Hitting Times and Probabilities for Imprecise Markov Chains

Thomas Krak, Natan T'Joens, and Jasper De Bock

Foundations Lab for Imprecise Probabilities Ghent University

Hitting Times and Probabilities for Imprecise Markov Chains

Thomas Krak, Natan T'Joens, and Jasper De Bock

Foundations Lab for Imprecise Probabilities Ghent University

Markov Chains

Stochastically evolving dynamical system with uncertain state X_n

- Time $n \in \mathbb{N}_0$ (discrete time model)
- \blacksquare Finite state space $\mathscr X$

A stochastic process P is called a Markov chain if

$$P(X_{n+1} = x_{n+1} | X_{0:n} = x_{0:n}) = P(X_{n+1} = x_{n+1} | X_n = x_n)$$

A Markov chain is called homogeneous if, moreover,

$$P(X_{n+1} = y | X_n = x) = P(X_1 = y | X_0 = x)$$

Markov Chains and Transition Matrices

A transition matrix T is an $|\mathscr{X}| \times |\mathscr{X}|$ matrix that is row-stochastic:

• $\sum_{y \in \mathscr{X}} T(x,y) = 1$ and $T(x,y) \ge 0$

Such a T determines a homogeneous Markov chain P for which

$$P(X_{n+1} = y \mid X_n = x) = T(x, y)$$
 for all $x, y \in \mathscr{X}$ and $n \in \mathbb{N}_0$.

- What if we don't know T?
- Or: what if Markov assumption is unwarranted?
- \Rightarrow Instead use an *imprecise* Markov chain

Imprecise Markov Chains

Parameterised by a set \mathscr{T} of transition matrices.

• \mathcal{T} must satisfy some technical closure properties.

Inferences are the *lower* and *upper expectations* of quantities of interest.

These depend on the type of imprecise Markov chain!

Imprecise Markov Chains

Parameterised by a set ${\mathscr T}$ of transition matrices.

 $\blacksquare \ \mathcal{T}$ must satisfy some technical closure properties.

Inferences are the lower and upper expectations of quantities of interest.

These depend on the type of imprecise Markov chain!

For the set $\mathscr{P}^{\mathrm{H}}_{\mathscr{T}}$ of homogeneous Markov chains with transition matrix T in \mathscr{T} ,

$$\underline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{H}}[\cdot | \cdot] = \inf_{P \in \mathscr{P}_{\mathscr{T}}^{\mathrm{H}}} \mathbb{E}_{P}[\cdot | \cdot] \quad \text{and} \quad \overline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{H}}[\cdot | \cdot] = \sup_{P \in \mathscr{P}_{\mathscr{T}}^{\mathrm{H}}} \mathbb{E}_{P}[\cdot | \cdot]$$

What other types are there?

Set of homogeneous Markov chains with transition matrix $T \in \mathscr{T}$.

Set of homogeneous Markov chains with transition matrix $T \in \mathcal{T}$.

• Game-theoretic probability model with local uncertainty models described by \mathcal{T} .

$\underline{\mathbb{E}}_{\mathscr{T}}^{\mathbf{V}}[\cdot | \cdot] \leq \underline{\mathbb{E}}_{\mathscr{T}}^{\mathbf{H}}[\cdot | \cdot]$

Set of homogeneous Markov chains with transition matrix $T \in \mathcal{T}$.

• Set of *general* stochastic processes "compatible" with \mathscr{T} . Always some $T \in \mathscr{T}$ such that

$$P(X_{n+1} = x_{n+1} | X_{0:n} = x_{0:n}) = T(x_n, x_{n+1}),$$

but can be different T for each $x_{0:n}$. Called an imprecise Markov chain under *epistemic irrelevance*.

• Game-theoretic probability model with local uncertainty models described by \mathcal{T} .

$$\underline{\mathbb{E}}_{\mathscr{T}}^{\mathbf{V}}[\cdot | \cdot] \leq \underline{\mathbb{E}}_{\mathscr{T}}^{\mathbf{I}}[\cdot | \cdot] \leq \underline{\mathbb{E}}_{\mathscr{T}}^{\mathbf{H}}[\cdot | \cdot]$$

Set of homogeneous Markov chains with transition matrix $T \in \mathscr{T}$.

Set of Markov chains such that for all $n \in \mathbb{N}_0$ there is some $T \in \mathscr{T}$ for which

$$P(X_{n+1} = x_{n+1} | X_n = x_n) = T(x_n, x_{n+1}).$$

Called a Markov set chain, or an imprecise Markov chain under strong independence.
Set of general stochastic processes "compatible" with 𝒮. Always some 𝔅 𝔅 𝔅 such that

$$P(X_{n+1} = x_{n+1} | X_{0:n} = x_{0:n}) = T(x_n, x_{n+1}),$$

but can be different T for each $x_{0:n}$.

Called an imprecise Markov chain under epistemic irrelevance.

• Game-theoretic probability model with local uncertainty models described by \mathcal{T} .

$\underline{\mathbb{E}}^{V}_{\mathscr{T}}[\cdot \,|\, \cdot] \leq \underline{\mathbb{E}}^{I}_{\mathscr{T}}[\cdot \,|\, \cdot] \leq \underline{\mathbb{E}}^{M}_{\mathscr{T}}[\cdot \,|\, \cdot] \leq \underline{\mathbb{E}}^{H}_{\mathscr{T}}[\cdot \,|\, \cdot]$

Lower and Upper Expected Hitting Times

Given a fixed set $A \subset \mathscr{X}$ of states:

How long will it take before the system visits an element of A?

What is $\mathbb{E}_{P}[H_{A} | X_{0}]$, where H_{A} is the number of steps before A is visited?

What can we say about this for the various types of imprecise Markov chains?

Lower and Upper Expected Hitting Times

Given a fixed set $A \subset \mathscr{X}$ of states:

How long will it take before the system visits an element of A?

What is $\mathbb{E}_{P}[H_{A} | X_{0}]$, where H_{A} is the number of steps before A is visited?

What can we say about this for the various types of imprecise Markov chains?

Theorem

$$\underline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{V}}[H_{A} | X_{0}] = \underline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{I}}[H_{A} | X_{0}] = \underline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{M}}[H_{A} | X_{0}] = \underline{\mathbb{E}}_{\mathscr{T}}^{\mathrm{H}}[H_{A} | X_{0}]$$

(and similarly for the upper expected hitting time)