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PREFACE

Constantine P. Cavafy in his poem ‘Ithaka’ starts with the following lines:

“As you set out for Ithaka
hope the voyage is a long one,

full of adventure, full of discovery.”

These lines perfectly describe my journey, with as destination the dissertation
that you are about to read.

It all started a few years ago when I obtained my master’s degree from
Utrecht University and decided to aim for a doctoral degree. Among my ap-
plications to different universities, I was offered a doctoral position in Ghent
University, which I accepted without hesitation and much thinking. This was a
decision of life that I will never regret and forget, and moreover, I am proud of
it. From the moment that I started doing research in Ghent University till now,
it seems like a journey to me. A journey full of adventure, full of discovery,
full of unique moments, full of beautiful memories. I stop here because this
is a very big “full of...”. Even if there were many stressful periods, in which
the schedule was hectic and the pressure was intense, in the end the result was
rewarding and I now look back on these days with nostalgia because they will
probably not be repeated again. I learnt a lot of values during the years of my
doctoral studies. I gained experience on how to do proper and solid research,
I learnt and I was taught many fascinating aspects of mathematics, and what
is more, I changed the way in which I perceive things. All the aforementioned
were achieved through personal effort and, of course, through the help of other
people, whom I would like to thank here.

First and foremost, I would like to thank my main supervisor Gert. Thanks
to him, I learnt many things inside and outside research and mathematics. To
me, he is not just a supervisor. He is a friend, a person that I admire and I am
more than thankful to him for giving me the opportunity to work in his group.
I will not forget the active discussions we had on various topics, related or not
to research, the funny stories and the jokes he was telling, and the amazing
time we had at his place and during our roadtrips when going to conferences.
I am glad that I have met him.
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I would also like to thank all the people, most of them friends by now, from
my close working environment. First of all, I would like to thank my dear
colleague and supervisor Jasper. I usually don’t like to say big words about
people, but I think he deserves the title of “The best researcher I have met in
my life so far”. Without him, I wouldn’t be able to write this dissertation. The
support and help he gave me all these years is invaluable, let alone the nice
moments full of laughter that we shared. He is also the one that taught me to
look into a problem from different angles till I find the most elegant solution.
I owe a lot to this guy. Together with Gert and Jasper there is also one more
person who completes what I call “The magic triplet” and that is Arthur. The
most kind and lovely person I have probably met in my life. Always with
positive energy and pure willingness to help you with anything. Especially
during the stressful periods, he was the one who made it easier, not to mention
the relaxed periods during which we had the fun of our lives. I believed that
selflessness does not exist, but when I think of Arthur, I reconsider. Thank
you Arthur. I would also like to thank Joris and Stijn, with whom I had a lot
of interesting discussions about different research topics and how they can be
tackled, and who helped me to publish my first result as first author which was
the stepping stone for publishing more scientific results.

Many thanks as well to several other researchers, and especially to Quique,
Erik, Matthias, Sebastien, Marcio, Alain, Alexander, Thomas and Meizhu,
with whom I had nice moments in the office and at conferences. I would also
like to thank the members of my examination committee, for accepting to read
this dissertation and for providing useful comments. Finally, I would like to
thank two more people that introduced me to the world of research and taught
me many useful things. The first one is Nikos, with whom I had my first steps
towards research. We managed to publish a result together back in 2010. The
second one is Linda, the supervisor of my master’s thesis in Utrecht University.
She introduced me to the field of Bayesian networks and probabilistic systems
and it is because of her that I found the doctoral position at Ghent University.
She believed in me from the first moment and I am glad that we still work
together from time to time.

Next, I would like to thank all the friends that supported me when I needed
it the most, each in his/her own way. They always cared about me and wanted
to know how things were going with my research. Some of them are friends
of mine for more than 15 years and have offered me precious moments with a
lot of fun that I hope I will never forget in my life. Starting with my buddies,
some of them located in Athens and some others across Europe, many thanks
to Nikos, Jack, Rafa, Alex, Anna, Michalis, Giorgos, Dimi, George, Emil,
Vassiliki, Chara, Antonis, Themis, Mike, Panos, Labros, Yiannis, Costaras,
Taseas, George junior, Yuli, Angeliki and Nikol. I would also like to thank the
friends that I met in the Netherlands and Belgium during my studies, and espe-
cially Konstantinos, Agis, Vaggelis, Rais, Irini, Vally, Myrto, Nina, Filippos,
Marpessa and Chris. Furthermore, I want to thank my buddies here in Ghent.
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Many thanks to Liana and Tasia (a.k.a. Moons and Bells), Billy Maglo, Billy
Vanilly, Costakis, Gregor, Elias, Mirella, Marilena, Tonia, Themis, Anouk,
Jona, Eftichia and Frederik. Special thanks to my dear amigos and band mates
Flojo and Simone—our jamming sessions were something to look forward to
every week. One last, but not least, “Thank you” goes out to Melena for all the
support and affection that she has given me, and in general for all the things
she has done for me in her unique and special way during these years of my
doctoral studies. Honestly guys, I thank you all from the depths of my heart.

I would also like to thank some relatives of mine that will always be there
for me, ready to help in any situation. Just by asking me if I am fine and feeling
proud of me, it means a lot to me. Therefore, many thanks to Aggelikoula,
Panos, Katia, Chrisostomos, Elina, Akis, Elli, Manolis, Yiannis and Chrysoula.
Regarding my family, I do not have the words to tell them how thankful I am,
not only for their financial and psychological support, but also for their effort
in trying to make me a better person. I feel lucky that I grew up in such a
family, really. A huge “Thank you” to my mother Eleni, to my father Thanasis
and to my brother Tasos.

Finally, I would like to thank music. I do not know how this world would
be without music. So thank you to all the songs and kinds of music that ac-
companied me when I was working or when I wanted to relax, and created
a chilling atmosphere that made me keep working even harder at times that I
thought I would give up.
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SUMMARY

Stochastic processes are systems that evolve through time, but whose specific
time evolution is uncertain. This dissertation presents methods for computing
robust inferences in such stochastic processes, and applies them to the field of
queueing theory. In order to achieve this, we use imprecise probabilities.

We begin this dissertation by presenting some basic concepts from the the-
ory of imprecise probabilities, which is a robust extension of probability the-
ory. When we have a variable for which we are uncertain about its value,
probability theory will assign a probability to each possible value by defining
a single probability mass function on the set of possible values, whereas impre-
cise probability theory considers a set of probability mass functions. In the vast
majority of cases, these sets of probability mass functions are assumed to be
closed and convex and are then called credal sets. We show through a series of
examples how these credal sets can be constructed and graphically represented.
In addition, we also discuss cases where convexity might break down as this
sometimes happens in the queueing models that we consider later in the text.
Next, we show how to model uncertainty using lower expectation operators,
which are non-linear operators that satisfy a number of axioms. Such a lower
expectation operator can be associated with a set of probability mass functions
and for a given function, its value can be interpreted as an exact lower bound
on the set of possible expected values of that function. Alternatively, it can
also be interpreted as a supremum buying price. A function then can be seen
as a gamble that we are willing to buy for any price lower than its minimum
expected value. We also discuss how natural extension allows us to extend the
domain of a partially specified lower expectation operator.

Next in this dissertation, we introduce a theory of robust discrete-time
stochastic processes. We deal with stochastic processes that have a finite state
space—which is the set of possible states of the process at any time point—
and we consider probability mass functions for the state of the process at any
time point, conditional on the complete history of states. These conditional
probability mass functions are what we call our local models, and we use
them for deriving other more complex conditional or unconditional probabil-
ities in our system and for computing expected values of functions that may
even depend on the states in an infinite number of time points (also called
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variables). In order to do that we borrow elements from the field of measure-
theoretic probability, which is a sub-field of the wide area of measure theory.
However, compared to the standard measure-theoretic approach which derives
conditional probabilities from unconditional ones, our approach derives them
directly from the local models using the definition of (full) conditional proba-
bility and coherent conditional probability, which in addition allows us to de-
fine conditional probabilities even when the event on which we condition has
probability zero. The robust aspect of our theory lies in the fact that the local
models are allowed to be partially specified, which gives rise to a set of stochas-
tic processes, also called an imprecise stochastic process. We build our global
models based on the local models, by considering two different approaches: (i)
applying the framework of measure-theoretic probability to the set of stochas-
tic processes and (ii) applying the martingale-theoretic framework. Since the
approach based on measure-theoretic probability requires many assumptions,
we mainly use the martingale-theoretic approach. At this point we have our
first simple, but quite important, contribution: a generalisation of some basic
properties that are typically satisfied in the precise-probabilistic versions of
these systems. They are extensions of the axioms that are satisfied by lower
expectation operators, and a law of iterated lower expectations. We generalise
them by considering functions that may depend on the value of the states in an
infinite number of time points (variables) and by dropping the assumption that
the local sets of probability mass functions should be closed and convex. We
also establish connections between the global models derived from these two
approaches and for functions that depend on a finite number of variables, we
find that both approaches coincide.

Moving on, we provide a detailed analysis of a well-known family of
stochastic processes, which are discrete-time Markov chains with a finite state
space. These models are particularly easy to use because the local models
do not condition on the complete history of states but only on the latest state.
We distinguish between time-homogeneous and time-inhomogeneous Markov
chains, where the difference lies in whether the local models depend on time
or not. As in the case of general imprecise stochastic processes, we then ro-
bustify these models by allowing our local models to be partially specified. In
this way, we obtain a set of stochastic processes, called an imprecise Markov
chain. In contrast with the standard assumption that the local models of an im-
precise Markov chain are closed and convex sets of probability mass functions,
we again consider general sets of probability mass functions. Furthermore, we
impose different types of independence between the states of the process. For
each of these concepts of independence, we show how to compute—exactly
and tightly when possible—bounds on the expected values of functions of in-
terest and we prove various properties. In particular, we find that the fewer
assumptions we impose on the independence concept the wider are the bounds
on the expected values and also the more efficient are the computations. We
also show that our properties for imprecise stochastic processes remain valid
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here as well, and discuss and prove some additional ones.
Next, we focus on a specific type of Markov chains, called discrete-time

birth-death chains with a finite state space. We first present some preliminaries
about discrete-time birth-death chains, and then define our imprecise version
of a birth-death chain as a special case of an imprecise Markov chain. For these
imprecise birth-death chains, we then focus on the problem of computing ex-
pected first-passage and return times. That is, given the state of the process at
any time, we are interested in the expected number of time steps we need in or-
der to visit some other state of the process for the first time. A first contribution
here is that we show, under some mild closedness and positivity assumptions
on the local models, that any expected first-passage or return time is positive
and finite. More importantly, we provide a recursive algorithm for comput-
ing exact bounds on such expected times. We also prove that the bounds on
expected first-passage and return times are the same among different indepen-
dence concepts and also among the different approaches used to obtain them,
i.e. the martingale-theoretic and the measure-theoretic approaches.

In the final part of this dissertation, we apply our results to a queueing
model. We first focus on the Geo/Geo/1/L queue, which stands for geometri-
cally distributed interarrival and service times, with one server and maximum
length L. We introduce an additional independence concept and examine the
following queueing performance measures: expected queue length, expected
first-passage times, expected return times, the probability of being in a state
and the probability of “turning on the server”, which means transitioning from
state 0 to 1. For all these performance measures, we compute lower and upper
bounds. Furthermore, we prove that the bounds on the expected queue length,
the expected first-passage times, the expected return time to an empty queue,
the expected return time to a full queue, the probability of having an empty
queue and the probability of having a full queue, coincide no matter which
type of independence we choose among the variables of the system. We also
demonstrate that for the least strict independence concept, the expected value
of the time average of a function on the state space can be more robust than the
stationary marginal expected value.
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SAMENVATTING
Dutch summary

Stochastische processen zijn systemen die in de tijd evolueren, en waarvan de
specifieke tijdsevolutie onzeker is. Dit proefschrift brengt methoden aan voor
het berekenen van robuuste gevolgtrekkingen in zulke stochastische processen,
met een toepassing op het gebied van de wachtlijntheorie. Om de onzekerheid
over de tijdsevolutie robuust te modelleren, gebruiken we de theorie van imp-
recieze waarschijnlijkheden, een uitbreiding van de waarschijnlijkheidsleer.

We beginnen dit proefschrift met enkele basisconcepten uit de theorie van
imprecieze waarschijnlijkheden. Wanneer we onzeker zijn over de waarde van
een veranderlijke, zal de waarschijnlijkheidsleer een waarschijnlijkheid voor
elke waarde toewijzen door een enkele waarschijnlijkheidsmassafunctie op de
verzameling van mogelijke waarden te definiëren, terwijl de theorie van im-
precieze waarschijnlijkheden hiervoor een verzameling van (waarschijnlijk-
heids)massafuncties beschouwt. In de overgrote meerderheid van de geval-
len wordt aangenomen dat zulke verzamelingen van massafuncties gesloten en
convex zijn—ze worden dan credale verzamelingen genoemd. We tonen in
een reeks voorbeelden hoe credale verzamelingen kunnen worden geconstru-
eerd en grafisch weergegeven. Daarnaast bespreken we ook gevallen waarin
convexiteit wordt verlaten, zoals soms gebeurt in de wachtlijnmodellen die we
verder in dit proefschrift bekijken. Vervolgens laten we zien hoe onzekerheid
kan worden gemodelleerd met onderverwachtingswaarden, niet-lineaire ope-
ratoren die aan een aantal axioma’s voldoen. Zo’n onderverwachtingswaarde-
operator kan geassocieerd worden met een verzameling van massafuncties,
en voor een gegeven functie van de onzekere veranderlijke kan haar onder-
verwachtingswaarde geı̈nterpreteerd worden als een exacte (of nauwe) onder-
grens van de verzameling van haar mogelijke verwachtingswaarden. Alterna-
tief kan ze ook worden gezien als een supremum aankoopprijs. Een func-
tie van de onzekere veranderlijke wordt dan gezien als de onzekere nume-
rieke uitkomst van een gok, die we bereid zijn te kopen voor elke prijs la-
ger dan haar onderverwachtingswaarde. We bespreken ook hoe natuurlijke
uitbreiding ons in staat stelt het domein van een gedeeltelijk gespecificeerde
onderverwachtingswaarde-operator conservatief uit te breiden.

Vervolgens introduceren we een theorie van robuuste stochastische proces-
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sen in discrete tijd. We beperken ons hierbij tot stochastische processen met
een eindige toestandsruimte—de verzameling van mogelijke toestanden van
het proces op elk willekeurig moment—en we beschouwen massafuncties voor
de onzekere toestand van het proces op elk moment, conditioneel op de volle-
dige geschiedenis van voorgaande toestanden. Deze conditionele waarschijn-
lijkheidsmassafuncties zijn wat we onze lokale modellen noemen. We gebrui-
ken ze om andere, complexere conditionele of onconditionele waarschijnlijk-
heden voor het stochastisch proces af te leiden, en om (al dan niet conditionele)
verwachtingswaarden te berekenen van functies die kunnen afhangen van de
toestanden in een oneindig aantal tijdspunten—zulke functies zullen we ver-
anderlijken noemen. Om dit te doen, ontlenen we elementen uit de maatthe-
oretische waarschijnlijkheid, een deelveld van de maattheorie. Het verschil
met de standaard maattheoretische aanpak, waar conditionele waarschijnlijk-
heden worden afgeleid uit onconditionele, is dat onze aanpak ze rechtstreeks
uit de lokale modellen afleidt met behulp van zogeheten (volledige) conditi-
onele waarschijnlijkheden en coherente conditionele waarschijnlijkheden, wat
ons bovendien toestaat om conditionele waarschijnlijkheden te definiëren zelfs
wanneer de gebeurtenis waarop we conditioneren waarschijnlijkheid nul heeft.
Het robuuste aspect van onze aanpak komt hieruit voort dat we toelaten dat de
lokale modellen gedeeltelijk gespecificeerd zijn, wat aanleiding geeft tot een
verzameling van stochastische processen. Zo’n verzameling wordt ook wel een
imprecies stochastisch proces genoemd. We ontwikkelen globale modellen op
basis van de lokale modellen, door twee verschillende aanpakken uit te werken
en met elkaar te vergelijken: (i) het toepassen van een maattheoretisch waar-
schijnlijkheidskader op de verzameling van stochastische processen; en (ii)
een martingaaltheoretische aanpak. We zullen zien dat de maattheoretische
aanpak ingewikkelder is en nogal veel aannames vereist, wat onze voorkeur
voor de martingaaltheoretische aanpak verklaart. Dit leidt tot onze eerste vrij
belangrijke bijdrage: een veralgemening van enkele gekende typische basisei-
genschappen van stochastische processen naar een imprecies-probabilistische
context: uitbreidingen van de axioma’s waaraan onderverwachtingswaarde-
operatoren voldoen, en een wet van herhaalde onderverwachtingswaarden. We
veralgemenen bestaande resultaten ook door functies (veranderlijken) te be-
schouwen die afhangen van de waarden van de toestanden in een oneindig
aantal tijdspunten, en door de veronderstelling te verlaten dat de lokale ver-
zamelingen van waarschijnlijkheidsmassafuncties gesloten en convex moeten
zijn. We vergelijken de globale modellen afgeleid binnen de maat- en de mar-
tingaaltheoretische aanpakken, en tonen aan dat op z’n minst voor functies die
afhangen van een eindig aantal toestanden, de beide aanpakken samenvallen.

We gaan dan verder met een meer gedetailleerde analyse van een welbe-
kende familie van stochastische processen: Markovketens in discrete tijd met
een eindige toestandsruimte. Deze modellen zijn bijzonder makkelijk en ef-
ficiënt te gebruiken, omdat de lokale modellen niet conditioneel zijn op de
volledige geschiedenis van toestanden, maar alleen op de laatste toestand. We
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onderscheiden tijdsinhomogene en tijdshomogene Markovketens, waarbij het
verschil ligt in de al dan niet expliciete tijdsafhankelijkheid van de lokale mo-
dellen. Net zoals voor algemene imprecieze stochastische processen, maken
we deze modellen robuuster door het mogelijk te maken onze lokale modellen
slechts gedeeltelijk te specificeren. Op die manier krijgen we een verzameling
van stochastische processen, ook wel imprecieze Markovketen genoemd. In
tegenstelling tot de standaardveronderstelling dat de lokale modellen voor een
imprecieze Markovketen gesloten en convexe verzamelingen van waarschijn-
lijkheidsmassafuncties zijn, bekijken wij in dit proefschrift opnieuw algemene
verzamelingen van waarschijnlijkheidsmassafuncties. Bovendien bestuderen
we gedetailleerd de gevolgen van het opleggen van verschillende soorten onaf-
hankelijkheden tussen de toestanden van het proces: epistemische irrelevantie,
complete onafhankelijkheid, en herhalingsonafhankelijkheid. Voor elk van die
verschillende onafhankelijkheidsbegrippen bewijzen we verschillende eigen-
schappen, en bestuderen we hoe we—exacte en nauwe—grenzen op de ver-
wachtingswaarden van relevante functies kunnen berekenen. In het bijzonder
vinden we dat hoe minder veronderstellingen we over het onafhankelijkheids-
concept maken, hoe breder de grenzen op de verwachtingswaarden zijn, en hoe
efficiënter de berekeningen. We geven aan dat de eerder bewezen algemene ei-
genschappen voor imprecieze stochastische processen ook hier geldig blijven,
en we bespreken en bewijzen een aantal bijkomende eigenschappen.

Vervolgens richten we ons op een specifiek type Markovketens—de zo-
genoemde geboorte-en-doodketens in discrete tijd met een eindige toestands-
ruimte. Na een voorbereidende discussie definiëren we onze imprecieze ver-
sie van een geboorte-en-doodketen in discrete tijd als een bijzonder geval van
een imprecieze Markovketen. Voor deze imprecieze geboorte-en-doodketens
concentreren we ons op het probleem van het berekenen van verwachte eer-
ste doorgangs- en terugkeertijden: gegeven de toestand van het proces op een
bepaald moment, zijn we geı̈nteresseerd in het verwachte aantal tijdstappen no-
dig om voor het eerst een andere gegeven toestand van het proces te bezoeken.
Onze eerste bijdrage hier is dat we onder enkele zwakke geslotenheids- en po-
sitiviteitsaannames op de lokale modellen laten zien dat elke verwachte eerste
doorgangs- of terugkeertijd positief en eindig is. Een nog belangrijker bij-
drage is een recursief algoritme voor het berekenen van exacte nauwe grenzen
op zulke verwachte tijden. We bewijzen ook dat de grenzen op de verwachte
eerste doorgangs- en de verwachte terugkeertijden dezelfde zijn onder de ver-
schillende onafhankelijkheidsconcepten die we hierboven hebben genoemd, én
binnen de maat- en martingaaltheoretische aanpakken.

In het laatste gedeelte van dit proefschrift passen we onze theoretische re-
sultaten toe op een wachtlijnmodel. We richten ons op de Geo/Geo/1/L wacht-
lijn: een wachtlijn met geometrisch verdeelde aankomst en vertrek, met één
bedieningsstation, en met maximale lengte L. We introduceren een extra on-
afhankelijkheidsconcept en onderzoeken een aantal wachtlijnprestatiematen:
verwachte rijlengte, verwachte eerste doorgangtijden, verwachte terugkeertij-
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den, de waarschijnlijkheid om een toestand te bereiken, en de waarschijnlijk-
heid om de server aan te zetten—wat een overgang van een lege naar een niet-
lege toestand betekent. Voor al deze prestatiematen berekenen we onder- en
bovengrenzen. Bovendien bewijzen we dat de grenzen op de verwachte rij-
lengte, de verwachte eerste doorgangtijden, de verwachte terugkeertijden naar
een lege wachtlijn, de verwachte terugkeertijden tot een volle wachtlijn, de
waarschijnlijkheid op een lege wachtlijn en de waarschijnlijkheid op een volle
wachtlijn, samenvallen, ongeacht welk type onafhankelijkheid we tussen de
toestanden van het systeem kiezen. We illustreren ook dat voor het minst
strikte onafhankelijkheidsconcept de verwachtingswaarde van het tijdsgemid-
delde van een functie van de toestand soms robuuster is dan de stationaire
marginale verwachtingswaarde.
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LIST OF SYMBOLS

The list of symbols is ordered per category. Within each category, the symbols
are ordered as they appear in the main text. The locations we provide corre-
spond to the section where the symbols are located and/or to the page of their
first use. Symbols that are only used locally are not included in the list.

