemma 2.1968 that A ∈A D
/0 , which by Lemma 3.386 im-

plies that there is some m ∈ Z≥0 and, with v := τ0:m, some S ⊆Xv, such
that A = ∪yv∈S(Xv = yv)D.

Because P and P′ both correspond to p, it follows from Lemma 3.487
that for all yv ∈ S it holds that

P(Xv = yv |Xu = xu) = P′(Xv = yv |Xu = xu) .

Therefore, and because P and P′ are both coherent conditional proba-
bilities, it follows from Property F347 and the fact that A = ∪yv∈S(Xv =
yv)D, that P(A |C) = P′(A |C). Because this is true for all (A,C)D ∈ C SP

D ,
we conclude that P = P′.
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3.B Proofs of Results in Section 3.3

Proof of Proposition 3.25110. Suppose that the lower expectation
ED
(Tk),M

[ f (Xτn+1
) |Xτn = xτn ] is well-defined. Due to Definition 3.12105,

this means that
(

f (Xτn+1
),(Xτn = xτn)D

)

∈DP for all P ∈ PD
(Tk),M

.

So fix any P ∈ PD
(Tk),M

, and let E be any coherent conditional pre-

vision on B× E (ΩD)⊃ /0 that corresponds to P; this E exists by Theo-
rem 2.652. Because E corresponds to P, and because it trivially holds
that D

C SP
D
⊆ B×E (ΩD)⊃ /0 and

(

f (Xτn+1
),(Xτn = xτn)D

)

∈ B×E (ΩD)⊃ /0, it

follows from Definition 2.554 that

EP[ f (Xτn+1
) |Xτn = xτn ] = E[ f (Xτn+1

) |Xτn = xτn ] . (3.33)

Let C := E (ΩD)×E (ΩD)⊃ /0; then DC ⊆ B×E (ΩD)⊃ /0. Let Ẽ be the re-
striction of E to DC . Because E is a coherent conditional prevision, it
follows from Definition 2.352 that Ẽ is a coherent conditional prevision
on DC . Let P∗ be the map on C that is defined as P∗(A |C) := Ẽ[IA |C] for
all (A,C)D ∈ C . Then it follows from Proposition 2.753 that P∗ is a co-
herent conditional probability. Moreover, because E corresponds to P,
because Ẽ is the restriction of E to DC , and because C SP

D ⊆ C , it follows
that for all (A,C)D ∈ C SP

D it holds that

P(A |C) = E[IA |C] = Ẽ[IA |C] = P∗(A |C) , (3.34)

and hence P∗ extends P.

Using the same line of reasoning as used in the proof of Propo-
sition 2.2373, we represent the τn+1-measurable function f (Xτn+1

) as

∑y∈X f (y)I(Xτn+1
=y)D . It then follows that

EP[ f (Xτn+1
) |Xτn = xτn ] = E[ f (Xτn+1

) |Xτn = xτn ]

= E

[

∑
y∈X

f (y)I(Xτn+1
=y)D

∣

∣

∣
Xτn = xτn

]

= ∑
y∈X

f (y)E
[

I(Xτn+1
=y)D

∣

∣Xτn = xτn

]

= ∑
y∈X

f (y)P∗(Xτn+1
= y |Xτn = xτn) , (3.35)

where for the first equality we used Equation (3.33); for the second
equality we used the linearity of E, i.e. Properties E252 and E352; and
for the last equality we used Equation (3.34).
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Now let u := τ0:(n−1) and, for all xu ∈Xu, let
PTn,xu denote the history-

dependent transition matrix corresponding to P. Then it follows that

EP[ f (Xτn+1
) |Xτn = xτn ]

= ∑
y∈X

f (y)P∗(Xτn+1
= y |Xτn = xτn)

= ∑
y∈X

f (y) ∑
xu∈Xu

P∗(Xτn+1
= y,Xu = xu |Xτn = xτn)

= ∑
y∈X

f (y) ∑
xu∈Xu

P∗(Xτn+1
= y |Xτn = xτn ,Xu = xu)P

∗(Xu = xu |Xτn = xτn)

= ∑
y∈X

f (y) ∑
xu∈Xu

P(Xτn+1
= y |Xτn = xτn ,Xu = xu)P

∗(Xu = xu |Xτn = xτn)

= ∑
xu∈Xu

P∗(Xu = xu |Xτn = xτn) ∑
y∈X

f (y)P(Xτn+1
= y |Xτn = xτn ,Xu = xu)

= ∑
xu∈Xu

P∗(Xu = xu |Xτn = xτn) ∑
y∈X

f (y)PTn,xu(xτn ,y)

= ∑
xu∈Xu

P∗(Xu = xu |Xτn = xτn)
PTn,xu f (xτn)

≥ ∑
xu∈Xu

P∗(Xu = xu |Xτn = xτn) inf
T∈Tn

T f (xτn)

= inf
T∈Tn

T f (xτn) ,

where we used Equation (3.35) for the first equality; Property F347 for
the second equality; Property F447 for the third equality; the fact that
P∗ extends P and that ((Xτn+1

= y)D,(Xτn=xτn
,Xu = xu)D) ∈ C SP

D for all xu ∈
Xu for the fourth equality; the definition of PTn,xu for the sixth equality;
the fact that PTn,xu ∈ Tn by Definition 3.11104 for the inequality; and
Properties F347 and F847 for the final equality.

Because P ∈ PD
(Tk),M

is arbitrary, it follows that

inf
P∈PD

(Tk),M

EP[ f (Xτn+1
) |Xτn = xτn ]≥ inf

T∈Tn

T f (xτn) . (3.36)

Next, we will show that infT∈Tn
T f (xτn) is real-valued. In particular,

for any T ∈Tn and any x ∈X it holds that

T f (x) = ∑
y∈X

T (x,y) f (y)≥ ∑
y∈X

T (x,y)min
z∈X

f (z) = min
z∈X

f (z) ∈ R ,

where we used the properties of matrix-vector products for the first
equality, Property T291 for the inequality, Property T191 for the second
equality, and the fact that f ∈ L (X ) for the inclusion. Similarly, it
holds that

T f (x) = ∑
y∈X

T (x,y) f (y)≤ ∑
y∈X

T (x,y)max
z∈X

f (z) = max
z∈X

f (z) ∈ R ,
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and, because this is true for all T ∈Tn, and because Tn is non-empty, it
follows that

min
z∈X

f (z)≤ inf
T∈Tn

T f (xτn)≤max
z∈X

f (z) .

Now fix any ε > 0. Then because infT∈Tn
T f (xτn) is real-valued, and

since Tn is non-empty, there is some Tn ∈Tn such that

Tn f (xτn)< inf
T∈Tn

T f (xτn)+ ε . (3.37)

Now take an arbitrary p ∈M and, for all k ∈ Z≥0 such that k 6= n, an
arbitrary Tk ∈ Tk. Due to Proposition 3.1495 there is then a unique
Markov chain P∗ ∈ PD,M ⊆ PD that has (Tk)k∈Z≥0

as its corresponding
family of transition matrices, and that satisfies P∗(Xτ0

= x) = p(x) for all
x ∈X . Moreover, it is immediately clear that in fact P∗ ∈ PD

(Tk),M
, be-

cause p ∈M and Tk ∈Tk for all k ∈ Z≥0. Due to Proposition 3.1899, this
Markov chain satisfies

EP∗ [ f (Xτn+1
) |Xτn = xτn ] = Tn f (xτn) . (3.38)

By combining Equations (3.37), (3.36)x,and (3.38) (in that order), we
find that

Tn f (xτn)< inf
T∈Tn

T f (xτn)+ ε

≤ inf
P∈PD

(Tk),M

EP[ f (Xτn+1
) |Xτn = xτn ]+ ε

≤ EP∗ [ f (Xτn+1
) |Xτn = xτn ]+ ε

= Tn f (xτn)+ ε ,

where we used that P∗ ∈ PD
(Tk),M

for the third inequality. Because ε > 0

is arbitrary, this implies that

inf
P∈PD

(Tk),M

EP[ f (Xτn+1
) |Xτn = xτn ] = inf

T∈Tn

T f (xτn) ,

which, using Definition 3.12105 and Proposition 3.24108, concludes the
proof.

Proof of Lemma 3.27111. We start by handling the case n = m separately;
we want to show that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

= ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

]
∣

∣Xτ0:(n−1)
= xτ0:(n−1)

]

.
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For notational convenience, let u := τ0:(n−1). It follows from
Lemma 3.21105 that

ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xu]

∣

∣Xu = xu

]

= inf
P∈PD

(Tk),M

∑
yu∈Xu

ED
(Tk),M

[ f (Xτ0:n
) |Xu = yu]P(Xu = yu |Xu = xu)

= inf
P∈PD

(Tk),M

ED
(Tk),M

[ f (Xτ0:n
) |Xu = xu] = ED

(Tk),M
[ f (Xτ0:n

) |Xu = xu] ,

where for the second equality we used that, for all P ∈ PD
(Tk),M

, it

holds that P(Xu = yu |Xu = xu) = 1 if yu = xu (due to Property F247),
and P(Xu = yu |Xu = xu) = 0 otherwise (due to Properties F647 and F747).
Since u = τ0:(n−1) and n = m, it holds that u = τ0:(m−1), whence this im-
plies that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

= ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

]
∣

∣Xτ0:(m−1)
= xτ0:(m−1)

]

,

which concludes the proof for the case where n = m.
So, for the remainder of this proof, let us suppose that n > m, and

let u := τ0:(n−1). Since n > m and m ∈ Z≥0 this implies that n > 0 and that
u 6= /0. We now first show that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

≥ ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

.

Following Definition 3.12105 and Proposition 2.2677 we find that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

= inf
P∈PD

(Tk),M

EP[ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

= inf
P∈PD

(Tk),M

EP

[

EP[ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

≥ inf
P∈PD

(Tk),M

EP

[

ED
(Tk),M

[ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

= ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

,

where we used Definition 3.12105 together with Property CE478 for the
inequality.

For the other direction, fix any ε > 0. It follows from Corol-
lary 3.26110 and the fact that Tn−1 is non-empty that for all yu ∈ Xu
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there is some Tyu ∈Tn−1 such that

ED
(Tk),M

[ f (Xτ0:n
) |Xu = yu] = inf

T∈Tn−1

[

T f (yu, ·)
]

(yτn−1
)

>
[

Tyu f (yu, ·)
]

(yτn−1
)− ε

2
. (3.39)

Moreover, using Definition 3.12105, Lemma 3.20105, and
Lemma 3.23107, there is some P ∈ PD

(Tk),M
such that

ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

> EP

[

ED
(Tk),M

[ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

− ε

2
. (3.40)

Now let p : X ×SD be a probability tree such that, for all (Xv = yv)D ∈
SD and all x ∈X ,

p(x |yv) :=







P(Xτ0
= x) if v = /0,

P(Xτk+1
= x |Xv = yv) if v = τ0:k, k ∈ Z≥0, and k 6= (n−1),

Tyv(yτn−1
,x) otherwise (if v = u) .

In words, this probability tree p agrees with the process P on all situa-
tions except those that depend on the time points u = τ0:(n−1), for which
it agrees with the selections from Equation (3.39).

By Theorem 3.588, there is a unique stochastic process P∗ ∈ PD that
corresponds to p. Let us prove that P∗ ∈ PD

(Tk),M
. First, it follows from

Equation (3.2)87 that P∗(Xτ0
= x) = p(x |x /0) = P(Xτ0

= x) for all x ∈X

and therefore, since P ∈ PD
(Tk),M

, that P∗ is consistent with M .

Next, let (P∗Tk,yv
) denote the family of history-dependent transition

matrices corresponding to P∗. To show that P∗ ∈ PD
(Tk),M

it remains to

show that, for all k ∈ Z≥0, it holds that
P∗Tk,yv

∈ Tk for all yv ∈Xv, with
v = τ0:(k−1). So fix any k ∈ Z≥0, let v := τ0:(k−1), and choose any yv ∈Xv.
We consider two different cases. If k = n− 1 then τ0:k = τ0:(n−1) = u,
and then it follows from Definition 3.8101, Equation (3.3)87, and the
definition of p that, for all yτk

,x ∈X ,

P∗Tk,yv
(yτk

,x) = P∗(Xτk+1
= x |Xτk

= yτk
,Xv = yv)

= p(x |yu)

= Tyu(yτk
,x) ,

with Tyu as in Equation (3.39). Because Tyu ∈ Tk, and because Tk has
separately specified rows, it follows from Definition 3.13111 that there
is some T ∈Tk such that, for all yτk

,x ∈X ,

T (yτk
,x) = Tyu(yτk

,x) = P∗Tk,yv
(yτk

,x) ,
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which implies that T = P∗Tk,yv
. This means that P∗Tk,yv

∈Tk.
For the other case, suppose that k 6= n− 1. Then it follows from

Definition 3.8101, Equation (3.3)87, and the definition of p that, for all
yτk

,x ∈X ,

P∗Tk,yv
(yτk

,x) = P∗(Xτk+1
= x |Xτk

= yτk
,Xv = yv)

= p(x |yτ0:k
)

= P(Xτk+1
= x |Xτk

= yτk
,Xv = yv)

= PTk,yv
(yτk

,x) ,

where PTk,yv
denotes the history-dependent transition matrix corre-

sponding to P. Hence it follows that P∗Tk,yv
= PTk,yv

and therefore, since
P ∈ PD

(Tk),M
, that P∗Tk,yv

∈ Tk. Because this covers all cases, we conclude

that, indeed, P∗ ∈ PD
(Tk),M

.

Moving on, let now v := τm:(n−1); then v 6= /0 since n > m. Moreover,
for any g ∈L (Xu), it holds that

EP∗ [g(Xu) |Xτ0:(m−1)
= xτ0:(m−1)

]

= EP∗ [g(xτ0:(m−1)
,Xv) |Xτ0:(m−1)

= xτ0:(m−1)
]

= ∑
xv∈Xv

g(xτ0:(m−1)
,xv)P∗(Xv = xv |Xτ0:(m−1)

= xτ0:(m−1)
)

= ∑
xv∈Xv

g(xτ0:(m−1)
,xv)

n−1

∏
i=m

P∗(Xτi
= xτi

|Xτ0:(i−1)
= xτ0:(i−1)

)

= ∑
xv∈Xv

g(xτ0:(m−1)
,xv)

n−1

∏
i=m

p(xτi
|xτ0:(i−1)

)

= ∑
xv∈Xv

g(xτ0:(m−1)
,xv)

n−1

∏
i=m

P(Xτi
= xτi

|Xτ0:(i−1)
= xτ0:(i−1)

)

= ∑
xv∈Xv

g(xτ0:(m−1)
,xv)P(Xv = xv |Xτ0:(m−1)

= xτ0:(m−1)
)

= EP[g(xτ0:(m−1)
,Xv) |Xτ0:(m−1)

= xτ0:(m−1)
]

= EP[g(Xu) |Xτ0:(m−1)
= xτ0:(m−1)

] , (3.41)

where we used Proposition 2.2575 and that v 6= /0 and τ0:(m−1) < v for the
first equality; Proposition 2.2373 for the second equality; Property F447
(repeatedly) for the third equality, using that v = τm:(n−1) and hence that
(Xτv = xτv)D = ∩n−1

i=m(Xτi
= xτi

)D; the correspondence of P∗ with p together
with Equation (3.3)87 for the fourth equality; the definition of p for the
fifth equality; Property F447 (repeatedly) for the sixth equality, again
using that v = τm:(n−1) and hence that (Xτv = xτv)D = ∩n−1

i=m(Xτi
= xτi

)D;
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Proposition 2.2373 for the seventh equality; and Proposition 2.2575 and
that v 6= /0 and τ0:(m−1) < v, for the final equality.

Moreover, for all yu ∈Xu it holds that

EP∗ [ f (Xτ0:n
) |Xu = yu] = EP∗ [ f (yu,Xτn) |Xu = yu]

= ∑
xτn∈Xτn

f (yu,xτn)P∗(Xτn = xτn |Xu = yu)

= ∑
xτn∈Xτn

f (yu,xτn)p(xτn |yu)

= ∑
xτn∈Xτn

f (yu,xτn)Tyu(yτn−1
,xτn)

=
[

Tyu f (yu, ·)
]

(yτn−1
)

< ED
(Tk),M

[ f (Xτ0:n
) |Xu = yu]+

ε

2
, (3.42)

where we used Proposition 2.2575 and that u = τ0:(n−1) and u < τn

for the first equality, Proposition 2.2373 for the second equality, the
correspondence of P∗ with p together with Equation (3.3)87 for the
third equality, the definition of p for the fourth equality, the proper-
ties of matrix-vector products together with the notational convention
f (yu, ·) ∈ L (Xτn) for the fifth equality, and Equation (3.39)134 for the
inequality.

Finally, due to Proposition 2.2677 it holds that

EP∗ [ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
] =EP∗

[

EP∗ [ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

.

(3.43)
Now, by combining Equations (3.43), (3.42), (3.41)x, and (3.40)134, we
find that

EP∗ [ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

= EP∗

[

EP∗ [ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

≤ EP∗

[

ED
(Tk),M

[ f (Xτ0:n
) |Xu]+

ε

2

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

= EP∗

[

ED
(Tk),M

[ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

+
ε

2

< ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

+ ε ,

where we used Property CE478 for the first inequality and Prop-
erty CE679 for the second equality.
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Due to Definition 3.12105, this implies that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

≤ EP∗ [ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

< ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

+ ε ,

and, because ε > 0 is arbitrary, we conclude that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

≤ ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xu]

∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

.

Because we already proved the inequality in the other direction, and
using that u = τ0:(n−1), we therefore find that

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)
]

= ED
(Tk),M

[

ED
(Tk),M

[ f (Xτ0:n
) |Xτ0:(n−1)

]
∣

∣

∣
Xτ0:(m−1)

= xτ0:(m−1)

]

,

which concludes the proof.

3.C Proofs of Results in Section 3.4

The following lemma uses the interpretation of the rows of matrices as
elements of the dual space L (X )⊤ of L (X ); see Appendices A.2380
and A.3383 for details.

Lemma 3.46. Let T be a set of transition matrices and, for all x ∈X , let
Tx :=

{

T (x, ·)
∣

∣T ∈T
}

denote the set of x-rows of elements of T , which we

interpret as elements of L (X )⊤. Then, for all x ∈X , Tx is convex if T

is convex, and Tx is closed if T is closed. Moreover, if T has separately
specified rows, then T is closed if Tx is closed for all x ∈ X , and T is
convex if Tx is convex for all x ∈X .

Proof. First assume that T is convex, and fix any x ∈ X , any
T (x, ·),S(x, ·) ∈ Tx, and any λ ∈ [0,1]. Then there are T,S ∈ T

such that T (x, ·) is the x-row of T , and S(x, ·) is the x-row of S.
Because T is convex, it holds that λT + (1 − λ )S ∈ T , whence
also λT (x, ·)+(1−λ )S(x, ·) ∈Tx, which implies that Tx is convex.

Next assume that T is closed, fix any x ∈X , and consider any con-
vergent sequence {Ti(x, ·)}i∈Z>0

in Tx. To show that Tx is closed, by
Proposition A.8376, we need to show that the limit of this sequence is
an element of Tx. For any i ∈ Z>0, because Ti(x, ·) ∈ Tx, there is some
Ti ∈ T such that Ti(x, ·) is the x-row of Ti. It follows from Lemma 3.992
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that ‖T ‖ = 1, and hence that T is bounded. Because T is also closed
(by assumption), it follows from Corollary A.12378 that T is sequen-
tially compact. This implies the existence of a convergent subsequence
{Ti j
} j∈Z>0

with limit T∗ := lim j→+∞ Ti j
that satisfies T∗ ∈ T , which im-

plies that also T∗(x, ·) ∈ Tx. Because the sequence {Ti(x, ·)}i∈Z>0
was

convergent, the subsequence {Ti j
(x, ·)} has the same limit, say T ′∗(x, ·) :=

lim j→+∞ Ti j
(x, ·). Because we already know that T∗(x, ·) ∈ Tx, it now suf-

fices to show that T∗(x, ·) = T ′∗(x, ·). To this end, fix any ε > 0. Then there
is some n ∈ Z>0 such that for all j > n it holds that

∥

∥T ′∗(x, ·)−Ti j
(x, ·)

∥

∥

∗ <
ε

2
and

∥

∥Ti j
−T∗

∥

∥<
ε

2
,

which implies that

∥

∥T ′∗(x, ·)−T∗(x, ·)
∥

∥

∗ ≤
∥

∥T ′∗(x, ·)−Ti j
(x, ·)

∥

∥

∗+
∥

∥Ti j
(x, ·)−T∗(x, ·)

∥

∥

∗

<
ε

2
+
∥

∥Ti j
−T∗

∥

∥< ε ,

where we used Proposition A.33390 for the second inequality. Because
ε > 0 is arbitrary this implies that ‖T ′∗(x, ·)−T∗(x, ·)‖∗ = 0, or equiva-
lently, that T ′∗(x, ·) = T∗(x, ·). This concludes the proof that Tx is closed
whenever T is closed.

We now prove the implications in the other direction. Let us start by
assuming that Tx is closed for all x ∈X . Fix any convergent sequence
{Ti}i∈Z>0

in T with T = limi→+∞ Ti; we need to show that T ∈ T . Now
fix any x ∈X . Then, for all i ∈ Z>0, it holds that Ti(x, ·) ∈Tx, and

‖Ti(x, ·)−T (x, ·)‖∗ ≤ ‖Ti−T‖ ,

due to Proposition A.33390, whence limi→+∞ Ti(x, ·) = T (x, ·). Because
Tx is closed, this implies that T (x, ·) ∈ Tx. Because T has separately
specified rows, this means that T ∈ T , which concludes the proof that
T is closed.

To establish the convexity, assume that Tx is convex for all x ∈X .
Fix any T,S ∈ T and any λ ∈ [0,1]. We want to show that Tλ := λT +
(1−λ )S is an element of T .

Now, for any x ∈X , it holds that T (x, ·),S(x, ·) ∈ Tx. Moreover, be-
cause Tx is convex, it holds that Tλ (x, ·) = λT (x, ·)+ (1−λ )S(x, ·) ∈ Tx.
Thus Tλ ∈T because T has separately specified rows.

Proof of Proposition 3.37120. For all x ∈ X , we define the
map T x : L (X )→ R such that, for all f ∈ L (X ), T x f := T f (x).
Then, because T is a lower transition operator, it follows from Defi-
nition 3.15116 that, for all x ∈X , all f ,g ∈L (X ), and all λ ∈ R≥0, it
holds that
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CLP1: T x f ≥miny∈X f (y); (lower bounds)

CLP2: T x( f +g)≥ T x f +T xg; (super-additivity)

CLP3: T x(λ f ) = λT x f . (non-negative homogeneity)

Therefore, it follows from [114, Definition 2.3.3] that, for all x ∈X , the
map T x is a coherent lower prevision

8 on L (X ).
Next, a coherent linear prevision on L (X ) is a linear functional

p⊤ : L (X ) → R : f 7→ p⊤ f—i.e. an element of the dual space
L (X )⊤ of L (X ) that we introduce in Appendix A.2380—that satis-
fies p⊤ f ≥minx∈X f (x) for all f ∈L (X ) [114, Theorem 2.8.4]. Because
these are linear maps, they are trivially super-additive (because they
are additive) and non-negatively homogeneous (because they are ho-
mogeneous). Hence, any coherent linear prevision is also a coherent
lower prevision, by the above definition.

Moreover, for any x ∈X , let Ix ∈L (X ) denote the indicator of x,
defined for all y ∈X such that Ix(y) := 1 if x = y, and Ix(y) := 0, oth-
erwise. Fix any coherent linear prevision p⊤, and let p ∈ L (X ) be
defined such that p(x) := p⊤Ix for all x ∈X . Then for any x ∈X , it
holds that p(x) = p⊤Ix ≥miny∈X Ix(y) = 0. Moreover, it holds that

∑
x∈X

p(x) = ∑
x∈X

p⊤Ix = p⊤ ∑
x∈X

Ix = p⊤1 ,

using the linear character of p⊤ for the second equality, and where 1

denotes the constant function in L (X ) whose value in every x ∈X

is one. Because p⊤ is a coherent linear prevision, it holds that p⊤1 ≥
minx∈X 1 = 1, and because it is linear, that

−p⊤1 = p⊤(−1)≥ min
x∈X
−1 =−1 ,

and hence p⊤1 ≤ 1. It follows that ∑x∈X p(x) = 1. Because we have
already seen that p(x)≥ 0 for all x ∈X , we conclude that p is a proba-
bility mass function on L (X ).

Now, for any x ∈X , by [114, Theorem 3.6.1], there is a unique set
Tx⊆L (X )⊤ of coherent linear previsions onL (X ) that is non-empty
and convex (see Proposition A.18380 and Definition A.12376), that dom-
inates T x in the sense that T x f ≤ p⊤ f for all p⊤ ∈Tx and all f ∈L (X ),

8As the terminology indicates, these objects are strongly related to the coherent pre-
visions that we discussed in Chapter 245. Essentially, where we used coherent previsions
to come up with a notion of expectations, coherent lower previsions can be used to de-
rive a notion of lower expectations. In particular, this can be done axiomatically, e.g. by
imposing properties CLP1–CLP3, without the explicit reference to sets of probabilities
used in this work. We refer to [109,114] for further information.
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that satisfies T x f = infp⊤∈Tx
p⊤ f for all f ∈ L (X ), and that is com-

pact in the weak⋆ topology (on L (X )⊤). By Corollary A.23383, this Tx

is then also compact in the metric topology induced by the dual norm
‖·‖∗ on L (X )⊤. Hence Tx is closed and bounded by Corollary A.12378.

Following the discussion in Appendix A.2380, for any matrix T ∈M
and any x ∈X , we can interpret the x-row T (x, ·) of T as an element
of L (X )⊤. Moreover, it then holds that T (x,y) = T (x, ·)Iy, so it follows
from the above discussion that if T (x, ·) is a coherent linear prevision,
that then T (x,y), as a function of y, is a probability mass function on
L (X ). In other words, if we consider the set

T :=
{

T ∈M
∣

∣

∣
∀x ∈X : T (x, ·) ∈Tx

}

,

then it follows from Definition 3.591 that T is a set of transition ma-
trices. Because each Tx is non-empty, also T is non-empty. Moreover,
it is clear that, by Definition 3.13111, T has separately specified rows,
since each Tx represents the set of x-rows of the elements of T . It fol-
lows from Lemma 3.46137 that T is closed and convex because T has
separately specified rows and Tx is closed and convex for all x ∈X .

Moreover, for any f ∈L (X ) and any x ∈X , it holds that

inf
T∈T

T f (x) = inf
T (x,·)∈Tx

T (x, ·) f = T x f = T f (x) .

Because this is true for all x ∈X and all f ∈L (X ), it follows that T is
the lower transition operator corresponding to T .

In summary, we have shown the existence of a set T that satisfies
all of the properties that we claimed in the statement of this proposi-
tion. It remains to show that T = TT . To this end, note that because
T is the lower transition operator corresponding to T , it holds for all
f ∈L (X ) and all T ∈T that T f ≥ T f , and hence T ⊆TT .

To prove the inclusion in the other direction, fix any T ∈ TT . Then
it holds that T f ≥ T f for all f ∈ L (X ) and hence in particular, for
any x ∈X , this means that T f (x)≥ T f (x) = T x f for all f ∈L (X ). In
other words, for all x ∈X , the x-row T (x, ·) of T , which as we know, is
a coherent linear prevision on L (X ), dominates T x. This means that
T (x, ·)∈Tx by [114, Theorem 3.6.1]. BecauseT has separately specified
rows, this means that T ∈T , and hence TT ⊆T .

Proof of Corollary 3.38120. For all x ∈ X , let T x : L → R be as in
the proof of Proposition 3.37120 and, following the proof of Propo-
sition 3.37120, due to [114, Theorem 3.6.1] there is a unique set Sx

of coherent linear previsions on L (X ) that is non-empty, convex,
closed, that dominates T x, and that satisfies T x f = infp⊤∈Sx

p⊤ f for all
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f ∈L (X ). Moreover, we know from the proof of Proposition 3.37120
that Sx =

{

T (x, ·) : T ∈TT

}

is the set of x-rows of the elements of TT .
Now let Tx := {T (x, ·) : T ∈ T } be the set of x-rows of the elements

of T . Then Tx is non-empty because T is non-empty, closed and con-
vex due to Lemma 3.46137, and satisfies infp⊤∈Tx

p⊤ f = T f (x) = T x f

because T has T as its corresponding lower transition operator, which
also implies thatTx dominates T x. Moreover, becauseT is a set of tran-
sition matrices, and following the proof of Proposition 3.37120, each
p⊤ ∈ Tx is a coherent linear prevision on L (X ). Therefore, it follows
that Tx = Sx because, as we already know, Sx is the unique set of co-
herent linear previsions that satisfies these properties.

Because this is true for all x ∈X , and because T and TT both have
separately specified rows, it therefore follows that T = TT .
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4

Dynamics of Continuous-Time

Stochastic Processes

“It was called dub,
a sensuous mosaic cooked from vast libraries of digitalized pop;
it was worship, Molly said, and a sense of community.”

William Gibson, “Neuromancer”

In this chapter we introduce the technical machinery that we re-
quire to describe the behaviour of continuous-time stochastic pro-
cesses. We discussed in Chapter 383 that the behaviour of discrete-
time stochastic processes—and in particular Markov chains—can be
described using transition matrices. These transition matrices effec-
tively describe the transition probabilities of the system for a single
step in time. As such, and because of the discrete nature of the time
domain considered there, it suffices to work with a single transitionma-
trix (in the case of homogeneous Markov chains), or a countable family
of transitionmatrices (in the case of non-homogeneousMarkov chains).
In contrast, in a continuous-time setting there is no notion of “single
step in time”, because one could always consider a smaller step. Hence,
we require some additional machinery to describe these processes.

We start in Section 4.1y by introducing a particular type of
continuous-time stochastic processes, that we call well-behaved. Essen-
tially, these are processes whose behaviour is not too pathological, in
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a specific sense; the majority of this dissertation will focus on these
types of processes. In Section 4.2148 we introduce the notion of corre-
sponding (history-dependent) transition matrices for continuous-time
processes, in analogy to our developments in Chapter 383.

In Section 4.3150 we then introduce transition rate matriceswhich, as
we shall see, form the core of the methods to parameterise and perform
inference with continuous-time processes. We discuss their relation
with transition matrices, and introduce the notion of the correspond-
ing matrix exponential. In Section 4.4156 we introduce and study transi-
tion matrix systems: these are families of transition matrices satisfying
some specific properties that will allow us to use them as a parame-
terisation of continuous-time Markov chains in Chapter 5181. We also
study restrictions of these transition matrix systems, in Section 4.5158,
and investigate ways to, essentially, combine two or more of them into
a new transition matrix system.

We conclude with Section 4.6166, where we introduce the outer par-
tial derivatives of the transition matrices of continuous-time stochas-
tic processes. These are set-valued generalisations of (as their name
suggests) the partial derivatives of transition matrices. We prove that,
for well-behaved stochastic processes, these always are non-empty and
compact sets of transition rate matrices. These outer partial deriva-
tives are crucial to our definition of continuous-time imprecise-Markov
chains, in Chapter 5181.

As an aside before we start, recall from Chapter 245 that we take
the continuous-time setting as the implicit default in our notation. As
such, in contrast with the discussion in Chapter 383, we will (usually)
no longer be mentioning the time domain H = R≥0 explicitly in our
discussion and notation. Moreover, we have deferred the technical de-
tails of some running examples to Appendices 4.A173 and 4.B177. A few
of our proofs rely on technical norm inequalities that can be found in
Appendix B391.

4.1 Well-Behaved Stochastic Processes

Let us begin by introducing the notion of well-behaved stochastic pro-
cesses. We have already mentioned in the introduction to this chap-
ter that these are processes that are not “too” pathological. To make
this explicit, these are essentially processes for which the conditional
probabilities of the elementary events (Xt = x) do not change instanta-
neously as a function of t ∈R≥0. To see the need for this condition, and
to illustrate the kind of extreme behaviour we would otherwise have
to deal with, consider that Example 2.370 tells us in particular that for
any two states x,y ∈ X , there is a stochastic process P ∈ P such that
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4.1 Well-Behaved Stochastic Processes

P(Xt = y|X0 = x) = IQ>0
(t), where IQ>0

is the indicator of the positive ra-
tional numbers. Such processes are somewhat difficult to work with an-
alytically, and are arguably too unrealistic for applications. Therefore,
we simply exclude them from our analysis. What we require, then, is
that the rate of change of a stochastic process should remain bounded.
We formalise this requirement through the notion of well-behavedness.

Definition 4.1 (Well-Behaved Stochastic Process). A stochastic process
P∈P is said to bewell-behaved if, for any—possibly empty—time sequence
u ∈U , any xu ∈Xu, any x,y ∈X and any t ∈ R≥0 such that t > u:

limsup
∆→0+

1

∆
|P(Xt+∆ = y|Xt = x,Xu = xu)− Ix(y)|<+∞ (4.1)

and, if t 6= 0,

limsup
∆→0+

1

∆
|P(Xt = y|Xt−∆ = x,Xu = xu)− Ix(y)|<+∞. (4.2)

The set of all well-behaved stochastic processes is denoted by PW.

It should hopefully be clear that the specific pathological behaviour
mentioned above is prevented by imposing this condition of well-
behavedness, since clearly limsup∆→0+

1/∆

∣

∣IQ>0
(∆)
∣

∣ = +∞; this implies
that a process that satisfies P(Xt = y |X0 = x) = IQ>0

(t) for all t ∈ R>0,
with x 6= y, fails to satisfy Equation (4.1).

Moreover, to illustrate the interpretation of Equations (4.1)
and (4.2) as bounds on the rate of change of the process, observe that it
follows from Properties F247, F647, and F747 that

P(Xt = y|Xt = x,Xu = xu) = Ix(y) for all x,y ∈X ,

and therefore in particular, that these inequalities bound the rate of
change for ∆ around zero. This interpretation might also be under-
stood as imposing a kind of “local” Lipschitz continuity, in the sense
that there is a real number—a Lipschitz constant, if you want—that
bounds the rate of change. However, this bound is only local in the
sense that it can depend on both the value of t, and on the time-points
u and state assignment xu. Hence, the rate of change need not be uni-
formly bounded, whence the property is not truly Lipschitzian.

In light of the above, we note that the definition of well-
behavedness is related to continuity and differentiability, but stronger
than the former and weaker than the latter. Let us first establish that
the relevant probabilities described by any well-behaved process are
indeed continuous in this sense.
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Proposition 4.1. Let P∈ PW be a well-behaved stochastic process. Then for
all t ∈ R≥0, all u ∈U<t , all x,y ∈X , and all xu ∈Xu, the map pt : R→ R,
defined as

pt(∆) :=







P(Xt+∆ = y |Xt = x,Xu = xu) if ∆≥ 0

P(Xt = y |Xt−|∆| = x,Xu = xu) if ∆ < 0 and t−|∆|> u

0 otherwise,

is continuous in 0 if t > 0; if t = 0 then it is right-continuous in 0.

Proof. Fix any ε > 0. To show the continuity (or right-continuity, if
t = 0) we need to establish that there are δ−,δ+ > 0 such that for all
∆ ∈ (−δ−,δ+) (with ∆≥ 0 if t = 0), it holds that |pt(∆)− pt(0)|< ε .

Because P is well-behaved, and by Equation (4.1)x, there is some
δ+ ∈ R>0 and some B+ ∈ R>0 such that for all ∆ ∈ R>0 with ∆ < δ+, it
holds that

1

∆
|P(Xt+∆ = y|Xt = x,Xu = xu)− Ix(y)|< B+ ,

which implies that then also

|P(Xt+∆ = y|Xt = x,Xu = xu)− Ix(y)|< ∆B+ . (4.3)

Now let δ ∗+ ∈ R>0 be such that δ ∗+ ≤ δ+ and such that δ ∗+B+ ≤ ε ; this is
clearly always possible since B+ ∈ R>0.

Moreover, if t > 0 then it follows from Equation (4.2)x that there is
some δ− ∈R>0 and some B− ∈R>0 such that for all ∆∈R>0 with ∆< δ−,
it holds that

1

∆
|P(Xt = y|Xt−∆ = x,Xu = xu)− Ix(y)|< B− ,

which implies that then also

|P(Xt = y|Xt−∆ = x,Xu = xu)− Ix(y)|< ∆B− . (4.4)

Now let δ ∗− ∈ R>0 be such that δ ∗− ≤ δ−, such that t− δ ∗− > u, and such
that δ ∗−B− ≤ ε ; this is clearly always possible since t > u and B− ∈ R>0.
Conversely, if t = 0 then let δ ∗− ∈ R>0 be arbitrary.

We note, as already mentioned above, that it follows from Proper-
ties F247, F647, and F747 that

pt(0) = P(Xt = y|Xt = x,Xu = xu) = Ix(y) . (4.5)

Now fix any ∆ ∈ (−δ ∗−,δ
∗
+). Then if ∆≥ 0 it follows from the definition

of pt and Equation (4.5) that

|pt(∆)− pt(0)|= |P(Xt+∆ = y |Xt = x,Xu = xu)− Ix(y)|< ∆B+ < δ ∗+B+ ≤ ε ,
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4.1 Well-Behaved Stochastic Processes

where we used Equation (4.3) and the fact that ∆ < δ ∗+ ≤ δ+ for the first
inequality. If t = 0 then we only have to consider ∆ ≥ 0, so in that case
we are done, having established the right-continuity of pt in 0.

On the other hand, if t > 0 we also have to consider the case ∆ < 0;
suppose that this holds. Then |∆| < δ ∗−, which implies that t − |∆| > u

since t − δ ∗− > u. Therefore, it follows from the definition of pt and
Equation (4.5) that

|pt(∆)− pt(0)|=
∣

∣P(Xt = y |Xt−|∆| = x,Xu = xu)− Ix(y)
∣

∣

< |∆|B−<δ ∗−B− ≤ ε,

where we used Equation (4.3) and the fact that |∆| < δ ∗− ≤ δ− for the
first inequality. Hence if t > 0 we have shown that |pt(∆)− pt(0)|< ε for
all ∆ ∈ (−δ ∗−,δ

∗
+), which establishes the continuity of pt in 0.

The next example provides further intuition, and suggests that the
converse need not be true: there are processes where these probabilities
are continuous at certain time points, but which do not satisfy the well-
behavedness condition there; and, as claimed above, there are processes
that satisfy the well-behavedness condition at certain time points, but
for which these probabilities are not differentiable there.

Example 4.1. Let X be a state space that contains at least two states,
fix two states x,y ∈X such that x 6= y, and consider any function p :

R>0→ [0,1]. Then as we know from Example 2.370, there is a stochastic
process P such that

P(X∆ = y|X0 = x) = p(∆) for all ∆ ∈ R>0.

Furthermore, since x 6= y, it follows from F647 and F747
that P(X0 = y|X0 = x) = 0. We now consider two choices for p.

If we let p(∆) :=
√

∆ for ∆ ∈ (0,1] and p(∆) := 1 for ∆ ≥ 1,
then P(X∆ = y|X0 = x) is continuous onR≥0 because P(X0 = y|X0 = x) = 0.
However, we also find that

limsup
∆→0+

1

∆
|P(X∆ = y|X0 = x)− Ix(y)|= limsup

∆→0+

1

∆

√
∆ =+∞

and therefore, it follows from Equation (4.1)145—with t = 0 and u = /0—
that P is not well-behaved.

On the other hand, if we let p(∆) := ∆ |sin(1/∆)| for ∆ ∈ R>0, we find
that

limsup
∆→0+

1

∆
|P(X∆ = y|X0 = x)− Ix(y)|= limsup

∆→0+
|sin(1/∆)|= 1.
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In this case—at least for t = 0 and u = /0—P does exhibit the behaviour
of a well-behaved stochastic process. Furthermore, P(X∆ = y|X0 = x) is
again continuous on R≥0.

1 However, P(X∆ = y|X0 = x) is not differen-
tiable in ∆ = 0, because 1/∆P(X∆ = y|X0 = x) = |sin(1/∆)| oscillates ever
more wildly as ∆ approaches zero, so has no limit there. ♦

4.2 Corresponding Transition Matrices

Let us now introduce the notion of transitionmatrices corresponding to
continuous-time stochastic processes. This is largely analogous to the
concept of transition matrices corresponding to discrete-time stochas-
tic processes, as discussed in Chapter 383, but with some important
distinctions. We start by considering corresponding history-dependent
transition matrices. For a given stochastic process, these matrices form
a multi-index family (T s

t,xu
) of transition matrices, with indices t, s, and

xu, defined as follows.

Definition 4.2 (Corresponding History-Dependent Transition Matrix).
Let P ∈ P be a stochastic process. Then the family of history-dependent
transition matrices corresponding to P is a multi-index family (T s

t,xu
) of

matrices T s
t,xu

with t,s ∈R≥0 such that t ≤ s, u ∈U<t , and xu ∈Xu, that are
defined, for all t,s ∈ R≥0 with t ≤ s, all u ∈U<t , and all xu ∈Xu, as

T s
t,xu

(xt ,xs) := P(Xs = xs|Xt = xt ,Xu = xu) for all xt ,xs ∈X .

For notational convenience, if u is empty we write T s
t = T s

t,x /0
.

Let us compare this to the family (Tn,xv) of history-dependent
transition matrices corresponding to a discrete-time stochastic pro-
cess P ∈ PD, with τ the canonical time index of D, as in Defini-
tion 3.8101. Two straightforward differences are that n∈Z≥0 is an index
in a countably infinite index set, whereas t ∈ R≥0 has an uncountably
infinite domain; and u ∈U<t contains any finite set of time points that
precedes t, whereas v = τ0, . . . ,τn−1 contains all time points up to time
n.

The more striking difference is the additional index s, which has
no counterpart in the discrete-time setting. We need this due to the
continuous nature of the time domain considered here; whereas Tn,xu

contains the probabilities for the system to move from the state Xτn at
time τn to the state Xτn+1

at the next time point τn+1, there is no proper

1Note that p(∆) = ∆ |sin(1/∆)| is not continuous (or even defined) at ∆ = 0, but this
function is only used to define P(X∆ = y|X0 = x) for ∆ > 0, and hence this is not a problem.
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notion of “next” in a continuous-time setting. Hence, we need to ex-
plicitly account for the time point s for which the matrix T s

t,xu
contains

these probabilities.
The following proposition establishes some simple properties of

these corresponding (history-dependent) transition matrices.

Proposition 4.2. Let P∈ P be a stochastic process with corresponding fam-
ily of history-dependent transition matrices (T s

t,xu
). Then, for any t,s ∈ R≥0

such that t ≤ s, any sequence of time points u ∈U<t , and any state assign-
ment xu ∈Xu, the corresponding (history-dependent) transition matrix T s

t,xu

is—as its name suggests—a transition matrix, and T t
t,xu

= I. Furthermore,
P is well-behaved if and only if, for every—possibly empty—time sequence
u ∈U , any xu ∈Xu and any t ∈ R≥0 such that t > u:

limsup
∆→0+

1

∆

∥

∥

∥
T t+∆

t,xu
− I

∥

∥

∥
<+∞ (4.6)

and, if t 6= 0,

limsup
∆→0+

1

∆

∥

∥T t
t−∆,xu

− I
∥

∥<+∞. (4.7)

Proof. The first part of the statement follows from Corollary 2.2068 and
Definitions 3.591 and 2.147. The second part is a consequence of Defi-
nition 4.1145 and Equation (2.7)63.

Recall also from Chapter 383 that the transition matrices corre-
sponding to discrete-time processes, could be used to represent con-
ditional expectations for these processes. It is perhaps not surprising
that an analogous property holds in the continuous-time setting.

Proposition 4.3. Let P∈ P be a stochastic process with corresponding fam-
ily of history-dependent transition matrices (T s

t,xu
). Then for all t,s ∈ R≥0

with t ≤ s, all u ∈U<t , xu ∈Xu, xt ∈X , and f ∈L (X ), it holds that

EP[ f (Xs) |Xt = xt ,Xu = xu] = T s
t,xu

f (xt) .

Proof. Because u < t ≤ s, it holds that {s} ∈ {t}∪u∪R>({t}∪u), and hence,
by Proposition 2.2373—with v = {s}—it holds that

EP[ f (Xs) |Xt = xt ,Xu = xu] = ∑
y∈X

f (y)P(Xs = y |Xt = xt ,Xu = xu)

= ∑
y∈X

f (y)T s
t,xu

(xt ,y)

= T s
t,xu

f (xt) ,

where we used Definition 4.2 for the second equality, and the proper-
ties of matrix-vector multiplication for the last equality.
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We end this section by considering history-independent transition
matrices corresponding to a given stochastic process, which we also
simply call corresponding transition matrices. These will later be useful
to describe continuous-time Markov chains, but because we have not
yet formally defined those, for now we simply give this definition for
general stochastic processes.

Definition 4.3 (Corresponding Transition Matrix). Let P ∈ P be a
stochastic process. Then the family of transition matrices correspond-
ing to P is a multi-index family (T s

t ) of matrices T s
t with t,s ∈ R≥0 such

that t ≤ s, that are defined, for all t,s ∈ R≥0 with t ≤ s, as

T s
t (xt ,xs) := P(Xs = xs|Xt = xt) for all xt ,xs ∈X .

Note that the family (T s
t ) of all transition matrices corresponding to

a stochastic process P, contains in particular the elements T s
t,xu

of the
family (T s

t,xu
) of history-dependent transition matrices corresponding

to P, for the choice u = /0. Hence, the following result should not be
surprising.

Corollary 4.4. Let P ∈ P be a stochastic process with corresponding family
of transition matrices (T s

t ). Then for all t,s ∈ R≥0 with t ≤ s, the matrix T s
t

is a transition matrix, and T t
t = I.

Moreover, for all t,s ∈R≥0 with t ≤ s, all xt ∈X , and all f ∈L (X ), it
holds that

EP[ f (Xs) |Xt = xt ] = T s
t f (xt) .

Proof. This follows from Propositions 4.2x and 4.3x.

4.3 Transition Rate Matrices

We now turn our attention to the concept of transition rate matrices [82].
As we shall discuss in this and following chapters, these matrices are
closely related to the corresponding (history-dependent) transition ma-
trices of stochastic processes, and therefore serve as an alternative pa-
rameterisation for them. Let us start with the general definition.

Definition 4.4 (Transition Rate Matrix). A real-valued matrix Q is said
to be a transition rate matrix, or sometimes simply rate matrix, if

R1: ∑y∈X Q(x,y) = 0 for all x ∈X ;

R2: Q(x,y)≥ 0 for all x,y ∈X such that x 6= y.

We use R to denote the set of all transition rate matrices.
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As the next result shows, the set R forms a convex cone in the
space of all real-valued matrices; that is, R is closed under addition
and multiplication with non-negative scalars. Hence in particular, the
convex combination λQ1 +(1− λ )Q2 of two rate matrices Q1,Q2 ∈ R,
with λ ∈ [0,1], is a rate matrix.

Proposition 4.5. For any λ1,λ2 ∈ R≥0 and any Q1,Q2 ∈ R, it holds that
λ1Q1 +λ2Q2 ∈R.

Proof. First note that for all x ∈X , it holds that

∑
y∈X

(

λ1Q1 +λ2Q2

)

(x,y) = ∑
y∈X

λ1Q1(x,y)+λ2Q2(x,y) = 0 ,

because both Q1 and Q2 satisfy Property R1. Hence λ1Q1 + λ2Q2 also
satisfies R1. Moreover, for all x,y ∈X it holds that

(

λ1Q1 +λ2Q2

)

(x,y) = λ1Q1(x,y)+λ2Q2(x,y)≥ 0 ,

because both Q1 and Q2 satisfy Property R2, and λ1,λ2 ≥ 0. Hence
λ1Q1 + λ2Q2 also satisfies R2, whence λ1Q1 + λ2Q2 is a rate matrix by
Definition 4.4.

Moreover, it is useful to observe that R is a complete metric space:

Proposition 4.6. R is complete under the metric induced by our norm ‖·‖.

Proof. Let {Qi}i∈Z>0
be any Cauchy sequence in R; as discussed in

Appendix A369, the space of all matrices M is complete, so the limit
Q∗ := limi→+∞ Qi exists in M. We need to show that also Q∗ ∈R.

First fix any x,y ∈ X with x 6= y, and suppose ex absurdo that
Q∗(x,y) < 0. Then because Q∗ = limi→+∞ Qi there is some n ∈ Z>0 such
that ‖Qn−Q∗‖ < −Q∗(x,y). Because Qn ∈ R it follows from Prop-
erty R2 that Qn(x,y) ≥ 0, and therefore, because Q∗(x,y) < 0, that
Qn(x,y)−Q∗(x,y) = |Qn(x,y)−Q∗(x,y)|. Hence it follows that

Qn(x,y)−Q∗(x,y) = |Qn(x,y)−Q∗(x,y)|
≤ ∑

z∈X
|Qn(x,z)−Q∗(x,z)| ≤ ‖Qn−Q∗‖<−Q∗(x,y) ,

using Equation (2.7)63 for the second inequality. Adding Q∗(x,y) to
both sides of this equation yields Qn(x,y) < 0, which contradicts Prop-
erty R2 and the fact that Qn ∈ R. Hence Q∗(x,y) ≥ 0 and, because
x,y∈X with x 6= y are arbitrary, it follows that Q∗ satisfies property R2.

Next, fix any x ∈X , and let f ∈L (X ) be such that f (y) := 1 for all
y ∈X . Then Q∗ f (x) = ∑y∈X Q∗(x,y) f (y) = ∑y∈X Q∗(x,y), so in order to
show that Q∗ satisfies Property R1 it suffices to show that Q∗ f (x) = 0.
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Note that, for all i ∈ Z>0, it holds that Qi f (x) = 0 because Qi satisfies
Property R1150 since Qi ∈ R. Because Q∗ = limi→+∞ Qi it follows from
Lemma A.34390 that Q∗ f = limi→+∞ Qi f and therefore, since Qi f (x) =
0 for all i ∈ Z>0, that Q∗ f (x) = limi→+∞ Qi f (x) = 0. Because x ∈ X is
arbitrary, this means that Q∗ also satisfies Property R1150.

The following result provides an easy expression for the norm of
any rate matrix:

Lemma 4.7. For any Q ∈R it holds that ‖Q‖=−2minx∈X Q(x,x).

Proof. First fix any x ∈X . Then because Q ∈R, it follows from Prop-
erty R1150 that ∑y∈X \{x}Q(x,y) = −Q(x,x) and therefore, due to Prop-
erty R2150, that Q(x,x) ≤ 0 and that |Q(x,x)| = ∑y∈X \{x}Q(x,y), which
implies that 2 |Q(x,x)| = ∑y∈X |Q(x,y)|. From Equation (2.7)63 we ob-
tain

‖Q‖= max
x∈X ∑

y∈X
|Q(x,y)|= 2max

x∈X
|Q(x,x)|=−2 min

x∈X
Q(x,x) ,

where for the final equality we used the conjugacy property
min{·}=−max{−·} and the fact that Q(x,x)≤ 0.

Now consider any set Q ⊆R of rate matrices. We note from Defi-
nition A.12376 that Q is said to be bounded if ‖Q‖ := supQ∈Q ‖Q‖<+∞.
The following proposition provides a simple alternative characterisa-
tion of boundedness.

Proposition 4.8. A set of rate matrices Q ⊆R is bounded if and only if

inf
Q∈Q

Q(x,x)>−∞ for all x ∈X . (4.8)

Proof. We start by proving that Equation (4.8) implies ‖Q‖ < +∞; so
assume that Equation (4.8) holds. Then it follows from Lemma 4.7 that

‖Q‖= sup
Q∈Q
‖Q‖= sup

Q∈Q
−2 min

x∈X
Q(x,x) =−2 min

x∈X
inf

Q∈Q
Q(x,x) ,

where in the final equality we used that X is finite together with the
conjugacy property inf{·} = −sup{−·}. This implies that there is some
x ∈X such that ‖Q‖ = −2infQ∈Q Q(x,x) which, using Equation (4.8),
implies that ‖Q‖<+∞. This concludes the proof for the first direction.

We next show that ‖Q‖ < +∞ implies Equation (4.8). So suppose
that ‖Q‖ < +∞, and assume ex absurdo that Equation (4.8) does not
hold. Then there is some x ∈X and Q ∈Q such that Q(x,x)<−‖Q‖.
However, this implies that ‖Q‖ ≥ ‖Q‖ ≥ |Q(x,x)|> ‖Q‖, which is a con-
tradiction. Hence, it follows that Equation (4.8) must be true, which
concludes the proof for the second direction.
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The connection between transition matrices and rate matrices is
perhaps best illustrated intuitively, as follows. Suppose that at some
time point t, we want to describe for any state x the probability of end-
ing up in state y at some time s≥ t. Let us collect all these probabilities
in a family (T s

t ) of transition matrices T s
t , with t,s ∈R≥0 and t ≤ s. Note

first of all that it is reasonable to assume that at any point t in time, the
system can only be in one state. That is, if we are in state x at time t,
then the probability of still being in state x at time s = t, should be one.
Hence, we should have T t

t = I, with I the identity matrix, for all t ∈R≥0.
Put differently, this essentially says that the system cannot change be-
tween states without time moving forward.

A rate matrix Q is then used to describe the transition matrix T t+∆
t

after a small period of time, ∆ ∈ R≥0, has elapsed. Specifically, the
scaled matrix ∆Q serves as a linear approximation of the change from
T t

t to T t+∆
t . The following proposition states that, for small enough ∆,

this linear approximation is also a transition matrix.

Proposition 4.9. Consider any rate matrix Q ∈R, and any ∆ ∈ R≥0 such
that ∆‖Q‖ ≤ 1. Then (I +∆Q) is a transition matrix.

Proof. T191 follows from R1150: for all x ∈X , R1150 implies that

∑
y∈X

(

I +∆Q
)

(x,y) = ∑
y∈X

I(x,y)+∆ ∑
y∈X

Q(x,y) = 1+∆0 = 1.

T291 follows from R2150 and that 0 ≤ ∆‖Q‖ ≤ 1: for all x,y ∈X such
that x 6= y, 0≤ ∆‖Q‖ ≤ 1 implies that

(

I +∆Q
)

(x,x) = 1+∆Q(x,x)≥ 1−∆‖Q‖ ≥ 0 ,

and R2150 and ∆≥ 0 imply that
(

I +∆Q
)

(x,y) = ∆Q(x,y)≥ 0.

This also explains the terminology used; a rate matrix describes the
“rate of change” of a (continuously) time-dependent transition matrix
over a small enough period of time. Of course, this notion can also
be reversed; given a transition matrix T t+∆

t , what is the change that it
underwent compared to T t

t = I? The following proposition states that
such a change can always be described using a rate matrix.

Proposition 4.10. Consider any transition matrix T , and any ∆ ∈ R>0.
Then 1/∆(T − I) is a rate matrix.

Proof. This proof is analogous to that of Proposition 4.9; simply verify
both of the properties in Definition 4.4150.
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Note that Proposition 4.10x essentially states that the finite-
difference 1/∆(T t+∆

t −T t
t ) is a rate matrix. Intuitively, if we now take the

limit as this ∆ goes to zero, this states that the derivative of a continu-
ously time-dependent transition matrix will be given by a rate matrix
Q ∈ R—assuming that this limit exists, of course. We will make this
connection more explicit in Section 4.6166.

We next introduce a function that often appears in the context of
continuous-time Markov chains, and that will play an important role
in the remainder of this work: the matrix exponential eQt of Qt, with Q

a rate matrix and t ∈ R≥0. There are various equivalent ways in which
this matrix exponential can be defined. Some notable ones are given
below.

Definition 4.5 ([111, Section 4]). Consider any rate matrix Q∈R and any
t ∈ R≥0. Then the matrix exponential eQt of the matrix Qt can be defined in
the following equivalent ways:

ME1: eQt := ∑
+∞
k=0

Qktk

k!
;

ME2: eQt := Tt , where T : R→M : s 7→ Ts is such that T0 := I and

d

ds
Ts := lim

∆→0

1

∆

(

Ts+∆−Ts

)

= QTs for all s ∈ R;2

ME3: eQt := limk→+∞(I + t/kQ)k.

Before investigating any of these definitions, the following well-
known result suggests why we are interested in matrix exponentials
in the first place.

Proposition 4.11 ([82, Theorem 2.1.2]). Consider any rate matrix Q ∈R

and any t ∈ R≥0. Then eQt is a transition matrix.

Although conceptually similar, the properties of this matrix ex-
ponential differ a bit from those of the (scalar) exponential function.
The following results highlight an important such difference—that
stems from the fact that, in contrast to scalars, matrices do not always
commute—and which will be relevant to us further on.

Proposition 4.12 ([111, Theorem 5]). For any Q1,Q2 ∈ R it holds that
e(Q1+Q2)t = eQ1teQ2t for all t ∈ R≥0, if and only if Q1 and Q2 commute, i.e.
when it holds that Q1Q2 = Q2Q1.

2Following reference [111], Ts is defined for all s ∈ R, even if in this work we only
consider eQt with t ∈ R≥0.
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The following result casts the above into a form that will be more
directly useful to us.

Lemma 4.13. Let Q1,Q2 ∈ R be two commuting rate matrices, i.e. such
that Q1Q2 = Q2Q1. Then eQ1t+Q2s = eQ1teQ2s = eQ2seQ1t for all t,s ∈ R≥0.

Proof. Let Q′1 := Q1t and Q′2 := Q2s. Then, by Proposition 4.5151, it holds
that Q′1,Q

′
2 ∈R. Moreover, because Q1 and Q2 commute, it follows that

also Q′1 and Q′2 commute, since

Q′1Q′2 = tsQ1Q2 = tsQ2Q1 = Q′2Q′1 .

It now follows from Proposition 4.12 that

eQ1t+Q2s = eQ′1+Q′2 = eQ′1eQ′2 = eQ1teQ2s .

Completely analogously, we see that also eQ1t+Q2s = eQ2seQ1t , whence it
follows that eQ1teQ2s = eQ2seQ1t .

Note that Lemma 4.13 does not hold vacuously; for any Q1 ∈R and
λ ∈ R≥0, it follows from Proposition 4.5151 that Q2 := λQ1 is a rate ma-
trix, and Q1Q2 = λQ1Q1 = Q2Q1, whence Q1 and Q2 are two commuting
rate matrices.

Let us now consider the various forms by which Definition 4.5 de-
fines the matrix exponential eQt . First, the power series expression
in ME1 is also the form in which eat is often defined for scalar a ∈ R.

The expression in ME2 provides the well-known connection of the
exponential function to differential forms. In particular, this gives the
definition of the exponential function as the solution Tt of the homo-
geneous matrix-valued initial value problem d

ds
Ts = QTs with initial

(boundary) condition T0 = I. Note that this implies that the k-th deriva-
tive of eQt = Tt in t is given by

dk

d tk
Tt = QkTt ,

from which we see that the power series in ME1 is exactly the Taylor
expansion of eQt around t = 0. Moreover, this also means that Q is the
derivative of eQt at t = 0. This result will be crucial in the sequel, so we
formalise it below.

Lemma 4.14 ([82, Theorem 2.1.1]). For any Q ∈R, we have that

d

d t
eQt
∣

∣

t=0
= lim

∆→0

1

∆
(eQ∆− I) = Q.
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Finally, the expression in ME3154 can be understood as the Euler so-
lution of the ordinary differential equation expressed in ME2154. One
way to understand this is that, for large enough k, it follows from
Proposition 4.9153 that (I + t/kQ) is a transition matrix. Following the
discussion around that result, we can understand this matrix as repre-
senting the transition probabilities over the (small) time step t/k. Since
we know from Proposition 3.891 that products of transition matrices
are, themselves, transition matrices, it follows that (I + t/kQ)k is a tran-
sition matrix. This compound matrix can be understood as containing
the transition probabilities over k steps, where for each step, the proba-
bilities are given by (I+ t/kQ). In the limit as k goes to infinity, this com-
position becomes the matrix exponential eQt which, as we know from
Proposition 4.11154, is a transition matrix. In light of this interpreta-
tion, it should be intuitively clear how matrix exponentials of rate ma-
trices play an important role in the theory of continuous-time Markov
chains; we shall formalise this in Chapter 5181.

4.4 (Well-Behaved) Transition Matrix Systems

In the previous section, we discussed the relationship between tran-
sition rate matrices, and transition matrices. In particular, we mo-
tivated this connection in terms of the (differential) behaviour of
continuously time-dependent transition matrices Tt (or T s

t ). More-
over, in Section 4.2148 we introduced the families (T s

t xu
) and (T s

t ) of
(history-dependent) transition matrices corresponding to continuous-
time stochastic processes. Indeed, these families can be understood as
continuously time-dependent transition matrices. It is the goal of this
section to study such families in an abstract sense. In Chapter 5181 we
will make the explicit connection to continuous-time stochastic pro-
cesses, and in particular to continuous-time Markov chains.

In this section we focus on two-parameter families (T s
t ) with t,s ∈

R≥0 such that t ≤ s, where each T s
t is a transition matrix. We have al-

ready noted in the previous section that, due to the underlying inter-
pretation we want to work with, it is reasonable to assume that T t

t = I. If
the transition matrices of a family (T s

t ) satisfy this property, and if they
furthermore satisfy the semigroup property—see Equation 4.9 below—
we call this family a transition matrix system.

Definition 4.6 (Transition Matrix System). A transition matrix system
(T s

t ) is a two-parameter family of transition matrices T s
t , defined for all

t,s ∈ R≥0 with t ≤ s, such that for all t,r,s ∈ R≥0 with t ≤ r ≤ s, it holds
that

T s
t = T r

t T s
r , (4.9)
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and for all t ∈ R≥0, that T t
t = I.

We use T to denote the set of all transition matrix systems.

In the previous section, we have seen that for any transition ma-
trix T and any ∆ ∈R>0, the matrix 1/∆(T − I) is a rate matrix, and there-
fore, in particular, that the finite difference 1/∆(T t+∆

t −I) is a rate matrix.
We here note that this is also true for 1/∆(T t

t−∆− I) whenever (t−∆)> 0.
We now consider this property in the context of a transition matrix

system (T s
t ). For all t ∈ R≥0 and all ∆ ∈ R>0, such a transition matrix

system specifies a transition matrix T t+∆
t and—if (t−∆) ≥ 0—a transi-

tion matrix T t
t−∆. We now consider the behaviour of these matrices for

various values of ∆. In particular, we look what happens to these finite
differences if we take ∆ to be increasingly smaller.

For each ∆ ∈ R>0, due to the property that we have just recalled,
there will be a rate matrix that corresponds to these finite differences.
If the norm of these rate matrices never diverges to +∞ as we take ∆ to
zero, we call the family (T s

t ) well-behaved.

Definition 4.7 (Well-Behaved Transition Matrix System). A transition
matrix system (T s

t ) is called well-behaved if

(∀t ∈ R≥0) limsup
∆→0+

1

∆

∥

∥

∥
T t+∆

t − I

∥

∥

∥
<+∞ , (4.10)

and

(∀t ∈ R>0) limsup
∆→0+

1

∆

∥

∥T t
t−∆− I

∥

∥<+∞ . (4.11)

We stress that the interpretation is analogous to the definition of
well-behavedness that we introduced in Section 4.1144, and that we
encountered in terms of families of transition matrices in Proposi-
tion 4.2149.

We now consider an important special type of transition matrix sys-
tems. We have seen in the previous section that for any Q ∈R and any
t ∈ R≥0, the matrix exponential eQt is a transition matrix. Hence we
can consider the one-parameter family (eQt), with t ∈R≥0, of transition
matrices eQt . This family is known as the semigroup generated by Q, and
Q is known as the generator of this semigroup [94, Chapter 13]. This
family satisfies the semigroup property, analogous to Equation (4.9), in
the following sense.

Proposition 4.15. Consider any rate matrix Q ∈R, and consider the fam-
ily (eQt), with t ∈ R≥0, of transition matrices eQt . Then for all t,s ∈ R≥0 it
holds that eQ(t+s) = eQteQs = eQseQt .

Proof. This follows from Lemma 4.13155 and the fact that Q trivially
commutes with itself.
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Although the family (eQt) has only a single index t ∈ R≥0, we can
identify with it a (two-parameter) family (eQ(s−t)), with parameters
t,s ∈ R≥0 such that t ≤ s; although this second index is superfluous,
this allows us to streamline our notation for what follows. Hence, we
introduce the following definition.

Definition 4.8. For any rate matrix Q ∈R, we use (eQ(s−t)) to denote the
two-parameter family of transition matrices eQ(s−t), defined for all t,s∈R≥0

with t ≤ s. We call this family (eQ(s−t)) the exponential transition matrix
system corresponding to Q.

The next result motivates the terminology.

Proposition 4.16. For any Q ∈ R, (eQ(s−t)) is a well-behaved transition
matrix system.

Proof. For ease of notation, let T s
t := eQ(s−t) for all t,s ∈ R≥0 such that

t ≤ s. We start by showing that (eQ(s−t)) is a transition matrix system.
Because of Proposition 4.11154, (e

Q(s−t)) is clearly a family of transition
matrices. Consider now any t,r,s ∈ R≥0 such that t ≤ r ≤ s. It then
follows from the definition of (eQ(s−t)) and Proposition 4.15x that

T s
t = eQ(s−t) = eQ(s−r+r−t) = eQ(r−t)eQ(s−r) = T r

t T s
r ,

and T t
t = I. Because the t,r,s are arbitrary, it follows from Defini-

tion 4.6156 that (e
Q(s−t)) is a transition matrix system.

To prove that (eQ(s−t)) is well-behaved, note that for any t ∈ R≥0,
because of Definition 4.8,

limsup
∆→0+

1

∆

∥

∥

∥
T t+∆

t − I

∥

∥

∥
= limsup

∆→0+

∥

∥

∥

∥

1

∆
(T t+∆

t − I)−Q+Q

∥

∥

∥

∥

≤ limsup
∆→0+

∥

∥

∥

∥

1

∆
(T t+∆

t − I)−Q

∥

∥

∥

∥

+‖Q‖= ‖Q‖< ∞ ,

where the first inequality follows from Proposition 2.1663, the second
equality follows from Lemma 4.14155 and the final inequality uses that
Q is real-valued. Because this holds for any t ∈ R≥0, the condition in
Equation (4.10)x is satisfied. A similar argument shows that Equa-
tion (4.11)x is also satisfied, whence (eQ(s−t)) is well-behaved.

4.5 Restricted Transition Matrix Systems

We will now introduce some machinery that allows us to combine two
(or more) transition matrix systems into another, new, transition matrix
system. The fundamental concept that we need is the restriction of a
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transition matrix system (T s
t ) to a closed interval I in its index set R≥0.

By a closed interval I, we here mean a non-empty closed subset I⊆ R≥0

that is connected, in the sense that for any t,s ∈ I such that t ≤ s, and
any r ∈ [t,s], it holds that r ∈ I. Note that for any c ∈R≥0, [c,+∞) is such
a closed interval.

For any transition matrix system (T s
t ) and any such closed interval

I⊆ R≥0, we use (T s
t )I to denote the restriction of (T s

t ) to I. This restric-
tion is a family of transition matrices T s

t that is defined for all t,s ∈ I

such that t ≤ s. We call such a family (T s
t )I a restricted transition matrix

system on I. The set of all restricted transition matrix systems on I is
denoted by TI.

Proposition 4.17. Consider any closed interval I ⊆ R≥0, and let (T s
t )I be

a family of transition matrices T s
t that is defined for all t,s ∈ I with t ≤ s.

Then (T s
t )I is a restricted transition matrix system on I if and only if, for all

t,r,s ∈ I with t ≤ r ≤ s, it holds that T s
t = T r

t T s
r and T t

t = I.

Proof. If (T s
t )I is a restricted transition matrix system, then, by defi-

nition, it is the restriction to I of some transition matrix system (T s
t ).

Therefore, the ‘only if’ part of this result follows trivially from Defini-
tion 4.6156.

For the ‘if’ part, we need to prove that for any family of transi-
tion matrices (T s

t )I such that, for all t,r,s ∈ I with t ≤ r ≤ s, it holds
that T s

t = T r
t T s

r and T t
t = I, there is a transition matrix system (T s

t ) that
coincides with (T s

t )I on I. In order to prove this, it suffices to show that
the unique family of transition matrices (T s

t ) that coincides with (T s
t )I

on I and that is otherwise defined, for all t,s ∈ R≥0 with t ≤ s and
[t,s] 6⊆ I, by

T s
t :=































I if s < minI

T s
minI if t < minI and s ∈ I

T
supI

minI if t < minI and supI< s

T
supI

t if t ∈ I and supI< s

I if supI < t

(4.12)

is a transition matrix system. This is a matter of straightforward verifi-
cation. In the sequel, we will also refer to this transition matrix system
(T s

t ) as the canonical extension of (T s
t )I.

We call a restricted transition matrix system (T s
t )I well-behaved if it

is the restriction to I of a well-behaved transition matrix system.

Proposition 4.18. Consider any closed interval I⊆R≥0, and let (T s
t )I be a

restricted transition matrix system on I. Then (T s
t )I is well-behaved if and
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only if

(∀t ∈ I
+) limsup

∆→0+

1

∆

∥

∥

∥
T t+∆

t − I

∥

∥

∥
<+∞ , (4.13)

and

(∀t ∈ I
−) limsup

∆→0+

1

∆

∥

∥T t
t−∆− I

∥

∥<+∞ , (4.14)

where I+ := I\{supI} and I− := I\{minI}.

Proof. If (T s
t )I is well-behaved, then, by definition, it is the restriction

to I of some well-behaved transition matrix system (T s
t ). Therefore, the

‘only if’ part of this result follows trivially from Definition 4.7157.
For the ‘if’ part, we need to show that for any restricted transition

matrix system (T s
t )I on I that satisfies Equations (4.13) and (4.14), there

is a well-behaved transition matrix system (T s
t ) that coincides with

(T s
t )I on I. Let (T s

t ) be the canonical extension of (T s
t )I, as constructed in

the proof of Proposition 4.17x. Then, as explained in that proof, (T s
t )

is a transition matrix system that coincides with (T s
t )I on I. Therefore,

it suffices to prove that (T s
t ) is well-behaved. We start by proving that

(T s
t ) satisfies Equation (4.10)157. So consider any t ∈R≥0. If t ∈ I+, then

the desired inequality follows from Equation (4.13). If t /∈ I+, then ei-
ther t < minI or t ≥ supI, and therefore, for sufficiently small ∆ > 0, it
follows from Equation (4.12)x that T t+∆

t = I, thereby making the de-
sired inequality trivially true. That (T s

t ) satisfies Equation (4.11)157 can
be proved similarly.

In order to combine multiple such restricted transition matrix sys-
tems into a single, new, (restricted) transition matrix system, we intro-
duce a concatenation operator, as follows.

Definition 4.9 (Concatenation Operator). For any two closed intervals
I,J ⊆ R≥0 such that maxI exists and equals minJ, and any two restricted
transition matrix systems (T s

t )I and (Ss
t )J, the concatenation (T s

t )I⊗ (Ss
t )J

of (T s
t )I and (Ss

t )J is defined as the family (T s
t )I⊗ (Ss

t )J := (Rs
t )I∪J of transi-

tion matrices Rs
t that is given by

Rs
t :=











T s
t if t,s ∈ I

Ss
t if t,s ∈ J

T r
t Ss

r if t ∈ I and s ∈ J

for all t,s ∈ I∪J such that t ≤ s,

where r := maxI = minJ.

This concatenation operator satisfies the following intuitive prop-
erty.
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Proposition 4.19. Consider two closed intervals I,J⊆R≥0 such that maxI

exists and equals minJ, and any two restricted transition matrix systems
(T s

t )I and (Ss
t )J. Then their concatenation (Rs

t )I∪J := (T s
t )I⊗ (Ss

t )J is a re-
stricted transition matrix system on I∪ J. Furthermore, if both (T s

t )I and
(Ss

t )J are well-behaved, then (Rs
t )I∪J is also well-behaved.

Proof. For all t,s∈ I∪J such that t ≤ s, it follows from Proposition 3.891
that the matrix Rs

t is a transition matrix. Furthermore, for all t ∈ I∪ J,
we have that either t ∈ I or t ∈ J. In either case, we have that Rt

t = I,
because either Rt

t = T t
t = I or Rt

t = St
t = I. Next, we show that for all

t,q,s ∈ I∪J with t ≤ q≤ s, it holds that

Rs
t = R

q
t Rs

q .

If both t,s ∈ I or if both t,s ∈ J, this clearly holds. Therefore, we may
assume that t ∈ I and s ∈ J. Suppose furthermore that q ∈ I. Then, from
the definition of the concatenation operator ⊗, we have that Rs

q = T r
q Ss

r,

with r = maxI = minJ. Because t,q,r ∈ I, we know that T
q

t T r
q = T r

t , and
hence, by the definition of the concatenation operator,

R
q
t Rs

q = T
q

t T r
q Ss

r = T r
t Ss

r = Rs
t .

An exactly analogous argument proves the case for q ∈ J. Therefore, it
follows from Proposition 4.17159 that (Rs

t )I∪J is a restricted transition
matrix system.

It remains to prove that if (T s
t )I and (Ss

t )J are both well-behaved,
that then (Rs

t )I∪J is also well-behaved. Due to Proposition 4.18159, it
suffices to prove that (Rs

t )I∪J satisfies Equations (4.13) and (4.14). We
only prove that it satisfies Equation (4.13), that is, that

(

∀t ∈ (I∪J)+
)

limsup
∆→0+

∥

∥

∥

∥

1

∆

(

Rt+∆
t − I

)

∥

∥

∥

∥

<+∞.

The proof for Equation (4.14) is completely analogous. So consider any
t ∈ (I∪J)+. Since supI = maxI = minJ, it follows that

(I∪J)+ := (I∪J)\{sup(I∪J)}
= (I∪J)\{supJ}= (I\ supI)∪ (J\ supJ) = I

+∪J
+.

Therefore, without loss of generality, we may assume that t ∈ I+. The
desired result now follows by applying Proposition 4.18159 to the well-
behaved restricted transition matrix system (T s

t )I.

The following example illustrates how we can compose two (re-
stricted) transition matrix systems into a new (unrestricted) transition
matrix system.
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Example 4.2. Consider any two rate matrices Q1,Q2 ∈ R such that
Q1 6= Q2, and let

(

eQ1(s−t)
)

and
(

eQ2(s−t)
)

be their exponential transi-
tion matrix systems, which, as we know from Proposition 4.16158, are
well-behaved. Now choose any r ∈ R≥0 and define

(T s
t ) :=

(

eQ1(s−t)
)

[0,r]
⊗
(

eQ2(s−t)
)

[r,+∞)
.

It then follows from Proposition 4.19x that (T s
t ) is a well-behaved tran-

sition matrix system. For any t,s∈R≥0 such that t ≤ r≤ s, the transition
matrix T s

t satisfies T s
t = T r

t T s
r = eQ1(r−t)eQ2(s−r). ♦

The last technical result of this section is one that will allow us to
consider limits of sequences of (restricted) transition matrix systems.
To this end, we first introduce a metric d between restricted transition
matrix systems that are defined on the same interval I. For any two
such restricted transition matrix systems (T s

t )I and (Ss
t )I, we let

d
(

(T s
t )I,(S

s
t )I

)

:= sup{‖T s
t −Ss

t ‖ : t,s ∈ I, t ≤ s} . (4.15)

Note that the set T of all (unrestricted) transition matrix systems is
equal to the set TR≥0

of all transition matrix systems that are “re-
stricted” to R≥0. Hence the following results also extend to the set T .

Proposition 4.20. For any closed interval I ⊆ R≥0, the map d defined in
Equation (4.15) is a metric on TI.

Proof. Let us show that d satisfies all the defining properties of a met-
ric, as in Definition A.6372. Fix any (T s

t )I,(R
s
t )I,(S

s
t )I in TI. From the

definition of the norm ‖·‖ it follows that ‖T s
t −Ss

t ‖ ≥ 0 for all t,s ∈ I

with t ≤ s, which by Equation (4.15) implies that d
(

(T s
t )I,(S

s
t )I

)

≥ 0.

Next, we note that, using the definition of the norm ‖·‖, it holds that

d
(

(T s
t )I,(T

s
t )I

)

= sup{‖T s
t −T s

t ‖ : t,s ∈ I, t ≤ s}= 0 .

Conversely, suppose that d
(

(T s
t )I,(S

s
t )I

)

= 0. Then it clearly follows
from Equation (4.15) that ‖T s

t −Ss
t ‖= 0 for all t,s∈ I with t ≤ s. This im-

plies that T s
t = Ss

t for all t,s∈ I with t ≤ s, which means that (T s
t )I = (Ss

t )I.
Hence we have found that d

(

(T s
t )I,(S

s
t )I

)

= 0 if and only if (T s
t )I = (Ss

t )I.

Next, again by the definition of the norm ‖·‖, we have that

d
(

(T s
t )I,(S

s
t )I

)

= sup{‖T s
t −Ss

t ‖ : t,s ∈ I, t ≤ s}
= sup{‖Ss

t −T s
t ‖ : t,s ∈ I, t ≤ s}= d

(

(Ss
t )I,(T

s
t )I

)

.
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Finally, once more using the definition of the norm ‖·‖, we have that

d
(

(T s
t )I,(S

s
t )I

)

= sup{‖T s
t −Ss

t ‖ : t,s ∈ I, t ≤ s}
≤ sup{‖T s

t −Rs
t ‖+‖Rs

t −Ss
t ‖ : t,s ∈ I, t ≤ s}

≤ sup{‖T s
t −Rs

t ‖ : t,s ∈ I, t ≤ s}+ sup{‖Rs
t −Ss

t ‖ : t,s ∈ I, t ≤ s}
= d
(

(T s
t )I,(R

s
t )I

)

+d
(

(Rs
t )I,(S

s
t )I

)

,

which concludes the proof.

Proposition 4.21. Consider any interval I ⊆ R≥0 and let d be the metric
that is defined in Equation (4.15). The metric space (TI,d) is then complete.

Proof. Consider any sequence {(iT s
t )I}i∈Z>0

of restricted transition ma-
trix systems (iT s

t )I in TI that is Cauchy. We will prove that this sequence
converges to a limit that belongs to TI.

Since {(iT s
t )I}i∈Z>0

is Cauchy, it follows from Equation (4.15) that

(∀ε ∈ R>0)(∃nε ∈ Z>0)(∀k, ℓ > nε)(∀t,s ∈ I : t ≤ s)
∥

∥

∥

kT s
t − ℓT s

t

∥

∥

∥
< ε.

(4.16)
Clearly, for any t,s ∈ I such that t ≤ s, this implies that the sequence
{iT s

t }i∈Z>0
of transition matrices is Cauchy. Since the set T of all tran-

sition matrices is complete by Proposition 3.1092, this implies that the
sequence {iT s

t }i∈Z>0
has a limit T s

t , and that this limit is a transition
matrix. We use (T s

t )I to denote the family of transition matrices that
consists of these limits T s

t , with t,s ∈ I and t ≤ s.
Fix any t,r,s ∈ I such that t ≤ r ≤ s. Then for any i ∈ Z>0, because

(iT s
t )I is a restricted transition matrix system, we know that iT t

t = I

and iT s
t = iT r

t
iT s

r , which implies that ‖T t
t − I‖ =

∥

∥T t
t − iT t

t

∥

∥ and, due to
Lemma B.5393, that

‖T s
t −T r

t T s
r ‖ ≤

∥

∥T s
t − iT s

t

∥

∥+
∥

∥

iT r
t

iT s
r −T r

t T s
r

∥

∥

≤
∥

∥T s
t − iT s

t

∥

∥+
∥

∥

iT r
t −T r

t

∥

∥+
∥

∥

iT s
r −T s

r

∥

∥ .

Since we know that limi→+∞
iT t

t = T t
t , limi→+∞

iT s
t = T s

t , limi→+∞
iT r

t = T r
t

and limi→+∞
iT s

r = T s
r , this implies that ‖T t

t − I‖= 0 and ‖T s
t −T r

t T s
r ‖= 0,

or equivalently, that T t
t = I and T s

t = T r
t T s

r . Since this is true for any
t,r,s∈ I such that t ≤ r≤ s, and because we already know that the family
(T s

t )I consists of transition matrices, it follows from Proposition 4.17159
that (T s

t )I is a restricted transition matrix system. In the remainder of
this proof, we will show that (T s

t )I = limi→∞(
iT s

t )I.
Fix any ε > 0 and consider the corresponding nε ∈ Z>0 whose exis-

tence is guaranteed by Equation (4.16). Fix any k > nε . For any t,s ∈ I
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such that t ≤ s, it then follows from Equation (4.16)x that, for all ℓ > nε :

∥

∥

∥

kT s
t −T s

t

∥

∥

∥
≤
∥

∥

∥

kT s
t − ℓT s

t

∥

∥

∥
+
∥

∥

∥

ℓT s
t −T s

t

∥

∥

∥
< ε +

∥

∥

∥

ℓT s
t −T s

t

∥

∥

∥
.

Since limℓ→+∞
ℓT s

t = T s
t , this implies that

∥

∥

kT s
t −T s

t

∥

∥ ≤ ε . Since this is
true for all t,s ∈ I such that t ≤ s, it follows from Equation (4.15)162 that
d
(

(kT s
t )I,(T

s
t )I

)

≤ ε . Since ε > 0 was arbitrary, we conclude that

(∀ε ∈ R>0)(∃nε ∈ Z>0)(∀k > nε) d
(

(kT s
t )I,(T

s
t )I

)

≤ ε,

which implies that (T s
t )I = limi→∞(

iT s
t )I.

We now conclude this section with some examples that illustrate
how this result can be used. Moreover, these examples will serve as
the formal basis of some examples in future chapters. Because the re-
sults are somewhat technical, we only present the basic ideas here and
have moved the bulk of the formal effort of proving their correctness to
Appendix 4.A173.

Example 4.3. Consider some positive constant c∈R>0 and let {Qi}i∈Z≥0

be a sequence of rate matrices such that, for all i ∈ Z>0, ‖Qi−Qi−1‖ ≤ c.
We can then construct the following sequence of transition matrix sys-
tems. For i = 0, we let (0T s

t ) :=
(

eQ0(s−t)
)

and, for all i ∈ Z>0, we let

(iT s
t ) :=

(

eQi(s−t)
)

[0,δi]
⊗
(

i−1T s
t

)

[δi,+∞)
(4.17)

where, for all i ∈ Z≥0, δi := 2−i. The resulting sequence {(iT s
t )}i∈Z≥0

is
then in T and, because of Propositions 4.16158 and 4.19161, every tran-
sition matrix system in this sequence is well-behaved. Furthermore, as
is proved in Appendix 4.A173, {(iT s

t )}i∈Z≥0
is a Cauchy sequence, which

basically means that its elements become arbitrarily close to each other
as the sequence progresses.

The reason why this is of interest to us is that in a complete metric
space, every Cauchy sequence converges to a limit that belongs to the
same space. Hence, since {(iT s

t )}i∈Z≥0
is Cauchy, Proposition 4.21x tells

us that {(iT s
t )}i∈Z≥0

converges to a limit (T s
t ) := limi→∞(

iT s
t ) in T . ♦

As this example illustrates, Proposition 4.21x allows us to (i) estab-
lish the existence of limits of sequences of (restricted) transition matrix
systems and (ii) prove that these limits are restricted transition matrix
systems themselves. In order to make this concept of a limit of transi-
tion matrix systems less abstract, we now provide, for a particular case
of the sequence in Example 4.3, closed-form expressions for some of
the transition matrices that correspond to its limit.
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Example 4.4. Let Q1,Q2 ∈R be two commuting rate matrices. For ex-
ample, fix Q1 ∈R and let Q2 := αQ1, with α ∈ R≥0.

Now let {Qi}i∈Z≥0
be defined by Qi := Q1 if i is odd and Qi := Q2 if

i is even, let δi := 2−i for all i ∈ Z≥0, and consider the corresponding
sequence of transition matrix systems {(iT s

t )}i∈Z>0
that was defined in

Example 4.3. Since ‖Qi−Qi−1‖= ‖Q1−Q2‖ for all i∈Z>0, the sequence
{Qi}i∈Z≥0

clearly satisfies the conditions in Example 4.3—just choose

c = ‖Q1−Q2‖—and therefore, as we have seen, {(iT s
t )}i∈Z>0

converges
to a limit (T s

t ) := limi→∞(
iT s

t ) in T .
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Figure 4.1: Left: Graphical illustration of the functions ϕ1 and ϕ2 from
Equations (4.19) and (4.20), respectively. Note that φ1(t)+φ2(t) = t for
all t ∈ (0,1]. Right: Relative proportion of ϕ1 and ϕ2 as mixing coeffi-
cients of the rate matrices Q1 and Q2, as used in Equation (4.18). Note
that these proportions keep oscillating as t goes to zero.

As proved in Appendix 4.A173, it then holds that for any t ∈ (0,1],
the transition matrix T t

0 of this limiting transition matrix system is
equal to

T t
0 = eQ1ϕ1(t)+Q2ϕ2(t), (4.18)

with

ϕ1(t) :=

{

t− 2/3δi+1 if δi+1 ≤ t ≤ δi with i odd

2/3δi+1 if δi+1 ≤ t ≤ δi with i even
(4.19)

and

ϕ2(t) :=

{

2/3δi+1 if δi+1 ≤ t ≤ δi with i odd

t− 2/3δi+1 if δi+1 ≤ t ≤ δi with i even.
(4.20)
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These somewhat abstract looking functions are illustrated in Fig-
ure 4.1x. We note that ϕ1(t) + ϕ2(t) = t for all t ∈ (0,1], so Equa-
tion (4.18)x can also be understood as showing the matrix exponen-
tial eQt t , where Qt := Q1ϕ1(t)/t +Q2ϕ2(t)/t. Which is to say, ϕ1 and ϕ2 es-
sentially give mixing coefficients that together determine a rate matrix
Qt at time t. As the right side of Figure 4.1x shows, these mixing coef-
ficients oscillate ever more wildly as t goes to zero.