NUMBER SETS

Symbol Meaning Location

R Set of real numbers Page 36
R≥0 Set of non-negative real numbers Page 44
N Set of natural numbers: {1,2,3, . . .} Page 46
N0 Set of natural numbers with zero: N∪{0} Page 46
R Set of extended real numbers: R∪{−∞,+∞} Page 235

EVENTS, SETS AND (SETS OF) FUNCTIONS

Symbol Meaning Location

X Variable Page 36
X State space: a non-empty finite set Page 36 and

Section 3.158

x State value in X Sections 2.136
and 3.158

2X Power set of X Section 2.136

L (X ) Set of all real-valued functions on X Section 2.238

Ix Indicator of x, for x ∈X Section 2.238

IA Indicator of A, for A ∈ 2X Section 2.238
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f Gamble: function in L (X ) Section 2.238

K Subset of L (X ) Section 2.650

Xn Variable at time n Section 3.158

{Xn}n∈N Infinite sequence of variables Section 3.158

Ω Sample space X N Section 3.158

ω Path: generic element of Ω Section 3.158

xn State value at time n Section 3.158

X1:n Sequence of variables from time 1 up to and
including n

Section 3.158

Xm:n Sequence of variables from time m up to and
including n

Section 3.158

x1:n Situation: finite sequence of state values from
time 1 up to and including n

Section 3.158

xm+1:n Finite sequence of state values from time m+1
up to and including n

Section 3.158

� Initial situation: situation at time 0 Section 3.158

X ∗ Set of all situations Section 3.158

ωn First n state values of ω Section 3.158

ωn State value of ω at time n Section 3.158

Γ(x1:n) All paths of which the first n state values are
equal to x1:n

Section 3.259

〈X ∗〉 Algebra generated by the set of all situations Section 3.259

σ(X ∗) σ -Algebra generated by the set of all situations Section 3.259

2Ω Set of all events in Ω: power set of Ω Section 3.4.161

2Ω
∅ Set of all events in Ω without the empty set:

2Ω \{∅}
Section 3.4.161

A Event: element of 2Ω Section 3.4.161

B Conditioning event: element of 2Ω
∅ Section 3.4.161

2Ω×2Ω
∅ Set of all conditional events Section 3.4.161

A|B Conditional event: element of 2Ω×2Ω
∅ Section 3.4.161

Cσ Domain of conditional events defined by
Equation (3.2)64

Section 3.4.264

CX ∗ Domain of conditional events defined by
Equation (3.4)65

Section 3.4.264
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C Domain of conditional events defined by
Equation (3.9)67

Section 3.4.264

C ∗ Domain of conditional events defined by
Equation (3.14)70

Section 3.4.368

C ∗σ Domain of conditional events defined by
Equation (3.15)71

Section 3.4.368

L (X n) Set of all real-valued functions on X n Section 3.5.172

h Function in L (X n) Section 3.5.172

h(X1:n) Real-valued n-measurable function Section 3.5.172

s, t, u, v Generic situations in X ∗ Section 4.187

s• Γ(s): All paths that go through situation s Section 4.187

F σ -Algebra on Ω Section A.1234

F0 Algebra on Ω Section A.1234

BR Borel σ -algebra: the σ -algebra generated by
all open subsets of R

Section A.1234

(Ω,F ) Measurable space Section A.2236

(Ω,F ,P) Probability space Section A.3237

g Extended real-valued function on Ω Section A.3237

UNCERTAINTY MODELS

Symbol Meaning Location

p(·) Probability mass function on X Section 2.136

ΣX Set of all probability mass functions on X Section 2.136

P Probability measure Sections 2.136
and A.2236

P(A) Probability of the event A Section 2.136
and Page 72

E(·) Expectation operator Section 2.238

Ep(·) Expectation operator that corresponds to a
probability mass function p

Section 2.238
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P Non-empty subset of ΣX Section 2.340

p(x) Lower probability mass of x Section 2.340

p(x) Upper probability mass of x Section 2.340

Φ Credal set: closed and convex set of probabil-
ity mass functions

Section 2.340

E Lower expectation operator Section 2.444

E Upper expectation operator Section 2.444

E( f ) Lower expectation of f Section 2.444

E( f ) Upper expectation of f Section 2.444

EP Lower expectation operator associated with
the set of probability mass functions P

Section 2.444

EP Upper expectation operator associated with
the set of probability mass functions P

Section 2.444

ΦE Closed and convex set of probability mass
functions corresponding to E

Section 2.444

E (·) Natural extension of a lower expectation as-
sessment

Section 2.650

p Probability tree: a function from X ×X ∗ to
[0,1]

Section 3.361

p(·|x1:n) Transition model associated with situation
x1:n: probability mass function on X condi-
tional on x1:n

Section 3.361

p(X1) Initial model: probability mass function on
X conditional on �

Section 3.361

PX ∗ Set of all probability trees Section 3.361

P(A|B) Probability of the event A conditional on the
event B

Section 3.4.161

Pp Set of conditional probability measures on the
domain Cσ

Section 3.572

EP(g) Expectation of g with respect to P Sections 3.5.172
and A.4239

EP(g|B) Expectation of g with respect to P conditional
on the event B

Section 3.5.274

T Imprecise probability tree: non-empty subset
of PX ∗

Section 3.679

PT The set of conditional probability measures
on Cσ corresponding to T

Section 3.679
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ET (g|B) Lower expectation of g with respect to T
conditional on the event B

Section 3.679

ET (g|B) Upper expectation of g with respect to T
conditional on the event B

Section 3.679

Px1:n Non-empty set of conditional probability
mass functions associated with x1:n

Section 3.780

P� Non-empty set of conditional probability
mass functions associated with �

Section 3.780

TP Imprecise probability tree constructed from
the sets Px1:n

Section 3.780

PP The set of conditional probability measures
on Cσ corresponding to TP

Section 3.780

Q(·|x1:n) Lower expectation operator associated with
the set Px1:n

Section 3.780

Q(·|x1:n) Upper expectation operator associated with
the set Px1:n

Section 3.780

Q
�
(·) Lower expectation operator associated with

the set P�

Section 3.780

Q�(·) Upper expectation operator associated with
the set P�

Section 3.780

EP(·|x1:m) Lower expectation with respect to PP condi-
tional on x1:m

Section 3.780

EP(·|x1:m) Upper expectation with respect to PP condi-
tional on x1:m

Section 3.780

U Process: real-valued function on X ∗ Section 4.287

∆U Process difference Section 4.287

M Submartingale: process that satisfies Equa-
tion (4.1)87

Section 4.287

M Supermartingale: process that satisfies Equa-
tion (4.2)87

Section 4.287

M Set of all uniformly bounded above sub-
martingales

Section 4.287

M Set of all uniformly bounded below super-
martingales

Section 4.287

EQ(g|s) Lower expectation of g conditional on s
based on submartingales

Section 4.3.188

EQ(g|s) Upper expectation of g conditional on s based
on supermartingales

Section 4.3.188
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(IMPRECISE) MARKOV CHAINS

Symbol Meaning Location

qn(·|xn) Transition model of Markov chain associ-
ated with state value xn at time n

Section 5.1.1101

q�(X1) Initial model of Markov chain Section 5.1.1101

PM Set of all probability trees corresponding to
Markov chains

Section 5.1.1101

f (Xn) Real-valued function that depends only on
the state at time n

Section 5.1.2105

Tn Transition operator of Markov chain at
time n

Section 5.1.2105

[ f ](X1:n) Time average: 1
n ∑

n
i=1 f (Xi) Section 5.1.3106

ξ n
m(·, ·) Function defined by Equation (5.9)106 Section 5.1.3106

q(·|x) Transition model of homogeneous Markov
chain associated with state value x

Section 5.2.1109

PHM Set of all probability trees corresponding to
homogeneous Markov chains

Section 5.2.1109

M Transition matrix of homogeneous Markov
chain

Section 5.2.1109

T Transition operator of homogeneous
Markov chain

Section 5.2.2110

E∞ Limit expectation operator of ergodic ho-
mogeneous Markov chain

Section 5.2.2110

Qn,x Set of conditional probability mass func-
tions associated with state value x at time
n

Section 5.3113

Q� Set of conditional probability mass func-
tions associated with the initial situation

Section 5.3113

Qn(·|x) Lower expectation operator corresponding
to Qn,x

Section 5.3113

Qn(·|x) Upper expectation operator corresponding
to Qn,x

Section 5.3113

Q
�
(·) Lower expectation operator corresponding

to Q�

Section 5.3113

Q�(·) Upper expectation operator corresponding
to Q�

Section 5.3113
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Qx Set of conditional probability mass func-
tions associated with state value x

Section 5.3113

Q(·|x) Lower expectation operator correspond-
ing to Qx

Section 5.3113

Q(·|x) Upper expectation operator correspond-
ing to Qx

Section 5.3113

TQ Imprecise probability tree constructed
from the sets Qn,x and Q�

Section 5.4.1115

PQ Set of conditional probability measures
on Cσ corresponding to TQ

Section 5.4.1115

Eei
Q(g|B) Lower expectation of g with respect to

PQ conditional on the event B in impre-
cise Markov chain under epistemic irrel-
evance

Section 5.4.1115

Eei
Q(g|B) Upper expectation of g with respect to

PQ conditional on the event B in impre-
cise Markov chain under epistemic irrel-
evance

Section 5.4.1115

T n Lower transition operator of imprecise
Markov chain

Section 5.4.2116

T n Upper transition operator of imprecise
Markov chain

Section 5.4.2116

ξ
n
m
(·, ·) Function defined by Equation (5.34)118 Section 5.4.3118

ξ
n
m(·, ·) Function defined by Equation (5.35)118 Section 5.4.3118

Eei
Q(g|s) Martingale-theoretic lower expectation of

g conditional on situation s in impre-
cise Markov chain under epistemic irrel-
evance

Section 5.4.5124

Eei
Q(g|s) Martingale-theoretic upper expectation of

g conditional on situation s in impre-
cise Markov chain under epistemic irrel-
evance

Section 5.4.5124

Eei
Q|m+1(g|x) Martingale-theoretic lower expectation of

a function g that does not depend on X1:m
conditional on x in imprecise Markov
chain under epistemic irrelevance

Section 5.4.5124

Eei
Q|m+1(g|x) Martingale-theoretic upper expectation of

a function g that does not depend on X1:m
conditional on x in imprecise Markov
chain under epistemic irrelevance

Section 5.4.5124
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T M
Q Set of probability trees corresponding to

Markov chains constructed from the sets
Qn,x and Q�

Section 5.6.1131

PM
Q Set of conditional probability measures on

Cσ corresponding to T M
Q

Section 5.6.1131

Eci
Q(g|B) Lower expectation of g with respect to PM

Q
conditional on the event B in imprecise
Markov chain under complete independence

Section 5.6.1131

Eci
Q(g|B) Upper expectation of g with respect to PM

Q
conditional on the event B in imprecise
Markov chain under complete independence

Section 5.6.1131

T HM
Q Set of probability trees corresponding to ho-

mogeneous Markov chains constructed from
the sets Qx and Q�

Section 5.7.1142

PHM
Q Set of conditional probability measures on

Cσ corresponding to T HM
Q

Section 5.7.1142

Eri
Q(g|B) Lower expectation of g with respect to PHM

Q
conditional on the event B in homogeneous
imprecise Markov chain under repetition in-
dependence

Section 5.7.1142

Eri
Q(g|B) Upper expectation of g with respect to PHM

Q
conditional on the event B in homogeneous
imprecise Markov chain under repetition in-
dependence

Section 5.7.1142

(IMPRECISE) BIRTH-DEATH CHAINS

Symbol Meaning Location

Xm Set {`,e,u} Section 6.2152

X0 Set {e,u} Section 6.2152

XL Set {`,e} Section 6.2152

Φi Set of probability mass functions on Xm Section 6.2152

Φ0 Set of probability mass functions on X0 Section 6.2152

ΦL Set of probability mass functions on XL Section 6.2152
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πi Probability mass functions in Φi Section 6.2152

π0 Probability mass functions in Φ0 Section 6.2152

πL Probability mass functions in ΦL Section 6.2152

(bi,ri,wi) Notation for (πi(`),πi(e),πi(u)) Section 6.2152

(r0,w0) Notation for (π0(e),π0(u)) Section 6.2152

(bL,rL) Notation for (πL(`),πL(e)) Section 6.2152

τn
i→ j First-passage time of j conditional on

i at time n
Section 6.3155

τ i→ j Martingale-theoretic lower expected
first-passage time from i to j

Section 6.3155

τ i→ j Martingale-theoretic upper expected
first-passage time from i to j

Section 6.3155

τM
i→ j Expected first-passage time from i to

j in a birth-chain with transition ma-
trix M according to the martingale-
theoretic approach

Section 6.7.1168

EP(τ
n
i→ j|Xn = i) Expected first-passage time from i to

j in a birth-chain with probability
measure P

Section 6.8177

Eei
Q(τn

i→ j|Xn = i) Lower expected first-passage time
from i to j with respect to PQ in
an imprecise birth-death chain under
epistemic irrelevance

Section 6.8177

Eei
Q(τn

i→ j|Xn = i) Upper expected first-passage time
from i to j with respect to PQ in
an imprecise birth-death chain under
epistemic irrelevance

Section 6.8177

Eci
Q(τn

i→ j|Xn = i) Lower expected first-passage time
from i to j with respect to PM

Q in
an imprecise birth-death chain under
complete independence

Section 6.8177

Eci
Q(τn

i→ j|Xn = i) Upper expected first-passage time
from i to j with respect to PM

Q in
an imprecise birth-death chain under
complete independence

Section 6.8177
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Eri
Q(τn

i→ j|Xn = i) Lower expected first-passage time
from i to j with respect to PHM

Q in
an imprecise birth-death chain under
repetition independence

Section 6.8177

Eri
Q(τn

i→ j|Xn = i) Upper expected first-passage time
from i to j with respect to PHM

Q in
an imprecise birth-death chain under
repetition independence

Section 6.8177

QUEUEING

Symbol Meaning Location

a Probability of arrival in Geo/Geo/1/L
queue

Section 7.2.1191

d Probability of departure in Geo/Geo/1/L
queue

Section 7.2.1191

q� Initial model of Geo/Geo/1/L queue Section 7.2.1191

qa,d Probability tree of Geo/Geo/1/L queue
with parameters a, d and q�

Section 7.2.1191

P(Xn = k) Probability of queue length k at time n Section 7.2.1191

P(X = k) Probability of queue length k in the limit Section 7.2.1191

[a,a] Interval for arrival probability Section 7.2.2195

[d,d] Interval for departure probability Section 7.2.2195

Q� Initial model of imprecise Geo/Geo/1/L
queue

Section 7.2.2195

T O
Q Set of probability trees of the form qa,d ,

with a ∈ [a,a], d ∈ [d,d] and q� ∈Q�

Section 7.3197

PO
Q Set of conditional probability measures

on Cσ corresponding to T O
Q

Section 7.3197

Efi
Q(g|B) Lower expectation of g with respect to

PO
Q conditional on the event B in im-

precise Geo/Geo/1/L queue under fixed-
parameter repetition independence

Section 7.3197

Efi
Q(g|B) Upper expectation of g with respect to

PO
Q conditional on the event B in im-

precise Geo/Geo/1/L queue under fixed-
parameter repetition independence

Section 7.3197
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Xn Queue length at time n Section 7.5202
1
n ∑

n
i=1 Xi Average queue length up to time

n
Section 7.5.2205

I0(Xn)I1(Xn+1) Function for turning on the
server at time n+1

Section 7.7210

1
n ∑

n
i=1 I0(Xi)I1(Xi+1) Average of function for turning

on the server up to time n+1
Section 7.7210

ψ
k
(·) Function defined by Equa-

tion (7.29)214

Section 7.7210

ψk(·) Function defined by Equa-
tion (7.30)214

Section 7.7210

Efi
Q(τn

i→ j|Xn = i) Lower expected first-passage
time from i to j with re-
spect to PO

Q in an impre-
cise Geo/Geo/1/L queue under
fixed-parameter repetition inde-
pendence

Section 7.8.1220

Efi
Q(τn

i→ j|Xn = i) Upper expected first-passage
time from i to j with re-
spect to PO

Q in an impre-
cise Geo/Geo/1/L queue under
fixed-parameter repetition inde-
pendence

Section 7.8.1220

VARIOUS OTHER OPERATORS

Symbol Meaning Location

ext(·) Operator that returns the extreme points of
a set

Page 43

conv(·) Operator that returns the smallest convex set Section 2.547

θ Shift operator on N or on Ω or on functions
g on Ω

Section 5.5.2129

σ(·) Operator that generates a sigma algebra Section A.1234
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1
INTRODUCTION

The theory of discrete-time stochastic processes can be extended by replacing
the local probability mass functions of a stochastic process with sets of them.
This yields a set of stochastic processes, which we call an imprecise stochastic
process, and the purpose is to use this set in order to make robust inferences
about systems whose time evolution is uncertain. This is a more reliable ap-
proach towards modelling uncertainty as it can handle cases where we only
have partial knowledge about our uncertainty model, for example because the
model has to be learnt from small amounts of data. It moreover provides a
robust output instead of insisting on a single output that might be much less
reliable.

In this dissertation, we study the theory of imprecise stochastic processes
that is based on the theory of imprecise probabilities, focusing mainly on so-
called imprecise Markov chains, and we develop efficient methods for com-
puting tight bounds on various types of expectations. We start in this intro-
duction by presenting the main ideas and concepts that will appear, and we
also motivate our choice of using different mathematical frameworks for the
derivation of the results further on in this dissertation. This introduction also
provides some useful information about the internal and external references, a
brief overview of each of the chapters, and a list of the main publications that
led to this dissertation.

1.1 GENERAL DESCRIPTION OF THE IDEAS, MOTIVATION AND

MAIN CONTRIBUTION

A stochastic process [31, 44] is a collection of variables that represents a sys-
tem whose time evolution is uncertain. It is a popular model in various scien-
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1.1 GENERAL DESCRIPTION OF THE IDEAS, MOTIVATION AND MAIN
CONTRIBUTION

tific fields, including biology, physics, queueing theory, telecommunications,
engineering and economics. In general, the variables of a stochastic process
are indexed by the real or the natural numbers, representing time. In the for-
mer case, we say that the stochastic process is modelled in continuous time,
whereas in the latter case it is modelled in discrete time. In this is dissertation,
we deal with discrete-time stochastic processes whose variables take values in
a finite state space. The evolution of such a stochastic process depends on its
parameters, which can be derived from data or from opinions of domain ex-
perts, or from a combination of both. These parameters are local probability
mass functions that generate a (conditional) probability measure [45] on the
possible time evolutions of the system. The goal is to use this probability mea-
sure to calculate probabilities of events, and expectations of functions, that are
of interest to us.

This is easily illustrated by considering the following simple example,
which is a stochastic process that is typically considered in the field of queue-
ing theory. Suppose that we have a queue in a bank and that at predetermined
times a customer can enter the queue with some arrival probability and a cus-
tomer is serviced—in other words, leaves the queue—with some departure
probability. Furthermore, let us assume that the arrival of a customer is inde-
pendent of the service of any other customer and that the queue has a limited
maximum capacity. We then have a discrete-time stochastic process, where at
each time point we have a variable representing the number of customers that
are in the queue. Suppose now that we observe the queue at a some time point
and we see that is empty, then an interesting question that might be addressed
would be the expected time till the queue becomes full for the first time. Other
interesting questions are the expected (average) number of customers in the
queue, the probability of the queue being full and the probability of the queue
being empty.

In general, once we specify the parameters of a stochastic process, we are
able to calculate various probabilities and expectations that give us insight in
the behaviour of the system. For instance, in the example above, once we
specify the probabilities of arrival and departure, we are able to answer the
questions that we asked there. This makes stochastic processes useful and
successful tools for making inferences in different fields. However, specifying
the parameters of a stochastic process exactly is often unrealistic. In practice,
we often only have partial knowledge about these parameters, for example
because they are derived from small amounts of—possibly unreliable—data
or because they are elicited from—possibly disagreeing—domain experts. For
these reasons, there appears to be a need to allow for imprecise parameters,
that is, to replace exactly specified parameters by sets/intervals of them. For
instance, in the example mentioned before, this would correspond to a situation
where the probability of an arriving customer and the probability of a departing
customer are not specified precisely, but are only known to belong to certain
intervals. Such an imprecise queueing system will be examined in Chapter 7189
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CONTRIBUTION

and we will also make inferences for them, by addressing questions like the
ones we mentioned earlier.

An important aspect here is that imprecise parameters lead to imprecise
inferences. Generally speaking, since we have sets of parameters, we can cal-
culate the output of the process for each selection of parameters, and the aim
is to find the tightest—if possible—bounds on this output. In this way, we
are able to predict the range of outcomes that might arise, as a result of our
imprecision about the parameters of the model. For instance, in the example
mentioned before, instead of obtaining an expected number of customers, we
would obtain an interval for this expectation. Furthermore, this interval-valued
output would be robust with respect to our partial knowledge about the param-
eters of the model.

In order to achieve this type of robustness in the output of a stochastic pro-
cess, we apply the framework of imprecise probabilities [5, 78] on stochastic
processes. More specifically, instead of single parameters we give as input
sets of them, and we provide bounds on the output by means of lower and up-
per expectations [78], which are basic tools for modelling uncertainty within
the theory of imprecise probabilities. An important feature is that imprecise
probabilities generalise probability theory, in the sense that if the input param-
eters were to be single values, then the two theories would coincide. The main
advantage of imprecise probabilities is that they allow us to investigate how
“sensitive”, i.e. how robust, the output is when we vary the input parameters.

Among the many different types of stochastic processes that exist, we focus
on so-called Markov chains [43,56,70], which are a special type of probability
trees [40,64]. Over the years, these Markov chains have been applied to numer-
ous scientific fields, in part because they have the advantage that they require
only a limited number of input parameters, known as local models. Moreover,
Markov chains offer an accurate representation of the behaviour of different
types of systems, including queueing systems. When imprecision is incorpo-
rated into Markov chains and probability trees, we obtain what are called im-
precise Markov chains [28, 37, 47, 68] and imprecise probability trees [5, 26].
The main difference between Markov chains and imprecise Markov chains is
that the local models of an imprecise Markov chain are sets of probability
mass functions. Another difference is that in imprecise Markov chains, we
can choose among different types of independence, namely epistemic irrele-
vance [27], complete independence [15, 62] and repetition independence [14].
The choice of independence affects the interval-valued output, but also the
computational methods used for obtaining this output. Although significant
work has already been done on imprecise Markov chains, as well as on gen-
eral imprecise stochastic processes, severe limitations are often imposed on the
types of functions and local models that can be considered.

Our main contribution is the development of computational methods for
imprecise Markov chains, for more general—than real-valued—types of func-
tions, and more general—than closed and convex—types of local models.
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1.1 GENERAL DESCRIPTION OF THE IDEAS, MOTIVATION AND MAIN
CONTRIBUTION

Since we model uncertainty using lower and upper expectations, one of the
most basic properties for their computation is the imprecise version of the law
of iterated expectations. This property was already proved in Reference [27,
Theorem 3.2] for real-valued functions that depend on a finite number of vari-
ables and for imprecise Markov chains under epistemic irrelevance whose local
models are closed and convex sets of probability mass functions. In this dis-
sertation, we prove multiple generalisations of it. First of all, we generalise
it to imprecise stochastic processes—including imprecise Markov chains un-
der epistemic irrelevance—whose local models are general sets of probability
mass functions. We also use this generalisation to show how we can efficiently
compute lower and upper expectations for a class of functions that we call
time averages, and in addition prove various interesting properties for them.
Secondly, we generalise the imprecise law of iterated expectations to functions
that depend on an infinite number of variables, using a martingale-theoretic ap-
proach that is based on sub- and supermartingales. This approach has multiple
advantages over the standard measure-theoretic approach, and we prove that
it coincides with the latter when it comes to functions that depend on a finite
number of variables.

We also define a special class of imprecise Markov chains, which we call
imprecise birth-death chains. These processes have the structure of classical
birth-death chains, but their local models are no longer single probability mass
functions, but sets of them. For this class of processes, we focus on the compu-
tation of lower and upper expected first-passage and return times. In particular,
we show that these lower and upper expectations satisfy a system of non-linear
equations that can be efficiently solved in a simple and recursive way. Further-
more, we prove that it makes no difference whether we define lower and upper
expected first-passage and return times using the martingale-theoretic or the
measure-theoretic approach and we show that our results apply to all types of
independence.

Finally, we apply our findings to an imprecise version of the Geo/Geo/1/L
queueing model, which is obtained by adding imprecision to the parameters
of the classical Geo/Geo/1/L queue and which is a special case of an impre-
cise birth-death chain. For this model, we also introduce a new type of in-
dependence, which we call fixed-parameter repetition independence, and we
calculate bounds on the expectations of various performance measures that are
commonly used in queueing theory. More specifically, we calculate the ex-
pected (average) queue length, the (average) probability of each queue length,
the (average) probability of “turning on the server” and expected first-passage
and return times, we show similarities and differences between the bounds on
these expectations as we consider different types of independence concepts,
and we prove a number of properties for them.
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1.2 INFORMATION ABOUT REFERENCES

1.2 INFORMATION ABOUT REFERENCES

The references in this dissertation are both internal and external. The external
references are bibliographic ones; they are enumerated near the end of this dis-
sertation, and we refer to them using numbers in square brackets. For example,
details about the theory of imprecise probabilities can be found in Walley’s
seminal book [78], as well as in more recent textbooks [5, 72]. The internal
references are used for chapters, sections, subsections, appendices, equations,
theorems, lemmas, corollaries, propositions and assumptions. We refer to them
using a subscript that indicates the page on which they are presented, unless
they are on the same page, in which case there is no subscript. For instance,
Theorem 58156 is located on page 156. In the special case where the reference
is on the previous page we use the symbol x and if it is on the next page we
use the symbol y.

1.3 OVERVIEW OF THE CHAPTERS

This dissertation consists of eight chapters and one appendix. Apart form this
introduction, Chapters 236–7189 present the theory and the results from which
this dissertation was constructed. Chapter 8230 presents our conclusions and
our ideas for further research, and Appendix A233 provides some basic infor-
mation about measure-theoretic probability, which is needed for our results in
Chapter 357. We now give a brief overview of the content of Chapters 236–7189.

In Chapter 236, we begin by presenting some basic information about prob-
ability theory and we introduce the concept of a probability mass function.
We then talk about sets of probability mass functions in order to establish the
connection between classical probability theory and the theory of imprecise
probabilities. The theory of imprecise probabilities often assumes closed and
convex sets of probability mass functions, but we also consider cases where
these assumptions are dropped. Afterwards, we present the concept of lower
(and upper) expectations, which is our main tool for modelling uncertainty in
this dissertation, and we prove some interesting properties for them when they
are derived from a special class of closed and—possibly—non-convex sets of
probability mass functions. We also show how we can construct lower and
upper expectations from partial (probability) assessments, something that is
called natural extension in the theory of imprecise probabilities, because our
main goal in the rest of this dissertation is to build global models based on
local assessments.

Chapter 357 is about (imprecise) stochastic processes. We first introduce
the concept of event trees, from which we jump to probability trees. Probability
trees are defined through conditional probability mass functions and we con-
struct our stochastic processes using these probability trees. We show how to
derive unique conditional probability measures on algebras and σ -algebras of
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1.3 OVERVIEW OF THE CHAPTERS

the sample space of a stochastic process based on the definition of a (coherent)
conditional probability. Moreover, we show how we can compute expectations
using the derived conditional probability measures, and we prove some proper-
ties for these expectations that will turn out to be useful for imprecise Markov
chains. We end the chapter by defining imprecise stochastic processes, for
which we prove a generalised version of the law of iterated expectations, for
functions that depend on a finite number of state variables, and in the general
case where the local models of the imprecise stochastic process are arbitrary
sets of probability mass functions.

In Chapter 486, we define global lower and upper expectations based on
the concept of sub- and supermartingales. This martingale-theoretic approach
allows us to compute lower and upper expectations of functions that depend on
an infinite number of state variables, which in addition need not be measurable.
We show that these lower and upper expectations satisfy various useful prop-
erties such as, again, a generalised version of the law of iterated expectations.
Furthermore, we establish the connection between the lower and upper expec-
tations defined by the martingale-theoretic approach and the ones defined by
the measure-theoretic approach, as discussed in Chapter 357, and we prove that
they coincide for functions that depend on a finite number of state variables.

Next in this dissertation is our work on (imprecise) Markov chains, which
can be found in Chapter 5100. We start by giving a general description of
Markov chains and we also present some properties that are specific to time-
homogeneous Markov chains. Among them is a property of expected time
averages in the limit, where time averages are a special class of functions
that depend on a finite number of state variables. We then introduce impre-
cise Markov chains whose local models are general—so not necessarily closed
and convex—sets of probability mass functions. Given that we can adopt
various types of independence in imprecise Markov chains—epistemic irrele-
vance, complete independence and repetition independence—we discuss how
this choice affects the resulting lower and upper expectations. In particular, we
prove various properties that are satisfied by imprecise Markov chains under
epistemic irrelevance and complete independence. Regarding time averages,
we show that their lower and upper expectations coincide for epistemic irrele-
vance and complete independence and we also prove an interesting inequality
for them that can be of practical use in a queueing context.

In Chapter 6151, we introduce an imprecise version of birth-death chains.
For these processes, we focus in particular on the computation of so-called
lower and upper expected first-passage and return times. These first-passage
and return times are expressed by a function that depends on an infinite num-
ber of state variables and can take infinite values as well, and for this reason
we first define our lower and upper expected first-passage and return times
through the martingale-theoretic approach. We derive a system of non-linear
equations through which we show how to compute these expectations in a re-
cursive way. In order to do this, we begin with lower and upper expected
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first-passage times and we show that they satisfy various properties. By us-
ing our results on lower and upper expected first-passage times, we manage
to efficiently compute lower and upper expected return times. Moreover, we
prove that any lower or upper expected first-passage or return time can be ob-
tained for a specific (precise) birth-death chain that is compatible with the local
models of the imprecise one. Additionally, we show that we obtain the same
results for lower and upper expected first-passage and return times that are
defined by the measure-theoretic approach, regardless of the chosen type of
independence.

Finally, in Chapter 7189, we apply our results on imprecise Markov and
birth-death chains to the imprecise Geo/Geo/1/L queueing model, which can
be regarded as a Geo/Geo/1/L queue whose parameters belong to certain in-
tervals. More specifically, where the Geo/Geo/1/L queueing model assumes a
time-homogeneous probability of arrival and a time-homogeneous probability
of departure, we here specify intervals for them and, depending on the inde-
pendence concept, sometimes drop the assumption of time-homogeneity. In
this context, we also introduce a fourth independence concept, which we call
fixed-parameter repetition independence, according to which lower and up-
per expectations are derived from a single time-homogeneous pair of arrival
and departure probabilities that are varied in their respective intervals. We
then investigate the implications that each independence concept has on vari-
ous expectation bounds. We first discuss about the lower and upper expected
(average) queue length for which we find that it is not affected by the indepen-
dence concept chosen and we prove that the lower expected (average) queue
length is always obtained for the time-homogeneous largest departure prob-
ability and the time-homogeneous smallest arrival probability and vice versa
for the upper expected (average) queue length. However, this is not always the
case for the (average) probability of each individual queue length and for the
(average) probability of “turning on the server”, where we show that the type
of independence affects the robustness in the output. In the cases of epistemic
irrelevance and complete independence we even witness differences between
the probability of a queue length in the limit and its respective average one.
Finally, for lower and upper expected first-passage and return times, we prove
that fixed-parameter independence leads to the same lower and upper expected
first-passage times as the other three notions of independence but show that
this is not necessarily true for lower and upper expected return times.

1.4 PUBLICATIONS

This dissertation is the product of research on imprecise stochastic processes
and Markov chains that has resulted in a number of publications. Some of
these have been published in international journals [25, 52, 53] and the rest of
them in the proceedings of international conferences, either as papers [50] or
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as abstracts followed by a poster presentation [49, 51]. The main publications
that constitute the core of this dissertation are the following:

• Gert de Cooman, Jasper De Bock and Stavros Lopatatzidis. Imprecise
stochastic processes in discrete time: global models, imprecise Markov
chains, and ergodic theorems. Published in the International Journal of
Approximate Reasoning [25].

• Stavros Lopatatzidis, Jasper De Bock and Gert de Cooman. Calculating
bounds on expected return and first passage times in finite-state impre-
cise birth-death chains. Published in the proceedings of ISIPTA ’15 [50].

• Stavros Lopatatzidis, Jasper De Bock and Gert de Cooman. Comput-
ing lower and upper expected first-passage and return times in imprecise
birth–death chains. Published in the International Journal of Approxi-
mate Reasoning [52].

• Stavros Lopatatzidis, Jasper De Bock, Gert de Cooman, Stijn De Vuyst
and Joris Walraevens. Robust queueing theory: an initial study using
imprecise probabilities. Published in Queueing Systems [53].

Although this dissertation only deals with discrete-time stochastic pro-
cesses, this does not mean that we did not look into continuous-time stochastic
processes. In fact, we proposed a method for computing lower and upper ex-
pectations in imprecise continuous-time birth-death chains, which builds upon
the method presented in Reference [69] and which is summarised in the fol-
lowing publication:

• Stavros Lopatatzidis, Jasper De Bock and Gert de Cooman. Computa-
tional methods for imprecise continuous-time birth-death processes: a
preliminary study of flipping times. Abstract published in the proceed-
ings of ISIPTA ’15 [51].

The reason why the results in the aforementioned publication were left out is
because we prefer to create a dissertation that focuses on a single topic, in this
case imprecise discrete-time stochastic processes.

There is also a second publication that we did not include in this disserta-
tion.

• Stavros Lopatatzidis, Jasper De Bock and Gert de Cooman. First steps
towards Little’s Law with imprecise probabilities. Abstract published in
the proceedings of ISIPTA ’13 [49].

It constitutes our initial attempt to merge imprecise probabilities with queueing
theory, but has by now been superseded by the results in Chapter 7189.
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2
MODELLING UNCERTAINTY

Consider a variable X taking values in a non-empty finite set X . Suppose
that we are uncertain about the value of the variable. A simple example is the
outcome of a single coin toss. The variable is the side of the coin with possible
values ‘Heads’ and ‘Tails’, and one plausible way to model our uncertainty is to
specify a single probability mass function on these two values of the variable.
Probability mass functions are considered perhaps as the most typical way to
model uncertainty, though they are not the only ones.

In this chapter, we present the uncertainty models that we will use through-
out this thesis, which are lower and upper expectations. We first introduce the
notion of a probability mass function and its corresponding expectation opera-
tor, together with some basic properties. Then, we extend these results to sets
of probability mass functions by using the framework of imprecise probabili-
ties, where the concept of lower and upper expectations arises.

2.1 PROBABILITY

A probability mass function p on X is any (single) element of the set

ΣX :=
{

p ∈ RX : ∑
x∈X

p(x) = 1 and (∀x ∈X ) p(x)≥ 0
}
. (2.1)

Any subset of X is called an event and the set of all events is the power set of
X , denoted by 2X . In the example of the coin toss the events are {Heads},
{Tails}, the complete X and the empty set ∅. If an event is of the form {x},
with x ∈X , we call it an atom. For any event A ∈ 2X , the probability of A is
denoted by P(A) and is defined by

P(A) := ∑
x∈A

p(x).
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2.1 PROBABILITY

If A = X , then we have the certain event with P(X ) = 1 and if A = ∅, then
we have the impossible event with P(∅) = 0. Moreover, for all x∈X , we find
that P({x}) = p(x). It is important to mention that P is a so-called probability
measure and the difference with the probability mass function p is that P is
defined on 2X , whereas p is defined on X . In other words, p is defined on
elements and P on sets of elements.

Consider again the example of the coin toss and suppose now that we have
a probability mass function, which assigns probability mass 1/3 to ‘Heads’ and
probability mass 2/3 to ‘Tails’. One could wonder what exactly these prob-
abilities represent. There are two basic interpretations for probability. The
first one is the frequentist probability1, where the probability of an event is
interpreted as its relative frequency in a long series of observations. The fre-
quentist probability can be further characterised as objective. This means that
the probabilities assigned to events come from measurements and/or recorded
observations rather than subjective evaluations, something that often applies
to such cases as the coin toss and the dice roll. The second interpretation is
the epistemic one, where the probabilities of the events are interpreted in terms
of knowledge and/or available evidence. Epistemic probabilities often express
a degree of personal belief about events and therefore they are often further
interpreted as subjective and personal. Both the frequentist and the epistemic
interpretation can be divided into further interpretations as Walley proposes in
Reference [78].

The difference between frequentist and epistemic probability is subtle. A
frequentist probability can work perfectly under the epistemic interpretation.
This follows from the principle of direct inference [78], which says that when
the values of frequentist probabilities are known, they should be regarded
as epistemic ones. Furthermore, the mathematics for the results presented
throughout this dissertation do not depend on the chosen interpretation. How-
ever, the interpretations provide motivation for some of the methods and results
that we will develop later on. Of great importance for our motivation is the be-
havioural interpretation, which is connected with the account of probability
developed by de Finetti [29]. According to this account, probabilities reflect
inclinations or dispositions to bet and we explain this concept in the next para-
graph.

Suppose that we are offered a bet on an event. Suppose as well that we
can buy or sell2 this bet at possibly different prices. Buying a bet means that
we pay a certain price and we receive the reward associated with its outcome.
Similarly, selling a bet means that we receive a price and we pay back the
reward associated with the outcome. According to de Finetti, the probability
of an event A∈ 2X is the price at which we are willing to both buy and sell the

1Also known as physical probability or empirical probability or aleatory probability.
2‘Buy’ and ‘sell’ are also found in the literature as ‘bet in favour of’ and ‘bet against’ respec-

tively.
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(0,0,1)
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(1,0,0)
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bc

p′

p(b)

p(c)
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Figure 2.1: On the left, we depict the set ΣX in the linear space RX for
X = {a,b,c}. On the right, we depict the same ΣX in a two-dimensional
space. For both representations, we also depict the probability mass function
p′ = (3/10,1/2,1/5).

bet that has the reward one if the event happens or zero otherwise. The price
that represents the probability of an event is also called its ‘fair’ price.

We close this section by discussing some ideas regarding representations of
probability mass functions that will be useful in Section 2.3, where we consider
a set of them. Suppose that we have X = {a,b,c}. In this case X is ternary
and the corresponding ΣX can easily be depicted; see Figure 2.1. In the two-
dimensional space, we represent ΣX by means of an equilateral triangle of
unit height. The elements p of ΣX then correspond to points in this triangle.
Every p is written as (p(a), p(b), p(c)), where the values p(a), p(b) and p(c)
correspond to the probabilities of outcomes a, b and c respectively. For every
such p, the value of p(a) is equal to the perpendicular distance from p to the
edge that opposes the corner that corresponds to a, and similarly for p(b) and
p(c). This procedure can be similarly extended to higher dimensions (larger
X ).

2.2 EXPECTATION

Any real-valued function on X is also called a gamble and the set of all
gambles is denoted by L (X ). We now introduce the expectation operator
E : L (X )→ R, which is a linear operator that satisfies the following proper-
ties:

P1. min f ≤ E( f )≤max f for all f ∈L (X ); [bounds]

P2. E( f + f ′) = E( f )+E( f ′) for all f , f ′ ∈L (X ); [finite-additivity]
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2.2 EXPECTATION

P3. E(λ f ) = λE( f ) for all f ∈L (X ) and λ ∈ R. [homogeneity]

For any real-valued function f in L (X ), E( f ) is called the expected value
(or simply expectation) of f . On a frequentist approach, the expected value of
a function can be interpreted as the average of the function values observed in
a long series of trials. However, the drawback of this interpretation is that it
involves repetition. For instance, suppose that we are uncertain about the age
of the King of Cambodia and that we are given a set of possible values, then
the expected value in such a case is not consistent with the interpretation just
mentioned.

In order to avoid such problems, we can also interpret the expected value
in a behavioural way. In Section 2.136, we mentioned that we interpret the
probability of an event as the fair price for betting on the event at which we
gain one if the event happens or zero otherwise. A similar interpretation can be
applied to more general gambles as well. We can interpret the expected value
E( f ) of a real-valued function f as the fair price for the gamble f . In other
words, for any gamble f in L (X ) the price at which we are willing to either
buy or sell f is E( f ).

The expectation of a function can be expressed in terms of probabilities.
Consider any gamble f ∈L (X ) and any probability mass function p on X .
Then the corresponding expectation of f , denoted by Ep( f ), is defined by

Ep( f ) := ∑
x∈X

p(x) f (x) for all f ∈L (X ).

It is easy to see that Ep is the unique linear operator from L (X ) to R that
satisfies Ep(Ix) = p(x), x ∈X , where the indicator Ix ∈L (X ) is defined by

Ix(y) :=

{
1 if y = x
0 if y 6= x

for all y ∈X .

This implies that Ep can be inferred from p. Conversely, if we have a linear
operator E that satisfies (P1)x–(P3), then there is a unique probability mass
function p such that Ep = E.

Moreover, the behavioural interpretation of a probability P(A) of an event
A∈ 2X is a special case where our gamble f is equal to IA, where IA is defined
by

IA(y) :=

{
1 if y ∈ A
0 if y 6∈ A

for all y ∈X .

Therefore, we understand that the expectation operator E can be regarded as
an alternative, equivalent representation for p, but also as an equivalent way to
model uncertainty.
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p(c) p(b)

p(a)

p(c) p(b)

p(a)

Figure 2.2: The grey areas depict two different sets of probability mass func-
tions for X = {a,b,c}.

2.3 SETS OF PROBABILITY MASS FUNCTIONS

In the previous section, we showed how to model uncertainty through an ex-
pectation operator E. The success of this approach crucially depends on the
assumption that our uncertainty about the value of a variable can be described
by a probability mass function p, and furthermore requires that p should be
specified precisely. However, in practice, eliciting or assessing such a proba-
bility function can be difficult. This can happen especially when the probabil-
ities are based on—possibly disagreeing—expert opinions or when they have
to be learned from small amounts of—possibly poor quality—data. Whenever
this is the case, the theory of imprecise probabilities [5, 72, 78] does not insist
on the use of a single probability mass function p, but instead allows for the
use of sets of probability mass functions. In Section 2.136, we saw that a prob-
ability mass function is a point in ΣX and therefore, a set of probability mass
functions can be any subset of ΣX ; see for instance Figure 2.2.

We now introduce the concept of lower and upper probabilities. Given any
non-empty set of probability mass functions P ⊆ ΣX the corresponding lower
and upper probability mass of x ∈X are defined by

p(x) := inf
{

p(x) : p ∈P
}

and p(x) := sup
{

p(x) : p ∈P
}
, (2.2)

respectively. The following example illustrates the concept of lower and upper
probability masses.

Example 1. Let X := {a,b,c}, consider the probability mass function

p∗ = (p∗(a), p∗(b), p∗(c)) = (2/5,2/5,1/5)

and let ε := 1/2. We define the set of probability mass functions Φε
p∗ by

Φ
ε
p∗ :=

{
(1− ε)p∗+ ε p : p ∈ ΣX

}
, (2.3)
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2.3 SETS OF PROBABILITY MASS FUNCTIONS

p(a)

p(b)p(c)

p∗

Figure 2.3: The grey area depicts the set Φε
p∗ of Example 1x.

which corresponds to the the grey area in Figure 2.3. As can be seen from this
figure, the set Φε

p∗ is the convex hull of three points, which have the following
form:

(p∗(a), p∗(b), p∗(c)), (p∗(a), p∗(b), p∗(c)), (p∗(a), p∗(b), p∗(c)).

The numerical values of the lower and upper probability masses in these ex-
pressions are given by

p∗(a) = p∗(b) = 1/5, p∗(a) = p∗(b) = 7/10, p∗(c) = 1/10, p∗(c) = 3/5.

They are easily obtained by combining Equations (2.2)x and (2.3)x. Sets of
probability mass functions defined by Equation (2.3) are called linear-vacuous
mixtures [78, Section 2.9.2].3 ♦

It is not necessary for a set of probability mass functions to be defined
directly, as was the case in Example 1x. It can also be specified indirectly, by
means of partial constraints on probabilities. A particularly appealing way of
doing so is to specify a probability interval [p(x), p(x)] for every x in X , and
to let Φ be the largest subset of ΣX that satisfies these bounds. We illustrate
this in our next example.

Example 2. Let X := {a,b,c} and consider that

p(a) ∈ [1/5,8/15], p(b) ∈ [1/5,8/15] and p(c) ∈ [1/10,13/30].

We denote by Φ2 the largest set of probability mass functions p ∈ ΣX that
satisfies these constraints; see Figure 2.4y. As can be seen from Figure 2.4y,
the set Φ2 is a hexagon. Any vertex of the hexagon is a probability mass

3Also known as ε-contaminated models.
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p(c) p(b)

p(a)

Figure 2.4: The grey area depicts the set Φ2 of Example 2x.

function with values an upper probability mass, a lower probability mass and
the complement of their sum. For instance, the upper left vertex in Figure 2.4
is the probability mass function (p(a), p(b),1− p(a)− p(b)). These vertices
correspond to the following points

(8/15,1/5,8/30),(8/15,11/30,1/10),(11/30,8/15,1/10),

(1/5,8/15,8/30),(1/5,11/30,13/30),(11/30,1/5,13/30)

and they can be identified in the above order starting from the upper left vertex
of the polygon in Figure 2.4 and moving clockwise. ♦

However, as our next example should clarify, a set of probability mass
functions is not always completely characterised by its lower and upper prob-
ability masses.

Example 3. Let Φ3 be the circular disc of probability mass functions that is
depicted in Figure 2.5y. In order to allow for an easy comparison, Figure 2.5y
also depicts the set Φ2 of Example 2x. These two sets clearly have the same
lower and upper probabilities. ♦

The sets of probability mass functions presented in Examples 140–3, as
well as the one on the left side of Figure 2.240, have something in common—
they belong to the category of the so-called credal sets, denoted by Φ. The
definition of a credal set goes as follows.

Definition 1. Consider any set X , then a set of probability mass functions
Φ⊆ ΣX is called a credal set if and only if it is non-empty, closed and convex.

Regarding Definition 1, “closed” means that the boundary points of the credal
set Φ are included in Φ and “convex” means that the line segment connecting
any two points of Φ lies within Φ.