It can be shown that the transition matrix system (T s
t ) is well-

behaved—again, see Appendix 4.A173 for a proof. Moreover, the partic-
ular character that this transition matrix system exhibits will be used
to show, in Example 4.6 further on, that the transition matrix T t

0 cor-
responding to this transition matrix system is not differentiable (direc-
tionally; from the right) in t = 0; this highlights the difference between
well-behavedness and differentiability. ♦

The transitionmatrix system (T s
t ) in our previous example was well-

behaved, and was constructed as a limit of well-behaved transition ma-
trix systems. Therefore, one might think that the former is implied
by the latter. However, as our next example illustrates, this is not the
case: a limit of well-behaved transition matrix systems need not be
well-behaved itself.

Example 4.5. Consider any rate matrix Q ∈R such that ‖Q‖ = 1 and,
for all i ∈ Z≥0, define Qi := iQ and let (iT s

t ) and δi be defined as in
Example 4.3164. Then since {Qi}i∈Z≥0

satisfies the conditions of Ex-

ample 4.3164 with c = 1, the sequence {(iT s
t )}i∈Z≥0

has a limit (T s
t ) :=

limi→∞(
iT s

t ) in T .
However, despite the fact that we know from Example 4.3164 that

each of the transition matrix systems (iT s
t ), i ∈ Z≥0, is well-behaved, the

limit (T s
t ) itself is not well-behaved; see Appendix 4.A173 for a proof. ♦

4.6 Outer Partial Derivatives

We conclude this chapter by considering the connection between rate
matrices, and the families of transition matrices corresponding to
continuous-time stochastic processes. We have already discussed in
Section 4.3150 that rate matrices can be understood as representing
the rate of change of continuously time-dependent transition matrices.
Here, we consider this interpretation in the context of the dynamics of
stochastic processes.

One seemingly obvious way of describing these dynamics is to use
the derivatives of the transition matrices that correspond to stochas-
tic processes. However, because we do not impose differentiability as-
sumptions on these processes, such derivatives may not exist. We will
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therefore instead introduce outer partial derivatives below. It will be in-
structive, however, to first consider ordinary directional partial deriva-
tives.

Definition 4.10 (Directional Partial Derivatives). For any stochastic pro-
cess P∈ P with corresponding family of history-dependent transition matri-
ces (T s

t,xu
), any t ∈ R≥0, any sequence of time points u ∈U<t , and any state

assignment xu ∈Xu, the right-sided partial derivative of T t
t,xu

is defined by

∂+T t
t,xu

:= lim
∆→0+

1

∆
(T t+∆

t,xu
−T t

t,xu
) = lim

∆→0+

1

∆
(T t+∆

t,xu
− I)

and, if t 6= 0, the left-sided partial derivative of T t
t,xu

is defined by

∂−T t
t,xu

:= lim
∆→0+

1

∆
(T t

t−∆,xu
−T t

t,xu
) = lim

∆→0+

1

∆
(T t

t−∆,xu
− I).

If these partial derivatives both exist and coincide, we write ∂T t
t,xu

to denote
their common value. For t = 0, we let ∂T t

t,xu
:= ∂+T t

t,xu
.

We note that whenever these (directional) partial derivatives exist,
then because of Propositions 4.6151 and 4.10153, they are guaranteed to
belong to the set of all rate matrices R.

The following example establishes that such directional partial
derivatives need not always exist. In particular, they need not exist
even for all well-behaved processes.

Example 4.6. Let Q1,Q2 ∈R be two commuting rate matrices such that
Q1 6= Q2—for example, let Q1 6= 0 be an arbitrary rate matrix and let
Q2 := αQ1, with α ∈ R≥0 \{1}—and consider a well-behaved stochastic
process P ∈ PW of which, for all t ∈ (0,1], the corresponding transition
matrix T t

0 is given by Equation (4.18)165 in Example 4.4165.
For now, we simply assume that this is possible. A formal proof

for the existence of such a process requires some additional machinery,
and we therefore postpone it to Example 5.1184, where we construct
a well-behaved continuous-time Markov chain that is compatible with
Equation (4.18)165.

The aim of the present example is to show that for any such process,
the right-sided partial derivative ∂+T 0

0 —which corresponds to choosing
t = 0 and u = /0 in Definition 4.10—does not exist. The reason for this
is that—as is proved in Appendix 4.B177—for any λ ∈ [1/3, 2/3], there is
a sequence {∆i}i∈Z>0

→ 0+ such that

lim
i→+∞

1

∆i

(T ∆i
0 − I) = Qλ (4.21)
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with Qλ := λQ1 +(1− λ )Q2. The reason why this indeed implies that
∂+T 0

0 does not exist, is that if it would exist, then Equation (4.21)x
would imply that ∂+T 0

0 = Qλ for all λ ∈ [1/3, 2/3]. The only way for this
to be possible is that Q1 = Q2, but this was excluded in the beginning
of this example.

This property is also explained graphically in the right side of
Figure 4.1165: because the mixing proportions keep oscillating as
we take t (or in our current notation, ∆) to zero, the sequence
Q∆ := Q1ϕ1(∆)/∆+Q2ϕ2(∆)/∆ has multiple accumulation points depending
on the sequence {∆i}i∈Z>0

→ 0+ that we choose. Every such accumula-
tion point is given by some Qλ , λ ∈ [1/3, 2/3]. Our proof of this example—
again, see Appendix 4.B177—works out the technical details of this ob-
servation. ♦

Observe, therefore, that the problem is essentially that the finite-
difference expressions 1/∆(T t+∆

t,xu
− I) and 1/∆(T t

t−∆,xu
− I), parameterised

in ∆, can have multiple accumulation points as we take ∆ to 0. There-
fore, it will be more convenient to instead work with what we call outer
partial derivatives. These can be seen as a kind of set-valued derivatives,
containing all these accumulation points obtained as ∆ goes to zero.

Definition 4.11 (Directional Outer Partial Derivatives). For any
stochastic process P ∈ P with corresponding family of history-dependent
transition matrices (T s

t,xu
), any t ∈R≥0, any sequence of time points u∈U<t ,

and any state assignment xu ∈Xu, the right-sided outer partial derivative
of T t

t,xu
is defined by

∂+T t
t,xu

:=

{

Q ∈R

∣

∣

∣
∃{∆i}i∈Z>0

→ 0+ : lim
i→+∞

1

∆i

(T t+∆i
t,xu
− I) = Q

}

(4.22)

and, if t 6= 0, the left-sided outer partial derivative of T t
t,xu

is defined by

∂−T t
t,xu

:=

{

Q ∈R

∣

∣

∣
∃{∆i}i∈Z>0

→ 0+ : lim
i→+∞

1

∆i

(T t
t−∆i,xu

− I) = Q

}

. (4.23)

Furthermore, the outer partial derivative of T t
t,xu

is defined as

∂T t
t,xu

:= ∂+T t
t,xu
∪∂−T t

t,xu
if t > 0 and ∂T t

t,xu
:= ∂+T t

t,xu
if t = 0.

For a given stochastic process P ∈ P, we collect these outer partial

derivatives in the multi-index family (∂T t
t,xu

), with t ∈R≥0, u∈U<t , and
xu ∈Xu, which we call the family of outer partial derivatives correspond-
ing to P. The so-called directional outer partial derivatives—i.e. the right-
and left-sided outer partial derivatives in Definition 4.11—are simi-
larly collected in corresponding families (∂+T t

t,xu
) and (∂−T t

t,xu
). For
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well-behaved processes P ∈ PW, as our next result shows, these corre-
sponding outer partial derivatives are always non-empty and compact.

Proposition 4.22. Consider any P∈PW with corresponding families of (di-

rectional) outer partial derivatives (∂T t
t,xu

), (∂+T t
t,xu

), and (∂−T t
t,xu

). Then,

for all t ∈ R≥0, u ∈ U<t , and xu ∈Xu, ∂+T t
t,xu

, ∂−T t
t,xu

and ∂T t
t,xu

are non-
empty and compact subsets of R.

Proof. We only give the proof for ∂+T t
t,xu

. The proof for ∂−T t
t,xu

is com-
pletely analogous. The proof for ∂T t

t,xu
then follows trivially because

a union of two non-empty and compact sets is always non-empty and
compact itself.

We start by establishing the boundedness of ∂+T t
t,xu

. Since P is well-
behaved, it follows from Proposition 4.2149 that there are some B > 0

and δ > 0 such that

(∀0 < ∆ < δ )

∥

∥

∥

∥

1

∆
(T t+∆

t,xu
− I)

∥

∥

∥

∥

=
1

∆

∥

∥

∥
(T t+∆

t,xu
− I)

∥

∥

∥
≤ B. (4.24)

Consider now any Q∈ ∂+T t
t,xu

. Because of Equation (4.22), Q is the limit
of a sequence of matrices {Qk}k∈Z>0

, defined by

Qk :=
1

∆k

(T
t+∆k

t,xu
− I) for all k ∈ Z>0. (4.25)

Because of Equation (4.24), the norms ‖Qk‖ of these matrices are even-
tually (for large enough k) bounded above by B, and then also

‖Q‖= ‖Q−Qk +Qk‖ ≤ ‖Q−Qk‖+‖Qk‖ ≤ ‖Q−Qk‖+B ,

from which it follows that also ‖Q‖ ≤ B since limk→+∞ ‖Qk−Q‖ = 0.
Since this is true for any Q ∈ ∂+T t

t,xu
, we find that ∂+T t

t,xu
is bounded.

In order to prove that ∂+T t
t,xu

is non-empty, we consider any se-
quence {∆k}k∈Z>0

→ 0+. The corresponding sequence of matrices
{Qk}k∈Z>0

, as defined by Equation (4.25), is then bounded because
P is well-behaved—see Proposition 4.2149—and therefore, it follows
from Corollary A.14378 that it has a convergent subsequence {Qki

}i∈Z>0

whose limit we denote by Q∗. Hence, we have found a sequence
{∆ki
}i∈Z>0

→ 0+ such that {Qki
}i∈Z>0

→ Q∗. Since we know from
Lemma 4.10153 that each of the matrices in {Qki

}i∈Z>0
is a rate matrix,

by Proposition 4.6151, the limit Q∗ is also a rate matrix, which therefore
belongs to ∂+T t

t,xu
.

We next show that ∂+T t
t,xu

is closed, or equivalently, by Proposi-
tion A.8376, that for any converging sequence {Q∗k}k∈Z>0

of rate matri-
ces in ∂+T t

t,xu
, the limit Q∗ := limk→+∞ Q∗k is again an element of ∂+T t

t,xu
.

First, since each of the Q∗k is a rate matrix, their limit Q∗ is also a rate
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matrix by Proposition 4.6151. Next, for any k ∈ Z>0, since Q∗k ∈ ∂+T t
t,xu

,
it follows from Equation (4.22)168 that there is some 0 < ∆k < 1/k such
that

∥

∥Qk−Q∗k
∥

∥≤ 1/k, with Qk defined as in Equation (4.25)x. Consider
now the sequences {Qk}k∈Z>0

and {∆k}k∈Z>0
. Then on the one hand, we

find that

0≤ limsup
k→+∞

‖Q∗−Qk‖ ≤ limsup
k→+∞

‖Q∗−Q∗k‖+ limsup
k→+∞

‖Q∗k−Qk‖

≤ limsup
k→+∞

‖Q∗−Q∗k‖+ lim
k→+∞

1/k

= limsup
k→+∞

‖Q∗−Q∗k‖= 0,

which implies that the sequence {Qk}k∈Z>0
converges to Q∗. On the

other hand, we have that limk→+∞ ∆k = 0. Hence, because of Defini-
tion 4.11168, it follows that Q∗ ∈ ∂+T t

t,xu
. This implies that ∂+T t

t,xu
is

closed and, because we have already shown that it is bounded, it fol-
lows from Corollary A.12378 that ∂+T t

t,xu
is compact.

The following two examples provide this result with some intuition.
Example 4.7 illustrates the validity of the result, while Example 4.8
shows that the requirement that P must be well-behaved is essential
for the result to be true.

Example 4.7. Consider again the well-behaved stochastic pro-
cess P ∈ PW from Example 4.6167 of which, for all t ∈ (0,1], the
corresponding transition matrix T t

0 is given by Equation (4.18)165.
As proved in Appendix 4.B177, it holds for this particular pro-
cess that ∂+T 0

0 =
{

Qλ : λ ∈ [1/3, 2/3]
}

where, for every λ ∈ [1/3, 2/3],
Qλ := λQ1 +(1−λ )Q2 as in Example 4.6167. ♦

Example 4.8. Fix any rate matrix Q ∈ R such that ‖Q‖ = 1, let (T s
t )

be the transition matrix system of Example 4.5166, and consider any
stochastic process P ∈ P of which (T s

t ) is the corresponding family of
transition matrices.

For now, we simply assume that such a process exists. A for-
mal proof again requires some additional machinery—as in Exam-
ple 4.6167—and we therefore postpone it to Example 5.1184, where we
construct a continuous-time Markov chain whose corresponding fam-
ily of transition matrices is equal to the transition matrix system (T s

t ).
As we prove in Appendix 4.B177, for such a stochastic process P, the

right-sided outer partial derivative ∂+T 0
0 is empty. ♦

We end this section with two additional properties of the outer par-
tial derivatives of well-behaved stochastic processes. First, as we estab-
lish in our next result, they satisfy an ε−δ expression that is similar to
the limit expression of a partial derivative.
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Proposition 4.23. Consider any well-behaved stochastic process P ∈ PW

with corresponding family of history-dependent transition matrices (T s
t,xu

),
and corresponding families of directional outer partial derivatives (∂+T t

t,xu
)

and (∂−T t
t,xu

). Then, for any t ∈ R≥0, any u ∈ U<t , any xu ∈Xu, and any
ε > 0, there is some δ > 0 such that, for all 0 < ∆ < δ :

(∃Q ∈ ∂+T t
t,xu

)

∥

∥

∥

∥

1

∆
(T t+∆

t,xu
− I)−Q

∥

∥

∥

∥

< ε (4.26)

and, if t 6= 0,

(∃Q ∈ ∂−T t
t,xu

)

∥

∥

∥

∥

1

∆
(T t

t−∆,xu
− I)−Q

∥

∥

∥

∥

< ε. (4.27)

Proof. Fix any ε > 0. Assume ex absurdo that

(∀δ > 0)(∃∆ ∈ (0,δ ))(∀Q ∈ ∂+T t
t,xu

)

∥

∥

∥

∥

1

∆
(T t+∆

t,xu
− I)−Q

∥

∥

∥

∥

≥ ε.

Clearly, this implies the existence of a sequence {∆k}k∈Z>0
→ 0+ such

that
‖Qk−Q‖ ≥ ε for all k ∈ Z>0 and all Q ∈ ∂+T t

t,xu
, (4.28)

with Qk defined as in Equation (4.25)169. As we know from the proof
of Proposition 4.22169, the sequence {Qk}k∈Z>0

has a convergent subse-

quence {Qki
}i∈Z>0

of which the limit Q∗ belongs to ∂+T t
t,xu

. On the one

hand, since limi→+∞ Qki
= Q∗, we now have that limi→+∞

∥

∥Qki
−Q∗

∥

∥= 0.
On the other hand, since Q∗ ∈ ∂+T t

t,xu
, it follows from Equation (4.28)

that limi→+∞

∥

∥Qki
−Q∗

∥

∥≥ ε > 0. From this contradiction, it follows that
there is some δ1 > 0 such that Equation (4.26) holds for all 0 < ∆ < δ1.
Similarly, using a completely analogous argument, we infer that if
t 6= 0, there must be some δ2 > 0 such that Equation (4.27) holds for all
0 < ∆ < δ2. Now let δ := min{δ1,δ2} if t 6= 0 and let δ := δ1 if t = 0.

Secondly, these outer partial derivatives are a proper generalisation
of directional partial derivatives. In particular, if the latter exist, their
values correspond exactly to the single element of the former.

Corollary 4.24. Consider any P ∈ PW with corresponding families of (di-

rectional) outer partial derivatives (∂T t
t,xu

), (∂+T t
t,xu

), and (∂−T t
t,xu

). Then,
for all t ∈ R≥0, all u ∈ U<t , and all xu ∈Xu, ∂+T t

t,xu
is a singleton if and

only if ∂+T t
t,xu

exists and, in that case, ∂+T t
t,xu

= {∂+T t
t,xu
}. Analogous re-

sults hold for ∂−T t
t,xu

and ∂−T t
t,xu

, and for ∂T t
t,xu

and ∂T t
t,xu

.

Proof. We only give the proof for ∂+T t
t,xu

; the other claims follow com-
pletely analogously.

171



Dynamics of Continuous-Time Stochastic Processes

So, for the first direction, suppose that ∂+T t
t,xu

= {Q} is a sin-
gleton, and fix any ε > 0. Due to Proposition 4.23x, there is then
some δ > 0 such that, for all 0 < ∆ < δ , there is some Q∆ ∈ ∂+T t

t,xu

such that
∥

∥1/∆(T t+∆
t,xu
− I)−Q∆

∥

∥ < ε . Because ∂+T t
t,xu

is a singleton,
this means that Q∆ = Q for every such ∆, and hence it follows that
lim∆→0+

∥

∥1/∆(T t+∆
t,xu
− I)−Q

∥

∥ = 0. This means that lim∆→0+
1/∆(T t+∆

t,xu
− I)

exists and equals Q which, by Definition 4.10167, means that ∂+T t
t,xu

=
Q. This concludes the proof in the first direction.

For the other direction, suppose that ∂+T t
t,xu

exists, and for nota-
tional brevity write Q := ∂+T t

t,xu
. Then, as in Definition 4.10167, Q

is a rate matrix and lim∆→0+
1/∆(T t+∆

t,xu
− I) = Q. Now fix any sequence

{∆k}k∈Z>0
→ 0+. Then it holds that limk→+∞

1/∆k(T
t+∆k

t,xu
− I) = Q which

implies that Q ∈ ∂+T t
t,xu

by Definition 4.11168. Because any such se-
quence {∆k}k∈Z>0

→ 0+ yields the same limit Q, it follows that ∂+T t
t,xu

is
a singleton, and in particular, that ∂+T t

t,xu
= {Q}.
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4.A Proofs of Examples in Section 4.5

Proof of Example 4.3164. We will show that the sequence {(iT s
t )}i∈Z≥0

defined in Equation (4.17)164 is Cauchy, or in other words, that

(∀ε ∈ R>0)(∃nε ∈ Z>0)(∀k, ℓ > nε) d
(

(kT s
t ),(

ℓT s
t )
)

< ε. (4.29)

In order to prove this, the first step is to notice that for any i ∈ Z>0, the
difference between (iT s

t ) and (i−1T s
t ) is essentially situated on the inter-

val [0,δi]. It should therefore be intuitively clear that d
(

(iT s
t ),(

i−1T s
t )
)

is
proportional to δi.

In fact, it holds that d
(

(iT s
t ),(

i−1T s
t )
)

≤ δi ‖Qi−Qi−1‖; we will start
by proving this inequality. So, fix any i ∈ Z>0 and any t,s ∈ R≥0 such
that t ≤ s. We now consider three cases. The first case is t ≥ δi. It then
follows from Equation (4.17)164 that

∥

∥

iT s
t − i−1T s

t

∥

∥= 0. The second case
is s ≤ δi. It then follows from Equation (4.17)164 and Lemma B.11395
that
∥

∥

iT s
t − i−1T s

t

∥

∥=
∥

∥

∥
eQi(s−t)− eQi−1(s−t)

∥

∥

∥
≤ (s−t)‖Qi−Qi−1‖≤ δi ‖Qi−Qi−1‖ .

The third case is t ≤ δi ≤ s. We then find that
∥

∥

iT s
t − i−1T s

t

∥

∥=
∥

∥

∥

iT
δi

t
iT s

δi
− i−1T

δi
t

i−1T s
δi

∥

∥

∥

≤
∥

∥

∥

iT
δi

t − i−1T
δi

t

∥

∥

∥
+
∥

∥

∥

iT s
δi
− i−1T s

δi

∥

∥

∥

=
∥

∥

∥

iT
δi

t − i−1T
δi

t

∥

∥

∥
≤ δi ‖Qi−Qi−1‖ ,

where the first inequality follows from Lemma B.5393, the second
equality follows from the first case above, and the last inequality fol-
lows from the second case above. Hence, in all three cases, we find
that

∥

∥

iT s
t − i−1T s

t

∥

∥ ≤ δi ‖Qi−Qi−1‖. Since this inequality holds for any
t,s ∈ R≥0 such that t ≤ s, it now follows from Equation (4.15)162 that
d
(

(iT s
t ),(

i−1T s
t )
)

≤ δi ‖Qi−Qi−1‖.
Using this inequality, and because d is a metric, Equation (4.29) can

now easily be proven. It suffices to choose nε in such a way that c2−nε <
ε . Indeed, in that case, for any k, ℓ > nε , if we assume—without loss of
generality—that k ≤ ℓ, it follows that

d
(

(kT s
t ),(

ℓT s
t )
)

≤
ℓ

∑
i=k+1

d
(

(i−1T s
t ),(

iT s
t )
)

≤
ℓ

∑
i=k+1

δi ‖Qi−Qi−1‖ ≤ c
ℓ

∑
i=k+1

δi

and therefore, since we also know that

ℓ

∑
i=k+1

δi ≤
+∞

∑
i=k+1

δi =
+∞

∑
i=k+1

2−i = 2−k,
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it follows that d
(

(kT s
t ),(

ℓT s
t )
)

≤ c2−k ≤ c2−nε < ε , as required.
As a side result, we also obtain a similar bound on the distance be-

tween (kT s
t ) and (T s

t ). For any ℓ≥ k, we know that

d
(

(kT s
t ),(T

s
t )
)

≤ d
(

(kT s
t ),(

ℓT s
t )
)

+d
(

(ℓT s
t ),(T

s
t )
)

≤ c2−k +d
(

(ℓT s
t ),(T

s
t )
)

,

and hence, since (T s
t ) = limℓ→+∞(

ℓT s
t ), we find d

(

(kT s
t ),(T

s
t )
)

≤ c2−k.

Proof of Example 4.4165. Let (St
0)t∈(0,1] be the family of transition matri-

ces St
0 that satisfy Equation (4.18)165, i.e. let

St
0 := eQ1ϕ1(t)+Q2ϕ2(t) for all t ∈ (0,1]. (4.30)

We will first show that these matrices coincide with the matrices T t
0

corresponding to the limiting transition matrix system (T s
t ). To this

end, we first establish some properties. Consider any t ∈ (0,1] and let
j be the unique element of Z≥0 such that δ j+1 < t ≤ δ j. If j is odd, it
follows from Equations (4.19)165 and (4.20)165 that

ϕ1(t) = t− 2/3δ j+1 = (t−δ j+1)+ 1/3δ j+1 = (t−δ j+1)+ϕ1(δ j+1)

and ϕ2(t) = 2/3δ j+1 = ϕ2(δ j+1). Similarly, if j is even, it follows that
ϕ1(t) = ϕ1(δ j+1) and ϕ2(t) = ϕ2(δ j+1)+ (t−δ j+1). Hence, in both cases,
we have that

Q1ϕ1(t)+Q2ϕ2(t) = Q1ϕ1(δ j+1)+Q2ϕ2(δ j+1)+Q j(t−δ j+1).

Therefore, and since Q1 and Q2 commute, it now follows from
Lemma 4.13155 and Equation (4.30) that

St
0 = eQ1ϕ1(t)+Q2ϕ2(t) = eQ1ϕ1(δ j+1)+Q2ϕ2(δ j+1)+Q j(t−δ j+1)

= eQ1ϕ1(δ j+1)+Q2ϕ2(δ j+1)eQ j(t−δ j+1) = S
δ j+1

0 eQ j(t−δ j+1).
(4.31)

For large enough k ∈ Z>0, a similar statement holds for the transition
matrix kT t

0 that corresponds to (kT s
t ). In particular, Lemma 4.13155 to-

gether with Equation (4.17)164 imply that

kT t
0 = kT

δ j+1

0 eQ j(t−δ j+1) for all k ≥ j. (4.32)

Hence, for all j ∈ Z≥0, by choosing t = δ j, and because δ j−δ j+1 = δ j+1,
it follows that

S
δ j

0 = S
δ j+1

0 eQ jδ j+1 and kT
δ j

0 = kT
δ j+1

0 eQ jδ j+1 for all k ≥ j. (4.33)

174



4.A Proofs of Examples in Section 4.5

Finally, for all k∈Z≥0, it follows from Equations (4.19)165 and (4.20)165,
and Equations (4.30) and (4.17)164 that

S
δk
0 = eQk2/3δk+Qk+11/3δk and kT

δk
0 = eQkδk for all k ∈ Z≥0. (4.34)

Using these properties, the remainder of the proof is now relatively
easy. Consider any t ∈ (0,1], let i be the unique element of Z≥0 such that
δi+1 < t ≤ δi, and fix any k > i. Then on the one hand, we find that

∥

∥

∥
St

0− kT t
0

∥

∥

∥
=
∥

∥

∥
S

δi+1

0 eQi(t−δi+1)− kT
δi+1

0 eQi(t−δi+1)
∥

∥

∥

≤
∥

∥

∥
S

δi+1

0 − kT
δi+1

0

∥

∥

∥
+
∥

∥

∥
eQi(t−δi+1)− eQi(t−δi+1)

∥

∥

∥

=
∥

∥

∥
S

δi+1

0 − kT
δi+1

0

∥

∥

∥
=
∥

∥

∥
S

δi+2

0 eQi+1δi+2 − kT
δi+2

0 eQi+1δi+2

∥

∥

∥

≤
∥

∥

∥
S

δi+2

0 − kT
δi+2

0

∥

∥

∥
+
∥

∥

∥
eQi+1δi+2 − eQi+1δi+2

∥

∥

∥

=
∥

∥

∥
S

δi+2

0 − kT
δi+2

0

∥

∥

∥
≤ ·· · ≤

∥

∥

∥
S

δk
0 − kT

δk
0

∥

∥

∥
,

where the first equality follows from Equations (4.31) and (4.32), the
first inequality follows from Lemma B.5393 in Appendix B391, the third
equality follows from Equation (4.33), the second equality is again due
to Lemma B.5393, and the remaining steps consist in repeating the last
steps over and over again. On the other hand, we also know that

∥

∥

∥
S

δk
0 − kT

δk
0

∥

∥

∥
=
∥

∥

∥
eQk2/3δk+Qk+11/3δk − eQkδk

∥

∥

∥

=
∥

∥

∥
eQk2/3δk eQk+11/3δk − eQk2/3δk eQk1/3δk

∥

∥

∥

≤
∥

∥

∥
eQk2/3δk − eQk2/3δk

∥

∥

∥
+
∥

∥

∥
eQk+11/3δk − eQk1/3δk

∥

∥

∥

=
∥

∥

∥
eQk+11/3δk − eQk1/3δk

∥

∥

∥
≤ δk

3
‖Qk−Qk+1‖=

δk

3
‖Q1−Q2‖ ,

where the first equality follows from Equation (4.34), the second equal-
ity follows from Lemma 4.13155 because Q1 and Q2 commute, and
the two inequalities follow from Lemmas B.5393 and B.11395 in Ap-
pendix B391. Hence, we find that

∥

∥St
0− kT t

0

∥

∥≤ δk/3‖Q1−Q2‖. Since this
is true for any k > i, it follows that limk→+∞

kT t
0 = St

0. Therefore, and be-
cause (T s

t ) := limi→∞(
iT s

t ), we can conclude that St
0 = T t

0 for all t ∈ (0, t].
We end this proof by showing that the transition matrix system (T s

t )
is well-behaved. Let M := max{‖Q1‖ ,‖Q2‖}. We will prove that

1

∆

∥

∥

∥
T t+∆

t − I

∥

∥

∥
≤M for all t,∆ ∈ R≥0.
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According to Definition 4.7157, this clearly implies that (T s
t ) is well-

behaved.
So fix any t,∆ ∈ R≥0 and consider any ε > 0. Then since

limi→+∞
iT t+∆

t = T t+∆
t , there is some j ∈ Z>0 such that

∥

∥T t+∆
t − jT t+∆

t

∥

∥ ≤
ε . Furthermore, since Q1 and Q2 commute, it follows from Equa-
tion (4.17)164 that there are ∆1,∆2 ∈ R≥0 such that ∆1 + ∆2 = ∆ and
jT t+∆

t = eQ1∆1eQ2∆2 . Therefore, we find that
∥

∥

∥
T t+∆

t − I

∥

∥

∥
≤
∥

∥

∥
T t+∆

t − jT t+∆
t

∥

∥

∥
+
∥

∥

∥
eQ1∆1 eQ2∆2 − I

∥

∥

∥

≤ ε +
∥

∥

∥
eQ1∆1 − I

∥

∥

∥
+
∥

∥

∥
eQ2∆2 − I

∥

∥

∥

≤ ε +∆1 ‖Q1‖+∆2 ‖Q2‖ ≤ ∆M,

where the second and third inequalities follow from Lemmas B.5393
and B.10394 in Appendix B391, respectively.

Proof of Example 4.5166. We will prove that the transition matrix sys-
tem (T s

t ) from Example 4.5166 is not well-behaved. In order to do this,
we first fix any n ∈ Z≥0 and any ∆ ∈ (0,δn], and we let i ≥ n be the
unique element of Z≥0 such that δi+1 < ∆ ≤ δi. It then follows from
Equation (4.17)164 that

iT ∆
0 = eQi∆, and therefore, we find that

‖∆Qi‖ ≤
∥

∥

∥
eQi∆− (I +∆Qi)

∥

∥

∥
+
∥

∥

∥
T ∆

0 − iT ∆
0

∥

∥

∥
+
∥

∥

∥
T ∆

0 − I

∥

∥

∥

≤ ∆2 ‖Qi‖2 +2−i +
∥

∥

∥
T ∆

0 − I

∥

∥

∥
,

where the second inequality holds because of Lemma B.8394 in Ap-
pendix B391 and because—as proved at the end of the proof of Ex-
ample 4.3164—d

(

(iT s
t ),(T

s
t )
)

≤ c2−i = 2−i. Hence, since ‖Qi‖ = ‖iQ‖ =
i‖Q‖= i, we find that

1

∆

∥

∥

∥
T ∆

0 − I

∥

∥

∥
≥ ‖Qi‖−∆‖Qi‖2− 1

∆
2−i = i−∆i2− 1

∆
2−i ≥ i−δii

2− 1

δi+1
2−i

and therefore, because δi = 2−i, δi+1 = 2−i−1, 2i ≥ i and i ≥ n, it follows
that

1

∆

∥

∥

∥
T ∆

0 − I

∥

∥

∥
≥ i−2−ii2−2≥ i− 1

2
i−2 =

i

2
−2≥ n

2
−2. (4.35)

Since ∆ ∈ (0,δn] is arbitrary, this inequality immediately implies that

limsup
∆→0+

1

∆

∥

∥

∥
T ∆

0 − I

∥

∥

∥
≥ n

2
−2.

and therefore, since this is true for every n ∈ Z≥0, we infer from Defini-
tion 4.7157 that (T s

t ) is not well-behaved, because the definition clearly
fails for t = 0.
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Proof of Example 4.6167. We will prove that Equation (4.21)167 indeed
holds. So fix any λ ∈ [1/3, 2/3] and consider the sequence {∆i}i∈Z≥0

→ 0+

whose elements are defined by ∆i := (2δ2i+1)/(3λ ). For all i ∈ Z≥0, we then
find that

ϕ1(∆i)Q1 +ϕ2(∆i)Q2 =
2

3
δ2i+1Q1 +(∆i−

2

3
δ2i+1)Q2

= λ∆iQ1 +(1−λ )∆iQ2 = Qλ ∆i,

where the first equality follows from Equations (4.19)165 and (4.20)165,
because 1/(3λ )∈ [1/2,1] implies that δ2i+1≤∆i≤ δ2i. Hence, for all i∈Z≥0,

Equation (4.18)165 now tells us that T
∆i

0 = eQλ ∆i . Therefore, and because
{∆i}i∈Z≥0

→ 0+, we find that indeed, as required,

lim
i→+∞

1

∆i

(T ∆i
0 − I) = lim

i→+∞

1

∆i

(eQλ ∆i − I) =
d

d t
eQλ t

∣

∣

t=0
= Qλ , (4.36)

where we use Lemma 4.14155 to establish the last equality.

Proof of Example 4.7170. Showing that {Qλ : λ ∈ [1/3, 2/3]} is a subset of
∂+T 0

0 was, essentially, already done in Example 4.6167, because for ev-
ery λ ∈ [1/3, 2/3], it follows from Equation (4.36) and Definition 4.10167
that Qλ ∈ ∂+T 0

0 . Therefore, we only need to show that ∂+T 0
0 is a subset

of {Qλ : λ ∈ [1/3, 2/3]}, or equivalently, we need to show that for every
Q ∈ ∂+T 0

0 , there is some λ ∈ [1/3, 2/3] such that Q = Qλ .

So consider any Q ∈ ∂+T 0
0 . Definition 4.11168 then implies the exis-

tence of a sequence {∆i}i∈Z>0
→ 0+ such that

lim
i→+∞

1

∆i

(T ∆i
0 − I) = Q. (4.37)

The first step of the proof is to observe that, as we already noted
in Example 4.4165, for every t ∈ (0,1] it holds that ϕ1(t)+ϕ2(t) = t. In
particular, it follows from Equations (4.19)165 and (4.20)165 that

ϕ1(t)+ϕ2(t) = t− 2/3δi+1 + 2/3δi+1 = t ,

with i ∈ Z≥0 such that δi+1 ≤ t ≤ δi.
Next, let us show that t1/3 ≤ ϕ1(t) ≤ t2/3 for all t ∈ (0,1]. To this

end, first note that δi = 2δi+1 for all i ∈ Z≥0, and hence it follows that if
δi+1 ≤ t ≤ δi then

t1/3≤ 2/3δi+1 ≤ t2/3 . (4.38)

Hence, if δi+1 ≤ t ≤ δi with i even, then it follows from Equa-
tion (4.19)165 that ϕ1(t) = 2/3δi+1, and the desired inequalities follow
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from Equation (4.38)x. On the other hand, if i is odd then it follows
from Equation (4.20)165 that ϕ2(t) = 2/3δi+1, and because we know that
ϕ1(t)+ϕ2(t) = t, the inequalities again follow from Equation (4.38)x.

Given these observations, it follows that for all t ∈ (0,1], there is
some λt ∈ [1/3, 2/3] such that ϕ1(t) = λtt and ϕ2(t) = (1− λt)t. Hence
in particular, for large enough i ∈ Z>0 it holds that ∆i ∈ (0,1] be-
cause {∆i}i∈Z>0

→ 0+, and then there is some λi ∈ [1/3, 2/3] such that
ϕ1(∆i) = λi∆i and ϕ2(∆i) = (1− λi)∆i and therefore also, due to Equa-
tion (4.18)165, T

∆i
0 = e

Qλi
∆i . In this way we obtain a sequence {λi}i∈Z>0

in [1/3, 2/3]; to obtain the elements λi for which ∆i > 1, simply set λi := 1/3.
Furthermore, because of the Bolzano-Weierstrass theorem, the se-

quence {λi}i∈Z>0
has a convergent subsequence {λik}k∈Z>0

whose limit
λ := limk→+∞ λik clearly belongs to [1/3, 2/3].

In the remainder of this proof, we will show that Q = Qλ . To this
end, let us fix any ε > 0 and prove that ‖Q−Qλ‖ < ε . First of all,
since λ = limk→+∞ λik , there is some n1 ∈ Z>0 such that, for all k ≥ n1,
∣

∣λ −λik

∣

∣‖Q1−Q2‖< ε/3 and therefore also

∥

∥

∥
Qλ −Qλik

∥

∥

∥
=
∥

∥(λ −λik)(Q1−Q2)
∥

∥=
∣

∣λ −λik

∣

∣‖Q1−Q2‖<
ε

3
. (4.39)

Secondly, Equation (4.37)x implies that there is some n2 ∈ Z>0 such
that

∥

∥

∥

∥

1

∆ik

(

T
∆ik

0 − I
)

−Q

∥

∥

∥

∥

<
ε

3
for all k ≥ n2. (4.40)

Thirdly, Lemma B.8394 in Appendix B391 implies that for all k ∈ Z>0 it
holds that

∥

∥

∥

∥

1

∆ik

(

e
Qλik

∆ik − I
)

−Qλik

∥

∥

∥

∥

≤ ∆ik

∥

∥

∥
Qλik

∥

∥

∥

2

. (4.41)

Moreover, for any k ∈ Z>0, because λik ∈ [1/3, 2/3], it holds that

∥

∥

∥
Qλik

∥

∥

∥
=
∥

∥λik Q1 +(1−λik)Q2

∥

∥

≤ λik ‖Q1‖+(1−λik)‖Q2‖ ≤max{‖Q‖1 ,‖Q2‖} .

Because limk→+∞ ∆ik = 0, this implies that there is some n3 ∈ Z>0 such

that, for all k ∈ Z>0 with k ≥ n3 it holds that ∆ik ‖Qλik
‖2 < ε/3, and there-

fore also, using Equation (4.41), that

∥

∥

∥

∥

1

∆ik

(

e
Qλik

∆ik − I
)

−Qλik

∥

∥

∥

∥

<
ε

3
for all k ≥ n3. (4.42)

Finally, because limk→+∞ ∆ik = 0, there is some n4 ∈ Z>0 such that ∆ik ∈
(0,1] for all k ≥ n4.
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Now consider any k ≥ max{n1,n2,n3,n4}. Then because ∆ik ∈
(0,1] it holds that T

∆ik
0 = e

Qλik
∆ik , and hence it follows from Equa-

tions (4.39), (4.40), and (4.42) that

‖Q−Qλ‖ ≤
∥

∥

∥

∥

Q− 1

∆ik

(

T
∆ik

0 − I
)

∥

∥

∥

∥

+

∥

∥

∥

∥

1

∆ik

(

e
Qλik

∆ik − I
)

−Qλik

∥

∥

∥

∥

+
∥

∥

∥
Qλik
−Qλ

∥

∥

∥

< ε.

Since this is true for every ε > 0, it follows that ‖Q−Qλ‖= 0, and there-
fore also, that Q = Qλ , as desired.

Proof of Example 4.8170. We will prove that the right-sided outer par-
tial derivative ∂+T 0

0 is empty. To this end, assume ex absurdo that
it is not empty, and consider any Q ∈ ∂+T 0

0 . It then follows from
Equation (4.22)168 that there is a sequence {∆i}i∈Z>0

→ 0+ such that
limi→+∞ 1/∆i(T

∆i
0 − I) = Q. Consider now any ε > 0, any n∈Z≥0 such that

n≥ 6+2ε , let δn := 2−n as in Example 4.5166, and consider any i∗ ∈ Z>0

such that, for all i ≥ i∗, ∆i ∈ (0,δn)—such an i∗ always exists because
{∆i}i∈Z>0

→ 0+. For all i ≥ i∗, using Equation (4.35)176 from the proof
of Example 4.5166, and noting that ‖Q‖= 1, we then find that

∥

∥

∥

∥

1

∆i

(T ∆i
0 − I)−Q

∥

∥

∥

∥

≥
∥

∥

∥

∥

1

∆i

(T ∆i
0 − I)

∥

∥

∥

∥

−‖Q‖ ≥ n

2
−3≥ ε,

which, since ε > 0, contradicts the fact that limi→+∞ 1/∆i(T
∆i

0 − I) = Q.
Hence, our assumption must be wrong, and it follows that ∂+T 0

0 is in-
deed empty.
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5

Continuous-Time

(Imprecise-)Markov Chains

“I am a leaf on the wind – watch how I soar.”

Hoban ‘Wash’ Washburn, Serenity

In this chapter we finally come to the eponymous continuous-time
imprecise-Markov chains that are, ultimately, the subject of this dis-
sertation. We use the formalisms developed in Chapter 245, and the
machinery from Chapter 4143, to construct and analyse these models.

We start in Section 5.1y by formally defining continuous-time (pre-
cise) Markov chains, which, in analogy with discrete-time Markov
chains, are stochastic processes whose future behaviour is independent
of their past behaviour, given their current state. We study both homo-
geneous and non-homogeneous Markov chains, and show that some
well-known properties from the literature also hold in our formalism.

Continuous-time imprecise-Markov chains are introduced formally
in Section 5.2188, as sets of stochastic processes whose (generalised)
derivatives are contained in a given set of transition rate matrices. We
consider three different types of such models, with increasing gener-
ality, which we all consider to be imprecise-Markov chains. We study
some particular closure properties of these sets of models.

In Section 5.3194, we consider the sets of transitionmatrices and sets
of transition matrix systems that are induced by a given continuous-

181



Continuous-Time (Imprecise-)Markov Chains

time imprecise-Markov chain. We characterise structural properties of
these sets in terms of the structural properties of the set of transition
rate matrices that define a continuous-time imprecise-Markov chain.

We conclude this chapter with Section 5.4198, where we intro-
duce and analyse the lower and upper expectations corresponding to
continuous-time imprecise-Markov chains, which, as we know from
Chapter 129, are the inferences we are interested in. We derive char-
acterisations of these lower (and upper) expectations in terms of the
induced sets of transition matrices, and show that all three types of
continuous-time imprecise-Markov chains introduced in Section 5.2188
satisfy imprecise-Markov properties, which motivates our terminology.
We conclude by proving a law of iterated lower expectations for the most
imprecise of our continuous-time imprecise-Markov chains, which is a
crucial property for the development of efficient algorithms in Chap-
ters 6259 and 7335.

5.1 Continuous-Time Markov Chains

Let us start by giving the formal definition of a (continuous-time)
Markov chain.

Definition 5.1 (Markov Property, Markov Chain). A stochastic process
P∈ P satisfies theMarkov property if for any t,s∈R≥0 such that t ≤ s, any
time sequence u ∈U<t , any xu ∈Xu, and any states x,y ∈X :

P(Xs = y |Xt = x,Xu = xu) = P(Xs = y |Xt = x) .

A stochastic process that satisfies this property is called a Markov chain.
We denote the set of all Markov chains by PM and use PWM to refer to the
subset that only contains the well-behaved Markov chains.

We note that in the continuous-time setting, the transition probabili-
ties P(Xs = y |Xt = x) are actually values that P assigns to the conditional
event (Xs = y,Xt = x) ∈ C SP. This is different from what we encountered
in the definition of discrete-time Markov chains in Definition 3.389,
where the analogous conditional events were not part of the domain
C SP
D of discrete-time Markov chains. Other than that, the interpreta-

tion in the continuous-time setting is analogous to the discrete-time
setting: a Markov chain is a stochastic process whose future behaviour
is independent of its past behaviour, given the current state.

Moving on, we already know from Corollary 4.4150 that the transi-
tion matrices of a stochastic process—and therefore also, in particular,
of a Markov chain—satisfy some simple properties. For the specific
case of a Markov chain P ∈ PM, the family of transition matrices (T s

t )
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also satisfies an additional property. In particular, for any t,r,s ∈ R≥0

such that t ≤ r ≤ s, these transition matrices satisfy

T s
t = T r

t T s
r . (5.1)

In this context, this property is known as the Chapman-Kolmogorov
equation or the semigroup property [68]. Indeed, this is the same semi-
group property that we defined in Section 4.4156 to hold for transition
matrix systems. The following result is therefore not surprising.

Proposition 5.1. Consider a Markov chain P ∈ PM and let (T s
t ) be its cor-

responding family of transition matrices. Then (T s
t ) is a transition matrix

system. Furthermore, (T s
t ) is well-behaved if and only if P is well-behaved.

Proof. Consider any Markov chain P ∈ PM, with (T s
t ) its corresponding

family of transition matrices. Then, because P is a stochastic process, it
follows from Corollary 4.4150 that T t

t = I for all t ∈ R≥0.
Consider now any t,r,s ∈ R≥0 with t ≤ r ≤ s. We need to show that

T s
t = T r

t T s
r . If t = r, we have that T s

t = T r
t T s

r = IT s
r = T s

t , and hence the
result follows trivially. Similarly, the claim is trivial for r = s. Hence,
it remains to show that the claim holds for t < r < s. It follows from
Definition 5.1 that for all xt ,xr,xs ∈X ,

P(Xs = xs |Xr = xr,Xt = xt) = P(Xs = xs |Xr = xr) .

Furthermore, because P is a stochastic process, it follows from Corol-
lary 2.2068 that P satisfies F447 and F347 on its domain. From F447, we
infer that

P(Xs = xs,Xr = xr |Xt = xt) = P(Xs = xs |Xr = xr,Xt = xt)P(Xr = xr |Xt = xt)

= P(Xs = xs |Xr = xr)P(Xr = xr |Xt = xt) ,

where the second equality used the Markov property. From F347, we
infer that

P(Xs = xs |Xt = xt) = ∑
xr∈X

P(Xs = xs,Xr = xr |Xt = xt) .

From Definition 4.3150 it now follows that, for any xt ,xs ∈X ,

T s
t (xt ,xs) = P(Xs = xs |Xt = xt)

= ∑
xr∈X

P(Xs = xs,Xr = xr |Xt = xt)

= ∑
xr∈X

P(Xs = xs |Xr = xr)P(Xr = xr |Xt = xt)

= ∑
xr∈X

T r
t (xt ,xr)T

s
r (xr,xs) ,
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and hence, by the properties of matrix multiplication, we find that T s
t =

T r
t T s

r . Therefore, and because the t,r,s ∈ R≥0 are arbitrary, (T s
t ) is a

transition matrix system.
That (T s

t ) is well-behaved if and only if P is well-behaved follows
immediately from Definition 4.7157 and Proposition 4.2149 because the
Markov property implies that T t+∆

t,xu
= T t+∆

t and T t
t−∆,xu

= T t
t−∆.

At this point we know that every (well-behaved) Markov chain has
a corresponding (well-behaved) transition matrix system. Our next re-
sult establishes that the converse is true as well: every (well-behaved)
transition matrix system has a corresponding (well-behaved) Markov
chain, and for a given initial distribution, this Markov chain is even
unique. The proof of this statement is highly technical (and fairly cum-
bersome), so we have deferred it to Appendix 5.A210.

Theorem 5.2. Let p be any probability mass function on X and let (T s
t )

be a transition matrix system. Then there is a unique Markov chain P ∈ PM

with corresponding family of transition matrices (T s
t ) that satisfies P(X0 =

y) = p(y) for all y ∈X . Furthermore, P is well-behaved if and only if (T s
t )

is well-behaved.

Hence, Markov chains—and well-behaved Markov chains in
particular—are completely characterised by their transition matrices
and their initial distributions. Our next example uses this result to for-
mally establish the existence of the Markov chains that were used in
Examples 4.6167 and 4.8170. Furthermore, it also illustrates that not
every Markov chain is well-behaved.

Example 5.1. For any transition matrix system (T s
t ), it follows from

Theorem 5.2—with p chosen arbitrarily—that there is a continuous-
time Markov chain P ∈ PM ⊆ P with corresponding family of transition
matrices (T s

t ) and, furthermore, that P is well-behaved if and only if
(T s

t ) is well-behaved.
For example, for any rate matrix Q ∈ R such that ‖Q‖ = 1, if we

let (T s
t ) be the transition matrix system of Example 4.5166, we find—

as already claimed in Example 4.8170—that there is a continuous-time
Markov chain P ∈ PM ⊆ P with corresponding family of transition ma-
trices (T s

t ). Furthermore, since we know from Example 4.5166 that (T
s

t )
is not well-behaved, it follows that P is not well-behaved either.

As another example, for any two commuting rate matri-
ces Q1,Q2 ∈R, if we let (T s

t ) be the well-behaved transition matrix
system of Example 4.4165, we find—as already claimed in Exam-
ple 4.6167—that there is a well-behaved continuous-time Markov chain
P ∈ PWM ⊆ PM ⊆ P such that, for all t ∈ (0,1], its transition matrix T t

0 is
given by Equation (4.18)165 in Example 4.4165. ♦
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The caveats surrounding the analogous Proposition 3.1495 also ap-
ply here; this result is essentially well-known in other formalisms, and
Theorem 5.2 should be understood as a translation of those results to
our formalisation of continuous-time Markov chains using coherent
conditional probabilities.

Let us conclude this section by noting that the Markov property
not only simplifies the transition probabilities of a process, but also
simplifies its dynamics.

Lemma 5.3. Consider a Markov chain P ∈ PM with corresponding families
of (history-dependent) transition matrices (T s

t,xu
) and (T s

t ). Then, for all
t ∈ R≥0, u ∈U<t , and xu ∈Xu, it holds that T s

t,xu
= T s

t .

Proof. This is immediate fromDefinitions 4.2148, 4.3150, and 5.1182.

Proposition 5.4. Consider a Markov chain P ∈ PM, with corresponding
families of (directional) outer partial derivatives (∂T t

t,xu
), (∂+T t

t,xu
), and

(∂−T t
t,xu

). Then, for all t ∈ R≥0, u ∈ U<t , and xu ∈ Xu, it holds that
∂+T t

t,xu
= ∂+T t

t , ∂−T t
t,xu

= ∂−T t
t , and ∂T t

t,xu
= ∂T t

t .

Proof. We only give the proof for ∂+T t
t,xu

; the proof for ∂−T t
t,xu

is com-

pletely analogous, and the proof for ∂T t
t,xu

then follows immediately.
We will show that ∂+T t

t,xu
⊆ ∂+T t

t and ∂+T t
t ⊆ ∂+T t

t,xu
.

So, first fix any Q ∈ ∂+T t
t,xu

. By Definition 4.11168, there is then
some sequence {∆i}i∈Z>0

→ 0+ such that limi→+∞ 1/∆i(T
t+∆i

t,xu
− I) = Q. By

Lemma 5.3 it holds that T
t+∆i

t,xu
= T

t+∆i
t for all i ∈ Z>0, which means that

also limi→+∞ 1/∆i(T
t+∆i

t − I) = Q. By Definition 4.11168, this means that
Q ∈ ∂+T t

t . Since Q ∈ ∂+T t
t,xu

is arbitrary it follows that ∂+T t
t,xu
⊆ ∂+T t

t .
The proof for the other direction is completely analogous.

5.1.1 Homogeneous Markov Chains

We encountered homogeneous Markov chains in discrete time in Chap-
ter 383. They were Markov chains for which the transition probabilities
do not depend on the absolute moment in time that they are consid-
ered. The following definition introduces the analogous concept for
continuous-time Markov chains.

Definition 5.2 (Homogeneous Markov chain). A Markov chain P ∈ PM

is called time-homogeneous, or simply homogeneous, if for all t,s ∈ R≥0

with t ≤ s, and all x,y ∈X , it holds that

P(Xs = y |Xt = x) = P(Xs−t = y |X0 = x) .
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We denote the set of all homogeneous Markov chains by PHM and use PWHM

to refer to the subset that consists of the well-behaved homogeneous Markov
chains.

Another way to put this is that a Markov chain is homogeneous if
its transition matrices T s

t only depend on the values of t and s through
their difference s− t, i.e. if for all t,s ∈ R≥0 with t ≤ s, it holds that

T s
t = T s−t

0 . (5.2)

Recall now from Chapter 4143 the exponential transition matrix
system (eQ(s−t)) corresponding to some rate matrix Q ∈ R. This fam-
ily of transition matrices (T s

t ) := (eQ(s−t)) therefore clearly satisfies
Equation (5.2). Furthermore, by Proposition 4.16158, (e

Q(s−t)) is well-
behaved. Hence, we have the following result.

Corollary 5.5. Consider any rate matrix Q ∈R and let p be an arbitrary
probability mass function on X . Then there is a unique Markov chain
P ∈ PM with corresponding family of transition matrices (T s

t ) such that
(T s

t ) = (eQ(s−t)) and, for all y ∈X , P(X0 = y) = p(y). Furthermore, this
unique Markov chain is well-behaved and homogeneous.

Proof. Since we know from Proposition 4.16158 that (eQ(s−t)) is a well-
behaved transition matrix system, it follows from Theorem 5.2184
that there is a unique Markov chain P ∈ PM with corresponding fam-
ily of transition matrices (T s

t ) such that (T s
t ) = (eQ(s−t)) and, for all

y ∈ X , P(X0 = y) = p(y), and that this Markov chain is furthermore
well-behaved. Since it—trivially—follows from Definition 4.8158 that
(T s

t ) = (eQ(s−t)) satisfies Equation (5.2), Definition 5.2x implies that P

is homogeneous.

Our next result strengthens this connection between well-behaved
homogeneous Markov chains and exponential transition matrix sys-
tems.1 The proof can be found in Appendix 5.A210.

Theorem 5.6. For any well-behaved homogeneous Markov chain P∈PWHM

with corresponding family of transition matrices (T s
t ), there is a unique rate

matrix Q ∈R such that (T s
t ) = (eQ(s−t)).

1As before, although our proof for this result starts from scratch, this result is es-
sentially well known. Our version of it should be regarded as a (re)formulation that is
adapted to our terminology and notation and, in particular, to our use of coherent con-
ditional probabilities.
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By combining Corollary 5.5 and Theorem 5.6, we see that any well-
behaved homogeneous Markov chain P ∈ PWHM is completely charac-
terised by its initial distribution and its rate matrix Q ∈ R. We will
denote this rate matrix by QP.

The dynamic behaviour of well-behaved homogeneous Markov
chains is furthermore particularly easy to describe, as shown by the
next result.

Proposition 5.7. Consider any well-behaved homogeneous Markov chain
P ∈ PWHM and let QP ∈ R be its corresponding rate matrix. Then for
all t ∈ R≥0 its corresponding (directional and/or outer) partial derivatives
satisfy

∂T t
t = ∂+T t

t = QP and, if t > 0, ∂−T t
t = QP ,

and
∂T t

t = ∂+T t
t = {QP} and, if t > 0, ∂−T t

t = {QP} .

Proof. The result about the partial derivatives is an immediate conse-
quence of Lemma 4.14155 and the fact that T t+∆

t = eQ∆ and, if t−∆≥ 0,
T t

t−∆ = eQ∆. The result about the outer partial derivatives then follows
from Corollary 4.24171.

5.1.2 Non-Homogeneous Markov Chains

In contrast with homogeneous Markov chains, a Markov chain for
which Equation (5.2) does not hold is called—rather obviously—non-
homogeneous. While we know from Theorem 5.6 that well-behaved ho-
mogeneous Markov chains can be characterised (up to an initial dis-
tribution) by a fixed rate matrix Q ∈ R, this is not the case for well-
behaved non-homogeneous Markov chains.

Instead, such systems are typically described by a function Qt that
gives for each time point t ∈ R≥0 a rate matrix Qt ∈ R. For any such
function Qt , the existence and uniqueness of a corresponding non-
homogeneous Markov chain then depend on the specific properties
of Qt . Rather than attempt to treat all these different cases here, we
instead refer to some examples from the literature.

Typically, some kind of continuity of Qt in terms of t is assumed.
The specifics of these assumptions may then depend on the intended
generality of the results, computational considerations, the domain of
application, and so forth. For example, Reference [1] assumes that Qt

is left-continuous and has bounded right-hand limits. As a stronger re-
striction, Reference [53] uses a collection Q1, . . . ,Qn of commuting rate
matrices, and defines Qt as a weighted linear combination of these com-
ponent rate matrices wherein the weights vary continuously with t. In
Reference [88], a right-continuous and piecewise-constant Qt is used,
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meaning that Qt takes different values on various (half-open) intervals
of R≥0, but fixed values within those intervals.

This idea of using a time-dependent rate matrix Qt has the advan-
tage of being rather intuitive, but it is rather difficult to formalise.
Essentially, the problem with this approach is that it does not allow
us to distinguish between left and right derivatives. Intuitively, Qt is
supposed to be “the” derivative. However, this is impossible if Qt is
discontinuous—for example in the piecewise constant case. Therefore,
in this work, instead of explicitly using a function Qt , we will charac-
terise non-homogeneous Markov chains by means of their transition
matrix system and their initial distribution, making use of the results
in Proposition 5.1183 and Theorem 5.2184.

One technique for constructing transition matrix systems that is
particularly important for our work, and especially in our proofs, is to
combine restrictions of exponential transition matrix systems to form a
new transition matrix system that is, loosely speaking, piecewise con-
stant. Example 4.2162 provided a simple illustration of this technique.
More generally, these transition matrix systems will be of the form

(

eQ0(s−t)
)

[0,t0]
⊗
(

eQ1(s−t)
)

[t0,t1]
⊗·· ·⊗

(

eQn(s−t)
)

[tn−1,tn]
⊗
(

eQn+1(s−t)
)

)[tn,+∞) .

(5.3)

For example, the transition matrix systems (iT s
t ), i ∈ Z≥0, that we de-

fined in Equation (4.17)164 all have this form. As we know from Propo-
sitions 4.16158 and 4.19161, transition matrix systems that have this
form are always well-behaved. The following is therefore a trivial con-
sequence of Theorem 5.2184.

Proposition 5.8. Let p be a probability mass function on X , let u =
t0, . . . , tn be a finite sequence of time points in U⊃ /0, and let Q0, . . . ,Qn+1 ∈Q

be a collection of rate matrices. Then there is a well-behaved continuous-
time Markov chain P ∈ PWM such that P(X0 = y) = p(y) for all y ∈ X ,
and whose corresponding family of transition matrices is given by Equa-
tion (5.3).

5.2 Continuous-Time Imprecise-Markov Chains

We are now finally ready to introduce the eponymous continuous-time
imprecise-Markov chains that are the focus of this dissertation. In anal-
ogy with the concept of a discrete-time imprecise-Markov chain, as dis-
cussed in Chapter 383, they are sets of stochastic processes that are in a
specific sense consistent with a given set of parameters.

Recall from Chapter 4143 that for a given stochastic process P ∈ P,
its dynamics can be described by means of the outer partial derivatives
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∂T t
t,xu

of its transition matrices, which can depend both on the time
t ∈ R≥0 and on the history xu ∈Xu. Furthermore, we also found that—
at least for well-behaved processes—these outer partial derivatives are
non-empty and compact sets of rate matrices. If all the outer partial
derivatives of a process belong to the same non-empty set of rate ma-
trices Q, we say that this process is consistent with Q.

Definition 5.3 (Consistency with a set of rate matrices). Consider a non-
empty set of rate matrices Q and a stochastic process P∈ Pwith correspond-
ing family of outer partial derivatives (∂T t

t,xu
). Then P is said to be consis-

tent with Q if

(∀t ∈ R≥0)(∀u ∈U<t)(∀xu ∈Xu) : ∂T t
t,xu
⊆Q.

If P is consistent with Q, we will write P∼Q.

Hence, when a process is consistent with a set of rate matrices Q,
we know that its dynamics can always be described using rate matrices
in that set. However, we do not know which of these rate matrices
Q ∈Q describe the dynamics at any given time t ∈R≥0 or for any given
history xu ∈ Xu. Furthermore, consistency of a process with a set of
rate matrices Q does not tell us anything about the initial distribution
of the process. Therefore, we also introduce the concept of consistency
with a set of initial distributions M .

Definition 5.4 (Consistency with a set of initial distributions). Con-
sider any non-empty set M of probability mass functions on X and any
stochastic process P ∈ P. We then say that P is consistent with M , and
write P∼M , if the map p : X → R : x 7→ P(X0 = x) is in M .

In analogy with our developments in Chapter 383, we first introduce
the notion of a consistent subset of a given set of processes. This will
(again) allow us to consider various different types of continuous-time
imprecise-Markov chains, using consistent notation and definitions.

Definition 5.5 (Consistent subset of processes). Consider a non-empty
set of rate matrices Q, a non-empty set M of probability mass functions
on X , and a set of stochastic processes P ⊆ P. Then, the subset of P

consistent with Q and M is denoted by PQ,M , and defined as

PQ,M :=
{

P ∈P
∣

∣P∼Q and P∼M
}

.

When M is the set of all probability mass functions on X , we will write
PQ for the sake of brevity.
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For some fixed Q and M , different choices for P will result in dif-
ferent sets of consistent processes PQ,M . Three specific choices of P

will be particularly important in this work because, as we will now
show, they lead to three different types of imprecise continuous-time
Markov chains.

In particular, we have introduced three sets PW, PWM and PWHM of
well-behaved stochastic processes with different qualitative properties.
PW is the set of all well-behaved stochastic processes, PWM consists of
the processes in PW that are Markov chains, and PWHM is the set of all
homogeneous Markov chains that are well-behaved, which is therefore
a subset of PWM. We now use Definition 5.5x to define three sets of
consistent processes that have these respective qualitative properties.

Definition 5.6 (Continuous-time imprecise-Markov chain). For any
non-empty set of rate matrices Q, and any non-empty set M of probabil-
ity mass functions on X , we define the following three sets of stochastic
processes that are jointly consistent with Q and M :

• PW
Q,M is the consistent set of all well-behaved stochastic processes;

• PWM
Q,M is the consistent set of all well-behaved Markov chains;

• PWHM
Q,M is the consistent set of all well-behaved homogeneous Markov

chains.

We call each of these three sets a continuous-time imprecise-Markov
chain, and abbreviate this as CTIMC.2 Following Definition 5.5x, we will
write PW

Q
when we take M to be the set of all probability mass functions on

X , and similarly for PWM
Q

and PWHM
Q

.

Since the sets PWHM, PWM and PW are nested, it should be clear
that this also true for the corresponding types of continuous-time
imprecise-Markov chains.

Proposition 5.9. For any non-empty set Q⊆R and any non-empty set M

of probability mass functions on X , it holds that PWHM
Q,M ⊆ PWM

Q,M ⊆ PW
Q,M .

Proof. Use Definitions 5.5x and 5.6 and that PWHM ⊆ PWM ⊆ PW.

2As in Chapter 383, this terminology derives from the imprecise-Markov property that
these sets satisfy. For PWM

Q,M and PWHM
Q,M we show in Proposition 5.26202 that this is always

true. For PW
Q,M , we show in Proposition 5.28203 and Equation (6.13)281 that this is true

under some structural assumptions on Q.
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Observe furthermore that for PWHM
Q,M and PWM

Q,M , the additional prop-
erties of their elements allow us to simplify the notion of consistency
in Definition 5.3189, which leads to the following alternative character-
isations:

PWM
Q,M =

{

P ∈ PWM
∣

∣(∀t ∈ R≥0) ∂T t
t ⊆Q, P∼M

}

, (5.4)

and
PWHM

Q,M =
{

P ∈ PWHM
∣

∣QP ∈Q, P∼M
}

. (5.5)

This first equality follows from the Markov property of the elements of
PWM, which, by Proposition 5.4185, ensures that ∂T t

t,xu
= ∂T t

t . The sec-
ond equality follows from the Markov property and the homogeneity
of the processes P ∈ PWHM, which, by Proposition 5.7187, ensures that
∂T t

t = {QP} for all t ∈ R≥0.
The following example further illustrates the difference between the

three types of models that we consider.

Example 5.2. Let Q∗ be an arbitrary transition rate matrix, fix any ρ >
0, and let Q := {Q ∈R : ‖Q−Q∗‖ ≤ ρ} be the closed metric ball (in R)
of radius ρ around Q∗. This constructs Q as essentially a perturbation
model around the rate matrix Q∗, which may arise naturally in contexts
like for example sensitivity analysis. Although we do not currently
aim to dwell on specifics, it follows from Proposition 6.20278 further
on that this set Q has a number of convenient structural properties,
like boundedness and convexity. To finish setting up the example, let
furthermore M := {p}, with p an arbitrary but fixed probability mass
function on X .

The set PWHM
Q,M then contains an infinity of stochastic processes P,

each of which is a well-behaved homogeneous Markov chain. They all
have p as their initial distribution, in the sense that P(X0 = y) = p(y)
for all y ∈X , but their transition rate matrices QP—whose existence
is guaranteed by Theorem 5.6186—are different: there is exactly one
process P with QP = Q for every Q ∈Q. The transition matrix systems
of these Markov chains P are given by the exponential transition matrix
systems

(

eQP(s−t)
)

.

Since PWHM
Q,M is a subset of PWM

Q,M , all these homogeneous Markov
chains belong to PWM

Q,M as well. However, PWM
Q,M may also contain ad-

ditional processes, which are not homogeneous and therefore do not
belong to PWHM

Q,M . For instance, for any Q1,Q2 ∈ Q such that Q1 6= Q2,
and any r > 0, it follows from Proposition 5.10y further on that there
is a well-behaved continuous-time Markov chain P ∈ PWM

Q,M that has
(

eQ1(s−t)
)

[0,r]⊗
(

eQ2(s−t)
)

[r,+∞) as its transition matrix system. Provided
that T r

0 = eQ1r is different from T 2r
r = eQ2r, it follows that this Markov

chain is not homogeneous, and it therefore does not belong to PWHM
Q,M .
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Since PWM
Q,M is a subset of PW

Q,M , all of these processes belong to the
set PW

Q,M as well. However the latter set may contain more compli-
cated processes still. For instance, due to the properties of Q estab-
lished by Proposition 6.20278, and using Lemma 5.35215—which is a
more technical and slightly stronger version of Theorem 5.11 further
on—it is possible to show that for any u ∈ U⊃ /0 and any xu,yu ∈ Xu

such that xu 6= yu, PW
Q,M contains a stochastic process P such that,

for all t > u, ∂T t
t,xu

= {Q1} and ∂T t
t,yu

= {Q2}. For all s > t > u, the
history-dependent transition matrices T s

t,xu
and T s

t,yu
of this process P

are given by T s
t,xu

= eQ1(s−t) and T s
t,yu

= eQ2(s−t), which—again provided

that eQ1(s−t) 6= eQ2(s−t)—implies that this process P does not satisfy the
Markov property, and therefore, that it does not belong to PWM

Q,M . ♦

Proposition 5.10. Consider any non-empty set of rate matrices Q and
any non-empty set M of probability mass functions on X . Then for any
p ∈M , any ordered finite sequence of time points u = t0, . . . , tn in U⊃ /0 and
any collection of rate matrices Q0, . . . ,Qn+1 ∈ Q, there is a well-behaved
continuous-time Markov chain P ∈ PWM

Q,M such that P(X0 = y) = p(y) for all

y ∈X , and whose transition matrix system is given by Equation (5.3)188.

Proof. Proposition 5.8188 implies the existence of a process P ∈ PWM

such that P(X0 = y) for all y∈X and such that its corresponding family
of transition matrices (T s

t ) is given by Equation (5.3)188. It remains to
show that P ∈ PWM

Q,M . Because of Equation (5.4)x, and since we already
know that p ∈M , this means that we have to show that ∂T r

r ⊆Q for all
r ∈ R≥0. So, fix any r ∈ R≥0.

We consider several cases. If r < t0, then ∂T r
r corresponds to

(

eQ0(s−t)
)

[0,t0], and it then follows from Lemma 4.14155 and Corol-
lary 4.24171 that ∂T r

r = {Q0} ⊆ Q. If r > tn, then ∂T r
r corresponds

to
(

eQn+1(s−t)
)

[tn,+∞), whence ∂T r
r = {Qn+1} ⊆ Q. Similarly, if there

is some i ∈ {1, . . . ,n} such that r ∈ (ti−1, ti), then ∂T r
r corresponds to

(

eQi(s−t)
)

[ti−1,ti], and therefore ∂T r
r = {Qi} ⊆ Q. The only remaining

case is when r = ti for some i ∈ {0, . . . ,n}. In this case, we have that
∂+T r

r = {Qi+1} and, if r 6= 0, that ∂−T r
r = {Qi}, and therefore, it follows

from Definition 4.10167 that ∂T r
r ⊆Q.

We conclude this section with some notes about closure properties
of the different types of models that we consider, which are particularly
useful for existence proofs. In particular, we focus on closure proper-
ties under recombination of known elements—colloquially, the “piec-
ing together” of two or more processes in order to construct a new pro-
cess that belongs to the same continuous-time imprecise-Markov chain.

Example 5.2x already suggested how to do this for PWM
Q,M , by com-

bining two well-behaved homogeneous Markov chains P1,P2 ∈ PWHM
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to form a new process P ∈ PWM. Similarly, but more generally, for
any two processes P1,P2 ∈ PWM

Q,M , we can combine their transition ma-

trix systems (1T s
t ) and (2T s

t ) to construct a new transition matrix sys-
tem (T s

t ) := (1T s
t )[0,r]⊗ (2T s

t )[r,+∞), with r > 0 chosen arbitrarily. The-
orem 5.2184 then guarantees that there is a Markov chain P whose
corresponding family of transition matrices is (T s

t ), and that satisfies
P(X0 = y) = P1(X0 = y) for all y ∈X . It is straightforward to verify that
P ∈ PWM

Q,M because P1,P2 ∈ PWM
Q,M .

Clearly, a similar procedure is impossible for PWHM
Q,M , because the

combination of two processes would make the resulting one lose the
homogeneity property, which is required to be an element of PWHM

Q,M .

However, for our most imprecise type of CTIMC, which is PW
Q,M ,

it turns out that, as already suggested in Example 5.2191, it is possi-
ble to recombine elements in an even more general, history-dependent
way. That is, under some conditions on Q it is possible, for fixed time
points u ∈ U , to choose for every history xu ∈Xu a different process
Pxu ∈ PW

Q,M , and to recombine these into a process P that agrees with
these Pxu conditional on the specific history xu. Furthermore, the dis-
tribution on the time points u can be chosen to agree with any element
P/0 ∈ PW

Q,M . The crucial observation is that this new process P will again
belong to PW

Q,M , provided that the conditions on Q are satisfied.
One important such condition on Q is that it has separately specified

rows, in a manner analogous to how we defined this property for sets of
transition matrices (c.f. Definition 3.13111). We will require this con-
dition for many results further on as well, so let us explicitly rephrase
this definition for completeness:

Definition 5.7. Let R be the set of all rate matrices, and consider any set
Q ⊆R. We then say that Q has separately specified rows if it holds that

Q =
{

Q ∈R
∣

∣∀x ∈X : Q(x, ·) ∈Qx

}

,

where, for all x ∈ X , Qx :=
{

Q(x, ·)
∣

∣Q ∈ Q
}

is the set of x-rows of the
elements of Q.

Again, this quality of having separately specified rows is completely
analogous to the same property for sets of transition matrices: Q has
separately specified rows if it is closed under the row-wise recombina-
tion of its elements.

The following theorem formalises the claim made above that, pro-
vided that Q is convex and has separately specified rows, we can re-
combine the elements of PW

Q,M in a history-dependent manner. The
(highly technical) proof can be found in Appendix 5.B215.
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Theorem 5.11. Consider a non-empty and convex set of rate matrices Q

that has separately specified rows, and any non-empty set M of probability
mass functions on X . Fix a finite sequence of time points u ∈ U . Choose
any P/0 ∈ PW

Q,M and, for all xu ∈Xu, choose some Pxu ∈ PW
Q,M . Then there is

a stochastic process P ∈ PW
Q,M such that, for all u1,u2 ⊆ u such that u2 6= /0

and u1 < u2, all xu1
∈Xu1

and all xu2
∈Xu2

,

P(Xu2
= xu2

|Xu1
= xu1

) = P/0(Xu2
= xu2

|Xu1
= xu1

) (5.6)

and, for all xu ∈Xu and all A ∈Au,

P(A|Xu = xu) = Pxu(A|Xu = xu). (5.7)

5.3 Sets of Transition Matrices for CTIMCs

Because transition matrices play such an important role in the theory
of stochastic processes, and of Markov chains in particular, we find it
interesting to also investigate the sets of transition matrices that are in-
duced by a given CTIMC which, as we know from the previous section,
is a set of stochastic processes.

In particular, we will investigate in this (mostly technical) section
the structural properties of these induced sets of transition matrices,
mostly in terms of the structural properties of the set Q that is used
to parameterise the CTIMC. The structural properties of these sets
are mostly related to the notions of non-emptiness, boundedness, clo-
sure, convexity, and having separately specified rows; we refer to Ap-
pendix A369, and to Definition A.12376 in particular, for the definition
of all these properties but the last one—the quality of having separately
specified rows was introduced in Definition 5.7x above.

As to the other structural properties that we require, we note that
Proposition 4.5151 guarantees that convex combinations of rate matri-
ces are themselves rate matrices, so it makes sense to talk about con-
vex sets of them. The notion of boundedness is explicitly mentioned
because, unlike when working with transition matrices, rate matrices
can have an arbitrarily high norm; again, this follows from Proposi-
tion 4.5151. We also note that, due to Corollary A.12378, closure and
boundedness of Q together imply its compactness (and vice versa).

The proofs of the results appearing in this section are unfortu-
nately somewhat involved, so we have moved almost all of them to
Appendix 5.D232. Moreover, these results rely on some general techni-
cal properties that we discuss in Appendix 5.C227.

Let us now start with the following lemma, which gives conditions
on Q to obtain an error bound on linear approximations of the tran-
sition matrices of the Markov chains P ∈ PWM

Q
, which is uniform with
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respect to all elements of this set and all time points. We emphasise
that this is a technical result that does not have immediate practical
(i.e. algorithmic) applicability, since we do not actually have a way to
construct the matrix Q in Equation (5.8).

Lemma 5.12. Let Q be any non-empty, bounded, and convex set of rate
matrices, and choose any ε ∈R>0. Then there is some δ ∈R>0 such that for
all P ∈ PWM

Q
, all t ∈ R≥0, and all ∆ ∈ R≥0 such that ∆ < δ , it holds that

(∃Q ∈Q)
∥

∥

∥
T t+∆

t − (I +∆Q)
∥

∥

∥
≤ ∆ε , (5.8)

where T t+∆
t is the transition matrix corresponding to P.

This result can be generalised to an error bound on linear approx-
imations of the history-dependent transition matrices of the elements
P ∈ PW

Q
, which is uniform with respect to all these processes, and all

time points and histories leading up to those time points. However, be-
cause the set PW

Q
contains non-Markov processes, we need an additional

condition on Q to obtain this result; specifically, we require Q to have
separately specified rows.

Lemma 5.13. Let Q be a non-empty, bounded, and convex set of rate ma-
trices that has separately specified rows, and choose any ε ∈R>0. Then there
is some δ ∈ R>0 such that, for all P ∈ PW

Q
, all t ∈ R≥0, u ∈ U<t , xu ∈Xu,

and all ∆ ∈ R≥0 such that ∆ < δ , it holds that

(∃Q ∈Q)
∥

∥

∥
T t+∆

t,xu
− (I +∆Q)

∥

∥

∥
≤ ∆ε ,

where T t+∆
t,xu

is the history-dependent transition matrix corresponding to P.

We will now start by considering the CTIMC PWM
Q,M , which, as we

recall from Section 5.2188, is the set of all well-behaved Markov chains
that are consistent with both Q and M . Then, as we know from Propo-
sition 5.1183, each of these Markov chains P ∈ PWM

Q,M has a correspond-
ing family of transition matrices

(

PT s
t

)

that is a transition matrix sys-
tem. Using the developments from Section 4.5158, we can consider
the restrictions (PT s

t )[a,b] of these transition matrix systems to the in-
terval [a,b], with a,b ∈ R≥0 such that a≤ b. Let us now collect all these
restricted transition matrix systems into a single set, i.e., let

T
Q

[a,b] :=
{

(

PT s
t

)

[a,b]

∣

∣P ∈ PWM
Q

}

. (5.9)

Note that this makes no reference to the choice of M . This is because,
as the next result makes explicit, the choice of M does not influence
the transition matrix systems of the elements of PWM

Q,M , and hence we
do not carry the parameter in the notation for and definition of T Q

[a,b]:
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Proposition 5.14. Consider a non-empty set Q of rate matrices and any
non-empty set M of probability mass functions on X . Let T Q

[a,b] be as in
Equation (5.9)x. Then it holds that

T
Q

[a,b] =
{

(

PT s
t

)

[a,b]

∣

∣P ∈ PWM
Q,M

}

.

Observe that T Q

[a,b] is a subset of the set T[a,b], as introduced in Sec-
tion 4.5158. Moreover, recall that by Proposition 4.21163, and using
the metric d defined in Equation (4.15)162, the metric space (T[a,b],d) is
complete. The following result establishes sufficient conditions on Q

for the set T Q

[a,b] to also form a complete metric space under d.

Lemma 5.15. Consider a non-empty, compact, and convex set of rate ma-
trices Q and any a,b ∈ R≥0 such that a ≤ b. Let d be the metric that is
defined in Equation (4.15)162. The metric space

(

T Q

[a,b],d
)

is then complete.

Moreover, we have the following result.

Lemma 5.16. Consider a non-empty bounded set of rate matrices Q and
any a,b ∈ R≥0 such that a≤ b. Let d be the metric that is defined in Equa-
tion (4.15)162. The metric space

(

T Q

[a,b],d
)

is then totally bounded.

Together, these two lemmas imply the following result.

Theorem 5.17. Consider a non-empty, compact, and convex set of rate ma-
trices Q and any a,b ∈ R≥0 such that a ≤ b. Let d be the metric that is
defined in Equation (4.15)162. The metric space

(

T Q

[a,b],d
)

is then compact.

Proof. Since a metric space is compact if and only if it is complete and
totally bounded [100, Theorem 5.1.7], this result is an immediate con-
sequence of Lemmas 5.15 and 5.16.

To see the value of this largely technical result, consider that
Lemma 5.15 tells us that a sequence

{(

PiT s
t

)

[a,b]

}

i∈Z>0
in T Q

[a,b] that is
Cauchy with respect to the metric d, converges to a restricted transition
matrix system

(

P∗T s
t

)

[a,b]
that is also in T Q

[a,b]. In particular, due to Propo-

sition 5.14, this implies the existence of a Markov chain P∗ ∈ PWM
Q,M

whose corresponding family of transition matrices
(

P∗T s
t

)

is an exten-
sion of

(

P∗T s
t

)

[a,b]
to a(n unrestricted) transition matrix system.

Theorem 5.17 strengthens this result, because the compactness im-
plies that every sequence

{(

PiT s
t

)

[a,b]

}

i∈Z>0
in T Q

[a,b] has a convergent (i.e.

Cauchy) subsequence. Hence, this allows us to establish the existence
of Markov chains in PWM

Q,M , as limits of (subsequences of) arbitrary se-
quences of Markov chains in this set. This result is fundamental to
proving some of the results further in this section. One example of this
is the upcoming Corollary 5.18.
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We now move the discussion to sets of transition matrices induced
by a given CTIMC which, as mentioned in the introduction to this sec-
tion, are the objects that we want to study here. Our first result is a
straightforward consequence of Theorem 5.17.

Corollary 5.18. Consider a non-empty, compact, and convex set of rate
matrices Q, any non-empty set M of probability mass functions on X ,
and any t,s ∈ R≥0 such that t ≤ s. For all P ∈ PWM

Q,M , let PT s
t denote the

transition matrix corresponding to P, and let T :=
{

PT s
t : P ∈ PWM

Q,M

}

be
the induced set of transition matrices. Then T is a non-empty and compact
set of transition matrices.

Moving on, for any P ∈ PW
Q,M , let

(

PT s
t,xu

)

denote the family of
history-dependent transition matrices corresponding to P. Now, for
any t,s ∈ R≥0 such that t ≤ s, let

Q
T

s
t :=

{

PT s
t,xu

∣

∣

∣
P ∈ PW

Q , u ∈U<t , xu ∈Xu

}

, (5.10)

be the set of all history-dependent transition matrices of the elements
of PW

Q
, with the transition probabilities from time t to time s, and let

Q
MT

s
t :=

{

PT s
t,xu

∣

∣

∣
P ∈ PW

Q,M , u ∈U<t , xu ∈Xu

}

, (5.11)

be the set of all history-dependent transition matrices of the elements
of PW

Q,M . Perhaps unsurprisingly, under some conditions on Q the set
Q

MT s
t does not depend on M :

Proposition 5.19. Consider a non-empty and convex set Q of rate matrices
that has separately specified rows, and any non-empty set M of probability
mass functions on X . Then it holds that

Q
MT

s
t = Q

T
s

t .

Although the set Q
MT s

t contains all history-dependent transition
matrices PT s

t,xu
of the elements P ∈ PW

Q,M , as the next result shows, un-
der some conditions on Q we could equivalently only consider the
(history-independent) transition matrices of these elements.

Proposition 5.20. Let Q be a non-empty, compact, and convex set of rate
matrices that has separately specified rows, and let M be a non-empty set
of probability mass functions on X . For any t,s ∈ R such that t ≤ s, let
Q

MT s
t denote the set of (history-dependent) transition matrices of elements

of PW
Q,M . Then

Q
MT

s
t =

{

PT s
t

∣

∣

∣
P ∈ PW

Q,M

}

,

where, for all P ∈ PW
Q,M , PT s

t is the transition matrix corresponding to P.
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Moreover, under these same conditions this set satisfies the follow-
ing properties.

Theorem 5.21. Let Q be a non-empty, compact, and convex set of rate
matrices that has separately specified rows, and let M be a non-empty set
of probability mass functions on X . For any t,s ∈ R such that t ≤ s, let
Q

MT s
t denote the set of (history-dependent) transition matrices of elements

of PW
Q,M . Then Q

MT s
t is a non-empty, closed, and convex set of transition

matrices that has separately specified rows.

One of the reasons why this result is so interesting, is that it ex-
actly establishes the properties that, by Corollary 3.38120, turn

Q
MT s

t

into the unique dominating set of transition matrices corresponding
to some lower transition operator. We will revisit this connection in
Chapter 6259.

5.4 Lower and Upper Expectations for CTIMCs

Let us conclude this chapter by introducing and discussing the lower
and upper expectations for continuous-time imprecise-Markov chains,
which, as discussed in Chapter 129, are fundamentally the inferences
we are interested in. Let us start with the general definition.

Definition 5.8. For any non-empty set of stochastic processes P ⊆ P, its
corresponding (conditional) lower- and upper expectations are defined, re-
spectively, as

E[· | ·] := inf
P∈P

EP[· | ·] and E[· | ·] := sup
P∈P

EP[· | ·] , (5.12)

whose domain(s) we take to be the intersection of the domains DP of the
conditional expectations EP corresponding to the elements P ∈P .

In particular, for any non-empty set of rate matrices Q and any non-
empty set M of probability mass functions on X , we let

EW
Q,M [· | ·] := inf

P∈PW
Q,M

EP[· | ·] and E
W

Q,M [· | ·] := sup
P∈PW

Q,M

EP[· | ·] , (5.13)

and similarly for EWM
Q,M and E

WM

Q,M , and EWHM
Q,M and E

WHM

Q,M . If M is the set
of all probability mass functions on X , then as in Definition 5.5189, we
will write EW

Q instead of EW
Q,M , and similarly for the other lower and upper

expectations.

We again recall from Chapter 129 the important conjugacy relation
between lower and upper expectations, which in this context states that

E
W

Q,M [· | ·] =−EW
Q,M [−· | ·] ,
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and similarly for the other lower and upper expectations. Hence, as
before, we will mostly formulate our results in terms of lower expec-
tations, where we keep in mind that these results can always be gener-
alised to upper expectations using the conjugacy relation.

Moreover, as in the discrete-time case, lower- and upper probabilities
can always be expressed using the lower- and upper expectations of
indicators of events; for any (A,C) ∈ C SP the lower probability with
respect to PW

Q,M satisfies

PW
Q,M (A |C) := inf

P∈PW
Q,M

P(A |C) = EW
Q,M [IA |C] ,

where we used Proposition 2.1256 for the equality. Upper probabili-
ties are derived analogously using upper expectations, and can there-
fore be obtained from lower expectations using the above-mentioned
conjugacy relation. Hence, as before, because lower- and upper proba-
bilities can always be derived using lower expectations, we will in the
sequel express our results mostly in terms of the latter. Whenever we
do explicitly use lower- and upper probabilities, then in addition to the
above, we use the intuitive notation PWM

Q,M (A |C) and PWHM
Q,M (A |C) for the

lower probabilities with respect to PWM
Q,M and PWHM

Q,M , respectively, and
similarly for the upper probabilities. As with lower- and upper expec-
tations, we omit the set M from our notation when it is the set of all
probability mass functions on X .

So, let us now consider some first properties of the lower expecta-
tions in Definition 5.8. First of all, we know from Section 5.2188 that the
sets PWHM

Q,M , PWM
Q,M and PW

Q,M are nested subsets of each other. As an im-
mediate consequence, their corresponding lower expectations provide
(lower) bounds for each other.

Proposition 5.22. Consider any non-empty set of rate matrices Q, and any
non-empty set M of probability mass functions on X . Then it holds that

EW
Q,M [· | ·]≤ EWM

Q,M [· | ·]≤ EWHM
Q,M [· | ·] .

Proof. This is immediate from Proposition 5.9190 and Definition 5.8.

Generally speaking, the inequalities in this proposition can be—and
often are—strict; for the first inequality, we will illustrate this further
on in this section, in Figure 5.1206, whereas for the second inequality,
we will give a detailed example in Section 6.6.2297. On the other hand,
there are also cases where all these quantities coincide; as illustrated
in, again, Figure 5.1206 further on. Both possibilities are important to
keep in mind because, as we will argue further on, we will for practi-
cal reasons often want to work with the models PWM

Q,M or PW
Q,M . And
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while these two models can arise naturally, there are also cases where,
from an application-specific point of view, PWHM

Q,M might be more natu-
ral. In such cases, we would thus be working with conservative approx-
imations to the desired model—due to Proposition 5.9190—and Propo-
sition 5.22x guarantees that inferences computed from such approx-
imations are bounds on the intended inference of interest. However,
the degree to which these bounds are conservative, depends strongly on
the specific model and inference that one considers: it may be that the
lower expectations coincide with that of the intended model, or it may
be that the outer approximation is extremely conservative and carries
relatively little information.

Next, let us establish that in particular the lower (and hence also up-
per) expectations of all u-measurable functions are well-defined, pro-
vided that care is taken with the conditioning events.

Lemma 5.23. Let P ⊆ P be a non-empty set of stochastic processes, and
let E be its corresponding (conditional) lower expectation, as in Defini-
tion 5.8198. Then for all u,v ∈ U such that u < v and u ∪ v 6= /0, all
f ∈L (Xu∪v), and all xu ∈Xu, it holds that

E[ f (Xu,Xv) |Xu = xu] = inf
P∈P ∑

xv∈Xv

f (xu,xv)P(Xv = xv |Xu = xu) .