One important notion associated with credal sets is that of an extreme point,
which is defined as follows.
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p(c) p(b)

p(a)

Figure 2.5: The grey zone depicts the set Φ3 of Example 241. The set Φ3 tan-
gents to each side of the set Φ2 that was described earlier in the same section.

Definition 2. Consider a credal set Φ. Then, a probability mass function
p ∈ Φ is called an extreme point, if for all θ ∈ [0,1] and all p1, p2 ∈ Φ such
that p1 6= p2, we have that

p = θ p1 +(1−θ)p2⇒ either θ = 1 or θ = 0.

For any credal set Φ, we denote by ext(Φ) the set of the extreme points of Φ.
The extreme points are the points in the boundary of the credal set that can-

not be written as a linear combination of any two other points in the credal set.
In Examples 140 and 241 the extreme points are the vertices of the polygons,
whereas in Example 3x all the boundary points of the circular disc are extreme
points. In the next section, we will see how the extreme points of a credal set
can help us compute lower and upper expectations.

Often in the theory of imprecise probabilities it is taken for granted that
sets of probability mass functions are closed and convex. However, this need
not be the case; consider for instance the right-hand side of Figure 2.240. We
close this section by providing an example, where the set of probability mass
functions is specified from the product of probability intervals, as this might
occur in a queueing model that we consider later on in Chapter 7189.

Example 4. Let X := {a,b,c} and consider that

p(a) = p?(1− p◦), p(c) = p◦(1− p?) and p(b) = 1− p(a)− p(c),

where p? ∈ [1/5,7/10] and p◦ ∈ [1/10,7/10]. We denote by Ψ1 the largest set of
probability mass functions p ∈ ΣX that satisfies these constraints. The set Ψ1
is closed but not convex; see Figure 2.6y.

Judging by Figure 2.6, we see that the set Ψ1 has four “corners”, which are
obtained for the extreme values of p? and p◦. Starting from the corner of Ψ1
that has the largest p(a) value and moving clockwise, these corners correspond
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p(c) p(b)

p(a)

Figure 2.6: The grey zone depicts the set Ψ1 of Example 4x.

to the following probability mass functions:

p1 = (63/100,17/50,3/100), p2 = (21/100,29/50,21/100)

p3 = (9/50,37/50,4/50), p4 = (3/50,19/50,14/25)

The “corners” of such sets do not necessarily consist of lower or upper prob-
abilities of p(a), p(b) and p(c), nor are they guaranteed to be extreme points.
In this example, such a corner is the probability mass function p2. ♦

2.4 LOWER AND UPPER EXPECTATIONS

A lower expectation operator (or simply lower expectation) E : L (X )→ R
is a non-linear operator that satisfies the following properties:4

C1. E( f )≥min f for all f ∈L (X ); [bounds]

C2. E( f + f ′)≥ E( f )+E( f ′) for all f , f ′ ∈L (X ); [superadditivity]

C3. E(λ f ) = λE( f ) for all f ∈L (X ) and real λ ∈ R≥0, [non-negative
homogeneity]

where R≥0 is the set of all non-negative real numbers. For any f ∈L (X ),
E( f ) is the so-called lower expected value5 (or simply lower expectation) of
f . We call lower expectation assessment, or also, partial lower expectation
specification, any partial function from L (X ) to R. It is possible to have
lower expectation assessments that are not lower expectations or cannot be
extended to lower expectations and we will see such cases in the next section.

From any given lower expectation E and for all f ∈L (X ), we can de-
rive the conjugate upper expectation of E by E( f ) = −E(− f ). Therefore, it

4These properties are also known as coherence axioms.
5Also called lower prevision, see References [5, 72, 78].
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suffices to consider only one of them. We mainly focus on lower expectations.
Lower and upper expectations satisfy also the following properties:

C4. E( f )≤ E( f ′) and E( f )≤ E( f ′) for all f , f ′ ∈L (X ) with f ≤ f ′;

C5. min f ≤ E( f )≤ E( f )≤max f for all f ∈L (X );

C6. E( f + f ′)≤ E( f )+E( f ′) for all f , f ′ ∈L (X );

C7. E(λ f ) = λE( f ) for all f ∈L (X ) and real λ ∈ R≥0;

C8. E( f + µ) = E( f )+ µ and E( f + µ) = E( f )+ µ for all f ∈L (X ) and
µ ∈ R.

Lower and upper expectations have different interpretations, which are pro-
posed and extensively discussed by Walley in Reference [78]. Here we empha-
sise the behavioural interpretation as it will turn out to be our main motivation
for developing the models in Chapter 486. In a minimal behavioural interpre-
tation, the lower expected value E( f ) represents a supremum buying price for
the gamble f , in the sense that we are willing to buy the gamble for any price
strictly lower than E( f ). Similarly, E( f ) is interpreted as an infimum selling
price for the gamble f , in the sense that we are willing to sell the gamble for
any price strictly higher than E( f ).

Lower and upper expectations can also be associated with probabilities,
in the sense that they can be derived from sets of probability mass functions
P ⊆ ΣX . Consider any f ∈L (X ) and any non-empty set P ⊆ ΣX , then
we define the lower and upper expectations of f as follows:

EP( f ) := inf
{

Ep( f ) : p ∈P
}

and EP( f ) := sup
{

Ep( f ) : p ∈P
}
. (2.4)

EP( f ) satisfies properties C1x–C3x and consequently, EP( f ) and EP( f )
satisfy properties C5–C8. In case P = {p}, we have that EP = EP = Ep
and then the properties C1x–C3x coincide with properties P138–P339 respec-
tively. The expectations EP( f ) and EP( f ) are interpreted as bounds on the
expected value Ep( f ), something that is known as the sensitivity analysis in-
terpretation.

Conversely, if we are given a lower expectation E or an upper one E on
L (X ), we can produce a set of probability mass functions P such that Equa-
tion (2.4) holds for all f ∈L (X ). Note that P might not be unique. How-
ever, if P is a credal set, then it is unique [39]. Specifically, given a lower
expectation E on L (X ), then the corresponding credal set ΦE is defined by

ΦE :=
{

p ∈ ΣX : Ep( f )≥ E( f ) for all f ∈L (X )
}

(2.5)

=
{

p ∈ ΣX : Ep( f )≤ E( f ) for all f ∈L (X )
}

=
{

p ∈ ΣX : E( f )≤ Ep( f )≤ E( f ) for all f ∈L (X )
}
.
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In fact, the credal set ΦE is the largest set of probability mass functions such
that the constraints imposed by the lower expectation E are satisfied. In this
case, ΦE can be interpreted as our incomplete assessments. This also means
that we can derive ΦE from the conjugate upper expectation of E, i.e. E.

We close this section by discussing how to derive lower and upper expec-
tations from credal sets computationally. In Section 2.340, we saw some exam-
ples of credal sets that were either directly given or described through bounds
on the probabilities of the elements of X . Here, we also consider other ways
in which a credal set can be described. One way to describe a credal set is
through a finite number of linear inequality constraints, which are represented
by Ap ≤ b, where A is a real-valued matrix n× |X |, p is a column vector
of variables that assumes values in ΣX and b is a real-valued column vector
of size n, for some n ∈ N, with N being the set of natural numbers excluding
zero.6 For each i ∈ {1, . . . ,n}, the i-th row of A, that is Ai, and the i-th ele-
ment of b, that is bi, form an inequality Ai p ≤ bi, which is represented by a
closed halfspace in RX . The intersection of all these closed halfspaces yields
a closed polytope [36, Theorem 3.1.1] and if the polytope is in addition non-
empty, then it represents our credal set. There are also credal sets that can
only be described by an infinite number of linear inequality constraints. For
instance in order to describe the credal set in Figure 2.543, we need an infinite
number of linear inequality constraints.

Suppose now that we have a finite or infinite number of linear inequality
constraints Ap ≤ b and that we want to compute the lower expectation of a
function f ∈L (X ). According to Equation (2.4)x, the expectation E( f ) is
the infimum of Ep( f ) such that the constraints—describing the credal set—are
satisfied. Since Ep( f ) is linear with respect to p, we have a linear program of
the following form

minimise Ep( f )

subject to p ∈ ΣX

and Ap≤ b.

Moreover, in the aforementioned linear program if we maximise Ep( f ) instead
of minimising it, then we obtain the upper expectation of f .

Another way to describe a credal set is through its extreme points (Defini-
tion 243), which are either given directly or are implied by a finite or infinite
number of linear inequality constraints. Finding the extreme points for a given
collection of linear inequality constraints is also known as the vertex enumer-
ation problem. Consider any f ∈L (X ) and any credal set Φ with extreme
points ext(Φ), then there is some p ∈ Φ such that EΦ( f ) = Ep( f ). Note that
such a p might not be unique. Fortunately, we know from literature [78, The-

6The set of natural numbers including zero is denoted by N0.
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orem 3.6.2] that

EΦ( f ) = Eext(Φ)( f ) and EΦ( f ) = Eext(Φ)( f ). (2.6)

In practice, however, it will rarely be feasible to solve a linear program or
enumerate the extreme points when the number of linear constraints is infinite.
For this reason, we prefer working with credal sets that are described by a
finite number of linear constraints. In this case, linear programs can be solved
through solvers or various procedures such as the simplex algorithm [19, 20]
and Karmarkar’s algorithm [42], which is an interior point method. As far as
extreme points are concerned, we can enumerate the extreme points from a
finite number of linear constraints using the Avis-Fukuda algorithm [6].

2.5 LOWER AND UPPER EXPECTATIONS FOR A SPECIAL CLASS

OF SETS OF PROBABILITY MASS FUNCTIONS

In this section, we present some useful properties regarding the computation of
lower and upper expectations, when the set of probability mass functions has
a special structure that we define shortly after in Equation (2.9)y.

First of all, we introduce the notion of a convex hull as we will often use
it for the derivation of the results presented in this section. Consider any non-
empty set P ⊆ ΣX , then its convex hull, denoted by conv(P), is the smallest
convex set including P and it is defined by

conv(P) :=
{ n

∑
i=1

ci pi : n ∈ N, pi ∈P , ci ∈ R≥0 and
n

∑
i=1

ci = 1
}
. (2.7)

If the set P is finite, then it suffices to take convex combinations of at most
|P| points in P . An example of the convex hull of a non-convex set can be
seen in Figure 2.7y. The following property now tells us that for any P ⊆ΣX ,
it makes no difference whether lower and upper expectations are taken with
respect to P or with respect to conv(P).

Theorem 1. Consider any non-empty finite set X and any non-empty set of
probability mass functions P ⊆ ΣX . Then for all f ∈L (X ), it holds that
EP( f ) = Econv(P)( f ) and EP( f ) = Econv(P)( f ).

Proof. If P is convex, then the result follows trivially since the convex hull of
a convex set is the set itself. Therefore, we only focus on the case where P is
non-convex and we show that for all p∗ ∈ conv(P) such that p∗ 6∈P , there are
p′, p′′ ∈P such that Ep′( f )≤Ep∗( f )≤Ep′′( f ), for all f ∈L (X ). This guar-
antees that EP( f ) ≤ Ep∗( f ) ≤ EP( f ) for all f ∈L (X ) and therefore also
EP( f ) ≤ Econv(P)( f ) and Econv(P)( f ) ≤ EP( f ). The converse inequalities
follow at once from P ⊆ conv(P).
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p(c) p(b)

p(a)

Figure 2.7: The grey zone depicts the convex hull of the set of probability mass
functions Ψ1 from Example 443.

Due to Equation (2.7)x, we find that

Ep∗( f ) = ∑
x∈X

f (x)p∗(x) = ∑
x∈X

f (x)
n

∑
i=1

ci pi(x), (2.8)

where for all i∈{1, . . . ,n}, we have that pi ∈P , ci ∈R≥0, and where ∑
n
i=1 ci =

1, for some n ∈ N. It now follows from Equation (2.8) that

Ep∗( f ) = ∑
x∈X

f (x)
n

∑
i=1

ci pi(x) =
n

∑
i=1

ci ∑
x∈X

f (x)pi(x) =
n

∑
i=1

ciEpi( f ).

Now ∑
n
i=1 ciEpi( f )≤maxn

i=1 Epi( f ). So there is some p j ∈P such that

n

∑
i=1

ciEpi( f )≤ Ep j( f ).

Similarly, there is some pk ∈P such that

n

∑
i=1

ciEpi( f )≥
n

min
i=1

Epi( f ) = Epk( f ).

For the rest of this section, we assume that X = {a,b,c}. Consider as well
any two probability intervals I1 and I2, that is

Ii := [pi, pi], where 0≤ pi ≤ pi ≤ 1 for all i ∈ {1,2},

from which we derive the following set of probability mass functions

ΨI1,I2 =
{

p ∈ ΣX : p(a) = p1(1− p2), p(b) = p2(1− p1),

p(c) = 1− p(a)− p(b), for some p1 ∈ I1 and p2 ∈ I2
}
. (2.9)
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Note that ΨI1,I2 is non-empty, closed but not necessarily convex; see Exam-
ple 443. Before we present the next property of this section, we introduce one
more set of probability mass functions. Consider any two probability intervals
I1 and I2, then we define the set of “corner” points of ΨI1,I2 , denoted by VI1,I2 ,
as follows

VI1,I2 :=
{

p ∈ ΣX : p(a) = p1(1− p2), p(b) = p2(1− p1), (2.10)
p(c) = 1− p(a)− p(b), for some p1 ∈ {min(I1),max(I1)}

and p2 ∈ {min(I2),max(I2)}
}
.

The following property now tells us that the convex hull of ΨI1,I2 and the con-
vex hull of VI1,I2 are the same.

Proposition 2. Consider any two probability intervals I1 and I2. Consider as
well the sets of probability mass functions ΨI1,I2 and VI1,I2 defined by Equa-
tions (2.9)x and (2.10), respectively. Then conv(ΨI1,I2) = conv(VI1,I2).

Proof. We first show that conv(ΨI1,I2) ⊆ conv(VI1,I2). Let I1 = [p1, p1], I2 =
[p2, p2]. Due to Equation (2.9)x, for any p ∈ ΨI1,I2 , we have that p(a) =
p1(1− p2), p(b) = p2(1− p1) and p(c) = 1− p(a)− p(b) for some p1 ∈
[p1, p1] and p2 ∈ [p2, p2]. Since p1 can be written as a convex combination
of p1 and p1 and p2 as a convex combination of p2 and p2, we have that
p1 = λ p1 +(1−λ )p1 and that p2 = λ ′p2 +(1−λ ′)p2 with λ ,λ ′ ∈ [0,1], and
we therefore find that

p(a) = λ p1 +(1−λ )p1−λλ
′p1 p2−λ (1−λ

′)p1 p2 (2.11)

−λ
′(1−λ )p1 p2− (1−λ )(1−λ

′)p1 p2.

Now let λλ ′ = λ1, λ (1−λ ′) = λ2, λ ′(1−λ ) = λ3 and (1−λ )(1−λ ′) = λ4.
It is easy to see that ∑

4
i=1 λi = 1 and also that λ1+λ2 = λ and λ3+λ4 = 1−λ .

Therefore, Equation (2.11) becomes

p(a) =(λ1 +λ2)p1 +(λ3 +λ4)p1−λ1 p1 p2−λ2 p1 p2−λ3 p1 p2−λ4 p1 p2

=λ1 p1(1− p2)+λ2 p1(1− p2)+λ3 p1(1− p2)+λ4 p1(1− p2). (2.12)

Similarly, we find that

p(b) = λ1 p2(1− p1)+λ2 p2(1− p1)+λ3 p2(1− p1)+λ4 p2(1− p1). (2.13)

Hence, by combining Equations (2.12) and (2.13) with Equation (2.7)47 for
P = VI1,I2 , where VI1,I2 is defined by Equation (2.10), we infer that

p ∈ΨI1,I2 ⇒ p ∈ conv(VI1,I2),

which implies that ΨI1,I2 ⊆ conv(VI1,I2) and therefore that

conv(ΨI1,I2)⊆ conv(conv(VI1,I2)) = conv(VI1,I2).
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Conversely, since VI1,I2 ⊆ ΨI1,I2 , we find that conv(VI1,I2) ⊆ conv(ΨI1,I2),
which completes the proof.

Finally, we have the following property.

Proposition 3. Consider any two probability intervals I1 and I2. Consider as
well the sets of probability mass functions ΨI1,I2 and VI1,I2 defined by Equa-
tions (2.9)48 and (2.10)x, respectively. Then for all f ∈L (X ), it holds that

EΨI1 ,I2
( f ) = Econv(ΨI1 ,I2 )

( f ) = Econv(VI1 ,I2 )
( f ) = EVI1 ,I2

( f )

and similarly for the upper expectations.

Proof. The first and third equality follow immediately from Theorem 147 and
the second from Proposition 2x.

From Proposition 3, we infer that when a set of probability mass functions
is of the form ΨI1,I2 , we can then compute lower and upper expectations us-
ing the finite set VI1,I2 instead, whose elements are probability mass functions
derived from the bounds of the probability intervals I1 and I2.

2.6 NATURAL EXTENSION

We have seen that it is possible to specify a lower expectation from a given
credal set and vice versa. In this section, we discuss specifying lower and upper
expectations directly. Specifically, we examine how we can derive a lower
expectation on L (X ), when we are given a lower expectation assessment on
a domain smaller than L (X ).

Consider any K ⊆L (X ) and suppose that we have a lower expectation
assessment E : K → R, then a plausible question is whether we can extend E
to L (X ) or not. To answer this, we first need to briefly explain the notion of
coherence. In simple words, if a lower expectation assessment is coherent, it
means that it is self-consistent. To understand this statement better, in the next
paragraph we present two definitions of coherence.

First, we have the following definition [78, Section 2.5.4].

Definition 3. Consider any K ⊆L (X ) and any function E : K →R. Then
E is coherent if and only if

sup
x∈X

{ n

∑
i=1

ci[ fi(x)−E( fi)]− c0[ f0(x)−E( f0)]

}
≥ 0,

for all n ∈ N, all f0, fi ∈K and all c0,ci ∈ R≥0.
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If E is coherent and K = L (X ), then E is a lower expectation; see Refer-
ence [78, Theorem 2.5.5].

We can also characterise coherence in terms of probability mass functions.
Using E, we first define the following set of probability mass functions:

PE :=
{

p ∈ ΣX : Ep( f )≥ E( f ) for all f ∈K

}
.

We then have the following property, which is known as the lower envelope
theorem [78, Theorem 3.3.3 (b)].

Theorem 4. Consider any K ⊆L (X ) and any function E : K → R. Then
E is coherent if and only if E( f ) = min{Ep( f ) : p ∈PE} for all f ∈K , that
is, if and only if E is the lower envelope of PE .

In other words, E is coherent if and only if EPE
coincides with E on K .

Suppose now that we have a coherent E on a domain K ⊆L (X ), then
we can extend it to a lower expectation on L (X ), denoted by E and called
its natural extension [78, Theorem 3.4.1], which is defined as follows.

E ( f ) := min
{

Ep( f ) : p ∈PE

}
, (2.14)

for all f ∈L (X ). We understand that the definition of natural extension given
by Equation (2.14) is directly connected with Theorem 4. We also present
an alternative expression for natural extension [78, Definition 3.1.1] that is
connected with Definition 3x and goes as follows.

E ( f ) := sup
{

α ∈ R : f −α ≥
n

∑
i=1

ci[ fi−E( fi)],

n ∈ N, fi ∈K and ci ∈ R≥0

}
, (2.15)

for all f ∈L (X ). Finally, we have the following result [78, Theorem 3.1.2
(d)], which is a trivial consequence of Theorem 4 and Equation (2.14).

Theorem 5. E is coherent if and only if the natural extension of E coincides
with E on K , or in other words, if and only if it can be extended to a lower
expectation on L (X ).

Similar results can be obtained for a coherent E, but since E and E are con-
nected through conjugacy, we only focus on E and E .

If the domain K is finite, then in Equation (2.15) we only need to consider
sums up to |K |. In that case, if we let K := { f1, . . . , f|K |}, then for any
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p(c) p(b)

p(a)

Figure 2.8: The grey area depicts the set of probability mass functions implied
by the assessments of Example 5.

f ∈L (X ), we can obtain the natural extension E ( f ) by solving the following
linear program:

maximise α

subject to ∀i ∈ {1, . . . , |K |}, ci ∈ R≥0 (2.16)

and ∀x ∈X : f (x)−α ≥
|K |

∑
i=1

ci( fi(x)−E( fi).

In essence, given a coherent E on a domain K ⊆ L (X ), with natural ex-
tension we construct the smallest lower expectation on L (X ) that extends
E.

We now provide an example in which we are given a coherent E on a finite
domain K ⊂L (X ) and we compute the lower expectation of a function in
L (X )\K using natural extension.

Example 5. Consider the set X = {a,b,c} and the following assessments7

f1 := [1,2,3]T with E( f1) = 9/5, f2 := [−4,4,2]T with E( f2) =−1 and

f3 := [1,−6,3]T with E( f3) = 3/10,

where E is defined on the domain K := { f1, f2, f3}. A representation of these
assessments is depicted in Figure 2.8.

We now compute the lower expectation of a function f in L (X ) with
values f (a) = 2, f (b) = −4 and f (c) = −1. According to the linear program
given by (2.16), E ( f ) is the supremum value of α satisfying the following

7Gambles are of the form [ f (a), f (b), f (c)]T, where T stands for the transpose.
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system of inequalities

α ≤ 2+
4
5

c1 +3c2−
7

10
c3

α ≤−4− 1
5

c1−5c2 +
63
10

c3

α ≤−1− 6
5

c1−3c2−
27
10

c3,

where c1,c2,c3 ∈ R≥0. By solving this linear program, we find that supα =
−19/10 for c1 = c2 = 0 and c3 = 1/3.

This solution can be verified by computing the lower expectation of f using
the credal set derived from E, that is ΦE , which is shown in Figure 2.8x. The
credal set ΦE has five extreme points and due to Equation (2.6)47, we know
that at least one of them yields the lower expectation of f , which we expect to
coincide with E ( f ). Indeed, we find that EΦE

( f ) = Ep∗( f ) =−19/10, where
p∗ = (p∗(a), p∗(b), p∗(c)) = (0, 3

10 ,
7
10 ). ♦

However, our lower expectation assessment, that is E, on a domain K ⊆
L (X ) might be incoherent. One reason why this may happen is because E
does not avoid sure loss [78, Lemma 2.4.4 (a)], where avoiding sure loss is
defined as follows.

E avoids sure loss ⇔ sup
x∈X

n

∑
i=1

ci[ fi(x)−E( fi)]≥ 0, (2.17)

for all n ∈ N, all fi ∈K , all ci ∈ R≥0.

If E does not avoid sure loss, we say that it incurs sure loss. In terms of
probability mass functions, incurring sure loss means that the set of probability
mass functions PE given by Equation (2.6)51 is empty [78, Theorem 3.3.3 (a)].
The following example illustrates such a situation.

Example 6. Consider the set X = {a,b,c} and the following assessments

p(a)≥ 3/4, p(b)≥ 7/20 and p(c)≥ 3/10. (2.18)

Alternatively, we can interpret the aforementioned assessments by saying that
we have a lower expectation assessment E on the domain K := { f1, f2, f3},
where

f1 := Ia with E( f1) = 3/4, f2 := Ib with E( f2) = 7/20 and

f3 := Ic with E( f3) = 3/10.

A representation of these assessments is depicted in Figure 2.9y. Judging
by Figure 2.9y, we expect our assessments to incur sure loss since the inter-
section of the sets of probability mass functions that satisfy the constraints in
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p(c) p(b)

p(a)

Figure 2.9: The dark grey regions depict the sets of probability mass functions
implied by each of the three assessments of Example 6x.

Equation (2.18)x is the empty set. Indeed, we can verify that from the right-
hand side of Equation (2.17)x. If we compute supx∈X ∑

3
i=1 ci[ fi(x)−E( fi)]

for c1 = c2 = c3 = 1, the result is −7/20. Therefore, we infer that E incurs sure
loss. ♦

Finally, it is possible that our lower expectation assessment is incoherent,
but does avoid sure loss. In this case, natural extension corrects the lower
expectation assessment upwards, in the sense that it constructs the smallest
lower expectation implied by the lower expectation assessment. We illustrate
this in the following example.

Example 7. Suppose that we have the set X = {a,b,c} and the following
assessments

p(a) ∈ [1/4,1/2], p(b) ∈ [1/10,3/10] and p(c) ∈ [3/10,3/4].

Hence, we can say that we have the domain K := { f1, f2, f3, f4, f5, f6} and
the following assessments :

f1 := Ia with E( f1) = 1/4, f2 :=−Ia with E( f2) =−1/2,

f3 := Ib with E( f3) = 1/10, f4 :=−Ib with E( f4) =−3/10,

f5 := Ic with E( f5) = 3/10 and f6 :=−Ic with E( f6) =−3/4.

A representation of these assessments is depicted in Figure 2.10y.
Since the intersection of the constraints is non-empty, the assessments

avoid sure loss. However, E is not coherent. Judging by Figure 2.10y, we
see that E( f6) is inconsistent with the other assessments. We correct E( f6)
by computing E ( f6) using the linear program given by (2.16)52. Hence, we
find that E ( f6) is the supremum value of α satisfying the following system of
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p(c) p(b)

p(a)

Figure 2.10: The grey area depicts the set of probability mass functions implied
by the assessments of Example 7x. The thick line indicates the assessment
E( f6) =−3/4 which is inconsistent with the rest of the assessments.
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where c1,c2,c3,c4,c5,c6 ∈ R≥0. By solving this linear program, we find that
supα =−13/20 for c1 = c3 = 1 and c2 = c4 = c5 = c6 = 0. Therefore, we have
that E( f6) should be −13/20 and not −3/4 as we initially assessed. ♦

At this point, we establish the connection between natural extension and
the incomplete interpretation8 of lower expectations. We have mentioned that
the lower expectation of a gamble f ∈L (X ) can be interpreted as the supre-
mum buying price of f , in the sense that we are willing to buy the gamble f
for any price strictly lower than E( f ). However, this interpretation does not
say anything about prices c ∈ R such that E( f ) ≤ c. According to the incom-
plete interpretation, we might be willing either to accept, or to reject, or even
be completely undecided about such prices. Suppose that we are given a lower
expectation assessment, i.e. some E on a domain K ⊆L (X ), and that we
reject any price c > E( f ), for all f ∈K . If E is not coherent, then we might
reject prices that we should also be willing to accept; see Example 7x. There-
fore, if for some f ∈K we have that E( f ) ≤ E ( f ), we should be willing to
accept any c such that E( f )≤ c < E ( f ). If we had decided to reject all prices
that are greater that E( f ), this would not be possible.

8Also known as non-exhaustive interpretation.
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2.7 UNBOUNDED GAMBLES AND CONDITIONAL MODELS

All of the concepts and results discussed so far apply to real-valued functions
on finite spaces, and when the lower expectations that we consider are uncon-
ditional. Although the basic ideas remain similar, technicalities arise when
we deal with—possibly unbounded—real-valued functions on infinite spaces,
with extended real-valued functions, or with conditional operators; see for ex-
ample Reference [72, Part II] for a very general treatment. Fortunately, this
will not be an issue here, because in the context of stochastic processes, these
technicalities can be dealt with in a specific way. We will discuss this further
in the next chapters.
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3
DISCRETE-TIME STOCHASTIC PROCESSES

AND HOW TO MAKE THEM IMPRECISE

In the previous chapter, we showed how to model uncertainty regarding a vari-
able X taking values in a finite non-empty space X . Suppose now that we
have a sequence of variables {Xn}n∈N, where the value of each variable Xn
takes values in X . Any such sequence of variables is a stochastic process and
our goal in this chapter is to model uncertainty in these kinds of processes.

A typical way to model uncertainty in stochastic processes, which is also
the one we adopt here, is through the framework of measure-theoretic prob-
ability; see Appendix A233 for the basics of measure-theoretic probability. In
order to build our probability measures, we first introduce the notion of a prob-
ability tree. Probability trees constitute a simple tool used in stochastic pro-
cesses and we show that from any given probability tree, we can derive a so-
called coherent conditional probability. Moreover, we show that our derived
coherent conditional probability can be extended to a unique and σ -additive
coherent conditional probability measure on the σ -algebra generated by the
cylinder events, where the conditioning events are cylinder events. We then
use this coherent conditional probability to compute expectations of measur-
able functions through Lebesgue integrals. Compared to the standard measure-
theoretic approach, which derives conditional probabilities from unconditional
ones, our approach derives them directly from a given probability tree. One
of the advantages of this is that it allows us to define conditional probabilities
even when the event on which we condition has zero probability.

Since it is difficult and often unrealistic to know precisely the parameters
of a probability tree, we next extend our ideas to sets of probability trees.
Any set of probability trees forms a so-called imprecise probability tree. We
define global uncertainty models for general imprecise probability trees that
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are in fact lower and upper expectations of measurable extended real-valued
functions. We then focus on imprecise probability trees that are constructed
from sets of conditional probability mass functions. By allowing these sets of
conditional probability mass functions to be general and not necessarily closed
and convex, we also prove a more general law of iterated expectations for lower
and upper expectations of real-valued functions that depend on a finite number
of variables.

3.1 NOTATION

Before we discuss the main ideas behind stochastic processes, we first provide
some useful notation. We consider infinite sequences of variables {Xn}n∈N,
where each variable Xn is generally called a state or more specifically the state
at time n and takes values in a non-empty finite set X . This yields a stochastic
process with sample space Ω defined by Ω := X N. A generic element of Ω

is called a path and we denote it by ω . The set X is called the state space of
the stochastic process and any element x ∈X is called a state value. We also
denote by xn the state value at time n.

We now introduce notation for finite sequences of states and state values.
For all n ∈ N, the finite sequence of variables X1, . . . ,Xn is denoted by X1:n.
For all m,n ∈ N with m≤ n, the finite sequence of states from time point m up
to and including n is denoted by Xm:n. Any finite sequence X1:n takes values
x1:n := (x1, . . . ,xn) in X n and any finite sequence of state values x1:n ∈X n

is called a situation. The set of all situations is denoted by X ∗ and defined
by X ∗ := {x1:n ∈X n : n ∈ N0}. For the special case of n = 0, we have the
so-called initial situation, denoted by �. Therefore, X 0 := {�} and x1:0 is
the empty sequence. Moreover, for any path ω ∈ Ω, the initial sequence that
consists of its first n elements is a situation in X n, denoted by ωn, and its n-th
element is a state value in X , denoted by ωn.

We also allow concatenation of situations with state values or sequences of
state values. For all n ∈ N0, given any situation x1:n ∈X n and any state value
xn+1 ∈X , we denote their concatenation by (x1:n,xn+1), which is a situation
in X n+1. Similarly, for all m,n ∈ N0 such that m < n, given any situation
x1:m ∈X m and any sequence of state values xm+1:n ∈X n−m, we denote their
concatenation by (x1:m,xm+1:n), which is a situation in X n. Moreover, we
allow concatenation of situations with states or sequences of states. For all
n ∈ N0, given any situation x1:n ∈X n and a state Xn+1, the concatenation of
x1:n and Xn+1 is denoted by (x1:n,Xn+1). Similarly, for any m < n, we denote
by (x1:m,Xm+1:n) the concatenation of situation x1:m with the sequence of states
Xm+1:n. The initial situation works as neutral element in the concatenation, in
the sense that (�,x1)= x1 and (�,x1:n)= x1:n, for all x1 ∈X and all x1:n ∈X ∗.
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3.2 EVENT TREES

In the previous chapter, we introduced the concept of an event as a subset of
X . From now on, when we refer to events, we mean subsets of Ω. The
set of all possible events of Ω is the power set of Ω, denoted by 2Ω. Our
main goal is to specify the probabilities of various events in 2Ω. When Ω is
finite, we can specify the probabilities of all the elements in Ω and use these to
specify the probability of any event in 2Ω. However, in our present case this is
not feasible because Ω is uncountably infinite. We can tackle this problem by
specifying the probabilities of only some events from which we can then derive
a probability measure on the algebra generated by these events and then extend
this measure to the σ -algebra generated by this algebra; see Section A.1234 for
more details on algebras and σ -algebras. In the rest of this section, we discuss
a σ -algebra that is relevant for the stochastic processes that we consider and
we leave the analysis about probabilities of events in this σ -algebra for the
next section.

Given a sample space Ω, we focus on the algebra and the σ -algebra gen-
erated by the set of the so-called cylinder events. For all situations x1:n ∈X ∗,
the corresponding cylinder event is the following event:

Γ(x1:n) :=
{

ω ∈Ω : ω
n = x1:n

}
.

Since there is a one-to-one correspondence between situations and cylinder
events, we will generally use the notation x1:n for the event Γ(x1:n), for all
x1:n ∈X ∗. For example, when we define sets of events their elements will be
written in terms of situations and we will even use the set of all situations X ∗

to refer to the set of all cylinder events. This also applies to probabilities, in
the sense that the probability of the event Γ(x1:n) will be denoted by P(x1:n)
instead of P(Γ(x1:n)). Nevertheless, we will still use the notation Γ(x1:n) when
paths are involved, for instance ‘for all ω in Γ(x1:n)’ and ‘the event Γ(ωn) for
some ω ∈Ω’.

By considering complements, finite unions and intersections of events of
the form Γ(x1:n), we can construct the algebra generated by the set of all sit-
uations, which is denoted by 〈X ∗〉. The following result is a property of the
events in 〈X ∗〉 that will be turn out to be useful later on when we build con-
ditional probability measures; see Lemma 1470.

Lemma 6. Consider any A ∈ 〈X ∗〉, then there is some n ∈ N0 and C ⊆
X nsuch that A := ∪x1:n∈CΓ(x1:n).

Proof. We provide a sketch of the proof. For any m ∈ N and x1:m, the cylinder
event Γ(x1:m) and its complement depend on the first m states X1:m. There-
fore, all the cylinder events and their complements depend on a finite number
of states. Moreover, all finite unions and intersections among the cylinder
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Figure 3.1: The initial part of the event tree of a stochastic process with state
space X = {0,1}.

events and their complements and the complements of these unions and inter-
sections, will also depend on a finite number of states. Therefore, since 〈X ∗〉
is constructed from complements, finite unions and intersections of cylinder
events, for any A ∈ 〈X ∗〉, there is n ∈ N0 such that A depends at most on
the first n states X1:n, which implies that there is some C ⊆ X n such that
A := ∪x1:n∈CΓ(x1:n).

Furthermore, by considering complements, countable unions and intersec-
tions we can generate the respective σ -algebra, which is denoted by σ(X ∗).
More details can be found in Section A.1234 and specifically in Example 11234,
where we discuss the algebra and the σ -algebra generated by the cylinder sets
of an infinite sequence of coin tosses.

Finally, we close this section by presenting a graphical representation of
our sample space Ω. Since Ω=X N and X is finite, we can depict our process
by means of a tree and this tree is called an event tree [64]; see Figure 3.1.
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3.3 PROBABILITY TREES

Consider the product set X ×X ∗, whose elements are denoted by (xn+1|x1:n)
for all n ∈ N0, all x1:n ∈X n and all xn+1 ∈X . Consider as well a function
p : X ×X ∗→ [0,1], such that for all x1:n ∈X ∗, p(Xn+1|x1:n) is a probability
mass function on X , which we call a local model. For all x1:n ∈X ∗ \ {�},
the local model p(Xn+1|x1:n) is called a transition model and for all xn+1 ∈X ,
the probability p(xn+1|x1:n) is called a transition probability. The local model
p(X1|�) is called an initial model and is simply denoted by p(X1). The set of
all such functions p is denoted by PX ∗ .

The local model p(Xn+1|x1:n) is interpreted as a representation of some
subject’s beliefs about what will happen at time n+1 given that the process is
in situation x1:n. Basically, for all n ∈ N0, all x1:n ∈X n and all xn+1 ∈X , the
probability p(xn+1|x1:n) is the probability of the event Γ(x1:n,xn+1) conditional
on the event Γ(x1:n), where we use the notational convention introduced in
Section 3.259.

Consider now the corresponding event tree of Ω, where a local model
p(Xn+1|x1:n) is attached to each situation x1:n. This turns the event tree into
a so-called probability tree; see References [64, Chapter 3] and [43, Section
1.9]. An example of a probability tree is depicted in Figure 3.2y. A probabil-
ity tree is characterised by the state space and the local models of a stochastic
process. Since our sample space is of the form Ω = X N, our probability trees
are characterised by X and the local models p(Xn+1|x1:n), for all n ∈ N0 and
all x1:n ∈X ∗. Therefore, a probability tree is fully described by a function p
in PX ∗ .

Probability trees are a simple tool to model uncertainty in stochastic pro-
cesses. A well-established family of stochastic process that can be constructed
in this way are the so-called Markov chains, which are also the ones that we
will focus on in this dissertation. We leave the analysis of Markov chains for
Chapter 5100 and here discuss general discrete-time stochastic process that are
constructed from the local models of a given probability tree.

3.4 CONDITIONAL PROBABILITY MEASURES

We now discuss probabilities of events in σ(X ∗) conditional on events in
〈X ∗〉. In order to determine such probabilities, we need a conditional proba-
bility measure. First, we present some preliminaries on conditional probability
and then we show how we can define a conditional probability measure based
on a given probability tree.

3.4.1 Preliminaries on conditional probability

As already mentioned, the set of all possible events of a sample space Ω is
2Ω. We also let 2Ω

∅ := 2Ω \ {∅}. The product set 2Ω× 2Ω
∅ is the complete set
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Figure 3.2: The initial part of the probability tree of a stochastic process with
state space X = {0,1}.

of all conditional events. Any element (A,B) of 2Ω× 2Ω
∅, where A ∈ 2Ω and

B ∈ 2Ω
∅, will be denoted by (A|B) and is interpreted as the event A conditional

on the event B. The definition of a conditional probability [16,32] now goes as
follows.

Definition 4 (Conditional probability). Consider any two algebras A ,B on
Ω such that B ⊆ A and the set of conditional events C := A × (B \ {∅}).
Then a conditional probability is a function P : C → R that, for all A,C ∈A
and all B,D ∈B \{∅}, satisfies the following properties:

CP1. P(A|B)≥ 0;

CP2. P(A|B) = 1 if B⊆ A;

CP3. P(A∪C|B) = P(A|B)+P(C|B) if A∩C =∅;

CP4. P(A∩D|B) = P(A|D∩B)P(D|B) if D∩B 6=∅.

In case B = A , then P is called a full conditional probability on A . For all
A ∈A , the unconditional probability P(A|Ω) is also denoted as P(A).
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3.4 CONDITIONAL PROBABILITY MEASURES

From properties CP1x–CP3x, we can easily derive additional properties. For
all A ∈A and B ∈B \{∅}, we have that

CP5. 0≤ P(A|B)≤ 1;

CP6. P(A|B) = P(A∩B|B);

CP7. P(∅|B) = 0;

CP8. P(Ω|B) = 1.

There are also other definitions for conditional probability. Perhaps the
most common definition is the one introduced by Bayes,1 who derives condi-
tional probabilities from unconditional ones. According to Bayes’ definition,
we have that

P(A|B) = P(A∩B)
P(B)

, for all A ∈ 2Ω and all B ∈ 2Ω
∅, with P(B) 6= 0.

Definition 4x is based on de Finetti, who considers conditional probabilities
to be primitive entities that are connected with unconditional probabilities in
the following way:

P(A∩B) = P(A|B)P(B), for all A ∈ 2Ω and all B ∈ 2Ω
∅. (3.1)

In fact, Equation (3.1) is a special case of property CP4x [with B = Ω and D
replaced by B]. Note also that Definition 4x does not necessarily assume that
the probabilities of the events that we condition on are positive. For example,
in Equation (3.1), if P(B) = 0, then P(A∩B) = 0, but P(A|B) can assume any
value in [0,1].

We provide one more definition regarding conditional probability, which is
that of a coherent conditional probability [8].2

Definition 5 (Coherent conditional probability). Consider any C ⊆ 2Ω× 2Ω
∅

and a function P : C → R. Then P is a coherent conditional probability if, for
all n ∈ N and any choice of Ai|Bi ∈ C and ci ∈ R for i ∈ {1, . . . ,n}, it holds
that

max
{ n

∑
i=1

ciIBi(ω)(P(Ai|Bi)− IAi(ω)) : ω ∈ B0

}
≥ 0,

where B0 := ∪n
i=1Bi.

1Also known as Bayes’ rule.
2Regarding the definition of coherent conditional probability, some authors—see Refer-

ences [7, 8]—consider a supremum instead of a maximum. However, one can show that the
supremum is actually a maximum since it is taken over a finite set of finite values. Moreover,
the original definition also requires the infimum to be smaller than or equal to zero but this is
implied by the supremum being greater than or equal to zero (it suffices to change the sign of ci).
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The interpretation of Definition 5x is based upon the concepts of supremum
buying price and infimum selling price that we introduced in Section 2.444.
In detail, any conditional probability P(A|B) can be interpreted as the price at
which are we are willing to either buy or sell the gamble that yields the reward
one when the event A occurs and zero otherwise, provided that the event B
happens. In case B does not happen, the gamble is called-off.

We see that the set of conditional events C in Definition 5x need not have
any specific structure. However, when C has a structure as the one presented
in Definition 462, we have the following property.

Theorem 7 ([57, Theorem 3]). Consider any two algebras A ,B on Ω such
that B ⊆A and the set of conditional events C := A × (B \{∅}). Then the
function P : C → R is a conditional probability if and only if P is a coherent
conditional probability on C .

Another useful property of coherent conditional probabilities is that they
can be extended coherently to larger domains. The corresponding theorem
goes as follows.

Theorem 8 ([57, Theorem 4]). Consider any C ⊆ 2Ω×2Ω
∅ and any coherent

conditional probability P on C . Then for any C ′ ⊆ 2Ω×2Ω
∅ such that C ⊆ C ′,

P can be extended to a coherent conditional probability on C ′.

3.4.2 From probability trees to conditional probability measures

Before we begin our analysis of the conditional probabilities that are of interest
to us, we first introduce the concept of a σ -additive and coherent conditional
probability. The definition of a σ -additive coherent conditional probability
builds upon the definition of a σ -additive probability measure on an algebra
given by Definition 14236—see Appendix A233—and goes as follows [8].

Definition 6 (σ -Additive coherent conditional probability). Consider any al-
gebra A on Ω, any set B such that B ⊆A \ {∅} and the set of conditional
events C := A ×B. Consider as well any coherent conditional probability P
on C . Then P is σ -additive if for each B ∈B \ {∅}, P(·|B) is a σ -additive
probability measure on A .

Because of Theorem 7, we understand that Definition 6 applies also for con-
ditional probabilities by taking B to be an algebra such that B ⊆ A \ {∅}.
From now on, we will refer to σ -additive coherent conditional probabilities as
conditional probability measures.

We focus on conditional probability measures on the following domain of
events:

Cσ :=
{
(A|B) : A ∈ σ(X ∗) and B ∈ 〈X ∗〉 \{∅}

}
. (3.2)
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3.4 CONDITIONAL PROBABILITY MEASURES

Starting from a single probability tree p ∈ PX ∗ , we will show that p corre-
sponds to a set of conditional probability measures on Cσ , denoted by Pp,
where each P ∈ Pp satisfies the following equation:

P(x1:n,xn+1|x1:n) := p(xn+1|x1:n) for all x1:n ∈X ∗ and all xn+1 ∈X . (3.3)

Consider first the following domain of events:

CX ∗ :=
{
(x1:n,xn+1|x1:n) : x1:n ∈X ∗ and xn+1 ∈X

}
. (3.4)

The following theorem says that from any probability tree, we can derive a
unique coherent conditional probability on CX ∗ . This property is known when
conditional probability measures are derived from unconditional ones, but in
our case is more general since we allow the probability of the conditioning
event to be zero as well.

Theorem 9. Consider any probability tree p ∈ PX ∗ . Then there is a unique
coherent conditional probability P on CX ∗ that satisfies Equation (3.3).

Proof. Fix any m ∈ N. Consider any n ∈ N and for all i ∈ {1, . . . ,n} consider
any choice of ci ∈ R and Ai|Bi ∈ CX ∗ such that for all i ∈ {1, . . . ,n} there are
mi ∈ N and xi

1:mi
∈X mi such that Ai = xi

1:mi
and Bi = xi

1:mi−1, with mi ≤ m.
In order to prove that P is a coherent conditional probability, we need to

show that

max
{ n

∑
i=1

ciIBi(ω)[P(Ai|Bi)− IAi(ω)] : ω ∈ B0

}
≥ 0, (3.5)

with B0 := ∪n
i=1Bi. We will prove this using complete induction on m.

First, we prove that (3.5) holds for m = 1. In this case, it is easy to see that
for all i∈ {1, . . . ,n}, we have that Ai = xi for some xi ∈X and that Bi =Ω. Let
Nx := {i ∈ {1, . . . ,n} : Ai = x}, for all x ∈X , and cx := ∑i∈Nx ci, and consider
any x∗ ∈ argminx∈X cx. Then

n

∑
i=1

ciP(Ai|Bi) =
n

∑
i=1

ci p(xi) = ∑
x∈X

cx p(x)≥ ∑
x∈X

cx∗ p(x) = cx∗ ∑
x∈X

p(x) = cx∗ ,

where we have used that p(·) is a probability mass function on X . Choose
now any ω ′ ∈Ω such that ω ′1 = x∗, then

n

∑
i=1

ciIBi(ω
′)[P(Ai|Bi)− IAi(ω

′)] = ∑
x∈X

cx[p(x)− Ix(ω
′)]

≥ cx∗ − ∑
x∈X

cxIx(ω
′) = cx∗ − cx∗ = 0,
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where the first equality holds because Bi = B0 = Ω and therefore IBi(ω
′) = 1

for all i ∈ {1, . . . ,n}, and the last equality holds because Ix(ω
′) = 1 for x = x∗

and Ix(ω
′) = 0 otherwise. Therefore, we see that (3.5)x is satisfied.