Proof. Because u< v it holds that u∪v⊂ u∪R>u. Therefore, and because
u∪ v 6= /0, it follows from Proposition 2.2373 that for any P ∈P it holds
that

EP[ f (Xu,Xv) |Xu = xu] = ∑
xv∈Xv

f (xu,xv)P(Xu = xu,Xv = xv |Xu = xu)

= ∑
xv∈Xv

f (xu,xv)P(Xv = xv |Xu = xu) ,

where for the second equality we used Properties F447 and F247. Hence
it follows from Definition 5.8198 that

E[ f (Xu,Xv) |Xu = xu] = inf
P∈P

EP[ f (Xu,Xv) |Xu = xu]

= inf
P∈P ∑

xv∈Xv

f (xu,xv)P(Xv = xv |Xu = xu) ,

which concludes the proof.

Lemma 5.23 establishes that in particular the lower expectations
EW

Q,M , EWM
Q,M , and EWHM

Q,M are all well-defined for u-measurable func-
tions. Moreover, let us note that such lower expectations are always
real-valued:
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Proposition 5.24. Let P ⊆ P be a non-empty set of stochastic processes,
and let E be its corresponding (conditional) lower expectation, as in Def-
inition 5.8198. Then for all u,v ∈ U such that u < v and u∪ v 6= /0, all
f ∈ L (Xu∪v), and all xu ∈Xu, it holds that E[ f (Xu∪v) |Xu = xu] ∈ R. In
particular,

min
yu∪v∈Xu∪v

f (yu∪v)≤ E[ f (Xu∪v) |Xu = xu]≤ max
yu∪v∈Xu∪v

f (yu∪v) .

Proof. Because u < v it holds that u∪ v ⊂ u∪R>u. Therefore, and be-
cause u∪ v 6= /0, it follows from Proposition 2.2373 that for any P ∈P ,
EP[ f (Xu∪v) |Xu = xu] is well-defined and, due to Property CE178, that

min
yu∪v∈Xu∪v

f (yu∪v)≤ EP[ f (Xu∪v) |Xu = xu]≤ max
yu∪v∈Xu∪v

f (yu∪v) . (5.14)

Note that because f is u ∪ v-measurable, it follows from Proposi-
tion 2.2172 that it is bounded, i.e. it obtains its extremal values in R, so
the minimum and maximum operations in the inequalities above are
well-defined. Because Equation (5.24) holds for all P ∈P , it follows
from Definition 5.8198 that

min
yu∪v∈Xu∪v

f (yu∪v)≤ E[ f (Xu∪v) |Xu = xu] .

Moreover, since P is non-empty, there is some P ∈P such that, using
Definition 5.8198, it holds that

E[ f (Xu∪v) |Xu = xu]≤ EP[ f (Xu∪v) |Xu = xu]≤ max
yu∪v∈Xu∪v

f (yu∪v) ,

and therefore E[ f (Xu∪v) |Xu = xu] ∈ R.

The following result provides an alternative expression for these
lower expectations in case the u-measurable function depends only on
a single time point, i.e., when u is a singleton. This expression is given
in terms of (history-dependent) transition matrices.

Proposition 5.25. Let P ⊆ P be a non-empty set of stochastic processes,
and let E be its corresponding (conditional) lower expectation, as in Defi-
nition 5.8198. Then for all t,s ∈ R≥0 such that t ≤ s, all u ∈ U<t , xu ∈Xu,
xt ∈X , and f ∈L (X ), it holds that

E[ f (Xs) |Xt = xt ,Xu = xu] = inf
P∈P

PT s
t,xu

f (xt) ,

where, for all P ∈P , PT s
t,xu

is the history-dependent transition matrix cor-
responding to P.
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Proof. It follows from Proposition 4.3149 that for all P ∈P it holds that

EP[ f (Xs) |Xt = xt ,Xu = xu] =
PT s

t,xu
f (xt) .

Hence it follows from Definition 5.8198 that

E[ f (Xs) |Xt = xt ,Xu = xu] = inf
P∈P

EP[ f (Xs) |Xt = xt ,Xu = xu]

= inf
P∈P

PT s
t,xu

f (xt) ,

which concludes the proof.

We now have all the parts to motivate the terminology that (and
when) the sets PWHM

Q,M , PWM
Q,M , and PW

Q,M are imprecise-Markov chains;
we will show sufficient conditions on Q for all these models to satisfy
an imprecise-Markov property.3 Let us start with the two obvious mod-
els, which are themselves made up solely by (precise) Markov chains.

Proposition 5.26. Let Q be a non-empty set of rate matrices, and let M be
a non-empty set of probability mass functions on X . Then for all t,s ∈R≥0

such that t ≤ s, all f ∈L (X ), all u ∈U<t , all xt ∈Xt , and all xu ∈Xu, it
holds that

EWHM
Q,M [ f (Xs) |Xt = xt ,Xu = xu] = EWHM

Q,M [ f (Xs) |Xt = xt ] ,

and

EWM
Q,M [ f (Xs) |Xt = xt ,Xu = xu] = EWM

Q,M [ f (Xs) |Xt = xt ] .

Proof. It follows from Definition 5.6190 that each P ∈ PWHM
Q,M is a Markov

chain. Hence, by Proposition 5.25x and Lemma 5.3185 we find that

EWHM
Q,M [ f (Xs) |Xt = xt ,Xu = xu] = inf

P∈PWHM
Q,M

PT s
t,xu

f (xt)

= inf
P∈PWHM

Q,M

PT s
t f (xt)

= EWHM
Q,M [ f (Xs) |Xt = xt ] ,

where, for all P ∈ PWHM
Q,M , PT s

t,xu
and PT s

t denote the (history-dependent)
transition matrices corresponding to P. This concludes the proof for
PWHM

Q,M . The proof for PWM
Q,M is completely analogous.

3In Chapter 6259 further on we will derive weaker conditions on Q for PW
Q,M to sat-

isfy an imprecise-Markov property, but we feel that the results presented here are also
illuminating.
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It requires a bit more work to obtain a similar statement for the
set PW

Q,M . Let us start by noting the following; because the proofs here
become a bit more involved we have deferred them to Appendix 5.E253.

Lemma 5.27. Let Q be a non-empty, compact, and convex set of rate ma-
trices that has separately specified rows, and let M be a non-empty set of
probability mass functions on X . Then for all t,s ∈ R≥0 such that t ≤ s, all
f ∈L (X ), and all xt ∈Xt , it holds that

EW
Q,M [ f (Xs) |Xt = xt ] = EWM

Q,M [ f (Xs) |Xt = xt ] .

We use this lemma in the proof of the following result, which states
that PW

Q,M also satisfies an imprecise-Markov property when certain
conditions on Q are satisfied.

Proposition 5.28. Let Q be a non-empty, compact, and convex set of rate
matrices that has separately specified rows, and let M be a non-empty set of
probability mass functions on X . Then for all t,s ∈ R≥0 such that t ≤ s, all
f ∈L (X ), all u ∈U<t , all xt ∈Xt , and all xu ∈Xu, it holds that

EW
Q,M [ f (Xs) |Xt = xt ,Xu = xu] = EW

Q,M [ f (Xs) |Xt = xt ] .

Of course, this immediately implies that the inferences for PWM
Q,M

and PW
Q,M coincide for functions that depend only on a single time

point, whenever these conditions on Q are satisfied:

Corollary 5.29. Let Q be a non-empty, compact, and convex set of rate
matrices that has separately specified rows, and let M be a non-empty set of
probability mass functions on X . Then for all t,s ∈ R≥0 such that t ≤ s, all
f ∈L (X ), all u ∈U<t , all xt ∈Xt , and all xu ∈Xu, it holds that

EWM
Q,M [ f (Xs) |Xt = xt ,Xu = xu] = EW

Q,M [ f (Xs) |Xt = xt ,Xu = xu] .

Proof. Using Propositions 5.26 and 5.28 and Lemma 5.27, we get

EWM
Q,M [ f (Xs) |Xt = xt ,Xu = xu] = EWM

Q,M [ f (Xs) |Xt = xt ]

= EW
Q,M [ f (Xs) |Xt = xt ]

= EW
Q,M [ f (Xs) |Xt = xt ,Xu = xu] ,

which concludes the proof.

This allows us to show that under these conditions, the infimum
that characterises the lower expectations is actually a minimum, i.e.
the lower expectation is here reached by some process in the CTIMC.

203



Continuous-Time (Imprecise-)Markov Chains

Proposition 5.30. Let Q be a non-empty, compact, and convex set of rate
matrices that has separately specified rows, and let M be a non-empty set
of probability mass functions on X . Then for all t,s ∈ R≥0 such that t ≤ s

and all f ∈L (X ), there is some P ∈ PW
Q,M such that for all u ∈ U<t , all

xt ∈Xt , and all xu ∈Xu, it holds that

EW
Q,M [ f (Xs) |Xt = xt ,Xu = xu] = EP[ f (Xs) |Xt = xt ] .

We note that Proposition 5.30 requires the compactness of Q, but
not that of M ; for the technical details we refer to the proof in Ap-
pendix 5.E253, but we can provide some intuition here. Essentially, the
point is that the statement is always conditional on the state at time t,
and once that state is fixed the remainder of the inference only depends
on “future” dynamic behaviour—which is completely characterised by
Q—and not on “initial” behaviour described by M . This, incidentally,
also explains why we did not need to impose many constraints on M ,
for other results in this section.

Having established these first properties of our lower expectations,
it will be of primary interest in the remainder of this dissertation to
develop methods to efficiently compute them. Due to the different qual-
itative properties of the sets PWHM

Q,M , PWM
Q,M , and PW

Q,M , it turns out that
the difficulty of computing their lower expectations is also different.

In fact, rather ironically, computing lower expectations for the
set PWHM

Q ,M—which, intuitively, is the simplest of our three types of
CTIMCs—seems to be much harder than for the sets PWM

Q ,M or PW
Q ,M .

The problem is, essentially, that while homogeneous Markov chains are
easy to work with numerically, the set PWHM

Q ,M does not provide enough
“degrees of freedom” to easily solve the optimisation problem that is
involved in computing EWHM

Q ,M . Another way to put this, is that the ho-
mogeneity condition constrains the canonical parameters QP of the pro-
cesses P ∈ PWHM

Q,M to be the same at all points in time. In contrast, the
weaker assumptions involved in constructing PWM

Q,M and PW
Q,M do not

impose such a constraint. This issue is analogous to the difficulty of
working with sets of discrete-time homogeneous Markov chains that
we mentioned in Section 3.3.1102. Let us next illustrate this.

Suppose that we want to compute the lower expectation
EWHM

Q,M [ f (Xt) |X0 = x0] of some function f ∈ L (X ) at time t, condi-
tional on the information that the state X0 at time 0 takes the value
x0 ∈ X0. It then follows from Definition 5.8198, Proposition 5.25201,

204



5.4 Lower and Upper Expectations for CTIMCs

Theorem 5.6186, Equation (5.5)191, and Corollary 5.5186 that

EWHM
Q,M [ f (Xt) |X0 = x0] = inf

P∈PWHM
Q,M

EP[ f (Xt) |X0 = x0]

= inf
P∈PWHM

Q,M

PT t
0 f (x0)

= inf
P∈PWHM

Q,M

eQPt f (x0) = inf
Q∈Q

eQt f (x0). (5.15)

Therefore, computing EWHM
Q,M [ f (Xt) |X0 = x0] is at its core a non-linear,

constrained optimisation problem over the set Q, where the non-
linearity stems from the term eQt , and the specific form of the con-
straints depends on the choice of Q. The following example illustrates
the non-linearity of this type of optimisation problem in a simple case.

Example 5.3. Consider an ordered ternary state space X := {a,b,c},
let f ∈L (X ) be defined such that f (a) := 1/2, f (b) := 0 and f (c) := 1,
and consider the set of transition rate matrices

Q :=











−λ λ 0

0 −1 1

0 0 0



 : λ ∈ [2,5]







. (5.16)

Every process P in the imprecise-Markov chain PWHM
Q

is then a homo-
geneous Markov chain of which the unique transition rate matrix Q is
completely determined by some λ in [2,5]. Furthermore, as we know
from Proposition 4.3149 and Theorem 5.6186, the conditional expec-
tation EP[ f (Xt)|X0 = a] that corresponds to this homogeneous Markov
chain is equal to eQt f (a). Due to this equality, it is a matter of applying
some basic—yet cumbersome—algebra to find that

EP[ f (Xt)|X0 = a] = 1+
e−λ t

2
+

e−λ t −λe−t

λ −1
. (5.17)

Obtaining the value of EWHM
Q [ f (Xt) |X0 = a] now corresponds to min-

imising this expression as λ ranges over the interval [2,5]. Figure 5.1y
illustrates that, even in this simple ternary case, this minimisation
problem is already non-trivial, because—depending on the value of t—
the minimum is not guaranteed to be obtained for one of the end points
of [2,5], but may only be achieved by an internal point. Which is to say,
for certain values of t the right-hand side of Equation (5.17) is not a
monotone function of λ .

In particular, we see from Figure 5.1y that the lower expectation
with respect to this set is initially reached by choosing λ = 5. This
changes around the time point t ≈ 0.5, after which theminimising value
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Figure 5.1: Plot of the set of expected values EP[ f (Xt) |X0 = a], for time
points t ∈ [0,5], corresponding to all P ∈ PWHM

Q
obtained as we vary

λ ∈ [2,5]. The inset highlights the region of the function where the
minimising value of λ becomes an internal point of the interval [2,5].
The dashed line corresponds to the lower expectation with respect to
the sets PWM

Q
and PW

Q
.

of λ becomes a (changing) internal point of the interval [2,5]. This re-
gion of the function is highlighted in the inset, which also shows the
extremal values of λ as emphasised lines, illustrating that the mini-
mum is obtained by an internal point.

The dashed line corresponds to the lower expectation with respect
to the sets PWM

Q
and PW

Q
, which also include non-homogeneous Markov

chains and, for PW
Q
, even more general processes. The fact that they co-

incide is explained by Corollary 5.29203; it is straightforward to check
that Q satisfies the required properties of that statement. The method
by which we have computed these quantities will be explained in Sec-
tion 6.4279. Note that the lower expectations with respect to PWHM

Q
, PWM

Q

and PW
Q

are all equal for t < 0.3 but, as time evolves, the lower expecta-
tion with respect to PWHM

Q
diverges from the other two. This illustrates

that the first inequality in Proposition 5.22199 can indeed be strict, but
can also be satisfied with equality. ♦

Although the inference problem in the previous example can be
solved numerically by, essentially, exhaustively searching for the min-
imising value of λ , this approach clearly does not generalise well to
higher dimensions, for which the corresponding computational com-
plexity would grow exponentially. Moreover, in general a simple ex-
pression for the element-wise conditional expectation, such as given
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in Equation (5.17)205, will typically not exist or at least be difficult to
find. Hence, in general one does not have access to analytical meth-
ods to simplify this minimisation problem. One must then resort to
approximative methods to even evaluate the function that is to be min-
imised; see e.g. Reference [76] for details on how this might be done. It
should also be mentioned that this optimisation problem is in general
not convex—nor monotone, as already illustrated in Example 5.3205—
and that the objective surface over which the minimisation is to take
place, can in general be very irregular, having multiple local optima.

All of these considerations suggest that computing lower expec-
tations for CTIMCs that are of the type PWHM

Q,M is typically very diffi-
cult, and it will therefore often be necessary to resort to approxima-
tion methods. This could for example be accomplished by using the
methods to compute (generalised) exponentials of interval matrices as
explored in References [37,83]. Although our notion of sets of rate ma-
trices is not really compatible with the notion of an interval matrix4 as
these authors use it, one could always include a (bounded) set of rate
matrices in an interval matrix and then apply these methods, in order
to compute conservative bounds with respect to exponentials of the el-
ements of the original set of rate matrices.

In the remainder of this work, we will mostly ignore CTIMCs that
are of the type PWHM

Q,M . Instead, we will focus on the lower expectations
that correspond to CTIMCs that are of the type PWM

Q,M or PW
Q,M , and we

will develop efficient methods for computing them.

At their core, these methods are based on a law of iterated lower ex-
pectations, which is analogous to the one we discussed for discrete-time
imprecise-Markov chains in Chapter 383. To make sense of this state-
ment, we first need to formalise the following.

Definition 5.9. For any stochastic process P ∈ P, any u,v ∈U⊃ /0 such that
u < v, and any f ∈L (Xu∪v), we consider the function EP[ f (Xu∪v) |Xu] in
L (Xu) whose value in xu ∈Xu is given by EP[ f (Xu∪v) |Xu = xu].

Now consider a function f ∈ L (Xu∪v∪w) defined on the union u∪
v∪w of three finite sets of time points u,v,w ∈ U such that u < v < w.
The precise version of the law of iterated expectations—which is well-

4References [37, 83] call a set of matrices Q an interval matrix if there are matrices
Q1,Q2 ∈M such that Q = {Q ∈M : Q1 ≤ Q≤ Q2}, where the inequalities are taken to be
componentwise. We stress that this is different from the terminology of e.g. Škulj [102],
who calls Q an interval matrix if it is compact, convex, and has separately specified rows.
Similarly, Troffaes et al. [110] call Q an interval rate matrix if it is a set of rate matrices that
satisfies these properties. Note that the set Q in Equation (5.16)205 satisfies these second
and third definitions but not the first one; in particular, Property R1150 will usually not
be satisfied for all elements in a set constructed according to the first definition.
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known, and which was already given in Proposition 2.2677—then states
that for any stochastic process P, the corresponding expectation of f ,
conditional on Xu, decomposes over these time points. The following
statement verifies that this property also holds here.

Proposition 5.31. Let P ∈ P be a continuous-time stochastic process, and
consider any u,v,w ∈U such that u < v < w, v 6= /0 and w 6= /0. Then for all
f ∈L (Xu∪v∪w) and all xu ∈Xu, it holds that

EP[ f (Xu∪v∪w) |Xu = xu] = EP

[

EP[ f (Xu∪v∪w) |Xu∪v]
∣

∣Xu = xu

]

.

Proof. This is an immediate consequence of Proposition 2.2677.

Rather remarkably, if Q is convex and has separately specified rows,
then the lower expectation EW

Q,M satisfies a similar property. This is the
so-called law of iterated lower expectations, and our proof of it is based
on Theorem 5.11193.

Theorem 5.32. Let Q be a non-empty and convex set of rate matrices that
has separately specified rows, and consider any non-empty set M of prob-
ability mass functions on X . Then for all u,v,w ∈U such that u < v < w,
v 6= /0, and w 6= /0, all f ∈L (Xu∪v∪w), and all xu ∈Xu, it holds that

EW
Q,M [ f (Xu∪v∪w) |Xu = xu] = EW

Q,M

[

EW
Q,M [ f (Xu∪v∪w) |Xu∪v]

∣

∣

∣
Xu = xu

]

.

(5.18)

The reason that this result is so useful, is that it essentially allows us
to compute lower expectations recursively. This is analogous to our dis-
cussion of iterated lower expectations in Chapter 383, although the no-
tation here is a bit more cumbersome. Essentially, for any f ∈L (Xu∪v)
with u < v and v = t0, . . . , tn, n ∈ Z>0, we can repeatedly invoke Theo-
rem 5.32 to rewrite EW

Q,M

[

f (Xu∪v) |Xu = xu

]

as

EW
Q,M

[

EW
Q,M

[

· · ·EW
Q,M [ f (Xu∪v) |Xu,X{t0,...,tn−1}] · · ·

∣

∣Xu,X{t0}
]

∣

∣

∣
Xu = xu

]

.

Hence, instead of computing the lower expectation for all time points
simultaneously, we can focus on each of the time points separately, and
eliminate them one by one. In particular, if we start this process with
the innermost lower expectation EW

Q,M [ f (Xu∪v) |Xu,X{t0,...,tn−1}], we see
that for all xu ∈Xu and x{t0,...,tn−1} ∈X{t0,...,tn−1}, the quantity

EW
Q,M [ f (Xu∪v) |Xu = xu,X{t0,...,tn−1} = x{t0,...,tn−1}]

= inf
P∈PW

Q,M

EP[ f (Xu∪v) |Xu = xu,X{t0,...,tn−1} = x{t0,...,tn−1}]

= inf
P∈PW

Q,M

EP

[

f (xu,x{t0,...,tn−1},Xtn)
∣

∣Xu = xu,X{t0,...,tn−1} = x{t0,...,tn−1}
]

= EW
Q,M

[

f (xu,x{t0,...,tn−1},Xtn)
∣

∣Xu = xu,X{t0,...,tn−1} = x{t0,...,tn−1}
]
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is a lower expectation of a function that only depends on the single
time point tn, where we used Proposition 2.2575 for the second equal-
ity. This puts these lower expectations into a regime where e.g. Propo-
sition 5.25201 is applicable; in Chapter 6259 we will develop algorithms
that can efficiently solve inferences of this type. Working backwards,
and analogously to the above, the next lower expectation to be com-
puted will then be of a function that only depends on the time point
tn−1 (although the conditioning event references a more complicated
history), and so on.

The above considerations make the computations of these lower ex-
pectations somewhat easier but, nevertheless, the number of condition-
ing events to take into account is of order |Xu∪v|, which is exponential
in n. This combinatorial explosion cannot be prevented in general: it
is equally complex to even specify an arbitrary f ∈L (Xu∪v), so we can
hardly expect the computation of its lower expectation to be easier than
that. However, as we will illustrate in Chapter 7335, for specific classes
of functions it is possible to develop efficient algorithms. These algo-
rithms crucially depend on Theorem 5.32, which, in summary, lets us
rewrite a “global” lower expectation, where the expectation is taken
over multiple time points, as a composition of “local” lower expecta-
tions, which each take the expectation over only a single time point.
What we require, then, is to find an efficient method to compute such
“local” lower expectations; this is the topic of Chapter 6259.
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Appendix

5.A Proofs of Results in Section 5.1

This appendix starts with some technical lemmas that are required for
the proof of Theorem 5.2184.

Lemma 5.33. Let w = {w0,w1, . . . ,wm} ⊂R≥0 be a finite set of time points,
with m∈Z≥0, such that w0 < w1 < · · ·< wm. Let (T

s
t ) be a transition matrix

system and let P̃w be any full conditional probability such that for all j ∈
{1, . . . ,m} and xwℓ

∈X , ℓ ∈ {0, . . . , j}:

P̃w(Xw j
= xw j

|Xw0
= xw0

, . . . ,Xw j−1
= xw j−1

) = T
w j

w j−1
(xw j−1

,xw j
).

Then for any s ∈ w and u⊆ w such that s > u and u 6= /0, any y ∈X and any
xu ∈Xu, we have that

P̃w(Xs = y|Xu = xu) = T s
maxu(xmaxu,y).

Proof. We provide a proof by induction. If s = w1, then because s > u

and w⊇ u 6= /0, it follows that u = {w0}; and therefore, the result follows
trivially from the assumptions in this lemma. Assume now that the
result is true for s = w j, with 1≤ j < m. We will prove that this implies
that it is also true for s = w j+1. Since /0 6= u ⊆ w, s ∈ w and s > u, it
follows that in fact u⊆ {w0, . . . ,w j}. We consider two cases: maxu = w j

and maxu < w j.

If maxu = w j, then with v := {w0, . . . ,w j}\u it holds that

P̃w(Xw j+1
= y|Xu = xu)

= ∑
zv∈Xv

P̃w(Xw j+1
= y,Xv = zv|Xu = xu)

= ∑
zv∈Xv

P̃w(Xw j+1
= y|Xu = xu,Xv = zv)P̃w(Xv = zv|Xu = xu)

= ∑
zv∈Xv

T
w j+1

maxu(xmaxu,y)P̃w(Xv = zv|Xu = xu)

= T
w j+1

maxu(xmaxu,y) ∑
zv∈Xv

P̃w(Xv = zv|Xu = xu)

= T
w j+1

maxu(xmaxu,y),

where the first equality follows from F347, the second equality fol-
lows from F447, the third equality follows from the assumptions in this
lemma and the fact that maxu = w j, and the last equality follows from
F347 and F847.
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If maxu < w j, then with v := {w0, . . . ,w j−1}\u it holds that

P̃w(Xw j+1
= y|Xu = xu)

= ∑
zw j
∈X

∑
zv∈Xv

P̃w(Xw j+1
= y,Xw j

= zw j
,Xv = zv|Xu = xu)

= ∑
zw j
∈X

∑
zv∈Xv

P̃w(Xw j+1
= y|Xu = xu,Xw j

= zw j
,Xv = zv)

P̃w(Xv = zv|Xu = xu,Xw j
= zw j

)P̃w(Xw j
= zw j

|Xu = xu)

= ∑
zw j
∈X

∑
zv∈Xv

T
w j+1

w j
(zw j

,y)P̃w(Xv = zv|Xu = xu,Xw j
= zw j

)

P̃w(Xw j
= zw j

|Xu = xu)

= ∑
zw j
∈X

∑
zv∈Xv

T
w j+1

w j
(zw j

,y)P̃w(Xv = zv|Xu = xu,Xw j
= zw j

)T
w j

maxu(xmaxu,zw j
)

= ∑
zw j
∈X

T
w j+1

w j
(zw j

,y)T
w j

maxu(xmaxu,zw j
) ∑

zv∈Xv

P̃w(Xv = zv|Xu = xu,Xw j
= zw j

)

= ∑
zw j
∈X

T
w j+1

w j
(zw j

,y)T
w j

maxu(xmaxu,zw j
) = T

w j+1
maxu(xmaxu,y),

where the first equality follows from F347, the second equality fol-
lows from F447, the third equality follows from the assumptions in this
lemma, the fourth equality follows from the induction hypothesis, the
sixth equality follows from F347 and F847, and the last equality follows
from Equation (4.9)156.

Lemma 5.34. Consider two Markov chains P1,P2 ∈ PM with correspond-
ing families of transition matrices (1T s

t ) and (2T s
t ), respectively, such that

(1T s
t ) = (2T s

t ) and, for all y ∈X , P1(X0 = y) = P2(X0 = y). Then P1 = P2.

Proof. Let (T s
t ) := (1T s

t ) = (2T s
t ) be the common transition matrix system

of P1 and P2 and let p be their common initial probability mass function,
as defined by p(y) := P1(X0 = y) = P2(X0 = y) for all y ∈X . Let

C := {(Xs = y,Xu = xu) ∈ C
SP : u ∈U⊃ /0, s > u, xu ∈Xu, y ∈X }

∪{(X0 = y,X/0 = x /0) ∈ C
SP : y ∈X }

and consider the function P̃ on C that is defined, for all
(Xs = y,Xu = xu) ∈ C , as

P̃(Xs = y|Xu = xu) :=

{

p(y) if u = /0, and

T s
maxu(xmaxu,y) otherwise.

(5.19)
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It then follows from Definition 5.1182 that the restriction of P1 and
P2 to C is equal to P̃. Furthermore, for any s > 0, y ∈X and j ∈ {1,2},
we find that

Pj(Xs = y) = ∑
x∈X

Pj(Xs = y,X0 = x) = ∑
x∈X

Pj(Xs = y|X0 = x)Pj(X0 = x)

= ∑
x∈X

P̃(Xs = y|X0 = x)P̃(X0 = x).

Hence, the restrictions of P1 and P2 to

C
∗ :=C ∪{(Xs = y,X/0 = x /0) : s ∈ R>0, y ∈X }
={(Xs = y,Xu = xu) : u ∈U , s ∈ R≥0, s > u, xu ∈Xu, y ∈X }

are identical. We denote this common restriction by P̃∗.
Consider now any (A,Xu = xu) ∈ C SP. Then since A ∈ Au, due to

Proposition 2.1866 there is some finite set w ⊂ u∪R>u and some set
S′ ⊆Xw such that A = ∪zw∈S′(Xw = zw). Let S :=

{

zu∪w ∈Xu∪w : zw ∈ S′
}

.
Then, clearly,

⋃

zu∪w∈S

(Xu∪w = zu∪w) =
⋃

zw∈S′
(Xw = zw) = A .

Let v = {t ∈ w : u < t} be the subset of w that contains all time points
greater than maxu; then u∪w = u∪v since w⊂ u∪R>u. Hence, it follows
that A = ∪zu∪v∈S(Xu∪v = zu∪v). Let Sv := {zv ∈Xv : (xu,zv) ∈ S}. For any
j ∈ {1,2}, we then find that

Pj(A|Xu = xu) = ∑
zu∪v∈S

Pj(Xu∪v = zu∪v|Xu = xu)

= ∑
zv∈Sv

Pj(Xv1
= zv1

,Xv2
= zv2

, . . . ,Xvn = zvn |Xu = xu)

= ∑
zv∈Sv

n

∏
i=1

Pj(Xvi
= zvi
|Xu = xu,Xv1

= zv1
, . . . ,Xvi−1

= zvi−1
)

= ∑
zv∈Sv

n

∏
i=1

P̃∗(Xvi
= zvi
|Xu = xu,Xv1

= zv1
, . . . ,Xvi−1

= zvi−1
),

which implies that P1(A|Xu = xu) = P2(A|Xu = xu). Since this is true for
any (A,Xu = xu) ∈ C SP, it follows that P1 = P2.

Proof of Theorem 5.2184. Let

C := {(Xs = y,Xu = xu) ∈ C
SP : u ∈U⊃ /0, s > u, xu ∈Xu, y ∈X }

∪{(X0 = y,X/0 = x /0) ∈ C
SP : y ∈X }
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and consider the function P̃ on C that is defined, for all
(Xs = y,Xu = xu) ∈ C , as

P̃(Xs = y|Xu = xu) :=

{

p(y) if u = /0, and

T s
maxu(xmaxu,y) otherwise.

(5.20)

We will first prove that P̃ is a coherent conditional probability on C .
To this end, consider any n ∈ Z>0 and, for all i ∈ {1, . . . ,n}, choose any
(Ai,Ci) = (Xsi

= yi,Xui
= xui

) ∈ C and λi ∈ R. We need to show that

max

{

n

∑
i=1

λiICi
(ω)
(

P̃(Ai|Ci)− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C0

}

≥ 0, (5.21)

with C0 := ∪n
i=1Ci. Since every sequence ui is finite, there is some finite

set w = {w0,w1, . . . ,wm} ⊂ R≥0 of time points, with m ∈ Z>0, such that
0 = w0 < w1 < · · ·< wm and, for all i ∈ {1, . . . ,n}, ui ⊆ w and si ∈ w. Let

Cw :=
{

(Xw j
= y,Xu = xu) : j ∈ {0, . . . ,m}, u = {w0, . . . ,w j−1},

y ∈X , xu ∈Xu

}

,

and let Pw be the restriction of P̃ to Cw. Then since Pw clearly satisfies
the conditions of Lemma 3.45127, it follows that Pw is a coherent con-
ditional probability. Because of Theorem 2.349, this implies that Pw can
be extended to a coherent conditional probability P̃w on E (Ω)×E (Ω)⊃ /0,
which, because of Theorem 2.249, is also a full conditional probability.
Since P̃w is a coherent conditional probability, it now follows from Def-
inition 2.248 that

max

{

n

∑
i=1

λiICi
(ω)
(

P̃w(Ai|Ci)− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C0

}

≥ 0. (5.22)

By comparing Equations (5.21) and (5.22), we see that in order to prove
that P̃ is coherent, it suffices to show that P̃w(Ai|Ci) = P̃(Ai|Ci) for all
i ∈ {1, . . . ,n}.

So fix any i ∈ {1, . . . ,n}. If ui = /0, then si = 0 = w0 and therefore
(Ai,Ci)∈Cw, which implies that P̃w(Ai|Ci)=Pw(Ai|Ci)= P̃(Ai|Ci). If ui 6= /0,
then since ui ⊆ w, si ∈ w and si > ui, it follows from Lemma 5.33210 that
P̃w(Ai|Ci) = P̃(Ai|Ci). Hence, P̃ is a coherent conditional probability on
C .

Therefore, due to Theorem 2.349, and because C ⊆C SP, P̃ can be ex-
tended to a coherent conditional probability P on C SP, which, accord-
ing to Definition 2.1268, is a stochastic process. Due to Equation (5.20),
this implies that P is a Markov chain with corresponding family of tran-
sition matrices (T s

t ) and, for all y∈X , P(X0 = y) = p(y). Lemma 5.34211
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implies that this Markov chain is unique and, since (T s
t ) is the family of

transition matrices corresponding to P, Proposition 5.1183 implies that
(T s

t ) is well-behaved if and only if P is well-behaved.

Proof of Theorem 5.6186. Because of Proposition 4.22169, we know that
∂+T 0

0 is a non-empty bounded set of rate matrices, which implies that

there is some real B > 0 such that ‖Q′‖ ≤ B for all Q′ ∈ ∂+T 0
0 . Let Q be

any element of ∂+T 0
0 .

Fix any c ≥ 0, ε > 0 and δ > 0. It then follows from Proposi-
tion 4.23171 and N964 that there is some δ ∗ > 0 such that

(∀0 < ∆∗ < δ ∗) (∃Q∗ ∈ ∂+T 0
0 )
∥

∥

∥
T ∆∗

0 − (I +∆∗Q∗)
∥

∥

∥
< ∆∗ε. (5.23)

Furthermore, because of Equation (4.22)168 and N964, there is some
0 < ∆ < min{δ ,δ ∗} such that

∥

∥

∥
T ∆

0 − (I +∆Q)
∥

∥

∥
< ∆ε. (5.24)

If we now define n := ⌊c/∆⌋5 and d := c− n∆, then n∆ ≤ c < (n + 1)∆
and therefore also 0 ≤ d < ∆. Because of Proposition 5.1183, Equa-
tion (4.9)156 and Definition 5.2185, we know that

T c
0 =

(

n

∏
j=1

T
j∆

( j−1)∆

)

T c
n∆ =

(

T ∆
0

)n

T d
0

and therefore, it follows from Lemma B.5393 that
∥

∥eQc−T c
0

∥

∥=
∥

∥

∥

(

T ∆
0

)n

T d
0 −

(

eQ∆
)n

eQd
∥

∥

∥
≤ n

∥

∥

∥
T ∆

0 − eQ∆
∥

∥

∥
+
∥

∥

∥
T d

0 − eQd
∥

∥

∥
.

(5.25)
From Equation (5.24) and Lemma B.8394, we infer that
∥

∥

∥
T ∆

0 − eQ∆
∥

∥

∥
≤
∥

∥

∥
T ∆

0 − (I +∆Q)
∥

∥

∥
+
∥

∥

∥
(I +∆Q)− eQ∆

∥

∥

∥
≤ ∆ε +∆2 ‖Q‖2 .

(5.26)
Since d < ∆ < δ ∗, we infer from Equation (5.23) that there is some Q∗ ∈
∂+T 0

0 such that
∥

∥T d
0 − (I +dQ∗)

∥

∥< dε . Hence, also using Lemma B.8394,
we find that

∥

∥

∥
T d

0 − eQd
∥

∥

∥
≤
∥

∥

∥
T d

0 − (I +dQ∗)
∥

∥

∥
+‖(I +dQ∗)− (I +dQ)‖

+
∥

∥

∥
(I +dQ)− eQd

∥

∥

∥

≤ dε +d ‖Q∗−Q‖+d2 ‖Q‖2

≤ dε +d ‖Q∗‖+d ‖Q‖+d2 ‖Q‖2 . (5.27)

5We use ⌊·⌋ to denote the floor function, i.e., it denotes the largest integer that is not
greater than its argument.
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By combining Equations (5.25), (5.26) and (5.27), it follows that
∥

∥eQc−T c
0

∥

∥≤ n∆ε +n∆2 ‖Q‖2 +dε +d ‖Q∗‖+d ‖Q‖+d2 ‖Q‖2 .

Taking into account that ‖Q‖ ≤ B, ‖Q∗‖ ≤ B, n∆≤ c and d < ∆ < δ , this
implies that

∥

∥eQc−T c
0

∥

∥≤ cε + cδB2 +δε +2δB+δ 2B2.

Since this is true for any ε > 0 and δ > 0, it follows that
∥

∥eQc−T c
0

∥

∥≤ 0,

which implies that T c
0 = eQc. Since this is true for all c ≥ 0, it follows

from Definition 5.2185 that

T s
t = T s−t

0 = eQ(s−t) for all 0≤ t ≤ s, (5.28)

or equivalently, that (T s
t ) = (eQ(s−t)).

Finally, we prove that Q is unique. Assume ex absurdo that this is
not the case, or equivalently, that there are rate matrices Q1 and Q2,
with Q1 6= Q2, such that (T s

t ) = (eQ1(s−t)) and (T s
t ) = (eQ2(s−t)). For all

∆ > 0, we then have that T ∆
0 = eQ1∆ = eQ2∆, and therefore, it follows

from Lemma 4.14155 that ∂+T 0
0 = Q1 and ∂+T 0

0 = Q2, which implies that
Q1 =Q2. From this contradiction, it follows that Q is indeed unique.

5.B Proofs of Results in Section 5.2

The following lemma is essentially a slightly stronger but more tech-
nical statement than Theorem 5.11193. We prove the latter as a special
case of this result.

Lemma 5.35. Consider a non-empty and convex set of rate matrices Q⊆R

that has separately specified rows, and any non-empty set M of probability
mass functions on X . Fix a finite sequence of time points u ∈U⊃ /0, and let

C /0 := {(A,Xv = xv) ∈ C
SP : v ∈U<maxu and

A ∈ 〈{(Xt = x) : x ∈X , t ∈ [0,maxu]}〉} , (5.29)

and, for all xu ∈Xu, let

Cxu
:= {(A,Xv = xv) ∈ C

SP : u⊆ v ∈U , xv\u ∈Xv\u, A ∈Au∪(v\[0,maxu])} .
(5.30)

Choose any P/0 ∈ PW
Q,M and, for all xu ∈Xu, any Pxu ∈ PW

Q,M . Then there is

a stochastic process P ∈ PW
Q,M such that, for all (A,C) ∈ C /0,

P(A |C) = P/0(A |C) , (5.31)

and, for all xu ∈Xu and all (A,Xv = xv) ∈ Cxu ,

P(A |Xv = xv) = Pxu(A |Xv = xv) . (5.32)
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Proof. This proof is rather lengthy, and consists of two parts. First,
we will show that there is a stochastic process P that satisfies Equa-
tions (5.31)x and (5.32)x, by constructing it as the extension of a co-
herent conditional probability on a set of events C ⊂C SP. Next, we will
finish the proof by showing that P ∈ PW

Q,M , as desired.

Let C := C /0 ∪ (
⋃

xu∈Xu
Cxu), with C /0 as in Equation (5.29)x and, for

all xu ∈X , Cxu as in Equation (5.30)x. Consider a real-valued function
P̃ on C that is defined, for all (A,Xv = xv) ∈ C , by

P̃(A|Xv = xv) :=

{

P/0(A|Xv = xv) if (A,Xv=xv) ∈ C /0

Pxu(A|Xu∪(v\[0,maxu])= xu∪(v\[0,maxu])) if (A,Xv=xv) ∈ Cxu

(5.33)
We first prove that P̃ is a coherent conditional probability on C . So

consider any n ∈ Z>0 and, for all i ∈ {1, . . . ,n}, choose (Ai,Ci) ∈ C and
λi ∈ R. We need to show that

max

{

n

∑
i=1

λiICi
(ω)
(

P̃(Ai|Ci)− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C0

}

≥ 0, (5.34)

with C0 := ∪n
i=1Ci.

Let S∗ := {i ∈ {1, . . . ,n} : (Ai,Ci) ∈ C /0} be the index set for the events
that are in C /0. We consider two cases. First, if S∗ 6= /0, then since
P/0 is a stochastic process, it follows from Equation (5.33) and Defini-
tions 2.1268 and 2.248 that

max

{

∑
i∈S∗

λiICi
(ω)
(

P̃(Ai|Ci)− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C∗
}

≥ 0,

with C∗ := ∪i∈S∗Ci. Therefore, there is some ω∗ ∈C∗ such that

∑
i∈S∗

λiICi
(ω∗)

(

P̃(Ai|Ci)− IAi
(ω∗)

)

≥ 0. (5.35)

For the other case, i.e. if S∗ = /0, we let ω∗ be any element of C0 (this
is always possible, because C0 6= /0). Clearly, this path ω∗ will then also
satisfy Equation (5.35)—because the left-hand side is a sum over an
empty set and therefore zero.

Now we consider the states of the path ω∗ at the time points u, i.e.
we let x∗u ∈Xu be defined by x∗u := ω∗|u. Then for all i ∈ {1, . . . ,n} such
that (Ai,Ci) ∈ Cx∗u , we know from Equation (5.30)x that there are u ⊆
vi ∈U and xvi\u ∈Xvi\u such that

Ci = (Xu = x∗u)∩ (Xvi\u = xvi\u) =C∗i ∩C∗∗i , (5.36)
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with C∗i := (X(vi\u)∩[0,maxu] = x(vi\u)∩[0,maxu]), and

C∗∗i := (Xu = x∗u)∩ (Xvi\[0,maxu] = xvi\[0,maxu]) . (5.37)

To explain this somewhat opaque notation in words, we split the con-
ditioning events Ci into a part C∗i that captures the time points up to
time maxu, but excluding the time points u themselves; and a part C∗∗i ,
capturing the remaining time points.

Using this notation, we define

S∗∗ := {i ∈ {1, . . . ,n} : (Ai,Ci) ∈ Cx∗u and IC∗i (ω
∗) = 1}. (5.38)

Thus, S∗∗ is the index set of conditional events (Ai,Ci) that are in Cx∗u—
such that Ci is compatible with ω∗ on the time points u—and such that
IC∗i (ω

∗) = 1, which means that Ci is also compatible with ω∗ on all other
time points up to time maxu. In short, S∗∗ simply contains the indices of
the conditional events for which Ci is compatible with ω∗ for all states
up to time maxu.

We first consider the case S∗∗ 6= /0. Since Px∗u is a stochastic process, it
then follows from Definitions 2.1268 and 2.248 that

max

{

∑
i∈S∗∗

λiIC∗∗i (ω)
(

Px∗u(Ai|C∗∗i )− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C∗∗
}

≥ 0,

with C∗∗ := ∪i∈S∗∗C
∗∗
i . Because of Equation (5.33), this implies that

max

{

∑
i∈S∗∗

λiIC∗∗i (ω)
(

P̃(Ai|Ci)− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C∗∗
}

≥ 0,

which allows us to infer that there is some ω∗∗ ∈C∗∗ such that

∑
i∈S∗∗

λiIC∗∗i (ω∗∗)
(

P̃(Ai|Ci)− IAi
(ω∗∗)

)

≥ 0. (5.39)

Furthermore, since ω∗∗ ∈C∗∗, Equation (5.37) implies that

ω∗∗|u = x∗u = ω∗|u . (5.40)

If S∗∗ = /0, we let ω∗∗ = ω∗. Clearly, also in this case, ω∗∗ satisfies Equa-
tions (5.39) and (5.40).

For any i ∈ {1, . . . ,n}, because (Ai,Ci) ∈ C , there is some finite se-
quence of time points wCi

∈ U such that Ci only depends on the
time points in wCi

. Furthermore, it follows from Equations (5.29)215
and (5.30)215 that Ai is an element of some algebra A that is generated
by a set of events that only depend on a finite number of time points.
Therefore, there is also some finite sequence of time points wAi

∈ U ,
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such that Ai only depends on the time points in wAi
. If we now let

wi := wAi
∪wCi

, then (Ai,Ci) only depends on the (finite) sequence of
time points wi.

Because this holds for any i ∈ {1, . . . ,n}, this implies the existence of
some finite sequence w ∈U such that wi ⊆ w for all i ∈ {1, . . . ,n}.

Now let ω∗∗∗ ∈Ω be any path such that, for all s ∈ w,

ω∗∗∗(s) :=

{

ω∗(s) if s < maxu

ω∗∗(s) if s≥maxu

Equation (2.8)65 guarantees that this ω∗∗∗ ∈Ω exists. Furthermore, be-
cause of Equation (5.40)x, we know that, for all s ∈ w,

ω∗∗∗(s) = ω∗(s) if s ∈ [0,maxu] (5.41)

and
ω∗∗∗(s) = ω∗∗(s) if s ∈ u∪ [maxu,+∞) (5.42)

and therefore, it follows from Equation (5.36)216 that

ω∗∗∗ ∈Ci⇔ (ω∗∗∗ ∈C∗i and ω∗∗∗ ∈C∗∗i )⇔ (ω∗ ∈C∗i and ω∗∗ ∈C∗∗i )
(5.43)

for all i ∈ {1, . . . ,n} such that (Ai,Ci) ∈ Cx∗u .
Next, for any i ∈ S∗, we infer from Equation (5.29)215 that the value

of IAi
(ω∗∗∗) and ICi

(ω∗∗∗) is completely determined by ω∗∗∗(t), with
t ∈ (w∩ [0,maxu]). Therefore, it follows from Equations (5.35)216 and
(5.41) that

∑
i∈S∗

λiICi
(ω∗∗∗)

(

P̃(Ai|Ci)− IAi
(ω∗∗∗)

)

≥ 0. (5.44)

Similarly, for any i ∈ S∗∗, Equations (5.43) and (5.38)x imply that
ICi

(ω∗∗∗) = IC∗∗i (ω∗∗), and Equations (5.30)215 and (5.42) imply that
IAi

(ω∗∗∗) = IAi
(ω∗∗). Therefore, it follows from Equation (5.39)x that

∑
i∈S∗∗

λiICi
(ω∗∗∗)

(

P̃(Ai|Ci)− IAi
(ω∗∗∗)

)

≥ 0. (5.45)

In summary, we have found a path ω∗∗∗ that, by Equations (5.44)
and (5.45), satisfies the coherence requirement when we only look at
the events indexed by S∗ and S∗∗. Let us next establish that the remain-
ing events have no contribution to the coherence requirement for the
path ω∗∗∗.

To this end, consider any i ∈ {1, . . . ,n} such that i /∈ S∗ and i /∈ S∗∗.
Since i /∈ S∗, there is some xu ∈Xu such that (Ai,Ci) ∈ Cxu . If xu = x∗u,
then since i /∈ S∗∗, it follows from Equation (5.38)x that IC∗i (ω

∗) = 0,
and therefore, Equation (5.43) implies that ICi

(ω∗∗∗) = 0. If xu 6= x∗u,
then (Xu = xu)∩ (Xu = x∗u) = /0, and therefore, since (Ai,Ci) ∈ Cxu implies
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thatCi⊆ (Xu = xu), it follows thatCi∩(Xu = x∗u) = /0. Since it follows from
Equations (5.40)217 and (5.42) that ω∗∗∗(t) = x∗t for all t ∈ u, this implies
that ω∗∗∗ /∈ Ci, and therefore, we find that ICi

(ω∗∗∗) = 0. Hence, in all
cases, we find that ICi

(ω∗∗∗) = 0. Since this is true for any i ∈ {1, . . . ,n}
such that i /∈ S∗ and i /∈ S∗∗, it follows from Equations (5.44) and (5.45)
that

n

∑
i=1

λiICi
(ω∗∗∗)

(

P̃(Ai|Ci)− IAi
(ω∗∗∗)

)

≥ 0. (5.46)

It now remains to prove that ω∗∗∗ ∈C0. We consider two cases: S∗ 6=
/0 and S∗ = /0. First assume that S∗ 6= /0. In this case, we have that ω∗ ∈
C∗, which implies that there is some i ∈ S∗ such that ω∗ ∈ Ci. It then
follows from Equations (5.29)215 and (5.41) that ω∗∗∗ ∈ Ci ⊆ C0. Next,
assume that S∗ = /0. In this case, we have that ω∗ ∈ C0, which implies
that there is some i ∈ {1, . . . ,n} such that ω∗ ∈ Ci. Since (Ai,Ci) ∈ C

and S∗ = /0, there is some xu ∈ Xu such that (Ai,Ci) ∈ Cxu and, since
Equation (5.30)215 implies that xt = ω∗(t) for all t ∈ u, it follows that
xu = x∗u. We conclude from this that (Ai,Ci) ∈ Cx∗u . Furthermore, since
ω∗ ∈ Ci ⊆ C∗i , we know that IC∗i (ω

∗) = 1. Therefore, it follows from
Equation (5.38)217 that S∗∗ 6= /0, which implies that ω∗∗ ∈ C∗∗. Hence,
there is some j ∈ S∗∗ such that ω∗∗ ∈ C∗∗j and, since j ∈ S∗∗, we also
know that IC∗j (ω

∗) = 1, or equivalently, that ω∗ ∈C∗j . By combining this

with Equation (5.43), it follows that ω∗∗∗ ∈C j ⊆C0. So, in all cases, we
find that ω∗∗∗ ∈C0. By combining this with Equation (5.46), it follows
that Equation (5.34)216 holds, and therefore, that P̃ is coherent.

Since P̃ is coherent, and because C ⊆ C SP, it now follows from The-
orem 2.349 and Definition 2.1268 that P̃ can be extended to a stochastic
process P. Furthermore, since P coincides with P̃ on C , it follows from
Equation (5.33)216 that P satisfies Equations (5.31)215 and (5.32)215.
This concludes the first part of this proof.

To conclude this proof, we will show that P ∈ PW
Q,M , as desired.

First, observe that due to Equation (5.29)215, we have for all x ∈X that
(X0 = y,X/0 = x /0) ∈ C /0. Therefore, and because of Equation (5.33)216,
we find that for all y ∈ X it holds that P(X0 = y) = P(X0 = y |X/0 =
x /0) = P/0(X0 = y |X/0 = x /0) = P/0(X0 = y) which together with the fact that
P/0 ∈PW

Q,M , implies that P∼M . Hence, in order to prove that P ∈ PW
Q,M ,

it remains to show that P is well-behaved as well as consistent with Q.

In order to do this, we start by establishing an important equality.
To this end, let P∗ be any full conditional probability that coincides
with P on C SP; Corollary 2.2068 implies that such a full conditional
probability always exists. Consider any w ∈ U and s ∈ R≥0 such that
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w < s and u < s. Then for all xw ∈Xw and y ∈X , we have that

P(Xs = y|Xw = xw) = P∗(Xs = y|Xw = xw)

= ∑
xu\w∈Xu\w

P∗(Xs = y,Xu\w = xu\w|Xw = xw)

= ∑
xu\w∈Xu\w

P∗(Xs = y|Xu\w = xu\w,Xw = xw)P
∗(Xu\w = xu\w|Xw = xw)

= ∑
xu\w∈Xu\w

P∗(Xs = y|Xu = xu,Xw\u = xw\u)P
∗(Xu\w = xu\w|Xw = xw)

= ∑
xu\w∈Xu\w

P(Xs = y|Xu = xu,Xw\u = xw\u)P
∗(Xu\w = xu\w|Xw = xw)

= ∑
xu\w∈Xu\w

P̃(Xs = y|Xu = xu,Xw\u = xw\u)P
∗(Xu\w = xu\w|Xw = xw)

= ∑
xu\w∈Xu\w

Pxu(Xs = y|Xu = xu,Xw\[0,maxu] = xw\[0,maxu])

P∗(Xu\w = xu\w|Xw = xw)
(5.47)

Using this equality, we will next show that for all x ∈X , and for
any small enough ∆ ∈ R>0, the x-rows of the transition matrices T t+∆

t,xv

and T t
t−∆,xv

corresponding to P can each be written as a (different) con-
vex combination of the x-rows of transition matrices corresponding to
processes in PW

Q,M . We note that the elements that make up this convex
combination may depend on both x and on ∆.

Formally, we will show that for any t ≥ 0, v ∈U<t and xv ∈Xv, there
is some finite index set I , some v∗ ∈ U<t , and some δ > 0, such that
for all x ∈X there is a family of stochastic processes (iP ∈ PW

Q,M )i∈I ,

a family of state instantiations (ixv∗ ∈ Xv∗)i∈I , and a family of non-
negative coefficients (λi)i∈I that sum to one, such that for all 0 < ∆ < δ ,
it holds that

T t+∆
t,xv

(x, ·) = ∑
i∈I

λi
iT t+∆

t,ixv∗
(x, ·) . (5.48)

This has a lot of moving parts, and it is important to note that the index
set I and the maximum difference δ only depend on t,v and xv, while
the families that are indexed by I can also depend on x.

Similarly, we will show that for any t > 0, v ∈U<t and xv ∈Xv, there
is some finite index set I , some v∗ ∈U<t , a δ > 0, a family of stochastic
processes (iP ∈ PW

Q,M )i∈I , and a family of state instantiations (ixv∗ ∈
Xv∗)i∈I , such that for all x ∈X and all 0 < ∆ < δ , there is a family of
non-negative coefficients (λi)i∈I that sum to one, such that

T t
t−∆,xv

(x, ·) = ∑
i∈I

λi
iT t

t−∆,ixv∗
(x, ·). (5.49)
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Note that the coefficients (λi)i∈I here depend on both x and on ∆, but
that the other families do not depend on these quantities.

We start by constructing the convex combination that satisfies
Equation (5.48). So consider any t ≥ 0, v ∈ U<t and xv ∈Xv. We dis-
tinguish between two cases: t < maxu and t ≥ maxu. If t < maxu, then
for all ∆ ∈ (0,maxu− t) and x,y ∈X , we see that (Xt+∆ = y,(Xt = x,Xv =
xv)) ∈ C /0, and therefore, since P is an extension of P̃, it follows from
Equation (5.33)216 that

P(Xt+∆ = y|Xt = x,Xv = xv) = P/0(Xt+∆ = y|Xt = x,Xv = xv).

Hence, if we let I := {1}, v∗ := v, and δ :=maxu−t, and if for any x∈X

we let 1P := P/0,
1xv∗ := xv, and λ1 := 1, then we see that Equation (5.48)

is satisfied for any 0 < ∆ < δ . If t ≥maxu, then for all ∆ > 0 and y ∈X ,
it follows from Equation (5.47) (with s := t +∆ and w := v∪ t) that, for
all xt ∈Xt ,

P(Xt+∆ = y|Xt = xt ,Xv = xv)

= ∑
xu\(v∪t)∈Xu\(v∪t)

Pxu(Xt+∆ = y|Xt = xt ,X(u\t)∪(v\[0,maxu]) = x(u\t)∪(v\[0,maxu]))

P∗(Xu\(v∪t) = xu\(v∪t)|Xt = xt ,Xv = xv).

Now let I := Xu\(v∪t), v∗ := (u \ t)∪ (v \ [0,maxu]), and choose δ > 0

arbitrarily. Fix any x ∈X , and for all xu\(v∪t) ∈ I , let xu\(v∪t)P = Pxu—
with xt := x if t = maxu, so Pxu depends on x in this case—and xu\(v∪t)xv∗ :=
x(u\t)∪(v\[0,maxu]), and let

λxu\(v∪t)
:= P∗(Xu\(v∪t) = xu\(v∪t)|Xt = x,Xv = xv).

Then Equation (5.48) is satisfied for any 0 < ∆ < δ . Hence, Equa-
tion (5.48) is satisfied both when t < maxu and when t ≥maxu.

We will next construct the convex combination that satisfies Equa-
tion (5.49). So, consider any t > 0, v ∈ U<t and xv ∈Xv. We again dis-
tinguish between two cases: t ≤ maxu and t > maxu. If t ≤ maxu, then
for all ∆ ∈ (0, t−maxv) and x,y ∈X , we see that (Xt = y,(Xt−∆ = x,Xv =
xv)) ∈ C /0, and therefore, since P is an extension of P̃, it follows from
Equation (5.33)216 that

P(Xt = y|Xt−∆ = x,Xv = xv) = P/0(Xt = y|Xt−∆ = x,Xv = xv).

Hence, if we let I := {1}, v∗ := v, δ := t−maxv, 1P := P/0 and 1xv∗ := xv,
and if for all x∈X and all 0 < ∆ < δ we let λ1 := 1, then Equation (5.49)
is satisfied.

If t > maxu, then for all ∆ ∈ (0, t −max(v∪ u)) and y ∈ X , it fol-
lows from Equation (5.47) (with s := t and w := v∪ {t − ∆}) that, for
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all xt−∆ ∈Xt−∆,

P(Xt = y|Xt−∆ = xt−∆,Xv = xv)

= ∑
xu\v∈Xu\v

Pxu(Xt = y|Xt−∆ = xt−∆,Xu∪(v\[0,maxu]) = xu∪(v\[0,maxu]))

P∗(Xu\v = xu\v|Xt−∆ = xt−∆,Xv = xv).

Now, let I :=Xu\v, v∗ := u∪(v\ [0,maxu]), δ := t−max(v∪u), and for all
xu\v ∈I , let xu\vP = Pxu and xu\vxv∗ := xu∪(v\[0,maxu]). If for all x ∈X and
0 < ∆ < δ we let xt−∆ := x and

λxu\v := P∗(Xu\v = xu\v|Xt−∆ = xt−∆,Xv = xv),

then Equation (5.49)220 is again satisfied. Hence, Equation (5.49)220
can be satisfied both when t ≤maxu and when t > maxu.

Therefore, indeed, as claimed before, the x-rows of both T t+∆
t,xv

and
T t

t−∆,xv
can be written as a convex combination of the x-rows of transi-

tion matrices corresponding to elements of PW
Q,M—assuming that ∆ is

small enough. We will now use this fact to prove that P is well-behaved
and consistent with Q.

We start by proving that P is well-behaved. First fix any t ≥ 0, v ∈
U<t and xv ∈Xv, and consider the quantities I , v∗, and δ leading to the
convex combination that satisfies Equation (5.48)220. Fix any x ∈X ,
and consider the indexed families (iP ∈ PW

Q,M )i∈I , (ixv∗ ∈Xv∗)i∈I , and

(λi)i∈I that together satisfy Equation (5.48)220 for any 0 < ∆ < δ .
Fix any y ∈X . Then for all i ∈ I , because iP is well-behaved, it

follows from Definition 4.1145 that there is some Bi ∈ R such that

limsup
∆→0+

1

∆

∣

∣

iP(Xt+∆ = y |Xt = x,Xv∗ =
ixv∗)− Ix(y)

∣

∣≤ Bi .

Because this is true for all i ∈I , and because I is finite, it follows that
B := maxi∈I Bi is in R—in particular, that it is finite. Using that Equa-
tion (5.48)220 holds for all 0 < ∆ < δ , together with Definition 4.2148
and the fact that I is finite, it follows that

limsup
∆→0+

1

∆
|P(Xt+∆ = y |Xt = x,Xv = xv)− Ix(y)|

= limsup
∆→0+

1

∆

∣

∣

∣

∣

∣

∑
i∈I

λi

(

iP(Xt+∆ = y |Xt = x,Xv∗ =
ixv∗)− Ix(y)

)

∣

∣

∣

∣

∣

≤ limsup
∆→0+

∑
i∈I

λi

1

∆

∣

∣

iP(Xt+∆ = y |Xt = x,Xv∗ =
ixv∗)− Ix(y)

∣

∣

≤ ∑
i∈I

λi limsup
∆→0+

1

∆

∣

∣

iP(Xt+∆ = y |Xt = x,Xv∗ =
ixv∗)− Ix(y)

∣

∣≤ ∑
i∈I

λiB = B .
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In summary, we have found that

limsup
∆→0+

1

∆
|P(Xt+∆ = y |Xt = x,Xv = xv)− Ix(y)| ≤ B <+∞. (5.50)

Similarly, fix any t > 0, v∈U<t and xv ∈Xv, and consider the quanti-
ties I , v∗, δ , (iP ∈ PW

Q,M )i∈I , and (ixv∗ ∈Xv∗)i∈I leading to the convex

combination that satisfies Equation (5.49)220.
Fix any x,y ∈X . Then for all i ∈ I , because iP is well-behaved, it

follows from Definition 4.1145 that there is some Bi ∈ R such that

limsup
∆→0+

1

∆

∣

∣

iP(Xt = y |Xt−∆ = x,Xv∗ =
ixv∗)− Ix(y)

∣

∣≤ Bi .

This implies that there is some δ ′i > 0 such that for all 0< ∆< δ ′i it holds
that

1

∆

∣

∣

iP(Xt = y |Xt−∆ = x,Xv∗ =
ixv∗)− Ix(y)

∣

∣≤ Bi .

Now let δ ′ := mini∈I δ ′i and B := maxi∈I Bi. Then because I is finite it
follows that B ∈ R—in particular, that it is finite—and that 0 < δ ′.

Now fix any 0 < ∆ < min{δ ,δ ′}, and consider the family (λi)i∈I that
satisfies Equation (5.49)220. Then it follows from Definition 4.2148 that

1

∆
|P(Xt = y |Xt−∆ = x,Xv = xv)− Ix(y)|

=
1

∆

∣

∣

∣

∣

∣

∑
i∈I

λi

(

iP(Xt = y |Xt−∆ = x,Xv∗ =
ixv∗)− Ix(y)

)

∣

∣

∣

∣

∣

≤ ∑
i∈I

λi

1

∆

∣

∣

iP(Xt = y |Xt−∆ = x,Xv∗ =
ixv∗)− Ix(y)

∣

∣≤ ∑
i∈I

λiB = B ,

where for the final inequality we used that ∆ < δ ′ ≤ δ ′i for all i ∈ I .
Because this is true for all 0 < ∆ < min{δ ,δ ′}, it follows that

limsup
∆→0+

1

∆
|P(Xt = y |Xt−∆ = x,Xv = xv)− Ix(y)| ≤ B <+∞. (5.51)

Because the t ∈R≥0, v ∈U<t and xv ∈Xv in Equation (5.50), and the
t ∈ R>0, v ∈U<t and xv ∈Xv in Equation (5.51) are arbitrary, it follows
from Definition 4.1145 that P is well-behaved.

We end by proving that P is consistent with Q. To this end, fix any

t ≥ 0, v ∈ U<t , and xv ∈Xv. We need to show that for all Q∗ ∈ ∂T t
t,xv

it holds that Q∗ ∈ Q. We consider two (possibly overlapping) cases:
Q∗ ∈ ∂+T t

t,xv
and Q∗ ∈ ∂−T t

t,xv
.
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If Q∗ ∈ ∂+T t
t,xv

, it follows from Equation (4.22)168 that there is a se-
quence {∆ j} j∈Z>0

→ 0+ such that

lim
j→+∞

1

∆ j

(

T
t+∆ j

t,xv
− I
)

= Q∗ . (5.52)

Consider the I , v∗ ∈ U<t , and δ that lead to the convex combina-
tion satisfying Equation (5.48)220. Fix any x ∈ X , and consider the
indexed families (iP ∈ PW

Q,M )i∈I , (ixv∗)i∈I , and (λi)i∈I that together

satisfy Equation (5.48)220 for any 0 < ∆ < δ .
Fix any i ∈I . Since iP is well-behaved, the sequence

{

1

∆ j

(

iT
t+∆ j

t, ixv∗
− I
)

}

j∈Z>0

is bounded, and therefore, Corollary A.14378 implies that it has a con-
vergent subsequence, of which we denote the limit by Qi,x. Hence, with-
out loss of generality—simply remove the indices j that do not corre-
spond to the subsequence—we may assume that

lim
j→+∞

1

∆ j

(

iT
t+∆ j

t, ixv∗
− I
)

= Qi,x. (5.53)

Because i∈I is arbitrary, we can now repeat this argument for the next
i′ ∈ I , and so on—each time removing indices j from the remaining
sub-sequence—until eventually, we can assume without loss of gener-
ality that Equation (5.53) holds for all i ∈I .

Then, for any i ∈ I , since we know from Proposition 4.10153 that
Qi,x is a limit of rate matrices, Qi,x is also a rate matrix due to Proposi-
tion 4.6151, and therefore, it follows from Equation (4.22)168 that Qi,x ∈
∂+

iT t
t, ixv∗

, which, since iP is consistent with Q, implies that Qi,x ∈Q. In
this manner, we obtain a family of rate matrices (Qi,x ∈Q)i∈I such that
Equation (5.53) holds for every i ∈I . Additionally, since lim j→+∞ ∆ j =
0, we may assume without loss of generality that 0 < ∆ j < δ for all
j ∈ Z>0. Equations (5.48)220 and (5.53) now imply that

lim
j→+∞

1

∆ j

(

T
t+∆ j

t,xv
(x, ·)− I(x, ·)

)

= lim
j→+∞

1

∆ j

(

∑
i∈I

λi
iT

t+∆ j

t,ixv∗
(x, ·)− I(x, ·)

)

= ∑
i∈I

λiQi,x(x, ·),

which, because of Equation (5.52), implies that Q∗(x, ·) =

∑i∈I λiQi,x(x, ·) = Qx(x, ·), with Qx := ∑i∈I λiQi,x. Since Q is convex,
we also know that Qx ∈ Q. Hence, since Q has separately specified
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rows, and because x ∈X is arbitrary, it follows from Definition 5.7193
that Q∗ ∈Q. This concludes the argument in the case when Q∗ ∈ ∂+T t

t,xv
.

Next, suppose that Q∗ ∈ ∂−T t
t,xv

. Then, due to Equation (4.23)168,
there is a sequence {∆ j} j∈Z>0

→ 0+ such that

lim
j→+∞

1

∆ j

(

T t
t−∆ j ,xv

− I
)

= Q∗ . (5.54)

Consider the quantities I , v∗, δ , (iP ∈ PW
Q,M )i∈I , and (ixv∗ ∈Xv∗)i∈I

leading to the convex combination that satisfies Equation (5.49)220. Be-
cause lim j→+∞ ∆ j = 0 we can assume without loss of generality that
0 < ∆ j < δ for all j ∈ Z>0. Fix any x ∈X . Then for all j ∈ Z>0, there
is a family ( jλi)i∈I of non-negative coefficients that sum to one, that
satisfies Equation (5.49)220 for ∆ = ∆ j.

Now consider the sequence
{

( jλi)i∈I
}

j∈Z>0
of these families of co-

efficients. Let k := |I | denote the size of the index set I . Then
the sequence

{

( jλi)i∈I
}

j∈Z>0
lives in [0,1]I , which is clearly a closed

and bounded subset of the k-dimensional vector space RI of real-
valued functions on I , which we endow with the supremum norm.
Hence, by Corollary A.12378, there is a convergent subsequence, whose
limit we denote by (∗λi)i∈I , that also lives in [0,1]I . Without loss of
generality—simply remove the indexes j that do not correspond to the
subsequence—we may therefore assume that

lim
j→+∞

max
i∈I

∣

∣

jλi− ∗λi

∣

∣= 0 . (5.55)

It clearly holds that ∗λi ≥ 0 for all i ∈ I . Moreover, for any j ∈ Z>0 it
holds that

∣

∣

∣

∣

∣

∑
i∈I

∗λi−1

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑
i∈I

∗λi− jλi

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
i∈I

jλi−1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑
i∈I

∗λi− jλi

∣

∣

∣

∣

∣

≤ ∑
i∈I

∣

∣

∗λi− jλi

∣

∣≤ k max
i∈I

∣

∣

∗λi− jλi

∣

∣ ,

where for the equality we used that ∑i∈I
jλi = 1. Since this is true

for all j ∈ Z>0, and since k ∈ Z>0, it follows from Equation (5.55) that
|∑i∈I

∗λi−1|= 0, or in other words, that ∑i∈I
∗λi = 1. So, in summary,

we have found that the (sub-)sequence
{

( jλi)i∈I
}

j∈Z>0
converges to a

limit (∗λi)i∈I which is a family of non-negative coefficients that sum to
one.

Now fix any i ∈I . Since iP is well-behaved, the sequence
{

1

∆ j

(

iT t
t−∆ j , ixv∗

− I
)

}

j∈Z>0
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is bounded, and therefore, Corollary A.14378 implies that it has a con-
vergent subsequence, of which we denote the limit by Qi,x. Hence, with-
out loss of generality—again simply remove the indexes j that do not
correspond to the subsequence—we may assume that

lim
j→+∞

1

∆ j

(

iT t
t−∆ j , ixv∗

− I
)

= Qi,x. (5.56)

Because i∈I is arbitrary, we can now repeat this argument for the next
i′ ∈ I , and so on—each time removing indices j from the remaining
sub-sequence—until eventually, we can assume without loss of gener-
ality that Equation (5.56) holds for all i ∈I .

Then, for any i ∈ I , since we know from Proposition 4.10153 that
Qi,x is a limit of rate matrices, Qi,x is also a rate matrix due to Proposi-
tion 4.6151, and therefore, it follows from Equation (4.23)168 that Qi,x ∈
∂−iT t

t, ixv∗
, which, since iP is consistent with Q, implies that Qi,x ∈Q. In

this manner, we obtain a family of rate matrices (Qi,x ∈Q)i∈I such that
Equation (5.56) holds for every i ∈I .

Because we already assumed that 0 < ∆ j < δ for all j ∈ Z>0, Equa-
tion (5.49)220 implies that

lim
j→+∞

1

∆ j

(

T t
t−∆ j ,xv

(x, ·)− I(x, ·)
)

= lim
j→+∞

1

∆ j

(

∑
i∈I

jλi
iT t

t−∆ j ,xv
(x, ·)− I(x, ·)

)

= lim
j→+∞

∑
i∈I

jλi

1

∆ j

(

iT t
t−∆ j ,xv

(x, ·)− I(x, ·)
)

= ∑
i∈I

∗λiQi,x(x, ·) ,

where for the last step we used the individual limits that we estab-
lished above, i.e. that for all i ∈ I it holds that lim j→+∞

jλi =
∗λi and

lim j→+∞ 1/∆ j

(

iT t
t−∆ j ,xv

(x, ·)− I(x, ·)
)

= Qi,x(x, ·)—this last property follows

from Proposition A.33390 together with Equation (5.56). Due to Equa-
tion (5.54)x, this implies that Q∗(x, ·) = ∑i∈I

∗λiQi,x(x, ·) = Qx(x, ·), with
Qx := ∑i∈I

∗λiQi,x. Because Q is convex, and because the coefficients
(∗λi)i∈I are non-negative and sum to one, we also know that Qx ∈Q.
Hence, since Q has separately specified rows and because x ∈X is ar-
bitrary, it follows from Definition 5.7193 that Q∗ ∈Q.

Since Q∗ ∈Q both when Q∗ ∈ ∂+T t
t,xv

and Q∗ ∈ ∂−T t
t,xv

, and because

Q∗ ∈ ∂T t
t,xv

is arbitrary, we conclude that ∂T t
t,xv
⊆Q. Since this is true

for all t ∈R≥0, v ∈U<t , and xv ∈Xv, we find that P is consistent with Q.
Since we already know that P is a well-behaved stochastic process such
that P∼M , it follows that P ∈ PW

Q,M .

Proof of Theorem 5.11193. If u = /0 then the statement is satisfied by tak-
ing P = Pxu ∈ PW

Q,M . To see this, observe that Equation (5.6)194 is vac-
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uously satisfied since there is no u2 ⊆ u for which u2 6= /0, while Equa-
tion (5.7)194 is trivially satisfied.

For the other case, suppose that u 6= /0; then this result is a special
case of Lemma 5.35215. To see this, first note that, for all u1,u2 ⊆ u such
that u2 6= /0 and u1 < u2, all xu1

∈Xu1
, and all xu2

∈Xu2
, the conditional

event (Xu2
= xu2

,Xu1
= xu1

) is an element of C /0, as defined in the state-
ment of Lemma 5.35215. Moreover, observe that for all xu ∈ Xu and
all A ∈ Au, it follows from Definition 2.1067 that (A,Xu = xu) ∈ Cxu , as
defined in the statement of Lemma 5.35215.

5.C Technical (In)Equalities for CT(I)MCs

This appendix contains a number of identities that we require for some
of our proofs, but which we think are too technical to explain in the
main text of this dissertation.

First of all, recall from Proposition 4.23171 that, for any ε ∈ R>0,
there is some δ > 0 such that, for all 0 < ∆ < δ , the transition matrix
T t+∆

t,xu
of a fixed stochastic process P ∈ PW

Q,M can be approximated by
(I+∆Q) with an error of at most ∆ε , using a rate matrix Q ∈ ∂T t

t,xu
⊆Q.

Quite similarly, the following lemma states that, for any given time
interval [t,s], there is a finite partition v ∈ U[t,s], v = t0, . . . , tn, such that
the transition matrices T

ti+1
ti,xu

can all be approximated by (I +∆v
i+1Qi+1),

for some Qi+1 ∈Q and with ∆v
i+1 = ti+1− ti.

The reason that this result does not follow trivially from Proposi-
tion 4.23171 is because the δ—and hence also ∆—in Proposition 4.23171
depends on the particular time point that is considered. For this rea-
son, the intuitive idea of using Proposition 4.23171 to first find some ∆1

and Q1 such that T
t1

t0,xu
= T

t0+∆1
t0,xu

can be approximated by I +∆1Q1, and
to then continue in this way to find some ∆2 and Q2, and then some ∆3

and Q3, and so on, is not feasible, because this process may continue in-
definitely if ∑

∞
i=1 ∆i is finite. In order to make this work, we need some

kind of guarantee that it suffices to consider a finite number of ∆i, and
this is exactly what the following lemma establishes.

Lemma 5.36. Let Q be a non-empty set of rate matrices, and consider any
non-empty set M of probability mass functions on X . Consider any P ∈
PW

Q,M with corresponding family of history-dependent transition matrices

(T s
t,xu

), any t,s∈R≥0 such that t < s, any u∈U<t and any xu ∈Xu. Then for
all ε > 0 and δ > 0, there is some v ∈U[t,s], v = t0, . . . , tn, such that σ(v)< δ
and, for all i ∈ {0, . . . ,n−1}, it holds that

(∃Q ∈Q)
∥

∥

∥
T

ti+1
ti,xu
− (I +∆v

i+1Q)
∥

∥

∥
< ∆v

i+1ε .
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Proof. Fix any ε > 0 and δ > 0. It then follows from Proposition 4.23171
and Definition 5.3189 that there is some 0 < δ ∗ < min{δ , 1/2(s− t)} such
that, for all 0 < ∆ < δ ∗,

(∃Q∈Q)

∥

∥

∥

∥

1

∆
(T t+∆

t,xu
− I)−Q

∥

∥

∥

∥

< ε and (∃Q∈Q)

∥

∥

∥

∥

1

∆
(T s

s−∆,xu
− I)−Q

∥

∥

∥

∥

< ε.

(5.57)
Let t∗ := t + δ ∗ and s∗ := s− δ ∗. Then clearly, t < t∗ < s∗ < s. For any
r ∈ [t∗,s∗], it follows from Proposition 4.23171 and Definition 5.3189 that
there is some 0 < δr < δ ∗ such that, for all 0 < ∆ < δr,

(∃Q∈Q)

∥

∥

∥

∥

1

∆
(T r+∆

r,xu
− I)−Q

∥

∥

∥

∥

< ε and (∃Q∈Q)

∥

∥

∥

∥

1

∆
(T r

r−∆,xu
− I)−Q

∥

∥

∥

∥

< ε.

(5.58)
Let Ur := (r− δr,r + δr). Then the set C := {Ur : r ∈ [t∗,s∗]} is an open
cover of [t∗,s∗]. By the Heine-Borel theorem, C contains a finite sub-
cover C∗ of [t∗,s∗]. Without loss of generality, we can take this subcover
to be minimal, in the sense that if we remove any of its elements, it is
no longer a cover. Let m be the cardinality ofC∗ and let r1 < r2 < · · ·< rm

be the ordered sequence of the midpoints of the intervals in C∗.
We will now prove that

ri−δri
< r j−δr j

and ri +δri
< r j +δr j

for all 1≤ i < j ≤ m. (5.59)

Assume ex absurdo that this statement is not true. Then this implies
that there are 1≤ i < j ≤m such that either ri−δri

≥ r j−δr j
or ri +δri

≥
r j +δr j

. If ri−δri
≥ r j−δr j

, then since i < j implies that ri < r j, it follows
that δr j

≥ δri
+ r j− ri > δri

and therefore, that r j + δr j
> ri + δri

. Hence,
we find that Uri

⊆Ur j
. Since C∗ was taken to be a minimal cover, this is

a contradiction. Similarly, if ri + δri
≥ r j + δr j

, then since i < j implies
that ri < r j, it follows that δri

≥ δr j
+ r j − ri > δr j

and therefore, that
ri − δri

< r j − δri
. Hence, we find that Ur j

⊆ Uri
. Since C∗ was taken

to be a minimal cover, this is again a contradiction. From these two
contradictions, it follows that Equation (5.59) is indeed true.

Next, we prove that

rk+1−δrk+1
< rk +δrk

for all k ∈ {1, . . . ,m−1}. (5.60)

Assume ex absurdo that this statement is not true or, equivalently, that
there is some k ∈ {1, . . . ,m−1} such that rk +δrk

≤ rk+1−δrk+1
. For all i∈

{k+1, . . . ,m}, it then follows from Equation (5.59) that rk +δrk
≤ ri−δri

,
which implies that rk + δrk

/∈ Uri
. Furthermore, for all i ∈ {1, . . . ,k}, it

follows from Equation (5.59) that ri +δri
≤ rk +δrk

, which again implies
that rk + δrk

/∈Uri
. Hence, for all i ∈ {1, . . . ,m}, we have found that rk +

δrk
/∈Uri

. Since C∗ is a cover of [t∗,s∗], this implies that rk + δrk
/∈ [t∗,s∗],
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which, since rk ∈ [t∗,s∗], implies that rk +δrk
> s∗. Hence, since we know

from Equation (5.59) that rk−δrk
< rm−δrm , it follows thatUrm∩ [t∗,s∗]⊆

Urk
∩ [t∗,s∗]. This contradicts the fact that C∗ was taken to be a minimal

cover, and therefore, Equation (5.60) must indeed be true.
For all k ∈ {1, . . . ,m− 1}, we define qk := 1/2(rk +δrk

+ rk+1−δrk+1
).

Using Equation (5.59), it then follows that

qk <
rk+1 +δrk+1

+ rk+1−δrk+1

2
= rk+1 and qk >

rk +δrk
+ rk−δrk

2
= rk,

and Equation (5.60) trivially implies that rk+1 − δrk+1
< qk < rk + δrk

.
Hence,

rk < qk < rk +δrk
and rk+1−δrk+1

< qk < rk+1.

Due to Equation (5.58), and with ∆∗k := qk− rk and ∆∗∗k := rk+1−qk, this
implies that

(∃Q ∈Q)

∥

∥

∥

∥

(T
qk

rk,xu − I)

∆∗k
−Q

∥

∥

∥

∥

< ε and (∃Q ∈Q)

∥

∥

∥

∥

(T
rk+1

qk,xu − I)

∆∗∗k
−Q

∥

∥

∥

∥

< ε.

(5.61)
For all k ∈ {1, . . . ,m}, we now let t2k := rk and, for all k ∈ {1, . . . ,m−

1}, we let t2k+1 := qk. For the resulting sequence t2 < t3 < · · · <
t2m−1 < t2m, it then follows from Equation (5.61) and N964 that, for all
i ∈ {2, . . . ,2m−1}:

(∃Q ∈Q)
∥

∥

∥
T

ti+1
ti,xu
− (I +∆i+1Q)

∥

∥

∥
< ∆i+1ε, (5.62)

with ∆i+1 := ti+1− ti < δ .
Next, since C∗ is a minimal cover, and because of Equation (5.59),

we know that r1− δr1
< t∗ ≤ r1 = t2 and, since δr1

< δ ∗, we also know
that r1−δr1

> t. Therefore, it follows that there is some t1 ∈R such that
t < r1−δr1

< t1 < t∗ ≤ r1. If we now let t0 := t, then ∆1 := t1− t0 < δ ∗ and
∆2 := t2−t1 = r1−t1 < δr1

, and therefore, it follows from Equations (5.57)
and (5.58) and N964 that Equation (5.62) is also true for i = 0 and i = 1.

Finally, again since C∗ is a minimal cover and because of Equa-
tion (5.59), we know that t2m = rm ≤ s∗ < rm + δrm and, since δrm < δ ∗,
we also know that rm + δrm < s. Therefore, it follows that there is
some t2m+1 ∈ R such that t2m = rm ≤ s∗ < t2m+1 < rm + δrm < s. If we
now let t2m+2 := s, then ∆2m+2 := t2m+2− t2m+1 < δ ∗ and ∆2m+1 := t2m+1−
t2m = t2m+1− rm < δrm , and therefore, it follows from Equations (5.57)
and (5.58) and N964 that Equation (5.62) is also true for i = 2m and
i = 2m+1.

Hence, we conclude that Equation (5.62) holds for all i ∈
{0,1, . . . ,2m,2m+1}. The result now follows by letting n := 2m+2.

229



Continuous-Time (Imprecise-)Markov Chains

Roughly speaking, the next result establishes that the (history-
dependent) transition matrix T s

t,xu
of a stochastic process P ∈ PW can be

decomposed into a number of other transition matrices corresponding
to this P, such that—crucially—these individual transition matrices do
not depend on the exact way that the decomposition was performed—
that is, the other transition matrices in the decomposition—despite P

not necessarily being a Markov process.

Lemma 5.37. Consider any P ∈ PW with corresponding family of history-
dependent transition matrices (T s

t,xu
), any t,s ∈ R≥0 such that t < s, any

u∈U<t and xu ∈Xu and any sequence t = t0 < t1 < · · ·< tn = s, with n∈Z>0.
Then for any f ∈L (X ) and xt ∈X , it holds that

T s
t,xu

f (xt) =

(

T
t1

t0,xu

n

∏
i=2

T
ti

ti−1,xu∪{t}

)

f (xt)

Proof. We provide a proof by induction. For n = 1, the result holds
trivially. So consider now any n > 1 and assume that the result is true
for n−1.

For any g ∈L (X ), and because t0 = t, it then follows from Defini-
tion 4.2148 that

T
t2

t0,xu
g(xt) = ∑

xt2
∈X

g(xt2)P(Xt2 = xt2 |Xt = xt ,Xu = xu)

= ∑
xt2
∈X

g(xt2) ∑
xt1
∈X

P(Xt2 = xt2 ,Xt1 = xt1 |Xt = xt ,Xu = xu)

= ∑
xt2
∈X

g(xt2) ∑
xt1
∈X

P(Xt2 = xt2 |Xt1 = xt1 ,Xt = xt ,Xu = xu)

P(Xt1 = xt1 |Xt = xt ,Xu = xu)

= ∑
xt1
∈X

T
t2

t1,xu∪{t}g(xt1)P(Xt1 = xt1 |Xt = xt ,Xu = xu)

=
(

T
t1

t0,xu
T

t2
t1,xu∪{t}

)

g(xt) ,

where the second equality used F347 and the third equality used F447.
Hence, it follows that

T s
t,xu

f (xt) = T
t2

t0,xu

(

n

∏
i=3

T
ti

ti−1,xu∪{t} f

)

(xt)

= T
t1

t0,xu
T

t2
t1,xu∪{t}

(

n

∏
i=3

T
ti

ti−1,xu∪{t} f

)

(xt)

=

(

T
t1

t0,xu

n

∏
i=2

T
ti

ti−1,xu∪{t}

)

f (xt) ,

using the induction hypothesis for the first equality.
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The previous result can also be phrased as an identity in terms of
the rows of these history-dependent transition matrices, as follows.

Corollary 5.38. Consider any P∈PW with corresponding family of history-
dependent transition matrices (T s

t,xu
), any t,s ∈ R≥0 such that t < s, any

u∈U<t and xu ∈Xu and any sequence t = t0 < t1 < · · ·< tn = s, with n∈Z>0.
Then for any xt ∈X it holds that

T s
t,xu

(xt , ·) =
(

T
t1

t0,xu

n

∏
i=2

T
ti

ti−1,xu∪{t}

)

(xt , ·) (5.63)

Proof. Fix any xt ∈X . Then for all xs ∈X , it follows from Lemma 5.37
that

T s
t,xu

Ixs(xt) =

(

T
t1

t0,xu

n

∏
i=2

T
ti

ti−1,xu∪{t}

)

Ixs(xt) ,

and therefore, in particular, that

T s
t,xu

(xt ,xs) =

(

T
t1

t0,xu

n

∏
i=2

T
ti

ti−1,xu∪{t}

)

(xt ,xs) .

Because the xs ∈X is arbitrary, this concludes the proof.

A word of warning about Corollary 5.38 is in order, because an im-
portant subtlety may get lost in the verbose notation: because the ma-
trices T

ti
ti−1,xu∪{t} on the right-hand side of Equation (5.63) depend on the

value of xt , this does not imply that the left-hand matrix is equal to the
composite matrix on the right-hand side. Indeed, the row-wise identity
stated by Corollary 5.38 is the strongest possible statement because the
process P ∈ PW may not be Markovian.

The next result gives a bound on the rate of change of the transition
matrices of a well-behavedMarkov chain that is consistent with a given
bounded set Q. Effectively, this bound can be understood as being uni-
form with respect to all Markov chains in PW

Q
and all time points.

Lemma 5.39. Consider a non-empty bounded set Q of rate matrices and let
P ∈ PWM

Q
be a well-behaved Markov chain that is consistent with Q, with

corresponding family of transition matrices (T s
t ). Then, for all t,s ∈ R≥0

such that t ≤ s, it holds that ‖T s
t − I‖ ≤ (s− t)‖Q‖.

Proof. If t = s, the result is trivial because we know from Proposi-
tion 5.1183 and Definition 4.6156 that T s

t = I. Hence, without loss of
generality, we may assume that t < s. Fix any ε > 0. Since t < s, it fol-
lows from Lemma 5.36227 that there is some u ∈U[t,s] with u = t0, . . . , tn
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and t = t0 < .. . < tn = s such that, for all i ∈ {1, . . . ,n}, there is some
Qi ∈Q such that

∥

∥T
ti

ti−1
− (I +∆u

i Qi)
∥

∥< ∆u
i ε , and therefore also

∥

∥T
ti

ti−1
− I
∥

∥≤
∥

∥T
ti

ti−1
− (I +∆u

i Qi)
∥

∥+∆u
i ‖Qi‖< ∆u

i ε +∆u
i ‖Q‖= ∆u

i (ε +‖Q‖),

with ∆u
i := ti− ti−1. Since it follows from Proposition 5.1183 and Defini-

tion 4.6156 that T s
t = ∏

n
i=1 T

ti
ti−1

and that, for all i ∈ {1, . . . ,n}, T
ti

ti−1
and I

are transition matrices, we infer from Lemma B.5393 that

‖T s
t − I‖=

∥

∥

∥

∥

∥

n

∏
i=1

T
ti

ti−1
−

n

∏
i=1

I

∥

∥

∥

∥

∥

≤
n

∑
i=1

∥

∥T
ti

ti−1
− I
∥

∥

<
n

∑
i=1

∆u
i (ε +‖Q‖) = (s− t)(ε +‖Q‖).

Since ε > 0 is arbitrary, it follows that ‖T s
t − I‖ ≤ (s− t)‖Q‖.