Next, we assume that (3.5)x holds for all m ≤ k, and prove that it also
holds for m = k + 1. Let S =

{
i ∈ {1, . . . ,n} : mi ≤ k

}
. Then there are two

possibilities. If S 6=∅, then by the induction hypothesis, we know that

max
{

∑
i∈S

ciIBi(ω)[P(Ai|Bi)− IAi(ω)] : ω ∈ B∗0

}
≥ 0,

with B∗0 := ∪i∈SBi. This implies that there is some ω∗ ∈ B∗0 ⊆ B0 such that

∑
i∈S

ciIBi(ω
∗)[P(Ai|Bi)− IAi(ω

∗)]≥ 0. (3.6)

If S =∅, then we let ω∗ be any path in B0.
Now let S∗ := {i∈{1, . . . ,n} : Bi =(ω∗)k}, N∗x := {i∈ S∗ : Ai =((ω∗)k,x)}

and cx := ∑i∈N∗x ci for all x ∈X , and consider any x∗ ∈ argminx∈X cx. Then
we find that

∑
i∈S∗

ciP(Ai|Bi) = ∑
x∈X

cx p(x|(ω∗)k)≥ ∑
x∈X

cx∗ p(x|(ω∗)k) = cx∗ , (3.7)

where we have used that p(·|(ω∗)k) is a probability mass function on X . If
we now choose any ω∗∗ ∈ B∗ such that (ω∗∗)k+1 = ((ω∗)k,x∗), then

∑
i∈S∗

ci[P(Ai|Bi)− IAi(ω
∗∗)] = ∑

x∈X
cx[p(x|(ω∗)k)− I((ω∗)k,x)(ω

∗∗)]

≥ cx∗ − ∑
x∈X

cxI((ω∗)k,x)(ω
∗∗) = cx∗ − cx∗ = 0,

(3.8)

where the inequality comes from (3.7) and the last equality holds because
I((ω∗)k,x)(ω

∗∗) = 1 when x = x∗ and I((ω∗)k,x)(ω
∗∗) = 0 otherwise.

Let S∗∗ := {1, . . . ,n}\(S∪S∗). Since (ω∗∗)k+1 =((ω∗)k,x∗), we know that
IBi(ω

∗∗) = IBi(ω
∗) and that IAi(ω

∗∗) = IAi(ω
∗) for all i ∈ S. Also, we know

that IBi(ω
∗∗) = 1 for all i ∈ S∗ and that IBi(ω

∗∗) = 0 for all i ∈ S∗∗. Therefore,
by combining (3.6) with (3.8) and the fact that {1, . . . ,n}= S∪S∗∪S∗∗ we find
that

n

∑
i=1

ciIBi(ω
∗∗)[P(Ai|Bi)− IAi(ω

∗∗)]≥ 0.

It now only remains to show that ω∗∗ belongs to B0. Recall that ω∗ ∈ B0.
Since B0 is an event that only depends on the first k states, and because (ω∗)k =
(ω∗∗)k, this implies that indeed ω∗∗ ∈ B0.

Finally, the uniqueness of P follows from Equation (3.3)x and the fact that
there is a one-to-one correspondence between CX ∗ and X ×X ∗.
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From now on, we will refer to the coherent conditional probability of The-
orem 965 as the coherent conditional probability on CX ∗ derived from a prob-
ability tree p. In order to extend this unique coherent conditional probability to
a conditional probability measure on Cσ , we first show that it can be extended
to a conditional probability measure on the following domain of conditional
events:

C :=
{
(A|B) : A ∈ 〈X ∗〉 and B ∈ 〈X ∗〉 \{∅}

}
. (3.9)

The corresponding lemma goes as follows.

Lemma 10. Consider any probability tree p ∈ PX ∗ . Then there is a condi-
tional probability measure P on C that satisfies Equation (3.3)65.

Proof. It follows from Theorem 965 that there is a unique coherent conditional
probability P∗ on CX ∗ that satisfies Equation (3.3)65. It then follows from
Theorem 864 that P∗ can be extended to a coherent conditional probability P
on C . Since P∗ is the restriction of P to CX ∗ , we infer that P satisfies Equa-
tion (3.3)65. Moreover, due to the structure of C , it follows from Theorem 764
that P is also a full conditional probability.

It now remains to prove that P is σ -additive. Due to property CP362, we
have that P(·|B) is finitely additive on 〈X ∗〉 for each B ∈ 〈X ∗〉 \ {∅}, and
therefore, due to Theorem 95237, we have that P is indeed σ -additive.

Note that the conditional probability measure of Lemma 10 might not be
unique. Hence, we understand that any probability tree corresponds to a set
of conditional probability measures on C and it now remains to show that any
conditional probability measure in this set can be extended to a conditional
probability measure on Cσ . In general, the extension of a conditional prob-
ability measure might not be σ -additive; see Reference [8]. Fortunately, in
Reference [8] it is shown that when the domain of conditional events satisfies
certain conditions, we can then extend a conditional probability measure and
preserve σ -additivity. The corresponding theorem goes as follows.

Theorem 11 ([8, Theorem 2]). Consider any algebra A on Ω, any set B such
that B ⊆A \{∅} and the set of conditional events C :=A ×B. Consider as
well any σ -additive and coherent conditional probability P′ on C , then there is
a σ -additive and coherent extension P of P′ to the domain Cσ := σ(A )×B.

By taking B∪{∅} to be an algebra, we find that Theorem 11 applies also
for conditional probabilities. Therefore, we have the following result.

Theorem 12. Consider any probability tree p ∈ PX ∗ . Then there is a condi-
tional probability measure P on Cσ that satisfies Equation (3.3)65.

Proof. It follows from Lemma 10 that there is a conditional probability mea-
sure P′ on C that satisfies Equation (3.3)65. Due to the structure of C and
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Theorem 11x, we know that P′ can be extended to a conditional probability
measure P on Cσ .

In summary, we started from a probability tree p ∈ PX ∗ and we con-
structed a unique coherent conditional probability on the domain CX ∗ . Then
we extended this coherent conditional probability to a conditional probability
measure on C and we showed that the latter can be further extended to the
domain Cσ . Since the second of these three extensions might not be unique,
we can only infer at this points that p corresponds to a set Pp of conditional
probability measures on Cσ .

3.4.3 Properties of conditional probability measures

Consider any probability tree p∈PX ∗ and its corresponding set of conditional
probability measures Pp on Cσ . We know from Equation (3.2)64 that for all
(A|B) ∈ Cσ , we have that B ∈ 〈X ∗〉 \ {∅}, but from now on we will mainly
be interested in conditional events (A|B) such that B ∈X ∗∪BX , where BX

is defined as follows

BX :=
{ ⋃

x1:m∈X m

Γ(x1:m,xm+1) : m ∈ N0 and xm+1 ∈X

}
. (3.10)

For any event B ∈ BX , there is some m ∈ N0 and some xm+1 ∈ X such
that B =

⋃
x1:m∈X m Γ(x1:m,xm+1) and we will therefore denote this event B by

Bxm+1 . For any (A|B) ∈ C such that B ∈BX , we have that B = Bxm+1 for
some m ∈ N0 and some xm+1 ∈X and the probability P(A|B) will then be
denoted simply by P(A|xm+1).

We now prove a property of probabilities of the form P(A|xm+1). If we had
used Bayes’ rule to define these probabilities, then proving this result would
be trivial. However, such a proof would also require the probabilities of the
involved conditioning events to be strictly positive, which our approach does
not impose. For that reason, the result below is not immediate, which is why
we provide it with a proof.

Lemma 13. Consider any probability tree p∈PX ∗ and any conditional prob-
ability measure P in Pp. Consider as well any n,m ∈ N0, any xm+1 ∈X and
for all i ∈ {1, . . . ,n} consider any choice of Ai ∈ σ(X ∗) and ci ∈ R. Then

min
x1:m∈X m

n

∑
i=1

ciP(Ai|x1:m,xm+1)≤
n

∑
i=1

ciP(Ai|xm+1)

≤ max
x1:m∈X m

n

∑
i=1

ciP(Ai|x1:m,xm+1).

Proof. We prove by contradiction that the left-hand side inequality holds; the
proof for the right-hand side one is completely analogous. That is, we assume
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ex absurdo that ∑
n
i=1 ciP(Ai|xm+1)<minx1:m∈X m{∑n

i=1 ciP(Ai|x1:m,xm+1)}, and
we show that P is not coherent. Specifically, we show that then

max
{ n

∑
i=1

ciIBxm+1
(ω)[P(Ai|xm+1)− IAi(ω)]

− ∑
x1:m∈X m

n

∑
i=1

ciIΓ(x1:m,xm+1)(ω)[P(Ai|x1:m,xm+1)− IAi(ω)] : ω ∈ B0

}
< 0,

(3.11)

where, going back to the notation of Definition 563, for all x1:m ∈ X m and
all i ∈ {1, . . . ,n} we chose the coefficient of P(Ai|x1:m,xm+1) to be −ci and
due the definition of Bxm+1 , we have that B0 = Bxm+1 . Indeed, consider any
ω ∈ B0 = Bxm+1 , then

∑
x1:m∈X m

IΓ(x1:m,xm+1)(ω) = IBxm+1
(ω) = 1 (3.12)

and also

∑
x1:m∈X m

IΓ(x1:m,xm+1)(ω)
n

∑
i=1

ciP(Ai|x1:m,xm+1)≥ min
x1:m∈X m

n

∑
i=1

ciP(Ai|x1:m,xm+1).

(3.13)

Hence

n

∑
i=1

ciIBxm+1
(ω)[P(Ai|xm+1)− IAi(ω)]

− ∑
x1:m∈X m

n

∑
i=1

ciIΓ(x1:m,xm+1)(ω)[P(Ai|x1:m,xm+1)− IAi(ω)]

=
n

∑
i=1

ciP(Ai|xm+1)−
n

∑
i=1

ciIAi(ω)+
n

∑
i=1

ciIAi(ω) ∑
x1:m∈X m

IΓ(x1:m,xm+1)(ω)

− ∑
x1:m∈X m

IΓ(x1:m,xm+1)(ω)
n

∑
i=1

ciP(Ai|x1:m,xm+1)

=
n

∑
i=1

ciP(Ai|xm+1)− ∑
x1:m∈X m

IΓ(x1:m,xm+1)(ω)
n

∑
i=1

ciP(Ai|x1:m,xm+1)

≤
n

∑
i=1

ciP(Ai|xm+1)− min
x1:m∈X m

n

∑
i=1

ciP(Ai|x1:m,xm+1)< 0,

where the two equalities follow from Equation (3.12), the first inequality from
(3.13), and the strict inequality from the assumption. This implies that (3.11)
holds, contradicting the coherence of P.
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Lemma 1368 will turn out to be useful in Chapter 5100, where we discuss
Markov chains. More specifically, we will see that when a stochastic process is
a Markov process, then in some cases the inequalities in Lemma 1368 become
equalities.

In the rest of this section, we focus on conditional events (A|B) ∈ C such
that B ∈X ∗. Recall that the coherent conditional probability on CX ∗ derived
from a probability tree p ∈ PX ∗ can be extended to conditional probability
measures on domains C and Cσ , but that these extensions might not be unique.
Fortunately, the extension of a coherent conditional probability on CX ∗ to the
following domain:

C ∗ :=
{

A|B : A ∈ 〈X ∗〉 and B ∈X ∗} (3.14)

is unique. This is not surprising when conditional probability measures are
derived from unconditional ones, for example using Bayes’ rule. However,
the property that we prove is more general since our conditional probability
measures are also defined when the conditioning events have zero probability.
The corresponding lemma goes as follows.

Lemma 14. Consider any probability tree p ∈ PX ∗ . Then there is a unique
conditional probability measure P on C ∗ that satisfies Equation (3.3)65. Specif-
ically, for any x1:m ∈X ∗, any n ∈ N0 and any C ⊆X n, we have that3

P(C|x1:m) := ∑
z1:n∈C

P(z1:n|x1:m),

where

P(z1:n|x1:m) :=


∏

n−1
i=m p(zi+1|z1:i) if m < n and z1:m = x1:m

1 if m≥ n and z1:n = x1:n

0 otherwise.

Proof. It follows from Theorem 1267 that there is at least one conditional prob-
ability measure on Cσ that satisfies Equation (3.3)65. Recall that we let Pp be
the set of all such conditional probability measures on Cσ . We prove the state-
ment by showing that the restriction to C ∗ is the same for all P ∈ Pp.

Since P is a coherent conditional probability on Cσ and therefore on C ⊆
Cσ , it follows from Theorem 764 that the restriction of P to C is a conditional
probability, and therefore satisfies the properties CP162–CP863. We will use
these to calculate the values of P on C ∗ ⊆ C .

We start by finding the probability of z1:n conditional on x1:m, which is
denoted by P(z1:n|x1:m), for all z1:n ∈X ∗. We distinguish among three cases.

3Due to Lemma 659, any event A∈ 〈X ∗〉 can be expressed by ∪z1:n∈CΓ(z1:n) for some n∈N0
and C ⊆X n.
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The first case is when m≥ n and z1:n = x1:n, which implies that Γ(x1:m)⊆
Γ(z1:n) and hence, due to property CP262 [with A := Γ(z1:n) and B := Γ(z1:m)],
we find that P(z1:n|x1:m) = 1.

The second case is when m < n and x1:m = z1:m. Then

P(z1:n|z1:m) = P(z1:n|z1:n−1)P(z1:n−1|z1:m)

where the equality follows from property CP462 [with A :=Γ(z1:n), B :=Γ(z1:m)
and D := Γ(z1:n−1)] combined with the fact that Γ(z1:n) = Γ(z1:n)∩Γ(z1:n−1)
and that Γ(z1:n−1) = Γ(z1:n−1)∩Γ(z1:m). For all k ∈ {m+2, . . . ,n}, the proba-
bility P(z1:k−1|z1:m) is found similarly and for all ` ∈ {1, . . . ,m+1}, we know
that P(z1:`−1|z1:m) = 1, and finally P(z1:n|x1:m) is given by

P(z1:n|x1:m) = P(z1:n|z1:m) =
n−1

∏
i=m

P(z1:i+1|z1:i) =
n−1

∏
i=m

p(zi+1|z1:i),

where the first equality holds because x1:m = z1:m and the last follows because
P satisfies Equation (3.3)65.

In all other cases, we have that Γ(z1:n)∩Γ(x1:m) =∅. It then follows from
property CP763 [with B := Γ(z1:m)] that P(z1:n|x1:m) = 0.

In now remains to find the conditional probability of C conditional on x1:m.
Since C can be decomposed into disjoint cylinder events it follows from prop-
erty CP362 that

P(C|x1:m) = ∑
z1:n∈C

P(z1:n|x1:m),

which completes the proof.

Finally, the coherent conditional probability on CX ∗ derived from a prob-
ability tree p ∈ PX ∗ can be extended uniquely to the following domain:

C ∗σ :=
{

A|B : A ∈ σ(X ∗) and B ∈X ∗}. (3.15)

The corresponding theorem goes as follows.

Theorem 15. Consider any probability tree p ∈ PX ∗ . Then there is a unique
conditional probability measure P on C ∗σ that satisfies Equation (3.3)65.

Proof. It follows from Lemma 1067 that there is a conditional probability mea-
sure on C that satisfies Equation (3.3)65. Let P′p be the set of all such condi-
tional probability measures on C . It then follows from Lemma 14x that for
all P′ ∈ P′p, the restriction to C ∗ is unique. Let P∗ be this unique restriction
on C ∗. Since P∗ is the restriction of conditional probability measures, it will
also be σ -additive. Moreover, due to Theorem 1167 and the structure of C ∗,
we find that P∗ can be extended to a conditional probability measure P on C ∗σ .

It now remains to show that P is unique. For each x1:n ∈X ∗, P∗(·|x1:n) is
a unique σ -additive probability measure since it is the restriction of P∗ to the
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domain {(A|x1:n) : A ∈ 〈X ∗〉}. It then follows from Carathéodory’s Theorem
(Theorem 96237) that P∗(·|x1:n) can be uniquely extended to a σ -additive prob-
ability measure on the domain {(A|x1:n) : A ∈ σ(X ∗)}. Since this is true for
every x1:n ∈X ∗, we conclude that P is unique.

We now close this section by establishing the connection between condi-
tional and unconditional probability measures. In fact, for any probability tree
in p ∈ PX ∗ , any conditional probability measure P ∈ Pp on Cσ allows us to
specify the probability of any event in σ(X ∗). Indeed, for all A ∈ σ(X ∗),
the probability of A, denoted by P(A), is the probability of A conditional on
the set of all paths, i.e. P(A|�) since Γ(�) = Ω. Furthermore, since � ∈X ∗,
we know from Theorem 15x that P(A) is unique. Note that it is also pos-
sible to define an unconditional probability measure on σ(X ∗) based on the
local models of a probability tree—without defining a conditional probability
measure—by using the Ionescu Tulcea Theorem; see Reference [41] for the
original result, but also References [4,67]. The disadvantage of that approach,
though, is that conditional probabilities become ill-defined if the conditioning
event has probability zero.

3.5 EXPECTATIONS IN PROBABILITY TREES

So far, we have seen that with a given a probability tree p ∈ PX ∗ , we can
associate a set Pp of conditional probability measures on the domain Cσ . In
this section, we use such a conditional probability measure P ∈ Pp to compute
expectations of measurable extended real-valued functions, i.e. measurable
functions that take values in R :=R∪{−∞,+∞}. We first talk about uncondi-
tional expectations and then we move to conditional ones. We close the section
by introducing the law of iterated expectations, which we will generalise later
on, as this generalisation will turn out to be very useful for the computation of
lower and upper expectations for imprecise stochastic processes.

3.5.1 Unconditional Expectations

Recall that for any probability tree p ∈ PX ∗ , the conditional probability mea-
sures P ∈ Pp on Cσ that we considered above allow us to specify the probabil-
ity of any event in σ(X ∗) by conditioning on the initial situation, that is by
considering the unique σ -additive probability measure P(·|�), which we will
also denote by P. This implies that we have a probability space (Ω,σ(X ∗),P)
and we can use this probability space to compute expectations. For any ex-
tended real-valued function g on Ω such that g is measurable with respect to
σ(X ∗), we can compute the expectation of g with respect to P by computing
the Lebesgue integral of g, given that the integral is defined; see Section A.4239
for more details and also Step 1241–Step 4241 for an intuitive explanation why
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expectations of measurable functions are defined by Lebesgue integrals. This
expectation of g is denoted by EP(g) and is given by

EP(g) :=
∫

Ω

g(ω)dP(ω).

We now show how to compute expectations of a special type of extended
real-valued functions, the so-called n-measurable functions. Before we define
n-measurable functions, we first introduce the set of all real-valued functions
on X n, for some n ∈ N0,4 which we denote by L (X n). An n-measurable
function g is then a real-valued function on Ω such that there is some h ∈
L (X n) such that g(ω) = h(ωn) for all ω ∈ Ω. Therefore, any n-measurable
function can be identified with an element of L (X n), and from now on, we
will use L (X n) to denote the set of all n-measurable functions. In order
to emphasise this, we will often denote an n-measurable function as h(X1:n).
Furthermore, n-measurable functions are also a subset of a class of functions,
the so-called simple functions (Definition 18239) and they satisfy various useful
properties like the one presented below.

Lemma 16. Consider any n ∈ N0 and any h ∈L (X n), then h is measurable
with respect to σ(X ∗).

Proof. Consider any n ∈ N0. Due to Lemma 99238, we then have that for all
x1:n ∈X n, the function IΓ(x1:n) on Ω is measurable with respect to σ(X ∗).
Moreover, any h ∈L (X n) can be written as

h = ∑
x1:n∈X n

h(x1:n)IΓ(x1:n), (3.16)

so h is simple, which, due to Lemma 100239, implies that h is measurable with
respect to σ(X ∗).

For all n ∈ N and all n-measurable functions h ∈L (X n), the expectation
of h(X1:n) with respect to P, denoted by EP(h(X1:n)), is the Lebesgue integral
of h(X1:n), which in this specific case is given by

EP
(
h(X1:n)

)
= ∑

x1:n∈X n
h(x1:n)P

(
x1:n
)
= ∑

x1:n∈X n
h(x1:n)

n−1

∏
i=0

p(xi+1|x1:i),

where the first equality follows from Lemma 102240, Lemma 105240 and Equa-
tion (3.16) and the second equality follows from the combination of Theo-
rem 1267 with Lemma 1470.

Finally, for any non-negative extended real-valued g on Ω and any non-
decreasing sequence of non-negative n-measurable functions {hn}n∈N such

4For n = 0, we have constant functions.
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that limn→+∞ hn = g, it follows from Theorem 104240 that

EP(g) = lim
n→+∞

EP(hn).

Compared to general extended measurable real-valued functions, whose ex-
pectations are not always easily computable, there are examples of functions
that are limits of non-decreasing sequences of non-negative n-measurable func-
tions, whose expectations can be efficiently computed when the stochastic pro-
cess is a time-homogeneous Markov chain. Such a function is the first passage
time that is studied in Chapter 6151 and we will see that we can compute its
expectation through closed-form expressions.

Observe that the expectations EP(h(X1:n)) and EP(g) do not depend on the
specific choice of P ∈ Pp since in these cases P is restricted to C ∗σ , and is
therefore completely determined by p. This implies that any expectation with
respect to a measure P on C ∗σ can be denoted by Ep instead of EP. However,
we prefer to stick to the notation EP because, as we will see in Chapter 5100,
we also consider expectations with respect to conditional probability measures
on Cσ and in this case Ep might not be able to determine EP for all P ∈ Pp.

3.5.2 Conditional Expectations

Regarding conditional expectations, things are very similar to the uncondi-
tional ones. We follow exactly the same reasoning, but this time the proba-
bility measure P(·|�) is replaced by a probability measure P(·|B), for some
B ∈ 〈X ∗〉\{∅}. For any B ∈ 〈X ∗〉\{∅} and any extended real-valued func-
tion g on Ω such that g is measurable with respect to σ(X ∗), the expectation
of g with respect to P conditional on B is then denoted by EP(g|B) and is given
by

EP(g|B) :=
∫

Ω

g(ω)dP(ω|B), (3.17)

where the integral on the right-hand side is the Lebesgue integral. The reason
why this indeed works is because P(·|B) is a σ -additive probability measure
on σ(X ∗); see Definition 664.

In the case of n-measurable functions, we have that for all n,m ∈ N0, all
x1:m ∈X m and all h ∈L (X n), the expectation of h with respect to P condi-
tional on x1:m is denoted by EP

(
h(X1:n)|x1:m

)
and is given by

EP
(
h(X1:n)|x1:m

)
= ∑

z1:n∈X n
h(z1:n)P

(
z1:n|x1:m

)
.