5.D Proofs of Results in Section 5.3

This appendix contains the proofs for the results in Section 5.3194, as
well as some auxiliary lemmas. Before we proceed, let us remark that
many of the results in this appendix use (norms of) the rows of ma-
trices, the technical details of which are introduced and discussed in
Appendices A.2380 and A.3383.

Proof of Lemma 5.12195. Choose δ ∈ R>0 such that δ ‖Q‖ < 1 and

δ ‖Q‖2 < ε/2; because Q is bounded this is always possible. Now choose
any P ∈ PWM

Q
, any t ∈ R≥0, and any ∆ < δ . Let (T s

t ) be the family of
transition matrices corresponding to P which, as we know from Propo-
sition 5.1183, is a transition matrix system. Then if ∆ = 0 the result is
trivial because we know from Proposition 5.1183 and Definition 4.6156
that T t

t = I. So, without loss of generality, we may assume that ∆ > 0.
It now follows from Lemma 5.36227 that there is some v ∈ U[t,t+∆]

with v = t0, . . . , tn and t = t0 < t1 < · · ·< tn = t+∆ and, for all i∈ {1, . . . ,n},
some Qi ∈Q such that

∥

∥T
ti

ti−1
− (I +∆iQi)

∥

∥< ∆i

ε

2
and ∆i ‖Qi‖ ≤ ∆‖Q‖ ≤ δ ‖Q‖< 1.

Therefore, it follows from Propositions 4.9153 and 5.1183, Defini-
tion 4.6156 and Lemma B.5393 that

∥

∥

∥

∥

∥

T t+∆
t −

n

∏
i=1

(I +∆iQi)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n

∏
i=1

T
ti

ti−1
−

n

∏
i=1

(I +∆iQi)

∥

∥

∥

∥

∥

<
n

∑
i=1

∆i

ε

2
= ∆

ε

2
.
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and, with Q := 1/∆ ∑
n
i=1 ∆iQi, it follows from Lemma B.12395 that

∥

∥

∥

∥

∥

n

∏
i=1

(I +∆iQi)− (I +∆Q)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n

∏
i=1

(I +∆iQi)− (I +
n

∑
i=1

∆iQi)

∥

∥

∥

∥

∥

≤ ∆2 ‖Q‖2 .

By combining these two inequalities, we find that

∥

∥

∥
T t+∆

t − (I +∆Q)
∥

∥

∥
< ∆

ε

2
+∆2 ‖Q‖2 ≤ ∆

ε

2
+∆δ ‖Q‖2 < ∆

ε

2
+∆

ε

2
= ∆ε.

The result follows because the convexity of Q implies that Q ∈Q.

Proof of Lemma 5.13195. Fix any ε > 0 and let δ ∈ R>0 be such that

δ ‖Q‖ ≤ 1 and δ ‖Q‖2 ≤ ε/2; because Q is bounded this is always pos-
sible. Now choose any P ∈ PW

Q
, any t ∈ R≥0, any u ∈ U<t , any xu ∈X ,

and any ∆ < δ . Let (T s
t,xu

) be the family of history-dependent transition
matrices corresponding to P. Then if ∆ = 0 the result is trivial because
we know from Proposition 4.2149 and Definition 4.2148 that T t

t,xu
= I.

So, without loss of generality, we may assume that ∆ > 0.

Because P ∈ PW
Q
, by Proposition 4.23171 and Definition 5.3189, there

is some δ ′> 0 such that with 0<∆1 <min{δ ,δ ′,∆}, there is some Q1 ∈Q

such that
∥

∥

∥
T

t+∆1
t,xu

− (I +∆1Q1)
∥

∥

∥
< ∆1

ε

2
. (5.64)

Now fix any xt ∈ X . Then, by Lemma 5.36227, there is some v ∈
U[t+∆1,t+∆], v = t1, . . . , tn, with σ(v) < δ , such that, for all i ∈ {2, . . . ,n},
with ∆i := ∆v

i = ti− ti−1, it holds that

(∃Qi ∈Q)
∥

∥

∥
T

ti
ti−1,xu∪{t} − (I +∆iQi)

∥

∥

∥
< ∆i

ε

2
. (5.65)

Noting that t1 = t +∆1 and ∆ = ∑
n
i=1 ∆i, and using Corollary 5.38231,

it holds that

T t+∆
t,xu

(xt , ·) =
(

T
t+∆1

t,xu

n

∏
i=2

T
ti

ti−1,xu∪{t}

)

(xt , ·) .

Now let Tε := ∏
n
i=1(I +∆iQi). Then, for all i ∈ {1, . . . ,n}, it holds that

∆i ≤ δ and hence, because δ ‖Q‖ ≤ 1, it follows from Proposition 4.9153
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that (I +∆iQi) is a transition matrix. We now find that

∥

∥

∥
T t+∆

t,xu
(xt , ·)−Tε(xt , ·)

∥

∥

∥

∗

=

∥

∥

∥

∥

∥

(

T
t+∆1

t,xu

n

∏
i=2

T
ti

ti−1,xu∪{t}

)

(xt , ·)−Tε(xt , ·)
∥

∥

∥

∥

∥

∗

≤
∥

∥

∥

∥

∥

T
t+∆1

t,xu

n

∏
i=2

T
ti

ti−1,xu∪{t} −
n

∏
i=1

(I +∆iQi)

∥

∥

∥

∥

∥

≤
∥

∥

∥
T

t+∆1
t,xu

− (I +∆1Q1)
∥

∥

∥
+

n

∑
i=2

∥

∥

∥
T

ti
ti−1,xu∪{t} − (I +∆iQi)

∥

∥

∥

<
n

∑
i=1

∆i

ε

2
= ∆

ε

2
,

where the first inequality follows from Proposition A.33390, the second
inequality follows from Lemma B.5393 and the fact that all matrices
involved are transition matrices, and the third inequality follows from
Equations (5.64)x and (5.65)x.

Moreover, because δ is such that δ ‖Q‖ ≤ 1 and δ ‖Q‖2 ≤ ε/2,
and because Q is non-empty, bounded, and convex, it follows from
Lemma B.12395 that

∥

∥

∥

∥

∥

n

∏
i=1

(I +∆iQi)−
(

I +
n

∑
i=1

∆iQi

)∥

∥

∥

∥

∥

≤ ∆2 ‖Q‖2 ≤ ∆δ ‖Q‖2 ≤ ∆
ε

2
.

Hence, with Qxt
:= 1/∆ ∑

n
i=1 ∆iQi, we have Qxt ∈Q because Q is convex,

and
∥

∥

∥
T t+∆

t,xu
(xt , ·)− (I +∆Qxt )(xt , ·)

∥

∥

∥

∗

≤
∥

∥

∥
T t+∆

t,xu
(xt , ·)−Tε(xt , ·)

∥

∥

∥

∗
+‖Tε(xt , ·)− (I +∆Qxt )(xt , ·)‖∗

< ∆
ε

2
+‖Tε − (I +∆Qxt )‖ ≤ ∆ε ,

using Proposition A.33390 for the second inequality.
If we now repeat the above construction of such a Qxt for all xt ∈X ,

we can construct a new matrix Q such that Q(xt , ·) := Qxt (xt , ·) for all
xt ∈X . Then Q ∈Q because Q has separately specified rows, and

∥

∥

∥
T t+∆

t,xu
− (I +∆Q)

∥

∥

∥
= max

xt∈X

∥

∥

∥
T t+∆

t,xu
(xt , ·)− (I +∆Qxt )(xt , ·)

∥

∥

∥

∗
< ∆ε ,

using Equation (A.4)390 for the equality.
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Proof of Proposition 5.14196. Let first

T
Q,M
[a,b]

:=
{

(

PT s
t

)

[a,b]

∣

∣P ∈ PWM
Q,M

}

.

It is clear from the definition of PWM
Q,M and PWM

Q
that

T
Q

[a,b] =
{

(

PT s
t

)

[a,b]

∣

∣P ∈ PWM
Q

}

⊇ T
Q,M
[a,b]

,

so let us prove the inclusion in the other direction. So, fix any P ∈ PWM
Q

.
By Proposition 5.1183, this P has a corresponding transition matrix sys-
tem (PT s

t ). Choose an arbitrary p ∈M ; this is possible because M is
non-empty. Due to Theorem 5.2184, there is a Markov chain P′ ∈ PM

that has (PT s
t ) as its corresponding transition matrix system, and that

satisfies P′(X0 = x) = p(x) for all x ∈X . Hence it holds that P′ ∼M due
to Definition 5.4189. For ease of notation, let (T s

t ) := (PT s
t ) denote the

transition matrix system of P′. Because P ∈ PWM
Q

it follows from Propo-
sition 5.1183 that (T s

t ) = (PT s
t ) is a well-behaved transition matrix sys-

tem and therefore, again by Proposition 5.1183, that P′ is a well-behaved
Markov chain.

Let us now show that P′ ∈ PWM
Q,M . Because P′ is a Markov chain,

and due to Equation (5.4)191, we need to show that, for all r ∈ R≥0, it
holds that ∂T r

r ⊆Q. So fix any r ∈ R≥0. Because (T
s

t ) = (PT s
t ) it follows

that ∂T r
r = ∂ PT r

r due to Definition 4.11168. Since P ∈ PWM
Q

it holds that

P∼Q, which by Definition 5.3189 implies that ∂ PT r
r ⊆Q, and therefore,

that ∂T r
r = ∂ PT r

r ⊆ Q. Because this is true for all r ∈ R≥0, and since
we already know that P′ ∼M , it follows from Equation (5.4)191 that
P′ ∈ PWM

Q,M .
Now let (T s

t )[a,b] and (PT s
t )[a,b] be the restrictions of (T s

t ) and (PT s
t ),

respectively, to the interval [a,b]. Then, clearly, (PT s
t )[a,b] = (T s

t )[a,b].

Moreover, since P′ ∈ PWM
Q,M , it follows that (T s

t )[a,b] ∈ T
Q,M
[a,b]

, which,

since (PT s
t )[a,b] = (T s

t )[a,b] and because P ∈ PWM
Q

is arbitrary, implies that

T Q

[a,b] ⊆ T
Q,M
[a,b]

.

Proof of Lemma 5.15196. Consider any sequence {(iT s
t )[a,b]}i∈Z>0

in T Q

[a,b]

that is Cauchy. We need to prove that this sequence converges to a
limit (∗T s

t )[a,b] that belongs to T Q

[a,b]. Since we already know from Propo-

sition 4.21163 that this limit exists and belongs to T[a,b], the only thing

that remains to be shown is that (∗T s
t )[a,b] ∈ T Q

[a,b].

Fix any t ∈ [a,b] and consider any ∆∈R>0. Then, if t+∆≤ b, because
Q is compact and therefore bounded, due to Lemma 5.39231 it holds for
all i ∈ Z>0 that
∥

∥

∥

∗T t+∆
t − I

∥

∥

∥
≤
∥

∥

∥

∗T t+∆
t − iT t+∆

t

∥

∥

∥
+
∥

∥

∥

iT t+∆
t − I

∥

∥

∥
≤
∥

∥

∥

∗T t+∆
t − iT t+∆

t

∥

∥

∥
+∆‖Q‖ .
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Since limi→+∞
iT t+∆

t = ∗T t+∆
t , this implies that

∥

∥

∗T t+∆
t − I

∥

∥≤∆‖Q‖. Simi-
larly, if t−∆≥ a, we also find that

∥

∥

∗T t
t−∆− I

∥

∥≤ ∆‖Q‖. Hence, it follows
that, if t ∈ [a,b),

limsup
∆→0+

∥

∥

∥

∥

1

∆

(

∗T t+∆
t − I

)

∥

∥

∥

∥

≤ ‖Q‖

and, if t ∈ (a,b],

limsup
∆→0+

∥

∥

∥

∥

1

∆

(∗T t
t−∆− I

)

∥

∥

∥

∥

≤ ‖Q‖ ,

which, since t ∈ [a,b] was arbitrary, implies that (∗T s
t )[a,b] is well-

behaved.
Now consider any Q ∈Q, and let

(

eQ(s−t)
)

be the corresponding ex-
ponential transition matrix system, as given by Definition 4.8158. Let

(∗T s
t ) :=

(

eQ(s−t)
)

[0,a]
⊗ (∗T s

t )[a,b]⊗
(

eQ(s−t)
)

[b,∞)
.

Then clearly, (∗T s
t ) is a transition matrix system and, since (∗T s

t )[a,b]
is well-behaved, it follows from Propositions 4.16158 and 4.19161 that
(∗T s

t ) is also well-behaved. Therefore, and because of Theorem 5.2184,
there is some P∗ ∈ PWM whose corresponding family of transition ma-
trices is given by (∗T s

t ). In the remainder of this proof, we will show
that P∗ ∈ PWM

Q
, which then implies that (∗T s

t )[a,b] ∈ T Q

[a,b] due to Equa-

tion (5.9)195.
To this end, let (∂ ∗T t

t ) be the family of outer partial derivatives cor-
responding to P∗, and fix any t ∈ R≥0. We need to show that ∂ ∗T t

t ⊆Q,
or equivalently, that ∂+

∗T t
t ⊆Q and, if t > 0, that ∂−∗T t

t ⊆Q. We will
only prove that ∂+

∗T t
t ⊆ Q. The proof for ∂−∗T t

t ⊆ Q in the case that
t > 0 is completely analogous. So, fix any Q∗ ∈ ∂+

∗T t
t . We will show that

Q∗ ∈ Q. If t < a or b ≤ t, this holds trivially because in that case, we
know from Lemma 4.14155 that ∂+

∗T t
t = Q, which, because of Corol-

lary 4.24171, implies that ∂+
∗T t

t = {Q} ⊆Q. Therefore, without loss of
generality, we may assume that t ∈ [a,b).

Fix any m ∈ Z>0. Because Q is non-empty, convex and, since it is
compact, bounded (by Corollary A.12378), Lemma 5.12195 then implies
the existence of some δ ∈ R>0 such that

(∀0 < ∆ < δ )(∀i ∈ Z>0)(∃Q ∈Q)

∥

∥

∥

∥

∥

iT t+∆
t − I

∆
−Q

∥

∥

∥

∥

∥

≤ 1

m
. (5.66)

Since Q∗ ∈ ∂+
∗T t

t , Equation (4.22)168 implies the existence of some 0 <
∆m < δ such that

∥

∥

∥

∥

∥

∗T t+∆m
t − I

∆m

−Q∗

∥

∥

∥

∥

∥

<
1

m
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and, since limi→+∞
iT

t+∆m
t = ∗T t+∆m

t , there is some im ∈ Z>0 such that
∥

∥

∥

∥

∥

∗T t+∆m
t − imT

t+∆m
t

∆m

∥

∥

∥

∥

∥

≤ 1

m
.

Therefore, we can apply Equation (5.66)—with ∆ := ∆m and i := im—to
infer that there is some Qm ∈Q such that

‖Q∗−Qm‖ ≤
∥

∥

∥

∥

∥

Q∗−
∗T t+∆m

t − I

∆m

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∗T t+∆m
t − imT

t+∆m
t

∆m

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

imT
t+∆m

t − I

∆m

−Qm

∥

∥

∥

∥

∥

≤ 3

m
.

By repeating this procedure for every m ∈ Z>0, we obtain a sequence
{Qm}m∈Z>0

in Q such that ‖Q∗−Qm‖≤ 3/m for all m∈Z>0, which clearly
implies that limm→+∞ Qm = Q∗. Since the sequence {Qm}m∈Z>0

belongs
to the set Q, and because Q is compact and therefore closed, it follows
that Q∗ ∈Q.

Lemma 5.40. Consider a non-empty, compact, and convex set of rate ma-
trices Q and any a,b ∈ R≥0 such that a ≤ b. Let d be the metric that is
defined in Equation (4.15)162. The metric space

(

T Q

[a,b],d
)

is then totally
bounded.

Proof. In order to prove that
(

T Q

[a,b],d
)

is totally bounded, it suffices to
prove that, for all ε ∈ R>0, there is a finite collection of open ε-balls
centered on elements of T Q

[a,b], such that this collection covers T Q

[a,b], or
equivalently, that there is a finite subset Cε of T Q

[a,b] such that

(∀(T s
t )[a,b] ∈ T

Q

[a,b])(∃(Ss
t )[a,b] ∈ Cε) d

(

(T s
t )[a,b],(S

s
t )[a,b]

)

< ε . (5.67)

So fix any ε > 0. We will now construct such a set Cε and prove that it
satisfies Equation (5.67).

First suppose that a = b, fix any Q∈Q—this is always possible since
Q is non-empty—and let

Cε :=
{

(eQ(s−t))[a,b]

}

.

Then Cε contains a single element (and hence is clearly finite) and, due
to Proposition 5.10192, Cε is a subset of T Q

[a,b]. Fix any (T s
t )[a,b] ∈ T Q

[a,b].
Then for any t,s ∈ [a,b] with t ≤ s it holds that s = t since a = b, and
hence it follows from Proposition 4.17159 that eQ(s−t) = I and that T s

t = I,

whence
∥

∥

∥
T s

t − eQ(s−t)
∥

∥

∥
= 0, which implies that

d
(

(T s
t )[a,b], (e

Q(s−t))[a,b]
)

= 0 < ε .
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Because this is true for all (T s
t )[a,b] ∈ T Q

[a,b] it follows that Cε indeed sat-
isfies Equation (5.67)x. This concludes the proof for the case where
a = b.

Now suppose that a < b. Fix ε1,ε2,ε3,ε4 ∈ R>0 such that
(b−a)(ε1 + ε2 + ε3)+2ε4 < ε/2 and choose δ3,δ4 ∈ R>0 such that

δ3 ‖Q‖2 < ε3 and 2δ4 ‖Q‖ < ε4; this is clearly always possible since Q

is compact and therefore bounded by Corollary A.12378.
Because Q is compact, it admits a finite cover of open balls with

radius ε2. In other words, there is some finite set Qε2
⊆Q such that

(∀Q ∈Q)(∃Q̃ ∈Qε2
) :
∥

∥Q− Q̃
∥

∥< ε2. (5.68)

Furthermore, because Q is non-empty, bounded and convex, we know
from Lemma 5.12195 that there is some δ1 ∈ R>0 such that for all P ∈
PWM

Q
, all t ∈ R≥0, and all ∆ ∈ R≥0 such that ∆ < δ1:

(∃Q ∈Q)
∥

∥

∥
T t+∆

t − (I +∆Q)
∥

∥

∥
≤ ∆ε1. (5.69)

Now let δ := min{δ1,δ3,δ4} and consider any u ∈ U[a,b], u = t0, . . . , tn
with n ∈ Z>0, such that σ(u)< δ . Let

Cε :=
{

(

eQ̃1(s−t)
)

[t0,t1]
⊗·· ·⊗

(

eQ̃n(s−t)
)

[tn−1,tn]

∣

∣

∣
(∀i ∈ {1, . . . ,n}) Q̃i ∈Qε2

}

.

Since n and |Qε2
| are finite, Cε is clearly finite and, due to Proposi-

tion 5.10192, Cε is a subset of T Q

[a,b]. The only thing that we still need to
prove is that Cε satisfies Equation (5.67)x.

So fix any (T s
t )[a,b] ∈ T Q

[a,b]. For all i ∈ {1, . . . ,n}, since ∆u
i ≤ σ(u) <

δ ≤ δ1, it follows from Equations (5.69) and (5.68)—in that order—and
Lemma B.8394 that there are Qi ∈Q and Q̃∗i ∈Qε2

such that

∥

∥

∥
T

ti
ti−1
− eQ̃∗i ∆u

i

∥

∥

∥
≤
∥

∥T
ti

ti−1
− (I +∆u

i Qi)
∥

∥+
∥

∥∆u
i (Qi− Q̃∗i )

∥

∥+
∥

∥I +∆u
i Q̃∗i − eQ̃∗i ∆u

i

∥

∥

≤ ∆u
i ε1 +∆u

i ε2 +(∆u
i )

2 ‖Q‖2 ≤ ∆u
i (ε1 + ε2 + ε3), (5.70)

where the final inequality holds since ∆u
i ‖Q‖2 ≤ δ ‖Q‖2 ≤ δ3 ‖Q‖2 < ε3.

We now use these Q̃∗i ∈Qε2
, i ∈ {1, . . . ,n}, to define

(Ss
t )[a,b] :=

(

eQ̃∗1(s−t)
)

[t0,t1]
⊗·· ·⊗

(

eQ̃∗n(s−t)
)

[tn−1,tn]
∈ Cε .

For any i ∈ {1, . . . ,n}, it follows from Definition 4.8158 and Equa-
tion (5.70) that

∥

∥T
ti

ti−1
−S

ti
ti−1

∥

∥=
∥

∥

∥
T

ti
ti−1
− eQ̃∗i ∆u

i

∥

∥

∥
≤ ∆u

i (ε1 + ε2 + ε3) (5.71)
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and from Lemma 5.39231 that, for all t,s ∈ [ti−1, ti] such that t ≤ s,

‖T s
t −Ss

t ‖ ≤ ‖T s
t − I‖+‖Ss

t − I‖ ≤ 2(s− t)‖Q‖< ε4, (5.72)

where the final inequality holds since s−t ≤ ti−ti−1 =∆u
i ≤σ(u)≤ δ ≤ δ4

and because 2δ4 ‖Q‖< ε4.
Consider now any t,s ∈ [a,b] such that t ≤ s. We will prove that

‖T s
t −Ss

t ‖ < ε/2. If t,s ∈ [ti−1, ti] for some i ∈ {1, . . . ,n}, this follows triv-
ially from Equation (5.72). In any other case, there must be some
k, ℓ ∈ {1, . . . ,n− 1} such that k ≤ ℓ, t ∈ [tk−1, tk] and s ∈ [tℓ, tℓ+1], and we
then find that, again,

‖T s
t −Ss

t ‖=
∥

∥

∥

∥

∥

T
tk

t

(

ℓ

∏
i=k+1

T
ti

ti−1

)

T s
tℓ
−S

tk
t

(

ℓ

∏
i=k+1

S
ti
ti−1

)

Ss
tℓ

∥

∥

∥

∥

∥

≤
∥

∥T
tk

t −S
tk
t

∥

∥+
ℓ

∑
i=k+1

∥

∥T
ti

ti−1
−S

ti
ti−1

∥

∥+
∥

∥T s
tℓ
−Ss

tℓ

∥

∥

≤ 2ε4 +
ℓ

∑
i=k+1

∆u
i (ε1 + ε2 + ε3)<

ε

2
,

where the equality follows from Definition 4.6156, the first inequality
follows from Definition 4.6156 and Lemma B.5393, the second inequal-
ity follows from Equations (5.71) and (5.72), and the final inequality
holds because ∑

ℓ
i=k+1 ∆u

i = tℓ− tk ≤ b− a. Hence, in all cases, it holds
that ‖T s

t −Ss
t ‖< ε/2.

Since this is true for all t,s ∈ [a,b] such that t ≤ s, we immediately
find that

d
(

(T s
t )[a,b],(S

s
t )[a,b]

)

= sup{‖T s
t −Ss

t ‖ : t,s ∈ [a,b], t ≤ s} ≤ ε

2
< ε.

Since (T s
t )[a,b] ∈ T Q

[a,b] is arbitrary, it follows that Cε satisfies Equa-
tion (5.67)237.

Proof of Lemma 5.16196. Let Q′ denote the closed convex hull of Q.
Then, clearly, Q′ is a non-empty, bounded, closed, and convex set of
rate matrices. Since Q′ is bounded and closed, it is compact by Corol-

lary A.12378. Furthermore, since Q ⊆Q′, we know that T Q

[a,b] ⊆ T Q′
[a,b].

Because any subspace of a totally bounded metric space is itself to-
tally bounded [100, top of p.175], the result now follows trivially from
Lemma 5.40237.

Proof of Corollary 5.18197. That T is non-empty follows from the fact
that PWM

Q,M is non-empty. That its elements are transition matrices fol-

lows from the fact that, for all P ∈ PWM
Q,M , PT s

t is a transition matrix due
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to Corollary 4.4150. It therefore also follows from Lemma 3.992 that
T is bounded. To establish the compactness, it follows from Corol-
lary A.12378 that we need to show that T is also closed. So, consider
any convergent sequence {Ti}i∈Z>0

in T such that limi→+∞ Ti = T∗; we
will now show that T∗ ∈T .

As in Equation (5.9)195, let T
Q

[t,s] denote the set of restricted transi-
tion matrix systems corresponding to the elements of PWM

Q
. Because Q

is non-empty, compact, and convex, Theorem 5.17196 implies that T Q

[t,s]
is compact under the metric d defined in Equation (4.15)162. Now, for
any i ∈ Z>0, since Ti ∈T , there is some Pi ∈ PWM

Q,M such that PiT s
t = Ti. In

turn, this implies that
(

PiT b
a

)

[t,s]
∈ T Q

[t,s]. Hence, we obtain a co-sequence
{(

PiT b
a

)

[t,s]

}

i∈Z>0
in T Q

[t,s], such that limi→+∞
PiT s

t = limi→+∞ Ti = T∗.

Because T Q

[t,s] is a compact metric space, it is sequentially compact

by Proposition A.10377. Hence, we get the existence of a convergent
subsequence

{(Pi j T b
a

)

[t,s]

}

j∈Z>0
such that

lim
j→+∞

(Pi j T b
a

)

[t,s]
=:
(

Pi∗T b
a

)

[t,s]
∈ T

Q

[t,s].

Using Proposition 5.14196, this implies the existence of some Pi∗ ∈PWM
Q,M

with corresponding transition matrix Pi∗T s
t such that

lim
j→+∞

∥

∥

∥

Pi j T s
t − Pi∗T s

t

∥

∥

∥
≤ lim

j→+∞
d
(

(Pi j T b
a

)

[t,s]
,
(

Pi∗T b
a

)

[t,s]

)

= 0 ,

using the definition of the metric d in Equation (4.15)162. Since

limi→+∞ Ti = T∗, it holds that also lim j→+∞ Ti j
= T∗ which, since

Pi j T s
t = Ti j

for all j ∈ Z>0, implies that T∗ = Pi∗T s
t . Since Pi∗ ∈ PWM

Q,M it holds that
Pi∗T s

t ∈ T , from which we conclude that T∗ ∈ T , which is what we
wanted to prove. Since the convergent sequence {Ti}i∈Z>0

was arbi-
trary, Proposition A.8376 now implies that T is closed, and hence we
conclude that T is compact.

Proof of Proposition 5.19197. It is immediate from the definitions in
Equation (5.10)197 and (5.11)197 that

Q
MT

s
t ⊆ Q

T
s

t ,

so let us prove the inclusion in the other direction. To this end, fix
any T ∈ Q

T s
t ; we will show that T ∈ Q

MT s
t . By Equation (5.10)197, there

is some P∗ ∈ PW
Q

such that, for some v ∈ U<t and yv ∈X , it holds that
T = P∗T s

t,yv
.

Next, choose any P/0 ∈ PW
Q,M . By Definitions 5.6190 and 5.4189, this

implies that there is some p ∈M such that P/0(X0 = x) = p(x) for all
x ∈X .
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Because Q is non-empty, convex, and has separately specified rows,
it follows from Lemma 5.35215—with u = v∪ {t}, P/0 as chosen above
and, for all xu ∈Xu, Pxu = P∗—that there is some P ∈ PW

Q
such that, for

all x ∈X ,

P(X0 = x) = P/0(X0 = x) = p(x) , (5.73)

and, for all xu ∈Xu and all y ∈X ,

P(Xs = y |Xu = xu) = Pxu(Xs = y |Xu = xu) = P∗(Xs = y |Xu = xu) . (5.74)

Because P ∈ PW
Q

it holds that P ∼ Q. Moreover, it follows from
Equation (5.73) that P ∼M , which implies that P ∈ PW

Q,M . Because

u = v∪{t}, it follows from Definition 4.2148 and Equation (5.74) that
the history-dependent transition matrix PT s

t,yv
corresponding to P satis-

fies, for all x,y ∈X ,

PT s
t,yv

(x,y) = P(Xs = y |Xt = x,Xv = yv)

= P∗(Xs = y |Xt = x,Xv = yv) = T (x,y) ,

and hence T ∈ Q
MT s

t .

Lemma 5.41. Let Q be a non-empty, compact, and convex set of rate ma-
trices that has separately specified rows, and let M be a non-empty set of
probability mass functions on X . For any t,s ∈ R≥0 such that t < s, let
Q

MT s
t denote the set of (history-dependent) transition matrices of elements

of PW
Q,M , as in Equation (5.11)197.

Then for all ε > 0 and δ > 0, there is some v ∈ U[t,s] with v = t0, . . . , tn,
n ∈ Z>0, and σ(v)< δ , such that for all T ∈ Q

MT s
t and all x ∈X , there are

Q1, . . . ,Qn ∈Q, such that

∥

∥

∥

∥

∥

T (x, ·)−
(

n

∏
i=1

(I +∆v
i Qi)

)

(x, ·)
∥

∥

∥

∥

∥

∗
< ε .

Proof. Fix any ε > 0 and δ > 0, and let ε∗ := ε/(s−t). Because PW
Q,M ⊆ PW

Q
,

and becauseQ is non-empty, compact, convex, and has separately spec-
ified rows, we can use Lemma 5.13195 to find δ ′ ∈R>0 such that, for all
P ∈ PW

Q,M with corresponding family of history-dependent transition
matrices

(

PT s
t,xu

)

, all r ∈ R≥0, u ∈ U<r, xu ∈Xu, and ∆ ∈ R>0 such that
∆ < δ ′, it holds that

(∃Q ∈Q)
∥

∥

∥

PT r+∆
r,xu
− (I +∆Q)

∥

∥

∥
< ∆ε∗ . (5.75)

Let δ ∗ ∈ R>0 be such that δ ∗ ≤ min{δ ,δ ′} and δ ∗ ‖Q‖ ≤ 1,
let n := 1+ ⌈(s−t)/δ ∗⌉, let ∆ := (s−t)/n and, for all i ∈ {0, . . . ,n}, let
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ti := t + i∆. Then it holds that v := t0, . . . , tn ∈ U[t,s], and ∆v
i = ∆ < δ ∗

for all i ∈ {1, . . . ,n}, and hence σ(v)< δ , ∆ < δ ′, and ∆‖Q‖ ≤ 1.
Now choose any T ∈ Q

MT s
t . There must then be some P ∈ PW

Q,M with
corresponding family of history-dependent transition matrices (PT s

t,xu
),

such that, for some u ∈U<t and xu ∈Xu, it holds that
PT s

t,xu
= T .

Fix any x ∈X and, for notational convenience, let xt := x. Then, due
to Corollary 5.38231, it holds that

PT s
t,xu

(xt , ·) =
(

PT
t1

t0,xu

n

∏
i=2

PT
ti

ti−1,xu∪{t}

)

(xt , ·) .

Because P ∈ PW
Q,M , and because t1− t0 = ∆v

1 = ∆ < δ ′, it follows from

Equation (5.75)x that there is some Q1 ∈Q such that

∥

∥

PT
t1

t0,xu
− (I +∆Q1)

∥

∥< ∆ε∗ .

Similarly, for all i ∈ {2, . . . ,n}, because ti− ti−1 = ∆v
i = ∆ < δ ′, there is

some Qi ∈Q such that

∥

∥

∥

PT
ti

ti−1,xu∪{t} − (I +∆Qi)
∥

∥

∥
< ∆ε∗ .

For all i ∈ {1, . . . ,n}, because ∆‖Qi‖ ≤ ∆‖Q‖ ≤ 1, it follows from Propo-
sition 4.9153 that (I +∆Qi) is a transition matrix. Therefore, it holds
that

∥

∥

∥

∥

∥

T (x, ·)−
(

n

∏
i=1

(I +∆Qi)

)

(x, ·)
∥

∥

∥

∥

∥

∗

=

∥

∥

∥

∥

∥

PT s
t,xu

(xt , ·)−
(

n

∏
i=1

(I +∆Qi)

)

(xt , ·)
∥

∥

∥

∥

∥

∗

=

∥

∥

∥

∥

∥

(

PT
t1

t0,xu

n

∏
i=2

PT
ti

ti−1,xu∪{t}

)

(xt , ·)−
(

n

∏
i=1

(I +∆Qi)

)

(xt , ·)
∥

∥

∥

∥

∥

∗

≤
∥

∥

∥

∥

∥

PT
t1

t0,xu

n

∏
i=2

PT
ti

ti−1,xu∪{t} −
n

∏
i=1

(I +∆Qi)

∥

∥

∥

∥

∥

≤
∥

∥

PT
t1

t0,xu
− (I +∆Q1)

∥

∥+
n

∑
i=2

∥

∥

∥

PT
ti

ti−1,xu∪{t} − (I +∆Qi)
∥

∥

∥

<
n

∑
i=1

∆ε∗ = (s− t)ε∗ = ε ,

where we used Proposition A.33390 for the first inequality and
Lemma B.5393 for the second inequality.
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Lemma 5.42. Let Q be a non-empty, compact, and convex set of rate matri-
ces that has separately specified rows, and let M be a non-empty set of prob-
ability mass functions on X . For any t,s ∈ R such that t < s, let Q

MT s
t de-

note the set of (history-dependent) transition matrices of elements of PW
Q,M .

Then for all T ∈ Q
MT s

t and x ∈X , there is a Markov chain P ∈ PW
Q,M with

corresponding transition matrix PT s
t such that PT s

t (x, ·) = T (x, ·).

Proof. Fix any T ∈ Q
MT s

t . This implies the existence of some P′ ∈ PW
Q,M

such that, for some u ∈ U<t and xu ∈Xu, its history-dependent transi-

tion matrix satisfies P′T s
t,xu

= T . Now fix any x ∈X .

Choose any ε > 0, let ε∗ := ε/2(s−t), and let δ > 0 be such that δ ‖Q‖ ≤
1 and δ ‖Q‖2 < ε∗; because Q is compact and therefore bounded by
Corollary A.12378, this is always possible. Moreover, because Q is
non-empty, compact, convex, and has separately specified rows, using
Lemma 5.41241, we find that there is some v ∈ U[t,s] with v = t0, . . . , tn,
n ∈ Z>0, such that σ(v)< δ , and some Q1, . . . ,Qn ∈Q, such that

∥

∥

∥

∥

∥

P′T s
t,xu

(x, ·)−
(

n

∏
i=1

(I +∆v
i Qi)

)

(x, ·)
∥

∥

∥

∥

∥

∗
<

ε

2
. (5.76)

Because δ ‖Q‖ ≤ 1 it holds for all i ∈ {1, . . . ,n}, since ∆v
i ≤ σ(v)< δ and

‖Qi‖≤ ‖Q‖, that, by Proposition 4.9153, (I+∆v
i Qi) is a transition matrix.

Consider the restricted transition matrix system

(εT q
r )[t,s] :=

(

eQ1(q−r)
)

[t0,t1]
⊗·· ·⊗

(

eQn(q−r)
)

[tn−1,tn]
. (5.77)

Now choose any Q0 ∈Q, and consider the transition matrix system

(εT q
r ) :=

(

eQ0(q−r)
)

[0,t0]
⊗ (εT q

r )[t,s]⊗
(

eQ0(q−r)
)

[tn,+∞)
.

Then, clearly, (εT
q

r ) is the extension of (εT
q

r )[t,s] to an (unrestricted) tran-

sition matrix system, or in other words, (εT
q

r )[t,s] is the restriction of

(εT
q

r ) to the interval [t,s].

Now fix any p ∈M . Since Q0,Q1, . . . ,Qn ∈ Q, and using Proposi-
tion 5.10192, we find a Markov chain Pε ∈ PWM

Q,M with corresponding

family of transition matrices (εT
q

r ). Due to Equation (5.77), its corre-
sponding transition matrix εT s

t satisfies

εT s
t =

n

∏
i=1

eQi∆
v
i ,
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and hence
∥

∥

∥

∥

∥

εT s
t −

n

∏
i=1

(I +∆v
i Qi)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n

∏
i=1

eQi∆
v
i −

n

∏
i=1

(I +∆v
i Qi)

∥

∥

∥

∥

∥

≤
n

∑
i=1

∥

∥

∥
eQi∆

v
i − (I +∆v

i Qi)
∥

∥

∥

≤
n

∑
i=1

(∆v
i )

2 ‖Qi‖2

≤
n

∑
i=1

∆v
i δ ‖Q‖2

<
n

∑
i=1

∆v
i ε∗

= (s− t)ε∗ =
ε

2
, (5.78)

where the first inequality follows from Lemma B.5393, which we can
use because all matrices involved are transition matrices; the second
inequality follows from Lemma B.8394; the third inequality follows be-
cause ∆v

i ≤σ(v)< δ and ‖Qi‖≤‖Q‖ for all i∈{1, . . . ,n}; the last inequal-
ity follows because δ ‖Q‖2 < ε∗; and the last equality follows because
ε∗ = ε/2(s−t).

Moreover, it now holds that

‖T (x, ·)− εT s
t (x, ·)‖∗ =

∥

∥

∥

P′T s
t,xu

(x, ·)− εT s
t (x, ·)

∥

∥

∥

∗

≤
∥

∥

∥

∥

∥

P′T s
t,xu

(x, ·)−
(

n

∏
i=1

(I +∆v
i Qi)

)

(x, ·)
∥

∥

∥

∥

∥

∗

+

∥

∥

∥

∥

∥

(

n

∏
i=1

(I +∆v
i Qi)

)

(x, ·)− εT s
t (x, ·)

∥

∥

∥

∥

∥

∗

<
ε

2
+

∥

∥

∥

∥

∥

(

n

∏
i=1

(I +∆v
i Qi)

)

(x, ·)− εT s
t (x, ·)

∥

∥

∥

∥

∥

∗

≤ ε

2
+

∥

∥

∥

∥

∥

n

∏
i=1

(I +∆v
i Qi)− εT s

t

∥

∥

∥

∥

∥

<
ε

2
+

ε

2
= ε ,

where the second inequality follows from Equation (5.76)x, the third
inequality follows from Equation (2.7)63, and the final inequality fol-
lows from Equation (5.78).
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Now, consider a sequence {εi}i∈Z>0
→ 0+ and, for all i ∈ Z>0, re-

peat the above construction to find a restricted transitionmatrix system
(εiT

q
r )[t,s] whose corresponding transition matrix εiT s

t satisfies

‖T (x, ·)− εiT s
t (x, ·)‖∗ < εi. (5.79)

Then because, as we have seen above, each of these (εiT
q

r )[t,s] is the

restriction of a family (εiT
q

r ) of transition matrices corresponding to
a Markov chain Pεi

∈ PWM
Q,M , it follows from Equation (5.9)195 that

(εiT
q

r )[t,s] ∈ T Q

[t,s] for all i ∈ Z>0.

Because Q is non-empty, compact, and convex, it follows from
Theorem 5.17196 that T Q

[t,s] is compact under the metric d defined

in Equation (4.15)162. Therefore, the sequence
{

(εiT
q

r )[t,s]
}

i∈Z>0
has

a convergent subsequence
{

(εik T
q

r )[t,s]
}

k∈Z>0
, whose limit (εi∗T

q
r )[t,s] :=

limk→+∞ (εik T
q

r )[t,s] also belongs to T Q

[t,s]. Because (εi∗T
q

r )[t,s] ∈ T Q

[t,s], it fol-

lows from Equation (5.9)195 and Proposition 5.14196 that there is some
Markov chain P ∈ PWM

Q,M ⊆ PW
Q,M with corresponding family of transi-

tion matrices (PT
q

r ) such that (PT
q

r )[t,s] = (εi∗T
q

r )[t,s], and hence in partic-

ular its corresponding transition matrix satisfies PT s
t = εi∗T s

t .
It remains to show that PT s

t (x, ·) = T (x, ·). To this end, fix any ε > 0.
Because {εi}i∈Z>0

→ 0+, and because (εi∗T
q

r )[t,s] := limk→+∞ (εik T
q

r )[t,s],
there is some n ∈ Z>0 such that, for all k > n, it holds that εik < ε/2 and

d
(

(εi∗T q
r )[t,s],(

εik T q
r )[t,s]

)

<
ε

2
.

For any k > n it then holds that
∥

∥T (x, ·)− PT s
t (x, ·)

∥

∥

∗ = ‖T (x, ·)−
εi∗T s

t (x, ·)‖∗
≤
∥

∥T (x, ·)− εik T s
t (x, ·)

∥

∥

∗+
∥

∥

εik T s
t (x, ·)− εi∗T s

t (x, ·)
∥

∥

∗
≤ εik +

∥

∥

εik T s
t − εi∗T s

t

∥

∥

≤ εik +d
(

(εi∗T q
r )[t,s],(

εik T q
r )[t,s]

)

<
ε

2
+

ε

2
= ε ,

where for the second inequality we used Equation (5.79) and Propo-
sition A.33390. Since the ε > 0 is arbitrary, this means that
∥

∥T (x, ·)− PT s
t (x, ·)

∥

∥

∗ = 0, or in other words, that T (x, ·) = PT s
t (x, ·).

Proof of Proposition 5.20197. It trivially follows from Equation (5.11)197
that

{

PT s
t

∣

∣P ∈ PW
Q,M

}

⊆ Q
MT s

t , so it suffices to prove the inclusion in the
other direction. If t = s then for all P ∈ PW

Q,M it follows from Proposi-

tion 4.2149 that PT s
t = I = PT s

t,xu
for all u ∈ U<t and xu ∈Xu, whence in

that case the result is trivial. So, for the remainder of this proof, let us
suppose that t < s.
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Now, fix any T ∈ Q
MT s

t ; we will show that T ∈
{

PT s
t

∣

∣P ∈ PW
Q,M

}

. Be-
cause Q is non-empty, compact, convex, and has separately specified
rows, it follows from Lemma 5.42243 and the fact that t < s that for all
x∈X there is a Markov chain Px ∈ PW

Q,M with corresponding transition

matrix PxT s
t such that PxT s

t (x, ·) = T (x, ·). For all y ∈X it therefore holds
that

Px(Xs = y |Xt = x) = PxT s
t (x,y) = T (x,y) .

Because Q is non-empty, convex, and has separately specified rows,
and due to Theorem 5.11193—with u = {t} and P/0 ∈ PW

Q,M chosen

arbitrarily—there is some P∗ ∈ PW
Q,M such that, for all x,y ∈X ,

P∗(Xs = y |Xt = x) = Px(Xs = y |Xt = x) .

Hence the transition matrix P∗T s
t of P∗ satisfies P∗T s

t (x, ·) = PxT s
t (x, ·) =

T (x, ·) for all x ∈X , which implies that P∗T s
t = T . It follows that T ∈

{

PT s
t

∣

∣P ∈ PW
Q,M

}

because P∗ ∈ PW
Q,M .

Lemma 5.43. Let Q be a non-empty, compact, and convex set of rate matri-
ces that has separately specified rows, and let M be a non-empty set of prob-
ability mass functions on X . For any t,s ∈ R such that t < s, let Q

MT s
t de-

note the set of (history-dependent) transition matrices of elements of PW
Q,M .

Then Q
MT s

t has separately specified rows.

Proof. For any x ∈ X , let Tx denote the set of x-rows of elements of
Q

MT s
t . Let T be any matrix such that, for all x ∈X , T (x, ·) ∈ Tx. We

need to show that T ∈ Q
MT s

t .
Now first fix any x ∈X . Because T (x, ·) ∈Tx, there is some S ∈ Q

MT s
t

such that S(x, ·) = T (x, ·). Because Q is non-empty, compact, convex and
has separately specified rows, due to Lemma 5.42243, this implies the
existence of a Markov chain Px ∈ PWM

Q,M ⊆ PW
Q,M whose corresponding

transition matrix satisfies PxT s
t (x, ·) = S(x, ·). For all y ∈X it therefore

holds that

Px(Xs = y |Xt = x) = PxT s
t (x,y) = S(x,y) = T (x,y) .

Because Q is non-empty, convex, and has separately specified rows,
and due to Theorem 5.11193—with u = {t} and P/0 ∈ PW

Q,M chosen

arbitrarily—there is some P ∈ PW
Q,M such that, for all x,y ∈X ,

P(Xs = y |Xt = x) = Px(Xs = y |Xt = x) .

Hence the transition matrix PT s
t of P satisfies PT s

t (x, ·) = PxT s
t (x, ·) =

T (x, ·) for all x ∈X , which implies that PT s
t = T . Hence it follows that

T = PT s
t ∈ Q

MT s
t because P ∈ PW

Q,M .
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Lemma 5.44. Let Q be a non-empty, compact, and convex set of rate ma-
trices that has separately specified rows, and let M be a non-empty set of
probability mass functions on X . For any t,s ∈ R such that t < s, let Q

MT s
t

denote the set of (history-dependent) transition matrices of elements of PW
Q
.

For any x ∈X , let

Tx :=
{

T (x, ·)
∣

∣

∣
T ∈ Q

MT
s

t

}

denote the set of x-rows of elements of Q
MT s

t . Then Tx is closed.

Proof. Fix any x ∈ X , and consider any convergent sequence
{

Ti(x, ·)
}

i∈Z>0
in Tx such that limi→+∞ Ti(x, ·) = T (x, ·). We need to show

that T (x, ·) ∈Tx.
For all i ∈ Z>0, because Ti(x, ·) ∈ Tx, there is some Ti ∈ Q

MT s
t whose

x-row is Ti(x, ·). Because Q is non-empty, compact, convex, and has
separately specified rows, due to Lemma 5.42243, there is some Markov
chain Pi ∈ PWM

Q,M ⊆ PW
Q,M with corresponding transition matrix PiT s

t such

that PiT s
t (x, ·) = Ti(x, ·).

Let T :=
{

PT s
t : P ∈ PWM

Q,M

}

be the set of transition matrices induced

by the set of Markov chains PWM
Q,M . Then the sequence {PiT s

t }i∈Z>0
is in

T . Moreover, because Q is non-empty, compact, and convex, it follows
from Corollary 5.18197 that T is compact. Hence by Corollary A.12378
T is sequentially compact, which implies that there is a convergent

subsequence {Pi j T s
t } j∈Z>0

with limit T∗ := lim j→+∞
Pi j T s

t that satisfies T∗ ∈
T . This implies the existence of a Markov chain P∗ ∈ PWM

Q,M such that
P∗T s

t = T∗.
Because limi→+∞ Ti(x, ·) = T (x, ·) it holds that also lim j→+∞ Ti j

(x, ·) =
T (x, ·). Fix any ε > 0. Because also lim j→+∞

Pi j T s
t = P∗T s

t , there is some
n ∈ Z>0 such that, for all j > n, it holds that

∥

∥Ti j
(x, ·)−T (x, ·)

∥

∥

∗ <
ε

2
and

∥

∥

∥

Pi j T s
t − P∗T s

t

∥

∥

∥
<

ε

2
. (5.80)

Now fix any j > n. Then it holds that

∥

∥T (x, ·)− P∗T s
t (x, ·)

∥

∥

∗ ≤
∥

∥T (x, ·)−Ti j
(x, ·)

∥

∥

∗+
∥

∥Ti j
(x, ·)− P∗T s

t (x, ·)
∥

∥

∗

<
ε

2
+
∥

∥

∥

Pi j T s
t (x, ·)− P∗T s

t (x, ·)
∥

∥

∥

∗

≤ ε

2
+
∥

∥

∥

Pi j T s
t − P∗T s

t

∥

∥

∥
< ε ,

where for the second inequality we used Equation (5.80) and

that Ti j
(x, ·) =

Pi j T s
t (x, ·), for the third inequality we used Proposi-

tion A.33390, and for the final inequality we used Equation (5.80). Be-
cause ε > 0 is arbitrary, this implies that

∥

∥T (x, ·)− P∗T s
t (x, ·)

∥

∥

∗ = 0, or
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equivalently, that T (x, ·) = P∗T s
t (x, ·). Because P∗ ∈ PWM

Q,M ⊆ PW
Q,M it holds

that P∗T s
t ∈ Q

MT s
t , and hence it follows that T (x, ·) = P∗T s

t (x, ·) ∈Tx.

Lemma 5.45 ([101, Lemma 1]). Let M be a non-empty convex set of prob-
ability mass functions on X and let T be a non-empty and convex set of
transition matrices that has separately specified rows. Then the element-
wise product

MT :=

{

∑
x∈X

p(x)T (x, ·)
∣

∣

∣
p ∈M , T ∈T

}

is a non-empty and convex set of probability mass functions on X .

Lemma 5.46. For any n ∈ Z>0, let T1, . . . ,Tn be non-empty and closed sets
of transition matrices. Then their elementwise composition,

T :=

{

n

∏
i=1

Ti

∣

∣

∣
∀i ∈ {1, . . . ,n} : Ti ∈Ti

}

,

is a non-empty and closed set of transition matrices.

Proof. That T is non-empty follows trivially from the fact that Ti is
non-empty for all i∈{1, . . . ,n}. That its elements are transitionmatrices
follows from Proposition 3.891. To establish the closure, let {Tk}k∈Z>0

be a sequence in T such that limk→+∞ Tk = T . We need to show that
T ∈T .

To this end, first consider any k ∈ Z≥0. Then there are T
(k)

1 , . . . ,T
(k)

n

such that T
(k)

i ∈Ti for all i ∈ {1, . . . ,n}, and such that Tk = ∏
n
i=1 T

(k)
i .

Now, fix any i∈{1, . . . ,n}. Due to Lemma 3.992 it holds that ‖Ti‖= 1,
whenceTi is bounded. BecauseTi is also closed, Ti is sequentially com-
pact by Corollary A.12378. Hence, the sequence

{

T
(k)

i

}

k∈Z≥0
contains a

convergent subsequence whose limit T ∗i is also in Ti. Let us assume
without loss of generality that in fact T ∗i = limk→+∞ T

(k)
i ; simply remove

the indices that do not correspond to the subsequence.

By repeating the above for all i ∈ {1, . . . ,n}, each time taking subse-
quences of the previous (sub)sequence, we find the matrices T ∗1 , . . . ,T

∗
n ,

and T ∗ := ∏
n
i=1 T ∗i is an element of T . As we are about to show, it holds

that T ∗ = T . To this end, fix any ε > 0.

Then, because limk→+∞ Tk = T , there is some m ∈ Z>0 such that
‖Tk−T‖< ε/2 for all k > m. Moreover, for all i ∈ {1, . . . ,n}, there is some
mi ∈ Z≥0 such that ‖T (k)

i −T ∗i ‖ < ε/2n for all k > mi. Now let k ∈ Z>0 be
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such that k > m and k > maxi=1,...,n mi. Then it holds that

‖T −T ∗‖ ≤ ‖T −Tk‖+‖Tk−T∗‖

= ‖T −Tk‖+
∥

∥

∥

∥

∥

n

∏
i=1

T
(k)

i −
n

∏
i=1

T ∗i

∥

∥

∥

∥

∥

≤ ‖T −Tk‖+
n

∑
i=1

∥

∥

∥
T
(k)

i −T ∗i

∥

∥

∥

<
ε

2
+

n

∑
i=1

ε

2n
= ε ,

where we used Lemma B.5393 for the second inequality. Because ε > 0 is
arbitrary, we conclude that ‖T −T ∗‖= 0, or in other words, that T = T ∗.
Hence T ∈T , whence T is closed.

Lemma 5.47. Let Q be a non-empty, compact, and convex set of rate matri-
ces that has separately specified rows, and let M be a non-empty set of prob-
ability mass functions onX . For any t,s∈R such that t < s, let Q

MT s
t denote

the set of (history-dependent) transition matrices of elements of PW
Q,M . For

any x ∈X , let

Tx :=
{

T (x, ·)
∣

∣

∣
T ∈ Q

MT
s

t

}

denote the set of x-rows of elements of Q
MT s

t . Then Tx is convex.

Proof. The proof works by constructing a set Mε such that
limε→0+ Mε = Tx, and such that Mε is convex for all ε > 0. Since,
as we will show, convexity is preserved in the limit, the result follows.

So, first fix any ε > 0, let ε∗ := ε/2(s−t), and let δ > 0 be such

that δ ‖Q‖ ≤ 1 and δ ‖Q‖2 < ε∗; because Q is compact and there-
fore bounded by Corollary A.12378, this is always possible. Because
Q is non-empty, compact, convex, and has separately specified rows,
Lemma 5.41241 then implies that there is some v ∈ U[t,s] with v =
t0, . . . , tn, n ∈ Z>0 and σ(v) < δ , such that for all T ∈ Q

MT s
t there are

Q1, . . . ,Qn ∈Q such that

∥

∥

∥

∥

∥

T (x, ·)−
(

n

∏
i=1

(I +∆v
i Qi)

)

(x, ·)
∥

∥

∥

∥

∥

∗
<

ε

2
. (5.81)

Now, with v ∈U[t,s] as above, for all i ∈ {1, . . . ,n}, let

Ti :=
{

(I +∆v
i Q)

∣

∣Q ∈Q
}

.

Then, because ∆v
i ≤ σ(v)< δ and because δ ‖Q‖ ≤ 1, it holds that ∆v

i Q≤
δ ‖Q‖ ≤ 1, and so it follows from Proposition 4.9153 that Ti is a set of
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transition matrices. Also note that, clearly, Ti is non-empty because Q

is non-empty. Moreover, because Q is convex, it is easy to see that Ti is
convex. Similarly, because Q is closed, also Ti is closed; and because Q

has separately specified rows, also Ti has separately specified rows.
Now, let M1 := {T (x, ·) |T ∈ T1} denote the set of x-rows of the el-

ements of T1. Then, because T1 is convex, clearly also M1 is convex.
Moreover, because the elements of T1 are transition matrices, it follows
that the elements of M1 are probability mass functions on X . Now, for
all i ∈ {2, . . . ,n}, let

Mi :=

{

∑
y∈X

p(y)T (y, ·)
∣

∣ p ∈Mi−1, T ∈Ti

}

.

Then, because each Ti is a non-empty and convex set of transition ma-
trices that has separately specified rows, and because M1 is a non-
empty and convex set of probability mass functions on X , it follows
from Lemma 5.45248 and induction on i that, for all i ∈ {1, . . . ,n}, Mi is
a non-empty and convex set of probability mass functions on X .

Let us also note that

Mn =

{(

n

∏
i=1

Ti

)

(x, ·)
∣

∣

∣
Ti ∈Ti for all i ∈ {1, . . . ,n}

}

=

{(

n

∏
i=1

(I +∆v
i Qi)

)

(x, ·)
∣

∣

∣
Q1, . . . ,Qn ∈Q

}

, (5.82)

and therefore, using this first equality, and since Ti is closed for all
i ∈ {1, . . . ,n}, we conclude from Lemmas 3.46137 and 5.46248 that Mn is
also closed.

To complete the construction, let Mε := Mn. We will now set out
to prove that Mε converges to Tx as we take ε to zero. The notion
of convergence that we use is with respect to the (Pompeiu-)Hausdorff
distance [89, Section 4.C] dH between two sets,

dH (Mε ,Tx) := sup
p∈Mε∪Tx

|dMε (p)−dTx
(p)| , (5.83)

where, for all p ∈Mε ∪Tx,

dMε (p) := inf
q∈Mε

‖p−q‖∗ and dTx
(p) := inf

q∈Tx

‖p−q‖∗ .

It is well-known (and easy to see) that we can also write

dH (Mε ,Tx) = max

{

sup
p∈Mε

dTx
(p), sup

p∈Tx

dMε (p)

}

,
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which will be a more convenient expression for our purposes. Because
Q is non-empty, compact, convex, and has separately specified rows,
Tx is closed due to Lemma 5.44247. Moreover, as we have seen above,
Mε is also closed, and clearly both Tx and Mε are non-empty. Hence
by [89, Section 4.C], dH is a metric on these sets, and we can consider
the convergence of limε→0+ Mε with respect to dH . To this end, we will
show that

dH (Mε ,Tx)< ε ,

from which it will follow that limε→0+ Mε = Tx with respect
to dH . In order to establish this inequality, let us first show that
supT (x,·)∈Tx

dMε

(

T (x, ·)
)

< ε .
To this end, fix any T (x, ·) ∈ Tx. There are then Q1, . . . ,Qn ∈Q satis-

fying Equation (5.81)249. Due to Equation (5.82), there is some corre-
sponding

p :=

(

n

∏
i=1

(I +∆v
i Qi)

)

(x, ·) ∈Mε ,

and hence

dMε

(

T (x, ·)
)

= inf
q∈Mε

‖T (x, ·)−q‖∗

≤ ‖T (x, ·)− p‖∗

=

∥

∥

∥

∥

∥

T (x, ·)−
(

n

∏
i=1

(I +∆v
i Qi)

)

(x, ·)
∥

∥

∥

∥

∥

∗
<

ε

2
.

Because the T (x, ·) ∈Tx is arbitrary, this implies that

sup
T (x,·)∈Tx

dMε

(

T (x, ·)
)

≤ ε

2
< ε .

Now for the other direction, choose any p ∈Mε . Then there are
Q1, . . . ,Qn ∈Q such that

p =

(

n

∏
i=1

(I +∆v
i Qi)

)

(x, ·) .

Consider the restricted transition matrix system

(T q
r )[t,s] :=

(

eQ1(q−r)
)

[t0,t1]
⊗·· ·⊗

(

eQn(q−r)
)

[tn−1,tn]
.

Choose an arbitrary Q0 ∈Q, and consider the transition matrix system

(T q
r ) :=

(

eQ0(q−r)
)

[0,t]
⊗ (T q

r )[t,s]⊗
(

eQ0(q−r)
)

[s,+∞)
.
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Then, because Q0,Q1, . . . ,Qn ∈Q, it follows from Proposition 5.10192—
with the initial distribution chosen arbitrarily inM—that there is some
Markov chain P ∈ PWM

Q,M with corresponding family of transition matri-

ces (T q
r ). Hence in particular, its corresponding transition matrix T s

t

satisfies

T s
t =

n

∏
i=1

eQi∆
v
i .

Moreover, because P∈PWM
Q,M ⊆PW

Q,M , it follows from Equation (5.11)197
that T s

t ∈ Q
MT s

t , and hence in particular, that T s
t (x, ·) ∈ Tx. We now find

that

dTx
(p) = inf

q∈Tx

‖p−q‖∗ ≤ ‖p−T s
t (x, ·)‖∗

=

∥

∥

∥

∥

∥

(

n

∏
i=1

(I +∆v
i Qi)

)

(x, ·)−
(

n

∏
i=1

eQi∆
v
i

)

(x, ·)
∥

∥

∥

∥

∥

∗

≤
∥

∥

∥

∥

∥

n

∏
i=1

(I +∆v
i Qi)−

n

∏
i=1

eQi∆
v
i

∥

∥

∥

∥

∥

≤
n

∑
i=1

∥

∥

∥
(I +∆v

i Qi)− eQi∆
v
i

∥

∥

∥

≤
n

∑
i=1

(∆v
i )

2 ‖Qi‖2

<
n

∑
i=1

∆v
i δ ‖Q‖2

= (s− t)δ ‖Q‖2 < (s− t)ε∗ = (s− t)
ε

2(s− t)
=

ε

2
,

where the second inequality follows from Proposition A.33390; the
third inequality follows from Lemma B.5393, which we can use be-
cause as established towards the beginning of this proof, all matrices
involved are transition matrices; the fourth inequality follows from
Lemma B.8394; the fifth inequality follows because ∆v

i ≤ σ(v) < δ and
‖Qi‖≤ ‖Q‖ for all i∈ {1, . . . ,n}; and the final inequality follows because

δ ‖Q‖2 < ε∗. Because p ∈Mε is arbitrary, this implies that

sup
p∈Mε

dTx
(p)≤ ε

2
< ε ,

and hence we conclude that, indeed,

dH

(

Mε ,Tx

)

< ε ,

which, since ε > 0 is arbitrary, implies the convergence limε→0+ Mε =Tx

with respect to dH .
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As both Tx and Mε are non-empty sets of probability mass func-
tions, these sets are bounded, whence the convergence with respect
to dH is equivalent to set-convergence in the Painlevé-Kuratowski
sense [89, Section 4.B-4.C]. Because the limit of a sequence of convex
sets that converges in the Painlevé-Kuratowski sense is itself a convex
set [89, Proposition 4.15], and because, as we have seen above, Mε is
convex for any ε > 0, it follows that limε→0+ Mε =Tx is also convex.

Proof of Theorem 5.21198. That Q
MT s

t is non-empty is an immediate con-
sequence of the fact that PW

Q,M is non-empty.

If t = s then for all P ∈ PW
Q,M it follows from Proposition 4.2149 that

PT s
t,xu

= I for all u∈U<t and xu ∈Xu, whence in that case Q
MT s

t = {I}, and
the result is then trivial because the singleton set {I} is clearly closed,
convex, and has separately specified rows.

Conversely, suppose that t < s. That Q
MT s

t is closed, con-
vex, and has separately specified rows then follows from Lem-
mas 3.46137, 5.43246, 5.44247, and 5.47249.

5.E Proofs of Results in Section 5.4

Proof of Lemma 5.27203. Fix any ε > 0. Then due to Propositions 5.25201
and 5.24201, and the properties of the infimum, there is some P ∈ PW

Q,M

with corresponding transition matrix PT s
t such that

PT s
t f (xt)< EW

Q,M [ f (Xs) |Xt = xt ]+ ε . (5.84)

This transition matrix PT s
t is an element of the set Q

MT s
t defined in

Equation (5.11)197. Because Q is non-empty, compact, convex, and has
separately specified rows, it follows from Lemma 5.42243 that there is

a Markov chain P′ ∈ PW
Q,M with corresponding transition matrix P′T s

t

such that P′T s
t (xt , ·) = PT s

t (xt , ·). Hence it follows that also

P′T s
t f (xt) =

PT s
t f (xt) . (5.85)

Because P′ ∈ PW
Q,M is a Markov chain, it follows that P′ ∈ PWM

Q,M ⊆
PW

Q,M due to Proposition 5.9190. Hence, by using Proposition 5.25201
we obtain

EWM
Q,M [ f (Xs) |Xt = xt ] = inf

P∗∈PWM
Q,M

P∗T s
t f (xt)

≤ P′T s
t f (xt)

= PT s
t f (xt)< EW

Q,M [ f (Xs) |Xt = xt ]+ ε ,
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where we used Equation (5.85)x for the second equality and Equa-
tion (5.84)x for the last inequality. Because ε > 0 is arbitrary, we con-
clude that

EWM
Q,M [ f (Xs) |Xt = xt ]≤ EW

Q,M [ f (Xs) |Xt = xt ] .

However, we already know from Proposition 5.22199 that
EW

Q,M [ f (Xs) |Xt = xt ] ≤ EWM
Q,M [ f (Xs) |Xt = xt ], whence the equality fol-

lows.

Proof of Proposition 5.28203. We will start by proving that
EW

Q,M [ f (Xs) |Xt = xt ,Xu = xu] ≥ EW
Q,M [ f (Xs) |Xt = xt ]. To this end, first

note that
{

PT s
t,xu

∣

∣

∣
P ∈ PW

Q,M

}

⊆
{

PT s
t,yv

∣

∣

∣
P ∈ PW

Q,M , v ∈U<t , yv ∈Xv

}

= Q
MT

s
t ,

(5.86)
with Q

MT s
t as defined in Equation (5.11)197. Hence it follows from

Proposition 5.25201 that

EW
Q,M [ f (Xs) |Xt = xt ,Xu = xu]

= inf
P∈PW

Q,M

PT s
t,xu

f (xt)

≥ inf
{

PT s
t,yv

f (xt)
∣

∣

∣
P ∈ PW

Q,M , v ∈U<t , yv ∈Xv

}

= inf
{

PT s
t f (xt)

∣

∣

∣
P ∈ PW

Q,M

}

= EW
Q,M [ f (Xs) |Xt = xt ] ,

where the inequality follows from Equation (5.86), the second equal-
ity follows from Proposition 5.20197 and the fact that Q is non-empty,
compact, convex, and has separately specified rows, and the final
equality again follows from Proposition 5.25201. Using this inequality,
the remainder of this proof is now straightforward.

Because Q is non-empty, compact, convex, and has separately spec-
ified rows, we can use Lemma 5.27203 to find

EW
Q,M [ f (Xs) |Xt = xt ] = EWM

Q,M [ f (Xs) |Xt = xt ]

= EWM
Q,M [ f (Xs) |Xt = xt ,Xu = xu]

≥ EW
Q,M [ f (Xs) |Xt = xt ,Xu = xu]

≥ EW
Q,M [ f (Xs) |Xt = xt ] ,

where the second equality follows from Proposition 5.26202, the first
inequality follows from Proposition 5.22199, and the second inequality
was derived in the first part of this proof.
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Proof of Proposition 5.30204. Fix any x ∈X . Then it holds by Proposi-
tion 5.25201 that

EW
Q,M [ f (Xs) |Xt = x] = inf

P∈PW
Q,M

PT s
t f (x) = inf

T∈ Q
M

T s
t

T f (x) ,

where the second equality follows from Proposition 5.20197 and the
fact that Q is non-empty, compact, convex, and has separately specified
rows. Due to these same properties, it follows from Theorem 5.21198
that Q

MT s
t is non-empty, closed, convex, and has separately specified

rows. It therefore follows from Lemma 3.46137 that the set of x-rows
Tx :=

{

T (x, ·) |T ∈ Q
MT s

t

}

of Q
MT s

t is also closed. This implies that for all
x ∈X there is some Tx(x, ·) ∈Tx such that

inf
T∈ Q

M
T s

t

T f (x) = inf
T (x,·)∈Tx

∑
y∈X

T (x,y) f (y) = ∑
y∈X

Tx(x,y) f (y) .

Because this is true for all x∈X , and because Q
MT s

t has separately spec-
ified rows, it follows that there is some T∗ ∈ Q

MT s
t such that T∗(x, ·) =

Tx(x, ·) for all x ∈X . For all x ∈X this matrix T∗ then satisfies

T∗ f (x) = ∑
y∈X

T∗(x,y) f (y) = ∑
y∈X

Tx(x,y) f (y) = inf
T∈ Q

M
T s

t

T f (x) ,

and hence

T∗ f (x) = inf
T∈ Q

M
T s

t

T f (x) = EW
Q,M [ f (Xs) |Xt = x] .

Moreover, because T∗ ∈ Q
MT s

t and Q
MT s

t =
{

PT s
t

∣

∣P ∈ PW
Q,M

}

due to

Proposition 5.20197, it follows that there is some P ∈ PW
Q,M with cor-

responding transition matrix PT s
t = T∗. Hence it follows from Corol-

lary 4.4150 that

EW
Q,M [ f (Xs) |Xt = x] = T∗ f (x) = PT s

t f (x) = EP[ f (Xs) |Xt = x] .

Therefore, and because Q is non-empty, compact, convex, and has sep-
arately specified rows, it follows from Proposition 5.28203 that for all
u ∈U<t , all x ∈Xt , and all xu ∈Xu, it holds that

EW
Q,M [ f (Xs) |Xt = x,Xu = xu] = EW

Q,M [ f (Xs) |Xt = x] = EP[ f (Xs) |Xt = x] ,

which concludes the proof.

Proof of Theorem 5.32208. Let g ∈ L (Xu∪v) be defined, for all yu∪v ∈
Xu∪v, as

g(yu∪v) := EW
Q,M [ f (Xu∪v∪w)|Xu∪v = yu∪v] .
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Then it follows from Definition 5.8198 that for all P ∈ PW
Q,M and all

yu∪v ∈Xu∪v, it holds that

g(yu∪v) = EW
Q,M [ f (Xu∪v∪w)|Xu∪v = yu∪v]≤ EP [ f (Xu∪v∪w)|Xu∪v = yu∪v] .

(5.87)
For any P ∈ PW

Q,M , it now follows from Proposition 5.31208 that

EP [ f (Xu∪v∪w)|Xu = xu]

= EP

[

EP[ f (Xu∪v∪w) |Xu∪v]
∣

∣Xu = xu

]

= ∑
yu∪v∈Xu∪v

EP[ f (Xu∪v∪w) |Xu∪v = yu∪v]P(Xu∪v = yu∪v |Xu = xu)

≥ ∑
yu∪v∈Xu∪v

g(yu∪v)P(Xu∪v = yu∪v |Xu = xu)

= EP

[

g(Xu∪v)|Xu = xu

]

≥ EW
Q,M

[

g(Xu∪v)|Xu = xu

]

,

where the second equality used Proposition 2.2373, the first inequality
used Equation (5.87), the third equality used Proposition 2.2373, and
the final inequality used Definition 5.8198.

Since this holds for all P ∈ PW
Q,M , this implies that

EW
Q,M [ f (Xu∪v∪w)|Xu = xu]≥ EW

Q,M

[

g(Xu∪v)|Xu = xu

]

. (5.88)

Now fix any ε ∈ R>0. Then due to Definition 5.8198 and Proposi-
tion 5.24201, there is some P/0 ∈ PW

Q,M such that

EP/0

[

g(Xu∪v)|Xu = xu

]

< EW
Q,M

[

g(Xu∪v)
∣

∣Xu = xu

]

+
ε

2
. (5.89)

Moreover, it follows from Proposition 2.2575 and the fact that u < v,
that

EP/0

[

g(xu,Xv)|Xu = xu

]

= EP/0

[

g(Xu∪v)|Xu = xu

]

,

and hence it follows from Equation (5.89) that

EP/0

[

g(Xu∪v)|Xu = xu

]

< EW
Q,M

[

g(Xu∪v)
∣

∣Xu = xu

]

+
ε

2
. (5.90)

Similarly, for all xv ∈Xv, and due to Proposition 5.24201, there is some
Pxv ∈ PW

Q,M such that

EPxv
[ f (Xu∪v∪w)|Xu∪v = xu∪v]< EW

Q,M [ f (Xu∪v∪w)|Xu∪v = xu∪v]+
ε

2

= g(xu∪v)+
ε

2
. (5.91)
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5.E Proofs of Results in Section 5.4

Now, for all yu∪v ∈Xu∪v, let Pyu∪v
:= Pyv . Since Q is non-empty, convex,

and has separately specified rows, Theorem 5.11193 now implies the
existence of a process P ∈ PW

Q,M such that for all yu∪v ∈Xu∪v and xw ∈
Xw:

P(Xv = yv |Xu = yu) = P/0(Xv = yv |Xu = yu)
and

P(Xw = xw |Xu∪v = yu∪v) = Pyu∪v(Xw = xw |Xu∪v = yu∪v)

= Pyv(Xw = xw |Xu∪v = yu∪v) .

Hence in particular, due to Equation (5.90) and Proposition 2.2373, this
P satisfies

EP[g(xu,Xv)|Xu = xu] =EP/0
[g(xu,Xv)|Xu = xu]<EW

Q,M

[

g(Xu∪v)
∣

∣Xu = xu

]

+
ε

2

and, for all xv ∈Xv, due to Propositions 2.2575 and 2.2373,

EP[ f (Xu∪v∪w)|Xu∪v = xu∪v] = EP[ f (xu∪v,Xw)|Xu∪v = xu∪v]

= EPxv
[ f (xu∪v,Xw)|Xu∪v = xu∪v]

= EPxv
[ f (Xu∪v∪w)|Xu∪v = xu∪v]< g(xu∪v)+

ε

2
,

where we used Equation (5.91) for the final inequality.
Hence it follows from Properties CE478 and CE679 that

EP

[

EP [ f (Xu∪v∪w)|xu,Xv] |Xu = xu

]

≤ EP

[

g(xu,Xv)
∣

∣Xu = xu

]

+
ε

2

< EW
Q,M

[

g(Xu∪v)
∣

∣Xu = xu

]

+ ε.

Since ε is arbitrary, and because

EP

[

EP [ f (Xu∪v∪w)|xu,Xv] |Xu = xu

]

= EP

[

EP [ f (Xu∪v∪w)|Xu∪v] |Xu = xu

]

= EP [ f (Xu∪v∪w)|Xu = xu]

≥ EW
Q,M [ f (Xu∪v∪w)|Xu = xu] ,

where the first equality used Proposition 2.2575, the second equality
used Proposition 5.31208, and the inequality used Definition 5.8198, this
implies that EW

Q,M [ f (Xu∪v∪w)|Xu = xu]≤EW
Q,M

[

g(Xu∪v)
∣

∣Xu = xu

]

. Hence,
and because of Equation (5.88), we find that

EW
Q,M [ f (Xu∪v∪w)|Xu = xu] = EW

Q,M

[

g(Xu∪v)
∣

∣Xu = xu

]

.

The result now follows because g(Xu∪v) = EW
Q,M [ f (Xu∪v∪w)|Xu∪v].
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6

Lower Transition Operators for

Continuous-Time

Imprecise-Markov Chains

“It’s dangerous to go alone! Take this.”

The Legend of Zelda

When we discussed discrete-time imprecise-Markov chains in
Chapter 383, we also considered the corresponding lower transition op-
erators. We saw how these operators generalise the transition matrices
corresponding to (precise) stochastic processes, and how they can be
used to represent the (conditional) lower expectations for these impre-
cise models. It is the aim of this chapter to also introduce lower transi-
tion operators for continuous-time imprecise-Markov chains.

To this end, we will start in Section 6.1y by defining them di-
rectly using the lower expectations for these models. The remainder
of this chapter is dedicated to deriving an alternative characterisa-
tion of such lower transition operators, which we can eventually use
as a computational tool. We do this by introducing lower transition
rate operators in Section 6.2265, and subsequently consider exponen-
tials of such operators in Section 6.3269; we also discuss there an algo-
rithm that can be used to evaluate these exponentials numerically. In
Section 6.4279, we show that, under some conditions, these exponen-
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tials coincide with the lower transition operators of imprecise-Markov
chains, as we define them in Section 6.1. We bring all these parts to-
gether in Section 6.5284, where we consider a general computational
(i.e. algorithmic) framework for numerically evaluating lower expec-
tations of arbitrary u-measurable functions for the imprecise-Markov
chain PW

Q,M , under some structural assumptions on its characterising
set Q of rate matrices. We conclude this chapter with Section 6.6290,
where we demonstrate the methods developed earlier using a simple
numerical example.

6.1 Induced Lower Transition Operators

In Section 3.4116, and with Definition 3.15116 in particular, we gave
the general definition of lower transition operators. For our present
purposes, it remains to define them as objects corresponding to a set of
(continuous-time) stochastic processes. The following result will allow
us to do this.

Proposition 6.1. Let P ⊆ P be a non-empty set of stochastic processes, fix
any t,s∈R≥0 such that t ≤ s, and for all f ∈L , let T s

t f ∈L (X ) be defined
for all x ∈X as T s

t f (x) :=E[ f (Xs) |Xt = x], where E is the lower expectation
corresponding to P , as in Definition 5.8198. Then the map T s

t : f 7→ T s
t f on

L (X ) is a lower transition operator.

Proof. Fix any t,s ∈ R≥0 with t ≤ s, any f ,g ∈L (X ), any λ ∈ R≥0, and
any x ∈ X . It follows from Proposition 5.24201 that miny∈X f (y) ≤
T s

t f (x) ≤ maxy∈X f (y), which immediately implies that T s
t satisfies

Property LT1116. Moreover, because f ∈L (X ) and since X is finite, it
follows that T s

t f (x) is real-valued, and hence T s
t maps L (X ) to L (X ).

Next, it follows fromDefinition 5.8198 together with Property CE278
and the properties of the infimum, that

T s
t( f +g)(x) = E[( f +g)(Xs) |Xt = x]

= inf
P∈P

EP[( f +g)(Xs) |Xt = x]

= inf
P∈P

EP[ f (Xs) |Xt = x]+EP[g(Xs) |Xt = x]

≥ inf
P∈P

EP[ f (Xs) |Xt = x]+ inf
P∈P

EP[g(Xs) |Xt = x]

= E[ f (Xs) |Xt = x]+E[g(Xs) |Xt = x] = T s
t f (x)+T s

tg(x) ,

and therefore T s
t satisfies Property LT2116. Finally, from Defini-

tion 5.8198, Property CE378 and the properties of the infimum, and
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6.1 Induced Lower Transition Operators

using that λ ≥ 0, we find that

T s
t(λ f )(x) = E[λ f (Xs) |Xt = x]

= inf
P∈P

EP[λ f (Xs) |Xt = x]

= inf
P∈P

λEP[λ f (Xs) |Xt = x]

= λ inf
P∈P

EP[λ f (Xs) |Xt = x] = λE[ f (Xs) |Xt = x] = λT s
t f (x) ,

so T s
t satisfies Property LT3116.
Hence, we have established that T s

t satisfies Properties LT1116–
LT3116 and that it is a map from L (X ) to L (X ). Therefore, it is a
lower transition operator by Definition 3.15116.

This allows us to introduce the following generic definition, which
provides the basis for the developments in this chapter.

Definition 6.1. For any non-empty set of stochastic processes P ⊆ P, we
define the corresponding family of lower transition operators (T s

t), which
is a two-parameter family of lower transition operators T s

t that are defined
for all t,s ∈ R≥0 with t ≤ s, as

T s
t f (x) := E[ f (Xs) |Xt = x] for all f ∈L (X ) and x ∈X ,

where E is the lower expectation for P , as in Definition 5.8198.

Proposition 6.1 ensures that these corresponding lower transition
operators are all, indeed, lower transition operators. Moreover, in Def-
inition 6.1, we have defined lower transition operators using the lower
expectations with respect to sets of stochastic processes. This is analo-
gous to how, e.g., De Cooman et al. [22] defined lower transition oper-
ators corresponding to discrete-time imprecise-Markov chains. How-
ever, it is notably different from our own developments in Chapter 383,
where we took sets of transition matrices as our starting point, and
derived both discrete-time imprecise-Markov chains and their corre-
sponding lower transition operators from these sets. Moreover, in Sec-
tion 5.3194 we also discussed the sets of transition matrices that are in-
duced by a given continuous-time imprecise-Markov chain, so it seems
natural to investigate how these different objects are related. The fol-
lowing result establishes this connection between these sets of transi-
tion matrices Q

MT s
t , and the lower transition operators (T s

t) correspond-
ing to PW

Q,M , under some structural assumptions on Q.

Theorem 6.2. Let Q be a non-empty, compact, and convex set of rate ma-
trices that has separately specified rows, let M be a non-empty set of proba-
bility mass functions on X , and let (T s

t) denote the family of lower transi-
tion operators corresponding to PW

Q,M . Then for all t,s ∈ R≥0 with t ≤ s, T s
t
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is the lower transition operator corresponding to the set Q
MT s

t of (history-
dependent) transition matrices induced by PW

Q,M , as in Equation (5.11)197.
Moreover, it holds that Q

MT s
t = TT s

t
, where TT s

t
is the set of transition ma-

trices that dominate T s
t , as in Definition 3.17120.

Proof. Because Q is non-empty, compact, convex, and has separately
specified rows, it follows fromDefinition 6.1x and Propositions 5.25201
and 5.20197—in that order—that, for any f ∈L (X ) and any x ∈X ,

T s
t f (x) = EW

Q,M [ f (Xs) |Xt = x] = inf
P∈PW

Q,M

PT s
t f (x) = inf

T∈ Q
M

T s
t

T f (x) ,

so T s
t is the lower transition operator corresponding to Q

MT s
t .

Moreover, because Q is non-empty, compact, convex, and has sep-
arately specified rows, it follows from Theorem 5.21198 that Q

MT s
t is a

non-empty, closed, and convex set of transition matrices that has sep-
arately specified rows. Because we have already established that Q

MT s
t

has T s
t as its corresponding lower transition operator, it follows from

Corollary 3.38120 that
Q

MT s
t = TT s

t
.

Moving on, using these corresponding lower transition operators
we can derive expressions for the lower expectations of continuous-
time imprecise-Markov chains, that are analogous to the expressions
obtained in Section 3.5121 for discrete-time imprecise-Markov chains.
As with our developments in Section 3.5121, we again abuse our no-
tation to write, for any lower transition operator T , any t ∈ R>0, any
u ∈U<t with u 6= /0, any f ∈L (Xu∪{t}), and any xu ∈Xu,

T f (xu) :=
[

T f (xu, ·)
]

(xmaxu) ,

where, on the right-hand side, we have applied the (original) operator
T to f (xu, ·), which is the corresponding “projection” of f onto L (Xt),
i.e. the element of L (Xt) corresponding to the t-measurable func-
tion f (xu,Xt). This notation allows us to formulate lower expectations
of the imprecise-Markov chain PW

Q,M , using its corresponding lower
transition operators, as follows.

Lemma 6.3. Let Q be a non-empty, compact, and convex set of rate ma-
trices that has separately specified rows, and let M be a non-empty set of
probability mass functions on X . Let (T s

t) be the family of lower transi-
tion operators corresponding to PW

Q,M , as in Definition 6.1x. Then for all

t,s ∈ R≥0 with t < s, all u ∈U<t , all f ∈L (Xu∪{t,s}), and all xu ∈Xu and
xt ∈Xt , it holds that

EW
Q,M

[

f
(

Xu∪{t},Xs

)

∣

∣

∣
Xt = xt ,Xu = xu

]

= T s
t f (xu∪{t}) .
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6.1 Induced Lower Transition Operators

Proof. Fix any P ∈ PW
Q,M . Because u < t < s it follows from Proposi-

tion 2.2575 that

EP

[

f
(

Xu∪{t},Xs

)

∣

∣

∣
Xt = xt ,Xu = xu

]

= EP

[

f
(

xu∪{t},Xs

)

∣

∣

∣
Xt = xt ,Xu = xu

]

.

Because this is true for all P ∈ PW
Q,M , it follows from Definition 5.8198

that

EW
Q,M

[

f
(

Xu∪{t},Xs

)

∣

∣

∣
Xt = xt ,Xu = xu

]

= EW
Q,M

[

f
(

xu∪{t},Xs

)

∣

∣

∣
Xt = xt ,Xu = xu

]

.

Since f (xu∪{t},Xs) is an {s}-measurable function (that depends on
the single time point s), and because Q is non-empty, compact, convex,
and has separately specified rows, it follows from Proposition 5.28203
and Definition 6.1261 that, for all xu ∈Xu and all xt ∈Xt ,

EW
Q,M

[

f
(

xu∪{t},Xs

)

∣

∣

∣
Xt = xt ,Xu = xu

]

= EW
Q,M

[

f
(

xu∪{t},Xs

)

∣

∣

∣
Xt = xt

]

=
[

T s
t f (xu∪{t}, ·)

]

(xt) .

Using the notation established above, we have that for all xu ∈Xu and
all xt ∈Xt , since u < t and so t = maxu∪{t}, that

[

T s
t f (xu∪{t}, ·)

]

(xt) = T s
t f (xu∪{t}) ,

and hence

EW
Q,M

[

f
(

Xu∪{t},Xs

)

∣

∣

∣
Xt = xt ,Xu = xu

]

= T s
t f (xu∪{t}) ,

which concludes the proof.

Theorem 6.4. Let Q be a non-empty, compact, and convex set of rate ma-
trices that has separately specified rows, and let M be a non-empty set of
probability mass functions on X . Let (T s

t) be the family of lower transition
operators corresponding to PW

Q,M . Then for all u,v ∈U⊃ /0 such that u < v,

with v = t0, . . . , tn, n ∈ Z≥0, all f ∈L (Xu∪v), and all xu ∈Xu, it holds that
1

EW
Q,M

[

f (Xu∪v)
∣

∣Xu = xu

]

= T t0
maxuT

t1
t0
· · ·T tn

tn−1
f (xu) . (6.1)

1We have over-expanded the composition on the right-hand side of Equation (6.1) for
clarity of exposition, but this means it is only correct for n ≥ 2. If n = 0 the right-hand
side should simply read T

t0
maxu f (xu), and if n = 1 it should read T

t0
maxuT

t1
t0

f (xu).

263



Lower Transition Operators for CTIMCs

Proof. If n = 0 then v = {t0} and then the result follows trivially from
Lemma 6.3262 and the fact that Q is non-empty, compact, convex, and
has separately specified rows. So let us suppose for the remainder of
this proof that n≥ 1.

Because Q is non-empty, convex, and has separately specified rows,
it follows from Theorem 5.32208 that

EW
Q,M

[

f (Xu∪v)
∣

∣Xu = xu

]

= EW
Q,M

[

f (Xu∪{t0,...,tn})
∣

∣Xu = xu

]

(6.2)

= EW
Q,M

[

EW
Q,M

[

f (Xu∪{t0,...,tn})
∣

∣Xu,Xt0,...,tn−1

]

∣

∣

∣
Xu = xu

]

. (6.3)

Consider the inner lower expectation in Equation (6.3). This is a u∪
{t0, . . . , tn−1}-measurable function, and it follows from Lemma 6.3262—
using that Q is non-empty, compact, convex, and has separately speci-
fied rows—that, for all xu ∈Xu and all x{t0,...,tn−1} ∈X{t0,...,tn−1}, it holds
that

EW
Q,M

[

f (Xu∪{t0,...,tn})
∣

∣Xu∪{t0,...,tn−1} = xu∪{t0,...,tn−1}
]

= T
tn
tn−1

f (xu∪{t0,...,tn−1}) .

Hence we can replace the inner conditional lower expectation
in Equation (6.3) with the u ∪ {t0, . . . , tn−1}-measurable function
T

tn
tn−1

f (Xu∪{t0,...,tn−1}) , to obtain

EW
Q,M

[

f (Xu∪{t0,...,tn})
∣

∣Xu = xu

]

= EW
Q,M

[

T
tn
tn−1

f (Xu∪{t0,...,tn−1})
∣

∣

∣
Xu = xu

]

.

Comparing this to Equation (6.2), we see that we have reduced
a lower expectation of the u ∪ {t0, . . . , tn}-measurable function f ,
to a lower expectation of the u ∪ {t0, . . . , tn−1}-measurable function
T

tn
tn−1

f (Xu∪{t0,...,tn−1}). Hence, if n > 1, we now iteratively repeat the
above process, first substituting the u∪{t0, . . . , tn−2}-measurable func-

tion T
tn−1
tn−2

T
tn
tn−1

f (Xu∪{t0,...,tn−2}), and so forth, until we are eventually left
with

EW
Q,M

[

f (Xu∪{t0,...,tn})
∣

∣Xu = xu

]

= EW
Q,M

[

T
t1
t0
· · ·T tn

tn−1
f (Xu∪{t0})

∣

∣

∣
Xu = xu

]

.