In case n > m, then due to Theorem 1267 in combination with Lemma 1470,
we further find that

EP
(
h(X1:n)|x1:m

)
= ∑

xm+1:n∈X n−m
h(x1:n)

n−1

∏
i=m

p(xi+1|x1:i) (3.18)
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and if n≤ m, we have that EP(h(X1:n)|x1:m) = h(x1:n).
Finally, for any B ∈ 〈X ∗〉 \ {∅}, any non-negative extended real-valued

g on Ω and any non-decreasing sequence of non-negative n-measurable func-
tions {hn}n∈N such that limn→+∞ hn = g, it holds that

EP(g|B) = lim
n→+∞

EP(hn|B). (3.19)

Indeed, since for any B ∈ 〈X ∗〉 \ {∅}, the conditional probability measure
P(·|B) works like a probability measure as in the unconditional case, Theo-
rem 104240 implies the aforementioned equation.

3.5.3 Law of iterated expectations

An important property of stochastic processes is the so-called law of iterated
expectations.5 We present the property for a conditional probability measure
P ∈ Pp on Cσ and for any n-measurable function. Note that our version of the
law of iterated expectation presents an equality that holds everywhere, whereas
under the standard measure-theoretic approach we would have an equality that
holds “almost everywhere”.

Theorem 17. Consider any probability tree p ∈ PX ∗ and let P ∈ Pp be a
coherent conditional probability measure on Cσ . Consider as well any n ∈ N0
and any n-measurable function h(X1:n). Then for all m,m′ ∈ N0 such that
m≤ m′ ≤ n, it holds that

EP
(
h(X1:n)|X1:m

)
= EP

(
EP
(
h(X1:n)|X1:m′

)∣∣X1:m

)
.

Proof. We prove the statement for the non-trivial case where m < m′ < n. Due
to Equation (3.18)x, for all x1:m ∈X m, we have that

EP
(
h(X1:n)|x1:m

)
= ∑

xm+1:n∈X n−m
h(x1:n)

n−1

∏
i=m

p(xi+1|x1:i)

= ∑
xm+1:n∈X n−m

h(x1:n)
n−1

∏
i=m′

p(xi+1|x1:i)
m′−1

∏
j=m

p(x j+1|x1: j)

= ∑
xm+1:m′∈X m′−m

EP(h(X1:n)|x1:m,xm+1:m′)
m′−1

∏
i=m

p(xi+1|x1:i)

=EP

(
EP
(
h(X1:n)|x1:m,Xm+1:m′

)
|x1:m

)
.

5Also known as law of total expectation.
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The law of iterated expectations allows us to compute expectations recur-
sively. We show how this is done for n-measurable functions. Suppose that
we want to compute EP

(
h(X1:n)

)
for any n ∈N and any function h ∈L (X n).

We first compute EP
(
h(X1:n)|x1:n−1

)
for all x1:n−1 ∈X n−1, then we plug the

result in EP(·|X1:n−2), we compute it for all x1:n−2 ∈X n−2 and so on until we
get to the initial situation. That is,

EP
(
h(X1:n)

)
= EP

(
EP

(
. . .EP

(
EP(h(X1:n)|X1:n−1)

∣∣X1:n−2
)
. . .
∣∣∣X1

))
. (3.20)

Similarly, for the conditional expectation EP
(
h(X1:n)|x1:m

)
, we have that

EP
(
h(X1:n)|x1:m

)
= EP

(
. . .EP

(
EP(h(X1:n)|X1:n−1)

∣∣X1:n−2
)
. . .
∣∣∣x1:m

)
, (3.21)

for all m ∈ N0 such that n≥ m and all x1:m ∈X m.
Computationally speaking, it may seem that the law of iterated expecta-

tions does not offer any advantage. However, we will later prove generalised
versions of the law of iterated expectation that will turn out to be among the
most useful properties for the derivation of the results in this dissertation.

3.5.4 Additional properties

We now prove some additional properties that are satisfied by the conditional
expectations given by Equation (3.17)74. The first property is about expecta-
tions of simple functions, and consequently n-measurable ones, and goes as
follows.

Lemma 18. Consider any probability tree p∈PX ∗ and any conditional prob-
ability measure P ∈ Pp. Consider as well any m ∈N0, any xm+1 ∈X and any
simple function h on Ω. Then it holds that

min
x1:m∈X m

EP(h|x1:m,xm+1)≤ EP(h|xm+1)≤ max
x1:m∈X m

EP(h|x1:m,xm+1).

Proof. Since h is a simple function on Ω, it follows from Definition 18239 that
there is n ∈N, such that for all i ∈ {1, . . . ,n}, there are ci ∈R and Ai ∈ σ(X ∗)
such that

h(ω) =
n

∑
i=1

ciIAi(ω) for all ω ∈Ω. (3.22)

Combining Lemma 102240 with Lemma 105240 and Equation (3.22), we find
that

EP(h|B) =
n

∑
i=1

ciP(Ai|B) for all B ∈ 〈X ∗〉 \{∅}

and the result now follows from Lemma 1368.
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Our next result extends Lemma 18x to extended real-valued functions on
Ω that are limits of non-decreasing sequences of non-negative n-measurable
functions.

Lemma 19. Consider any probability tree p∈PX ∗ and any conditional prob-
ability measure P ∈ Pp. Consider as well any m ∈N0, any xm+1 ∈X and any
extended real-valued g on Ω for which there is a non-decreasing sequence of
non-negative n-measurable functions {hn}n∈N such that limn→+∞ hn = g. Then
it holds that

min
x1:m∈X m

EP(g|x1:m,xm+1)≤ EP(g|xm+1)≤ max
x1:m∈X m

EP(g|x1:m,xm+1).

Proof. Since the sequence {hn}n∈N consists of n-measurable functions, it fol-
lows from Lemma 18x that for all n ∈ N,

min
x1:m∈X m

EP(hn|x1:m,xm+1)≤ EP(hn|xm+1)≤ max
x1:m∈X m

EP(hn|x1:m,xm+1).

Since the sequence {hn}n∈N is non-decreasing, we have that the sequences
{minx1:m∈X m EP(hn|x1:m,xm+1)}n∈N, {maxx1:m∈X m EP(hn|x1:m,xm+1)}n∈N and
the sequence {EP(hn|xm+1)}n∈N are non-decreasing as well, which further im-
plies that limn→+∞ EP(hn|xm+1), limn→+∞ minx1:m∈X m EP(hn|x1:m,xm+1) and
limn→+∞ maxx1:m∈X m EP(hn|x1:m,xm+1) are real or equal to +∞, and therefore,
we find that

lim
n→+∞

min
x1:m∈X m

EP(hn|x1:m,xm+1)≤ lim
n→+∞

EP(hn|xm+1)

≤ lim
n→+∞

max
x1:m∈X m

EP(hn|x1:m,xm+1).

Finally, due to Lemma 20 and Equation (3.19)75, we infer that

min
x1:m∈X m

EP(g|x1:m,xm+1)≤ EP(g|xm+1)≤ max
x1:m∈X m

EP(g|x1:m,xm+1).

Lemma 20. Consider any probability tree p∈PX ∗ and any conditional prob-
ability measure P ∈ Pp. Consider as well any m ∈N0, any xm+1 ∈X and any
non-decreasing sequence of non-negative n-measurable functions {hn}n∈N.
Then it holds that

min
x1:m∈X m

lim
n→+∞

EP(hn|x1:m,xm+1) = lim
n→+∞

min
x1:m∈X m

EP(hn|x1:m,xm+1);

lim
n→+∞

max
x1:m∈X m

EP(hn|x1:m,xm+1) = max
x1:m∈X m

lim
n→+∞

EP(hn|x1:m,xm+1).

Proof. We first prove the second equality. Since the sequence {hn}n∈N is
non-decreasing, we have that hk ≤ hk+1, for all k ∈ N, and it follows from
Lemma 103240 that

EP(hk|x1:m,xm+1)≤ EP(hk+1|x1:m,xm+1) for all x1:m ∈X m, (3.23)
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Then observe that

lim
n→+∞

max
x1:m∈X m

EP(hn|x1:m,xm+1) = sup
n∈N

max
x1:m∈X m

EP(hn|x1:m,xm+1)

= max
x1:m∈X m

sup
n∈N

EP(hn|x1:m,xm+1) = max
x1:m∈X m

lim
n→+∞

EP(hn|x1:m,xm+1),

where the first and the last equality holds because of Inequality (3.23)x, which
implies that the limit is in fact a supremum, and the second equality holds
because the maximum is a supremum and therefore, we can exchange the
suprema.

We now prove that

min
x1:m∈X m

lim
n→+∞

EP(hn|x1:m,xm+1)≥ lim
n→+∞

min
x1:m∈X m

EP(hn|x1:m,xm+1).

Observe that

lim
n→+∞

min
x1:m∈X m

EP(hn|x1:m,xm+1) = sup
n∈N

min
x1:m∈X m

EP(hn|x1:m,xm+1)

≤ min
x1:m∈X m

sup
n∈N

EP(hn|x1:m,xm+1) = min
x1:m∈X m

lim
n→+∞

EP(hn|x1:m,xm+1),

where the first and the last equality holds because of Inequality (3.23)x, which
implies that the limit is in fact a supremum, and the inequality holds because
an infimum of suprema is greater than or equal to the supremum of infima.

It now remains to prove that

min
x1:m∈X m

lim
n→+∞

EP(hn|x1:m,xm+1)≤ lim
n→+∞

min
x1:m∈X m

EP(hn|x1:m,xm+1).

Since the sequence {hn}n∈N is non-decreasing, we have that for all x1:m ∈
X m, {EP(hn|x1:m,xm+1)}n∈N is also non-decreasing, which implies that the
limit limn→+∞ EP(hn|x1:m,xm+1) exists. For all x1:m ∈X m, let now cx1:m :=
limn→+∞ EP(hn|x1:m,xm+1). We then have that either cx1:m ∈ R≥0 or cx1:m =
+∞. Let also S := {x1:m ∈X m : cx1:m 6=+∞}. We then have that either S =∅
or S 6=∅.

Consider first the case S =∅, which implies that cx1:m =+∞ for all x1:m ∈
X m. Fix any α ∈R≥0. Then for all x1:m ∈X m, there is kx1:m ∈N such that for
all n≥ kx1:m , it holds that EP(hn|x1:m,xm+1)≥α . Let now k :=maxx1:m∈X m kx1:m .
Then for all x1:m ∈X m and all n ≥ k, we have that EP(hn|x1:m,xm+1) ≥ α ,
which also implies that minx1:m∈X m EP(hn|x1:m,xm+1)≥ α and that

lim
n→+∞

min
x1:m∈X m

EP(hn|x1:m,xm+1)≥ α, (3.24)

where the limit exists, due to the fact that {EP(hn|x1:m,xm+1)}n∈N is non-
decreasing for all x1:m ∈X m. Since Equation (3.24) is true for all α ∈ R≥0,
we infer that limn→+∞ minx1:m∈X EP(hn|x1:m,xm+1) = +∞. Moreover, due to
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the definition of cx1:m and the fact that cx1:m = +∞ for all x1:m ∈X m, we also
find that

min
x1:m∈X m

lim
n→+∞

EP(hn|x1:m,xm+1) = +∞

and therefore, we trivially have that

min
x1:m∈X m

lim
n→+∞

EP(hn|x1:m,xm+1)≤ lim
n→+∞

min
x1:m∈X m

EP(hn|x1:m,xm+1).

Consider now the case S 6=∅. Fix any ε > 0 and let c := minx1:m∈X m cx1:m .
Since S 6=∅, we infer that c∈R≥0. For all x1:m ∈ S, there is kx1:m ∈N such that
for all n≥ kx1:m , it holds that EP(hn|x1:m,xm+1)≥ cx1:m − ε ≥ c− ε . Similarly,
for all x1:m ∈X m \ S, there is kx1:m ∈ N such that for all n ≥ kx1:m , it holds
that EP(hn|x1:m,xm+1) ≥ c ≥ c− ε . Let now k := maxx1:m∈X m kx1:m , then for
all n ≥ k and all x1:m ∈X m, we have that EP(hn|x1:m,xm+1) ≥ c− ε , which
implies that minx1:m∈X m EP(hn|x1:m,xm+1)≥ c− ε and that

lim
n→+∞

min
x1:m∈X m

EP(hn|x1:m,xm+1)≥ c− ε, (3.25)

where the limit exists, due to the fact that {EP(hn|x1:m,xm+1)}n∈N is non-
decreasing for all x1:m ∈ X m. Since Equation (3.25) is true for all ε > 0,
we then infer that

lim
n→+∞

min
x1:m∈X m

EP(hn|x1:m,xm+1)≥ c = min
x1:m∈X m

cx1:m

= min
x1:m∈X m

lim
n→+∞

EP(hn|x1:m,xm+1).

The properties presented here will turn out be useful in Chapter 5100, where
we analyse Markov chains. More specifically, the inequalities presented in
Lemma 1977 will become equalities when the extended real-valued function g
does not depend on the first m−1 states.

3.6 GENERAL IMPRECISE PROBABILITY TREES

Instead of a single probability tree, suppose now that we are given a set of them,
denoted by T . Clearly, T ⊆ PX ∗ . Since every p ∈ T has a corresponding
set of conditional probability measures on Cσ , the set T has a corresponding
set of conditional probability measures as well, denoted by PT and defined
by PT := ∪p∈T Pp. Any set of probability trees T is called an imprecise
probability tree and the corresponding set of conditional probability measures
PT is called an imprecise stochastic process.

Consider any B ∈ 〈X ∗〉 \{∅} and any extended real-valued function g on
Ω that is measurable with respect to σ(X ∗), then for each P ∈ PT we have an
expectation EP(g|B). Since EP(g|B) might not be defined for some P ∈ PT ,
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we only consider functions g such that EP(g|B) is defined for all P ∈ PT . We
now model our uncertainty through global—or alternatively joint—lower and
upper expectations, denoted by ET (g|B) and ET (g|B) respectively. These ex-
pectations are simply the lower and upper envelopes of all expectations that
correspond to some conditional probability measure in PT , and they are de-
fined by

ET (g|B) := inf
{

EP(g|B) : P ∈ PT

}
= inf

p∈T
inf

P∈PT

{
EP(g|B)

}
(3.26)

ET (g|B) := sup
{

EP(g|B) : P ∈ PT

}
= sup

p∈T
sup

P∈PT

{
EP(g|B)

}
, (3.27)

where EP(g|B) is given by Equation (3.17)74. There are some types of measur-
able functions, whose lower and upper expectations are always well-defined
for any set of probability trees. Among them are the n-measurable functions
and the extended real-valued functions that are limits of non-decreasing se-
quences of non-negative n-measurable functions.

Regarding the computation of lower and upper expectations of measur-
able extended real-valued functions, optimising over all possible expectations
might be computationally infeasible if the set PT is infinite. Luckily, there
are types of imprecise stochastic processes for which we can efficiently com-
pute lower and expectation s of measurable extended real-valued functions.
One such type is introduced in the next section. Another type of imprecise
stochastic processes that we deal with in Chapter 5100 are the so-called im-
precise Markov chains. For such imprecise Markov chains, we will see that
we can select among different types of independence between the states of the
process, and that the efficiency of the computation of expectations will depend
on this selection.

3.7 IMPRECISE PROBABILITY TREES DERIVED FROM SETS OF

CONDITIONAL PROBABILITY MASS FUNCTIONS

In this section, we discuss a specific way for obtaining an imprecise probability
tree that is quite common in the practice of imprecise probabilities. Suppose
that we have an event tree, where to each situation a set of conditional prob-
ability mass functions is attached. For all x1:n ∈X ∗, we denote by Px1:n the
non-empty set of conditional probability mass functions associated with sit-
uation x1:n—for the initial situation, this set is denoted by P�. These sets
of conditional probability mass functions form a collection of local models,
which we denote by P . By taking all possible combinations of the condi-
tional probabilities of the local models Px1:n , for all x1:n ∈X ∗, we obtain an
imprecise probability tree, which is denoted by TP and defined as follows

TP :=
{

p ∈ PX : p(Xn+1|x1:n) ∈Px1:n for all n ∈ N0 and x1:n ∈X ∗}.
(3.28)
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Figure 3.3: The initial part of the imprecise probability tree of an imprecise
stochastic process with state space X = {0,1}, initial model P� and transi-
tion models Px1:n for all n ∈ N and all x1:n ∈X n.

In other words, by choosing a local model from Px1:n in each situation x1:n ∈
X ∗, we obtain a probability tree and TP is then the set of all such probability
trees. In Figure 3.3 we have depicted the initial part of an imprecise proba-
bility tree TP . Since TP is a set of probability trees, it has a corresponding
set PTP

of conditional probability measures on Cσ , which we will also de-
note by PP . The corresponding lower and upper expectations, as defined by
Equations (3.26)x and (3.27)x, will be denoted by EP and EP .

Let us now discuss the computation of EP and EP . First of all, for all
n ∈ N0 and all x1:n ∈X n, we can associate with the set Px1:n a lower and
an upper expectation operator, denoted by Q(·|x1:n) and Q(·|x1:n) respectively,
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which are defined by

Q( f |x1:n) := inf
{

∑
x∈X

f (x)p(x) : p ∈Px1:n

}
(3.29)

Q( f |x1:n) := sup
{

∑
x∈X

f (x)p(x) : p ∈Px1:n

}
, (3.30)

for all f ∈ L (X ). If n = 0, we also let Q
�
( f ) := Q( f |�) and Q�( f ) :=

Q( f |�) for all f ∈L (X ).
Consider any n-measurable function h(X1:n). If we let Q(h(X1:n)|X1:n−1)

be the (n−1)-measurable function that is defined by

Q(h(X1:n)|x1:n−1) := Q(h(x1:n−1,Xn)|x1:n−1) for all x1:n−1 ∈X n−1, (3.31)

and similarly for the upper one Q(h(X1:n)|X1:n−1), then we obtain the following
result, which can be regarded as a generalised version of the law of iterated
expectations.6

Theorem 21. Consider any n,m ∈ N0 such that n > m and any n-measurable
function h(X1:n). Then it holds that

EP(h(X1:n)|X1:m) = Q(Q(. . .Q(h(X1:n)|X1:n−1) . . . |X1:m+1)|X1:m);

EP(h(X1:n)|X1:m) = Q(Q(. . .Q(h(X1:n)|X1:n−1) . . . |X1:m+1)|X1:m).

Proof. We will only provide the proof for EP(h(X1:n)|X1:m); the proof for
EP(h(X1:n)|X1:m) is completely analogous. Fix any x1:m ∈X m. We start by
showing that EP(h(X1:n)|x1:m)≥EP(EP(h(X1:n)|X1:n−1)|x1:m). Observe that

EP(h(X1:n)|x1:m) = inf{EP(h(X1:n)|x1:m) : P ∈ PP}
= inf{EP

(
EP(h(X1:n)|X1:n−1))|x1:m

)
: P ∈ PP}

≥ inf{EP
(
EP′(h(X1:n)|X1:n−1))|x1:m

)
: P,P′ ∈ PP}

≥ inf{EP
(
EP(h(X1:n)|X1:n−1))|x1:m

)
: P ∈ PP}

=EP(EP(h(X1:n)|X1:n−1)|x1:m),

where the first and the last equality follow from Equation (3.26)80, the second
from Theorem 1775 and the second inequality holds because

EP
(
EP′(h(X1:n)|X1:n−1)|x1:m)≥ EP

(
EP(h(X1:n)|X1:n−1)|x1:m)

due to Lemma 103240 and the fact that, for all x′1:n−1 ∈X n−1 and all P′ ∈ PP

EP(h(X1:n)|x′1:n−1) = inf{EP(h(X1:n)|x′1:n−1) : P ∈ PP}
≤ EP′(h(X1:n)|x′1:n−1). (3.32)

6A generalised law of iterated expectations for imprecise stochastic processes whose local
models are closed and convex can be found in Reference [26, Theorem 7].
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We now prove that EP(h(X1:n)|x1:m)≤EP(EP(h(X1:n)|X1:n−1)|x1:m). Fix
any ε > 0. For any x′1:n−1 ∈X n−1, we have that

EP(h(X1:n)|x′1:n−1) = inf{EP(h(X1:n)|x′1:n−1) : P ∈ PP},

and hence, we know that there is some P∗ ∈ PP such that

EP∗(h(X1:n)|x′1:n−1)≤ EP(h(X1:n)|x′1:n−1)+ ε/2,

where, because of Equation (3.18)74, EP∗(h(X1:n)|x′1:n−1) depends only on the
local model attached to x′1:n−1. Therefore, because of Equation (3.28)80 [the
way the probability trees are constructed], there is some conditional probability
measure P′ ∈ PP such that

EP′(h(X1:n)|X1:n−1)≤ EP(h(X1:n)|X1:n−1)+ ε/2, (3.33)

where EP′(h(X1:n)|X1:n−1) depends only on the local models attached to situa-
tions in X n−1.

Moreover, there is some P′′ ∈ PP such that

EP′′(EP(h(X1:n)|X1:n−1)|x1:m)≤EP(EP(h(X1:n)|X1:n−1)|x1:m)+ε/2, (3.34)

where, because of Equation (3.18)74, EP′′(EP(h(X1:n)|X1:n−1)|x1:m) depends
only on the local models attached to situations in ∪n−2

i=1 X i.
Due to Equation (3.28)80 [the way the probability trees are constructed], we

know that there is some P ∈ PP such that for all x1:n−1 ∈X n−1, it holds that
P(X1:n|x1:n−1) = P′(X1:n|x1:n−1), and for all i∈ {1, . . . ,n−2} and all x1:i ∈X i,
that P(X1:i+1|x1:i) = P′′(X1:i+1|x1:i). Therefore, we find that

EP(h′(X1:n)|X1:n−1) = EP′(h
′(X1:n)|X1:n−1) for all h′(X1:n) ∈L (X n),

(3.35)
because both expectations depend only on the local models attached to situa-
tions in X n−1, and also that

EP(h′(X1:n−1)|x1:m) = EP′′(h
′(X1:n−1)|x1:m) for all h′(X1:n−1) ∈L (X n−1),

(3.36)
because both expectations depend only on the local models attached to situa-
tions in ∪n−2

i=1 X i. We now observe that

EP(h(X1:n)|x1:m) = EP(EP(h(X1:n)|X1:n−1)|x1:m)

=EP′′(EP(h(X1:n)|X1:n−1)|x1:m) = EP′′(EP′(h(X1:n)|X1:n−1)|x1:m), (3.37)

where the first equality comes from Theorem 1775, the second from Equa-
tion (3.36) and the last from Equation (3.35).