The remaining lower expectation on the right-hand side of this expres-
sion is taken over a u∪{t0}-measurable function, and one last applica-
tion of Lemma 6.3262—again using that Q is non-empty, compact, con-
vex, and has separately specified rows—now yields that, for all xu ∈Xu,

EW
Q,M

[

T
t1
t0
· · ·T tn

tn−1
f (Xu∪{t0})

∣

∣

∣
Xu = xu

]

= T t0
maxuT

t1
t0
· · ·T tn

tn−1
f (xu) ,

which completes the proof.
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This result suggests that, if we want to compute the lower expecta-
tion of any u-measurable function for the continuous-time imprecise-
Markov chain PW

Q,M , it suffices to be able to evaluate its corresponding

lower transition operators. Of course, since this family (T s
t) is defined

in terms of lower expectations, this does not immediately get us any-
where. However, in the remainder of this chapter we will develop an
alternative characterisation of these lower transition operators that, as
it turns out, allows them to be efficiently evaluated.

6.2 Lower Transition Rate Operators

We recall from Section 3.4116 that there is a strong connection be-
tween sets T of transition matrices, and lower transition operators T .
Specifically, these notions are dual, in the sense that for any non-empty
set T , we can obtain a lower transition operator T as the lower enve-
lope T f := infT∈T T f . Conversely, any lower transition operator T has
a dominating set TT of transition matrices. We established with Propo-
sition 3.37120 and Corollary 3.38120 that T = TT if and only if T is
non-empty, closed, convex, has separately specified rows, and has T as
its lower envelope.

It is the purpose of this section to introduce the notion of lower tran-
sition rate operators, which are to transition rate matrices as lower tran-
sition operators are to transition matrices. That is, they are a super-
additive and non-negatively homogeneous generalisation of the linear
maps represented by rate matrices. In full analogy with the develop-
ments in Section 3.4116, we will show that they can be obtained as lower
envelopes of sets Q of rate matrices. Moreover, we will establish a du-
ality between lower transition rate operators and sets of rate matrices
that is analogous to that for lower transition operators and sets of tran-
sition matrices.

Lower transition rate operators will form the core of our develop-
ments of efficient computational methods in later sections. For now, let
us start with the general definition.

Definition 6.2. A map Q : L (X )→L (X ) : f 7→ Q f is called a lower
transition rate operator if, for all f ,g ∈L (X ), all λ ∈ R≥0, all constant
functions µ ∈L (X ), and all x ∈X :

LR1: Qµ(x) = 0;

LR2: QIy(x)≥ 0 for all y ∈X such that x 6= y;

LR3: Q( f +g)(x)≥ Q f (x)+Qg(x);

LR4: Q(λ f )(x) = λQ f (x).

265



Lower Transition Operators for CTIMCs

Such lower transition rate operators furthermore satisfy the follow-
ing properties—see Reference [17] for a proof.

Proposition 6.5. For any lower transition rate operator Q and any two
non-negatively homogeneous operators A,B from L (X ) to L (X ):

LR5:
∥

∥Q
∥

∥≤ 2maxx∈X
∣

∣QIx(x)
∣

∣<+∞;

LR6:
∥

∥QA−QB
∥

∥≤ 2
∥

∥Q
∥

∥‖A−B‖.

Note that Properties LR1x and LR2x essentially preserve Proper-
ties R1150 and R2150 from Definition 4.4150. The main difference lies in
the fact that a rate matrix Q is a linear map, whereas Properties LR3x
and LR4x merely require that a lower transition rate operator Q should
be super-additive and non-negatively homogeneous. Therefore, every
rate matrix is clearly a lower transition rate operator, with the latter
concept providing a generalisation of the former.

A first reason why this specific generalisation is of interest, is that
it extends the relation between transition matrices and rate matrices
that was established in Propositions 4.9153 and 4.10153, to a relation
between lower transition operators and lower transition rate operators.
The following two results formalise this.

Proposition 6.6 ([17, Proposition 5]). Consider any lower transition rate
operator Q, and any ∆ ∈R≥0 such that ∆

∥

∥Q
∥

∥≤ 1. Then (I+∆Q) is a lower
transition operator.

Proposition 6.7 ([17, Proposition 6]). Consider any lower transition oper-
ator T , and any ∆∈R>0. Then 1/∆(T − I) is a lower transition rate operator.

Let us now introduce the lower transition rate operator correspond-
ing to a given set Q ⊂R of rate matrices, which is the lower envelope
of Q. We need the following result.

Lemma 6.8. For any non-empty and bounded set Q of rate matrices, any
f ∈L (X ), and any x ∈X , it holds that infQ∈Q Q f (x) ∈ R.

Proof. Because Q is bounded (see Definition A.12376), there is some
B ∈ R such that supQ∈Q ‖Q‖ = ‖Q‖ < B. Therefore, and using Prop-
erty N1164 it holds for any Q ∈ Q that |Q f (x)| ≤ ‖Q f‖ ≤ ‖Q‖‖ f‖ ≤
‖Q‖‖ f‖ ≤ B‖ f‖, which implies that −B‖ f‖ ≤ Q f (x) ≤ B‖ f‖. Because
this is true for all Q ∈Q, and because Q is non-empty, it follows that
−B‖ f‖ ≤ infQ∈Q Q f (x)≤ B‖ f‖. Because B‖ f‖ ∈R, this implies that also
infQ∈Q Q f (x) is real-valued.

This allows us to define the lower envelope of Q as follows;
Lemma 6.8 guarantees that the codomain of this map is indeed L (X ).
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Definition 6.3. For any non-empty and bounded set Q of rate matrices,
we define its lower envelope Q : L (X )→L (X ) : f 7→ Q f where, for all
f ∈L (X ) and all x ∈X , we let Q f (x) := infQ∈Q Q f (x).

It is a matter of straightforward verification to see that the lower
envelope Q of Q is a lower transition rate operator:

Proposition 6.9. For any non-empty and bounded set Q ⊂R of rate ma-
trices, its lower envelope Q is a lower transition rate operator.

Proof. Consider any Q∈Q. Because, as we have seen above, Q is a lower
transition rate operator, it satisfies Properties LR1265 and LR2265. Now
fix any constant function µ ∈L (X ) and any x ∈X . Then because any
Q ∈Q satisfies Property LR1265, it holds that

Qµ(x) = inf
Q∈Q

Qµ(x) = 0 ,

and therefore Q also satisfies Property LR1265.
Next, fix any x,y ∈ X such that x 6= y. Then because any Q ∈ Q

satisfies Property LR2265, it holds that

QIy(x) = inf
Q∈Q

QIy(x)≥ 0 ,

and therefore Q also satisfies Property LR2265.
Properties LR3265 and LR4265 follow directly from the properties of

the infimum and the fact that the elements Q∈Q are linear maps. That
is, for any f ,g ∈L (X ) and any x ∈X ,

Q( f +g)(x) = inf
Q∈Q

Q( f +g)(x) = inf
Q∈Q

(

Q f (x)+Qg(x)
)

≥ inf
Q∈Q

Q f (x)+ inf
Q∈Q

Qg(x)

= Q f (x)+Qg(x) ,

so Q satisfies Property LR3265. Similarly, for any f ∈L (X ), λ ∈ R≥0,
and x ∈X it holds that

Q(λ f )(x) = inf
Q∈Q

Q(λ f )(x) = inf
Q∈Q

λQ f (x)

= λ inf
Q∈Q

Q f (x) = λQ f (x) ,

and therefore Q satisfies Property LR4265.
Because Q satisfies Properties LR1265–LR4265, it is a lower transition

rate operator by Definition 6.2265.

267



Lower Transition Operators for CTIMCs

Inspired by this result, we will also refer to the lower envelope of Q as
the lower transition rate operator corresponding to Q.

The following result provides sufficient conditions on the set Q for
the value of Q f to be reached by Q f for some Q ∈ Q, where Q is the
lower transition rate operator corresponding to Q. In other words, un-
der those conditions the lower envelope is actually a minimum, rather
than an infimum; and in particular, this minimum is achieved uni-
formly over all elements of X . We recall from Definition 5.7193 that
a set Q of rate matrices has separately specified rows if, essentially, it
is closed under the row-wise recombination of its elements. Moreover,
using Corollary A.12378, Q is compact if and only if it is closed and
bounded.

Proposition 6.10. Let Q be a non-empty and compact set of rate matri-
ces that has separately specified rows, and let Q be its corresponding lower
transition rate operator. Then for all f ∈L (X ), there is some Q ∈Q such
that Q f (x) = Q f (x) for all x ∈X .

Proof. Fix any f ∈L (X ) and x ∈X , and consider a sequence {εi}i∈Z>0

in R>0 such that limi→+∞ εi = 0. Then, for all i ∈ Z>0, due to Defini-

tion 6.3x, there is some Q
(i)
x ∈Q such that Q f (x)≤Q

(i)
x f (x)< Q f (x)+εi.

The sequence {Q(i)
x }i∈Z>0

lives in Q, which is a compact set by assump-
tion. By Corollary A.12378, this implies that Q is sequentially com-
pact, whence there is some convergent subsequence {Q(ik)

x }k∈Z>0
with

limk→+∞ Q
(ik)
x =: Q∗x ∈Q. Moreover, for all k ∈ Z>0 it holds that

Q f (x)≤ Q
(ik)
x f (x)< Q f (x)+ εik ,

and therefore Q∗x f (x) = Q f (x) because limk→+∞ εik = 0.
Because Q has separately specified rows, there is some Q ∈Q such

that Q(x, ·) = Q∗x(x, ·) for all x ∈X . Because of the above, it therefore
holds that Q f (x) = Q∗x f (x) = Q f (x) for all x ∈X .

We have seen above that any setQ of ratematrices has a correspond-
ing lower transition rate operator. We will now reason in the opposite
direction; given an arbitrary lower transition rate operator Q, is there a
set Q of rate matrices that corresponds to it? To this end, we consider
the set of rate matrices that dominate this lower transition rate operator,
as follows.

Definition 6.4. For any lower transition rate operator Q, we define its
dominating set of rate matrices QQ as

QQ :=
{

Q ∈R
∣

∣Q f ≥ Q f for all f ∈L (X )
}

. (6.4)
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It turns out that this set of dominating rate matrices satisfies a num-
ber of convenient properties, in analogy with the properties satisfied
by the set TT of transition matrices that dominate a given lower tran-
sition operator T ; see Proposition 3.37120. Because the proofs of the
following statements are somewhat long, we have deferred them to Ap-
pendix 6.A311.

Proposition 6.11. For any lower transition rate operator Q, its dominating
set of rate matrices QQ is a non-empty, compact, and convex set of rate ma-
trices that has separately specified rows, and that has Q as its corresponding
lower transition rate operator.

These properties characterise QQ completely, in the sense that no other
set satisfies them.

Proposition 6.12. Let Q be a non-empty, compact, and convex set of rate
matrices that has separately specified rows, and that has Q as its correspond-
ing lower transition rate operator. Then Q = QQ.

Using this duality between lower transition rate operators and com-
pact convex sets of rate matrices that have separately specified rows,
we also obtain a correspondence between lower transition rate opera-
tors and continuous-time imprecise-Markov chains which, as we know
from Chapter 5181, are parameterised by sets of rate matrices. We also
note that the characterising properties of the dominating set QQ of a
given lower transition rate operator Q, are exactly the properties that
we already encountered as preconditions in, e.g., Proposition 5.28203
and Theorems 6.2261 and 6.4263.

Therefore, and using the connection between lower transition
rate operators and lower transition operators—see Propositions 6.6266
and 6.7266—we are led to the idea that we can use lower transition rate
operators to characterise the lower transition operators corresponding
to continuous-time imprecise-Markov chains. This will be the subject
of the remainder of this chapter.

6.3 Exponentials of Lower Transition Rate Operators

Proposition 6.6266 has already established that we can easily construct a
lower transition operator from a given lower transition rate operator Q:
if ∆≥ 0 is sufficiently small, then I+∆Q will be a lower transition oper-
ator. In this section, we construct a somewhat more complicated lower
transition operator from a given lower transition rate operator, and it is
this specific lower transition operator we will focus on for the remain-
der of this chapter. In particular, we will introduce the exponential eQt

of Qt, where Q is a lower transition rate operator and t ∈ R≥0. The fact
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that we call this object an “exponential” perhaps deserves some moti-
vation. This is because, as we will show throughout this section, it (i)
is characterised by straightforward generalisations of the characterisa-
tions ME2154 and ME3154 of the matrix exponential, (ii) forms a (non-
linear) semigroup of operators when viewed as a function of t, and (iii)
exactly coincides with the matrix exponential eQt when Q=Q is a linear
map.

The remainder of this section is devoted to constructing and study-
ing this exponential. In Section 6.4279 we show that, under some
mild conditions, it coincides with the lower transition operators—and
hence, as explained in Section 6.1260, with the lower expectations—of
the imprecise-Markov chains PW

Q
and PWM

Q
characterised by a set Q of

which Q is the corresponding lower transition rate operator.

6.3.1 Construction of the Exponential

Our starting point for constructing this exponential is the characterisa-
tion ME3154 of the matrix exponential eQt using what we described as
the Euler solution to the ordinary differential equation ME2154, i.e.,

eQt = lim
k→+∞

(I + t/kQ)k for all t ∈ R≥0 and Q ∈R . (6.5)

At its core, the construction that we are about to present consists in re-
placing the rate matrix Q in the above equation, with a lower transition
rate operator Q. We will show that this converges to a limit, which we
denote as eQt , and we will prove in Section 6.3.2273 that this limit sat-
isfies many properties that are desirable in our setting: eQt is a lower
transition operator (c.f. Proposition 4.11154); satisfies eQt = I if t = 0;
satisfies the semigroup property eQ(t+s) = eQteQs for all t,s∈R≥0; is differ-
entiable in t; and is the solution eQt = T t of the (in general non-linear)
operator-valued ordinary differential equation

d

d t
T t = QT t for all t ∈ R≥0, with boundary condition T 0 = I .

So let us now proceed with the construction. We first note that, in
Equation (6.5), for any fixed k ∈ Z>0, the right-hand side essentially
involves a uniform partition of the interval [0, t], with a length of t/k

for each element of this partition. In contrast, we will—in addition
to generalising the rate matrix Q in this expression to a lower transi-
tion rate operator Q—also generalise this partitioning scheme to non-
uniform partitions. This will yield the slightly stronger result that the
limit is independent of the exact partition used.

To this end, for any lower transition rate operator Q, any t ∈ R≥0,
and any finite partition u ∈ U[0,t] of the interval [0, t], we will consider
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6.3 Exponentials of Lower Transition Rate Operators

an auxiliary operator Φu; for notational convenience, we do not carry
the Q in our notation for this operator, but this should not cause any
confusion. For any u ∈ U[0,t] such that u = t0, . . . , tn, n ∈ Z≥0, we define
this operator as

Φu :=
n

∏
i=1

(

I +∆u
i Q
)

, (6.6)

where, as in Section 2.2.158, for every i ∈ {1, . . . ,n}, ∆u
i = ti − ti−1 de-

notes the difference between two consecutive time points in u, and
σ(u) := max{∆u

i : i ∈ {1, . . . ,n}} is the maximum such difference, i.e. the
mesh of the partition. We note that if n = 0 then the product on the
right-hand side of Equation (6.6) is empty, and in that case Φu = I,
which is trivially a lower transition operator. Conversely, if n > 1 then
clearly, if σ(u) is small enough, Proposition 6.6266 guarantees that each
of the terms I +∆u

i Q is a lower transition operator, and it then follows
from Proposition 3.33117 that Φu—since it is a composition of lower
transition operators—is also a lower transition operator.

The exponential eQt will be defined below as the limit of these lower
transition operators Φu, obtained as we take u to be an increasingly finer
partition of the interval [0, t]. Formally, U[0,t] can be seen as a directed
set—we induce a preorder � on U[0,t] using the mesh of the partitions,
i.e. for all u,v ∈ U[0,t] we have u � v if σ(u) ≥ σ(v), and u∪ v ∈ U[0,t]

satisfies u � u∪ v and v � u∪ v—and Φu defines a net on U[0,t] that is

(eventually) in T . We will show that this net converges to eQt ; see
e.g. [77, Chapter 3] for some discussion about convergence of nets in
topological spaces.

To this end, we start by providing a bound on the distance between
two operators Φu and Φu∗. Here and in what follows, we have moved
some of our proofs to Appendix 6.B314.

Proposition 6.13. Let Q be a lower transition rate operator and choose any

t ∈ R≥0, any δ ∈ R>0 with δ
∥

∥Q
∥

∥≤ 1, and any u,u∗ ∈U[0,t] with σ(u)≤ δ
and σ(u∗)≤ δ . Then ‖Φu−Φu∗‖ ≤ 2tδ

∥

∥Q
∥

∥

2
.

Note that the distance ‖Φu−Φu∗‖ vanishes as we make σ(u) and
σ(u∗) smaller and smaller. This allows us to state the following result.

Corollary 6.14. Let Q be a lower transition rate operator and choose any
t ∈ R≥0. Then for every sequence {ui}i∈Z>0

in U[0,t] with limi→+∞ σ(ui) = 0,
the corresponding sequence {Φui

}i∈Z>0
is Cauchy.

Proof. By definition of a Cauchy sequence, we need to show that

(∀ε > 0)(∃n ∈ Z>0)(∀i, j ≥ n)
∥

∥Φui
−Φu j

∥

∥< ε.
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So fix any ε > 0 and choose δ ∈ R>0 such that 2tδ
∥

∥Q
∥

∥

2
< ε and

δ
∥

∥Q
∥

∥≤ 1; this is clearly always possible. Because limi→+∞ σ(ui) = 0,
there is some n ∈ Z>0 such that, for all k ∈ Z>0 with k > n, it holds that
σ(uk) ≤ δ . Consider any k, ℓ ∈ Z>0 such that k, ℓ > n. It then follows
from Proposition 6.13x that

∥

∥Φui
−Φu j

∥

∥≤ 2tδ
∥

∥Q
∥

∥

2
< ε ,

which concludes the proof.

Since we already know that, for partitions u that are sufficiently fine,
Φu is a lower transition operator, Proposition 3.41121 implies that this
Cauchy sequence converges to a lower transition operator.

Corollary 6.15. Let Q be a lower transition rate operator, and choose any
t ∈ R≥0. For every sequence {ui}i∈Z>0

in U[0,t] with limi→+∞ σ(ui) = 0, the
corresponding sequence {Φui

}i∈Z>0
converges to a lower transition operator.

Proof. Since limi→+∞ σ(ui) = 0, and due to Propositions 6.6266
and 3.33117, and Property LR5266, there is some n ∈ Z>0 such that
the sequence Φun ,Φun+1

, . . . consists of lower transition operators. Due
to Corollary 6.14x, this sequence is Cauchy and therefore, because
of Proposition 3.41121, this sequence has a limit that is also a lower
transition operator. Because the first n−1 elements of the sequence do
not influence the convergence, we find that the sequence {Φui

}
i∈Z>0

has

a limit, and that this limit is a lower transition operator.

Finally, as our next result establishes, this limit is unique, in the
sense that it is independent of the choice of {ui}i∈Z>0

.

Theorem 6.16. Let Q be a lower transition rate operator, and choose any

t ∈ R≥0. Then there is a unique lower transition operator eQt ∈ T such that

(∀ε > 0)(∃δ > 0)(∀u ∈U[0,t] : σ(u)< δ )
∥

∥eQt −Φu

∥

∥< ε. (6.7)

Proof. Let {ui}i∈Z>0
be any sequence inU[0,t] such that limi→+∞ σ(ui) = 0.

Because of Corollary 6.15, the sequence {Φui
}i∈Z>0

then converges to a

lower transition operator, which we denote by eQt .
Fix any ε > 0, and choose any δ > 0 such that 4tδ

∥

∥Q
∥

∥

2
< ε and

δ
∥

∥Q
∥

∥ ≤ 1; this is clearly always possible. Since limi→+∞ Φui
= eQt and

limi→+∞ σ(ui) = 0, there is some n ∈ Z>0 such that

σ(un)< δ and
∥

∥eQt −Φun

∥

∥<
ε

2
. (6.8)

Consider now any u ∈U[0,t] such that σ(u)< δ . Then

∥

∥eQt −Φu

∥

∥≤
∥

∥eQt −Φun

∥

∥+‖Φun −Φu‖<
ε

2
+2tδ

∥

∥Q
∥

∥

2
< ε,
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where the second inequality follows from Equation (6.8) and Proposi-
tion 6.13271. This proves that eQt satisfies Equation (6.7).

It remains to show that eQt is unique. Therefore, let T be any lower
transition operator that satisfies Equation (6.7). Then clearly, for any
ε > 0, there is some u ∈U[0,t] such that

∥

∥eQt −Φu

∥

∥< ε/2 and ‖T −Φu‖<
ε/2, and therefore

∥

∥eQt −T
∥

∥ < ε . Since ε > 0 is arbitrary, this implies

that eQt = T . Because this holds for every T that satisfies Equation (6.7),
it follows that eQt is the unique operator satisfying this equation.

Note that the ε−δ expression in Theorem 6.16 is essentially a limit
statement; it establishes the convergence of the net Φu on U[0,t] to the

operator eQt in T (again, see e.g. [77, Chapter 3] for details on conver-
gence of nets). In the sequel, for any lower transition rate operator Q

and any t ∈R≥0, we will always use the notation eQt to denote the corre-
sponding unique lower transition operator identified by Theorem 6.16.

6.3.2 Semigroups of Lower Transition Operators

We now move the discussion to the family
(

eQt
)

of (generalised) expo-
nentials corresponding to Q, with t ∈R≥0. Let us first establish that this
family satisfies the same semigroup property that holds for the family
of matrix exponentials (eQt) of a rate matrix Q; that is, that this family
is a semigroup.

Proposition 6.17 ([17, Section 6]). Let Q be a lower transition rate opera-

tor, and let (eQt) be the corresponding family of lower transition operators,
with t ∈ R≥0. Then, for all t,s ∈ R≥0, it holds that

eQ(t+s) = eQteQs.

Furthermore, if t = 0 then it holds that eQt = I.

Inspired by this result, we also refer to the family
(

eQt
)

of these
operators as the semigroup of lower transition operators generated by Q

(c.f. Proposition 4.15157 and the discussion around it).
Next, it turns out that the derivatives of these lower transition op-

erators always exist, and that they satisfy the following equality.

Proposition 6.18 ([17, Proposition 9]). Let Q be a lower transition rate

operator, and let (eQt) be its generated semigroup of lower transition opera-
tors. Then for all t ∈ R≥0 it holds that2

d

d t
eQt = QeQt .

2If t = 0 we take this to only be a right-sided derivative.
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Propositions 6.17x and 6.18x together show that eQt is a solu-
tion eQt = T t of the (in general non-linear) operator-valued initial value
problem

d

ds
T s = QT s for all s ∈ R≥0, with T 0 = I. (6.9)

In fact, due to [103, Corollary 2], it can be shown that eQt is the unique
solution to this differential equation; see also [17, Section 6] for further
discussion. Therefore, and since we already know from Section 6.2265
that any rate matrix Q∈R is also a lower transition rate operator, it fol-
lows from Definition 4.5154, and the characterisation ME2154 in partic-
ular, that eQt coincides with thematrix exponential eQt whenever Q=Q.

We would like to point out here that the derivatives in Proposi-
tion 6.18x are not taken pointwise, but are taken with respect to the
operator norm. For example, with t > 0, Proposition 6.18x does not
state that

d

d t
eQt f = QeQt f for all f ∈L (X ), (6.10)

but rather that

lim
∆→0

∥

∥

∥

∥

∥

eQ(t+∆)− eQt

∆
−QeQt

∥

∥

∥

∥

∥

= 0. (6.11)

Of these two statements, the latter is the strongest one, in the sense
that it trivially implies the former. Hence, although from an intuitive
point of view, the reader may wish to interpret the results in Proposi-
tion 6.18x as in Equation (6.10)—which would be correct—one should
keep in mind that from a technical point of view, the result is in fact
stronger, and is intended to be read as in Equation (6.11).3

At this point, and as is perhaps already clear from the discussion
in the first part of this section, we would like to note that we are
not the first to study this semigroup of lower transition operators. In
the explicit context of imprecise probabilities, Škulj [103] first studied
pointwise solutions of the form (6.10) as bounds on the expectations
of continuous-time imprecise-Markov chains. In particular, he studied
these solutions without explicitly constructing a set of continuous-time
stochastic processes like we did in Chapter 5181. De Bock [17] showed
the existence and studied the long-term and ergodic behaviour of these
operators in the limit where t goes to infinity, and established the
uniform (i.e. operator-valued) properties given in Propositions 6.17x
and 6.18x. In our own work in Reference [61], we also described the

3Note that Equation (6.11) does not follow trivially from Equation (6.10) and the
finite-dimensionality of L (X ), since the operators involved are, in general, not linear.
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uniform solution, i.e. the operator-valued semigroup whose elements
are characterised by Theorem 6.16272, and we showed its relation to
continuous-time imprecise-Markov chains as specific sets of stochastic
processes; incidentally, this will also be the subject of Section 6.4279.
We have since learned that this semigroup is essentially a special case
of a semigroup of operators that was already described by Nisio [81] in
1976, in the context of stochastic optimal control. Nendel [78] has used
these Nisio semigroups to describe Markov chains with non-linear ex-
pectations, which are similar to imprecise-Markov chains but are based
on a different underlying theory; we refer to Chapter 129 for details.

6.3.3 Evaluating the Exponential

Having established the existence and some initial properties of the ex-
ponential eQt , and with the aim of using it to represent and compute
lower expectations for imprecise-Markov chains, let us now turn to how
to evaluate this operator numerically. That is, we present in this section
a simple algorithm to evaluate the quantity eQt f numerically for any
t ∈ R≥0 and any f ∈L (X ). This is the algorithm that we initially de-
scribed in Reference [61], and it is easy to understand and implement,
but it should by no means be taken to be the most efficient algorithm
possible. Indeed, it is essentially simply an instance of the explicit Eu-
ler methodwith an identification of the required stepsize to guarantee a
maximum numerical error. Although we argued in Reference [61] that
it will generally outperform amethod described by Škulj [103], we note
that Erreygers and De Bock [32] have since described an algorithm that
will often be more efficient than the one we present here. Moreover,
more recent work by Škulj [104] also suggests possible improvements
to this computational problem.

We want to emphasize that the problem of computing eQt f reduces
to solving the non-linear ordinary differential equation (6.10), so if one
is not—from a practical point of view—worried about mathematical
bounds on themaximumnumerical error, then this could also be solved
using popular numerical integrators like, e.g., Runge-Kutta methods.
Regardless of the particular algorithm that one uses to evaluate the
operators eQt numerically, we will show in Sections 6.4279 and 6.5284
that such methods can be used to compute the lower expectations for
imprecise-Markov chains.

So let us now turn to deriving the above-mentioned algorithm for
evaluating eQt f . As suggested above, our aim here is to provide an ex-
plicit Euler method that will compute the desired quantity up to some
pre-specified maximum numerical error that can be made arbitrarily
small at the expense of more computational effort. The construction of
the operator eQt in Section 6.3.1270 already suggests a method for ac-
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complishing this; namely, by using a finite-precision approximation of
eQt using the auxiliary operator Φu := ∏

n
i=1(I +∆u

i Q). Recall from Sec-

tion 6.3.1270 that the approximation of eQt by Φu becomes better as we
take u ∈ U[0,t] to be an increasingly finer partition of the interval [0, t].
The following result gives a bound on how fine this partition needs to
be for a specific function f ∈L (X ), in order to guarantee an ε-error
bound on eQt f ; the proof can be found in Appendix 6.B314.

Proposition 6.19. Let Q be a lower transition rate operator, and let (eQt) be
its generated semigroup of lower transition operators. Then for all t ∈ R≥0,
all f ∈L (X ), and all ε ∈ R>0, if we choose any n ∈ Z>0 such that

n≥max

{

t
∥

∥Q
∥

∥ ,
t2

2ε

∥

∥Q
∥

∥

2 ‖ f‖v

}

,

with ‖ f‖v := max f −min f , then it holds that

∥

∥

∥

∥

∥

eQt f −
n

∏
i=1

(I + t/nQ) f

∥

∥

∥

∥

∥

≤ ε .

Simply put, this result reduces the problem of evaluating eQt f , to n

evaluations of (I + t/nQ)gi, with gi ∈L (X ) such that gi := (I + t/nQ)gi−1

for all i ∈ {1, . . . ,n}, and with g0 := f . In particular, for any i ∈ {1, . . . ,n},
these gi simply correspond to the partial compositions

gi = (I + t/nQ)gi−1 =
i

∏
j=1

(I + t/nQ) f .

Thus gn = ∏
n
j=1(I + t/nQ) f , and Proposition 6.19 then guarantees that

∥

∥eQt f −gn

∥

∥≤ ε provided that n is chosen appropriately.

This yields an iterative procedure for computing eQt f that is out-
lined in Algorithm 1. The algorithm first finds the number n of steps
required to reach the given precision ε (Line 2). Starting with the func-
tion g0 := f (Line 3), the algorithm iteratively computes the function
gi := (I + t/nQ)gi−1 (Line 5). After n iterations (Line 4), the returned

function gn (Line 7) corresponds to eQt f ± ε , due to Proposition 6.19.
This algorithm takes for granted that

∥

∥Q
∥

∥ is known and/or can
be derived from Q; Erreygers and De Bock [32, Proposition 4] have
shown that the bound in LR5266 is actually an equality, i.e. that
∥

∥Q
∥

∥ = 2maxx∈X
∣

∣QIx(x)
∣

∣, so it suffices to be able to evaluate QIx for

every x ∈X in order to compute
∥

∥Q
∥

∥. Since at every step of the al-
gorithm we also need to evaluate Qgi−1 in order to obtain gi, in sum-
mary, this tells us that if we can compute Qg for all g ∈ L (X ), then

276



6.3 Exponentials of Lower Transition Rate Operators

Algorithm 1 Numerically compute eQt f for any f ∈L (X ).

Input: A lower transition rate operator Q, a scalar t ∈ R≥0, a function
f ∈L (X ), and a maximum numerical error ε ∈ R>0.

Output: A function eQt f ± ε in L (X ).

1: function ComputeExponential(Q, t, f ,ε)

2: n←
⌈

max
{

(

t2‖Q‖2‖ f‖v
)

/2ε, t
∥

∥Q
∥

∥

}⌉

3: g0← f

4: for i ∈ {1, . . . ,n} do
5: gi← gi−1 + t/nQgi−1

6: end for
7: return gn

8: end function

we can also approximate the quantity eQt f to arbitrary precision, for
any f ∈L (X ).

So let us conclude this section by considering how Qg may be com-
puted for a given g ∈L (X ). It is difficult to make any general state-
ments about this, because it strongly depends on the way that Q is en-
coded. If we suppose that we are given a non-empty and bounded set
Q of rate matrices, and that Q is the corresponding lower transition
rate operator, then using Definition 6.3267, evaluating Qg(x) reduces to
computing infQ∈Q Qg(x). The difficulty of solving this problem clearly
depends on Q. However, we note that if Q is also closed then this infi-
mum turns into a minimum, which means that we then need to solve

Qg(x) = min
Q∈Q

Qg(x) = min
Q(x,·)∈Qx

∑
y∈X

Q(x,y)g(y) ,

where Qx := {Q(x, ·) : Q ∈ Q} is the set of x-rows of Q. A first ob-
servation is that this is a linear minimisation problem of the function

∑y∈X Q(x,y)g(y) over the setQx. If, therefore, Qx is described by a finite
number of linear (in)equality constraints, the problem can be written
as a linear program and can then be solved by any of the methods that
are available for this in the literature.

Although this is, at least theoretically, a fairly straightforward and
well-behaved problem, we note that this would be a linear program in
n := |X |+ c variables, where c ∈ Z>0 is the number of constraints de-
scribing Qx. It is well-known that this is solvable in polynomial time,
with a very recent result [8] providing a deterministic algorithm that
solves it in Õ(nω)4 time, where O(nω) is the complexity of multiplying

4Following [8], Õ hides polylog(n) factors.
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two n×n matrices; the current bound for this exponent is ω ≈ 2.38 [8].
Because the solution of this linear program only yields the quantity
Qg(x), we need to execute it |X | times—once for each x ∈X —in order
to obtain the entire vector Qg. This shows that Qg can be computed

with a runtime complexity of Õ
(

|X |nω
)

, assuming that the number of
constraints specifying each Qx is the same for each x. Although polyno-
mial in the size of the problem, this may become unfeasible when |X |
becomes moderately large.

However, it should be noted that the analysis above considers a
fairly general setting; it only assumes that Q can be described using
a finite number of linear constraints on its sets Qx of rows. When more
is known about Q, it may be possible to derive more efficient algo-
rithms. For example, it is possible that Qx lives in a subspace that has a
dimension (much) less than |X |, which reduces the difficulty of the cor-
responding minimisation problem proportionally. Moreover, we might
simply assume additional structure. References [33–35, 62] illustrate
examples where domain-specific knowledge allows one to simplify this
problem considerably.

Finally, one specific instance that might be of general practical im-
portance is if Q is a closed ball in R with radius r around some given
rate matrix Q ∈R. For example, this could be relevant from a practi-
tioner’s point of view, where one may have a precise estimate for the
rate matrix Q of a continuous-time homogeneous Markov chain, and
one wants to perform a sensitivity analysis using a continuous-time
imprecise-Markov chain that is described by the ball around this es-
timate. Let us present some results for this setting; the proofs of the
following results can be found in Appendix 6.B314. The first observa-
tion is that such a ball satisfies all the desirable properties that we have
encountered for sets of rate matrices:

Proposition 6.20. Let Q∗ ∈ R be a rate matrix, fix any r ∈ R≥0, and let
Br(Q∗) :=

{

Q ∈ R : ‖Q−Q∗‖ ≤ r
}

be the closed ball in R of radius r

around Q∗. Then Br(Q∗) is a non-empty, compact, and convex set of rate
matrices that has separately specified rows.

As the next result shows, one can evaluate the lower transition rate
operator Q corresponding to the ball around Q in a time complexity

order of O
(

|X |2
)

, although there is some computational overhead of
O(|X | log |X |). We note that this result provides a method that is more
than an order of magnitude faster than the general linear programming
formulation described above, and in particular, in this setting, for any
g ∈L (X ), computing Qg has the same complexity as computing Qg.

Proposition 6.21. Let Q∗ ∈ R be a rate matrix, fix any r ∈ R≥0, let
Br(Q∗) :=

{

Q ∈ R : ‖Q−Q∗‖ ≤ r
}

be the closed ball in R of radius r
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around Q∗, and let Q be the lower transition rate operator corresponding
to Br(Q∗). Let n := |X |, fix any g ∈ L (X ), and let z1, . . . ,zn be an or-
dering of X such that g(zi) ≥ g(zi+1) for all i ∈ {1, . . . ,n− 1}. Fix any
x ∈ X , let r0 := r/2 and, for all i ∈ {1, . . . ,n}, let ∆i = ri−1 if zi = x and
∆i := min{ri−1,Q∗(x,zi)} otherwise, and let ri := ri−1−∆i. Then

Qg(x) = Q∗g(x)−
n

∑
i=1

∆i

(

g(zi)−g(zn)
)

. (6.12)

In this result, obtaining the ordering z1, . . . ,zn requires sorting
n = |X | elements, which clearly can be done in O(n logn) time. Once
we have that ordering, computing the ∆1, . . . ,∆n and r1, . . . ,rn can be
done in O(n), and it is clear that the right-hand side of Equation (6.12)
can also be evaluated in O(n) time. Only these last steps depend on x,
and hence they need to be repeated n times, which yields the runtime
complexity of O(n2).

6.4 Continuous-Time Imprecise-Markov Chains
and Semigroups of Lower Transition Operators

Having introduced lower transition rate operators Q corresponding to
sets Q of rate matrices, as well as the corresponding generated semi-
group (eQt) of (generalised) exponentials eQt , let us now consider the
connection of these objects to the family (T s

t ) of lower transition opera-
tors corresponding to an imprecise-Markov chain parameterised by Q.
Throughout this section, whenever the proof of a result is not given
here, it can be found in Appendix 6.C324.

Our first result is that these exponentials provide a lower bound on
the expectations for the stochastic processes that are elements of such
an imprecise-Markov chain, in the following sense:

Proposition 6.22. Let Q be a non-empty bounded set of rate matrices with
corresponding lower transition rate operator Q, and let (eQt) be the corre-
sponding semigroup of lower transition operators. Then, for any P ∈ PW

Q
,

any t,s ∈ R≥0 such that t ≤ s, any u ∈ U<t , any xt ∈X and xu ∈Xu, and
any f ∈L (X ), it holds that

EP[ f (Xs) |Xt = xt ,Xu = xu]≥ eQ(s−t) f (xt).

Notice that this result is stated for stochastic processes P in PW
Q
,

whose initial distributions P(X0) are not required to belong to some
given set of initial distributions M . However, since PW

Q,M is a clearly a
subset of PW

Q
, the same result also holds for any choice of such M .

Our next result establishes that the bound in Proposition 6.22 is
tight if Q has separately specified rows. Specifically, we show that
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eQ(s−t) f can then be approximated to arbitrary precision by carefully
choosing a Markov chain P from the set PWM

Q,M .

Proposition 6.23. Let M be a non-empty set of probability mass functions
on X , let Q be a non-empty bounded set of rate matrices that has separately
specified rows, with corresponding lower transition rate operator Q, and let
(eQt) be the corresponding semigroup of lower transition operators. Then
for all t,s ∈ R≥0 such that t ≤ s, all f ∈L (X ), and all ε ∈ R>0, there is a
well-behaved Markov chain P ∈ PWM

Q,M such that
∣

∣

∣
EP[ f (Xs) |Xt = xt ]− eQ(s−t) f (xt)

∣

∣

∣
< ε for all xt ∈X .

Moreover, under some additional assumptions on Q this lower
bound can actually be reached by a Markov chain in PWM

Q,M :

Corollary 6.24. Let M be a non-empty set of probability mass functions
on X , let Q be a non-empty, compact, and convex set of rate matrices that
has separately specified rows, with corresponding lower transition rate op-
erator Q, and let (eQt) be the corresponding semigroup of lower transition
operators. Then for all t,s ∈R≥0 such that t ≤ s and all f ∈L (X ), there is
a well-behaved Markov chain P ∈ PWM

Q,M such that

EP[ f (Xs) |Xt = xt ] = eQ(s−t) f (xt) for all xt ∈X .

Together, Propositions 6.22x and 6.23 establish a strong connection

between the lower transition operator eQ(s−t) and the lower expecta-
tions for PWM

Q,M and PW
Q,M . In particular, for Q with separately specified

rows, and for functions f (Xs) that depend on the state Xs at a single
time point s not before the latest time point t in the conditioning event
(Xt = xt ,Xu = xu), these three objects end up being identical.

Corollary 6.25. Let M be a non-empty set of probability mass functions on
X , let Q be a non-empty bounded set of rate matrices that has separately
specified rows, with corresponding lower transition rate operator Q, and let

(eQt) be the corresponding semigroup of lower transition operators. Then,
for all t,s ∈ R≥0 such that t ≤ s, all u ∈ U<t , xu ∈Xu and xt ∈X , and all
f ∈L (X ), it holds that

EW
Q,M [ f (Xs) |Xt = xt ,Xu = xu] = eQ(s−t) f (xt)

= EWM
Q,M [ f (Xs) |Xt = xt ,Xu = xu] .

Proof. Fix any ε > 0. By Proposition 6.23 there is some P ∈ PWM
Q,M such

that EP[ f (Xs)|Xt = xt ]< eQ(s−t) f (xt)+ ε , and hence it follows that

EWM
Q,M [ f (Xs) |Xt = xt ,Xu = xu]≤ EP[ f (Xs)|Xt = xt ,Xu = xu]

= EP[ f (Xs)|Xt = xt ]< eQ(s−t) f (xt)+ ε,
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using Equation (5.13)198 for the first inequality and the Markov prop-
erty of P for the equality. Since ε > 0 is arbitrary, it follows that
EWM

Q,M [ f (Xs) |Xt = xt ,Xu = xu]≤ eQ(s−t) f (xt). Now observe that also

eQ(s−t) f (xt)≤ inf
P∈PW

Q,M

EP[ f (Xs) |Xt = xt ,Xu = xu]

= EW
Q,M [ f (Xs) |Xt = xt ,Xu = xu]

≤ EWM
Q,M [ f (Xs) |Xt = xt ,Xu = xu],

where the first inequality follows from Proposition 6.22279 and the last
inequality follows from Proposition 5.22199.

Hence, we find that there is indeed a correspondence between the
semigroup of lower transition operators (eQt) and the lower expecta-
tions that correspond to continuous-time imprecise-Markov chains.

This result also helps to further clarify why we choose to call PW
Q,M

an imprecise-Markov chain, despite the fact that it contains processes
that do not satisfy the Markov property. In order to see that, observe
that Corollary 6.25 holds for all histories xu ∈ Xu and any sequence

of time points u ∈U<t . Therefore, and because the definition of eQ(s−t)

does not depend on this choice of u and xu, it follows that for non-empty
and bounded Q with separately specified rows, it holds that

EW
Q,M [ f (Xs) |Xt = xt ,Xu = xu] = EW

Q,M [ f (Xs) |Xt = xt ]. (6.13)

In other words, the conditional lower expectation EW
Q,M satisfies an

imprecise-Markov property: conditional on the state at time t, the lower
expectation of a function f (Xs) at a future time point s is functionally
independent of the states at time points u that precede t. Recall that
we already established that this was the case using Proposition 5.28203.
However, that result requires that Q is non-empty, compact, and con-
vex, and that it has separately specified rows. The observation in Equa-
tion (6.13), which is due to Corollary 6.25, is thus much stronger: it
turns out that Q need only be a non-empty and bounded set that has
separately specified rows, and we do not need the closure, nor the con-
vexity, of this set for EW

Q,M to satisfy this imprecise-Markov property.

This observation also allows us to identify the semigroup (eQt)
with the family (T s

t) of lower transition operators corresponding to an
imprecise-Markov chain, as discussed in Section 6.1260.

Proposition 6.26. Let Q be a non-empty and bounded set of rate matrices
that has separately specified rows, with corresponding lower transition rate
operator Q, and let (eQt) be the corresponding semigroup of lower transition
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operators. Let M be a non-empty set of probability mass functions on X ,
and let (T s

t) be the family of lower transition operators corresponding to
PW

Q,M . Then T s
t = eQ(s−t) for all t,s ∈ R≥0 with t ≤ s.

Proof. Fix any t,s ∈ R≥0 such that t ≤ s, and any f ∈ L (X ). Since Q

is non-empty and bounded with separately specified rows, it follows
from Corollary 6.25280 (with u = /0) and Definition 6.1261 that, for all
x ∈X ,

eQ(s−t) f (x) = EW
Q,M [ f (Xs) |Xt = x] = T s

t f (x) .

Because this is true for all x ∈X , it follows that eQ(s−t) f = T s
t f . Because

this is true for all f ∈L (X ), it follows that eQ(s−t) = T s
t .

Moreover, it easily follows from the above results that PW
Q,M satis-

fies an (imprecise) time-homogeneity property:

Corollary 6.27. Let Q be a non-empty and bounded set of rate matrices
that has separately specified rows, let M be a non-empty set of probability
mass functions on X , and let (T s

t) be the family of lower transition opera-

tors corresponding to PW
Q,M . Then T s

t = T
(s−t)
0 for all t,s ∈ R≥0 with t ≤ s.

Proof. Fix any t,s ∈ R≥0 with t ≤ s, and let r := s− t. Then, because Q

is non-empty and bounded with separately specified rows, it follows
from Proposition 6.26x that

T s
t = eQ(s−t) = eQr = T r

0 = T
(s−t)
0 ,

which concludes the proof.

Analogous results hold for the imprecise-Markov chain PWM
Q,M . That

is, eQ(s−t) = T s
t , and T s

t = T
(s−t)
0 , where (T s

t) is the family of lower tran-
sition operators corresponding to PWM

Q,M , provided that Q is non-empty
and bounded and has separately specified rows. The proofs of these
claims are completely analogous to the proofs of Proposition 6.26x and
Corollary 6.27, so we omit them here.

Moving on, we note that Corollary 6.25280 also establishes that the
correspondence between the semigroup of lower transition operators
(eQt) and sets of continuous-time stochastic processes is not one-to-
one. For starters, eQ(s−t) represents the lower expectation for the dif-
ferent sets of processes PWM

Q,M and PW
Q,M , for any choice of M . More-

over, because (eQt) only depends on Q, whenever two sets Q1 6=Q2 have
the same lower transition rate operator Q then—assuming the condi-
tions in Corollary 6.25280 are met by both Q1 and Q2—(eQt) represents
the lower expectation with respect to the sets of stochastic processes
PWM

Q1,M
, PWM

Q2,M
, PW

Q1,M
and PW

Q2,M
—again, for any choice of M .
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A particularly interesting special case is when Q1 is a non-empty
and bounded set of rate matrices Q that has separately specified rows,
and Q2 is its closed convex hull, which, because of Proposition 6.12269,
is equal to QQ, where Q is the lower transition rate operator that corre-
sponds to Q. The two sets of rate matrices Q and QQ then clearly (i)
have the same corresponding lower transition rate operator Q and (ii)
satisfy the conditions in Corollary 6.25280. Therefore, it follows from
the preceding argument that the resulting lower expectations are iden-
tical and, in particular, that, for any non-empty set M of probability
mass functions on X , it holds that

EWM
Q,M [ f (Xs) |Xt = xt ,Xu = xu] = eQ(s−t) f (xt) = EW

QQ
[ f (Xs) |Xt = xt ,Xu = xu]

which in turn immediately implies that for any set of stochastic pro-
cesses P such that PWM

Q,M ⊆P ⊆ PW
QQ

, it holds that

E[ f (Xs) |Xt = xt ,Xu = xu] = eQ(s−t) f (xt), (6.14)

where E is the lower expectation for P , as in Equation (5.12)198.
A common feature of these sets of stochastic processes P , is that

each of their elements P is well-behaved and consistent with QQ. An
obvious question, then, is whether this feature is necessary in order for
Equation (6.14) to hold. The following result establishes that this is
indeed the case.

Theorem 6.28. Let Q be a lower transition rate operator, with QQ its set of
dominating rate matrices, and let (eQt) be the corresponding semigroup of
lower transition operators. Then PW

QQ
is the largest set of stochastic processes

P ⊆P for which the corresponding conditional lower expectation E[· | ·]—as
defined in Equation (5.12)198—satisfies

E[ f (Xs) |Xt = xt ,Xu = xu] = eQ(s−t) f (xt) for all f ∈L (X ),

for all t,s ∈ R≥0 with t ≤ s, all u ∈U<t , and all xt ∈X and xu ∈Xu.

We regard this result as a vindication for our choice to focus onwell-
behaved stochastic processes—instead of more restricted ones, such as,
say, differentiable stochastic processes. Since one of our aims here is
to use the semigroup of lower transition operators (eQt) as a represen-
tational and computational tool for lower expectations, it follows from
this result that in order to be able to do this, it is indeed necessary to
impose this minimal property of well-behavedness.

In summary, we have established that—under some conditions
on Q—continuous-time imprecise-Markov chains, with our definition,
satisfy a number of convenient qualitative properties; in particular,
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an imprecise-Markov property and an (imprecise) time-homogeneity
property. Moreover, by establishing a correspondence between their
lower expectations and the semigroup

(

eQt
)

generated by the lower
transition rate operator Q corresponding to the set of rate matrices Q

that parameterises the imprecise-Markov chain, it follows that we can
use the algorithmic result(s) from Section 6.3.3275 to efficiently evalu-
ate their lower expectations—at least for functions that only depend on
the state at a single point in time. Finally, our choice to focus on well-
behaved processes has allowed us to characterise imprecise-Markov
chains exactly as the largest—most conservative—set(s) of stochastic
processes that satisfy all these properties.

6.5 A General Computational Method

In this section we provide a general algorithm for computing the lower
expectation of any u-measurable function, for the imprecise-Markov
chain PW

Q,M that is parameterised by a set Q of rate matrices that is
non-empty, compact, convex, and has separately specified rows, and
any non-empty set M of probability mass functions on X .

We begin by noting that, if Q is non-empty and convex, it follows
from Theorem 5.32208 that the lower expectation of PW

Q,M satisfies a law
of iterated lower expectations which, using Theorem 6.4263, can be ex-
pressed using the corresponding lower transition operators whenever
Q is additionally compact and has separately specified rows. More-
over, under these same conditions, these lower transition operators can
be identified with the semigroup (eQt) due to Proposition 6.26281. With
the aim of providing a computational method, let us consider the nu-
merical errors that are introduced when approximating the terms eQt f

numerically—e.g., using the method discussed in Section 6.3.3275—in
this application of the law of iterated lower expectations.

We first give the following result, which essentially tells us that if
we have a composition of lower transition operators that can each be
computed up to a numerical error of ε , then the total error of the com-
bined computation is simply the sum of these individual errors. Note
that we explicitly use the form of the composition used in the statement
of Theorem 6.4263. The proof can be found in Appendix 6.D331.

Lemma 6.29. Let (T s
t) be a family of lower transition operators T s

t , defined
for all t,s ∈ R≥0 with t ≤ s. Fix any u,v ∈ U⊃ /0 such that u < v and v =
t0, . . . , tn, n ∈ Z≥0, and any f ∈L (Xu∪v). Fix any ε ∈ R>0, let gn := f and,
for all i ∈ {1, . . . ,n}, let wi := u∪ {t0, . . . , ti−1}, and let gi−1 ∈ L (Xwi

) be
such that

∣

∣gi−1(xwi
)−T

ti
ti−1

gi(xwi
)
∣

∣≤ ε for all xwi
∈Xwi

, (6.15)
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and let f̃ ∈L (Xu) be such that

∣

∣ f̃ (xu)−T t0
maxug0(xu)

∣

∣≤ ε for all xu ∈Xu. (6.16)

Then it holds that5

∣

∣ f̃ (xu)−T t0
maxuT

t1
t0
· · ·T tn

tn−1
f (xu)

∣

∣≤ (n+1)ε for all xu ∈Xu.

By combining this result with the law of iterated lower expectations
expressed using lower transition operators (Theorem 6.4263), the corre-
spondence between lower transition operators and the imprecise semi-
group (eQt) (Proposition 6.26281), and the fact that we have a numerical
method to evaluate the imprecise exponentials eQt (Algorithm 1277), we
obtain a numerical method for computing the lower expectation of ar-
bitrary u-measurable functions for the imprecise-Markov chain PW

Q,M ,
provided that Q is non-empty, compact, convex, and has separately
specified rows. This method is given by Algorithm 2y.

This algorithm works by using the composition of lower transition
operators provided by Theorem 6.4263, i.e.,

EW
Q,M

[

f (Xu∪v)
∣

∣Xu = xu

]

= T t0
maxuT

t1
t0
· · ·T tn

tn−1
f (xu) ,

where (T s
t) is the family of lower transition operators corresponding

to PW
Q,M . In particular, the method iteratively resolves the operators

T
ti
ti−1

by working backwards from i = n to i = 1; this occurs on Lines 2–9
of Algorithm 2y. Starting from gn = f (Line 2), for each i ∈ {n, . . . ,1}
(Line 3), the algorithm computes T

ti
ti−1

gi(xwi
) for each xwi

∈Xwi
(Line 5),

where wi = u∪{t0, . . . , ti−1} (Line 4). Using the notation introduced in
Section 6.1260, this quantity satisfies

T
ti
ti−1

gi(xwi
) =

[

T
ti
ti−1

gi(xwi
, ·)
]

(xmaxwi
) ,

where gi(xwi
, ·) is the element of L (Xti) corresponding to the ti-

measurable function gi(xwi
,Xti). On Line 6, the algorithm computes

hxwi
:= eQ(ti−ti−1)gi(xwi

, ·) by invoking Algorithm 1277, which computes
this quantity up to a numerical error of ε/n+1. Due to Proposi-
tion 6.26281 it holds that T

ti
ti−1

= eQ(ti−ti−1), so the quantity gi−1 con-
structed on Line 7 is an element of L (Xwi

) that satisfies

gi−1(xwi
) = hxwi

(xmaxwi
) = eQ(ti−ti−1)gi(xwi

)± ε

n+1
= T

ti
ti−1

gi(xwi
)± ε

n+1
.

5As in the statement of Theorem 6.4263, we have over-expanded the composition of
these lower transition operators for clarity of exposition, but the expression as written is
only valid for n≥ 2. If n = 0 the second term should be T

t0
maxu f (xu), and if n = 1 it should

be T
t0
maxuT

t1
t0

f (xu).
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Algorithm 2 Compute EW
Q,M [ f (Xu∪v) |Xu] for any f ∈L (Xu∪v).

Input: A set Q of rate matrices that is non-empty, compact, convex,
that has separately specified rows and lower transition rate opera-
tor Q, two sequences of time points u,v ∈U⊃ /0 such that u < v, with
v = t0, . . . , tn, n ∈ Z≥0, a function f ∈L (Xu∪v), and a maximum nu-
merical error ε ∈ R>0.

Output: A function f̃ ∈ L (Xu) such that, for all xu ∈ Xu, it holds
that f̃ (xu) = EW

Q,M [ f (Xu∪v) |Xu = xu]± ε , for any non-empty set M

of probability mass functions on X .

1: function ComputeLowerExpectation(Q,u,v, f ,ε)

2: gn← f

3: for i ∈ {n, . . . ,1} do
4: wi← u∪{t0, . . . , ti−1}
5: for xwi

∈Xwi
do

6: hxwi
← ComputeExponential(Q, ti− ti−1,gi(xwi

, ·), ε/n+1)

7: gi−1(xwi
)← hxwi

(xmaxwi
)

8: end for
9: end for

10: for xu ∈Xu do
11: hxu ← ComputeExponential(Q, t0−maxu,g0(xu, ·), ε/n+1)

12: f̃ (xu)← hxu(xmaxu)
13: end for
14: return f̃

15: end function

The final loop of Algorithm 2, on Lines 10–13, repeats this same process
to evaluate the operator T

t0
maxu, and the resulting function f̃ , which is

returned by the algorithm on Line 14, then satisfies

f̃ (xu) = T t0
maxug0(xu)±

ε

n+1
= T t0

maxuT
t1
t0
· · ·T tn

tn−1
f (xu)± ε ,

using the additivity of the errors established by Lemma 6.29284.

Let us remark on several important points about this algorithm.
First, although we here use Algorithm 1277 to numerically compute the

terms eQ(ti−ti−1)gi, this can of course be replaced by a more efficient al-
gorithm, provided that the error bounds are guaranteed for each step
(assuming that we want to guarantee the overall global error of the al-
gorithm). Secondly, the runtime of the algorithm is clearly exponential
in |u∪ v|; the loops on Lines 5 and 10 iterate over the joint state spaces
Xwi

and Xu, respectively, which clearly grow exponentially as func-
tions of wi and u, respectively. Of course, this is hardly surprising: even
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specifying the function f ∈ L (Xu∪v) whose lower expectation is com-
puted by Algorithm 2 is exponentially complex in |u∪ v|, so we cannot
really expect the computation of its lower expectation to be simpler
than that; also see the discussion following Theorem 5.32208. Never-
theless, as we will demonstrate in Chapter 7335, there are classes of
functions for which more efficient algorithms can be developed.

Finally, we note that Algorithm 2 can only be used to compute
conditional lower expectations, since it requires that the collection of
time points u in the conditioning event should be non-empty. In order
to complete the discussion on general computational methods, let us
therefore also consider how to compute unconditional lower expecta-
tions. As we will see, however, this is relatively straightforward once
we have a method to compute conditional lower expectations, e.g. the
one that we provided above. To this end, let us consider the lower ex-
pectation corresponding only to the initial model, i.e. the uncertainty
model for the state of the system at time zero. Due to our developments
in Section 5.2188, and Definition 5.4189 in particular, this is described
using the set M of probability mass functions on X . We have already
encountered this exact same object in Definition 3.14114 in the context
of discrete-time processes, so let us simply extend the definition here
with some notation that makes it usable in the continuous-time setting.
For convenience, we explicitly recall how it was constructed:

Definition 6.5. For any non-empty set M of probability mass func-
tions on X , consider the map EM : L (X ) → R : f 7→ EM [ f ] from
Definition 3.14114 which was defined, for all f ∈ L (X ), by EM [ f ] :=
infp∈M ∑x∈X p(x) f (x).

For any {0}-measurable function f (X0) : Ω→ R, we let EM [ f (X0)] :=
EM [ f ], where f is the element of L (X ) corresponding to f (X0), as de-
scribed in Section 2.471.

Proposition 6.30. Let Q be a non-empty set of rate matrices, and consider
any non-empty set M of probability mass functions on X . Then, for all
p ∈M , there is some P ∈ PW

Q,M such that P(X0 = x) = p(x) for all x ∈X .

Proof. Fix any Q ∈ Q and any p ∈M ; this is always possible because
Q and M are non-empty. Because Q is a rate matrix and p is a proba-
bility mass function on X , it follows from Corollary 5.5186 that there
is some homogeneous Markov chain P ∈ PWHM with corresponding rate
matrix QP = Q, that satisfies P(X0 = x) = p(x) for all x ∈X . Because
Q ∈ Q this implies that P ∼ Q due to Proposition 5.7187 and Defini-
tion 5.3189. Moreover, because p ∈M , it follows that P ∼M due to
Definition 5.4189. Because P ∈ PWHM, this implies that P ∈ PWHM

Q,M due

to Definition 5.6190. Since PWHM
Q,M ⊆ PW

Q,M due to Proposition 5.9190, it

follows that P ∈ PW
Q,M .
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Then we have the following straightforward result.

Proposition 6.31. Let Q be a non-empty set of rate matrices, and consider
any non-empty set M of probability mass functions on X . Then, for all
f ∈L (X ), it holds that

EW
Q,M [ f (X0)] = EM [ f (X0)] .

Proof. It follows from Lemma 5.23200 (with u = /0 and v = {0}) that

EW
Q,M [ f (X0)] = inf

P∈PW
Q,M

∑
x∈X

f (x)P(X0 = x) .

Now, for any P ∈ PW
Q,M it holds that P ∼M due to Definition 5.6190,

which, by Definition 5.4189, implies that there is some p ∈M such
that p(x) = P(X0 = x) for all x ∈X . Conversely, it follows from Propo-
sition 6.30x that for all p ∈M , there is some P ∈ PW

Q,M such that

P(X0 = x) = p(x) for all x ∈X . This implies that

inf
P∈PW

Q,M

∑
x∈X

f (x)P(X0 = x) = inf
p∈M ∑

x∈X
f (x)p(x) .

Hence it follows from Definition 6.5x that

EW
Q,M [ f (X0)] = inf

P∈PW
Q,M

∑
x∈X

f (x)P(X0 = x) = inf
p∈M ∑

x∈X
f (x)p(x) = EM [ f ] .

Finally, again due to Definition 6.5x, it holds that EM [ f (X0)] = EM [ f ]
because f (X0) is clearly {0}-measurable.

So, by combining Proposition 6.31 with Definition 6.5x, we see that
the problem of computing EW

Q,M [ f (X0)] essentially reduces to a linear
minimisation problem of the function ∑x∈X p(x) f (x) over M . As with
our discussion in Section 6.3.3275 about computing Qg(x), the practi-
cal difficulty of this problem will depend strongly on the way that M

is encoded. Again, if M is specified using a finite number of linear
(in)equality constraints, then the problem can be written as a linear
program and solved using any of the available methods in the litera-
ture. We will not analyse this problem in more detail; in the remainder
of this dissertation, we will assume that this minimisation problem is
solvable for practical purposes.

Moving on, it remains to connect the computation of conditional ex-
pectations, as discussed previously, and the computation of the lower
expectation on the initial time point, in order to obtain a general com-
putational method for unconditional lower expectations. We start with
the following technical property.
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Lemma 6.32. Fix any u,v ∈ U⊃ /0 such that u ∩ v = /0 and choose any
f ∈L (Xv). Let f̃ ∈ L (Xu∪v) be defined as f̃ (xu∪v) := f (xv) for all
xu∪v ∈Xu∪v. Then it holds that f (Xv)(ω) = f̃ (Xu∪v)(ω) for all ω ∈ Ω, and
hence f (Xv) = f̃ (Xu∪v).

Proof. Fix any ω ∈ Ω. Then it follows from Definition 2.1572 that
f̃ (Xu∪v)(ω) = f̃ (ω|u∪v) = f (ω|v) = f (Xv)(ω), where the second equality
used the definition of f̃ . Because this is true for all ω ∈ Ω, the result
follows.

The following proposition now provides the required connection
between unconditional lower expectations, conditional lower expecta-
tions, and the lower expectation for the initial time point. Since we
have already discussed above when and how we can compute the two
lower expectations on the right-hand side of Equation (6.17), this result
immediately gives us a way to also compute the unconditional lower
expectation on the left-hand side.

Theorem 6.33. Let Q be a non-empty and convex set of rate matrices that
has separately specified rows, and consider any non-empty set M of prob-
ability mass functions on X . Then for all u ∈ U⊃ /0 and all f ∈L (Xu), it
holds that

EW
Q,M [ f (Xu)] = EM

[

EW
Q,M [ f (Xu) |X0]

]

. (6.17)

Proof. We start by considering three cases. First, if 0 /∈ u let u′ :=
{0} ∪ u and let f ′ ∈ L (Xu′) be defined, for all x{0}∪u ∈ X{0}∪u, as
f ′(x{0}∪u) := f (xu). Because 0 /∈ u it then follows from Lemma 6.32 that
f ′(Xu′) = f (Xu) and, because u 6= /0, it follows that u′ ⊃ {0}. Conversely,
if 0 ∈ u, we consider two more cases. If u = {0}, then fix any t ∈R>0, let
u′ := u∪{t}, and let f ′ ∈ L (Xu′) be defined, for all xu∪{t} ∈Xu∪{t}, as
f ′(xu∪{t}) := f (xu). Because u = {0} and t > 0 it then follows that u′ ⊃{0}
and, from Lemma 6.32 that f ′(Xu′) = f (Xu). The final case that we con-
sider is when 0 ∈ u and u 6= {0}; then simply let u′ := u and let f ′ := f ;
then we trivially have that f ′(Xu′) = f (Xu) and u ⊃ {0}. Hence, in all
cases, it holds that u′ ⊃ {0}, and

EW
Q,M [ f (Xu)] = EW

Q,M [ f ′(Xu′)] ,

and
EW

Q,M [ f (Xu) |X0] = EW
Q,M [ f ′(Xu′) |X0] .

Therefore, it suffices to prove the statement for f ′ and u′, i.e. we will
show that

EW
Q,M [ f ′(Xu′)] = EM

[

EW
Q,M [ f ′(Xu′) |X0]

]

.

To prove this statement we will use Theorem 5.32208, but unfor-
tunately the notation of the time points that we are currently using
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might make this a bit ambiguous. To be explicit in what follows, let
w := u′ \{0}, v := {0}, and let the u in the statement of Theorem 5.32208 be
empty. Due to our construction of u′, it follows that w 6= /0 and, clearly,
u′ = w∪v∪ /0. Because Q is non-empty, convex, and has separately spec-
ified rows, it follows from Theorem 5.32208, using the notation estab-
lished above, that

EW
Q,M [ f ′(Xu′)] = EW

Q,M [ f ′(Xw∪v∪ /0) |X/0]

= EW
Q,M

[

EW
Q,M [ f ′(Xw∪v∪ /0) |Xv] |X/0

]

= EW
Q,M

[

EW
Q,M [ f ′(Xu′) |X0]

]

.

The inner conditional lower expectation EW
Q,M [ f ′(Xu′) |X0] is a {0}-

measurable function, whence it follows from Proposition 6.31288 that

EW
Q,M

[

EW
Q,M [ f ′(Xu′) |X0]

]

= EM

[

EW
Q,M [ f ′(Xu′) |X0]

]

,

which concludes the proof.

6.6 A Numerical Example

Our aim in this final section of this chapter is twofold. First, in Sec-
tion 6.6.1, we will numerically illustrate the computational methods
developed in Sections 6.3.3275 and 6.5284, to show how they can be
used to compute lower expectations for the continuous-time imprecise-
Markov chain PW

Q,M . Secondly, in Section 6.6.2297, we will illustrate by
means of a continuation of this example that the lower expectation for
PW

Q,M does not coincide with the lower expectation for PWM
Q,M , thereby

finally showing that the first inequality in Proposition 5.22199 can in-
deed be strict.

6.6.1 Sets of General Processes

Let us start by setting up the model that will serve as the basis for the
running example in this section.

Example 6.1. Fix an ordered binary state space X := {a,b}, consider
the set of transition rate matrices

Q :=

{[

−λa λa

λb −λb

]

: λa ∈ [λa,λa], λb ∈ [λb,λb]

}

, (6.18)

where λa,λa,λb,λb ∈ R≥0 are such that λa < λa and λb < λb, and let Q

denote the lower transition rate operator corresponding to Q.
We will begin by analysing some properties of this set Q. First,

clearly, every element Q ∈Q is a rate matrix (c.f. Definition 4.4150) that
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6.6 A Numerical Example

is completely determined by the choice of two scalars λa,λb, which take
their values in [λa,λa] and [λb,λb], respectively. Because these intervals
are non-empty and bounded, it follows that Q is also non-empty and,
using Proposition 4.8152, that Q is bounded. Moreover, because these
intervals are closed and convex, one can relatively easily show that Q is
also closed (with respect to the operator norm; see Proposition A.8376),
as well as convex; in the interest of brevity, however, we omit the proof
here. Because Q is both closed and bounded, it follows from Corol-
lary A.12378 that Q is compact. Finally, because the values of λa and λb

can be chosen independently from one another, it follows that Q has
separately specified rows (c.f. Definition 5.7193).

In summary, we have found that Q is a non-empty, compact, and
convex set of rate matrices that has separately specified rows, and that
has Q as its corresponding lower transition rate operator. Therefore, it
follows from Proposition 6.12269 that Q = QQ.

Next, let us turn our attention to some properties of this Q. By
Definition 6.3267, for any f ∈ L (X ) and any x ∈ X , we have that
Q f (x) := infQ∈Q Q f (x). In the exceedingly simple case of a binary state
space X that we are considering here, it turns out that we can derive
a very simple explicit expression for the value of Q in any f ∈L (X ).
In particular, some straightforward algebra reveals that, for any Q ∈Q

and any f ∈L (X ), writing the elements of L (X ) as column vectors,

Q f =

[

Q f (a)
Q f (b)

]

=

[

λa

(

f (b)− f (a)
)

λb

(

f (a)− f (b)
)

]

, (6.19)

where λa and λb are the two parameters determining Q. Hence we see
that, minimising this over Q, we obtain

Q f (a) =

{

λa

(

f (b)− f (a)
)

if f (a)≥ f (b), and
λa

(

f (b)− f (a)
)

otherwise
(6.20)

and

Q f (b) =

{

λb

(

f (a)− f (b)
)

if f (a)≤ f (b), and
λb

(

f (a)− f (b)
)

otherwise.
(6.21)

Using these expressions, we can easily evaluate Q in any function
f ∈L (X ). For instance, we may consider the indicators Ia and Ib of
{a} and {b}, respectively, and compute that

QIa(a) =−λa and QIb(b) =−λb .

Hence, using Property LR5266—or rather,6 using [32, Proposition 4]—

6As we already noted in Section 6.3.3275, Erreygers and De Bock [32, Proposition 4]
have shown that the inequality LR5266 is actually an equality.
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we can compute the norm
∥

∥Q
∥

∥ of Q as

∥

∥Q
∥

∥= 2max{λa,λb}. (6.22)

In order to complete setting up this example, it only remains to choose
numerical values for the domains of λa and λb. In the remainder of this
running example, we will set

λ a :=
1

2
, λ a := 2, λ b :=

1

2
, λ b := 1 .

Hence, due to Equation (6.22), we get
∥

∥Q
∥

∥ = 4. Moreover, having de-
termined a way to evaluate Q and having computed its norm, we now
have all the parts to be able to use Algorithm 1277 to evaluate eQt f for
any t ∈ R≥0 and any f ∈L (X ), up to any precision ε ∈ R>0. ♦

The following example illustrates the use of Algorithm 1277 to
compute the lower expectations of some specific functions, for the
continuous-time imprecise-Markov chain PW

Q
.

Example 6.2. Let X , Q, and Q be as in Example 6.1290. Let t := 1 and
let s := 2. It will be the aim of this example to compute the quantities

EW
Q

[

Iy(Xs) |Xt = x
]

,

for any x,y ∈X , and up to a numerical error of ε := 10−3.
First, for any x,y ∈X , it follows from Corollary 6.25280 (with u = /0

and f = Iy) that

EW
Q

[

Iy(Xs) |Xt = x
]

=
[

eQ(s−t)Iy

]

(x) ,

so what we need to do is evaluate eQ(s−t) in the function Iy, which we
know can be done using Algorithm 1277. It is easily seen that

∥

∥Iy

∥

∥

v
= 1

for any y ∈ X ,7 and we already computed that
∥

∥Q
∥

∥ = 4 in Exam-
ple 6.1290.

So now first let y := a. The minimum number of steps n that we need
to execute Algorithm 1277 is then

n :=
⌈

max
{

(

(s− t)2
∥

∥Q
∥

∥

2 ‖Ia‖v

)

/2ε, (s− t)
∥

∥Q
∥

∥

}⌉

=⌈max{8000, 4}⌉= 8000 .

Following Algorithm 1277, we first set g0 := Ia, and then compute

g1 := g0 +
s− t

n
Qg0 .

7Recall from e.g. Proposition 6.19276 that ‖ f‖v := max f −min f .
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Since g0(a) = Ia(a) = 1 and g0(b) = Ia(b) = 0, it holds that g0(a)> g0(b),
and hence it follows from Equations (6.20)291 and (6.21)291 in Exam-
ple 6.1290 that, using vector notation,

Qg0 =

[

Qg0(a)
Qg0(b)

]

=

[

λ a

(

g0(b)−g0(a)
)

λ b

(

g0(a)−g0(b)
)

]

=

[

−2
1/2

]

.

Since (s− t) = 1 and n = 8000, it now follows that

g1 =

[

g1(a)
g1(b)

]

=

[

g0(a)+ 1/8000Qg0(a)
g0(b)+ 1/8000Qg0(b)

]

=

[

1− 2/8000

0+ 1/16000

]

=

[

7998/8000

1/16000

]

.

We now proceed iteratively with the execution of Algorithm 1. On the
next step, we want to compute g2 = g1 + (s−t)/nQg1, and since clearly
g1(a)> g1(b), we now find from Equations (6.20)291 and (6.21)291 that

Qg1 =

[

Qg1(a)
Qg1(b)

]

=

[

λ a

(

g1(b)−g1(a)
)

λ b

(

g1(a)−g1(b)
)

]

=

[

2
(

1/16000− 7998/8000
)

1/2
(

7998/8000− 1/16000
)

]

,

and then compute

g2 =

[

g2(a)
g2(b)

]

=

[

g1(a)+ 1/8000Qg1(a)
g1(b)+ 1/8000Qg1(b)

]

=

[

12793601/12800000

6399/51200000

]

.

At this point the usefulness of the numerical part of this example is
probably starting to break down, so let us skip to the end of the execu-
tion of Algorithm 1277. After 7997 more iterations of the above process,
we have just computed g7999 = gn−1 to be, approximately,

gn−1 =

[

gn−1(a)
gn−1(b)

]

≈
[

0.2656629

0.1835843

]

The condition gn−1(a)> gn−1(b) again allows us to evaluate Qgn−1 using
Equations (6.20)291 and (6.21)291, so that we may finally compute

gn = gn−1 +
1

8000
Qgn−1 ≈

[

0.2656423

0.1835894

]

.

It now follows from Proposition 6.19276 that
∥

∥

∥
gn− eQ(s−t)Ia

∥

∥

∥
≤ ε ,

and hence, due to Corollary 6.25280, that, up to an error of at most
ε = 10−3, we have

EW
Q

[

Ia(Xs) |Xt = a
]

≈ 0.266 and EW
Q

[

Ia(Xs) |Xt = b
]

≈ 0.184 .

Analogously repeating the above process using y := b yields that

EW
Q

[

Ib(Xs) |Xt = a
]

≈ 0.259 and EW
Q

[

Ib(Xs) |Xt = b
]

≈ 0.482 ,

up to an error no more than ε = 10−3. ♦
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The previous example demonstrated how to compute lower expec-
tations of functions that depend on the state at only a single time point.
In the following example we demonstrate the use of Algorithm 2286 to
compute the lower expectation of a function that depends onmore than
one time point, for the continuous-time imprecise-Markov chain PW

Q
.

Example 6.3. Let X , Q, and Q be as in Example 6.1290, and let
t,s ∈ R>0 be as in Example 6.2292. It will be the aim of this example to
compute the lower probability—for the imprecise-Markov chain PW

Q
—

of the event (Xt = Xs) conditional on the state of the system at time zero.
That is, we will be interested in the lower probability that the under-
lying system, at time s, is in the same state that it is in at time t, given
some starting state of the system. As explained in Section 5.4198, we
can write this quantity, for some x ∈X , as

PW
Q(Xt = Xs |X0 = x) = EW

Q

[

IXt=Xs

∣

∣X0 = x
]

,

where IXt=Xs is the indicator of the event (Xt = Xs), i.e. the function that
is defined, for all ω ∈Ω, as

IXt=Xs(ω) :=

{

1 if ω(t) = ω(s),
0 otherwise.

Since this function only depends on the time points t and s, it is clearly
{t,s}-measurable (c.f. Definition 2.1472). Hence, for ease of notation,
we can replace it with the function f ′ ∈ L (X{t,s}) that is defined, for
all xt ,xs ∈X , as

f ′(xt ,xs) :=

{

1 if xt = xs,
0 otherwise.

Then f ′(Xt ,Xs) = IXt=Xs , and the quantity that we want to compute is

EW
Q

[

f ′(Xt ,Xs)
∣

∣X0 = x
]

,

for some x ∈X . The method by which we will compute this quantity
is given by Algorithm 2286. However, that algorithm requires that the
function of interest also depends on the state of the system in the con-
ditioning event (so state X0 in our case), which f ′ clearly does not. The
solution is offered by Lemma 6.32289—with u = {0} and v = {t,s}—
which tells us that we can instead use the trivial extension of f ′ to
f ∈ L (X{0,t,s}), defined for all x0,xt ,xs ∈X as f (x0,xt ,xs) := f ′(xt ,xs).
Since 0 < t < s it holds that {0}∩{t,s}= /0, whence Lemma 6.32289 im-
plies that f (X0,Xt ,Xs) = f ′(Xt ,Xs), so that

EW
Q

[

f ′(Xt ,Xs)
∣

∣X0 = x
]

= EW
Q

[

f (X0,Xt ,Xs)
∣

∣X0 = x
]

,

for any x ∈X , and we can now proceed by computing the quantity on
the right-hand side of this equation.
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Let (T r
q) denote the family of lower transition operators correspond-

ing to PW
Q
. We know from Example 6.1290 that Q is non-empty, com-

pact, convex, has separately specified rows, and has Q as its correspond-
ing lower transition rate operator. Since Q is compact, it is bounded
by Corollary A.12378. Hence, it follows from Proposition 6.26281 that
T r

q = eQ(r−q) for all q,r ∈R≥0 with q≤ r. Moreover, it follows from The-
orem 6.4263 that, for any x ∈X ,

EW
Q

[

f (X0,Xt ,Xs) |X0 = x
]

=
[

T t
0T s

t f
]

(x) , (6.23)

using the usual convention for applying T s
t to f ∈L (X{0,t,s}) and T t

0 to
T s

t f ∈L (X{0,t}); see Section 6.1260 for details.
In the notation of Algorithm 2286, we now have u = {0} and v =

{t0, tn} = {t0, t1} = {t,s}, so that n = 1. Numerically, we will aim to
compute the quantity of interest up to a maximum numerical error of
ε := 2 ·10−3. Executing Algorithm 2286, we start by setting gn = g1 = f ,
and identify the time points wn = w1 = u∪ {t0, . . . , tn−1} = {0, t}. For
all x{0,t} ∈X{0,t} we now numerically compute (see Line 5–8 of Algo-
rithm 2286) the quantity

hx{0,t} ≈ eQ(s−t)gn(x{0,t}, ·) (6.24)

guaranteeing a numerical error of at most ε/2 = 10−3, and then set the
value of gn−1 ∈L (X{0,t}) in x{0,t} as

gn−1(x{0,t}) := hx{0,t}(xt) . (6.25)

Let us consider these steps in more detail. In Equation (6.24), we apply
eQ(s−t) to the function gn(x{0,t}, ·), that is, the function gn = f projected
onto L (Xs) by fixing its first two arguments to be x{0,t}. From the
definition of f , we therefore have that, for any xs ∈Xs,

gn(x{0,t},xs) = f (x0,xt ,xs) = f ′(xt ,xs) =

{

1 if xt = xs

0 otherwise.

We should note several things here. First, the value of gn in x{0,t,s} does
not depend on x0; this should be obvious since gn = f and f was defined
by extending f ′ in such a way that its value was independent of x0.
Secondly, for any xt ∈Xt (and any x0 ∈X0), we see that

Ixt (xs) =

{

1 if xt = xs

0 otherwise
= gn(x{0,t},xs) . (6.26)

Therefore, by combining Equations (6.25), (6.24), and (6.26)—in that
order—we find, for any x{0,t} ∈X{0,t}, that

gn−1(x{0,t})≈
[

eQ(s−t)gn(x{0,t}, ·)
]

(xt) = eQ(s−t)Ixt (xt) .
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Now observe that the quantities on the right-hand side of this equation,
are exactly the quantities that we computed in Example 6.2292 up to the
desired numerical error of 10−3. Hence, referring back to this previous
example, for any x0 ∈X0 we find that

gn−1(x0,a)≈ 0.266 and gn−1(x0,b)≈ 0.482 . (6.27)

At this point we have finished the computations outlined on Lines 3–
9 of Algorithm 2286—having computed g0—and it remains to perform
the iterations specified on Lines 10–13.

Since u = {0}, we first fix any x0 ∈X0, and now compute, up to a
maximum numerical error of ε/2 = 10−3, the quantity

hx0
≈ eQ(t−0)g0(x0, ·) (6.28)

and then set
f̃ (x0) := hx0

(x0) . (6.29)

Since we know that the value of g0 does not actually depend on x0, this
is relatively straightforward. We simply have

gx0
(x0, ·) =

[

0.266

0.482

]

,

so in order to compute hx0
we simply execute Algorithm 1277 oncemore.

As before, we have
∥

∥Q
∥

∥= 4, but now have
∥

∥gx0
(x0, ·)

∥

∥

v
= 0.482−0.266 =

0.216. Hence, we can execute Algorithm 1277 with

⌈max{(16 ·0.216)/2ε, 4}⌉= 6912

iterations. This proceeds completely analogously to our computations
in Example 6.2292, so that we eventually find that

eQ(t−0)g0(x0, ·)≈
[

0.322

0.370

]

,

up to a numerical error of 10−3. Since we already argued that these
values are independent of the choice of x0 ∈X0, we find that

f̃ =

[

0.322

0.370

]

.

The additivity of the errors, as guaranteed by Lemma 6.29284, ensures
that f̃ (x0)will not differ from T t

0T s
t f (x0) by more than the desired max-

imum numerical error of 2 · 10−3 = ε . Hence, substituting through the
earlier simplifications of the quantity of interest, we conclude that

PW
Q(Xt = Xs |X0 = a)≈ 0.322 and PW

Q(Xt = Xs |X0 = b)≈ 0.370 ,

up to a numerical error of at most 2 ·10−3. ♦
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6.6.2 A Counterexample for Sets of Markov Chains

We concluded the previous section with Example 6.3294, where we il-
lustrated how we can use the machinery developed in this chapter to
compute inferences for the imprecise-Markov chain PW

Q
, when these in-

ferences depend on more than one time point.

The goal of this current section is to show that we cannot in gen-
eral employ the same methods to compute such inferences for the
imprecise-Markov chain PWM

Q
. To put it differently: the methods that

we have developed are valid for PW
Q,M , but up until this point we have

not yet shown that the lower expectations for PWM
Q,M and PW

Q,M can actu-
ally be different. Had they been the same—which, again, unfortunately
they are not—we could have also used these same methods to compute
lower expectations for PWM

Q,M . So, our current aim is to show that the
first inequality in Proposition 5.22199 can indeed be strict, implying
that these lower expectations do not in general agree.

Establishing this property will, unfortunately, be fairly involved;
since the crucial results that we have derived so far only apply to PW

Q,M ,
we cannot directly use them to obtain properties for PWM

Q,M . Therefore,
we will start by deriving some ad hoc results for the special case that
we are considering here, that is, where X is binary and Q is of the
form (6.18)290.

Before we begin, however, let us provide some intuition for what
we are about to prove. The function for which we will show that the
two models have a different lower expectation, is the function IXt=Xs

for which we were able to compute the lower expectation with respect
to the imprecise-Markov chain PW

Q
in Example 6.3294. The intuitive

reason that we cannot do this efficiently when working with sets of
Markov chains is the following. In order to compute the lower expecta-
tion EWM

Q [IXt=Xs |X0 = x0], we must effectively minimise the probability
that the system is in the same state at time t and s; put differently, we
should here choose a precise model P so as to “steer away” from the
state Xt that is occupied at time t. This “steering away” is done by
choosing the dynamic behaviour of the system between the time points
t and s. However, in the computation of EWM

Q [IXt=Xs |X0 = x], we do not
know the state Xt at time t > 0, whence we must do this “steering away”
for every possible state at time t jointly. The crux is now that Markov
chains, by their Markovian nature, will “forget” at time r > t the state
that they had occupied at time t, and so the dynamic behaviour at the
time points r ∈ (t,s) cannot be chosen to depend on the state Xt . Hence,
the minimisation with respect to the set of Markov chains cannot attain
the minimum that is achieved over a set of processes that can depend
intricately on their historic behaviour—and that can, in particular, ac-
count for the historic state Xt . The remainder of this section is devoted
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to formalising this intuition and proving the above-mentioned inequal-
ity, in the form of a continued running example.

The first step to this end is an alternate formulation of some results
in Example 6.1290; we there already derived explicit expressions for
Q f , but we will now show that Q f is obtained by some Q f , where Q is
chosen from a subset of two rate matrices in Q, depending on f .

Example 6.4. Let X , Q, and Q be as in Example 6.1290. Consider the
two rate matrices

Qa≥b :=

[

−λ a λ a

λ b −λ b

]

and Qa≤b :=

[ −λ a λ a

λ b −λ b

]

. (6.30)

Inspection of Equation (6.18)290 shows that Qa≥b,Qa≤b ∈Q. Next, fix
any f ∈L (X ). Then, using the properties of matrix-vector multipli-
cation, we have

Qa≥b f =

[

Qa≥b f (a)
Qa≥b f (b)

]

=

[

λ a

(

f (b)− f (a)
)

λ b

(

f (a)− f (b)
)

]

and

Qa≤b f =

[

Qa≤b f (a)
Qa≤b f (b)

]

=

[

λ a

(

f (b)− f (a)
)

λ b

(

f (a)− f (b)
)

]

.

Comparing this to Equations (6.20)291 and (6.21)291, we see that

Q f =

{

Qa≥b f if f (a)≥ f (b),
Qa≤b f otherwise.

(6.31)

We conclude that Q f is obtained by Q f , with Q ∈ {Qa≥b,Qa≤b} ⊆ Q,
depending on whether f (a)≥ f (b) or f (a)< f (b). ♦

The next property that we need is that, for any t ∈ R≥0 and any
f ∈ L (X ), it holds that eQt f = eQt f , where Q ∈ {Qa≥b,Qa≤b} is such
that Q f = Q f , as in Example 6.4. Put differently, this tells us that—
in the very specific case that we are considering here—the generalised
exponential eQt f evaluated in f , coincides with a (normal) matrix ex-
ponential eQt f evaluated in f , with Q depending only on f .

Since we will be relying heavily on an analysis of matrix exponen-
tials, let us start by stating a closed-form expression that holds in the
binary-state case that we are considering here.

Lemma 6.34 ([108, Theorem 2]). Let X = {a,b} be an ordered binary
state space, fix any λa,λb ∈ R>0, and define the 2×2 rate matrix Q by

Q :=

[

−λa λa

λb −λb

]

.
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Then for all t ∈ R>0 it holds that

eQt = I +
1− e−t(λa+λb)

λa +λb

Q .

From this result, it immediately follows that for any f ∈L (X ), it
holds that

eQt f = f +
1− e−t(λa+λb)

λa +λb

Q f , (6.32)

which is an equality that we will use in Example 6.5 below.
Let us now show that, as already claimed above, the generalised

exponential coincides with such precise exponentials under the condi-
tions of the running example.

Example 6.5. Let X , Q, and Q be as in Example 6.1290. For any f ∈
L (X ), let λ f ∈ R>0 be defined by

λ f :=

{

λ a +λ b if f (a)≥ f (b),

λ a +λ b otherwise.

As shown in e.g. [32,108], it then holds for any t ∈ R≥0 that

eQt f = f +
1− e−tλ f

λ f

Q f = f +
1− e−tλ f

λ f

Q f . (6.33)

where Q ∈ {Qa≥b,Qa≤b} is such that Q f = Q f , as in Example 6.4. More-
over, for this same matrix Q, it follows from Lemma 6.34, and from
Equation (6.32) in particular, that

eQt f = f +
1− e−tλ f

λ f

Q f ,

which implies that eQt f = eQt f . ♦

In summary, we have shown that eQt f is obtained by eQt f , with
Q ∈ {Qa≥b,Qa≤b} such that Q f = Q f . Up to this point these re-
sults have been phrased in terms of (generalised) exponentials, i.e.
we have only shown an identity between operators. However,
this result also has an interesting interpretation in the context of
imprecise-Markov chains: since we know from Corollary 6.25280
that eQt f (x) = EW

Q,M

[

f (Xt) |X0 = x
]

, and since we know from Equa-
tion (5.15)205 that

EWHM
Q,M

[

f (Xt) |X0 = x
]

= inf
Q∈Q

eQt f (x) ,
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Example 6.5x and Proposition 5.22199 together imply that

EW
Q,M

[

f (Xt) |X0 = x
]

= EWHM
Q,M

[

f (Xt) |X0 = x
]

, (6.34)

under—and we really want to emphasize this point—the assumptions
made in Examples 6.1290 and 6.5x, and with M an arbitrary non-empty
set of probability mass functions on X . Specifically, the fact that this f

only depends on the state at a single time point t, together with the fact
that we are dealing with a binary state space, are the crucial assump-
tions that lead to this property; as we have already established in Ex-
ample 5.3205, where we used a ternary state space, the identity (6.34)
does not hold in general, even for functions that only depend on the
state at a single time point.

Before moving on, it will be useful to establish that the quantities
eQtIx are strictly positive for all t ∈ R>0 and all x ∈X , as shown in the
following example.

Example 6.6. Let X , Q, and Q be as in Example 6.1290, and let
Qa≥b,Qa≤b be as in Example 6.4298. It holds that Ia(a) > Ia(b) and
Ib(a) < Ib(b), and therefore we know from Example 6.4298 that QIa =
Qa≥bIa and QIb = Qa≤bIb. Now fix any t > 0. Then we know from Ex-

ample 6.5x that eQtIa = eQa≥btIa and eQtIb = eQa≤btIb.
Using the closed-form expression from Lemma 6.34298, and writing

γa := λ a +λ b, it follows after some straightforward algebra that

eQtIa = eQa≥btIa =

[

1− 1−e−tγa

γa
λ a

1−e−tγa

γa
λ b

]

.

Since γa > λ a > 0 and t > 0, we find that eQtIa(a)> 0 and eQtIa(b)> 0.
Similarly, writing γb := λ a +λ b, Lemma 6.34298 implies that

eQtIb = eQa≤btIb =

[

1−e−tγb

γb
λ a

1− 1−e−tγb

γb
λ b

]

.

Since γb > λ b > 0 and t > 0, we find that eQtIb(a)> 0 and eQtIb(b)> 0. ♦

Let us now consider the imprecise-Markov chain PWM
Q

. We know

from Corollary 6.25280 that eQt f (x) = EWM
Q

[

f (Xt) |X0 = x
]

, or in other

words, that the lower expectation of f for PWM
Q

is given by eQt f (x); and
therefore, due to Example 6.5x, by eQt f (x), with Q depending only on
f in the sense that Q f = Q f . Since, by Equation (5.5)191, Q ∈Q induces

a homogeneous Markov chain P ∈ PWHM
Q

with characterising rate ma-
trix QP = Q, (with the initial distribution chosen arbitrarily), and since
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PWHM
Q

⊆ PWM
Q

by Proposition 5.9190, this implies that the lower expecta-

tion EWM
Q

[

f (Xt) |X0 = x
]

is reached by some P ∈ PWM
Q

. That is, we know

that there is some P ∈ PWM
Q

with conditional expectation EP, such that

EWM
Q

[

f (Xt) |X0 = x
]

= EP

[

f (Xt) |X0 = x
]

.

In particular, due to the above, we know that this lower expectation
is always reached by one of two homogeneous Markov chains, viz.
the ones characterised by the rate matrices Qa≥b and Qa≤b. However,
this does not immediately imply that these are the only two Markov
chains that reach the lower expectation. Hence, our next goal will
be to strengthen this result, in the following sense: we will show
that, provided that f (a) 6= f (b), any Markov chain P ∈ PWM

Q
that sat-

isfies EWM
Q

[

f (Xs) |Xt = x
]

= EP

[

f (Xs) |Xt = x
]

for some x ∈ X , has a

corresponding transition matrix that satisfies PT s
t = eQ(s−t), with Q ∈

{Qa≥b,Qa≤b} such that Q f = Q f . Note that we here also generalise the
time interval of the inference from [0, t] to [t,s], which will be helpful
down the line.

To this end, we first need a relatively straightforward—if a bit
abstract—property of transition matrices in the context of binary state
spaces. Essentially, this result tells us that the images of a non-constant
function f ∈L (X ) under two transition matrices are different, when-
ever these transition matrices are different.

Example 6.7. Let X = {a,b} be a binary state space, fix any f ∈L (X )
such that f (a) 6= f (b), and let T,S be two (2×2) transition matrices such
that T 6= S. We will establish that T f 6= S f .

Since T 6= S there is some x ∈X such that T (x, ·) 6= S(x, ·). In turn,
this means that there is some y∈X such that T (x,y) 6= S(x,y). However,
because T,S are transitionmatrices, it follows fromDefinition 3.591 that
T (x,a) = 1−T (x,b) and S(x,a) = 1−S(x,b), so together this implies that
T (x,a) 6= S(x,a) and T (x,b) 6= S(x,b).

Now let z ∈ X be such that f (z) = max f , and let y ∈ X be such
that y 6= z; this is clearly always possible since X is binary. Using the
variation norm ‖ f‖v = max f −min f , it follows that

T f (x) = T (x,y) f (y)+T (x,z) f (z)

= T (x,y)min f +T (x,z)max f

= T (x,y)min f +T (x,z)min f −T (x,z)min f +T (x,z)max f

= min f +‖ f‖v T (x,z) ,

where in the last equality we used that T satisfies Property T191. Com-
pletely analogously, we find that S f (x) = min f + ‖ f‖v S(x,z). Since
f (a) 6= f (b) it holds that ‖ f‖v 6= 0, and since we already know that
T (x,z) 6= S(x,z), it follows that T f 6= S f . ♦
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Let us now prove that, as claimed above, any Markov chain in PWM
Q

whose conditional expectation EP[ f (Xs) |Xt = x] agrees with the lower
expectation EWM

Q [ f (Xs) |Xt = x] for some x ∈ X , has a corresponding
transition matrix T s

t that satisfies T s
t = eQ(s−t), where Q ∈ {Qa≥b,Qa≤b}

is such that Q f = Q f ; provided, again, that the specific assumptions of
the running example are satisfied.

Example 6.8. Let X ,Q, and Q be as in Example 6.1290, and let
Qa≥b,Qa≤b be as in Example 6.4298. Let f ∈ L (X ) be such that
f (a) 6= f (b). Let t,s ∈ R>0 be such that t < s, and let P ∈ PWM

Q
be a

Markov chain with corresponding transition matrix T s
t such that, for

some x ∈X , it holds that T s
t f (x) = eQ(s−t) f (x). Let Q ∈ {Qa≥b,Qa≤b} be

such that Q f = Q f ; this is possible by Example 6.4298. Moreover, we
have seen in Example 6.5299 that then eQ(s−t) f = eQ(s−t) f , and hence it
also holds that T s

t f (x) = eQ(s−t) f (x). We will now show that T s
t = eQ(s−t).

We start by showing that T s
r = eQ(s−r) for all r ∈ (t,s), where T s

r is the
transition matrix corresponding to P. Assume ex absurdo that there is
some r ∈ (t,s) such that T s

r 6= eQ(s−r). Because f (a) 6= f (b), as we have
seen in Example 6.7x, this implies that also T s

r f 6= eQ(s−r) f .

Because T s
r corresponds to P, and since P ∈ PWM

Q
, it follows from

Proposition 5.25201 that for all y ∈X , it holds that

T s
r f (y)≥ EWM

Q [ f (Xs) |Xr = y] = eQ(s−r) f (y) ,

where we used Corollary 6.25280 for the equality. Because Q ∈
{Qa≥b,Qa≤b} is such that Q f = Q f , it follows from Example 6.5299 that

eQ(s−r) f = eQ(s−r) f . By combining the above properties, it follows that

there must be some y ∈X such that T s
r f (y) > eQ(s−r) f (y) = eQ(s−r) f (y).

Let y′ ∈X be such that y′ 6= y.

Next let T r
t be the transition matrix corresponding to P that contains

the transition probabilities over the time interval [t,r]. Then, as we
know from Proposition 5.1183 and Definition 4.6156, it holds that T s

t =
T r

t T s
r . Furthermore, since P ∈ PWM

Q
, it follows from Proposition 5.25201

and Corollary 6.25280 that, for any g ∈L (X ) and any z ∈X ,

T r
t g(z)≥ eQ(r−t)g(z) . (6.35)

Hence in particular, we find that

T r
t (x,y) = T r

t Iy(x)≥ eQ(r−t)Iy(x)> 0 ,

where for the strict inequality we used that t < r, whence (r− t) > 0,
together with the results derived in Example 6.6300.
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By combining the above properties, we now find that

T s
t f (x) = T r

t T s
r f (x)

= T r
t (x,y)T

s
r f (y)+T r

t (x,y
′)T s

r f (y′)

> T r
t (x,y)e

Q(s−r) f (y)+T r
t (x,y

′)T s
r f (y′)

≥ T r
t (x,y)e

Q(s−r) f (y)+T r
t (x,y

′)eQ(s−r) f (y′)

= T r
t eQ(s−r) f (x)≥ eQ(r−t)eQ(s−r) f (x) = eQ(s−t) f (x) ,

where we used that T r
t (x,y) > 0 and T s

r f (y) > eQ(s−r) f (y) for the strict

inequality, that T s
r f (y′) ≥ eQ(s−r) f (y′) for the first non-strict inequality,

Equation (6.35) for the final inequality, and Proposition 6.17273 for the
final equality. Hence we have found that T s

t f (x) > eQ(s−t) f (x), which is

a contradiction since P ∈ PWM
Q

was selected so that T s
t f (x) = eQ(s−t) f (x).

Hence our assumption must be wrong, and it must hold that T s
r =

eQ(s−r) for all r ∈ (t,s). It remains to establish the desired equality in
the limit where r goes to t.

So fix any ε . Because P ∈ PWM
Q

it holds that P ∼ Q, which means
that ∂T t

t ⊆ Q. Because P is well-behaved, it follows from Proposi-
tion 4.23171 that there is some δ > 0 such that, for all 0 < ∆ < δ , there
is some Q′ ∈ ∂T t

t ⊆Q such that
∥

∥

∥
T t+∆

t − (I +∆Q′)
∥

∥

∥
< ∆ε . (6.36)

So fix any such 0 < ∆ < δ with t +∆ < s and a corresponding Q′ ∈ Q,
and let r := t +∆; then r ∈ (t,s) and ∆ = r− t. It now follows that

∥

∥

∥
T s

t − eQ(s−t)
∥

∥

∥
=
∥

∥

∥
T r

t T s
r − eQ(r−t)eQ(s−r)

∥

∥

∥

≤
∥

∥

∥
T r

t − eQ(r−t)
∥

∥

∥
+
∥

∥

∥
T s

r − eQ(s−r)
∥

∥

∥

=
∥

∥

∥
T t+∆

t − eQ∆
∥

∥

∥

=
∥

∥

∥
T t+∆

t − (I +∆Q′)+(I +∆Q′)− eQ∆
∥

∥

∥

≤
∥

∥

∥
T t+∆

t − (I +∆Q′)
∥

∥

∥
+∆

∥

∥Q′
∥

∥+
∥

∥

∥
I− eQ∆

∥

∥

∥

≤ ∆ε +∆
∥

∥Q′
∥

∥+∆‖Q‖ ≤ ∆ε +2∆‖Q‖ ,

where for the first inequality we used Lemma B.5393, which we can
do because all matrices involved are transition matrices; for the sec-
ond equality we used that ∆ = r− t and that ‖T s

r − eQ(s−r)‖= 0 because,
as established above, T s

r = eQ(s−r) since r ∈ (t,s); for the third inequal-
ity we used Equation (6.36) and Lemma B.10394; and for the final in-
equality we used that Q,Q′ ∈Q and hence ‖Q‖ ≤ ‖Q‖ and ‖Q′‖ ≤Q.
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Because ε and ‖Q‖ are bounded and independent of ∆, and because
this inequality holds for all 0 < ∆ < δ with t +∆ < s, this implies that
‖T s

t − eQ(s−t)‖= 0, or equivalently, that T s
t = eQ(s−t). ♦

The crucial point of the previous example deserves some empha-
sis. Suppose that some Markov chain P ∈ PWM

Q
has a transition ma-

trix T s
t such that, for some f ∈L (X ) and x ∈X , T s

t f (x) = eQ(s−t) f (x).
From the properties of matrix-vector multiplication, the value T s

t f (x)
is completely determined by the x-row of T s

t , that is, it holds that

T s
t f (x) = ∑y∈X T s

t (x,y) f (y). Hence, that the equality T s
t f (x) = eQ(s−t) f (x)

should imply something about, at least, the x-row of T s
t , seems obvious.

However, the previous example has shown that this condition implies
that there is some Q ∈Q such that T s

t = eQ(s−t), which means that this
additionally enforces the value of the y-row of T s

t (with y 6= x).

This has an interesting and important consequence that cuts to the
heart of why the lower expectations of PWM

Q
and PW

Q
do not always co-

incide: it implies that the set T :=
{

PT s
t : P ∈ PWM

Q

}

of transition matri-

ces induced by PWM
Q

does not have separately specified rows. Contrast this
with the sets of transition matrices induced by PW

Q
; we established with

Theorem 5.21198 that those do have separately specified rows.

To see that this claim is true, consider that, since Ia(a) > Ia(b) and
Ib(a) < Ib(b), it follows from Example 6.8302 that any Markov chain
with transitionmatrix T s

t that satisfies T s
t Ia(a)= eQ(s−t)Ia(a)must satisfy

T s
t = eQa≥b(s−t), while if it would satisfy T s

t Ib(b) = eQ(s−t)Ib(b) it would
hold that T s

t = eQa≤b(s−t). Since eQa≥b(s−t) 6= eQa≤b(s−t)8 this implies that
there are no Markov chains in PWM

Q
whose transition matrix T s

t satisfies

both T s
t Ia(a) = eQ(s−t)Ia(a) and T s

t Ib(b) = eQ(s−t)Ib(b). This means that
the transition matrix T that is defined as T (a, ·) := eQa≥b(s−t)(a, ·) and
T (b, ·) := eQa≤b(s−t)(b, ·), is not in the set T . On the other hand, it holds
that eQa≥b(s−t),eQa≤b(s−t) ∈ T , since they are the transition matrices of
the homogeneous Markov chains characterised by Qa≥b and Qa≤b, re-
spectively, which are clearly in PWM

Q
since Qa≥b,Qa≤b ∈ Q. Hence we

conclude that T does not have separately specified rows.

It is the aim of the following example to formalise this property in
a way that we can use for the final example of this section.

Example 6.9. Let X ,Q, and Q be as in Example 6.1290, and let Qa≥b

and Qa≤b be as in Example 6.4298. Let t := 1 and let s := 2, as in Ex-
ample 6.2292. Consider the imprecise-Markov chain PWM

Q
and, for any

P ∈ PWM
Q

, let PT s
t be the corresponding transition matrix containing the

transition probabilities over the interval [t,s]. Consider the induced set

8For details, see Example 6.9 further on.
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T of transition matrices, defined as

T :=
{

PT s
t : P ∈ PWM

Q

}

.

Then, because we know from Example 6.1290 thatQ is non-empty, com-
pact, and convex, it follows from Corollary 5.18197 that T is compact.

Now, for any T ∈ T , we define the function εT ∈ L (X ), for all
x ∈X , as

εT (x) := T Ix(x)− eQ(s−t)Ix(x) .

We first note that, for every T ∈ T , it follows from Proposition 5.25201
and Corollary 6.25280 that T Ix(x) ≥ eQ(s−t)Ix(x), and hence that εT ≥ 0.
Using the compactness of T , we will now show that

inf
T∈T

(

εT (a)+ εT (b)
)

> 0 . (6.37)

Suppose ex absurdo that this is false. Since we know that εT ≥ 0 for all
T ∈T , it then holds that

inf
T∈T

(

εT (a)+ εT (b)
)

= 0 .

This implies the existence of a sequence {Ti}i∈Z>0
in T such that

limi→+∞

(

εTi
(a)+ εTi

(b)
)

= 0. Since T is compact, it is sequentially com-
pact by Corollary A.12378, which implies the existence of a convergent
subsequence {Ti j

} j∈Z>0
such that lim j→+∞ Ti j

=: Ti∗ ∈ T . This implies
that also εTi∗ (a)+ εTi∗ (b) = 0. Since εTi∗ ≥ 0, this means that εTi∗ (a) = 0

and εTi∗ (b) = 0, or, using the definition of εTi∗ , that

Ti∗Ia(a) = eQ(s−t)Ia(a) and Ti∗Ib(b) = eQ(s−t)Ib(b) . (6.38)

Since Ia(a)> Ia(b) and Ib(a)< Ib(b), it holds that QIa =Qa≥bIa and QIb =
Qa≤bIb. Equation (6.38) together with the results from Example 6.8302
therefore imply that

Ti∗ = eQa≥b(s−t) and Ti∗ = eQb≥a(s−t) . (6.39)

Now, using that s− t = 1, together with the definition of Qa≥b and Qa≤b

in Example 6.4298 and the values λ a = 1/2, λ a = 2, λ b = 1/2, λ b = 1

from Example 6.1290, the closed form expression in Lemma 6.34298 for
eQ(s−t), with Q ∈ {Qa≥b,Qa≤b}, implies that

eQa≥b(s−t)(a,b) =
1− e−2.5

2.5
2≈ 0.73

and

eQa≤b(s−t)(a,b) =
1− e−1.5

1.5

1

2
≈ 0.26 ,
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which clearly implies that eQa≥b(s−t) 6= eQa≤b(s−t). In turn, this implies
that Equation (6.39)x must be false. From this contradiction, we con-
clude that our assumptionmust be wrong, or in other words, that Equa-
tion (6.37)x indeed holds. In conclusion, this implies the existence of
some ε > 0 such that

inf
T∈T

(

εT (a)+ εT (b)
)

= ε > 0 , (6.40)

a property on which we will rely in Example 6.10 below. ♦

We now finally have all the pieces to show that, under the specific
conditions of the running example in this section, there are functions
for which the lower expectations for PWM

Q
and PW

Q
disagree. The final

example of this section details the full argument.

Example 6.10. Let X ,Q, and Q be as in Example 6.1290, and let t := 1

and s := 2 as in Example 6.2292. Fix any x0 ∈X0. As in Example 6.3294,
we consider the lower probability of the event (Xt = Xs), conditional
on the state x0 of the system at time zero, but now for the imprecise-
Markov chain PWM

Q
. Our goal with this example is to show that

EWM
Q

[

IXt=Xs

∣

∣X0 = x0

]

> EW
Q

[

IXt=Xs

∣

∣X0 = x0

]

,

thereby establishing that the first inequality in Proposition 5.22199 can
indeed be strict. To this end, let f ∈L (X{0,t,s}) be as in Example 6.3294,
i.e. such that, for all xt ,xs ∈X ,

f (x0,xt ,xs) :=

{

1 if xt = xs, and
0 otherwise.

Then, as in Example 6.3294, it holds that f (X0,Xt ,Xs)= IXt=Xs . Let us first
simplify the quantity EW

Q

[

IXt=Xs

∣

∣X0 = x0

]

. To this end, let (T r
q) denote

the family of lower transition operators corresponding to PW
Q
. We know

from Example 6.1290 that Q is non-empty, compact, convex, and has
separately specified rows. Hence, it follows from Theorem 6.4263 that

EW
Q

[

IXt=Xs

∣

∣X0 = x0

]

= EW
Q

[

f (X0,Xt ,Xs)
∣

∣X0 = x0

]

= T t
0T s

t f (x0) , (6.41)

using the usual convention for applying lower transition operators to
functions that depend on the state at more than one time point; see
e.g. Section 6.1260 for details. Due to this convention, it holds for any
xt ∈Xt that

T s
t f (x0,xt) =

[

T s
t f (x0,xt , ·)

]

(x0,xt) = T s
tIxt (x0,xt) = eQ(s−t)Ixt (xt) , (6.42)

where for the second equality we used that f (x0,xt , ·) = Ixt due to the
definition of f , and where for the final equality we used Proposi-
tion 6.26281, which we can do because Q is non-empty and bounded

306



6.6 A Numerical Example

(by Corollary A.12378, since it is compact) and has separately specified
rows, and has Q as its corresponding lower transition rate operator.

Next, we will move on to focus on the quantity

EWM
Q

[

IXt=Xs

∣

∣X0 = x0

]

= EWM
Q

[

f (X0,Xt ,Xs)
∣

∣X0 = x0

]

= inf
P∈PWM

Q

EP

[

f (X0,Xt ,Xs)
∣

∣X0 = x0

]

. (6.43)

First fix any P ∈ PWM
Q

. Then it follows from Proposition 5.31208 (with
u = {0}, v = {t}, and w = {s}) that

EP

[

f (X0,Xt ,Xs)
∣

∣X0 = x0

]

= EP

[

EP

[

f (X0,Xt ,Xs)
∣

∣X0,Xt

]∣

∣X0 = x0

]

.

Moreover, using Proposition 2.2575 and the fact that 0< t it follows that

EP

[

f (X0,Xt ,Xs)
∣

∣X0 = x0

]

= EP

[

EP

[

f (X0,Xt ,Xs)
∣

∣Xt ,X0

]

∣

∣

∣
X0 = x0

]

= EP

[

EP

[

f (X0,Xt ,Xs)
∣

∣Xt ,X0 = x0

]

∣

∣

∣
X0 = x0

]

.

(6.44)

Now fix any xt ∈Xt . Then, again due to Proposition 2.2575, and because
0 < t < s, it holds that

EP

[

f (X0,Xt ,Xs)
∣

∣Xt = xt ,X0 = x0

]

= EP

[

f (x0,xt ,Xs)
∣

∣Xt = xt ,X0 = x0

]

= ∑
xs∈Xs

f (x0,xt ,xs)P(Xs = xs |Xt = xt ,X0 = x0) ,

where we used Proposition 2.2373 for the second equality. Because we
know that P is a Markov chain since P ∈ PWM

Q
, it follows from Defini-

tion 5.1182 that P(Xs = xs |Xt = xt ,X0 = x0) =P(Xs = xs |Xt = xt), and hence
that

EP

[

f (X0,Xt ,Xs)
∣

∣Xt = xt ,X0 = x0

]

= ∑
xs∈Xs

f (x0,xt ,xs)P(Xs = xs |Xt = xt) .

Using the definition of f , we conclude that

EP

[

f (X0,Xt ,Xs)
∣

∣Xt = xt ,X0 = x0

]

= P(Xs = xt |Xt = xt)

= PT s
t (xt ,xt) =

PT s
t Ixt (xt) ,

where PT s
t is the transition matrix corresponding to P that contains the

transition probabilities over the time interval [t,s]. Now for any transi-
tion matrix T , define the function fT ∈L (X ), for all x ∈X , as

fT (x) := T Ix(x) .
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Then it holds that

EP

[

f (X0,Xt ,Xs)
∣

∣Xt = xt ,X0 = x0

]

= PT s
t Ixt (xt) = fPT s

t
(xt) ,

and since this is true for all xt ∈Xt , we can substitute back into Equa-
tion (6.44)x to obtain

EP

[

f (X0,Xt ,Xs)
∣

∣X0 = x0

]

= EP

[

fPT s
t
(Xt)

∣

∣X0 = x0

]

.

As in Example 6.9304, let T denote the set of transition matrices over
the interval [t,s] corresponding to all elements of PWM

Q
. Because P ∈

PWM
Q

it follows that PT s
t ∈T , and hence it follows that

EP

[

f (X0,Xt ,Xs)
∣

∣X0 = x0

]

= EP

[

fPT s
t
(Xt)

∣

∣X0 = x0

]

≥ inf
T∈T

EP

[

fT (Xt)
∣

∣X0 = x0

]

. (6.45)

Now, for all T ∈T let εT ∈L (X ) be as in Example 6.9304. Then, as we
know from that example, there is some ε > 0 such that

inf
T∈T

(

εT (a)+ εT (b)
)

= ε > 0 .

Fix any T ∈T . Then for all xt ∈X it holds that

εT (xt) = T Ixt (xt)− eQ(s−t)Ixt (xt) = fT (xt)− eQ(s−t)Ixt (xt) ,

whence it follows that fT (xt)= εT (xt)+eQ(s−t)Ixt (xt). Moreover, we know

from Equation (6.42)306 that eQ(s−t)Ixt (xt) = T s
t f (x0,xt), and hence we

find that

fT (xt) = εT (xt)+T s
t f (x0,xt) .

Because this is true for all xt ∈ X , it holds that
fT (Xt) = εT (Xt)+T s

t f (x0,Xt), from which it follows that

EP

[

fT (Xt)
∣

∣X0 = x0

]

= EP

[

εT (Xt)+T s
t f (x0,Xt)

∣

∣X0 = x0

]

= EP

[

εT (Xt)
∣

∣X0 = x0

]

+EP

[

T s
t f (x0,Xt)

∣

∣X0 = x0

]

,
(6.46)

where we used Property CE278 for the second equality. We proceed by
first bounding the first summand on the right-hand side of this expres-

308



6.6 A Numerical Example

sion. Using Proposition 2.2373, it holds that

EP

[

εT (Xt)
∣

∣X0 = x0

]

= ∑
xt∈X

εT (xt)P(Xt = xt |X0 = x0)

= ∑
xt∈X

εT (xt)EP[Ixt (Xt) |X0 = x0]

≥ ∑
xt∈X

εT (xt)E
WM
Q [Ixt (Xt) |X0 = x0]

= ∑
xt∈X

εT (xt)e
QtIxt (x0)

= εT (a)e
QtIa(x0)+ εT (b)e

QtIb(x0)

≥
(

εT (a)+ εT (b)
)

min
{

eQtIa(x0),e
QtIb(x0)

}

,

where for the first inequality we used that P ∈ PWM
Q

, for the third
equality we used Corollary 6.25280 together with the properties of Q

established above, and where for the final inequality we used that
εT ≥ 0 as in Example 6.9304. Now, as we have seen in Example 6.6300,
since t > 0 it holds that eQtIa(x0) > 0 and eQtIb(x0) > 0, whence also
C := min

{

eQtIa(x0),e
QtIb(x0)

}

> 0.
Substituting this back into Equation (6.46) we find that

EP

[

fT (Xt)
∣

∣X0 = x0

]

≥C
(

εT (a)+ εT (b)
)

+EP

[

T s
t f (x0,Xt)

∣

∣X0 = x0

]

.

Because this is true for all T ∈T , this implies that

inf
T∈T

EP

[

fT (Xt)
∣

∣X0 = x0

]

≥ inf
T∈T

C
(

εT (a)+ εT (b)
)

+EP

[

T s
t f (x0,Xt)

∣

∣X0 = x0

]

=Cε +EP

[

T s
t f (x,Xt)

∣

∣X0 = x0

]

,

where we used that ε = infT∈T
(

εT (a)+ εT (b)
)

. Substituting back into
Equation (6.45) we find that

EP[ f (X0,Xt ,Xs) |X0 = x0]≥Cε +EP

[

T s
t f (x0,Xt)

∣

∣X0 = x0

]

.

Because this is true for all P ∈ PWM
Q

, substituting this inequality into
Equation (6.43)307 we obtain

EWM
Q

[

IXt=Xs

∣

∣X0 = x0

]

= inf
P∈PWM

Q

EP[ f (X0,Xt ,Xs) |X0 = x0]

≥ inf
P∈PWM

Q

(

Cε +EP

[

T s
t f (x0,Xt)

∣

∣X0 = x0

])

=Cε + inf
P∈PWM

Q

EP

[

T s
t f (x0,Xt)

∣

∣X0 = x0

]

=Cε +EWM
Q

[

T s
t f (x0,Xt)

∣

∣X0 = x0

]

. (6.47)
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It now remains to simplify the second summand on the right-hand side
of this expression. Using the previously established properties of Q, it
follows from Corollary 6.25280 that

EWM
Q

[

T s
t f (x0,Xt)

∣

∣X0 = x0

]

=
[

eQtT s
t f (x0, ·)

]

(x0)

=
[

T t
0T s

t f (x0, ·)
]

(x0)

= T t
0T s

t f (x0)

= EW
Q

[

IXt=Xs

∣

∣X0 = x0

]

,

where T t
0 is the lower transition operator corresponding to PW

Q
and

where we used Proposition 6.26281 for the second equality, the usual
convention of applying T t

0 to the function T s
t f ∈L (X{0,t}) in the third

equality, and Equation (6.41)306 in the final equality.
Substituting this back into Equation (6.47)x we find that

EWM
Q

[

IXt=Xs

∣

∣X0 = x0

]

≥Cε +EW
Q

[

IXt=Xs

∣

∣X0 = x0

]

,

which, since C > 0 and ε > 0, implies that

EWM
Q

[

IXt=Xs

∣

∣X0 = x0

]

> EW
Q

[

IXt=Xs

∣

∣X0 = x0

]

,

which finally shows that the first inequality in Proposition 5.22199 can
indeed be strict, which is what we wanted to demonstrate. ♦
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Appendix

6.A Proofs of Results in Section 6.2

Proof of Proposition 6.11269. It is immediate from Definition 6.4268 that
QQ is a set of rate matrices. Let us show that, for every f ∈L (X ), there
is some Q ∈QQ such that Q f = Q f . To this end, fix any f ∈ L (X ).
Now choose ∆ > 0 small enough such that 0≤ ∆

∥

∥Q
∥

∥≤ 1—this always
possible because of Property LR5266—and define T := I+∆Q. Since Q is
a lower transition rate operator, it then follows from Proposition 6.6266
that T is a lower transition operator.

Using Definition 3.17120, T has a dominating set TT of transition
matrices. By Proposition 3.37120, TT is non-empty, closed, has sep-
arately specified rows, and has T as its corresponding lower transi-
tion operator; therefore, and due to Proposition 3.36119, there is some
T ∈ TT such that T f = T f . Moreover, for any g ∈L (X ) it holds that
T g≥ T g because T ∈TT and T is the lower envelope of this set.

Now let Q := 1/∆(T − I). Then Q is a rate matrix by Proposi-
tion 4.10153. Because T f = T f , it follows that

Q f =
1

∆
(T f − f ) =

1

∆
(T f − f ) = Q f .

Similarly, because T g ≥ T g for all g ∈L (X ), it follows that Qg ≥ Qg,
or in other words, since Q is a rate matrix, that Q ∈QQ. Because f was
arbitrary, this proves that, for all f ∈L (X ), there is some Q ∈QQ such
that Q f = Q f . Since L (X ) is non-empty, this clearly implies that QQ

is non-empty.
We will next show that QQ is bounded. Consider any x ∈X . Then

for all Q ∈ QQ, we have that Q(x,x) = QIx(x) ≥ QIx(x), which implies
that

inf
Q∈QQ

Q(x,x)≥ QIx(x)>−∞,

where the second inequality used Property LR5266. Since x ∈X is ar-
bitrary, Proposition 4.8152 now guarantees that QQ is bounded.

To establish that QQ has Q as its corresponding lower transition rate
operator, we need to show that Q is the lower envelope of this set. Be-
cause we already established that QQ is non-empty and bounded, this
lower envelope is well-defined by Definition 6.3267. Now fix any f ∈
L (X ). By Definition 6.4268, it holds that Q f (x)≤Q f (x) for all Q∈QQ,
so Q f (x) is a lower bound on {Q f (x) : Q ∈QQ}. Moreover, we already
established that there is some Q ∈QQ such that Q f = Q f , so this lower
bound is tight. In other words, it holds that Q f (x) = infQ∈QQ

Q f (x),

whence Q is the lower transition rate operator corresponding to QQ.
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Let us next show that QQ is closed, or in other words, using Propo-
sition A.8376, that for any convergent sequence {Qi}i∈Z>0

in QQ its limit
belongs to QQ. So fix any convergent sequence {Qi}i∈Z>0

in QQ, and let
Q∗ := limi→+∞ Qi. By Proposition 4.6151 the metric space R of all rate
matrices is complete, so it follows that, because QQ ⊆R and {Qi}i∈Z>0

lies in QQ, also Q∗ is a rate matrix. Now suppose ex absurdo that
Q∗ /∈QQ. Then, using Definition 6.4268, there is some f ∈L (X ) and
some x ∈X , such that Q∗ f (x) < Q f (x). Let ε := Q f (x)−Q∗ f (x); then
ε > 0 because Q∗ f (x)< Q f (x), and Q f (x) = Q∗ f (x)+ ε .

Since limi→+∞ Qi = Q∗, it follows from Lemma A.34390 that there is
some n ∈ Z>0 such that ‖Qn f −Q∗ f‖< ε . Because Qn ∈QQ it holds that
Q∗ f (x)< Q f (x)≤ Qn f (x) by Definition 6.4268. This implies that

Qn f (x)−Q∗ f (x) = |Qn f (x)−Q∗ f (x)| ≤ ‖Qn f −Q∗ f‖< ε ,

whichmeans that Qn f (x)<Q∗ f (x)+ε =Q f (x). This contradicts the fact
that Qn ∈QQ, and hence we must have that Q∗ ∈QQ.

Because, as established above, QQ is both closed and bounded, it
follows that it is compact by Corollary A.12378.

Next, we show that QQ is convex, or equivalently, that for any
two rate matrices Q1,Q2 ∈ QQ, and any λ ∈ [0,1], the matrix Qλ :=
λQ1 +(1−λ )Q2 is again an element of QQ. Because Q1 and Q2 are both
rate matrices, and because λ ≥ 0 and (1−λ )≥ 0, it follows from Propo-
sition 4.5151 that Qλ is a rate matrix. Furthermore, for any f ∈L (X ),
we find that

Qλ f = λQ1 f +(1−λ )Q2 f ≥ λQ f +(1−λ )Q f = Q f ,

where the inequality holds because Q1 and Q2 belong to QQ. Hence, it
follows from Definition 6.4268 that Qλ ∈QQ.

We finally show that QQ has separately specified rows. For all
x ∈ X , let Qx := {Q(x, ·) |Q ∈ QQ}. Consider now any rate matrix Q

such that Q(x, ·) ∈Qx for all x ∈X , and assume ex absurdo that Q /∈QQ.
Definition 6.4268 then implies the existence of some f ∈ L (X ) and
x ∈X such that Q f (x)< Q f (x). Since Q(x, ·) ∈Qx, this in turn implies
that there is some Q′ ∈QQ such that Q′ f (x)< Q f (x), which is a contra-
diction. Hence we find that Q ∈QQ.

The following lemma uses the interpretation of the rows of a ma-
trix as being elements of the dual space L (X )⊤ of L (X ); see Ap-
pendix A369 for details.

Lemma 6.35. Let Q be a non-empty, compact, and convex set of rate matri-
ces. Then, for all x ∈X , Qx := {Q(x, ·) : Q ∈Q} is a non-empty, compact,
and convex subset of L (X )⊤.
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Proof. Fix any x ∈X . The non-emptiness of Qx then follows trivially
from the fact that Q is non-empty.

To see that Qx is convex, for any Q1(x, ·),Q2(x, ·) ∈ Qx, let Q1 and
Q2 be the corresponding elements of Q whose x-row is given by Q1(x, ·)
and Q2(x, ·) respectively. Fix any λ ∈ [0,1], and let Qλ := λQ1+(1−λ )Q2.
Then Qλ ∈Q because Q is convex. This implies that Qλ (x, ·) ∈Qx, and
Qλ (x, ·) = λQ1(x, ·) + (1− λ )Q2(x, ·), so λQ1(x, ·) + (1− λ )Q2(x, ·) ∈ Qx,
whence Qx is convex.

Because Q is bounded, by Definition A.12376, there is some B ∈ R
such that supQ∈Q ‖Q‖ = ‖Q‖ < B. Using Proposition A.33390, it holds
that

‖Q(x, ·)‖∗ ≤ ‖Q‖ ≤ ‖Q‖< B ,

from which it follows that ‖Qx‖∗ = supQ(x,·)∈Qx
‖Q(x, ·)‖ ≤ B, whence Qx

is bounded.
Let us next show that Qx is closed, or in other words, using Propo-

sition A.8376, that for any convergent sequence {Qi(x, ·)}i∈Z>0
in Qx, the

limit Q∗(x, ·) := limi→+∞ Qi(x, ·) is also an element of Qx. Let {Qi}i∈Z>0

be the corresponding sequence in Q such that, for all i ∈ Z>0, the x-
row of Qi is given by Qi(x, ·). Because Q is compact, it is sequentially
compact by Corollary A.12378, which means that there is a convergent
subsequence {Qik}k∈Z>0

such that limk→+∞ Qik =: Q′∗ ∈ Q. This means
that also Q′∗(x, ·) ∈Qx. Let us now show that Q∗(x, ·) = Q′∗(x, ·).

So fix any ε > 0. Then because limk→+∞ Qik = Q′∗, there is some n ∈
Z>0 such that, for all ℓ∈Z>0 with ℓ > n, it holds that

∥

∥Qiℓ −Q′∗
∥

∥< ε . Us-
ing Proposition A.33390, this implies that also

∥

∥Qik(x, ·)−Q′∗(x, ·)
∥

∥

∗ < ε .
Because this is true for any ε > 0, we find that limk→+∞ Qik(x, ·) =Q′∗(x, ·).
Because the original sequence {Qi(x, ·}i∈Z>0

was convergent with limit
Q∗(x, ·), it follows that Q′∗(x, ·) = Q∗(x, ·) and therefore, since Q′∗(x, ·) ∈
Qx, that Q∗(x, ·) ∈Qx.

Hence we conclude that Qx is closed and, because we already estab-
lished that it is bounded, Qx is compact by Corollary A.12378.

Proof of Proposition 6.12269. Since Q has Q as its lower envelope, it fol-
lows from Definition (6.4)268 that Q ⊆ QQ. Assume ex absurdo that
Q ⊂QQ; then there is some Q ∈QQ such that Q /∈Q.

Because Q has separately specified rows, it follows from Q /∈Q that
there is some x ∈X such that Q(x, ·) /∈Qx := {Q′(x, ·) |Q′ ∈Q}. We note
that, as in Appendix A.3383, this x-row Q(x, ·) of Q is interpreted as
an element of the dual space L (X )⊤ of L (X ), whose value in any
f ∈L (X ) is given by Q(x, ·) f = Q f (x).

Now, since Q is non-empty, compact, and convex, it follows from
Lemma 6.35 that Qx is a non-empty, compact (and hence closed by
Corollary A.12378), and convex subset of L (X )⊤, and therefore, since
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L (X )⊤ is a normed vector space (see Appendix A.2380) and because
Q(x, ·) /∈ Qx, it follows from a separating hyperplane version of the
Hahn-Banach theorem [93, Chapter 14, Corollary 25] that there is some
f ∈L (X )9 such that

Q(x, ·) f < inf
Q′(x,·)∈Qx

Q′(x, ·) f . (6.48)

Because Q is non-empty and compact, has separately specified rows,
and has Q as its corresponding lower transition rate operator, it follows
from Proposition 6.10268 that there is some Q∗ ∈Q such that Q∗ f = Q f .

Because Q∗ ∈Q it holds that Q∗(x, ·)∈Qx and therefore, we find that

inf
Q′(x,·)∈Qx

Q′(x, ·) f ≤ Q∗(x, ·) f = Q∗ f (x) = Q f (x) .

Combining this with Equation (6.48), we get

Q f (x) = Q(x, ·) f < inf
Q′(x,·)∈Qx

Q′(x, ·) f ≤ Q f (x) ,

whence Q f � Q f , and therefore Q /∈QQ, a contradiction.

6.B Proofs of Results in Section 6.3

Lemma 6.36. Fix n ∈ Z>0 and, for all k ∈ {1, . . . ,n}, consider a sequence
∆k,i ≥ 0, with i ∈ {1, . . . ,nk} such that nk ∈ Z>0, and let ∆k := ∑

nk
i=1 ∆k,i. Let

C := ∑
n
k=1 ∆k and let δ := maxk∈{1,...,n}∆k. Then for any lower transition rate

operator Q such that δ
∥

∥Q
∥

∥≤ 1, it holds that

∥

∥

∥

∥

∥

n

∏
k=1

(

nk

∏
i=1

(I +∆k,iQ)

)

−
n

∏
k=1

(I +∆kQ)

∥

∥

∥

∥

∥

≤ δC
∥

∥Q
∥

∥

2
.

Proof. For any k∈{1, . . . ,n}, we know that ∆k,i

∥

∥Q
∥

∥≤∆k

∥

∥Q
∥

∥≤ δ
∥

∥Q
∥

∥≤ 1

for all i ∈ {1, . . . ,nk}, and therefore, it follows from Propositions 6.6266
and 3.33117 that ∏

nk
i=1(I+∆k,iQ) and (I+∆kQ) are lower transition oper-

9This reference states that f lives in the dual space L (X )⊤⊤ of L (X )⊤ but, since
L (X )⊤ is the dual space of L (X ), and because L (X ) is reflexive by Lemma A.21382,
it follows that L (X ) = L (X )⊤⊤, and hence we get f ∈L (X ).
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ators. Hence it follows that
∥

∥

∥

∥

∥

n

∏
k=1

(

nk

∏
i=1

(I +∆k,iQ)

)

−
n

∏
k=1

(I +∆kQ)

∥

∥

∥

∥

∥

≤
n

∑
k=1

∥

∥

∥

∥

∥

(

nk

∏
i=1

(I +∆k,iQ)

)

− (I +∆kQ)

∥

∥

∥

∥

∥

≤
n

∑
k=1

∆2
k

∥

∥Q
∥

∥

2

≤
n

∑
k=1

δ∆k

∥

∥Q
∥

∥

2
= δC

∥

∥Q
∥

∥

2
,

where the first inequality follows from Lemma B.4392 and the second
inequality follows from Lemma B.6393.

Lemma 6.37. Let Q be a lower transition rate operator. Consider any t ∈
R≥0 and any u ∈U[0,t] such that σ(u)

∥

∥Q
∥

∥≤ 1. Then for all u∗ ∈U[0,t] such
that u⊆ u∗, it holds that

‖Φu−Φu∗‖ ≤ tσ(u)
∥

∥Q
∥

∥

2
.

Proof. This result is trivial if t = 0, because as discussed in Section 2.258,
it then holds that u = u∗ = {0}, which implies that the product in Equa-
tion (6.6)271 is empty, whence Φu = I = Φu∗ and in that case

‖Φu−Φu∗‖= 0≤ tσ(u)
∥

∥Q
∥

∥

2
= 0 .

Hence, without loss of generality, we assume that t > 0, which im-
plies that u = t0, . . . , tn, with n ∈ Z>0, t0 = 0 and tn = t. Since u ⊆ u∗,
we know that, for all k ∈ {1, . . . ,n}, there is some sequence ∆k,i > 0, i ∈
{1, . . . ,nk}, with nk ∈Z>0 and ∆u

k = ∑
nk
i=1 ∆k,i ≤ σ(u), such that ∑

n
k=1 ∆k = t,

Φu∗ :=
n

∏
k=1

(

nk

∏
i=1

(I +∆k,iQ)

)

and Φu :=
n

∏
k=1

(I +∆u
kQ).

Because of Lemma 6.36, this implies that ‖Φu∗ −Φu‖ ≤ tσ(u)
∥

∥Q
∥

∥

2
.

Proof of Proposition 6.13271. Let u′ ∈U[0,t] be the ordered union of u and
u∗. Then, clearly, u⊆ u′ and u∗ ⊆ u′. Moreover, clearly σ(u′)≤ σ(u)≤ δ
and σ(u′)≤ σ(u∗)≤ δ . Therefore, and because δ

∥

∥Q
∥

∥≤ 1, Lemma 6.37
implies that ‖Φu−Φu′‖ ≤ tδ

∥

∥Q
∥

∥

2
and ‖Φu∗ −Φu′‖ ≤ tδ

∥

∥Q
∥

∥

2
, and there-

fore, it follows that

‖Φu−Φu∗‖ ≤ ‖Φu−Φu′‖+‖Φu′ −Φu∗‖ ≤ 2tδ
∥

∥Q
∥

∥

2
,

which concludes the proof.
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Lemma 6.38. Let Q be a lower transition rate operator, fix any t ∈ R≥0,

and consider any u ∈ U[0,t] such that σ(u)
∥

∥Q
∥

∥ ≤ 1. Then, with Φu as in
Equation (6.6)271, it holds that

∥

∥eQt −Φu

∥

∥≤ tσ(u)
∥

∥Q
∥

∥

2
.

Proof. Fix any ε > 0. Because of Theorem 6.16272, there is some
u∗ ∈U[0,t] such that u⊆ u∗ and

∥

∥eQt −Φu∗
∥

∥< ε . By combining this with
Lemma 6.37x, it follows that

∥

∥eQt −Φu

∥

∥≤
∥

∥eQt −Φu∗
∥

∥+‖Φu∗ −Φu‖< ε + tσ(u)
∥

∥Q
∥

∥

2
.

The result now follows because ε > 0 is arbitrary.

Proof of Proposition 6.19276. First define h := f −min f − 1/2‖ f‖v. Then

maxh = max f −min f − 1/2‖ f‖v = ‖ f‖v− 1/2‖ f‖v = 1/2‖ f‖v

and
minh = min f −min f − 1/2‖ f‖v =−1/2‖ f‖v ,

and therefore,

‖h‖ := max{|h(x)| : x ∈X }= 1/2‖ f‖v .

Let ∆ := t/n, and let u∈U[0,t] be such that u= t0, t1, . . . , tn, where, for all i∈
{0,1, . . . ,n}, ti := i∆. Since ∆= t/n, we then have that t0 = 0, tn = t, σ(u)=∆

and, with Φu as in Equation (6.6)271, Φu = ∏
n
i=1(I + t/nQ). Furthermore,

since n ≥ t
∥

∥Q
∥

∥, we also know that ∆
∥

∥Q
∥

∥ = t/n

∥

∥Q
∥

∥ ≤ 1. Hence, we find
that

∥

∥

∥

∥

∥

eQth−
n

∏
i=1

(I + t/nQ)h

∥

∥

∥

∥

∥

=
∥

∥eQth−Φuh
∥

∥≤
∥

∥eQt −Φu

∥

∥‖h‖

≤ σ(u)t
∥

∥Q
∥

∥

2 ‖h‖

= ∆t
∥

∥Q
∥

∥

2 ‖ f‖v

2

=
ε

n

1

2ε
t2
∥

∥Q
∥

∥

2 ‖ f‖v ≤ ε.

where the first inequality follows from Property N1164, the second in-
equality follows from Lemma 6.38 and the final inequality follows from
our lower bound on n. The result is now immediate because eQt and

∏
n
i=1(I+∆Q) are both lower transition operators—for the latter, this fol-

lows from Propositions 6.6266 and 3.33117 and the fact that ∆
∥

∥Q
∥

∥≤ 1—
which implies that

∥

∥

∥

∥

∥

eQth−
n

∏
i=1

(I +∆Q)h

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

eQt f −
n

∏
i=1

(I +∆Q) f

∥

∥

∥

∥

∥

316



6.B Proofs of Results in Section 6.3

because of Property LT6117.

Proof of Proposition 6.20278. For notational convenience, let us write
Q := Br(Q∗), and for all x ∈X , let Qx := {Q(x, ·) : Q ∈Q} denote the
set of x-rows of Q.

That Q is non-empty is clear, since it follows from the fact that r≥ 0

that ‖Q∗−Q∗‖= 0≤ r, and hence because Q∗ ∈R it holds that Q∗ ∈Q.

Now fix any Q ∈Q. It then follows that

‖Q‖= ‖Q−Q∗+Q∗‖ ≤ ‖Q−Q∗‖+‖Q∗‖ ≤ r+‖Q∗‖ ,

and hence ‖Q‖ = supQ∈Q ‖Q‖ ≤ ‖Q∗‖ + r which means that Q is
bounded by Definition A.12376.

To see that Q is closed, fix any convergent sequence {Qi}i∈Z>0
and

let Q := limi→+∞ Qi. According to Proposition A.8376, to show that Q

is closed it suffices to show that Q ∈Q. By Proposition 4.6151, R is a
complete metric space, and because the sequence {Qi}i∈Z>0

is in Q⊂R,
it follows that Q is a rate matrix. So let us show that ‖Q−Q∗‖ ≤ r. To
this end, fix any i ∈ Z>0. Then

‖Q−Q∗‖= ‖Q−Qi +Qi−Q∗‖ ≤ ‖Q−Qi‖+‖Qi−Q∗‖ ≤ ‖Q−Qi‖+ r .

Because this holds for all i ∈ Z>0, and taking limits, we have
limi→+∞ ‖Q−Qi‖= 0, which implies that ‖Q−Q∗‖≤ r, and hence Q∈Q.

Hence we conclude that Q is closed and, because we already estab-
lished that it is bounded, Q is compact by Corollary A.12378.

To show that Q is convex, fix any Q1,Q2 ∈Q and any λ ∈ [0,1], and
let Qλ := λQ1 + (1− λ )Q2. We need to show that Qλ ∈ Q. Because
Q1,Q2 ∈Q ⊂R, and because λ ∈ [0,1], it follows that Qλ ∈Q by Propo-
sition 4.5151. Hence we need to show that ‖Qλ −Q∗‖ ≤ r. We have

‖Qλ −Q∗‖= ‖Qλ −λQ∗− (1−λ )Q∗‖
= ‖λ (Q1−Q∗)+(1−λ )(Q2−Q∗)‖
≤ ‖λ (Q1−Q∗)‖+‖(1−λ )(Q2−Q∗)‖
= λ ‖Q1−Q∗‖+(1−λ )‖Q2−Q∗‖
≤ λ r+(1−λ )r = r ,

and hence Qλ ∈Q, whence Q is convex.

To see that Q has separately specified rows, first note that it trivially
holds for any Q ∈ Q that Q ∈ R and that Q(x, ·) ∈ Qx for all x ∈ X .
So, according to Definition 5.7193, it remains to prove the inclusion in
the other direction. To this end, fix any Q ∈ R such that Q(x, ·) ∈ Qx

for all x ∈X ; we need to prove that Q ∈ Q. For any x ∈X , because
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Q(x, ·) ∈Qx, there is some Qx ∈Q such that Q(x, ·) = Qx(x, ·), and hence
it follows from Equation (2.7)63 that

∑
y∈X
|Q(x,y)−Q∗(x,y)|= ∑

y∈X
|Qx(x,y)−Q∗(x,y)| ≤ ‖Qx−Q∗‖ ≤ r .

Because this is true for all x ∈X it follows from Equation (2.7)63 that
‖Q−Q∗‖ ≤ r, and hence Q ∈ Q, which implies that Q has separately
specified rows.

Proof of Proposition 6.21278. Let us start by giving the intuition behind
the proof. The argument works by constructing a rate matrix Q̃ as
a modification of Q∗, and showing that Qg(x) = Q̃g(x) satisfies Equa-
tion (6.12)279. It will be helpful to understand that each ∆i, i∈ {1, . . . ,n}
denotes the magnitude of the modification that we make to Q∗(x,zi), in
order to obtain Q̃(x,zi). There are a number of constraints that we have
to deal with: to ensure that Q̃ stays in Br(Q∗), we cannot “move away”
from Q∗ too much. Moreover, to ensure that Q̃ is a rate matrix, it needs
to have non-negative off-diagonal entries, and its rows must sum to
zero. We make the changes by working from Q∗(x,z1) to Q∗(x,zn), that
is, we follow the ordering z1, . . . ,zn. The quantities ri, i ∈ {1, . . . ,n} de-
note the remaining total change that we still want to make to Q∗(x, ·),
after modifying Q∗(x,zi) in a manner that is consistent with these con-
straints. The zero row-sum constraint will be ensured in Q̃(x,zn) and is
not kept track of by these ri.

Before starting the construction, let us establish a number of im-
portant properties. Let j be the unique element of {1, . . . ,n} such that
z j = x. Then ∆ j = r j−1, which means that r j = r j−1 − ∆ j = 0. There-
fore, for all k ∈ {1, . . . ,n} with j < k, since Q∗(x,zk) ≥ 0 due to Prop-
erty R2150 and because zk 6= z j = x, it follows from a straightforward
induction on k that ∆k = min{rk−1,Q∗(x,zk)} = 0 and rk = rk−1−∆k = 0.
Moreover, for any i ∈ {1, . . . ,n}, we have that ri = ri−1−∆i, which means
that ∆i = ri−1− ri, and therefore, by combining the above properties, it
follows that

n

∑
i=1

∆i =
j

∑
i=1

∆i =
j

∑
i=1

ri−1− ri = r0 =
r

2
. (6.49)

Let us prove by induction that ri ≥ 0 and ∆i ≥ 0 for all i ∈ {1, . . . , j−1}.
For the induction base, we simply use that r0 = r/2 ≥ 0. So now fix any
i ∈ {1, . . . , j− 1}, and suppose that ri−1 ≥ 0. We will show that then
ri ≥ 0 and ∆i ≥ 0. Because i < j it holds that ∆i = min{ri−1,Q∗(x,zi)} and,
because zi 6= z j = x that Q∗(x,zi) ≥ 0 due to Property R2150. Because by
the induction hypothesis ri−1 ≥ 0, it follows that ∆i ≥ 0. Moreover, it
holds that ∆i ≤ ri−1, and because ri = ri−1−∆i, and since ri−1 ≥ 0 by the
induction hypothesis, it follows that ri ≥ 0. This concludes the proof
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that ri ≥ 0 and ∆i ≥ 0 for all i ∈ {1, . . . , j− 1}. This also implies that
r j−1 ≥ 0, and hence that ∆ j = r j−1 ≥ 0. We already established above
that r j = 0 and, moreover, that for all k ∈ { j + 1, . . . ,n}, it holds that
rk = 0 and ∆k = 0, so in summary, we have established that ri ≥ 0 and
∆i ≥ 0 for all i ∈ {1, . . . ,n}.

Moreover, let us similarly show that if rk = 0 for some
k ∈ {1, . . . ,n−1}, then ri = 0 and ∆i = 0 for all i ∈ {k + 1, . . . ,n}. The
argument again proceeds by straightforward induction; suppose that
rk = 0 for some k ∈ {1, . . . ,n− 1}. We already established above that
ri = 0 and ∆i = 0 for all i ∈ { j+1, . . . ,n}, so we can suppose without loss
of generality that k < j. If k + 1 = j then ∆k+1 = ∆ j = rk = 0, and we
already established above that rk+1 = r j = 0, so in this case we are done.
For the remaining case, suppose that k+ 1 < j. Then zk+1 6= z j = x, so
it follows from Property R2150 that Q∗(x,zk+1) ≥ 0. Moreover, because
∆k+1 = min{rk,Q∗(x,zk+1)}, and since rk = 0 by the induction hypothe-
sis, it follows that ∆k+1 = 0, and hence that rk+1 = rk−∆k+1 = 0. This
concludes the proof that if rk = 0 then also ri = 0 and ∆i = 0 for all
i ∈ {k+1, . . . ,n}.

Now, let us proceed with the construction. Define Q̃(x, ·) such that,
for all i ∈ {1, . . . ,n−1},

Q̃(x,zi) := Q∗(x,zi)−∆i ,

and
Q̃(x,zn) := Q∗(x,zn)+

r

2
−∆n .

It then holds that

∑
y∈X

Q̃(x,y)g(y) =
n−1

∑
i=1

(

Q∗(x,zi)−∆i

)

g(zi)+
(

Q∗(x,zn)+
r

2
−∆n

)

g(zn)

=
n

∑
i=1

Q∗(x,zi)g(zi)+
r

2
g(zn)−

n

∑
i=1

∆ig(zi)

=
n

∑
i=1

Q∗(x,zi)g(zi)−
n

∑
i=1

∆i

(

g(zi)−g(zn)
)

= Q∗g(x)−
n

∑
i=1

∆i

(

g(zi)−g(zn)
)

,

where we used Equation (6.49) for the third equality. This estab-
lishes that ∑y∈X Q̃(x,y)g(y) coincides with the right-hand side of Equa-
tion (6.12)279.

For notational convenience, let Q := Br(Q∗), and let Qx := {Q(x, ·) :

Q ∈ Q} denote the set of x-rows of the elements of Q. We will now
show that (i) Q̃(x, ·) ∈Qx, and (ii) that Qg(x) = ∑y∈X Q̃(x,y)g(y).
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First, we note that for any i ∈ {1, . . . ,n− 1} such that i 6= j it holds
that ∆i = min{ri−1,Q∗(x,zi)}, and hence

Q̃(x,zi) = Q∗(x,zi)−∆i ≥ 0 ,

because Q∗(x,zi) ≥ 0 due to Property R2150. Similarly, if n 6= j it holds
that ∆n = min{rn−1,Q∗(x,zn)} and hence

Q̃(x,zn) = Q∗(x,zn)+
r

2
−∆n ≥ 0 ,

because Q∗(x,zn)≥ 0 due to Property R2150. Hence we have found that
Q∗(x,zi) ≥ 0 for all i ∈ {1, . . . ,n} with i 6= j, whence Q̃(x, ·) also satisfies
Property R2150. Moreover, it holds that

∑
y∈X

Q̃(x,y) =
n

∑
i=1

Q̃(x,zi)

=
n−1

∑
i=1

(

Q∗(x,zi)−∆i

)

+Q∗(x,zn)+
r

2
−∆n

=
n

∑
i=1

Q∗(x,zi)+
r

2
−

n

∑
i=1

∆i = 0 ,

where we used Equation (6.49)318 and that Q∗ satisfies Property R1150.
Hence Q̃(x, ·) also satisfies Property R1150 and therefore, because we
have already established that it satisfies Property R2150, it can be inter-
preted as the x-row of a rate matrix Q̃. Finally, it holds that

∑
y∈X

∣

∣Q∗(x,y)− Q̃(x,y)
∣

∣=
n

∑
i=1

∣

∣Q∗(x,zi)− Q̃(x,zi)
∣

∣

=
n−1

∑
i=1

|∆i|+
∣

∣

∣

r

2
−∆n

∣

∣

∣
≤ r

2
+

n

∑
i=1

|∆i|= r , (6.50)

where we used Equation (6.49)318 and that ∆i ≥ 0 for all i ∈ {1, . . . ,n}
for the final equality. Hence, if we now define Q̃ to be a matrix whose
x-row is Q̃(x, ·), and whose y-rows are Q̃(y, ·) :=Q∗(y, ·) for all y∈X with
y 6= x, then (i) Q̃ is clearly a rate matrix, and (ii), it holds that

∥

∥Q∗− Q̃
∥

∥= ∑
y∈X

∣

∣Q∗(x,y)− Q̃(x,y)
∣

∣≤ r ,

where we used Equations (2.7)63 and (6.50). Hence it follows
that Q̃ ∈ Br(Q∗) = Q and therefore, that Q̃(x, ·) ∈Qx.

We will finally show that Qg(x) = Q̃g(x). Because, as we have just

shown, Q̃∈Q, it clearly holds that Q̃g(x)≥Qg(x), so let us prove the in-
equality in the other direction. To this end, we note that due to Proposi-
tion 6.20278, Q is a non-empty, compact, and convex set of rate matrices
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that has separately specified rows. Therefore, it follows from Propo-
sition 6.10268 that there is some Q ∈ Q such that Qg(x) = Qg(x). Let
h := g−ming = g−g(zn). We note that h(zn) = 0 and that h(zi)≥ h(zi+1)
for all i ∈ {1, . . . ,n−1}, and hence that h≥ 0. Moreover, it follows from
Definition 4.4150 that

Qh(x) = ∑
y∈X

Q(x,y)h(y)

= ∑
y∈X

Q(x,y)
(

g(y)−ming
)

= Qg(x)−ming ∑
y∈X

Q(x,y) = Qg(x) ,

and, similarly, that Q̃h(x) = Q̃g(x). Hence, to establish that Q̃g(x) ≤
Qg(x), it suffices to show that Q̃h(x)≤ Qh(x).

Recall from the beginning of this proof that j is the unique ele-
ment of {1, . . . ,n} such that z j = x, and that ∆ j = r j−1 and hence r j = 0,
and that therefore rk = 0 for all k ∈ { j + 1, . . . ,n}. Now, consider any
k ∈ {1, . . . ,n− 1} and suppose that rk > 0. This implies that k 6= j, and
therefore that ∆k = min{rk−1,Q∗(x,zk)}. Because 0 < rk = rk−1−∆k, this
means that ∆k < rk−1 and hence ∆k = Q∗(x,zk). It therefore follows from
the definition of Q̃ that Q̃(x,zk) = Q∗(x,zk)−∆k = 0. Moreover, since we
already established in the beginning of this proof that ∆k ≥ 0, it follows
that also rk−1 = rk +∆k > 0.

We now consider several cases. First suppose that rn−1 > 0. It
follows from the above that this implies that j = n and, moreover,
that for all k ∈ {1, . . . ,n− 1}, it holds that rk > 0 and Q̃(x,zk) = 0. Be-
cause we already established that ∑

n
i=1 Q̃(x,zi) = 0, it follows that also

Q̃(x,zn) = 0, or in summary, that Q̃(x,y) = 0 for all y ∈X . This means
that Q̃h(x) = ∑y∈X Q̃(x,y)h(y) = 0. Moreover, because Q is a rate matrix
and because j = n, it follows from Definition 4.4150 that Q(x,zk)≥ 0 for
all k ∈ {1, . . . ,n−1} and therefore, because h(zn) = g(zn)−ming = 0 and
h(zk) = g(zk)−ming≥ 0 for all k ∈ {1, . . . ,n−1}, that

Qh(x) =
n

∑
i=1

Q(x,zi)h(zi) =
n−1

∑
i=1

Q(x,zi)h(zi)≥ 0 = Q̃h(x) .

This establishes the desired inequality if rn−1 > 0.

So, for the other case, suppose that rn−1 = 0. Then there is a (unique)
minimal k ∈ {1, . . . ,n− 1} such that rk = 0. As established at the be-
ginning of this proof, this implies that ∆i = 0 for all i ∈ {k + 1, . . . ,n}.
Moreover, because r j = 0 it follows that k ≤ j, and hence it follows
from our previous reasoning that ∆i = Q∗(x,zi) and Q̃(x,zi) = 0 for all
i ∈ {1, . . . ,k − 1}. We also note that because rk = 0, it follows that
∆k = rk−1. Combining these observations, and using Equation (6.49)318,
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it follows that

r

2
=

n

∑
i=1

∆i =
k

∑
i=1

∆i = rk−1 +
k−1

∑
i=1

Q∗(x,zi) ,

and hence rk−1 = r/2−∑
k−1
i=1 Q∗(x,zi) = r/2−∑

k−1
i=1 ∆i. This implies that

n

∑
i=1

∆ih(zi) =
r

2
h(zk)+

k−1

∑
i=1

∆i

(

h(zi)−h(zk)
)

. (6.51)

Now, let v ∈ L (X ) be such that v(y) := Q(x,y) − Q∗(x,y) for
all y ∈X . Then it holds that

Qh(x) = ∑
y∈X

Q(x,y)h(y)

= ∑
y∈X

(

Q∗(x,y)+ v(y)
)

h(y) = Q∗h(x)+ ∑
y∈X

v(y)h(y) .

Let N− :=
{

i∈ {1, . . . ,n} : v(zi)< 0
}

, and let N+ := {1, . . . ,n}\N−. Then,
because h(zi)≥ 0 for all i ∈ {1, . . . ,n}, it follows that

Qh(x) = Q∗h(x)+ ∑
y∈X

v(y)h(y)

= Q∗h(x)+ ∑
i∈N−

v(zi)h(zi)+ ∑
i∈N+

v(zi)h(zi)

≥ Q∗h(x)+ ∑
i∈N−

v(zi)h(zi) = Q∗h(x)− ∑
i∈N−
|v(zi)|h(zi) .

Moreover, we note that

Q̃h(x) = ∑
y∈X

Q̃(x,y)h(y)

=
n−1

∑
i=1

(

Q∗(x,zi)−∆i

)

h(zi)+
(

Q∗(x,zn)+
r

2
−∆n

)

h(zn)

= Q∗h(x)−
n

∑
i=1

∆ih(zi) ,

where we used that h(zn) = 0. So, in order to show that Qh(x) ≥ Q̃h(x),
it suffices to show that

∑
i∈N−
|v(zi)|h(zi)≤

n

∑
i=1

∆ih(zi) .

To this end, we first note that, because Q and Q∗ are both rate matrices,
it follows from Definition 4.4150 that

0 = ∑
y∈X

Q(x,y) = ∑
y∈X

v(y)+ ∑
y∈X

Q∗(x,y) = ∑
y∈X

v(y) .
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This implies that ∑i∈N− |v(zi)| = ∑i∈N+
|v(zi)|, which means that

∑i∈N− |v(zi)| = 1/2 ∑y∈X |v(y)|. Moreover, because Q ∈Q = Br(Q∗) it
holds that ‖Q−Q∗‖ ≤ r which, using Equation (2.7)63, implies that

∑
y∈X
|v(y)|= ∑

y∈X
|Q(x,y)−Q∗(x,y)| ≤ ‖Q−Q∗‖ ≤ r .

Combining the above, we find that ∑i∈N− |v(zi)|= 1/2 ∑y∈X |v(y)| ≤ r/2.
We now have all the pieces to finish the proof. Recall that k is the

(unique) minimal element of {1, . . . ,n− 1} such that rk = 0. Fix any
i∈N−, and first suppose that i < k. Then because i < k≤ j, and because
Q is a rate matrix, it follows from Definition 4.4150 that Q(x,zi) ≥ 0,
which, using that v(zi) < 0, implies that Q∗(x,zi)−|v(zi)| = Q(x,zi) ≥ 0,
or in other words, that |v(zi)| ≤ Q∗(x,zi). Hence, if i < k then |v(zi)| ≤
Q∗(x,zi) = ∆i, and therefore |v(zi)|h(zi)≤ ∆ih(zi) because h≥ 0. Let δi :=
∆i− |v(zi)|. Then if i < k it holds that 0 ≤ δi ≤ ∆i and |v(zi)| = ∆i− δi,
and δih(zi) ≥ δih(zk) because 0 ≤ h(zk) ≤ h(zi). Conversely, if k ≤ i then
h(zk)≥ h(zi) and hence |v(zi)|h(zk)≥ |v(zi)|h(zi).

Now, it holds that

∑
i∈N−
|v(zi)|h(zi) = ∑

i∈N−
:k≤i

|v(zi)|h(zi)+ ∑
i∈N−
:i<k

|v(zi)|h(zi)

≤ ∑
i∈N−
:k≤i

|v(zi)|h(zk)+ ∑
i∈N−
:i<k

|v(zi)|h(zi)

= ∑
i∈N−
:k≤i

|v(zi)|h(zk)+ ∑
i∈N−
:i<k

(∆i−δi)h(zi)

= ∑
i∈N−
:k≤i

|v(zi)|h(zk)− ∑
i∈N−
:i<k

δih(zi)+ ∑
i∈N−
:i<k

∆ih(zi)

≤ ∑
i∈N−
:k≤i

|v(zi)|h(zk)− ∑
i∈N−
:i<k

δih(zk)+ ∑
i∈N−
:i<k

∆ih(zi)

= ∑
i∈N−
:k≤i

|v(zi)|h(zk)− ∑
i∈N−
:i<k

(∆i−|v(zi)|)h(zk)+ ∑
i∈N−
:i<k

∆ih(zi)

= ∑
i∈N−
|v(zi)|h(zk)+ ∑

i∈N−
:i<k

∆i

(

h(zi)−h(zk)
)

≤ r

2
h(zk)+ ∑

i∈N−
:i<k

∆i

(

h(zi)−h(zk)
)

≤ r

2
h(zk)+

k−1

∑
i=1

∆i

(

h(zi)−h(zk)
)

=
n

∑
i=1

∆ih(zi) ,
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where we used that ∑i∈N− |v(zi)| ≤ r/2 for the third inequality;
that {i ∈N− : i < k} ⊆ {1, . . . ,k−1}, that h(zi) − h(zk) ≥ 0 for all
i ∈ {1, . . . ,k−1}, and—as established at the beginning of this proof—
that ∆i ≥ 0 for all i ∈ {1, . . . ,k−1}, for the final inequality; and
Equation (6.51)322 for the final equality. Hence we find that

∑i∈N− |v(zi)|h(zi)≤ ∑
n
i=1 ∆ih(zi), which implies that Qh(x) ≥ Q̃h(x),

which in turn implies that Qg(x) = Q̃g(x).

6.C Proofs of Results in Section 6.4

Lemma 6.39. Consider a non-empty bounded set Q of rate matrices and let
Q be the corresponding lower transition rate operator. Then for all Q ∈Q,

we have that ‖Q‖ ≤
∥

∥Q
∥

∥.

Proof. Consider any f ∈L (X ) such that ‖ f‖= 1. It then follows from
Definition 6.3267 that Q f ≥ Q f and, due to the linearity of Q, also that
Q f = −Q(− f ) ≤ −Q(− f ). Hence, we find that Q f ≤ Q f ≤ −Q(− f ),
which implies that

‖Q f‖ ≤max
{∥

∥Q f
∥

∥ ,
∥

∥−Q(− f )
∥

∥

}

= max
{∥

∥Q f
∥

∥ ,
∥

∥Q(− f )
∥

∥

}

. (6.52)

Since ‖ f‖ = 1, it follows from Property N1164 that
∥

∥Q f
∥

∥ ≤
∥

∥Q
∥

∥, and

similarly, since ‖− f‖ = ‖ f‖ = 1, we also find that
∥

∥Q(− f )
∥

∥ ≤
∥

∥Q
∥

∥. By

combining this with Equation (6.52), we find that ‖Q f‖ ≤
∥

∥Q
∥

∥, and
since this is true for every f ∈L (X ) such that ‖ f‖= 1, it now follows
from Equation (2.6)63 that ‖Q‖ ≤

∥

∥Q
∥

∥.

Lemma 6.40. Consider a non-empty and bounded set Q of rate matrices,
let Q be the corresponding lower transition rate operator, and consider any
δ ∈R>0 such that δ

∥

∥Q
∥

∥≤ 1. Now fix any n∈Z>0 and, for all i∈ {1, . . . ,n},
consider some 0 ≤ ∆i ≤ δ and Qi ∈Q. Then for any f ∈L (X ), it holds
that

n

∏
i=1

(I +∆iQi) f ≥
n

∏
i=1

(I +∆iQ) f .

Proof. We provide a proof by induction. For n = 1, the result follows
trivially from Definition 6.3267. Consider now any n > 1 and assume
that the result is true for n−1. Since Lemma 6.39 implies that ∆1 ‖Q1‖≤
∆1

∥

∥Q
∥

∥≤ δ
∥

∥Q
∥

∥≤ 1, it then follows from Proposition 4.9153 that I+∆1Q1

is a transition matrix, and therefore, as noted in Section 3.4116, also a
lower transition operator, which therefore satisfies Property LT5117. We
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now find that

n

∏
i=1

(I +∆iQi) f = (I +∆1Q1)
n

∏
i=2

(I +∆iQi) f

≥ (I +∆1Q1)
n

∏
i=2

(I +∆iQ) f ≥
n

∏
i=1

(I +∆iQ) f ,

where the first inequality follows from the induction hypothesis and
Property LT5117, and the second inequality follows from Defini-
tion 6.3267.

Proof of Proposition 6.22279. Fix any P ∈ PW
Q
, and let (T r

q,xv
) be its corre-

sponding family of history-dependent transition matrices. By Proposi-
tions 4.2149 and 6.17273, if t = s it holds that T t

t,xu
f = I f = eQ0 f , whence

the result is then immediate by Proposition 4.3149. Hence, for the re-
mainder of this proof, let us assume that t < s. Fix any ε > 0 and let
C := (s− t). Choose any ε1 > 0 such that ε1 ‖ f‖< ε/2 and any ε2 > 0 such
that ε2C‖ f‖< ε/2; this is clearly always possible.

Due to Theorem 6.16272, there is some δ ∈ R>0 such that δ
∥

∥Q
∥

∥≤ 1

and

(∀v ∈U[t,s] : σ(v)≤ δ )
∥

∥

∥
eQ(s−t)−Φv

∥

∥

∥
≤ ε1, (6.53)

with Φv as in Equation (6.6)271. Since P ∈ PW
Q
, it now follows from

Proposition 4.23171 that there is some 0 < ∆1 < min{δ ,C} such that

(∃Q1 ∈ ∂+T t
t,xu
⊆Q)

∥

∥T
t1

t0,xu
− (I +∆1Q1)

∥

∥=
∥

∥

∥
T

t+∆1
t,xu

− (I +∆1Q1)
∥

∥

∥
< ∆1ε2,

with t0 := t and t1 := t +∆1. Furthermore, since P ∈ PW
Q
, and because

∆1 < C implies that t1 = t +∆1 < s, it follows from Lemma 5.36227 that
there is some v ∈U[t1,s] such that σ(v) < δ , with v = t1, . . . , tn and tn = s,
and such that for all i ∈ {2, . . . ,n}, with ∆v

i := ti− ti−1, it holds that

(∃Qi ∈Q)
∥

∥

∥
T

ti
ti−1,xu∪{t} − (I +∆v

i Qi)
∥

∥

∥
< ∆iε2.

For notational convenience, let ∆v
1 := ∆1. Since ∆v

1 = ∆1 < δ and, for all
i ∈ {2, . . . ,n}, ∆v

i ≤ σ(v) < δ , we know that, for all i ∈ {1, . . . ,n}, ∆v
i < δ

and therefore also, using Lemma 6.39, that ∆v
i ‖Qi‖ ≤ δ

∥

∥Q
∥

∥≤ 1. There-
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fore, we find that

∣

∣

∣

∣

∣

T s
t,xu

f (xt)−
(

n

∏
i=1

(I +∆v
i Qi)

)

f (xt)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

T
t1

t0,xu

n

∏
i=2

T
ti

ti−1,xu∪{t}

)

f (xt)−
(

n

∏
i=1

(I +∆v
i Qi)

)

f (xt)

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

T
t1

t0,xu

n

∏
i=2

T
ti

ti−1,xu∪{t} −
n

∏
i=1

(I +∆v
i Qi)

∥

∥

∥

∥

∥

‖ f‖

≤
∥

∥T
t1

t0,xu
− (I +∆v

1Q1)
∥

∥‖ f‖+
n

∑
i=2

∥

∥

∥
T

ti
ti−1,xu∪{t} − (I +∆v

i Qi)
∥

∥

∥
‖ f‖

<
n

∑
i=1

∆v
i ε2 ‖ f‖=Cε2 ‖ f‖< ε

2
,

where the equality follows from Lemma 5.37230, the first inequality
follows from the definition of the norm together with Property N1164,
and the second inequality follows from Lemma B.5393 and Proposi-
tion 4.9153 together with the fact that ∆v

i ‖Qi‖ ≤ 1 for all i ∈ {1, . . . ,n}.
Moreover, using Equation (6.53)x, since σ(v)< δ , we find that

∣

∣

∣

∣

∣

eQ(s−t) f (xt)−
(

n

∏
i=1

(I +∆v
i Q)

)

f (xt)

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

eQ(s−t)−
n

∏
i=1

(I +∆v
i Q)

∥

∥

∥

∥

∥

‖ f‖

≤ ε1 ‖ f‖< ε

2
.

Hence, Lemma 6.40324 implies that

eQ(s−t) f (xt)<

(

n

∏
i=1

(I +∆v
i Q)

)

f (xt)+
ε

2

≤
(

n

∏
i=1

(I +∆v
i Qi)

)

f (xt)+
ε

2
< T s

t,xu
f (xt)+ ε.

Since ε > 0 is arbitrary, this implies that eQ(s−t) f (xt) ≤ T s
t,xu

f (xt). The
result now follows because T s

t,xu
f (xt) = EP[ f (Xs)|Xt = xt ,Xu = xu] due to

Proposition 4.3149.

Lemma 6.41. Let Q be a non-empty and bounded set of rate matrices that
has separately specified rows, with corresponding lower transition rate op-
erator Q. Then for any f ∈L (X ) and ε ∈ R>0, there is some Q ∈Q such
that

∥

∥Q f −Q f
∥

∥< ε .
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Proof. Fix any x ∈X . Because Q is non-empty and bounded, it follows
fromDefinition 6.3267 and Lemma 6.8266 that Q f (x)= infQ∈Q Q f (x)∈R,
which implies that there is some Qx ∈Q such that

∣

∣Q f (x)−Qx f (x)
∣

∣< ε .
Now consider the rate matrix Q that is defined, for all x ∈ X , as
Q(x, ·) := Qx(x, ·). Then Q ∈Q because Q has separately specified rows,
and it holds that Q f (x) = Qx f (x) for all x ∈X from the properties of
matrix-vector multiplication. Hence, from the definition of the norm,
it now follows that

∥

∥Q f −Q f
∥

∥= max
x∈X

∣

∣Q f (x)−Q f (x)
∣

∣= max
x∈X

∣

∣Q f (x)−Qx f (x)
∣

∣< ε ,

which concludes the proof.

Proof of Proposition 6.23280. For any P ∈ PWM
Q,M with corresponding

transitionmatrix T s
t , by Corollary 4.4150 and Proposition 6.17273, if t = s

it holds that T t
t f = I f = eQ0 f , whence the result is then immediate by

Corollary 4.4150. So, for the remainder of this proof, let us suppose that
t < s.

Let C := (s− t), choose any ε∗ > 0 such that ε∗C < ε , choose any
ε1,ε2,ε3 > 0 such that ε1 + ε2 + ε3 < ε∗, choose any δ > 0 such that

δ
∥

∥Q
∥

∥

2 ‖ f‖ < ε1 and δ ‖Q‖2 ‖ f‖< ε3 (this is always possible since Q is
bounded and due to Property LR5266), and consider any u ∈U[t,s] such
that σ(u)< δ , with u = t0, . . . , tn and n ∈ Z>0.

Now fix any i ∈ {1, . . . ,n} and let gi := eQ(tn−ti) f . It then follows
from Lemma 6.41 that there is some Qi ∈Q such that

∥

∥Qgi−Qigi

∥

∥< ε2

and, due to Properties N1164 and LT4117, we also know that ‖gi‖ =
‖eQ(tn−ti) f‖ ≤ ‖eQ(tn−ti)‖‖ f‖ ≤ ‖ f‖. Hence, we find that

∥

∥

∥
eQ∆u

i gi− eQi∆
u
i gi

∥

∥

∥

≤
∥

∥

∥
eQ∆u

i gi−
(

I +∆u
i Q
)

gi

∥

∥

∥
+
∥

∥∆u
i Qgi−∆u

i Qigi

∥

∥+
∥

∥

∥
(I +∆u

i Qi)gi− eQi∆
u
i gi

∥

∥

∥

≤
∥

∥

∥
eQ∆u

i −
(

I +∆u
i Q
)

∥

∥

∥
‖gi‖+∆u

i

∥

∥Qgi−Qigi

∥

∥+
∥

∥

∥
I +∆u

i Qi− eQi∆
u
i

∥

∥

∥
‖gi‖

<
∥

∥

∥
eQ∆u

i −
(

I +∆u
i Q
)

∥

∥

∥
‖ f‖+∆u

i ε2 +
∥

∥

∥
I +∆u

i Qi− eQi∆
u
i

∥

∥

∥
‖ f‖

≤
(

∆u
i

)2∥
∥Q
∥

∥

2 ‖ f‖+∆u
i ε2 +

(

∆u
i

)2 ‖Qi‖2 ‖ f‖
≤ ∆u

i (δ
∥

∥Q
∥

∥

2 ‖ f‖+ ε2 +δ ‖Q‖2 ‖ f‖)< ∆u
i (ε1 + ε2 + ε3)< ∆u

i ε∗, (6.54)

where the second inequality holds because of Property N1164, the third
inequality holds because ‖gi‖ ≤ ‖ f‖ and

∥

∥Qgi−Qigi

∥

∥ < ε2, the fourth
inequality holds because of Lemmas B.7394 and B.8394 and where the
fifth inequality holds because ∆u

i ≤ σ(u)< δ .
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Let Q0 and Qn+1 be two arbitrary elements of Q and, for all i ∈
{0, . . . ,n+1}, let

(

eQi(q−r)
)

denote the exponential transition matrix sys-
tem corresponding to Qi, as in Definition 4.8158. Then, by Proposi-
tion 5.10192, there is some P∈ PWM

Q,M with transition matrix system
(

T
q

r

)

given by

(

eQ0(q−r)
)

[0,t0]
⊗
(

eQ1(q−r)
)

[t0,t1]
⊗·· ·⊗

(

eQn(q−r)
)

[tn−1,tn]
⊗
(

eQn+1(q−r)
)

[tn,+∞)
.

For all i ∈ {i, . . . ,n}, due to Equation (6.54)x we know that the tran-
sition matrices of this process P satisfy

∥

∥

∥
eQ∆u

i gi−T
ti

ti−1
gi

∥

∥

∥
=
∥

∥

∥
eQ∆u

i gi− eQi∆
u
i gi

∥

∥

∥
< ∆u

i ε∗. (6.55)

Furthermore, we also know that
∥

∥

∥
eQ(tn−t0)gn−T

tn
t0

gn

∥

∥

∥

=
∥

∥

∥
eQ(tn−1−t0)eQ∆u

n gn−T
tn−1

t0
eQ∆u

n gn +T
tn−1

t0
(eQ∆u

n gn−T
tn

tn−1
gn)
∥

∥

∥

≤
∥

∥

∥
eQ(tn−1−t0)eQ∆u

n gn−T
tn−1

t0
eQ∆u

n gn

∥

∥

∥
+
∥

∥

∥
T

tn−1
t0

∥

∥

∥

∥

∥

∥
eQ∆u

n gn−T
tn

tn−1
gn

∥

∥

∥

≤
∥

∥

∥
eQ(tn−1−t0)gn−1−T

tn−1
t0

gn−1

∥

∥

∥
+
∥

∥

∥
eQ∆u

n gn−T
tn

tn−1
gn

∥

∥

∥
,

using Proposition 6.17273 and Equation (5.1)183 for the first equality,
Property N1164 for the first inequality, and Property LT4117 and the
definition of gn−1 for the second inequality. Similarly, we also find that

∥

∥

∥
eQ(tn−1−t0)gn−1−T

tn−1
t0

gn−1

∥

∥

∥
≤
∥

∥

∥
eQ(tn−2−t0)gn−2−T

tn−2
t0

gn−2

∥

∥

∥

+
∥

∥

∥
eQ∆u

n−1gn−1−T
tn−1

tn−2
gn−1

∥

∥

∥
.

By continuing in this way (essentially applying backwards induction)
we eventually find, using that t = t0, s = tn, and gn = f due to Proposi-
tion 6.17273, that

∥

∥

∥
eQ(s−t) f −T s

t f

∥

∥

∥
=
∥

∥

∥
eQ(tn−t0)gn−T

tn
t0

gn

∥

∥

∥

≤
n

∑
i=1

∥

∥

∥
eQ∆u

i gi−T
ti

ti−1
gi

∥

∥

∥
≤

n

∑
i=1

∆u
i ε∗ =Cε∗ < ε,

using Equation (6.55) to establish the second inequality. The
result now follows from Corollary 4.4150, which states that
T s

t f (xt) = EP[ f (Xs)|Xt = xt ] for all xt ∈X .

Proof of Corollary 6.24280. Consider any sequence {εi}i∈Z>0
in R>0 such

that limi→+∞ εi = 0. Because Q is compact, it is bounded by Corol-
lary A.12378. Because Q is also non-empty and has separately specified
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rows, it follows from Proposition 6.23280 that for all i ∈ Z>0 there is
some Pi ∈ PWM

Q,M such that

∣

∣

∣
EPi

[ f (Xs) |Xt = xt ]− eQ(s−t) f (xt)
∣

∣

∣
< εi for all xt ∈X .

For notational convenience, for all i ∈ Z>0, let Ti := PiT s
t denote the tran-

sition matrix corresponding to Pi. It follows from Corollary 4.4150 that
EPi

[ f (Xs) |Xt = xt ] = Ti f (xt) for all xt ∈X and i ∈ Z>0, and hence it holds
that

∥

∥

∥
Ti f − eQ(s−t) f

∥

∥

∥
= max

x∈X

∣

∣

∣
Ti f (x)− eQ(s−t) f (x)

∣

∣

∣
< εi for all i ∈ Z>0 .

Because limi→+∞ εi = 0 it follows that also limi→+∞ ‖Ti f − eQ(s−t) f‖= 0.
Now consider the set T :=

{

PT s
t : P ∈ PWM

Q,M

}

; then for all i ∈ Z>0 it

holds that Ti ∈ T because Pi ∈ PWM
Q,M and Ti =

PiT s
t . Because Q is non-

empty, compact, and convex, it follows fromCorollary 5.18197 thatT is
compact. Due to Corollary A.12378 this implies that T is sequentially
compact, and because Ti ∈ T for all i ∈ Z>0 this implies that there is a
convergent subsequence {Ti j

} j∈Z>0
with limit T∗ := lim j→+∞ Ti j

such that
T∗ ∈ T . By Lemma A.34390 this implies that limi→+∞ ‖Ti f −T∗ f‖ = 0,
and since we already know that limi→+∞ ‖Ti f − eQ(s−t) f‖ = 0, it follows
that ‖T∗ f − eQ(s−t) f‖= 0. This implies that T∗ f = eQ(s−t) f .

Because T∗ ∈T , it follows that there is a well-behavedMarkov chain
P ∈ PWM

Q,M such that T∗ = PT s
t , and hence it follows from Corollary 4.4150

that

EP[ f (Xs) |Xt = xt ] = T∗ f (xt) = eQ(s−t) f (xt) for all xt ∈X ,

which concludes the proof.

Proof of Theorem 6.28283. Clearly, it suffices to prove that for any P ∈ P
that is not well-behaved or not consistent with QQ, there are t,s ∈ R≥0

with t ≤ s, u ∈U<t , xu ∈Xu, xt ∈X and f ∈L (X ) such that

EP[ f (Xs) |Xt = xt ,Xu = xu]< eQ(s−t) f (xt). (6.56)

We start with the case that P is not well-behaved. Fix any ε > 0 and
let C :=

∥

∥Q
∥

∥+ ε . It then follows from Proposition 4.2149 that there are
t,s ∈R≥0 with t < s, u ∈U<t and xu ∈Xu such that, with ∆ := s− t > 0, it
holds that 1/∆

∥

∥T s
t,xu
− I
∥

∥>C and ∆
∥

∥Q
∥

∥

2
< ε . Let Q := 1/∆(T s

t,xu
− I). Since

‖Q‖>C, it then follows that there is some f ′ ∈L (X ) such that ‖ f ′‖= 1

and ‖Q f ′‖ > C, which in turn implies that there is some xt ∈X such
that |Q f ′(xt)|>C. If Q f ′(xt)< 0, we let f := f ′, and if Q f ′(xt)> 0, we let
f :=− f ′. Clearly, this implies that ‖ f‖= 1 and Q f (xt)<−C. From ‖ f‖=
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1, it furthermore follows that Q f (xt)≥−
∥

∥Q f
∥

∥≥−
∥

∥Q
∥

∥, and therefore,

we find that Q f (xt) < −
∥

∥Q
∥

∥− ε ≤ Q f (xt)− ε , which implies that (I +
∆Q) f (xt)≤ (I +∆Q) f (xt)−∆ε .

Moreover, we also know that
∣

∣

∣
eQ(s−t) f (xt)− (I +∆Q) f (xt)

∣

∣

∣
≤
∥

∥

∥
eQ(s−t)− (I +∆Q)

∥

∥

∥
≤ ∆2

∥

∥Q
∥

∥

2
< ∆ε,

where we used ‖ f‖ = 1 for the first inequality and Lemma B.7394 for
the second inequality. Hence, it follows that

T s
t,xu

f (xt) = (I +∆Q) f (xt)≤ (I +∆Q) f (xt)−∆ε < eQ(s−t) f (xt),

which, because of Proposition 4.3149, implies that Equation (6.56)x
holds.

Next, we consider the case that P is well-behaved, but not consistent
with QQ. In that case, it follows from Definition 5.3189 that there are
r ∈R≥0, u ∈U<r and xu ∈Xu such that ∂T r

r,xu
6⊆QQ. Since we know that

∂T r
r,xu

is a non-empty set of rate matrices because of Proposition 4.22169,
this implies the existence of a rate matrix Q∗ ∈ ∂T r

r,xu
such that Q∗ /∈QQ.

Furthermore, since Q∗ /∈ QQ, Equation (6.4)268 implies that there are

f ′ ∈L (X ) and x ∈X such that Q∗ f ′(x)< Q f ′(x). Clearly, this implies
that f ′ 6= 0, and therefore, that ‖ f ′‖ > 0. If we now let f := 1/‖ f ′‖ f ′,
then ‖ f‖ = 1, and furthermore, because of the linearity of Q∗ and the
non-negative homogeneity of Q, it follows that

Q∗ f (x) = 1/‖ f ′‖Q∗ f ′(x)< 1/‖ f ′‖Q f ′(x) = Q f (x) . (6.57)

Consider now any ε > 0 such that Q∗ f (x)≤ Q f (x)−2ε ; this is clearly
possible due to the strict inequality in (6.57). Since Q∗ ∈ ∂T r

r,xu
, it then

follows fromDefinition 4.11168 that there are t,s∈R≥0 such that u< t <
s and, with ∆ := s− t > 0,

∥

∥1/∆(T s
t,xu
− I)−Q∗

∥

∥ ≤ ε and ∆
∥

∥Q
∥

∥

2
< ε . Let

Q := 1/∆(T s
t,xu
− I). Since ‖Q−Q∗‖ ≤ ε and ‖ f‖ = 1, it then follows that

Q f (x)≤ Q∗ f (x)+ ε ≤ Q f (x)− ε . The remainder of the argument is now
analogous to the argument in the first part of this proof: first, it follows
from this inequality that (I+∆Q) f (x)≤ (I+∆Q) f (x)−∆ε . Moreover, as
before, we also know that
∣

∣

∣
eQ(s−t) f (x)− (I +∆Q) f (x)

∣

∣

∣
≤
∥

∥

∥
eQ(s−t)− (I +∆Q)

∥

∥

∥
≤ ∆2

∥

∥Q
∥

∥

2
< ∆ε,

where we used ‖ f‖ = 1 for the first inequality and Lemma B.7394 for
the second inequality. Hence we find that

T s
t,xu

f (x) = (I +∆Q) f (x)≤ (I +∆Q) f (x)−∆ε < eQ(s−t) f (x),

which, using Proposition 4.3149, implies that Equation (6.56)x holds.
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6.D Proofs of Results in Section 6.5

Proof of Lemma 6.29284. If n = 0 the result follows trivially from Equa-
tion (6.16)285, so let us assume for the remainder of this proof that n≥ 1.

It follows from Equation (6.15)284 that, because gn = f ,

∣

∣gn−1(xwn)−T
tn
tn−1

f (xwn)
∣

∣≤ ε for all xwn ∈Xwn .

This provides the induction base (for i = n) in the following induction
argument. Suppose that for some i ∈ {2, . . . ,n}, it holds that

∣

∣gi−1(xwi
)−T

ti
ti−1
· · ·T tn

tn−1
f (xwi

)
∣

∣≤ (n− i+1)ε for all xwi
∈Xwi

.

We will show that then also, for all xwi−1
∈Xwi−1

,

∣

∣

∣
gi−2(xwi−1

)−T
ti−1
ti−2

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

)
∣

∣

∣
≤ (n− i+2)ε .

The induction hypothesis implies that, for all xwi
∈Xwi

, it holds that

T
ti
ti−1
· · ·T tn

tn−1
f (xwi

)− (n− i+1)ε ≤ gi−1(xwi
)

≤ T
ti
ti−1
· · ·T tn

tn−1
f (xwi

)+(n− i+1)ε .

Because wi = u∪{t0, . . . , ti−1} and wi−1 = u∪{t0, . . . , ti−2}, this implies that
for all xwi−1

∈Xwi−1
,

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

, ·)− (n− i+1)ε (6.58)

≤ gi−1(xwi−1
, ·)

≤ T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

, ·)+(n− i+1)ε , (6.59)

where we consider the restrictions (depending on xwi−1
) of these func-

tions to L (Xti−1
), e.g. gi−1(xwi−1

, ·) is the element corresponding to the
ti−1-measurable function gi−1(xwi−1

,Xti−1
). So now fix any xwi−1

∈Xwi−1
.

Then, using the notation introduced in Section 6.1260, and because T
ti−1
ti−2

is a lower transition operator, it follows from Proposition 3.32116 to-
gether with Equation (6.59) that

T
ti−1
ti−2

gi−1(xwi−1
) =

[

T
ti−1
ti−2

gi−1(xwi−1
, ·)
]

(xti−2
)

≤ T
ti−1
ti−2

(

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

, ·)+(n− i+1)ε
)

(xti−2
)

=
[

T
ti−1
ti−2

(

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

, ·)
)

]

(xti−2
)+(n− i+1)ε

= T
ti−1
ti−2

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

)+(n− i+1)ε ,
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and similarly, but using Equation (6.58)x, that

T
ti−1
ti−2

gi−1(xwi−1
) =

[

T
ti−1
ti−2

gi−1(xwi−1
, ·)
]

(xti−2
)

≥ T
ti−1
ti−2

(

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

, ·)− (n− i+1)ε
)

(xti−2
)

=
[

T
ti−1
ti−2

(

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

, ·)
)

]

(xti−2
)− (n− i+1)ε

= T
ti−1
ti−2

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

)− (n− i+1)ε .

Now, Equation (6.15)284 implies that

T
ti−1
ti−2

gi−1(xwi−1
)− ε ≤ gi−2(xwi−1

)≤ T
ti−1
ti−2

gi−1(xwi−1
)+ ε ,

and hence, by combining these inequalities, it follows that

gi−2(xwi−1
)≤ T

ti−1
ti−2

gi−1(xwi−1
)+ ε

≤ T
ti−1
ti−2

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

)+(n− i+1)ε + ε

= T
ti−1
ti−2

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

)+(n− i+2)ε ,

and, similarly,

gi−2(xwi−1
)≥ T

ti−1
ti−2

gi−1(xwi−1
)− ε

≥ T
ti−1
ti−2

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

)− (n− i+1)ε− ε

= T
ti−1
ti−2

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

)− (n− i+2)ε ,

which implies that

∣

∣

∣
gi−2(xwi−1

)−T
ti−1
ti−2

T
ti
ti−1
· · ·T tn

tn−1
f (xwi−1

)
∣

∣

∣
≤ (n− i+2)ε .

Because this is true for all xwi−1
∈Xwi−1

, this concludes the proof of the
induction step. If n≥ 2 then the induction argument now implies that,
in particular, with i = 2, it holds that

∣

∣g0(xw1
)−T

t1
t0
· · ·T tn

tn−1
f (xw1

)
∣

∣≤ nε , (6.60)

for all xw1
∈Xw1

. Conversely, if n = 1 then this inequality was already
established by the induction base; hence this inequality holds in all
cases that we consider.

It remains to repeat the above argument one last time to resolve
the operator T

t0
maxu. To this end, Equation (6.60) implies that, for all

xw1
∈Xw1

,

T
t1
t0
· · ·T tn

tn−1
f (xw1

)−nε ≤ g0(xw1
)≤ T

t1
t0
· · ·T tn

tn−1
f (xw1

)+nε .
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Because w1 = u∪{t0}, this implies that for all xu ∈Xu,

T
t1
t0
· · ·T tn

tn−1
f (xu, ·)−nε ≤ g0(xu, ·)≤ T

t1
t0
· · ·T tn

tn−1
f (xu, ·)+nε , (6.61)

where we consider the restrictions (depending on xu) of these func-
tions to L (Xt0), e.g. g0(xu, ·) is the element corresponding to the t0-
measurable function g0(xu,Xt0). So now fix any xu ∈Xu. Then, using

the notation introduced in Section 6.1260, and because T
t0
maxu is a lower

transition operator, it follows from Proposition 3.32116 together with
Equation (6.61) that

T t0
maxug0(xu) =

[

T t0
maxug0(xu, ·)

]

(xmaxu)

≤ T t0
maxu

([

T
t1
t0
· · ·T tn

tn−1
f
]

(xu, ·)+nε
)

(xmaxu)

=
[

T t0
maxu

(

T
t1
t0
· · ·T tn

tn−1
f (xu, ·)

)

]

(xmaxu)+nε

= T t0
maxuT

t1
t0
· · ·T tn

tn−1
f (xu)+nε ,

and

T t0
maxug0(xu) =

[

T t0
maxug0(xu, ·)

]

(xmaxu)

≥ T t0
maxu

([

T
t1
t0
· · ·T tn

tn−1
f
]

(xu, ·)−nε
)

(xmaxu)

=
[

T t0
maxu

(

T
t1
t0
· · ·T tn

tn−1
f (xu, ·)

)

]

(xmaxu)−nε

= T t0
maxuT

t1
t0
· · ·T tn

tn−1
f (xu)−nε .

Using Equation (6.16)285, it follows that

f̃ (xu)≤ T t0
maxug0(xu)+ ε ≤ T t0

maxuT
t1
t0
· · ·T tn

tn−1
f (xu)+(n+1)ε ,

and

f̃ (xu)≥ T t0
maxug0(xu)− ε ≥ T t0

maxuT
t1
t0
· · ·T tn

tn−1
f (xu)− (n+1)ε ,

from which we obtain

∣

∣ f̃ (xu)−T t0
maxuT

t1
t0
· · ·T tn

tn−1
f (xu)

∣

∣≤ (n+1)ε .

Because this is true for all xu ∈Xu, this concludes the proof.
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7

Reduction to Discrete-Time

Imprecise-Markov Chains

“You’re just about drowning me with talk.
What’re you getting at? Never mind the in-betweens.”

“You’ve got to have the in-betweens, or you won’t understand.”

Isaac Asimov, “Foundation”

In this final technical chapter, we will establish a strong connection
between imprecise-Markov chains in discrete- and continuous time.
We will show in Section 7.1y how the parameters Q and M of a
continuous-time imprecise-Markov chain can induce a discrete-time
imprecise-Markov chain with any desired discrete time domain D. We
make this identification in such a way that the lower transition opera-
tors of this discrete-timemodel are given by the imprecise exponentials
eQt of the lower transition rate operator Q corresponding to Q, which
means that we can evaluate these lower transition operators numeri-
cally using, e.g., Algorithm 1277.

The practical use of this construction is illustrated in Section 7.2338,
where we show that—under some conditions on Q—the lower expec-
tation of a function that only depends on time points in D, is the
same for the continuous-time imprecise-Markov chain PW

Q,M and for
the induced discrete-time imprecise-Markov chain on D. The imme-
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diate practical consequence is this: provided that we have an algo-
rithm to compute this lower expectation for the induced discrete-time
model, we can also compute the lower expectation for the continuous-
time model. This observation allows us to leverage any number of
such algorithms from the literature, which at the time of writing is
much more extensive for discrete-time imprecise-Markov chains than
for continuous-time imprecise-Markov chains. Moreover, it similarly
allows us to exploit existing algorithms for imprecise-probabilistic
graphical models, to which—as we already noted in Chapter 383—
discrete-time imprecise-Markov chains are related. The results from
this chapter can therefore also be interpreted as establishing an anal-
ogous connection between continuous-time imprecise-Markov chains
and imprecise-probabilistic graphical models, by restricting attention
to a finite—or at least countable—number of time points of interest. We
illustrate this with an example, where we straightforwardly adopt an
efficient algorithm for computing lower expectations of functions sat-
isfying a particular decomposition property, for use with continuous-
time imprecise-Markov chains.

We conclude this chapter with Section 7.3345, where—again un-
der some conditions on Q—we provide the induced discrete-time
imprecise-Markov chain with an alternative characterisation in terms
of sets of stochastic processes. We show that in a precise sense, we can
view this induced discrete-time model as the set of restrictions of the
elements of the continuous-time imprecise-Markov chain, to the events
C SP
D with time domain D. This provides the connection between these

two frameworks also in terms of the sets of processes that constitute
our models, in addition to the connection in terms of the correspond-
ing lower expectations discussed earlier.

7.1 Induced Discrete-Time Imprecise-Markov Chains

In this section we show how the parameters Q and M of a
continuous-time imprecise-Markov chain PW

Q,M also induce a discrete-
time imprecise-Markov chain PD

Q,M on any desired discrete time do-
main D; specifically in such a way that their lower expectations will
agree in a useful sense.

The crucial step is to note that the (generalised) exponentials eQt

of the lower transition rate operator Q corresponding to Q are lower
transition operators which, as we know from our developments in
Section 3.4116, have a dominating set of transition matrices T

eQt that
is non-empty, closed, convex, has separately specified rows, and has
eQt as its corresponding lower transition operator. Since discrete-time
imprecise-Markov chains are parameterised using sets of transition

336



7.1 Induced Discrete-Time Imprecise-Markov Chains

matrices, this allows us to introduce the following definition.

Definition 7.1. Let Q be a non-empty and bounded set of rate matrices
with corresponding lower transition rate operator Q, let M be a non-empty
set of probability mass functions on X , and let D be a discrete time domain
with canonical time index τ . We define the discrete-time imprecise-Markov
chain PD

Q,M := PD
(Tk),M

′ where, for all k ∈Z≥0, Tk := T
e

Q(τk+1−τk)
is the set of

transition matrices that dominate the lower transition operator eQ(τk+1−τk),
and where M ′ is given by

M
′ := MT

eQτ0 =

{

∑
x∈X

p(x)T (x, ·) : p ∈M ,T ∈T
eQτ0

}

, (7.1)

with T
eQτ0 the set of transition matrices that dominate the lower transition

operator eQτ0 . We call PD
Q,M the discrete-time imprecise-Markov chain

with time domain D induced by Q and M , and we use ED
Q,M and E

D
Q,M

to denote its corresponding lower and upper expectations, respectively.

It follows from Proposition 3.37120 that, for all k ∈ Z≥0, the lower
transition operator T k corresponding to the set Tk = T

e
Q(τk+1−τk)

in the
parameterisation of the discrete-time imprecise-Markov chain PD

Q,M is
simply the generalised exponential eQ(τk+1−τk). This implies that we can
use e.g. Algorithm 1277 to evaluate these lower transition operators T k

numerically. By combining this with the results in Section 3.5121—
i.e. the fact that these lower transition operators form an alternative
representation of the corresponding conditional lower expectation—
this allows us to compute the conditional lower expectations for PD

Q,M .
Moreover, because the lower expectation EM with respect to the initial
modelM of the continuous-timemodel is solvable by assumption—see
the discussion in Section 6.5284—and because we can evaluate the lower
transition operator eQτ0 using e.g. Algorithm 1277, it follows from the
following result that we can also efficiently evaluate the lower expecta-
tion EM ′ with respect to the initial model M ′ of the induced discrete-
time imprecise-Markov chain, as given by Equation (7.1).

Lemma 7.1. Let Q be a non-empty and bounded set of rate matrices with
corresponding lower transition rate operator Q, let M be a non-empty set of
probability mass functions on X , and let D be a discrete time domain with
canonical time index τ . Let M ′ be as in Equation (7.1), and let EM and
EM ′ be as in Definition 3.14114. Then for all f ∈L (X ) it holds that

EM ′ [ f ] = EM

[

eQτ0 f
]

.

Proof. First fix any p′ ∈M ′. Then by Equation (7.1) there are p∈M and
T ∈ T

eQτ0 such that p′(y) = ∑x∈X p(x)T (x,y) for all y ∈X . This implies
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that

∑
y∈X

p′(y) f (y) = ∑
y∈X

∑
x∈X

p(x)T (x,y) f (y)

= ∑
x∈X

p(x)T f (x)≥ ∑
x∈X

p(x)eQτ0 f (x)≥ EM

[

eQτ0 f
]

,

where for the first inequality we used that p(x) ≥ 0 for all x ∈X be-
cause p ∈M is a probability mass function, and that T f ≥ eQτ0 f since
T ∈T

eQτ0 ; and where for the second inequality we used that p ∈M to-
gether with Definition 3.14114. Because this is true for all p′ ∈M ′ it
follows from Definition 3.14114 that EM ′ [ f ]≥ EM

[

eQτ0 f
]

.
For the other direction, note that by Propositions 3.36119

and 3.37120 there is some T ∈ T
eQτ0 such that T f = eQτ0 f , so it follows

that EM [eQτ0 f ] = EM [T f ]. Now fix any ε > 0. By Definition 3.14114
it holds that EM [ f ] is real-valued, and hence there is some p ∈ M

such that |EM [T f ]−∑x∈X p(x)T f (x)|< ε , which implies that EM [T f ]>

∑x∈X p(x)T f (x)− ε . By Equation (7.1)x it holds that the function
p′ : X → R that is defined for all y ∈ X as p′(y) := ∑x∈X p(x)T (x,y)
is an element of M ′. This implies that

EM

[

eQτ0 f
]

= EM

[

T f
]

> ∑
x∈X

p(x)T f (x)− ε

= ∑
x∈X

p(x) ∑
y∈X

T (x,y) f (y)− ε

= ∑
y∈X

p′(y) f (y)− ε ≥ EM ′ [ f ]− ε ,

where we used that p′ ∈M ′ together with Definition 3.14114 for the
final inequality. Because this is true for all ε > 0 it follows that
EM

[

eQτ0 f
]

≥ EM ′ [ f ]. Since we already established the inequality in

the other direction, we conclude that EM ′ [ f ] = EM

[

eQτ0 f
]

.

It is worth noting that in the special case that the first time point
τ0 of the discrete time domain D is equal to zero, then it follows from
Proposition 6.17273 that eQτ0 = eQ0 = I, and hence in that case it fol-
lows from Lemma 7.1x that then EM ′ [ f ] = EM [ f ]. Hence if τ0 = 0 we
can simply use the initial model M of the continuous-time imprecise-
Markov chain directly.

7.2 Correspondence of Lower Expectations

In this section we will establish the crucial correspondence between
the lower expectations of the imprecise-Markov chain PW

Q,M and the
discrete-time imprecise-Markov chain PD

Q,M with time domain D.
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7.2 Correspondence of Lower Expectations

Clearly, we can only obtain such a correspondence in a meaningful way
for functions and conditioning events that depend on time points that
are included in D; the following definition will therefore be helpful.

Definition 7.2. Fix any u ∈U⊃ /0 such that u = t0, . . . , tn with n ∈ Z≥0, and
let D be a discrete time domain with canonical time index τ . We say that D
extends u, if ti = τi for all i ∈ {0, . . . ,n}.

The following result tells us that, for functions f that only depend
on the state of the system at (finitely many) time points in D, the
lower expectations for PW

Q,M and the induced discrete-time imprecise-
Markov chain PD

Q,M coincide, provided that certain structural assump-
tions on Q are satisfied.

Theorem7.2. LetQ be a non-empty, compact, and convex set of rate matri-
ces that has separately specified rows, and let M be a non-empty set of prob-
ability mass functions on X . Fix any u,v ∈U with u < v and v 6= /0, and let
D be any discrete time domain that extends u∪v. Then for all f ∈L (Xu∪v)
and all xu ∈Xu it holds that

EW
Q,M

[

f (Xu∪v) |Xu = xu

]

= ED
Q,M

[

f (Xu∪v) |Xu = xu

]

.

Proof. Let τ denote the canonical time index ofD, and let u = t0, . . . , tm−1

and v = tm, . . . , tn for some m,n ∈ Z≥0 with m≤ n (with m = 0 in the case
that u = /0). Then because D extends u∪ v, it follows that ti = τi for all
i ∈ {0, . . . ,n}. Therefore, it follows from Definition 3.185 that (Xu = xu)D
is a situation with time domain D. Due to Lemma 3.21105, this implies
that the lower expectation ED

Q,M

[

f (Xu∪v) |Xu = xu

]

is well-defined.

Using Definition 7.1337, it holds that PD
Q,M = PD

(Tk),M
′ , with M ′ as

in Equation (7.1)337 and, for all k ∈ Z≥0, Tk =T
e

Q(τk+1−τk)
. Due to Propo-

sition 3.37120, this implies that Tk is a non-empty, closed, and convex
set of transition matrices that has T k := eQ(τk+1−τk) as its corresponding
lower transition operator. Now for all k ∈Z≥0 let T

τk+1
τk

denote the lower

transition operator corresponding to PW
Q,M , as in Definition 6.1261. Be-

cause Q is compact, it is bounded by Corollary A.12378. Hence Q is a
non-empty and bounded set of rate matrices that has separately speci-
fied rows, and therefore it follows from Proposition 6.26281 that for all
k ∈ Z≥0 it holds that T

τk+1
τk

= eQ(τk+1−τk) = T k.
We now consider two cases. First suppose that u 6= /0, so m> 0. Then,

because for all k ∈ Z≥0 it holds that Tk is non-empty and has separately
specified rows, it follows from Proposition 3.44123 that

ED
Q,M

[

f (Xu∪v) |Xu = xu

]

= ED
(Tk),M

′
[

f (Xτ0:n
) |Xτ0:(m−1)

= xτ0:(m−1)

]

= T m−1T m · · ·T n−1 f (xτ0:(m−1)
) . (7.2)
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Reduction to Discrete-Time Imprecise-Markov Chains

Moreover, because Q is non-empty, compact, convex, and has sepa-
rately specified rows, it follows from Theorem 6.4263 that

EW
Q,M

[

f (Xu∪v)
∣

∣Xu = xu

]

= T τm
τm−1

T
τm+1
τm
· · ·T τn

τn−1
f (xu) . (7.3)

Using that u= τ0:(m−1) and that T k = T
τk+1
τk

for all k∈Z≥0, it follows from
Equations (7.2)x and (7.3) that

ED
Q,M

[

f (Xu∪v) |Xu = xu

]

= T m−1T m · · ·T n−1 f (xu)

= EW
Q,M

[

f (Xu∪v)
∣

∣Xu = xu

]

,

which concludes the proof for the case where u 6= /0.
So for the remaining case, suppose that u = /0. Then v = t0, . . . , tn,

and because D extends u∪ v = v, this implies that v = τ0:n. Now let
g ∈ L (X ) be defined as g(x) := EW

Q,M

[

f (Xτ0:n
) |Xτ0

= x
]

for all x ∈X .
Then it follows that

EW
Q,M

[

f (Xu∪v)
∣

∣Xu = xu

]

= EW
Q,M

[

f (Xτ0:n
)
]

= EW
Q,M

[

EW
Q,M

[

f (Xτ0:n
)
∣

∣Xτ0

]

]

= EW
Q,M

[

g(Xτ0
)
]

= EM

[

EW
Q,M

[

g(Xτ0
)
∣

∣X0

]

]

= EM

[

eQτ0g(X0)
]

, (7.4)

where for the second equality we used Theorem 5.32208, which we can
do because Q is non-empty, convex, and has separately specified rows;
for the third equality we used the definition of g; for the fourth equality
we used Theorem 6.33289, which we can do because Q is non-empty,
convex, and has separately specified rows; and for the final equality
we used Corollary 6.25280, which we can do because Q is non-empty
and bounded (since it is compact, due to Corollary A.12378) and has
separately specified rows.

Similarly, because Tk is non-empty and has separately specified
rows for all k ∈ Z≥0, it follows from Corollary 3.31115 that

ED
Q,M

[

f (Xu∪v)
∣

∣Xu = xu

]

= ED
(Tk),M

′
[

f (Xτ0:n
)
]

= EM ′

[

ED
(Tk),M

′
[

f (Xτ0:n
)
∣

∣Xτ0

]

]

. (7.5)

Because Q is non-empty and bounded (since it is compact, due to
Corollary A.12378), it follows from Lemma 7.1337 and Equations (7.4)
and (7.5) that it remains to establish that, for all x ∈X ,

ED
(Tk),M

′ [ f (Xτ0:n
) |Xτ0

= x] = g(x) = EW
Q,M [ f (Xτ0:n

) |Xτ0
= x] .
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This readily follows from an argument that is completely analogous to
that used in the first part of this proof—with {τ0} in place of u—and
therefore we omit it here for brevity.

The crucial observation that makes Theorem 7.2339 applicable in
practice, is that we can first choose a function f for which we know the
time points on which it depends, and then obtain an induced discrete-
time imprecise-Markov chain with a discrete time domain D that ex-
tends these time points. That is, we can tailor the discrete-time model
to the inference problem that we are trying to solve. This “reduction”
to a discrete-time model may then be used to translate known (ideally
efficient) inference algorithms from the literature, to compute the cor-
responding inference for the original continuous-time model. Such al-
gorithms will typically be expressed using the local models—i.e., the
lower transition operators—of the induced discrete-time imprecise-
Markov chain. As we already noted in Section 7.1336, these lower
transition operators simply correspond to the imprecise exponentials
eQ(τk+1−τk), and we can therefore use the machinery that we developed
in Chapter 6259 to evaluate them.

In summary, once we have an algorithm to compute inferences for
a discrete-time imprecise-Markov chain that is expressed in terms of
lower transition operators, then we can apply this algorithm to the in-
duced model PD

Q,M , using Algorithm 1277 to evaluate the lower tran-
sition operators numerically. It then follows from Theorem 7.2339 that
the computed inference for the discrete-time model coincides with the
quantity of interest for the continuous-time model.

What follows is an example application of this strategy, to devise
an algorithm that can compute lower expectations of a specific class
of functions; we will show that this resulting algorithm is much more
efficient than our general Algorithm 2286 discussed in Chapter 6259.

Example 7.1. Let Q be a non-empty, compact, and convex set of rate
matrices that has separately specified rows, and let M be a non-empty
set of probability mass functions on X . Consider any u ∈ U⊃ /0 with
u = t0, . . . , tn, n ∈ Z≥0, and, for all i ∈ {0, . . . ,n}, consider any fi ∈L (Xti).
Let f ∈ L (Xu) be defined, for all xu ∈ Xu, as f (xu) := ∏

n
i=0 fi(xti).

Suppose that we are interested in computing the lower expectation
EW

Q,M [ f (Xu)]. Because the structural assumptions on Q are satisfied,
we know from our developments in Section 6.5284 that this can be done
by combining Theorem 6.33289 with Algorithm 2286. Because the func-
tion f depends on n+1 time points, we also know from our discussion
in Section 6.5284 that this approach will have a time complexity that is
exponential in n+ 1. However, the function f has a lot of structure; it
fully factorises into functions f0, . . . , fn that each only depend on a sin-
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Reduction to Discrete-Time Imprecise-Markov Chains

gle time point ti, i ∈ {0, . . . ,n}. This suggests that it may be possible to
exploit this structure for the development of more efficient algorithms.

It is the purpose of this example to illustrate how we can lever-
age existing results from the literature, where this problem has al-
ready been investigated, without having to translate such results ex-
plicitly to the continuous-time setting. So, let D be any discrete time
domain that extends u, as in Definition 7.2339, and let PD

Q,M = PD
(Tk),M

′

be the discrete-time imprecise-Markov chain with time domain D that
is induced by Q and M . Then Theorem 7.2339 tells us that to obtain
EW

Q,M [ f (Xu)], it suffices to compute ED
Q,M [ f (Xu)].

Inferences of this type have been extensively studied in the litera-
ture on (discrete-time) imprecise-Markov chains and (more generally)
imprecise-probabilistic graphical models. As it turns out, the factoris-
ing structure of this function f can be used to devise an algorithm with
a runtime complexity that is only linear in n. This result has been de-
scribed in the literature in multiple contexts and to varying degrees of
generality. In the specific context of discrete-time imprecise-Markov
chains, it is for example reported as a special case of the core algorithm
described in [107], although that work makes the restricting assump-
tion that the family (Tk) of transition matrices describing the discrete-
time imprecise-Markov chain is constant in time, i.e. that Tk = T0

for all k ∈ Z≥0. In the more general context of imprecise-probabilistic
graphical models—specifically credal networks under epistemic irrel-
evance [16]—it can be obtained as a special case of the results in [16,
Section 7.5.4], and should look recognisable to readers who are familiar
with [21]. The same technique has also been employed to derive effi-
cient inference algorithms for discrete-time hidden imprecise-Markov
chains in [18]. The ideas behind the results in this chapter—which at
the time were not formalised—were also central to the application of
these existing methods for the development of a similar inference algo-
rithm for continuous-time hidden imprecise-Markov chains [60].

So let us now summarise this algorithm using our current notation
and terminology. As should hopefully be clear from the discussion
above, this algorithm is effectively well-known in the literature and
we are not attempting to claim it as our own. Moreover, because we
are including it largely for illustrative purposes, we will omit the full
derivation and proof of correctness; we simply refer to the above refer-
ences for the technical details.

Let τ denote the canonical time index of D and, for all k ∈ Z≥0,
let T k = eQ(τk+1−τk) denote the lower transition operator correspond-
ing to Tk. The algorithm works by constructing two finite sequences
ϒ0, . . . ,ϒn and ϒ0, . . . ,ϒn in L (X ), which are computed in a backwards
recursive manner—i.e. using dynamic programming—as ϒn := ϒn := fn
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and, for all i ∈ {0, . . . ,n−1} and all x ∈X ,

ϒ i(x) :=

{

fi(x)T i

(

ϒ i+1

)

(x) if fi(x)≥ 0

− fi(x)T i

(

−ϒ i+1

)

(x) otherwise
(7.6)

and

ϒ i(x) :=

{

− fi(x)T i

(

−ϒ i+1

)

(x) if fi(x)≥ 0

fi(x)T i

(

ϒ i+1

)

(x) otherwise.
(7.7)

It can then be shown—see the above discussion of the related
literature—that

ED
(Tk),M

′ [ f (Xu)] = EM ′ [ϒ0(Xτ0
)] , (7.8)

which relies on the fact that, due to Proposition 3.37120, Tk has sepa-
rately specified rows for all k ∈ Z≥0.

The crucial point here is that what we obtain from the literature
are the backwards-recursive relations in Equations (7.6) and (7.7), as
well as their relation to the inference of interest in Equation (7.8). The
heavy lifting1 of exploiting the factorising structure of f is done there,
and what remains for our purposes is only to compute these (hopefully
simpler) quantities.

So let us consider the remaining computational aspects of this par-
ticular example. The trick will be to use the existing numerical method
to evaluate the lower transition operators T i, so as to obtain a workable
algorithmic method to evaluate the quantities in Equations (7.6), (7.7),
and (7.8). We first need to compute 2n functions ϒ0, . . . ,ϒn−1 and
ϒ0, . . . ,ϒn−1; the functions ϒn =ϒn = fn are essentially obtained for free.
So fix any i ∈ {0, . . . ,n−1}. Then according to Equations (7.6) and (7.7),

if we can evaluate T i = eQ(τi+1−τi) in both ϒ i+1 and in −ϒ i+1, then com-
puting ϒ i(x) and ϒ i(x) for any x∈X is a matter of straightforwardmul-
tiplication of two scalar quantities based on the sign of fi(x). Therefore,
the functions ϒ i and ϒ i can be computed by employing the machinery
described in Section 6.3.3275, in particular using Algorithm 1277.

2

After obtaining ϒ0 in this manner, according to Equation (7.8), it
remains to evaluate EM ′ [ϒ0(Xτ0

)]. Due to Lemma 7.1337, it holds that

1For the case in this example, proving the correctness of this approach is actually rel-
atively straightforward once the solution is pointed out, but we envision that the strategy
illustrated here will be applied to much more complicated problems.

2One should be careful with any numerical errors that are introduced in the approxi-
mation of these quantities, because they can be amplified by the magnitude of fi(x)when
multiplying, e.g., fi(x) and eQ(τi+1−τi)ϒ i+1(x) in computing ϒ i(x). Specifically, one should
rescale the desired numerical error ε to ε/‖ fi‖ for any numerical algorithm that is used to

compute eQ(τi+1−τi)ϒ i+1 and −eQ(τi+1−τi)
(

−ϒ i+1

)

.
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Reduction to Discrete-Time Imprecise-Markov Chains

EM ′ [ϒ0(Xτ0
)] =EM [eQτ0 ϒ0]. Therefore, we need one final application of

Algorithm 1277—or an alternative numerical method—to evaluate eQτ0

in ϒ0. What remains is then to compute EM in eQτ0 ϒ0, which is solv-
able by assumption, as explained in Section 6.5284. This concludes the
discussion of the computational approach to evaluate ED

(Tk),M
′ [ f (Xu)].

It should be clear from the above discussion that this method scales
linearly in n; every ϒ i and ϒ i is a function in L (X ), and there is no
combinatorial explosion leading to exponential growth of the number
of quantities that need to be computed. Since by Theorem 7.2339 it
holds that

ED
(Tk),M

′ [ f (Xu)] = ED
Q,M [ f (Xu)] = EW

Q,M [ f (Xu)] ,

this gives a method with linear time complexity—in n—for computing
the lower expectation of f for the imprecise-Markov chain PW

Q,M . ♦

At this point, it is probably useful to mention that factorising func-
tions of the form discussed in Example 7.1341 lie at the heart of even
more advanced inference algorithms for imprecise-probabilistic mod-
els. For instance, for any u ∈ U⊃ /0, with u = t0, . . . , tn and n ∈ Z≥0, any
xu ∈ Xu, any t ∈ R≥0, and any f ∈ L (X ), we may be interested in
computing the lower expectation EW

Q,M [ f (Xt) |Xu = xu]. This deceptively
simple looking expression is, however, entirely non-trivial to compute
whenever t <maxu and t /∈ u, because in that case the conditional events
(Xt = x,Xu = xu), x ∈X , are not in the domain C SP, and hence most of
the usual machinery from this dissertation cannot be used; see e.g. the
preconditions in Proposition 2.2373, which crucially relies on the as-
sumption that t ∈ u∪R>u.

An in-depth discussion of the following concepts is outside the
scope of what we want to present here, but we believe that some point-
ers may nevertheless be useful. In order to obtain EW

Q,M [ f (Xt) |Xu = xu],
one can use Walley’s generalised Bayes’s rule [114, Theorem 6.4.1], pro-
vided that EW

Q,M [Ixu(Xu)]> 0; as explained in Section 5.4198, this condi-

tion means that the lower probability PW
Q,M (Xu = xu) is strictly positive.

Let us expand on the computational aspects of this approach; we
would first need to verify that EW

Q,M [Ixu(Xu)]> 0. It is immediately clear
that, for any yu ∈Xu, it holds that Ixu(yu) = ∏

n
i=0 Ixti

(yti). In other words,
the indicator Ixu is a function that factorises in a way that allows us
to apply the algorithm from Example 7.1341. This gives us an efficient
computational method to verify this precondition.

So now suppose that EW
Q,M [Ixu(Xu)] = PW

Q,M (Xu = xu) > 0. This im-

plies that for all P ∈ PW
Q,M it holds that P(Xu = xu)> 0. It can be shown

that this, in turn, implies that the value E[ f (Xt) |Xu = xu] of any coher-
ent conditional prevision E corresponding to P—see Definition 2.453—
whose domain includes the pair ( f (Xt),Xu = xu) ∈ B×E (Ω)⊃ /0 is
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uniquely determined by P; essentially using Bayes’s rule, which is ap-
plicable since the conditioning event has strictly positive probability.

Due to Definition 2.554, this implies that the pair ( f (Xt),Xu = xu)
is in the domain DP of the conditional expectation EP of P. Because
this holds for all P ∈ PW

Q,M , it follows from Definition 5.8198 that the
lower expectation EW

Q,M [ f (Xt) |Xu = xu] is in fact well-defined whenever
EW

Q,M [Ixu(Xu)] > 0. Nevertheless, as we already noted, it cannot always
readily be computed using the existing machinery from this work. The
solution is offered by Walley’s generalised Bayes’s rule [114, Theorem
6.4.1] which essentially states that, with µ ∈ R, it holds that

EW
Q,M [ f (Xt) |Xu = xu] = µ ⇔ EW

Q,M

[

Ixu(Xu)
(

f (Xt)−µ
)]

= 0 . (7.9)

In words, this means that the numerical value µ of the inference of in-
terest EW

Q,M [ f (Xt) |Xu = xu], is the unique value for which the uncon-
ditional lower expectation on the right-hand side of this expression
equals zero. Moreover, the lower expectation on the right-hand side
of Equation (7.9) is clearly of a function that factorises over the time
points in u∪{t}, in the sense that for all yu∪{t} ∈Xu∪{t} it holds that

Ixu(yu)
(

f (yt)−µ
)

=

(

n

∏
i=0

Ixti
(yti)

)

·
(

f (yt)−µ
)

.

Therefore, for any µ ∈R, we can use the algorithm from Example 7.1341
to efficiently compute G(µ) := EW

Q,M

[

Ixu(Xu)
(

f (Xt)− µ
)]

. It follows

from Equation (7.9) that, in order to compute EW
Q,M [ f (Xt) |Xu = xu], it

remains to find the (unique) value of µ such that G(µ) = 0. As a func-
tion of µ , this G is very well-behaved [16, Section 2.7.3]: it is (Lip-
schitz) continuous, concave, and non-increasing, and the value µ for
which G(µ) = 0 is guaranteed to lie between min f and max f . Therefore,
finding this value of µ can be done using a straightforward bisection
method, which in this context is often called Lavine’s algorithm [12]. See
also [16, Section 2.7.3] for some notes on how to account for numerical
errors in the computation of G(µ), and see e.g. [21,115] for root-finding
methods that have been specifically tailored for this problem.

7.3 Correspondence of Sets of Processes

We have already established in Section 7.2338 that the lower expecta-
tions of the continuous-time imprecise-Markov chain PW

Q,M and the
discrete-time imprecise-Markov chain PD

Q,M with time domain D that
is induced byQ and M , have the same lower expectations for functions
that depend only on (finitely many) time points in D. From a practical
point of view, as we have seen with Example 7.1341, this connection
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suffices to leverage existing inference algorithms from the literature,
for use with continuous-time imprecise-Markov chains.

It is the purpose of this final section to strengthen the connection
between these two models. Specifically, we will show how we can ob-
tain from a continuous-time stochastic process P—which is a coher-
ent conditional probability on C SP

R≥0
—a discrete-time stochastic pro-

cess P|D—a coherent conditional probability on C SP
D —that can be in-

terpreted as the restriction of P to the events that depend only on time
points in D. This uses the embedding D ⊂ R≥0, and is ultimately the
motivation for introducing discrete time domains at the level of gener-
ality in Definition 2.759. We will establish in Theorem 7.13361 below,
that—under some structural assumptions on Q—the induced model
PD

Q,M is the set of restrictions P|D induced by the elements P ∈ PW
Q,M .

We have several reasons for including this result. Throughout this
dissertation we have taken sets of stochastic processes as the funda-
mental representation of our imprecise-probabilistic models. Hence,
it makes sense to also investigate the connection between these sets of
processes, in addition to the correspondence between the lower expec-
tations established in Section 7.2338. A more subtle point is that The-
orem 7.2339 only holds for u-measurable functions, that is, functions
that depend on the state at finitely-many time points. By deriving the
connection also in terms of the sets of processes, we hope to pave the
way for future work that extends these results.

Finally, we find this result aesthetically satisfying; the construc-
tion of the induced discrete-time model is done in a fairly round-
about way—through the sets of transition matrices that dominate the
generalised exponential eQt of the lower transition rate operator Q

corresponding to Q—which makes the corresponding lower expecta-
tion easy to evaluate using these generalised exponentials eQt (see Ex-
ample 7.1341), but it does not seem immediately obvious that every
discrete-time process in this set is accounted for by a corresponding
continuous-time process in the original model. Theorem 7.13361, how-
ever, resolves this issue: for every continuous-time process P ∈ PW

Q,M
there is a corresponding discrete-time process P|D ∈ PD

Q,M and, con-
versely, for every discrete-time process P∈PD

Q,M , there is a continuous-
time process P∗ ∈ PW

Q,M such that P = P∗|D.
Let us begin by setting up the definition of the restriction of a

continuous-time process P to a discrete-time process P|D. In order to
do this, we need to establish a correspondence between the domains of
discrete-time and continuous-time stochastic processes. Unfortunately,
as the following example makes clear, due to the level of generality at
which we introduced the outcome spaces ΩD and ΩR≥0

, we cannot work
with the paths in these spaces directly.
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Example 7.2. Let X contain at least two states, let D be a discrete
time domain with canonical time index τ , and let ΩD be the set of all
paths with time domain D that eventually become constant, i.e. such
that for all ω ∈ΩD there is some n ∈ Z≥0 such that for all m ∈ Z≥0 with
n ≤ m it holds that ω(τn) = ω(τm). It is easy to see that ΩD satisfies
Equation (2.8)65, so this is a valid outcome space for a discrete-time
stochastic process. Let ΩR≥0

be the set of all paths with time domain
R≥0 that never become constant on D, i.e. such that for all ω ∈ΩR≥0

and
all n ∈ Z≥0 there is some m ∈ Z≥0 with n ≤ m and ω(τn) 6= ω(τm). This
ΩR≥0

also satisfies Equation (2.8)65, and we can take it as the outcome
space for a continuous-time stochastic process. For any ω ∈ ΩR≥0

, let
ω|D : D→X : t 7→ ω(t) denote the restriction of ω to D.

In order to establish a correspondence between discrete-time and
continuous-time processes, what we would like to do is identify, for
any discrete-time event A⊆ΩD, a corresponding continuous-time event
A′ ⊆ΩR≥0

. The intuitive identification that we would like to make is

A′ :=
{

ω ∈ΩR≥0
: ω|D ∈ A

}

,

which is to say, we want to let A′ be the set of all continuous-time paths
that agree with the event A on the time points in D. Due to our choice
of ΩD and ΩR≥0

in this example, it follows that, for any ω ∈ ΩR≥0
, ω|D

will never become constant, and hence ω|D /∈ΩD. It follows that A′ = /0

regardless of the choice of A. In other words, no information about A is
preserved in this identification of A′, so this does not provide us with a
useful correspondence between the domains of such processes. ♦

The fact that we cannot work with these outcome spaces directly
does not really influence our results, but unfortunately it complicates
the analysis somewhat; we will be forced to explicitly work with the
algebraic structure of the domains of stochastic processes.

Working with this algebraic structure is easy when the events in
question are situations: for any n ∈ Z≥0 and, with u = τ0:n, any xu ∈Xu,
the events (Xu = xu)D and (Xu = xu)R≥0

essentially carry the same in-
formation. What we need next is a way to similarly map between
events with a more complicated structure; for this we will rely on
Lemma 3.386. The following result provides the required conditions
to do this uniquely; essentially it tells us that, if a discrete-time event A

has two different representations in terms of unions of situations, then
the two corresponding unions of the analogous continuous-time events
are also representations of the same (continuous-time) event.

Proposition 7.3. Let D be a discrete time domain with canonical time in-
dex τ . Consider any A ∈ A D

/0 , and suppose that there are n,m ∈ Z≥0 and
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S⊆Xτ0:n
and V ⊆Xτ0:m

such that

⋃

xτ0:n
∈S

(Xτ0:n
= xτ0:n

)D = A =
⋃

xτ0:m
∈V

(Xτ0:m
= xτ0:m

)D . (7.10)

Then also ∪xτ0:n
∈S(Xτ0:n

= xτ0:n
)R≥0

= ∪xτ0:m
∈V (Xτ0:m

= xτ0:m
)R≥0

.

Proof. It clearly suffices to show that

⋃

xτ0:n
∈S

(Xτ0:n
= xτ0:n

)R≥0
⊆

⋃

xτ0:m
∈V

(Xτ0:m
= xτ0:m

)R≥0
.

To this end, fix any ω ∈ ∪xτ0:n
∈S(Xτ0:n

= xτ0:n
)R≥0

. Then there is some

xτ0:n
∈ S such that ω ∈ (Xτ0:n

= xτ0:n
)R≥0

, or equivalently, that ω(τi) = xτi

for all i ∈ {0, . . . ,n}.
Now let k := max{n,m}. Due to Equation (2.8)65, there is some

ω̃ ∈ ΩD such that ω̃(τi) = ω(τi) for all i ∈ {0, . . . ,k}. Because n ≤ k, this
implies that ω̃(τi) = ω(τi) = xτi

for all i ∈ {0, . . . ,n}, which means that
ω̃ ∈ (Xτ0:n

= xτ0:n
)D. Due to Equation (7.10), this implies that ω̃ ∈ A and,

again by Equation (7.10), there is therefore some y0:m ∈V such that also
ω̃ ∈ (Xτ0:m

= yτ0:m
)D. This means that ω̃(τi) = yτi

for all i ∈ {0, . . . ,m} and,
because m≤ k, also ω(τi) = ω̃(τi) = yτi

for all i ∈ {0, . . . ,m}. Hence, in-
deed, ω ∈ (Xτ0:m

= yτ0:m
)R≥0

.

To obtain the identification that we are after, we note that for any
discrete-time event A ∈ A D

/0 there are n ∈ Z≥0 and S ⊆Xτ0:n
such that

A = ∪xτ0:n
∈S(Xτ0:n

= xτ0:n
)D, due to Lemma 3.386. Hence, for this A we can

define a unique continuous-time event A ←֓R≥0
as

A ←֓R≥0
:= ∪xτ0:n

∈S(Xτ0:n
= xτ0:n

)R≥0
. (7.11)

In particular, it follows from Proposition 7.3x that this A ←֓R≥0
is

uniquely determined by A and independent of the choice of n and S.
Let us first establish that this identification does not have the same

issue that we observed previously:

Example 7.3. Let X , D, τ , ΩD, and ΩR≥0
be as in Example 7.2346, and

choose any A ∈ A D
/0 such that A 6= /0. Then, as we know from Exam-

ple 7.2346, it holds that
{

ω ∈ΩR≥0
: ω|D ∈ A}= /0. We want to show that

A ←֓R≥0
6= /0. Due to Lemma 3.386, there are n ∈ Z≥0 and, with u := τ0:n,

S ⊆ Xu such that A = ∪xu∈S(Xu = xu)D and, due to Equation (7.11),
A ←֓R≥0

= ∪xu∈S(Xu = xu)R≥0
. Because A 6= /0, there is some ω ∈ A, which

means that there is some xu ∈ S such that ω ∈ (Xu = xu)D. Due to Equa-
tion (2.8)65, there is some ω ′ ∈ ΩR≥0

such that ω ′|u = xu, which implies
that ω ′ ∈ (Xu = xu)R≥0

and hence it follows that ω ′ ∈ A ←֓R≥0
. ♦
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Moreover, as the following result makes clear, this definition yields
the intuitive identification that we were after in Example 7.2346, pro-
vided that the outcome spaces in question are “compatible”.

Proposition 7.4. LetD be a discrete time domain, and consider the outcome
space ΩD =

{

ω|D : ω ∈ΩR≥0
} with time domain D that corresponds to the

restrictions of the elements of ΩR≥0
to D. Then for all A ∈A D

/0 it holds that

A ←֓R≥0
=
{

ω ∈ΩR≥0
: ω|D ∈ A

}

.

Proof. Let τ denote the canonical time index of D, and let
A′ :=

{

ω ∈ΩR≥0
: ω|D ∈ A

}

. Due to Lemma 3.386, there are n ∈ Z≥0

and, with u := τ0:n, S ⊆ Xu such that A = ∪xu∈S(Xu = xu)D and
A ←֓R≥0

= ∪xu∈S(Xu = xu)R≥0
, due to Equation (7.11).

Now first fix any ω ∈ A ←֓R≥0
. Then there is some xu ∈ S such that

ω ∈ (Xu = xu)R≥0
, which implies that ω|u = xu. Because u ⊂ D it follows

that (ω|D)|u = xu. Hence, and because ΩD corresponds to the restrictions
of the elements of ΩR≥0

to D, it follows that ω|D ∈ (Xu = xu)D. This
implies that ω|D ∈ A, and because ω ∈ A ←֓R≥0

⊆ ΩR≥0
, it follows that

ω ∈ A′. Since ω ∈ A ←֓R≥0
is arbitrary we conclude that A ←֓R≥0

⊆ A′.
For the other direction, fix any ω ∈ A′. Then ω|D ∈ A, and there-

fore there is some xu ∈ S such that ω|D ∈ (Xu = xu)D. This implies that
(ω|D)|u = xu, which in turn implies that ω|u = xu. Hence it follows that
ω ∈ (Xu = xu)R≥0

, which implies that ω ∈ A ←֓R≥0
. Because ω ∈ A′ is arbi-

trary we conclude that also A′ ⊆ A ←֓R≥0
.

Let us next establish that Equation (7.11) allows us to map from the
discrete-time domain of conditional events, to the continuous-time one.

Lemma 7.5. Let D be a discrete-time domain and consider any conditional
event (A,Xu = xu)D ∈ C SP

D . Then
(

A ←֓R≥0
,Xu = xu

)

R≥0
∈ C SP

R≥0
.

Proof. Let τ denote the canonical time index of D. By Lemma 2.1968 it
holds that A∈A D

/0 . Hence, due to Equation (7.11), there are n∈Z≥0 and
S⊆Xτ0:n

such that A ←֓R≥0
= ∪xτ0:n

∈S(Xτ0:n
= xτ0:n

)R≥0
.

Because (A,Xu = xu)D ∈ C SP
D it follows from Lemma 3.286 that the

event (Xu = xu)D is a situation, which means that there is some m ∈ Z≥0

such that u = τ0:(m−1). It follows that for all i ∈ {0, . . . ,n} it holds that
τi ∈ u∪R>u, which implies that (Xτi

= x)R≥0
∈ E

R≥0
u ⊆A

R≥0
u for all x∈X .

Because A
R≥0

u is an algebra, this set is closed under finite intersections
of its elements, and hence it follows that for all xτ0:n

∈ S it holds that

(Xτ0:n
= xτ0:n

)R≥0
∈A

R≥0
u .
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Since A
R≥0

u is an algebra, it is also closed under finite unions of its
elements, and hence it follows that A ←֓R≥0

∈ A
R≥0

u . We therefore find
that

(

A ←֓R≥0
,Xu = xu

)

R≥0
∈ C SP

R≥0
by Definition 2.1067.

We are now finally ready to define the restriction of a continuous-
time stochastic process.

Definition 7.3. Let P ∈ P be a continuous-time stochastic process, and
let D be a discrete time domain. The restriction of P to D is the map
P|D : C SP

D → R that is defined for all (A,Xu = xu)D ∈ C SP
D as

P|D
(

A
∣

∣Xu = xu

)

:= P
(

A ←֓R≥0

∣

∣Xu = xu

)

. (7.12)

We note that the right-hand side of Equation (7.12) is well-defined
due to Lemma 7.5x. Let us next show that this map P|D is a discrete-
time stochastic process with time domain D. We will first need the
following technical result.

Lemma 7.6. Let D be a discrete time domain with canonical time index τ ,
fix any m,n∈Z≥0 such that m−1≤ n, and let u := τ0:(m−1). Let ω ∈ΩD and
ω ′ ∈ ΩR≥0

be such that ω|τ0:n
= ω ′|τ0:n

. Then for all xu ∈Xu it holds that
ω ∈ (Xu = xu)D if and only if ω ′ ∈ (Xu = xu)R≥0

.

Proof. If m = 0 it holds that u = /0, and therefore, as noted in Sec-
tion 2.364, it then holds that (Xu = xu)D = ΩD and (Xu = xu)R≥0

= ΩR≥0
,

whence the claim follows trivially. On the other hand, if m > 0 then
u 6= /0. In that case, first suppose that ω ′ ∈ (Xu = xu)R≥0

, which implies
that ω ′|u = xu. Because m− 1 ≤ n, it holds that ω(τi) = ω ′(τi) = xτi

for
all i ∈ {0, . . . ,m−1}, which implies that also ω|u = xu, and hence that
ω ∈ (Xu = xu)D. Completely analogously, if ω ∈ (Xu = xu)D then ω|u = xu,
which implies that ω ′(τi) = ω(τi) = xτi

for all i ∈ {0, . . . ,m− 1} since
m−1≤ n, whence ω ′ ∈ (Xu = xu)R≥0

.

Proposition 7.7. Let P ∈ P be a continuous-time stochastic process, and
let D be a discrete time domain. Then the restriction P|D of P to D, is a
discrete-time stochastic process with time domain D.

Proof. By Definitions 2.1268 and 2.1369, in order to establish that P|D
is a stochastic process with time domain D, we need to establish that
P|D is a coherent conditional probability on C SP

D . By Definition 7.3, P|D
clearly has the correct domain C SP

D .
Moreover, because P is a stochastic process, it follows from Defi-

nition 2.1268 that P is a coherent conditional probability on C SP. By
Definition 2.248, this implies that P is a real-valued map. Due to Defi-
nition 7.3, this implies that P|D is also a real-valued map.
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Hence we have established that P|D is a real-valued map on C SP
D . By

Definition 2.248, in order to establish that P|D is a coherent conditional
probability, we need to show that it satisfies the defining coherence
condition. So choose any n ∈ Z>0 and, for all i ∈ {1, . . . ,n}, any λi ∈ R
and (Ai,Ci)D ∈C SP

D . According to Definition 2.248, we need to show that

max

{

n

∑
i=1

λiICi
(ω)
(

P|D(Ai |Ci)− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C0

}

≥ 0 , (7.13)

with C0 := ∪n
i=1Ci.

Let τ denote the canonical time index of D, and fix any i ∈ {1, . . . ,n}.
By Lemma 3.286 it holds that Ci ∈ SD, which implies that there is

some mi ∈ Z≥0 and, with ui := τ0:(mi−1), some x
(i)
ui
∈Xui

, such that
Ci = (Xui

= x
(i)
ui
)D. Moreover, following Lemma 3.386, there are ni ∈ Z≥0

and, with vi := τ0:ni
, Si ⊆ Xvi

such that Ai = ∪xvi
∈Si

(Xvi
= xvi

)D. Let
C′i := (Xui

= x
(i)
ui
)R≥0

and let A′i := Ai ←֓R≥0
= ∪xvi

∈Si
(Xvi

= xvi
)R≥0

as in Equa-
tion (7.11)348. By Definition 7.3 it then holds that

P|D(Ai |Ci) = P
(

A′i
∣

∣C′i
)

. (7.14)

We already established that P is a coherent conditional probability
on C SP, and hence it follows from Definition 2.248 that

max

{

n

∑
i=1

λiIC′i (ω)
(

P(A′i |C′i)− IA′i
(ω)
)

∣

∣

∣

∣

∣

ω ∈C′0

}

≥ 0 ,

with C′0 := ∪n
i=1C′i . This implies that there is some ω ′ ∈C′0 such that

n

∑
i=1

λiIC′i (ω
′)
(

P(A′i |C′i)− IA′i
(ω ′)

)

≥ 0 . (7.15)

Now let N :=maxi∈{1,...,n}max{mi−1,ni}; then N ≥ 0 since ni ∈Z≥0 for all
i ∈ {1, . . . ,n}. Due to Equation (2.8)65, there is some ω ∈ ΩD such that
ω(τi) = ω ′(τi) for all i ∈ {0, . . . ,N}.

Now fix any i ∈ {1, . . . ,n}. Because it holds that Ci = (Xui
= x

(i)
ui
)D

andC′i = (Xui
= x

(i)
ui
)R≥0

, and since ui = τ0:(mi−1) and mi−1≤ N, it follows
from Lemma 7.6 that ω ∈Ci if and only if ω ′ ∈C′i . In turn, this implies
that ICi

(ω) = IC′i (ω
′).

Next, note that Ai = ∪xvi
∈Si

(Xvi
= xvi

)D and A′i = ∪xvi
∈Si

(Xvi
= xvi

)R≥0
.

Since vi = τ0:ni
and ni ≤ N, it follows from Lemma 7.6 that ω ∈ Ai if and

only if ω ′ ∈ A′i. This also implies that IAi
(ω) = IA′i

(ω ′).

Hence in summary, we have established that ICi
(ω) = IC′i (ω

′) and

IAi
(ω) = IA′i

(ω ′) for all i ∈ {1, . . . ,n}. By combining this with Equa-
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tions (7.14)x and (7.15)x, we find that

0≤
n

∑
i=1

λiIC′i (ω
′)
(

P(A′i |C′i)− IA′i
(ω ′)

)

=
n

∑
i=1

λiICi
(ω)
(

P|D(Ai |Ci)− IAi
(ω)
)

.

(7.16)

Finally, since ω ′ ∈C′0, there is some i ∈ {1, . . . ,n} such that ω ′ ∈C′i . We
already established that this implies that ω ∈Ci, whence it follows that
ω ∈ C0. Therefore, it follows from Equation (7.16) that the inequality
in Equation (7.13)x indeed holds. This implies that P|D is a coherent
conditional probability on C SP

D , or in other words, as established in the
beginning of this proof, that it is a discrete-time stochastic process with
time domain D.

Our aim in the remainder of this section will now be to establish
that, under some conditions on Q, it holds that

PD
Q,M =

{

P|D
∣

∣

∣
P ∈ PW

Q,M

}

, (7.17)

which reveals the interpretation of the induced discrete-time
imprecise-Markov chain PD

Q,M as the restriction of PW
Q,M to the events

that only deal with the time points in D. To this end, we first give two
technical results which help to further clarify the connection between
PD

Q,M and PW
Q,M .

Lemma 7.8. Let Q be a non-empty, compact, and convex set of rate ma-
trices that has separately specified rows and corresponding lower transition
rate operator Q, and let M be a non-empty set of probability mass functions
on X . Fix any t,s ∈ R≥0 such that t ≤ s, let T

eQ(s−t) be the set of transition

matrices that dominate eQ(s−t), and let Q
MT s

t be the set of transition matrices
corresponding to PW

Q,M . Then it holds that T
eQ(s−t) =

Q
MT s

t .

Proof. Let T s
t be the lower transition operator corresponding to PW

Q,M ,
as in Definition 6.1261. Because Q is compact it is bounded by Corol-
lary A.12378. Hence Q is a non-empty and bounded set of rate matri-
ces that has separately specified rows, and so it follows from Proposi-
tion 6.26281that T s

t = eQ(s−t). Moreover, because Q is non-empty, com-
pact, convex, and has separately specified rows, it follows from Theo-
rem 6.2261 that

Q
MT s

t = TT s
t
= T

eQ(s−t) .

Lemma 7.9. Let Q be a non-empty, compact, and convex set of rate ma-
trices that has separately specified rows and corresponding lower transition
rate operator Q, and let M be a non-empty set of probability mass functions
on X . Fix any t ∈ R≥0, and let

M
′ := MT

eQt =

{

∑
x∈X

p(x)T (x, ·) : p ∈M ,T ∈T
eQt

}

,
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where T
eQt is the set of transition matrices that dominate eQt . Moreover, let

Mt :=
{

p : X → R : x 7→ P(Xt = x)
∣

∣

∣
P ∈ PW

Q,M

}

.

Then M ′ = Mt .

Proof. We first note that, because Q is non-empty, compact, convex,
and has separately specified rows, it follows from Lemma 7.8 that
T

eQt = Q
MT t

0 is the set of transition matrices corresponding to PW
Q,M .

Now, for the first direction, fix any P ∈ PW
Q,M . Then the transi-

tion matrix PT t
0 corresponding to P is in Q

MT t
0 = T

eQt , due to Equa-

tion (5.11)197. Moreover, because P ∈ PW
Q,M it holds that P∼M , which

implies that there is some p ∈M such that p(x) = P(X0 = x) for all
x ∈X . Therefore, the map q : X → R that is defined for all x ∈X as
q(x) := ∑y∈X p(y)PT t

0 (y,x) is an element of M ′. Moreover, for all x ∈X

it holds that

q(x) = ∑
y∈X

p(y)PT t
0 (y,x)

= ∑
y∈X

P(X0 = y)P(Xt = x |X0 = y)

= ∑
y∈X

P(Xt = x,X0 = y) = P(Xt = x) ,

where for the second equality we used the choice of p and the defini-
tion of the transition matrix PT t

0 , for the third equality we used Prop-
erty F447, and for the final equality we used Property F347. Hence
we conclude that the map X → R : x 7→ P(Xt = x) is in M ′. Because
P ∈ PW

Q,M is arbitrary it follows that Mt ⊆M ′.
For the other direction, fix any q ∈M ′. This implies that there are

p ∈M and T ∈T
eQt such that q(x) = ∑y∈X p(y)T (y,x) for all x ∈X . Be-

cause p∈M , and sinceM andQ are non-empty, it follows from Propo-
sition 6.30287 that there is some P/0 ∈ PW

Q,M such that P/0(X0 = x) = p(x)
for all x∈X . Moreover, because T ∈T

eQt = Q
MT t

0 , it follows from Equa-

tion (5.11)197 that there is some P ∈ PW
Q,M with corresponding transi-

tion matrix PT t
0 = T . Because Q is non-empty, convex, and has sepa-

rately specified rows, it follows from Theorem 5.11193—with u = {0}
and Pxu = P for all xu ∈Xu—that there is some P′ ∈ PW

Q,M such that, for
all x ∈X ,

P′(X0 = x) = P/0(X0 = x) = p(x) ,

and, for all x,y ∈X ,

P′(Xt = y |X0 = x) = P(Xt = y |X0 = x) = PT t
0 (x,y) .
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It follows that, for all x ∈X ,

P′(Xt = x) = ∑
y∈X

P′(Xt = x,X0 = y)

= ∑
y∈X

P′(Xt = x |X0 = y)P′(X0 = x) = ∑
y∈X

PT t
0 (y,x)p(x) = q(x) ,

where we used Properties F347 and F447. Hence it follows that q ∈Mt ,
and because q ∈M ′ is arbitrary, that M ′ ⊆Mt .

We will now prove Equation (7.17)352 in two lemmas, which each
take care of one direction of the inclusion.

Lemma 7.10. Let Q be a non-empty, compact, and convex set of rate ma-
trices that has separately specified rows, let M be a non-empty set of prob-
ability mass functions on X , and let D be a discrete-time domain. Then for
all P ∈ PW

Q,M it holds that P|D ∈ PD
Q,M .

Proof. We know from Proposition 7.7350 that P|D is a discrete-time
stochastic process with time domain D, which means that P ∈ PD ac-
cording to Definition 2.1168.

Let τ denote the canonical time index of D, and let Q denote the
lower transition rate operator corresponding to Q. We will first show
that P|D ∼M ′, where M ′ = MT

eQτ0 as in Definition 7.1337. From Defi-
nition 7.3350 and Equation (7.11)348 it follows that, for all x ∈X ,

P|D(Xτ0
= x) = P(Xτ0

= x) . (7.18)

Therefore, and because Q is non-empty, compact, convex, and has sep-
arately specified rows, it follows from Lemma 7.9352 that there is some
p ∈M ′ such that P|D(Xτ0

= x) = P(Xτ0
= x) = p(x) for all x ∈X . Hence,

by the definition given in Section 3.3.1102, we find that P|D ∼M ′.
Therefore, according to Definition 3.11104, in order to show that

P|D ∈ PD
Q,M = PD

(Tk),M
′ , it remains to show that P|D ∼ (Tk) where, for

all k ∈ Z≥0, Tk = T
e

Q(τk+1−τk)
is the set of transition matrices that domi-

nate eQ(τk+1−τk), as in Definition 7.1337. Let (Tk,xu
) denote the family of

history-dependent transition matrices corresponding to P|D, as in Def-
inition 3.8101. Then, according to Definition 3.9102, we need to show
that Tk,xu

∈Tk for all k ∈ Z≥0 and all xu ∈Xu, with u = τ0:(k−1).
So fix any k ∈ Z≥0 and any xu ∈ Xu, with u = τ0:(k−1). By Defini-

tion 3.8101 it then follows that, for all x,y ∈X , it holds that

Tk,xu
(x,y) = P|D(Xτk+1

= y |Xτk
= x,Xu = xu)

= P(Xτk+1
= y |Xτk

= x,Xu = xu) =
PT

τk+1
τk,xu

(x,y) ,
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where for the second equality we used Definition 7.3350, and where
PT

τk+1
τk,xu

is the history-dependent transition matrix corresponding to P,
as in Definition 4.2148. Since this is true for all x,y ∈ X , it follows
that Tk,xu

= PT
τk+1

τk,xu
. Because P∈ PW

Q,M it follows from Equation (5.11)197

that PT
τk+1

τk,xu
∈ Q

MT
τk+1

τk
which, using the previous equality, implies that

Tk,xu
= PT

τk+1
τk,xu
∈ Q

MT
τk+1

τk
= T

e
Q(τk+1−τk)

= Tk ,

where for the second equality we used Lemma 7.8352 and that Q is non-
empty, compact, convex, and has separately specified rows. Since this is
true for all xu ∈Xu and all k∈Z≥0, it follows fromDefinition 3.9102 that
P|D ∼ (Tk). Hence, since we already know that P|D ∈ PD and P|D ∼M ′,
by Definition 3.11104 it holds that P|D ∈ PD

(Tk),M
′ = PD

Q,M .

Proving the inclusion in the other direction is, unfortunately, some-
what more involved. We need the following auxiliary property.

Lemma 7.11. Choose any conditional event (A,C) ∈ C SP. Then there are
u ∈U and xu ∈Xu such that C = (Xu = xu). Moreover, there are v ∈U and
S⊆Xv such that v⊂ u∪R>u and A = ∪yv∈S(Xv = yv).

Proof. Because (A,C) ∈ C SP it follows from Definition 2.1067 that
C = (Xu = xu) for some u ∈ U and xu ∈Xu and, moreover, that A ∈Au.
The second claim is now immediate from Proposition 2.1866.

Lemma 7.12. Let Q be a non-empty, compact, and convex set of rate ma-
trices that has separately specified rows, let M be a non-empty set of prob-
ability mass functions on X , and let D be a discrete-time domain. Then for
all P ∈ PD

Q,M there is some P∗ ∈ PW
Q,M such that P = P∗|D.

Proof. The proof works by constructing a continuous-time stochastic
process P∗ ∈ PW

Q,M that satisfies P∗|D = P, where the construction es-
sentially uses an induction argument. In order to obtain this P∗, we
first build a sequence {Pn}n∈Z≥0

in PW
Q,M . This sequence is constructed

iteratively; let us start by finding P0.
Let τ denote the canonical time index of D. By Definition 7.1337

it holds that PD
Q,M = PD

(Tk),M
′ , where M ′ = MT

eQτ0 and, for all k ∈
Z≥0, Tk = T

e
Q(τk+1−τk)

is the set of transition matrices that dominate

eQ(τk+1−τk). Because P ∈ PD
Q,M it therefore holds that P ∼M ′, which

by the definition in Section 3.3.1102 means that there is some q ∈M ′

such that P(Xτ0
= x) = q(x) for all x ∈ X . Because Q is non-empty,

compact, convex, and has separately specified rows, it follows from
Lemma 7.9352 that there is some P0 ∈ PW

Q,M such that

P(Xτ0
= x) = q(x) = P0(Xτ0

= x) for all x ∈X . (7.19)
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This P0 will be the first element of the sequence {Pn}n∈Z≥0
, and the re-

mainder of the sequence will now be constructed iteratively. So, fix any
n ∈ Z≥0 and consider Pn; we will now construct Pn+1, as follows.

Let v := τ0:(n−1), so that v = /0 if n = 0, and let u := τ0:n, so that u =

v∪{τn}. Then, because P ∈ PD
Q,M = PD

(Tk),M
′ it holds that P ∼ (Tk). By

Definition 3.9102 this implies that for all xv ∈Xv there is some Txv ∈ Tn

such that Txv =
PTn,xv , where PTn,xv is the history-dependent transition

matrix corresponding to P, as in Definition 3.8101.
Because Q is non-empty, compact, convex, and has separately spec-

ified rows, it follows from Lemma 7.8352 that Tn = Q
MT

τn+1
τn

, where
Q

MT
τn+1

τn
is the set of history-dependent transition matrices corre-

sponding to PW
Q,M . Because Txv ∈ Tn, this implies, together with

Lemma 5.42243—since Q is non-empty, compact, convex, and has sepa-
rately specified rows—and Definition 4.3150, that for all xτn ∈Xτn , there
is a Markov chain Pxu ∈ PW

Q,M that satisfies, for all y ∈X ,

Pxu(Xτn+1
= y |Xτn = xτn) = Txv(xτn ,y)

= PTn,xv(xτn ,y)

= P(Xτn+1
= y |Xτn = xτn ,Xv = xv)

= P(Xτn+1
= y |Xu = xu) . (7.20)

By repeating this selection for all xv ∈Xv and all xτn ∈Xτn , we obtain
a (possibly different) Markov chain Pxu ∈ PW

Q,M for every xu ∈Xu. We
will now construct Pn+1 by combining Pn with this collection of Markov
chains, as follows.

First let

C
n
/0 := {(A,Xv = xv) ∈ C

SP : v ∈U<τn and

A ∈ 〈{(Xt = x) : x ∈X , t ∈ [0,τn]}〉} . (7.21)

Because u = τ0:n and hence maxu = τn, it follows that C n
/0 is equal to the

set C /0 defined in Equation (5.29)215—this simply serves to make the
dependence on n notationally explicit. Because Q is non-empty, con-
vex, and has separately specified rows, because M is non-empty, and
because Pn,Pxu ∈ PW

Q,M for all xu ∈Xu, it follows from Lemma 5.35215

that there is some Pn+1 ∈ PW
Q,M such that for all (A,C) ∈ C n

/0 it holds that

Pn+1(A |C) = Pn(A |C) , (7.22)

and, for all xu ∈Xu and A ∈ Au—with Au as in Section 2.364—it holds
that

Pn+1(A |Xu = xu) = Pxu(A |Xu = xu) . (7.23)

This concludes the construction of Pn+1.
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In order to construct P∗, we define, for all (A,C) ∈ C SP,

P∗(A |C) := lim
n→+∞

Pn(A |C) . (7.24)

We will now show that this limit is well-defined, by proving an impor-
tant property: as we are about to show, for all (A,C)∈C SP there is some
N ∈Z≥0 such that Pn(A |C) =PN(A |C) for all n≥N. That is, the processes
Pn eventually all agree on the probability of any event in their domain.
Put differently, this essentially means that the sequence {Pn}n∈Z≥0

con-
verges pointwise, but specifically in a way that these pointwise lim-
its are each reached after finitely many steps in the sequence (and of
course N can depend on (A,C)); P∗ is defined as this pointwise limit.

To establish this property, for any u,v ∈U let first

Nu,v := min{n ∈ Z≥0 : u < τn, v≤ τn} .

In other words, Nu,v is the smallest time point inD that is strictly greater
than maxu, and at least as great as maxv. Next, consider any u,v ∈ U

such that v ⊂ u∪R>u and consider any xu ∈Xu and yv ∈Xv. Then it
follows from Definition 2.1067 that (Xv = yv,Xu = xu) ∈ C SP. Let n ∈ Z≥0

be such that n≥ Nu,v. Then u ∈U<τn and v⊂ [0,τn], and therefore,

(Xv = yv) ∈ 〈{(Xt = x) : x ∈X , t ∈ [0,τn]}〉 .

Hence it follows from Equation (7.21) that (Xv = yv,Xu = xu) ∈ C n
/0 and

therefore, by Equation (7.22), that

Pn+1(Xv = yv |Xu = xu) = Pn(Xv = yv |Xu = xu) .

Because this is true for all n ∈ Z≥0 such that n≥ Nu,v, it follows that for
all k ∈ Z≥0 it holds that

PNu,v+k(Xv = yv |Xu = xu) = PNu,v(Xv = yv |Xu = xu) . (7.25)

Having established this property, it will be straightforward to show
that P∗ is well-defined. Fix any (A,C) ∈ C SP. Then it follows from
Lemma 7.11355 that there are u,v ∈ U , xu ∈Xu, and S ⊆Xv such that
C = (Xu = xu), v ⊂ u∪R>u, and A = ∪yv∈S(Xv = yv). Moreover, it follows
from Equation (7.25) that, for all yv ∈ S and all k ∈ Z≥0 it holds that

PNu,v+k(Xv = yv |C) = PNu,v(Xv = yv |C) ,

which, using Property F347 and that PNu,v+k and PNu,v are coherent con-
ditional probabilities, implies that

PNu,v+k(A |C) = ∑
yv∈S

PNu,v+k(Xv = yv |C)

= ∑
yv∈S

PNu,v(Xv = yv |C) = PNu,v(A |C) . (7.26)
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Because the k ∈ Z≥0 in Equation (7.26)x is arbitrary, it follows that

P∗(A |C) = lim
n→+∞

Pn(A |C)

= PNu,v(A |C) = ∑
yv∈S

PNu,v(Xv = yv |Xu = xu) . (7.27)

It will be helpful to establish some of the intuition behind this state-
ment. Essentially we have noted that every conditional event (A,C) de-
pends on a finite number of time points u∪ v (due to Lemma 7.11355),
and that the sequence {Pn(A|C)}n∈Z≥0

is constant for n≥Nu,v, where Nu,v

indexes the first (discrete) time point τNu,v after the time points u∪ v

(and whether it comes strictly after depends on how u and v are re-
lated). Put differently, for any time point τn ∈ D, the probabilities that
P∗ assigns to events that depend only on time points before τn, are al-
ready given by Pn (and sometimes by Pn−1, depending on the specific
time points). This will be useful in the remainder of the proof because,
once we have determined an event of interest, we now know that we
can assess its probabilities by considering a particular element of the
sequence {Pn}n∈Z≥0

.

Moving on, Equation (7.27) clearly also shows that P∗ is well-
defined. So, at this point we have identified P∗, and we now need to
show that (i) P∗ is an element of PW

Q,M and (ii) that P∗|D = P.

In order to establish that P∗ ∈ PW
Q,M , we need to show that it is a

well-behaved stochastic process that is consistent with both Q and M .
Let us start by showing that it is a stochastic process, or in other words,
using Definition 2.1168, that P∗ is a coherent conditional probability
on C SP. Because, for all n ∈ Z≥0, Pn is a stochastic process, it follows
from Definition 2.1168 that Pn is a coherent conditional probability on
C SP, which by Definition 2.248 means that Pn is a real-valued map. Us-
ing Equation (7.27), this implies that P∗ is also a real-valued map, and it
is clearly defined on C SP. Let us next establish that P∗ satisfies the cru-
cial coherence condition. So, fix any n ∈ Z>0 and, for all i ∈ {1, . . . ,n},
any λi ∈ R and (Ai,Ci) ∈ C SP. By Definition 2.248, we need to show that

max

{

n

∑
i=1

λiICi
(ω)
(

P∗(Ai |Ci)− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C0

}

≥ 0 , (7.28)

with C0 := ∪n
i=1Ci. For all i ∈ {1, . . . ,n}, let Ni := N(Ai,Ci) be such

that P∗(Ai |Ci) = PNi+k(Ai |Ci) for all k ∈ Z≥0; this Ni exists by Equa-
tions (7.26)x and (7.27). Let N := maxn

i=1 Ni; then, for all i ∈ {1, . . . ,n} it
holds that N ≥ Ni = N(Ai,Ci), which due to Equations (7.26)x and (7.27)
implies that P∗(Ai |Ci) = PNi

(Ai |Ci) = PN(Ai |Ci). Because we know that
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PN is a coherent conditional probability on C SP, it holds that

max

{

n

∑
i=1

λiICi
(ω)
(

PN(Ai |Ci)− IAi
(ω)
)

∣

∣

∣

∣

∣

ω ∈C0

}

≥ 0 ,

which, because P∗(Ai |Ci) = PN(Ai |Ci) for all i ∈ {1, . . . ,n}, immediately
implies that the inequality in Equation (7.28) must also hold. There-
fore, it follows from Definition 2.248 that P∗ is a coherent conditional
probability on C SP, or in other words, that it is a continuous-time
stochastic process.

Let us show next that P∗ ∼M . With u = /0 and v = {0} we have that
Nu,v = 0, and hence it follows from Equations (7.25)357 and (7.27) that
P∗(X0 = x) = PNu,v(X0 = x) = P0(X0 = x) for all x ∈X . Because P0 ∈ PW

Q,M ,

this implies that there is some q∈M such that P∗(X0 = x) = P0(X0 = x) =
q(x), whence P∗ ∼M .

In order to prove that P∗ is well-behaved and consistent with Q,
it will be helpful to first establish a connection between the history-
dependent transition matrices P∗T s

t,xu
and PnT s

t,xu
corresponding to P∗ and

the processes Pn, n ∈ Z≥0, respectively. To this end, fix any r ∈ R≥0, and
let Nr = min{n ∈ Z≥0 : r < τn}. Then for all t,s ∈ R≥0 with t ≤ s ≤ r,
and all u ∈ U<t , it holds that Nu∪{t},s ≤ Nr, and hence it follows from
Equations (7.26)357 and (7.27) that for all xu ∈Xu and x,y ∈X it holds
that

P∗(Xs = y |Xt = x,Xu = xu) = PNr(Xs = y |Xt = x,Xu = xu) .

It therefore follows from Definition 4.2148 that
P∗T s

t,xu
= PNr T s

t,xu
.

Using this property, let us first show that P∗ is well-behaved. To this
end, fix any t ∈ R≥0, any u ∈ U<t , and any xu ∈ Xu. Fix an arbitrary
δ ∈ R>0. Then, due to the above, with r = t + δ , it holds for all ∆ ∈
R>0 with ∆ ≤ δ , that P∗T t+∆

t,xu
= PNr T t+∆

t,xu
and, if t −∆ ≥ 0 and t −∆ > u,

also P∗T t
t−∆,xu

= PNr T t
t−∆,xu

. Because PNr ∈ PW
Q,M we know that PNr is well-

behaved, and therefore it follows from Proposition 4.2149 that

limsup
∆→0+

1

∆

∥

∥

∥

P∗T t+∆
t,xu
− I

∥

∥

∥
= limsup

∆→0+

1

∆

∥

∥

∥

PNr T t+∆
t,xu
− I

∥

∥

∥
<+∞ . (7.29)

Similarly, if t 6= 0 it follows from Proposition 4.2149, from the well-
behavedness of PNr , and from the choice of Nr that also

limsup
∆→0+

1

∆

∥

∥

P∗T t
t−∆,xu

− I
∥

∥= limsup
∆→0+

1

∆

∥

∥

PNr T t
t−∆,xu

− I
∥

∥<+∞ . (7.30)

Because Equations (7.29) and (7.30) hold for all xu ∈Xu, all u∈U<t , and
all t ∈ R≥0, it follows from Proposition 4.2149 that P∗ is well-behaved.

That P∗ ∼Q is established analogously. Fix any t ∈R≥0, any u∈U<t ,
and any xu ∈Xu; according to Definition 5.3189 we need to show that
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∂ P∗T t
t,xu
⊆ Q. Choose an arbitrary δ ∈ R>0. Then with r = t + δ , it

holds for all ∆ ∈ R>0 with ∆ ≤ δ that P∗T t+∆
t,xu

= PNr T t+∆
t,xu

and, if t−∆ ≥ 0

and t − ∆ > u, also P∗T t
t−∆,xu

= PNr T t
t−∆,xu

. It immediately follows from

Definition 4.11168 that this implies that ∂ P∗T t
t,xu

= ∂ PNr T t
t,xu

. Because

PNr ∈ PW
Q,M it follows that

∂ P∗T t
t,xu

= ∂ PNr T t
t,xu
⊆Q ,

and since this is true for all xu ∈Xu, all u ∈ U<t , and all t ∈ R≥0, we
conclude that P∗ ∼Q.

In summary, we have established that P∗ is a stochastic process that
is well-behaved and consistent with both M and Q, so it follows from
Definition 5.5189 that P∗ ∈ PW

Q,M . Our next and final goal will be to

establish that the restriction P∗|D of P∗ to D coincides with P.
To this end, we first need some additional properties of P∗ that

specifically deal with the time points in D. First, with u = /0 and v = {0}
it holds that Nu,v = 0, and hence it follows from Equations (7.25)357
and (7.27)358 that for all x ∈X it holds that

P∗(Xτ0
= x) = lim

n→+∞
Pn(Xτ0

= x) = P0(Xτ0
= x) = P(Xτ0

= x) , (7.31)

where for the final equality we used Equation (7.19)355. In words, this
establishes a correspondence between P∗ and P for the state at time τ0.

Next, fix any n ∈ Z≥0. Then with u = τ0:n and v = {tn+1} it holds that
Nu,v = n+ 1. Hence, it follows from Equations (7.25)357 and (7.27)358
that for all xτ0:n

∈Xτ0:n
and all y ∈X it holds that

P∗(Xτn+1
= y |Xu = xu) = Pn+1(Xτn+1

= y |Xu = xu)

= Pxu(Xτn+1
= y |Xu = xu)

= Pxu(Xτn+1
= y |Xτn = xτn) = P(Xτn+1

= y |Xu = xu) ,

where for the second equality we used the definition of Pn+1 in Equa-
tion (7.23)356 and the fact that (Xτn+1

= y)∈Au; for the third equality we
used that Pxu is a Markov chain, i.e. we used the Markov property; and
for the final equality we used Equation (7.20)356. So, we have found
that for all n ∈ Z≥0, all xτ0:n

∈Xτ0:n
, and all y ∈X , it holds that

P∗(Xτn+1
= y |Xτ0:n

= xτ0:n
) = P(Xτn+1

= y |Xτ0:n
= xτ0:n

) , (7.32)

which establishes a correspondence between P∗ and P for these specific
conditional probabilities.

We now have all the pieces to complete the proof. Let P∗|D be the
restriction of P∗ toD, as in Definition 7.3350. Then it follows from Equa-
tions (7.11)348 and (7.31) that for all x ∈X it holds that

P∗|D(Xτ0
= x) = P∗(Xτ0

= x) = P(Xτ0
= x) . (7.33)
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Moreover, for all n ∈ Z≥0, all xτ0:n
∈Xτ0:n

, and all y ∈X , it follows from
Equations (7.11)348 and (7.32) that

P∗|D(Xτn+1
= y |Xτ0:n

= xτ0:n
) = P∗(Xτn+1

= y |Xτ0:n
= xτ0:n

)

= P(Xτn+1
= y |Xτ0:n

= xτ0:n
) . (7.34)

Because P and P∗|D are both elements of PD, it follows from Equa-
tions (7.33) and (7.34) and Corollary 3.688 that P = P∗|D.

Hence we obtain the following result.

Theorem 7.13. Let Q be a non-empty, compact, and convex set of rate
matrices that has separately specified rows, let M be a non-empty set of
probability mass functions onX , and letD be a discrete-time domain. Then

PD
Q,M =

{

P|D
∣

∣

∣
P ∈ PW

Q,M

}

.

Proof. This is immediate from Lemmas 7.10354 and 7.12355.

In summary, in this chapter we have established an important con-
nection between discrete-time and continuous-time imprecise-Markov
chains: under some regularity conditions on the parameters, we
can “restrict” a given continuous-time imprecise-Markov chain to
any desired discrete time domain, in order to obtain a discrete-time
imprecise-Markov chain. Furthermore, for functions that depend only
on the state at (finitely many) time points in this discrete time domain,
the lower expectations for these two models coincide.

Consequently, we might say that there does not seem to be a prac-
tical reason to consider the technical minutiae of continuous-time
imprecise-Markov chains, provided that one is only interested in in-
ferences that depend on finitely-many time points.3 That is, although
continuous-timemodels may be easier or more natural to conceptualise
for certain applications, the numerical methods from Chapter 6259 and
the results from this current chapter allow one to reduce such finitary
inferences to a discrete-time setting that, perhaps, is more intuitive or
easier to work with.

It should nevertheless be noted that this connection is not entirely
one-to-one. For instance, while we have shown that continuous-time
models can induce discrete-time ones, the converse is not necessarily
true: essentially, there are discrete-time stochastic processes that can-
not be extended to continuous-time ones. Moreover, we suspect that in

3Of course, we have spent a large part of this dissertation on exploring these technical
minutiae in great detail, before we could reach this conclusion.
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(future) work that deals with inferences that depend on infinitely many
time points—in particular, where these time points are dense in (parts
of) the continuous time domain—one will have to deal with the tech-
nical details of continuous-time stochastic processes explicitly; and we
expect that some of our results will prove essential to achieve this.
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8

Conclusions

“The wind blew southward, through knotted forests, over shimmering
plains and toward lands unexplored.”

Robert Jordan, “A Memory of Light”

In this dissertation we have developed a theory of continuous-time
imprecise-Markov chains. These are imprecise-probabilistic generali-
sations of continuous-time Markov chains that can be used when nu-
merical parameters are only partially specified and/or when struc-
tural assumptions like Markovianity and time-homogeneity are unwar-
ranted. Inferences computed with these models are lower- and upper
expectations of quantities of interest, which can essentially be inter-
preted as (tight) lower and upper bounds on the traditional probabilis-
tic expectation of the same quantities of interest, taken with respect
to the probabilistic model that is the subject of such parameter- and
structural uncertainties.

The basis of our theory is a formalisation of (precise) stochastic pro-
cesses using full conditional probabilities and coherence, which is notably
different from the measure-theoretic formalisation that is more typ-
ical in the literature. Similarly, the corresponding notion of condi-
tional expectations that we use derives from the related notion of co-
herent conditional previsions, and does not rely on measure-theoretic
constructions like (Lebesgue-)integration. The main inferences we
have concerned ourselves with are (lower- and upper) expectations of
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u-measurable functions. Using more classical terminology, these can
be seen as functions that are simple with respect to the domain of
definition of our stochastic processes. Despite the conceptual and
foundational differences, as we have seen, expectations of such func-
tions essentially agree with their typical measure-theoretic characteri-
sations. Similarly, we have shown how continuous-time homogeneous
Markov chains—under our definition—share many crucial character-
istics with their more typical measure-theoretic constructions; they
are uniquely characterised by the specification of an initial distribu-
tion and a transition rate matrix, and their induced family of transition
matrices—which characterises its corresponding conditional expecta-
tion operator—corresponds to the semigroup of transition matrices gen-
erated by this transition rate matrix.

The reason for using this alternative formalisation is therefore not
so much one of consequences—in the sense that we expect our results
to agree to a large extent with what could be obtained had we used a
measure-theoretic foundation—as it is methodological and philosoph-
ical. Here, “methodological” is taken to mean that the notion of co-
herence, and in particular the existence of coherent extensions from a
chosen domain to a larger one, has provided us with a powerful tool
that has been the workhorse of many of our proofs, especially where we
needed to prove the existence of processes with certain characteristics.
And the reason is “philosophical” in the sense that (i) the formalisation
provides our theory with a clear behavioural and subjectivist interpre-
tation, and (ii) the axiomatisation does not impose sigma-additivity, but
only finite additivity. While we are not vehemently opposed to using
sigma-additivity, the point is that we have managed to obtain all of our
results without assuming this sometimes controversial axiom,1 so we
see no real reason to adopt it here. If we had to point to one differ-
ence that we do expect to come out of a similar treatment when using
a measure-theoretic basis, then it would be that we have managed to
obtain uniqueness results that might not hold in the more traditional
framework. In particular, we have not had to deal with results that
hold “almost surely”, that is, that are only true up to modification of
processes on a null-set. We believe that this makes the theory some-
what more elegant, but we leave it to the reader to appreciate the real
or potential relevance of this distinction.

We also believe that the reason that we did not need to invoke
sigma-additivity, and did not encounter substantial differences from
what would be expected under an alternative measure-theoretic for-
malisation, is that in this dissertation we have remained solidly in the

1The success of the measure-theoretic school notwithstanding.
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realm of problems that are, in a definite sense, finitary. In particular, we
have only dealt with systems with finitely many states, with algebras of
events that are only closed with respect to finitely many algebraic op-
erations, and with functions that depend on the state of the system at
finitely many time points. Therefore it does not seem surprising that
we did not have to rely on notions like sigma-additivity, which is fun-
damentally infinitary. On the other hand, we also believe that the most
interesting and important future work lies in extending and generalis-
ing our results to settings that go beyond such finite domains. We ex-
pect that in doing so, fundamental problems may crop up that cannot
be solved without either imposing further regularity conditions such
as sigma-additivity or continuity under monotone convergence; or by
breaking away from what is expected under measure-theoretic formal-
isations and ending up with substantially different (more conservative)
results.

Moving on, using our formalisation of stochastic processes we have
introduced three distinct definitions of what we call a continuous-time
imprecise-Markov chain. All three of these types of models are param-
eterised using a set M of initial distributions and a set Q of transition
rate matrices. They are all sets of stochastic processes which are con-
sistent with M and Q; this means that the initial distribution of each
of their elements is in M and, roughly speaking, that the dynamical
behaviour of their elements can be described using the transition rate
matrices in Q. Moreover, all three models contain only well-behaved
stochastic processes, which is a condition to which we adhered to pre-
vent the consideration of processes whose behaviour is overly patholog-
ical. The difference between these types of continuous-time imprecise-
Markov chains is in the structural properties of their elements: they
correspond to sets of homogeneous Markov chains, sets of—not neces-
sarily homogeneous—Markov chains, and sets of general—not neces-
sarily homogeneous or Markovian—stochastic processes.

The reason that we call all three models imprecise-Markov chains is
that they all satisfy an imprecise-Markov property; albeit, for the third of
these models, only under some conditions on Q. This means in partic-
ular that the corresponding lower (and hence also upper) expectations
for these models are history-independent in a manner that is entirely
analogous to the classical Markov property.

We have argued that the most straightforward of these models—
PWHM

Q,M , the set of all continuous-time homogeneous Markov chains that
are well-behaved and consistent with M and Q—is conceptually sim-
ple, but essentially does not admit sufficiently many degrees of free-
dom to make working with it practically feasible. In particular, the
non-linear optimisation problem that is central to the computation of
its lower (and hence upper) expectations cannot really be simplified.
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Conclusions

This is analogous to the difficulty of working with the conceptually
related discrete-time imprecise-Markov chains that consist of discrete-
time homogeneous Markov chains, for which this issue has long been
acknowledged in the literature [69].

On the other end of the complexity scale, we have the model PW
Q,M ,

which consists of all well-behaved stochastic processes that are consis-
tent with M and Q. Its elements need not be time-homogeneous or
even Markovian, and their dynamic behaviour can depend almost ar-
bitrarily on their history, provided that the well-behavedness and con-
sistency conditions are satisfied. While conceptually the most com-
plicated of our three models, this is also the one for which we were
able to prove the most powerful properties. Notably, Theorems 5.11193,
5.21198, 5.32208, 6.2261, 6.4263, 6.28283, 6.33289, 7.2339, 7.13361 and Al-
gorithm 2286 are all fundamental and crucial results for the analysis
and practical use of continuous-time imprecise-Markov chains, and
which we have only been able to prove for this most imprecise of our
models, PW

Q,M . We deem the results that are listed above to be amongst
the most important in this dissertation.

Finally, in between these two extremes lies PWM
Q,M : the set of all well-

behaved continuous-time Markov chains that are consistent with M

and Q, but which need not be homogeneous. We have seen that for
this model we can develop fairly efficient algorithms to compute lower
(and hence upper) expectations of functions that depend on the state of
the underlying system at a single point in time, and that these coincide
with such inferences for PW

Q,M . However, we have also established that
for functions that depend on the state of the system at more than one
time point, computational methods like Algorithm 2286 do notwork (in
general) for PWM

Q,M .
One thing that is important to reiterate is that these three

definitions are nested subsets of each other, in the sense
that PWHM

Q,M ⊆ PWM
Q,M ⊆ PW

Q,M . Consequently, even if the model that
one would like to work with is, say, PWM

Q,M , the lower and upper ex-
pectations computed for PW

Q,M are guaranteed to be conservative, or
“cautious”, approximations to the lower and upper expectations for
the intended model PWM

Q,M . As such, while some “precision” may be lost
by working with this more general model, it has the benefit of being
computationally more tractable, while still guaranteeing that its lower
and upper expectations are robust bounds on the inference of interest.

In the same vein, many of our results for PW
Q,M require certain struc-

tural properties of the set Q; in particular, we have often seen that this
set needs to be non-empty, compact (i.e. closed and bounded), convex,
and/or have separately specified rows. Two of these properties, viz.
non-emptiness and boundedness, will probably be trivially satisfied in
practice; non-emptiness because it gives us a model to talk about in the
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first place, and boundedness because physical systems arguably do not
evolve arbitrarily quickly. The other conditions—closedness, convexity,
and having separately specified rows—are all, in a sense, closure prop-
erties. Wemean this in the sense that given any set Q that is non-empty
and bounded, we can construct a set Q′ ⊇Q that is non-empty, com-
pact, convex, and has separately specified rows: simply first construct
the closed convex hull of Q, and then close that set under all row-wise
combinations of its elements, in the sense of Definition 5.7193. Then
PW

Q,M ⊆ PW
Q′,M and, hence, any inferences computed from themodel in-

duced by Q′ are guaranteed to be conservative bounds on the intended
inferences of interest with respect to PW

Q,M .
In summary, we conclude that the continuous-time imprecise-

Markov chain PW
Q,M is the most analytically and computationally

tractable one out of the three definitions that we introduced. We believe
that the properties of this model make it the most promising one to fo-
cus on for future theoretical work, and the most practical to use from
a computational point of view. Perhaps unsurprisingly, this is analo-
gous to the developments in the literature on discrete-time imprecise-
Markov chains, where the introduction of the analogous model by De
Cooman and Hermans [20] opened up many avenues for theoretical
and algorithmic development. Our results in Chapter 7335 allow us to
translate to the continuous-time setting many of these existing algo-
rithms from the literature—we believe with minimal future effort.

So let us now end on a historical note. It was Kolmogorov who
initially extended Markov’s ideas to the continuous-time setting [113].
At the time, Kolmogorov observed:

“[. . . ] it is a matter of indifference which of the two following as-
sumptions is made: either the time variable t runs through all real values,
or only through the integers. The classical understanding of Markov chains
corresponds to the second possibility.” [56, emphasis ours]

We are happy to repeat this conclusion for imprecise-Markov chains.
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A

Analysis in Finite-Dimensional

Normed Vector Spaces

“Hmm”

Geralt of Rivia, The Witcher

This appendix contains some general results about the analysis of
sets, limits, and sequences in (finite-dimensional) vector spaces, and
on which we rely throughout this dissertation. We start this appendix
by stating some of the key definitions and properties in a fairly general
setting, and then discuss the relevant special cases in Sections A.1379–
A.3383. In particular, we discuss there how the space L (X ) of real-
valued functions on X , its dual space of real linear functionals on
L (X ), and the space of linear maps from L (X ) to L (X ), are all
special cases to which we can apply the machinery developed in the
first part of this appendix.

None of the results that we present here is new, although we do
provide some explicit proofs for statements where we could not easily
find a reference stating the exact result. Throughout, we largely base
ourselves on the developments in References [9,51,100].

Finally, a word of encouragement for the weary reader: the some-
what abstract generality in which we state these results, is merely
aimed at matching themmore easily with results in the literature, when
we use these properties in our proofs. Unfortunately, this belies the
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Analysis in Finite-Dimensional Normed Vector Spaces

simplicity that stems from the fact that, as we shall see, the finite di-
mensionality of the spaces we are working with ensures that we can
think about them as simply being (at least isomorphic to) the space Rn.
Hence, the core results and intuition should, hopefully, be familiar to
readers with some background in linear algebra and real analysis. With
that out of the way, let us start with some definitions.

Definition A.1 ([9, Chapter 1, Definition 1.4]). A real vector space V is
a vector space over R, i.e. a non-empty set V together with two operations,
V×V→ V : (v,w) 7→ v+w (called addition) and R×V→ V : (α,v) 7→ αv

(called scalar multiplication), which satisfy the following axioms:

V1: v+w = w+ v for all v,w ∈ V;

V2: v+(w+u) = (v+w)+u for all v,w,u ∈ V;

V3: there is some 0∈V (called the origin) such that 0+v = v for all v∈V;

V4: for all v ∈ V, there is some −v ∈ V such that v+(−v) = 0;

V5: (αβ )v = α(βv) for all α,β ∈ R and v ∈ V;

V6: α(v+w) = αv+αw for all α ∈ R and v,w ∈ V;

V7: (α +β )v = αv+βv for all α,β ∈ R and v ∈ V;

V8: 1v = v for all v ∈ V.

For any real vector space V and any non-empty V ⊆ V, we say that
V is a subspace of V, if V is a real vector space under the same addi-
tion and scalar multiplication operations as V [9, Chapter 1, Definition
1.12]. Moreover, for any subset V ⊆ V, we define the linear span [9,
Chapter 1, Section 1] of V as

span(V ) :=
⋂

W ∈W
W ,

where
W :=

{

W ⊆ V
∣

∣

∣
V ⊆W , W is a subspace of V

}

.

Then span(V ) is the smallest subspace of V that includes V [9, Chapter
1, Section 1]. However, this definition is fairly abstract, so the following
property may be more helpful:

Proposition A.1 ([9, Chapter 1, Theorem 1.15]). Let V be a real vector
space and let V ⊆ V. Then

span(V ) =

{

n

∑
i=1

αivi

∣

∣

∣
n ∈ Z≥0, ∀i ∈ {1, . . . ,n} : vi ∈ V , αi ∈ R

}

.
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Definition A.2 ([9, Chapter 1, Definition 2.3]). Let V be a real vec-
tor space and let V ⊆ V. Then V is linearly dependent if, for some
n ∈ Z>0, there are {v1, . . . ,vn} ⊆ V and non-zero α1, . . . ,αn ∈ R, such that

∑
n
i=1 αivi = 0. Conversely, V is called linearly independent if it is not lin-

early dependent.

Definition A.3 ([9, Chapter 1, Definition 2.5]). Let V be a real vector
space. Then a set V ⊆V is called a basis of V, if V is linearly independent,
and span(V ) = V.

In general, a real vector space V has many different bases. How-
ever, as the next result shows, they all have the same cardinality. The
cardinality |V | of a set V essentially measures how many elements it
contains; if V is finite then |V | is the number of elements it contains,
and otherwise it suffices for our purposes to set |V | :=+∞. 1

Proposition A.2 ([9, Chapter 1, Theorem 2.12]). Let V be a real vector
space, and suppose that V1 ⊆ V and V2 ⊆ V are both bases of V. Then
|V1|= |V2|.

This gives rise to the dimension of a real vector space, as follows.

Definition A.4 ([9, Chapter 1, Section 2]). Let V be a real vector space.
Then its dimension dim(V) is defined as the (common) cardinality of any
basis of V. V is called finite-dimensional if dim(V) = n for some n ∈ Z≥0.

At this point it is probably worth noting the canonical example
of finite-dimensional real vector spaces: the space Rn, with n ∈ Z>0.
In fact, every n-dimensional real vector space is isomorphic to Rn [9,
Chapter 1, Theorem 3.15], so for the sake of intuition we may proceed
under this interpretation.

Let us now move the discussion to normed vector spaces.

Definition A.5 ([9, Chapter 4, Definition 1.1 and 1.2]). A normed vec-
tor space is a real vector space V together with a map ‖·‖ : V→ R (called a
norm) that satisfies

1. ‖v‖> 0 for all v ∈ V such that v 6= 0;

2. ‖αv‖= |α|‖v‖ for all α ∈ R and v ∈ V;

3. ‖v+w‖ ≤ ‖v‖+‖w‖ for all v,w ∈ V.

1Proposition A.2 holds for bases with finitely many elements as well as for bases with
infinitely elements, but this requires some subtleties of the cardinality of sets that we do
not deal with here; we refer to Reference [9, Chapter 1, Section 2] for details.
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One norm that is often encountered is the Euclidean norm ‖·‖2 on
Rn, n ∈ Z>0, which is defined as

‖v‖2 :=
√

v⊤v for all v ∈ Rn ,

where, for all v ∈Rn, v⊤v denotes the dot product of v with itself. How-
ever, in this work we typically use other norms; see Sections 2.2.362
and A.1379–A.3383 for details.

As is well-known, normed spaces are a special case of metric spaces.
Let us start with the general definition.

Definition A.6 ([100, Definition 1.2.1]). A metric space is a non-empty
set X together with a map d : X×X→R (called ametric), that satisfies, for
all x,y,z ∈ X,

1. d(x,y)≥ 0;

2. d(x,y) = 0 if and only if x = y;

3. d(x,y) = d(y,x);

4. d(x,z)≤ d(x,y)+d(y,z).

As mentioned, any normed vector space V is also a metric space,
with the metric d : V×V→ R induced by the norm on V, as

d(v,w) := ‖v−w‖ for all v,w ∈ V. (A.1)

This metric induces a topology on V (specifically, the metric topology),
with respect to which we can define the convergence of a sequence
{vi}i∈Z>0

in V. Let us start with some general definitions; we use [94,
Definition 1.5] for what follows.

A topology τ on a set X is a collection of subsets of X such that X ∈ τ ,
/0 ∈ τ , and such that τ is closed under finite intersections and arbitrary
unions. The ordered tuple (X,τ) is called a topological space, and the
elements of τ are called the open sets of X (with respect to τ). A subset
of X is called closed (with respect to τ), if its complement in X is open
(with respect to τ).

A neighbourhood of x ∈ X is an element of τ that contains x. A topo-
logical space (X,τ) is called a Hausdorff space if for all x,y ∈X such that
x 6= y, there are neighbourhoods Nx,Ny of x and y, respectively, such that
Nx∩Ny = /0; τ is then called a Hausdorff topology (on X).

The reason that this is interesting is that, following [94, Definition
1.5], in a Hausdorff space (X,τ) one may define the convergence of a
sequence {xi}i∈Z>0

in X to x∗ ∈ X, and write limi→+∞ xi = x∗, if for every
neighbourhood Nx∗ of x∗, there is some n ∈ Z>0 such that for all k ∈ Z>0
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with k > n, it holds that xk ∈ Nx∗ ; we then say that {xi}i∈Z>0
converges

to x∗ with respect to τ . Specifically, it is easily seen that the Hausdorff
character of the space guarantees that this limit is unique.

Let us now show that for normed vector spaces, and for finite-
dimensional vector spaces in particular, this topological notion of con-
vergence coincides with the usual notion of metric convergence.

Definition A.7 ([94, Section 1.2]). Let V be a normed vector space with
norm ‖·‖. For any v ∈ V and r ∈ R>0, the open ball in V with center v and
radius r, is the set Br(v) :=

{

w ∈V : ‖v−w‖< r
}

. Themetric topology τm

on V induced by the norm ‖·‖, is the collection of subsets of V that can be
written as a (possibly empty) union of open balls in V.

Lemma A.3. Let V be a normed vector space with norm ‖·‖, and let τm be
the metric topology on V that is induced by ‖·‖. Then (V,τm) is a Hausdorff
space.

Proof. Fix any v,w ∈ V such that v 6= w, and let δ := ‖v−w‖; then δ > 0

by Definition A.5371. Let δ ′ := δ/2. By Definition A.7, the open balls
Bδ ′(v) and Bδ ′(w) are neighbourhoods of v and w, respectively. To show
that (V,τm) is Hausdorff, it suffices to show that Bδ ′(v)∩Bδ ′(w) = /0.

So fix any u ∈ Bδ ′(v). Then, using Definition A.5371, it holds that

‖v−w‖= ‖v−u+u−w‖ ≤ ‖v−u‖+‖u−w‖ ,

which, since ‖v−u‖< δ ′ because u ∈ Bδ ′(v), implies that

δ ′ = δ −δ ′ < ‖v−w‖−‖v−u‖ ≤ ‖u−w‖ .

This means that u /∈ Bδ ′(w). Because this is true for any u ∈ Bδ ′(v), it
follows that Bδ ′(v)∩Bδ ′(w) = /0.

Definition A.8 ([75, Definition 2.2.1]). Let (V,τ) be a topological space,
where V is a real vector space, for which the vector space operations are
continuous with respect to τ .2 Then (V,τ) is called a topological vector
space, and τ is called a vector topology.

Proposition A.4 ([75, Theorem 2.2.3]). Let V be a normed vector space
with norm ‖·‖, and let τm be the metric topology on V that is induced by
‖·‖. Then (V,τm) is a topological vector space, and τm is a vector topology.

Proposition A.5 ([94, Section 1.19]). Any finite-dimensional normed vec-
tor space V has a unique Hausdorff vector topology τv.

2Such that the preimage of any open set, under these operations, is itself open; for
vector addition, this preimage should be open in the product topology. See also [75,
Section 2.1] or [94, Section 1.4] for further information.
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Corollary A.6. Let V be a finite-dimensional normed vector space. Then
the metric topology τm induced by the norm ‖·‖ is the unique Hausdorff
vector topology τv on V.

Proof. By Lemma A.3x and Proposition A.4x, (V,τm) is a Hausdorff
topological vector space, i.e. τm is a Hausdorff vector topology on V.
Because V is finite-dimensional, by Proposition A.5x there is a unique
Hausdorff vector topology τv on V, whence τm = τv.

Hence, if V is a finite-dimensional normed vector space, then due to
the above results, and because, as we mentioned earlier, V is then also
isomorphic to Rn, we can intuitively treat any analysis in V as if we
were working in the Euclidean space Rn equipped with the norm ‖·‖2;
this may be helpful to provide some intuition.

Because we are working in normed/metric spaces, we can of course
use notions of convergence that are much more intuitive than the ab-
stract topological one discussed above. Let us state the following well-
known definitions.

Definition A.9 ([100, Definition 1.4.1]). Let X be a metric space. Then a
sequence {xi}i∈Z>0

in X is called a Cauchy sequence if for all ε > 0, there
is some n ∈ Z>0 such that, for all k, ℓ ∈ Z>0 with k > n and ℓ > n, it holds
that d(xk,xℓ)< ε .

Definition A.10. Let X be a metric space. Then X is said to be complete
if for every Cauchy sequence {xi}i∈Z>0

in X, there is some x∗ ∈ X such that
limi→+∞ d(xi,x∗) = 0.

In words, this means that in a complete metric space X, every
Cauchy sequence {xi}i∈Z>0

has a limit x∗ that also belongs to X.
The following property is now crucial.

Proposition A.7 ([9, Chapter 4, Corollary 4.6]). Let V be a finite-
dimensional normed vector space. Then V is a complete metric space under
the metric induced by its norm.

A complete normed vector space is also called a Banach space [94,
Section 1.2]; the above result therefore implies that any finite-
dimensional normed vector space is a Banach space.

Summarising the above results, we can use the following equivalent
notions of convergence when working with finite-dimensional normed
vector spaces (and Banach spaces more generally).

DefinitionA.11. LetV be a Banach space with norm ‖·‖, let d be the metric
induced by this norm, and let τm be its metric topology. Let {vi}i∈Z>0

be any
sequence in V. Then the following are equivalent:
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1. for some v∗ ∈ V, limi→+∞ vi = v∗ with respect to τm;

2. for some v∗ ∈ V, limi→+∞ d(vi,v∗) = 0;

3. for some v∗ ∈ V, limi→+∞ ‖vi− v∗‖= 0;

4. {vi}i∈Z>0
is a Cauchy sequence with respect to d.

If any (and therefore all) of the above properties hold, there is a (unique)
element v∗ ∈ V that satisfies Properties 1, 2, and 3, and we say that the
sequence {vi}i∈Z>0

converges to v∗.

Proof. We will first show that properties 1, 2, and 3 are equivalent.
1 implies 2: Suppose that limi→+∞ vi = v∗ with respect to τm. Then, by

Definition A.7373, for any ε > 0 the open ball Bε(v∗) is a neighbourhood
of v∗, whence there is some n ∈ Z>0 such that for all k > n, it holds that
vk ∈ Bε(v∗). This means that d(vk,v∗) < ε by the definition of the open
ball. Because this is true for all ε > 0, it follows that limi→+∞ d(vi,v∗) = 0.

2 implies 3: Suppose that limi→+∞ d(vi,v∗) = 0. Since d(vi,v∗) =
‖vi− v∗‖ for all i ∈ Z>0 it immediately follows that limi→+∞ ‖vi− v∗‖= 0.

3 implies 1: Suppose that limi→+∞ ‖vi− v∗‖ = 0. Let Nv∗ be a neigh-
bourhood of v∗. By Definition A.7373, Nv∗ can be written as a (possi-
bly empty) union of open balls in V. However, this union cannot be
empty because that would imply that Nv∗ = /0, which is impossible since
v∗ ∈ Nv∗ by the definition of a neighbourhood. Hence, there is some
v ∈ V and r ∈ R, such that v∗ ∈ Br(v) ⊆ Nv∗ . Let ε := r−‖v∗− v‖; then
ε > 0 because ‖v∗− v‖< r since v∗ ∈ Br(v). Because limi→+∞ ‖vi− v∗‖= 0,
there is some n ∈ Z≥0 such that, for all k > n, it holds that ‖vk− v∗‖< ε .
Using Definition A.5371, this means that also

‖vk− v‖ ≤ ‖vk− v∗‖+‖v∗− v‖< ε +‖v∗− v‖= r ,

which implies that vk ∈ Br(v) ⊆ Nv∗ . Because this is true for any neigh-
bourhood of v∗, it follows that limi→+∞ vi = v∗ with respect to τm.

Let us next show that if there is some v∗ ∈V that satisfies property 2
(and hence, as we have already established, also properties 1 and 3),
that this v∗ is then unique. So suppose that there are v∗,w∗ ∈ V such
that limi→+∞ d(vi,v∗) = 0 and limi→+∞ d(vi,w∗) = 0; we will show that
v∗ = w∗. By Definition A.6372 it holds that d(v∗,w∗)≤ d(v∗,vi)+d(vi,w∗)
for all i∈Z>0. Because limi→+∞ d(vi,v∗) = 0 and limi→+∞ d(vi,w∗) = 0 this
implies that d(v∗,w∗) = 0 which, by Definition A.6372, in turn implies
that v∗ = w∗.

To complete the proof we need to show that property 4 holds if and
only if one (and therefore all) of the other properties hold.

2 implies 4: Suppose that limi→+∞ d(vi,v∗) = 0. Fix any ε > 0. Then
there is some n ∈ Z>0 such that, for all k > n, it holds that d(vk,v∗)< ε/2.
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Using Definition A.6372, it follows that for all k, ℓ ∈ Z>0 such that k >
n and ℓ > n, it holds that d(vk,vℓ) ≤ d(vk,v∗) + d(v∗,vℓ) < ε/2 + ε/2 = ε .
Because this is true for all ε > 0, it follows from Definition A.9374 that
{vi}i∈Z>0

is a Cauchy sequence.

4x implies 2x: Suppose that {vi}i∈Z>0
is a Cauchy sequence. Be-

cause V is a Banach space, by definition it is a complete metric space
under the metric d. Hence, by Definition A.10374, there is some v∗ ∈ V
such that limi→+∞ d(vi,v∗) = 0.

We will next need some properties of subsets of normed vector
spaces. First, for any normed vector space V with norm ‖·‖, and any
V ⊆ V, we define

‖V ‖ := sup
{

‖v‖ : v ∈ V
}

.

We use the following terminology throughout this dissertation.

Definition A.12. Let V be a finite-dimensional normed vector space, and
let V ⊆ V. We then say that V is, respectively,

S1: non-empty if V 6= /0;

S2: convex if λv+(1−λ )w ∈ V for all λ ∈ [0,1] and v,w ∈ V ;

S3: open if V is open with respect to the metric topology on V;

S4: closed if V is closed with respect to the metric topology on V;

S5: bounded if ‖V ‖<+∞;

S6: compact if V is compact in the metric topology on V.

The terminology of Properties S1 and S2 should be obvious. Prop-
erties S3 and S4 are perhaps a bit less transparent. We repeat that V is
closed if and only if its complement V c :=V\V is open [94, Definition
1.5]. However, this alternative (and well-known) characterisation may
be more helpful (which uses that any normed vector space is a metric
space):

Proposition A.8 ([51, Proposition 1.41]). Let V be a normed vector space,
and let V ⊆V. Then V is closed if and only if, for every convergent sequence
{vi}i∈Z>0

in V with v∗ := limi→+∞ vi, it holds that v∗ ∈ V .

The following alternative characterisation of boundedness shows
that Property S5 coincides with the way that Reference [9, Chapter 4,
Definition 1.11] defines it.
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Proposition A.9. Let V be a normed vector space and, for any r ∈ R>0

and v ∈ V, let Br(v) :=
{

w ∈ V : ‖v−w‖ < r} denote the open ball in V
with center v and radius r. Let V ⊆ V. Then V is bounded if and only if
V ⊆ Br(0) for some r ∈ R>0, where 0 ∈ V denotes the origin of V.

Proof. First note that, for any v ∈ V, it follows from Definition A.1370
that v−0 = v, and hence by Definition A.5371 that ‖v−0‖= ‖v‖.

Now suppose that V is bounded. Then due to Property S5, there is
some r ∈ R>0 such that ‖V ‖< r. For any v ∈ V it therefore holds that

‖v−0‖= ‖v‖ ≤ ‖V ‖< r ,

where we used the definition of ‖V ‖ for the first inequality. This means
that v ∈ Br(0) and hence, because v ∈ V was arbitrary, we conclude that
V ⊆ Br(0).

For the other direction, suppose that there is some r ∈R>0 such that
V ⊆ Br(0). Then, using the definition of ‖V ‖, it holds that

‖V ‖= sup
v∈V
‖v‖ ≤ sup

v∈Br(0)

‖v‖= sup
v∈Br(0)

‖v−0‖ ≤ r ,

using the definition of Br(0) for the final inequality; it follows that V

satisfies Property S5.

For Property S6, we first note that a set V is compact (in a specific
topology) if every open cover of V contains a finite subcover of V ; a col-
lection C of subsets of V is an open cover of V , if every element of C is
open, and V ⊆∪W ∈CW [100, Definition 5.1.1]. Moreover, a set V ⊆V is
said to be sequentially compact, if every sequence {vi}i∈Z>0

in V contains
a convergent subsequence {vik}k∈Z>0

for which limk→+∞ vik =: v∗ ∈ V .
Now, as shown by the following result, the notions of compactness and
sequential compactness coincide for metric spaces.

Proposition A.10 ([51, Theorem 1.62]). Let X be a metric space, and let
V ⊆ X. Then V is compact if and only if V is sequentially compact.

Moreover, the following result provides an alternative characteri-
sation of sequential compactness in finite-dimensional spaces, which
generalises the well-known Bolzano-Weierstrass theorem, and which
will be helpful in the sequel.

Proposition A.11 ([9, Chapter 4, Corollary 3.28]). Let V be a finite-
dimensional normed vector space, and let V ⊆ V. Then V is sequentially
compact if and only if V is closed and bounded.

The following summarizes the above; these are important proper-
ties of which we make frequent use in this dissertation.
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Corollary A.12. Let V be a finite-dimensional normed vector space, and let
V ⊆ V. Then the following properties are equivalent:

1. V is closed and bounded;

2. V is sequentially compact;

3. V is compact.

Proof. By Proposition A.11x, V is sequentially compact if and only if
it is closed and bounded. Because V is a metric space with the metric
induced by its norm, by Proposition A.10x V is compact if and only if
it is sequentially compact. Hence V is compact if and only if it is closed
and bounded.

Lemma A.13. Let V be a normed vector space and, for all r ∈ R≥0, let
Br(0) := {w ∈ V : ‖w‖ ≤ r} be the closed ball in V with center 0 and radius
r. Then Br(0) is closed, and

∥

∥Br(0)
∥

∥≤ r.

Proof. The set Br(0) is closed by [75, Proposition B.10]. Note that
‖0−0‖ = ‖0‖ = 0 ≤ r, and hence 0 ∈ Br(0); in particular, Br(0) is non-
empty. Hence, it follows that

∥

∥Br(0)
∥

∥= sup
w∈Br(0)

‖w‖= sup
w∈Br(0)

‖w−0‖ ≤ r ,

using the definition and non-emptiness of Br(0) for the final inequality.

Corollary A.14. Let V be a finite-dimensional normed vector space and let
{vi}i∈Z>0

be a bounded sequence in V, i.e. such that there is an r ∈ R>0 for
which ‖vi‖< r for all i ∈ Z>0. Then {vi}i∈Z>0

contains a convergent subse-
quence {vik}k∈Z>0

. Moreover, with v∗ := limk→+∞ vik , it holds that ‖v∗‖ ≤ r.

Proof. Because the sequence {vi}i∈Z>0
is bounded, there is some r ∈R>0

such that ‖vi‖ < r for all i ∈ Z>0. This implies that {vi}i∈Z>0
is con-

tained in the origin-centered closed ball Br(0) in V with radius r. By
Lemma A.13, Br(0) is closed and, since r ∈ R>0, bounded. By Corol-
lary A.12, this implies that Br(0) is sequentially compact, which in turn
implies that the sequence {vi}i∈Z>0

in Br(0) contains a convergent sub-
sequence {vik}k∈Z>0

such that, with v∗ := limk→+∞ vik , v∗ ∈ Br(0). Hence
it holds that ‖v∗‖ ≤ r.
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A.1 The Space L (X )

We now consider the space L (X ) of real-valued functions on the fi-
nite set X , that we introduce in Section 2.2.362. It is straightforward
to verify that L (X ) is a real vector space—that it satisfies Defini-
tion A.1370—under the normal operations of addition and scalar multi-
plication, i.e. ( f +g)(x) := f (x)+g(x) and (α f )(x) :=α f (x) for all x∈X ,
f ,g ∈L (X ), and α ∈ R.

Now, for any x ∈X consider the indicator Ix ∈L (X ) of x, which is
defined for all y ∈X such that Ix(y) := 1 if x = y, and Ix(y) := 0, other-
wise. Let us now prove the following.

Lemma A.15. For any f ∈L (X ) it holds that f = ∑x∈X f (x)Ix.

Proof. For any y ∈X it holds that
(

∑
x∈X

f (x)Ix

)

(y) = ∑
x∈X

f (x)Ix(y) = f (y) ,

using the definition of vector addition for the first equality, and the
definition of the indicators Ix for the second equality.

Proposition A.16. The set B := {Ix : x ∈X } is a basis of L (X ).

Proof. According to Definition A.3371, we need to show that B is lin-
early independent, and that span(B) = L (X ).

To show that B is linearly independent, consider any { f1, . . . , fn} ⊆
B, n ∈ Z≥0, and any non-zero α1, . . . ,αn ∈ R. For any i ∈ {1, . . . ,n}, be-
cause fi ∈B, there is some xi ∈X such that fi = Ixi

. Then
(

n

∑
i=1

αi fi

)

(x1) =
n

∑
i=1

αi fi(x1) =
n

∑
i=1

αiIxi
(x1) = α1 6= 0 ,

where we used the definition of vector addition for the first equality,
the identification fi = Ixi

for the second equality, the definition of Ixi
for

the third equality, and the fact that αi 6= 0 for the inequality. Hence, we
conclude that ∑

n
i=1 αi fi 6= 0. Because this is true for all { f1, . . . , fn} ⊆B

and non-zero α1, . . . ,αn ∈ R, it follows from Definition A.2371 that B is
linearly independent.

To show that span(B) = L (X ), we first note that, from the defi-
nition of the linear span, it holds that span(B) ⊆ L (X ). So, it suf-
fices to prove the inclusion in the other direction. To this end, fix any
f ∈L (X ). Then, by Lemma A.15, it holds that f = ∑x∈X f (x)Ix, and
becauseX is finite, it follows from Proposition A.1370 that f ∈ span(B).
Because this is true for all f ∈L (X ), it follows that L (X )⊆ span(B),
whence span(B) = L (X ).
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Corollary A.17. The space L (X ) is a finite-dimensional real vector space.
In particular, dim

(

L (X )
)

= |X |.

Proof. From the above discussion, we know that L (X ) is a real vector
space. By Proposition A.16x, the set {Ix : x ∈X } is a basis of L (X ).
Hence, it follows from Definition A.4371 that dim

(

L (X )
)

= |X |.
Therefore, and because X is finite, L (X ) is finite-dimensional.

As discussed in Section 2.2.362, throughout this dissertation we
equip L (X ) with the supremum norm, whence it follows that L (X )
is then a finite-dimensional normed vector space by Definition A.5371
(c.f. Proposition 2.1663).

A.2 The Dual Space of L (X )

Having discussed above how the space L (X ) is a finite-dimensional
normed vector space, let us next consider the space of real linear func-
tionals on L (X ); these are maps φ⊤ : L (X )→ R : f 7→ φ⊤ f that sat-
isfy φ⊤( f +g) = φ⊤ f +φ⊤g and φ⊤(λ f ) = λφ⊤ f for all f ,g∈L (X ) and
λ ∈ R. These functionals are collected in the space L (X )⊤, which is
the dual space [51, Definition 5.54] of L (X ).3

Proposition A.18 ([51, Section 5.6]). The space L (X )⊤ is a finite-
dimensional real vector space under the usual operations of addition and
scalar multiplication. In particular, dim

(

L (X )⊤
)

= dim
(

L (X )
)

.

This introduces the dual space at a level of abstraction at which we
can later apply some general results, but for the sake of one’s intuition
it is useful to note that, if L (X ) is interpreted as the space of |X |-
dimensional real column vectors, then L (X )⊤ is simply the space of
|X |-dimensional real row vectors; moreover, for any φ⊤ ∈L (X )⊤ and
f ∈ L (X ), the value φ⊤ f is simply the dot product of these vectors.
This also explains our choice of notation.

To make this more explicit, consider the following result.

Proposition A.19. For any φ⊤ ∈L (X )⊤, let φ be the unique element of
L (X ) such that φ(x) := φ⊤Ix for all x ∈X , where Ix is the indicator of x.
Then, for all f ∈L (X ) it holds that

φ⊤ f = ∑
x∈X

φ(x) f (x) .

3As in [51, Definition 5.54], in general one may make a distinction between the
algebraic and topological dual spaces of a linear space; however, since L (X ) is finite-
dimensional by Corollary A.17, this distinction disappears [51, Section 5.6].
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Proof. By Lemma A.15379, for any f ∈ L (X ) we can write f =

∑x∈X f (x)Ix. Hence, it holds that

φ⊤ f = φ⊤ ∑
x∈X

f (x)Ix = ∑
x∈X

φ⊤
(

f (x)Ix

)

= ∑
x∈X

f (x)φ⊤Ix = ∑
x∈X

f (x)φ(x) ,

using the linear character of φ⊤ for the second and third equalities.

Conversely, for any φ ∈L (X )we can define a unique element φ⊤ of
L (X )⊤, for all f ∈L (X ), as φ⊤ f := ∑x∈X φ(x) f (x). Thus the spaces
L (X ) and L (X )⊤ can be treated as essentially the same; formally,
there is a linear isomorphism between the two [51, Section 5.6].

However, these spaces do differ in the norms with which we equip
them; while L (X ) received the supremum norm, we equip L (X )⊤

with the induced dual norm ‖·‖∗, defined for all φ⊤ ∈L (X )⊤ as

∥

∥φ⊤
∥

∥

∗ := sup
{

∣

∣φ⊤ f
∣

∣ : f ∈L (X ),‖ f‖= 1
}

.

Using Proposition A.18, this turns L (X )⊤ into a finite-dimensional
normed vector space, and all the relevant results from the first section
of this appendix therefore apply to it.

It is worth noting that, as discussed in the first section of this ap-
pendix, the fact that L (X )⊤ is finite-dimensional ensures that its
(metric) topology is independent of the choice of norm. Hence in
particular, we could have also equipped it with the supremum norm,
which would make its identification with L (X ) complete. However,
for practical reasons, we will find the dual norm to be slightly easier to
work with.

To that end, we do need the following result, which provides a more
convenient expression of the dual norm; essentially, this shows that the
dual norm ‖·‖∗ (for the dual of a space equipped with the supremum
norm) is the ℓ1 norm.

Proposition A.20. For any φ⊤ ∈L (X )⊤, let φ be the unique element of
L (X ) such that φ(x) := φ⊤Ix for all x ∈X , where Ix is the indicator of x.
Then it holds that

∥

∥φ⊤
∥

∥

∗ = ∑
x∈X
|φ(x)| .

Proof. Let f ∈ L (X ) be such that ‖ f‖ = 1. Then, using Proposi-
tion A.19 it holds that

∣

∣φ⊤ f
∣

∣=

∣

∣

∣

∣

∣

∑
x∈X

f (x)φ(x)

∣

∣

∣

∣

∣

≤ ∑
x∈X
| f (x)φ(x)|

= ∑
x∈X
| f (x)| |φ(x)| ≤ ∑

x∈X
‖ f‖|φ(x)|= ∑

x∈X
|φ(x)| ,
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using the definition of the supremum norm for the second inequality,
and the assumption that ‖ f‖ = 1 for the final equality. Because this is
true for all f ∈L (X )with ‖ f‖= 1, it follows that ‖φ⊤‖∗ ≤∑x∈X |φ(x)|.

To get the inequality in the other direction, let f ∈ L (X ) be de-
fined, for all x ∈X , such that f (x) := 1 if φ(x)≥ 0, and f (x) :=−1, oth-
erwise. Then ‖ f‖ = 1, and, because f (x)φ(x) = |φ(x)| ≥ 0 for all x ∈X ,
it holds that

∣

∣φ⊤ f
∣

∣=

∣

∣

∣

∣

∣

∑
x∈X

f (x)φ(x)

∣

∣

∣

∣

∣

= ∑
x∈X
|φ(x)| ,

using Proposition A.19380 for the first equality. Hence it follows that
also ∑x∈X |φ(x)| ≤ ‖φ⊤‖∗.

Moreover, we need the notion of the double dual L (X )⊤⊤, which is
the dual space of L (X )⊤: the space of all real-valued linear function-
als that map L (X )⊤ into R. Because L (X ) is finite-dimensional, this
turns out to just coincide with L (X ).

Lemma A.21 ([42, Chapter 1, Section 16]). The space L (X ) is reflex-
ive, which means that L (X )⊤⊤ = L (X ). Moreover, let f ∈L (X )⊤⊤ =
L (X ). Then, for all φ⊤ ∈L (X )⊤, f maps φ⊤ into φ⊤ f .

Intuitively, this says that the transpose v⊤⊤ of a transposed vector
v⊤, is just the vector v itself. When this space is equipped with the
induced dual norm ‖·‖∗∗, i.e.

‖ f‖∗∗ := sup
{

∣

∣φ⊤ f
∣

∣ : φ⊤ ∈L (X )⊤,
∥

∥φ⊤
∥

∥

∗ = 1
}

,

it can be shown that ‖·‖∗∗ = ‖·‖∞, so L (X )⊤⊤ equipped with the dual
norm recovers L (X ) as a normed vector space.

Usually when we reference convergence in L (X )⊤, we mean it
with respect to the (dual) norm, i.e. as in Definition A.11374. However,
in general, one may consider other notions of convergence. Specifically,
for technical reasons we need to introduce the following:

Definition A.13 ([75, Section 2.6]). A sequence {φ⊤i }i∈Z>0
in

L (X )⊤ weak⋆-converges to φ⊤∗ ∈ L (X )⊤ if limi→+∞ φ⊤i f = φ⊤∗ f for
all f ∈L (X ).

This notion of convergence has an associated topology:

Definition A.14 ([75, Section 2.6]). Theweak⋆-topology τw⋆ on L (X )⊤

is the smallest collection of subsets of L (X )⊤ for which all sequences
{φ⊤i }i∈Z>0

that weak⋆-converge to φ⊤∗ , converge to φ⊤∗ with respect to τw⋆.
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It turns out that, in our current finite-dimensional setting, this
topology is just the one that we were already familiar with:

Proposition A.22. Let L (X )⊤ be equipped with the dual norm ‖·‖∗, let
τm be its metric topology, and let τw⋆ be its weak⋆ topology. Then τm = τw⋆.

Proof. By [75, Corollary 2.6.3], the weak⋆ and metric topologies of the
dual space of a normed vector space V are the same, if and only if V
is finite-dimensional. Since L (X )⊤ is the dual space of L (X ), which
is a finite-dimensional normed vector space by Corollary A.17380, the
result is immediate.

This allows us to state the following technical result, which we need
in this dissertation:

Corollary A.23. A subset V ⊆L (X )⊤ is weak⋆-compact if and only if it
is compact in the metric topology induced by its norm ‖·‖∗.

Proof. Immediate from Proposition A.22 and the fact that compactness
is a topological property.

A.3 Linear Maps from L (X ) to L (X )

Let us conclude this appendix by considering linear maps from L (X )
to L (X ); these are maps T : L (X )→L (X ) : f 7→ T f such that for
all f ,g ∈ L (X ) and all λ ∈ R it holds that T ( f + g) = T f + T g and
T (λ f ) = λT f . We collect all these maps in the space M. It is clear
thatM is a real vector space under the usual operations of addition and
scalar multiplication.

For any T ∈ M, we can consider its matrix representation
T̃ : X ×X → R with entries T̃ (x,y) := T Iy(x) for all x,y ∈X , where Iy

is the indicator of y. As is well-known, this matrix representation is
the dual of the linear map T , in the sense that one can always obtain
one from the other; we already established the first direction above.
The following result shows that, given a matrix representation, one can
always recover a corresponding linear map in M:

Lemma A.24. Consider a function T̃ : X ×X → R and define the map
T : L (X )→L (X ) : f 7→ T f , for all f ∈L (X ), as

T f (x) := ∑
y∈X

T̃ (x,y) f (y) for all x ∈X . (A.2)

Then T ∈M, and T̃ is the matrix representation of T .
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Proof. Let us first show that T ∈ M. It is clear that T is defined on
L (X ), and because X is finite, it follows from (A.2)x that T f (x) is
real-valued for any f ∈L (X ) and x ∈X . Therefore, we conclude that
T maps L (X ) into L (X ).

To establish the linearity of T , fix any x ∈X . It follows from Equa-
tion (A.2)x that, for all f ,g ∈L (X ), it holds that

T ( f +g)(x) = ∑
y∈X

T̃ (x,y)
(

f (y)+g(y)
)

= ∑
y∈X

T̃ (x,y) f (y)+ ∑
y∈X

T̃ (x,y)g(y) = T f (x)+T g(x) .

Moreover, for any f ∈ L (X ) and λ ∈ R, it follows from Equa-
tion (A.2)x that

T (λ f )(x) = ∑
y∈X

T̃ (x,y)λ f (y) = λ ∑
y∈X

T̃ (x,y) f (y) = λT f (x) .

Because x ∈X is arbitrary, we conclude from the above that T ( f +g) =
T f +T g and T (λ f ) = λT f for all f ,g∈L (X ) and λ ∈R, and hence that
T ∈M. It remains to establish that T̃ is the matrix representation of T .
To this end, fix any x,y ∈X . Then it follows from Equation (A.2)x and
the definition of the indicator Iy that

T Iy(x) = ∑
z∈X

T̃ (x,z)Iy(z) = T̃ (x,y) ,

which concludes the proof.

Moreover, this mapping between elements of M and their matrix
representation is unique; that a given element of M uniquely deter-
mines its corresponding matrix representation is immediate from the
definition. The following result takes care of the other direction:

Proposition A.25. For any T,S ∈M whose matrix representations T̃ and S̃

satisfy T̃ (x,y) = S̃(x,y) for all x,y ∈X , it holds that T = S.

Proof. For any f ∈ L (X ) it follows from Lemma A.15379 that f =

∑y∈X f (y)Iy and therefore, using the linearity of T , it follows that for
all x ∈X it holds that

T f (x) = T

(

∑
y∈X

f (y)Iy

)

(x) = ∑
y∈X

f (y)T Iy(x) = ∑
y∈X

T̃ (x,y) f (y) ,

using the definition of the matrix representation T̃ of T . Similarly, we
find that S f (x) = ∑y∈X S̃(x,y) f (y). Because T̃ (x,y) = S̃(x,y) for all y ∈X
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it follows that

T f (x) = ∑
y∈X

T̃ (x,y) f (y) = ∑
y∈X

S̃(x,y) f (y) = S f (x) ,

which, since x ∈X is arbitrary, implies that T f = S f . Since f ∈L (X )
is arbitrary it follows that T = S.

Due to the above, we will also simply refer to the elements of M as
matrices, and we will denote the entries of the matrix representation
of T ∈ M simply as T (x,y) with x,y ∈ X , without further notational
distinction. As such, it follows from Lemma A.24383 that for any T ∈M,
any f ∈L (X ), and any x ∈X , it holds that

T f (x) = ∑
y∈X

T (x,y) f (y) ,

which is an identity that we will use often throughout this work. We
emphasize that, the technical rigour of the current discussion notwith-
standing, this says that T f is essentially just the matrix-vector product
of T with the vector f ∈L (X ). The main difference with the “usual”
linear-algebraic approach is that we can make the above identification
without fixing an ordering of X .

Analogously, we note that for any T,S ∈M, their composition T S is
again an element of M—since the composition of two linear maps is
clearly itself linear—that satisfies, for all x,y ∈X , that

T S(x,y) = T SIy(x) = T
(

SIy

)

(x) = ∑
z∈X

T (x,z)SIy(z) = ∑
z∈X

T (x,z)S(z,y) ,

which simply expresses the composition T S in terms of the familiar
matrix product.

Next, let us note that for any T ∈M and any x ∈X , we can con-
sider the functional T (·)(x) : f 7→ T f (x) on L (X ). By the linearity of
T , this functional is also linear, and it is therefore an element of the
dual spaceL (X )⊤ ofL (X ) (see Section A.2380). Therefore, by Propo-
sition A.19380, this linear functional has a representation φ ∈ L (X )
where φ(y) := T Iy(x) for all y ∈X , so that, for all f ∈L (X ),

T f (x) = ∑
y∈X

φ(y) f (y) = ∑
y∈X

T Iy(x) f (y) = ∑
y∈X

T (x,y) f (y) ,

where for the final step we used the definition of the matrix represen-
tation of T . We also note that it holds that φ(y) = T (x,y) for all y ∈X ,
and hence, the x-row T (x, ·) of T is essentially the representation of the
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linear functional T (·)(x). Therefore, we will in the sequel identify this
functional with the x-row of T , so that we write

T (x, ·) f := T f (x) = ∑
y∈X

T (x,y) f (y) for all f ∈L (X ) .

This is, effectively, the same kind of identification that we make when
identifying the linear map T : L (X )→L (X ) with its matrix repre-
sentation, and should not be a cause for confusion. Moreover, when we
write this linear functional T (x, ·)∈L (X )⊤ as it is applied to the func-
tion f ∈L (X ), this notation coincides with the intuitive interpretation
of T (x, ·) f being the dot product of the x-row of T with f .

In summary, we have seen in the above discussion that we can con-
struct linear functionals on L (X ), from matrices T ∈M. However, the
construction in the other direction will also be useful.

Proposition A.26. For all x ∈X choose some φ⊤x ∈L (X )⊤, and let T :

f 7→ T f be the unique map from L (X ) to L (X ) that is defined, for all
f ∈L (X ) and all x ∈X , as T f (x) := φ⊤x f . Then T is a linear map from
L (X ) to L (X ), and its matrix representation satisfies T (x,y) = φ⊤x Iy for
all x,y ∈X .

Proof. That T has L (X ) as its codomain follows from the fact that,
by definition, each φ⊤x ∈L (X )⊤, x ∈X , has R as its codomain; thus
T f (x) is real-valued for all f ∈ L (X ) and x ∈X . That T is a linear
map follows from the fact that each φ⊤x ∈L (X )⊤ is a linear map.

It remains to prove the statement about the matrix representation.
As noted in the introduction to this section, for all x,y∈X it holds that
T (x,y) = T Iy(x), and hence it follows that T (x,y) = T Iy(x) = φ⊤x Iy by the
definition of T f .

The space of matrix representations of the elements of M is itself
a real vector space under the usual operations of addition and scalar
multiplication. In particular, these spaces are isomorphic, in the fol-
lowing sense.

Proposition A.27. For any T,S ∈M and any λ ∈ R it holds that

(T +S)(x,y) = T (x,y)+S(x,y) and (λT )(x,y) = λT (x,y) for all x,y ∈X .

Proof. For any x,y ∈X it holds that

(T +S)(x,y) = (T +S)Iy(x) = T Iy(x)+SIy(x) = T (x,y)+S(x,y) .

Moreover, for any λ ∈ R and any x,y ∈X it holds that

(λT )(x,y) = λT Iy(x) = λT (x,y) ,

which concludes the proof.
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In words, the above result establishes that the matrix representa-
tion of a sum of elements of M, is simply the sum of the matrix rep-
resentations of these elements; and similarly for scalar multiplications.
Moreover, we have the following result:

Lemma A.28. The (unique) origin of M is the matrix O with entries
O(x,y) = 0 for all x,y ∈X .

Proof. Let O ∈M be defined such that O(x,y) = 0 for all x,y ∈X . To
show that O is the origin of M, we need to show that O+T = T for all
T ∈M. To this end, fix any T ∈M and any f ∈ L (X ). Then for all
x ∈X it follows from Proposition A.27 that

(

(O+T ) f
)

(x) = ∑
y∈X

(O+T )(x,y) f (y)

= ∑
y∈X

O(x,y) f (y)+ ∑
y∈X

T (x,y) f (y)

= ∑
y∈X

T (x,y) f (y) = T f (x) ,

where for the third equality we used that O(x,y) = 0 for all y ∈X . Be-
cause this is true for all x ∈X it follows that (O+T ) f = T f , which in
turn implies that O+T = T because f ∈L (X ) is arbitrary. By Defini-
tion A.1370 this implies that O is the origin of M.

To see that this is the unique origin, consider any O′ ∈M such that
O′+T = T for all T ∈M. Then because we already know that O is an
origin of M, it follows that O = O′+O = O′.

Next, for any x,y ∈X , consider the (unique) matrix Bx,y ∈M that
satisfies, for all x′,y′ ∈X , that Bx,y(x

′,y′) := 1 if x = x′ and y = y′, and
Bx,y(x

′,y′) := 0 otherwise. Essentially, Bx,y is just the matrix whose x,y-
entry is one and that otherwise contains only zeroes. Clearly, these
matrices allow us to represent any other matrix:

Lemma A.29. For any T ∈M, it holds that

T = ∑
x,y∈X

T (x,y)Bx,y .

Proof. Fix any x′,y′ ∈X . Then, by the definition of Bx,y, with x,y ∈X ,
it holds that

T (x′,y′) = T (x′,y′)Bx′,y′(x
′,y′)

= ∑
x,y∈X

T (x,y)Bx,y(x
′,y′) =

(

∑
x,y∈X

T (x,y)Bx,y

)

(x′,y′) ,
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where for the last step we used Proposition A.27386. Because this is
true for all x′,y′ ∈ X it follows from Proposition A.25384 that T =

∑x,y∈X T (x,y)Bx,y.

Hence, we have the following result.

Proposition A.30. The set B :=
{

Bx,y : x,y ∈X
}

is a basis of M.

Proof. According to Definition A.3371, we need to show that B is lin-
early independent, and that span(B) =M.

To show that B is linearly independent, choose any {v1, . . . ,vn} ⊆B,
n ∈ Z≥0, and any non-zero α1, . . . ,αn ∈ R. For any i ∈ {1, . . . ,n}, because
vi ∈ B, there are xi,yi ∈X such that vi = Bxi,yi

. Then it follows from
Proposition A.27386 that

(

n

∑
i=1

αivi

)

(x1,y1) =
n

∑
i=1

αivi(x1,y1) =
n

∑
i=1

αiBxi,yi
(x1,y1) = α1 6= 0 ,

where we used the definition of Bxi,yi
for the final equality, and that α1

is non-zero for the inequality. Due to Lemma A.28x this implies that

∑
n
i=1 αivi is not the origin ofM which, by Definition A.2371, implies that

B is linearly independent.
To show that span(B) =M, we first note that, from the definition of

the linear span, it holds that span(B) ⊆M. So, it suffices to prove the
inclusion in the other direction. To this end, fix any T ∈M. Then it
follows from Lemma A.29x that T = ∑x,y∈X T (x,y)Bx,y. Therefore, and
becauseX is finite, it follows from Proposition A.1370 that T ∈ span(B).
Because this is true for all T ∈M it follows thatM⊆ span(B) and hence,
that span(B) =M.

The following result should therefore not be surprising:

Corollary A.31. The space M is a finite-dimensional real vector space. In

particular, dim(M) = |X |2.

Proof. We have already established that M is a real vector space. By
Proposition A.30, the set

{

Bx,y : x,y ∈ X
}

is a basis of M. Because

this basis contains |X |2 elements, it follows from Definition A.4371
that dim(M) = |X |2. Therefore, and because X is finite, M is finite-
dimensional.

Of course, this result should be intuitively clear; since M is isomor-
phic to the space RX ×X of matrix representations (x,y) 7→ T (x,y) of

elements T ∈M, it makes sense that M should have exactly |X |2 di-
mensions.
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A.3 Linear Maps from L (X ) to L (X )

Moving on, as discussed in Section 2.2.362, in this work we equipM
with the induced operator norm ‖·‖, which is defined for all T ∈M as

‖T‖ := sup
{

‖T f‖ : f ∈L (X ), ‖ f‖= 1
}

. (A.3)

This turns M into a finite-dimensional normed vector space by Defini-
tion A.5371 (c.f. Proposition 2.1663), and therefore all the relevant re-
sults from the first section of this appendix apply. In particular, there-
fore, M is a Banach space.

Let us consider some properties of the operator norm ‖·‖ on M.

Proposition A.32. For any T ∈M, it holds that

‖T‖= max
x∈X ∑

y∈X
|T (x,y)| .

Proof. For any x∈X , define fx ∈L (X ) such that, for all y∈X , fx(y) :=
1 if T (x,y) ≥ 0, and fx(y) := −1 otherwise. Then T (x,y) fx(y) = |T (x,y)|
for all x,y ∈X . Therefore, it follows that for all x ∈X it holds that

T fx(x) = ∑
y∈X

T (x,y) fx(y) = ∑
y∈X
|T (x,y)| .

Moreover, it follows from the definition of the supremum norm on
L (X ) that T fx(x) ≤ ‖T fx‖. We also note that ‖ fx‖ = 1 for all x ∈X .
By combining the above results with Equation (A.3) it follows that

max
x∈X ∑

y∈X
|T (x,y)| ≤max

x∈X
‖T fx‖ ≤ ‖T‖ .

For the other direction, consider any f ∈L (X ) such that ‖ f‖= 1, and
fix any x ∈X . Then, for all y ∈L (X ), it holds that | f (y)| ≤ 1 because
‖ f‖= 1. Hence it follows that, for all x,y ∈X ,

|T (x,y) f (y)|= |T (x,y)| | f (y)| ≤ |T (x,y)| .
This implies that, for all x ∈X ,

|T f (x)|=
∣

∣

∣

∣

∣

∑
y∈X

T (x,y) f (y)

∣

∣

∣

∣

∣

≤ ∑
y∈X
|T (x,y) f (y)| ≤ ∑

y∈X
|T (x,y)|= T fx(x) ,

and because this is true for all x ∈X , it follows that

‖T f‖= max
x∈X
|T f (x)| ≤max

x∈X
T fx(x) = max

x∈X ∑
y∈X
|T (x,y)| .

Because this is true for all f ∈ L (X ) with ‖ f‖ = 1, it follows from
Equation (A.3) that

‖T‖ ≤max
x∈X ∑

y∈X
|T (x,y)| ,

which concludes the proof.
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Due to this result, and using the interpretation of the x-rows of T

as linear functionals on L (X ) together with Proposition A.20381, it
follows that

‖T‖= max
x∈X ∑

y∈X
|T (x,y)|= max

x∈X
‖T (x, ·)‖∗ . (A.4)

This shows the relation between the induced operator norm on M, and
the dual norm ‖·‖∗ on L (X )⊤. This also implies the following result.

Proposition A.33. For any matrix T ∈M and any x ∈X , it holds that
‖T (x, ·)‖∗ ≤ ‖T‖.

Finally, the next (well-known) result will be helpful; it states that
convergence of a sequence of matrices with respect to the operator
norm (i.e. as in Definition A.11374), implies its convergence in the
strong operator topology [51, Definition 5.45]; that is, the elementwise
convergence as these matrices are applied to the elements of L (X ).

LemmaA.34 ([51, Theorem 5.45]). Let {Ti}i∈Z>0
be a convergent sequence

in M with T∗ := limi→+∞ Ti. Then T∗ f = limi→+∞ Ti f for all f ∈L (X ).
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B

Norm Inequalities

“Tell me one last thing.
Is this real? Or has this been happening inside my head?”

“Of course it is happening inside your head,
but why on earth should that mean that it is not real?”

J. K. Rowling, “Harry Potter and the Deathly Hallows”

This appendix contains some technical inequalities that we will
need throughout the dissertation. In particular, they are inequalities
between—and bounds on—norms of particular operators. We specif-
ically consider transition matrices T (Definition 3.591), rate matrices
Q (Definition 4.4150), matrix exponentials eQt , with t ∈ R≥0 (Defini-
tion 4.5154), and their generalised counterparts: lower transition op-
erators T (Definition 3.15116), lower transition rate operators Q (Defi-

nition 6.2265), and the generalised exponentials eQt (Theorem 6.16272),
respectively.

From a technical point of view, we largely restrict ourselves to prov-
ing these inequalities for the general version of these operators. Unfor-
tunately, on a chronological reading of this dissertation one may not be
aware of the properties (or indeed, the existence) of these more gen-
eral objects, so for convenience we repeat the relevant results explicitly
for the case of linear operators, i.e., when we are dealing with matri-
ces. The following results provide the required relations that make this
possible without having to fully duplicate the proofs.
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Lemma B.1. Any transition matrix T is a lower transition operator.

Proof. This is proved in the main text of Section 3.4116.

Lemma B.2. Any rate matrix Q is a lower transition rate operator.

Proof. This is proved in the main text of Section 6.2265.

Lemma B.3. Let Q be a rate matrix, and let Q be the lower transition rate
operator such that Q := Q (this is possible by Lemma B.2). Fix any t ∈ R≥0,

let eQt denote the matrix exponential as in Definition 4.5154, and let eQt

denote the generalised exponential as in Theorem 6.16272. Then eQt = eQt .

Proof. This is proved in the main text of Section 6.3.2273.

With these relations out of the way, let us now move on to the ac-
tual statements of the norm inequalities which are the subject of this
appendix.

Lemma B.4. For any n ∈ Z>0, let T 1, . . . ,T n and S1, . . . ,Sn be two finite
sequences of lower transition operators. Then

∥

∥

∥

∥

∥

n

∏
i=1

T i−
n

∏
i=1

S i

∥

∥

∥

∥

∥

≤
n

∑
i=1

‖T i−S i‖ . (B.1)

Proof. We provide a proof by induction. Clearly, Equation (B.1) holds
for n = 1. Suppose that it holds for n− 1. We show that it then also
holds for n.
∥

∥

∥

∥

∥

n

∏
i=1

T i−
n

∏
i=1

S i

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n

∏
i=1

T i−
(

n−1

∏
i=1

T i

)

Sn +

(

n−1

∏
i=1

T i

)

Sn−
n

∏
i=1

S i

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

n

∏
i=1

T i−
(

n−1

∏
i=1

T i

)

Sn

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

(

n−1

∏
i=1

T i

)

Sn−
n

∏
i=1

S i

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

(

n−1

∏
i=1

T i

)

T n−
(

n−1

∏
i=1

T i

)

Sn

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

(

n−1

∏
i=1

T i−
n−1

∏
i=1

S i

)

Sn

∥

∥

∥

∥

∥

≤ ‖T n−Sn‖+
∥

∥

∥

∥

∥

n−1

∏
i=1

T i−
n−1

∏
i=1

S i

∥

∥

∥

∥

∥

‖Sn‖

≤ ‖T n−Sn‖+
∥

∥

∥

∥

∥

n−1

∏
i=1

T i−
n−1

∏
i=1

S i

∥

∥

∥

∥

∥

≤ ‖T n−Sn‖+
n−1

∑
i=1

‖T i−S i‖=
n

∑
i=1

‖T i−S i‖ .

392



Here, in the second inequality, we applied Proposition 3.33117 and
properties N1064 and LT7117. In the third inequality, we used prop-
erty LT4117. In the final inequality, we used the induction hypothe-
sis.

Lemma B.5. For any n ∈ Z>0, let T1, . . . ,Tn and S1, . . . ,Sn be two finite
sequences of transition matrices. Then ‖∏n

i=1 Ti−∏
n
i=1 Si‖ ≤ ∑

n
i=1 ‖Ti−Si‖.

Proof. This follows immediately from Lemmas B.1 and B.4.

Lemma B.6. Let Q be a lower transition rate operator, fix any n ∈ Z>0 and,

for all i∈ {1, . . . ,n}, any ∆i ≥ 0 such that ∆i

∥

∥Q
∥

∥≤ 1. Let ∆ := ∑
n
i=1 ∆i. Then

∥

∥

∥

∥

∥

n

∏
i=1

(I +∆iQ)− (I +∆Q)

∥

∥

∥

∥

∥

≤ ∆2
∥

∥Q
∥

∥

2
.

Proof. We provide a proof by induction. For n = 1, the result is trivial.
So consider the case n≥ 2 and assume that the result is true for n−1.

For all i ∈ {2, . . . ,n}, since ∆i

∥

∥Q
∥

∥ ≤ 1, it follows from Proposi-
tion 6.6266 that I and (I +∆iQ) are lower transition operators. There-
fore,

∥

∥

∥

∥

∥

n

∏
i=1

(I +∆iQ)− (I +∆Q)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n

∏
i=2

(I +∆iQ)+∆1Q
n

∏
i=2

(I +∆iQ)−
(

I +
n

∑
i=2

∆iQ

)

−∆1Q

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

n

∏
i=2

(I +∆iQ)−
(

I +
n

∑
i=2

∆iQ

)∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∆1Q
n

∏
i=2

(I +∆iQ)−∆1Q

∥

∥

∥

∥

∥

≤
(

n

∑
i=2

∆i

)2
∥

∥Q
∥

∥

2
+2∆1

∥

∥Q
∥

∥

∥

∥

∥

∥

∥

n

∏
i=2

(I +∆iQ)− I

∥

∥

∥

∥

∥

≤
(

n

∑
i=2

∆i

)2
∥

∥Q
∥

∥

2
+2∆1

∥

∥Q
∥

∥

n

∑
i=2

∥

∥(I +∆iQ)− I
∥

∥

=

(

n

∑
i=2

∆i

)2
∥

∥Q
∥

∥

2
+
(

2∆1

n

∑
i=2

∆i

)

∥

∥Q
∥

∥

2 ≤
(

∆1 +
n

∑
i=2

∆i

)2∥
∥Q
∥

∥

2
= ∆2

∥

∥Q
∥

∥

2
,

where the second inequality follows from the induction hypothesis and
property LR6266, and the third inequality follows from Lemma B.4.
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Lemma B.7. Let Q be a lower transition rate operator and consider any
∆ ∈ R≥0. Then,

∥

∥

∥
eQ∆− (I +∆Q)

∥

∥

∥
≤ ∆2

∥

∥Q
∥

∥

2
.

Proof. Fix any ε > 0. Because of Theorem 6.16272, there is some
u ∈U[0,∆] such that σ(u)

∥

∥Q
∥

∥ ≤ 1 and
∥

∥eQ∆−Φu

∥

∥ ≤ ε , with Φu as in
Equation (6.6)271. By combining this with Lemma B.6x, it follows that

∥

∥

∥
eQ∆− (I +∆Q)

∥

∥

∥
≤
∥

∥

∥
eQ∆−Φu

∥

∥

∥
+
∥

∥Φu− (I +∆Q)
∥

∥≤ ε +∆2
∥

∥Q
∥

∥

2
.

The result is now immediate since ε > 0 is arbitrary.

Lemma B.8. Let Q be a rate matrix and consider any ∆ ∈ R≥0. Then,

∥

∥

∥
eQ∆− (I +∆Q)

∥

∥

∥
≤ ∆2 ‖Q‖2 .

Proof. This follows immediately from Lemmas B.2392, B.3392 and B.7.

Lemma B.9. Let Q be a lower transition rate operator, and consider any
∆ ∈ R≥0. Then,

∥

∥

∥
eQ∆− I

∥

∥

∥
≤ ∆

∥

∥Q
∥

∥ .

Proof. Fix any n∈Z>0 and let ∆n := ∆/n. Proposition 6.17273 then implies
that

eQ∆ = eQn∆n = eQ∆n · · ·eQ∆n = (eQ∆n)n,

and therefore, it follows from Lemma B.4392 and the fact that eQ∆n is a
lower transition operator, that

∥

∥

∥
eQ∆− I

∥

∥

∥
=
∥

∥

∥
(eQ∆n)n− In

∥

∥

∥
≤ n

∥

∥

∥
eQ∆n − I

∥

∥

∥
≤ n

∥

∥

∥
eQ∆n − (I +∆nQ)

∥

∥

∥
+n∆n

∥

∥Q
∥

∥ ,

which, when combined with Lemma B.7, implies that

∥

∥

∥
eQ∆− I

∥

∥

∥
≤ n∆2

n

∥

∥Q
∥

∥

2
+n∆n

∥

∥Q
∥

∥=
1

n
∆2
∥

∥Q
∥

∥

2
+∆

∥

∥Q
∥

∥ .

Since n ∈ Z>0 is arbitrary, the result is now immediate.

Lemma B.10. Let Q be a rate matrix and consider any ∆ ∈ R≥0. Then,

∥

∥

∥
eQ∆− I

∥

∥

∥
≤ ∆‖Q‖ .

Proof. This follows immediately from Lemmas B.2392, B.3392 and B.9.
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Lemma B.11. Let Q1,Q2 be two rate matrices and consider any ∆ ∈ R≥0.
Then

∥

∥eQ1∆− eQ2∆
∥

∥≤ ∆‖Q1−Q2‖.

Proof. Consider any n ∈ Z>0. It then follows from Proposition 4.11154
and Lemma B.5393 that

∥

∥

∥
eQ1∆− eQ2∆

∥

∥

∥
=

∥

∥

∥

∥

∥

n

∏
k=1

eQ1
∆
n −

n

∏
k=1

eQ2
∆
n

∥

∥

∥

∥

∥

≤ n

∥

∥

∥
eQ1

∆
n − eQ2

∆
n

∥

∥

∥
.

which, since we know from Lemma B.8 that

∥

∥

∥
eQ1

∆
n − eQ2

∆
n

∥

∥

∥

≤
∥

∥

∥
eQ1

∆
n − (I + ∆/nQ1)

∥

∥

∥
+

∥

∥

∥

∥

∆

n
(Q1−Q2)

∥

∥

∥

∥

+
∥

∥

∥
(I + ∆/nQ2)− eQ2∆/n

∥

∥

∥

≤ ∆2

n2
‖Q1‖2 +

∆

n
‖Q1−Q2‖+

∆2

n2
‖Q2‖2 ,

implies that

∥

∥

∥
eQ1∆− eQ2∆

∥

∥

∥
≤ ∆2

n
‖Q1‖2 +∆‖Q1−Q2‖+

∆2

n
‖Q2‖2 .

Since n ∈ Z>0 is arbitrary, the result is now immediate.

Lemma B.12. Consider a non-empty and bounded set of rate matrices Q,
any n ∈ Z>0 and, for all i ∈ {1, . . . ,n}, any ∆i ∈ R≥0 and Qi ∈Q such that
∆i ‖Qi‖ ≤ 1. Let ∆ := ∑

n
i=1 ∆i. Then

∥

∥

∥

∥

∥

n

∏
i=1

(I +∆iQi)−
(

I +
n

∑
i=1

∆iQi

)∥

∥

∥

∥

∥

≤ ∆2 ‖Q‖2 .

Proof. We provide a proof by induction. For n = 1, the result is trivial.
So consider the case n≥ 2 and assume that the result is true for n−1.

For all i ∈ {2, . . . ,n}, since ∆i ‖Qi‖ ≤ 1, it follows from Proposi-
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tion 4.9153 that (I +∆iQi) and I are transition matrices. Therefore,

∥

∥

∥

∥

∥

n

∏
i=1

(I +∆iQi)−
(

I +
n

∑
i=1

∆iQi

)∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n

∏
i=2

(I +∆iQi)+∆1Q1

n

∏
i=2

(I−∆iQi)−
(

I +
n

∑
i=2

∆iQi

)

−∆1Q1

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

n

∏
i=2

(I +∆iQi)−
(

I +
n

∑
i=2

∆iQi

)∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∆1Q1

n

∏
i=2

(I−∆iQi)−∆1Q1

∥

∥

∥

∥

∥

≤
(

n

∑
i=2

∆i

)2

‖Q‖2 +∆1 ‖Q1‖
∥

∥

∥

∥

∥

n

∏
i=2

(I +∆iQi)− I

∥

∥

∥

∥

∥

≤
(

n

∑
i=2

∆i

)2

‖Q‖2 +∆1 ‖Q1‖
n

∑
i=2

‖(I +∆iQi)− I‖

=

(

n

∑
i=2

∆i

)2

‖Q‖2 +∆1 ‖Q1‖
n

∑
i=2

∆i ‖Qi‖

≤
(

n

∑
i=2

∆i

)2

‖Q‖2 +
(

∆1

n

∑
i=2

∆i

)

‖Q‖2 ≤
(

∆1 +
n

∑
i=2

∆i

)2

‖Q‖2 = ∆2 ‖Q‖2 ,

where the second inequality follows from the induction hypothesis and
the third inequality follows from Lemma B.5393.
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List of Symbols and Terminology

This section aggregates the most important symbols and terminology
used throughout this dissertation and, for symbols, provides a short
description of their meaning. For ease of use, we present this collection
using several lists, ordered by topic, and provide references to the loca-
tion in this work where the symbol or terminology is first introduced.

Basic Notation

Symbol Meaning Location

:= Definition -

Z>0, Z≥0 The positive and non-negative inte-
gers

Sec. 1.643

R, Q The real numbers and rational
numbers

Sec. 1.643

R≥c, R>c, R<c For c ∈ R, the reals that are at
least/greater than/less than c; the
non-negative/positive/negative re-
als when c = 0

Sec. 1.643

{ai}i∈Z>0
Sequence of quantities indexed by
i ∈ Z>0

Sec. 1.643

{ai}i∈Z>0
→ c Limit statement that limi→+∞ ai = c Sec. 1.643

{ai}i∈Z>0
→ c+ Limit from above, i.e. ai ≥ c for all

i ∈ Z>0

Sec. 1.643

{ai}i∈Z>0
→ c− Limit from below, i.e. ai ≤ c for all

i ∈ Z>0

Sec. 1.643

IA Indicator of a set A; for any super-
set C ⊇ A of A, and any a ∈ C, we
let IA(a) := 1 if a ∈ A, and IA(a) := 0,
otherwise

Sec. 1.643
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List of Symbols and Terminology

Probabilities and Conditional Expectation

Symbol Meaning Location

Ω Abstract outcome space Sec. 2.146

E (Ω) Set of all events; set of all subsets of Ω Sec. 2.146

E (Ω)⊃ /0 Set of all non-empty events; E (Ω)\{ /0} Sec. 2.146

P Coherent conditional probability Def. 2.248

P(A) Probability of A ∈ E (Ω) Def. 2.147

P(A |C) Probability of A ∈ E (Ω), conditional on
C ∈ E (Ω)⊃ /0

Def. 2.147

B Set of all functions on Ω that are bounded Sec. 2.1.151

E Coherent conditional prevision on
D ⊆ B×E (Ω)⊃ /0

Def. 2.352

DC Set of pairs (IA,C) ∈ B×E (Ω)⊃ /0 such that
(A,C) ∈ C ⊆ E (Ω)×E (Ω)⊃ /0

Sec. 2.1.151

EP Conditional expectation that corresponds
to P; coherent conditional prevision

Def. 2.554

DP Largest subset of B× E (Ω)⊃ /0 on which
there is a unique coherent conditional
prevision EP corresponding to P

Def. 2.554

Time Points

Symbol Meaning Location

H General time domain Def. 2.659

D Discrete time domain Def. 2.759

U H Set of all finite sequences of time points in
H; each u ∈U H is ordered and u⊂H

Sec. 2.2.158

U H
⊃ /0 Subset of U H: u ∈U H

⊃ /0 is non-empty Sec. 2.2.158

U H
<t Subset of U H: u ∈U H

<t satisfies u⊂ R<t Sec. 2.2.158

U
R≥0

[t,s]
Subset of U

R≥0

⊃ /0 : u ∈U
R≥0

[t,s]
partitions [t,s] Sec. 2.2.158

∆u
i Sequential difference ∆u

i := ti− ti−1 for u ∈
U

R≥0

[t,s]
with u = t0, . . . , tn

Sec. 2.2.158

σ(u) Maximum ∆u
i for u = t0, . . . , tn ∈U

R≥0

[t,s]
, that

is σ(u) := max{∆u
i : i ∈ {1, . . . ,n}}

Sec. 2.2.158

398



States, Functions, and Operators

Symbol Meaning Location

X Generic state space; non-empty finite set Sec. 2.2.261

x State; generic element of X Sec. 2.2.261

Xt State space at explicit time point t ∈H Sec. 2.2.261

xt State at time t; generic element of Xt Sec. 2.2.261

Xu Joint state space at time points u ∈U H Sec. 2.2.261

xu Joint state at time points u ∈ U H; generic
element of Xu

Sec. 2.2.261

L (X ) Set of real-valued functions on X Sec. 2.2.362

L (Xu) Set of real-valued functions on Xu, with
u ∈U H

⊃ /0

Sec. 2.2.362

L (X )⊤ The dual space of L (X ); set of all real-
valued linear functionals on L (X )

App. A.2380

M Set of all linear maps from L (X ) to
L (X ); any T ∈ M is interchangeably
called a matrix

Sec. 2.2.362

T (x,y) The x,y-entry of the matrix representation
of T ∈M, with x,y ∈X

App. A.3383

T (x, ·) The x-row of the matrix T ∈M; also a lin-
ear functional in L (X )⊤

App. A.3383

‖ f‖ Supremum norm of f ∈L (Xu), with u ∈
U H
⊃ /0

Sec. 2.2.362

∥

∥φ⊤
∥

∥

∗ Induced dual norm of φ⊤ ∈L (X )⊤ App. A.2380

‖T‖ Induced operator norm of non-negatively
homogeneous operator T : L (X ) →
L (X )

Sec. 2.2.362

‖V ‖ Supremum of norms ‖v‖where each v∈V

is an element of a normed vector space
App. A369
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List of Symbols and Terminology

Stochastic Processes

Symbol Meaning Location

ΩH Outcome space of stochastic pro-
cess with time domain H; satisfies
Eq. (2.8)65

Sec. 2.364

ω ∈ΩH A path; generic realisation of stochas-
tic process with time domainH; func-
tion ω : H→X

Sec. 2.364

ω|u Path ω ∈ΩH restricted to u ∈U H Sec. 2.364

〈E 〉 Algebra generated by set E ⊆ E (ΩH) Sec. 2.364

(Xt = x)H Elementary event with t ∈H Sec. 2.364

E H
u Set of elementary events whose time

point either follows or belongs to u ∈
U H

Sec. 2.364

A H
u Algebra generated by E H

u Sec. 2.364

(Xu = xu)H Conjunction of elementary events on
time points u ∈U H

Sec. 2.364

(A,Xu = xu)H Shorthand for the pair (A,(Xu = xu)H);
element of E (ΩH)× E (ΩH)⊃ /0; condi-
tional event with A ∈ A H

u , xu ∈ Xu,
and u ∈U H

Sec. 2.364

C SP
H Domain of stochastic process with

time domain H; subset of E (ΩH)×
E (ΩH)⊃ /0

Sec. 2.364

P Stochastic process (with time domain
H); coherent conditional probability
on C SP

H

Def. 2.1268

PH Set of all stochastic processes with
time domain H

Def. 2.1268

C SP, P, . . . For any of the above symbols, if the
time domainH is not explicitly given,
it is usually implied that H= R≥0

Sec. 2.364

f (Xu) u-measurable function corresponding
to f ∈L (Xu), with u ∈U H

⊃ /0

Def. 2.1572
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Discrete-Time Stochastic Processes

Symbol Meaning Location

τ0:n Shorthand for the sequence τ0, . . . ,τn,
where τ is the canonical time index of
a discrete time domain D. Moreover,
τ0:(−1) = /0 by convention

Sec. 3.185

SD The set of situations with time domain D Def. 3.185

P|D Discrete-time process with time domain
D that is the restriction of continuous-time
stochastic process P

Def. 7.3350

Transition Matrices and Lower Transition Operators

Symbol Meaning Location

T Transition matrix; matrix that is row-
stochastic

Def. 3.591

T Set of all transition matrices Def. 3.591

T Lower transition operator Def. 3.15116

T Set of all lower transition operators Def. 3.15116

TT Set of transition matrices that dominate T Def. 3.17120

Terminology Location

Set T ⊆ T with separately specified rows Def. 3.13111

Discrete-Time (Imprecise-)Markov Chains

Symbol Meaning Location

P(Xτn+1
= xτn+1

|Xτn= xτn) Transition probabilities
of discrete-time Markov
chain

Def. 3.389
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List of Symbols and Terminology

PD,M Set of all discrete-time Markov chains
with time domain D

Def. 3.389

PD,HM Set of all homogeneous discrete-time
Markov chains with time domain D

Def. 3.491

(Tn) Family (Tn)n∈Z≥0
of transition matrices

corresponding to a discrete-time Markov
chain

Def. 3.794

(Tn,xu) Family of history-dependent transition
matrices Tn,xu , with n ∈ Z≥0, u = τ0:(n−1),
and xu ∈Xu, corresponding to a stochas-
tic process P ∈ PD, where τ is the canoni-
cal time index of D

Def. 3.8101

(Tn) Family of sets of transition matrices with
n ∈ Z≥0

Sec. 3.3101

P∼ (Tn) Consistency of process P with (Tn) Def. 3.9102

M Set of probability mass functions on X Sec. 3.3101

P∼M Consistency of process P with M Sec. 3.3101

PD
(Tn),M

Imprecise-Markov chain with time do-
main D

Def. 3.11104

ED
(Tn),M

Lower expectation for PD
(Tn),M

Def. 3.12105

E
D
(Tn),M Upper expectation for PD

(Tn),M
Def. 3.12105

Transition Rate Matrices, Lower Transition Rate Oper-
ators, and their Exponentials

Symbol Meaning Location

Q A generic (transition) rate matrix Def. 4.4150

R The set of all (transition) rate matrices Def. 4.4150

Q A set of rate matrices Q ⊆R Sec. 4.3150

eQt The matrix exponential of the matrix Qt,
with Q ∈R and t ∈ R≥0

Def. 4.5154

Q Lower transition rate operator; often the
lower envelope of a set Q of rate matrices

Def. 6.2265

QQ Set of rate matrices that dominate Q Def. 6.4268

eQt (Generalised) exponential of Qt, with Q a
lower transition rate operator and t ∈ R≥0;
a lower transition operator

Thm 6.16272
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Terminology Location

Set Q ⊆R with separately specified rows Def. 5.7193

Semigroups and (Restricted) Transition Matrix Systems

Symbol Meaning Location

(eQt) Semigroup of transition matrices gen-
erated by Q ∈ R; family of transition
matrices eQt with t ∈ R≥0

Sec. 4.4156

(T s
t ) Transition matrix system, a two-

parameter family of transition
matrices T s

t , with t,s ∈ R≥0 such that
t ≤ s, that satisfies specific properties

Def. 4.6156

T Set of all transition matrix systems Def. 4.6156

(eQ(s−t)) Exponential transition matrix system
corresponding to Q ∈R

Def. 4.8158

(T s
t )I Transition matrix system restricted to

interval I⊆ R≥0

Sec. 4.5158

TI Set of all restricted transition matrix
systems on I⊆ R≥0

Sec. 4.5158

(T s
t )I⊗ (Ss

t )J Concatenation of two restricted transi-
tion matrix systems (T s

t )I and (Ss
t )J

Def. 4.9160

d Metric on TI Eq. (4.15)162

(eQt) Semigroup of lower transition opera-
tors generated by Q; family of lower

transition operators eQt with t ∈ R≥0

Sec. 6.3.1270

Continuous-Time Stochastic Processes

Symbol Meaning Location

PW Set of well-behaved stochastic processes Def. 4.1145

(T s
t,xu

) Family of history-dependent transition
matrices corresponding to stochastic pro-
cess, with t,s∈R≥0 such that t ≤ s, u∈U<t ,
and xu ∈Xu

Def. 4.2148

(T s
t ) Family of transition matrices correspond-

ing to stochastic process, with t,s ∈ R≥0

such that t ≤ s

Def. 4.3150
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List of Symbols and Terminology

∂+T t
t,xu

Right-sided partial derivative of history-
dependent transition matrix T t

t,xu

Def. 4.10167

∂−T t
t,xu

Left-sided partial derivative of history-
dependent transition matrix T t

t,xu

Def. 4.10167

∂T t
t,xu

Partial derivative of history-dependent
transition matrix T t

t,xu

Def. 4.10167

∂+T t
t,xu

Right-sided outer partial derivative of
history-dependent transition matrix T t

t,xu
;

subset of R

Def. 4.11168

∂−T t
t,xu

Left-sided outer partial derivative of
history-dependent transition matrix T t

t,xu
;

subset of R

Def. 4.11168

∂T t
t,xu

Outer partial derivative of history-
dependent transition matrix T t

t,xu
; subset

of R

Def. 4.11168

(∂+T t
t,xu

) Family of right-sided outer partial deriva-
tives, with t ∈ R≥0, u ∈U<t , and xu ∈Xu

Sec. 4.6166

(∂−T t
t,xu

) Family of left-sided outer partial deriva-
tives, with t ∈ R≥0, u ∈U<t , and xu ∈Xu

Sec. 4.6166

(∂T t
t,xu

) Family of outer partial derivatives, with
t ∈ R≥0, u ∈U<t , and xu ∈Xu

Sec. 4.6166

Continuous-Time (Imprecise-)Markov Chains

Symbol Meaning Location

PM Set of all Markov chains Def. 5.1182

PWM Set of all well-behaved Markov chains Def. 5.1182

PHM Set of all homogeneous Markov chains Def. 5.2185

PWHM Set of all well-behaved homogeneous
Markov chains

Def. 5.2185

QP Unique transition rate matrix corre-
sponding to a well-behaved homogeneous
Markov chain P ∈ PWHM

Sec. 5.1.1185

P∼Q Consistency of process P with Q Def. 5.3189

M Set of probability mass functions on X Sec. 5.2188

P∼M Consistency of process P with M Def. 5.4189

PQ,M Subset of P ⊆ P consistent with Q and M Def. 5.5189
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PW
Q,M Continuous-time imprecise-Markov chain Def. 5.6190

PWM
Q,M Continuous-time imprecise-Markov chain Def. 5.6190

PWHM
Q,M Continuous-time imprecise-Markov chain Def. 5.6190

T Q

[a,b] Set of restricted transition matrix systems
on [a,b] induced by PWM

Q,M

Eq. (5.9)195

Q
MT s

t Set of (history-dependent) transition matri-
ces induced by PW

Q,M

Eq. (5.11)197

EW
Q,M Lower expectation for PW

Q,M Def. 5.8198

E
W

Q,M Upper expectation for PW
Q,M Def. 5.8198

EWM
Q,M Lower expectation for PWM

Q,M Def. 5.8198

E
WM

Q,M Upper expectation for PWM
Q,M Def. 5.8198

EWHM
Q,M Lower expectation for PWHM

Q,M Def. 5.8198

E
WHM

Q,M Upper expectation for PWHM
Q,M Def. 5.8198

EM Lower expectation for the initial model de-
scribed by M

Def. 6.5287

(T s
t) Family of lower transition operators T s

t in-
duced by set P of stochastic processes, with
t,s ∈ R≥0 such that t ≤ s

Def. 6.1261
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