Due to Inequality (3.33) and Lemma 103240, Inequality (3.34) now be-
comes

EP′′(EP′(h(X1:n)|X1:n−1)− ε/2|x1:m)≤ EP(EP(h(X1:n)|X1:n−1)|x1:m)+ ε/2,
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and therefore, by combining Lemma 102240 with Lemma 106241, we have that

EP′′(EP′(h(X1:n)|X1:n−1)|x1:m)≤ EP(EP(h(X1:n)|X1:n−1)|x1:m)+ ε. (3.38)

By combining Inequality (3.38) with Equation (3.37)x, we infer that

EP(h(X1:n)|x1:m)≤ EP(EP(h(X1:n)|X1:n−1)|x1:m)+ ε,

and therefore that

EP(h(X1:n)|x1:m)≤ EP(EP(h(X1:n)|X1:n−1)|x1:m)+ ε, (3.39)

which follows from Inequality (3.32)82 [for P′ = P and x′1:n−1 = x1:m]. Since
Inequality (3.39) holds for any ε > 0, we have that

EP(h(X1:n)|x1:m)≤ EP(EP(h(X1:n)|X1:n−1)|x1:m).

Since x1:m ∈X m was taken arbitrarily, we have that EP(h(X1:n)|X1:m) =
EP(EP(h(X1:n)|X1:n−1)|X1:m) and continuing in this way, we find that

EP(h(X1:n)|X1:m) =EP(EP(h(X1:n)|X1:n−1)|X1:m)

=EP(EP(EP(h(X1:n)|X1:n−1)|X1:n−2)|X1:m)

=EP(EP(. . .EP(h(X1:n)|X1:n−1) . . . |X1:m+1)|X1:m).

The result now follows because

EP(h(X1)|�) = inf{EP(h(X1)) : P ∈ PP}

= inf
{

∑
x1∈X

h(x1)p(x1) : p ∈P�

}
= Q

�
(h) (3.40)

and because, for all k ∈ N, all h ∈L (X k+1) and all x1:k ∈X k :

EP(h(X1:k+1)|x1:k) = inf{EP(h(X1:k+1)|x1:k) : P ∈ PP}

= inf
{

∑
xk+1∈X

h(x1:k,xk+1)p(xk+1|x1:k) : p(xk+1|x1:k) ∈Px1:k

}
=Q(h(X1:k+1)|x1:k), (3.41)

where the first equalities in both equations come from Equation (3.26)80, the
second from Equation (3.18)74 and the last from Equation (3.29)82.

Theorem 2182 tells us that for any n,m ∈N0 such that n > m, we can com-
pute the lower or upper expectation of any n-measurable function conditional
on any situation x1:m ∈ X m by solving local optimisation problems instead
of optimising over all probability trees in TP . Note that the sets Px1:n , from
which we derive the lower and upper expectations Q(·|x1:n) and Q(·|x1:n), are
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kept general so far. Therefore, Theorem 2182 covers also the cases where Px1:n
are credal sets or derived from two probability intervals I1 and I2 and have the
form of ΨI1,I2 given by Equation (2.9)48.

For the purposes of this dissertation, we also need efficient computational
methods for lower and upper expectations of more general extended measur-
able real-valued functions on Ω. Results that are similar to Theorem 1775 apply
for such functions as well. However, for the computation of the global mod-
els of more general extended measurable real-valued function on Ω, we adopt
an alternative approach that is based on submartingales rather than probability
trees, and which is described in Chapter 4y. The reason why we do that is
because this approach is in some respects more powerful than the one based
on imprecise probability trees, does not require any measurability conditions
for the function under study, and can be shown to coincide with the approach
based on imprecise probability trees for at least some types of functions.
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4
A MARTINGALE-THEORETIC APPROACH

FOR IMPRECISE DISCRETE-TIME

STOCHASTIC PROCESSES

In the previous chapter, we introduced imprecise stochastic processes whose
local models were sets of conditional probability mass functions. Here we fo-
cus on imprecise stochastic processes whose local models are lower and upper
expectations. Our approach for deriving global models is based on the con-
cept of sub- and supermartingales. We derive our global models directly from
the local lower and upper expectations of the imprecise stochastic process,
which implies that our approach is not necessarily connected with (all kinds
of ways of constructing) sets of probability trees. The derived global models
allow us to define global lower and upper expectations of any—not necessarily
measurable—extended real-valued function on Ω.

We then prove a number of properties for these global models. Among
them are generalised versions of C144–C845 and the law of iterated expecta-
tions. Moreover, we investigate how the martingale-theoretic approach is con-
nected with the measure-theoretic one introduced in the previous chapter. For
n-measurable functions, we find that the two approaches coincide (for specific
ways of constructing the set of probability trees). For extended real-valued
functions on Ω that are limits of non-decreasing sequences of non-negative n-
measurable functions, the martingale-theoretic approach is “at most as precise
as” the measure-theoretic one, in the sense that the global lower expectations
obtained by the martingale-theoretic approach are shown to be smaller than or
equal to the ones obtained by the measure-theoretic approach and vice versa
for the global upper expectations.
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4.1 NOTATION

The notation introduced in Section 3.158 still applies and we now add some
more elements. Instead of the notation x1:n, we also use the generic notations
s, t, u and v for situations in X ∗. Moreover, instead of Γ(s), we will also
use the notation (s•) for all the paths that go through situation s. Regarding
concatenation, for all n∈N0, the concatenation of any situation x1:n ∈X n with
the state Xn+1 at time n+1 will also be denoted by (x1:n, ·), where ‘ ·’ represents
the generic value of the next state Xn+1. We also concatenate situations with
infinite sequences of states and this is denoted by (x1:n,Xn+1:∞) or (s,Xn+1:∞),
for all n ∈ N0 and all s,x1:n ∈X n. Recall that the initial situation works as
neutral element in the concatenation.

4.2 SUB- AND SUPERMARTINGALES

We first provide some basic information concerning sub- and supermartingales,
starting with some preliminaries about processes. A real process U is a real-
valued map defined on X ∗, which associates a real number U (x1:n) ∈ R with
any situation x1:n ∈ X ∗. A gamble process is a map from X ∗ to L (X ),
which associates with any situation x1:n ∈X ∗ a gamble in L (X )—in fact,
a gamble on Xn+1. With any real process U , we can always associate a cor-
responding gamble process ∆U , called the process difference. For every sit-
uation x1:n ∈X ∗, the corresponding gamble ∆U (x1:n) ∈ L (X ) is defined
by

∆U (x1:n)(xn+1) := U (x1:n,xn+1)−U (x1:n) for all xn+1 ∈X .

As mentioned in the preamble of this chapter, the local models of the im-
precise stochastic processes that we consider are represented by lower and up-
per expectations, that is Q(·|x1:n) and Q(·|x1:n) respectively for all x1:n ∈X ∗,
where Q(·|x1:n) satisfies the properties introduced in the beginning of Sec-
tion 2.444 and Q(·|x1:n) is its conjugate upper expectation. These lower and
upper expectations could be derived from local sets of probability mass func-
tions Px1:n using Equations (3.29)82 and (3.30)82, but they can also be given
directly.

A submartingale M is then a real process such that

Q(∆M (x1:n)|x1:n)≥ 0 for all n ∈ N0 and all x1:n ∈X n (4.1)

or, in other words, a process that is expected to increase. A supermartingale is
a real process M such that −M is a submartingale, or equivalently, because
of conjugacy, such that

Q(∆M (x1:n)|x1:n)≤ 0 for all n ∈ N0 and all x1:n ∈X n (4.2)

or, in other words, a process that is expected to decrease. A submartingale is
uniformly bounded above if there is some c ∈ R, such that M (x1:n) ≤ c for
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all x1:n ∈X ∗. A supermartingale M is uniformly bounded below if −M is
uniformly bounded above, or equivalently, if there is some c ∈ R, such that
M (x1:n) ≥ c for all x1:n ∈X ∗. The set of all uniformly bounded above sub-
martingales is denoted by M, and the set of all uniformly bounded below su-
permartingales is denote by M; clearly, we have that M=−M.

4.3 AN ALTERNATIVE APPROACH FOR GLOBAL MODELS

We now present an approach for defining global models that is based on sub-
and supermartingales as well as some basic properties that are satisfied by these
global models. This approach is inspired by the game-theoretic probability
framework proposed by Shafer and Vovk; see Reference [25, 26, 66]. The
properties of this approach are (at least for now) better understood and it can
easily be applied to any—not necessarily measurable—extended-real valued
function. Another advantage of this approach is that it works directly with the
lower and upper expectations that represent our local models.

4.3.1 Defining global models

The global models that we are about to construct will provide lower and upper
expectations of extended real-valued functions on Ω. The link between the
lower and upper expectations of extended real-valued functions and the local
models of our imprecise stochastic processes is established by means of the
sub- and supermartingales of the previous subsection.

First, for any real process U (and therefore, in particular, for any sub-
or supermartingale), we consider the extended real-valued functions liminfU
and limsupU on Ω, defined for all ω ∈Ω by

liminfU (ω) := liminf
n→∞

U (ωn) and limsupU (ω) := limsup
n→∞

U (ωn).

Next, we use these functions to define conditional global lower and upper ex-
pectations. For any s ∈X ∗ and any extended real-valued function g on Ω, the
conditional global lower expectation of g is denoted by EQ(g|s) and defined as

EQ(g|s) := sup
{
M (s) : M ∈M and limsupM (ω)≤ g(ω)

for all ω ∈ Γ(s)
}
. (4.3)

Similarly, the conjugate conditional global upper expectation of g is EQ(g|s)
and defined as

EQ(g|s) := inf
{
M (s) : M ∈M and liminfM (ω)≥ g(ω)

for all ω ∈ Γ(s)
}
. (4.4)
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For s = � in the definitions above, we obtain the unconditional global lower
and upper expectations of g, which we denote by EQ(g) and EQ(g). Notice
that, because of the conjugacy between Q and Q, we can write EQ(g|s) instead
of EQ(g|s) and EQ(g|s) instead of EQ(g|s).

We now provide an interpretation of the aforementioned definitions. Basi-
cally, a submartingale M can be interpreted as a capital process, in the sense
that it represents the evolution of a subject’s monetary capital, of which the lo-
cal changes ∆M (x1:n) are expected (on ‘average’) to either increase this capi-
tal or keep it steady because their local lower expectation Q(∆M (x1:n)|x1:n)
is non-negative, for all x1:n ∈ X ∗. The assumption is then that, since all
these local increases are expected to be at most non-negative, the value of
limsupM (x1:n,Xn+1:∞) should be expected to be at least the starting capital
M (x1:n). Therefore, M (x1:n) can be seen as a supremum buying price for
the—possibly extended—real-valued gamble limsupM (x1:n,Xn+1:∞). This
implies that for a given extended real-valued function g on Ω, if for all ω ∈
Γ(x1:n), limsupM (ω) ≤ g(ω), then M (x1:n) is a buying price for g, which,
due to the behavioural interpretation of lower expectations as supremum buy-
ing prices, leads us to Equation (4.3)x. Equation (4.4)x follows from a similar
argument or from conjugacy. The reason why we only consider submartin-
gales that are bounded above is because otherwise it is possible to end up
with EQ(g|s) =−∞ and EQ(g|s) = +∞; see Reference [25, Example 1]. Also,
from an interpretational point of view, that a supermartingale is bounded below
means that the subject is not allowed to borrow unlimited amounts of money.
Detailed technical, interpretational and philosophical discussions about the
aforementioned definitions and other closely related so-called game-theoretic
definitions of lower and upper expectations can be found in References [26,66].

4.3.2 Properties of the global models

In this section, we present some useful properties that are satisfied by the global
models defined by Equations (4.3)x and (4.4)x. We start with a technical
lemma that is used multiple times in the proofs of this section.

Lemma 22. Consider any submartingale M and any situation s ∈X ∗, then:

M (s)≤ sup
ω∈Γ(s)

liminfM (ω)≤ sup
ω∈Γ(s)

limsupM (ω).

Proof. Consider any real α , and assume that M (s) > α . Assume that s =
x1:n with n ∈ N0. Since M is a submartingale, we know that Q(M (x1:n, ·)−
M (x1:n)|x1:n)≥ 0, and therefore, it follows from properties C545 and C845 and
the assumption, that

maxM (x1:n, ·)≥ Q(M (x1:n, ·)|x1:n)≥M (x1:n)> α,
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implying that there is some xn+1 ∈ X such that M (x1:n+1) > α . Repeat-
ing the same argument over and over again, this leads to the conclusion that
there is some ω ∈ Γ(x1:n) such that M (ωn+k) > α for all k ∈ N0, whence
liminfM (ω)≥ α , and therefore also supω∈Γ(x1:n)

liminfM (ω)≥ α . The rest
of the proof is now immediate.

The next three results show the behaviour of the defined global models on
n-measurable functions.1

Proposition 23. Consider any m,n ∈N0 such that n≥m, any x1:m ∈X m and
any n-measurable extended real-valued function h(X1:n). Then

EQ
(
h(X1:n)|x1:m

)
=

sup
{
M (x1:m) : M ∈M and (∀xm+1:n ∈X n−m)M (x1:n)≤ h(x1:n)

}
;

EQ
(
h(X1:n)|x1:m

)
=

inf
{
M (x1:m) : M ∈M and (∀xm+1:n ∈X n−m)M (x1:n)≥ h(x1:n)

}
.

Proof. We sketch the idea of the proof of the equality for the lower expecta-
tions; the proof for the upper expectations is completely similar. For simplicity
of notation, let

R := sup
{
M (x1:m) : M ∈M and (∀xm+1:n ∈X n−m)M (x1:n)≤ h(x1:n)

}
.

First, consider any submartingale M such that M (x1:n) ≤ h(x1:n) for all
xm+1:n ∈X n−m. Consider the submartingale M ′ derived from M by keep-
ing it constant as soon as any situation in X n is reached , then clearly M ′ is
bounded above, limsupM ′(ω) ≤ h(ω) for all ω ∈ Γ(x1:m), and M (x1:m) =
M ′(x1:m). Hence it follows from the definition of the global model in Equa-
tion (4.3)88 that M (x1:m)≤ EQ(h(X1:n)|x1:m), whence R≤ EQ(h(X1:n)|x1:m).

For the converse inequality, consider any bounded above submartingale
M for which it holds that limsupM (ω) ≤ h(ω) for all ω ∈ Γ(x1:m). Fix
any xm+1:n ∈X n−m, then it follows from the n-measurability of h(X1:n) that
limsupM (ω)≤ h(x1:n) for all ω ∈ Γ(x1:n), whence

M (x1:n)≤ sup
ω∈Γ(x1:n)

limsupM (ω)≤ h(x1:n),

where the first inequality follows from Lemma 22x [for s := x1:n]. This implies
that M (x1:m)≤ R, and therefore also EQ(h(X1:n)|x1:m)≤ R.

1 In Chapter 357 we introduced the convention that n-measurable functions are real-valued.
As we will also work with n-measurable functions that are extended real-valued, whenever this is
the case, we will explicitly mention that the n-measurable function is extended real-valued—see
Proposition 23 and Corollary 24y.
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Corollary 24. Consider any m,n ∈ N0 such that n ≥ m, any x1:m ∈X m and
any n-measurable extended real-valued function h(X1:n). Then

EQ
(
h(X1:n)|x1:m

)
= sup

{
EQ
(
h′(X1:n)|x1:m

)
: h′ ∈L (X n) and

(∀xm+1:n ∈X n−m)h′(x1:n)≤ h(x1:n)
}

;

EQ
(
h(X1:n)|x1:m

)
= inf

{
EQ
(
h′(X1:n)|x1:m

)
: h′ ∈L (X n) and

(∀xm+1:n ∈X n−m)h′(x1:n)≥ h(x1:n)
}
.

Proof. We give the proof for the lower expectations; the proof for the upper
expectations is completely similar. For simplicity of notation, let

R := sup
{

EQ
(
h′(X1:n)|x1:m

)
: h′ ∈L (X n) and

(∀xm+1:n ∈X n−m)h′(x1:n)≤ h(x1:n)
}
.

It follows from Proposition 23x that EQ(h
′(X1:n)|x1:m)≤ EQ(h(X1:n)|x1:m) for

all h′ ∈ L (X n) such that h′(x1:m,xm+1:n) ≤ h(x1:m,xm+1:n) for all xm+1:n ∈
X n−m, and therefore also R≤ EQ(h(X1:n)|x1:m).

Conversely, consider any submartingale M such that M (x1:m,xm+1:n) ≤
h(x1:m,xm+1:n) for all xm+1:n ∈X n−m. If we define the n-measurable func-
tion h′(X1:n) on Ω by letting h′(x1:n) := M (x1:n) for all x1:n ∈ X n, then it
follows from Proposition 23x that M (x1:m)≤ EQ(h

′(X1:n)|x1:m), and since
by assumption h′(x1:m,xm+1:n) ≤ h(x1:m,xm+1:n) for all xm+1:n ∈X n−m, also
that EQ(h

′(X1:n)|x1:m) ≤ R. Hence M (x1:m) ≤ R, and therefore, by Proposi-
tion 23x, EQ(h(X1:n)|x1:m)≤ R.

Corollary 25. Consider any n∈N0, any situation x1:n ∈X n, and any (n+1)-
measurable function h(X1:n+1). Then

EQ(h(X1:n+1)|x1:n) = Q(h(x1:n, ·)|x1:n);

EQ(h(X1:n+1)|x1:n) = Q(h(x1:n, ·)|x1:n).

Proof. We give the proof for the lower expectation; the proof for the upper
expectation is completely similar.

First, consider any M ∈M such that M (x1:n, ·)≤ h(x1:n ·), then it follows
from properties C445 and C845 and the submartingale character of M that

Q(h(x1:n, ·)|x1:n)≥ Q(M (x1:n, ·)|x1:n)≥M (x1:n),

so Proposition 23x guarantees that EQ(h(X1:n+1)|x1:n)≤ Q(h(x1:n, ·)|x1:n).
To show that the inequality is actually an equality, consider any submartin-

gale M such that M (x1:n) = Q(h(x1:n, ·)|x1:n) and M (x1:n, ·) = h(x1:n, ·).
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We end this section by proving three interesting and very useful results
about the global models. The first summarises and extends properties first
proved by Shafer and Vovk (see for instance References [66, Chapter 8.3], [65,
Section 2] and [5, Section 6.3]), in showing that these global models satisfy
properties that extend the properties C144–C845 for lower and upper expec-
tations from gambles to extended real-valued functions. We provide, for the
sake of completeness, proofs that are very close to the ones given by Shafer
and Vovk [65, Section 2].

Proposition 26. Consider any s ∈ X ∗, any µ ∈ R, any λ ∈ R≥0 and any
extended real-valued functions g,g′ on Ω. Then

G1. EQ(g|s)≥ inf{g(ω) : ω ∈ Γ(s)};

G2. EQ(g+g′|s)≥ EQ(g|s)+EQ(g
′|s);

G3. EQ(λg|s) = λEQ(g|s);

G4. if g′ ≤ g on Γ(s), then

EQ(g
′|s)≤ EQ(g|s) and EQ(g′|s)≤ EQ(g|s);

as a consequence, if g′ = g on Γ(s), then

EQ(g
′|s) = EQ(g|s) and EQ(g′|s) = EQ(g|s);

G5. inf{g(ω) : ω ∈ Γ(s)} ≤ EQ(g|s)≤ EQ(g|s)≤ sup{g(ω) : ω ∈ Γ(s)};

G6. EQ(g+µ|s) = µ +EQ(g|s) and EQ(g+µ|s) = µ +EQ(g|s).

In these expressions, we use the convention that ∞+∞=∞,−∞+(−∞)=−∞,
−∞+∞ = ∞+(−∞) = −∞, a+∞ = ∞+ a = ∞, a+(−∞) = −∞+ a = −∞

for all real a, and 0 ·±∞ =±∞ ·0 = 0.2

Proof. G1. If inf{g(ω) : ω ∈ Γ(s)} = −∞, then the inequality is trivially sat-
isfied. Consider therefore any real L ≤ inf{g(ω) : ω ∈ Γ(s)}, and the sub-
martingale M that assumes the constant value L everywhere. Then surely
M is bounded above, limsupM (s•) = L ≤ g(s•) and M (s) = L, so Equa-
tion (4.3)88 guarantees that indeed L≤ EQ(g|s).

G2. When EQ(g|s) or EQ(g
′|s) is equal to −∞, then so is their sum, and

the inequality holds trivially. Assume therefore that both EQ(g|s)>−∞ and
EQ(g

′|s)>−∞. This implies that there are bounded above submartingales M1

2This is the extended addition that is convenient for working with lower expectations; for the
dual upper expectations, we need to introduce a dual operator, defined by a+∗ b :=−[(−a)+(−b)]
for all extended real a and b.
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and M2 such that limsupM1(s•)≤ g(s•) and limsupM2(s•)≤ g′(s•). Con-
sider any such submartingales M1 and M2, then it follows from property C244
of the local models that M := M1 +M2 is a bounded above submartingale as
well. Since

limsupM (s•)≤ limsupM1(s•)+ limsupM2(s•)≤ g(s•)+g′(s•),3

where the second inequality holds due to the convention introduced and the
fact that limsupM1(s•)≤ g(s•) and limsupM2(s•)≤ g′(s•), we infer from
Equation (4.3)88 that indeed EQ(g+g′|s)≥ EQ(g|s)+EQ(g

′|s).
G3x. For λ > 0, it suffices to observe that if M is a bounded above sub-

martingale such that limsupM (s•) ≤ g(s•), then the process λM is also
a bounded above submartingale such that limsup[λM (s•)] ≤ λg(s•), and
vice versa. For λ = 0, we infer on the one hand from property G1x and
Lemma 2289 that EQ(λg|s) = EQ(0|s) = 0, and on the other hand we also
know that 0 ·EQ(g|s) = 0.

G4x. Due to conjugacy, it suffices to prove the first inequality. It is trivially
satisfied if EQ(g

′|s) =−∞. Assume therefore that EQ(g
′|s)>−∞, meaning

that there is some bounded above submartingale M such that limsupM (s•)≤
g′(s•). Consider any such submartingale M , then we have that

limsupM (s•)≤ g′(s•)≤ g(s•),

which implies that M (s)≤ E(g|s), and therefore that EQ(g
′|s)≤ EQ(g|s).

G5x. Suppose ex absurdo that EQ(g|s)> EQ(g|s) =−EQ(−g|s). This
implies that also EQ(g|s)+EQ(−g|s)> 0, but then property G2x tells us that
also EQ(g+(−g)|s)> 0. Now the extended real-valued function g+(−g) as-
sumes only the values 0 and−∞, and therefore g+(−g)≤ 0, so we infer from
property G4x that EQ(g+(−g)|s)≤ EQ(0|s) = 0, where the last equality fol-
lows from property G3x. This is a contradiction. The remaining inequalities
are now trivial.

G6x. Due to conjugacy, it suffices to prove the first equality. If M is
a bounded above submartingale such that limsupM (s•) ≤ g(s•) + µ , then
M − µ is a bounded above submartingale such that limsup[M (g•)− µ] ≤
g(s•), and vice versa.

Our second result follows immediately from the definition of the global
model given by Equation (4.3)88 and therefore it is stated without proof.

3The first inequality holds for bounded above submartingales, but may fail for more gen-
eral ones. Indeed, assume that on some path ω , M1(ω

n) = 2n and M2(ω
n) = −n. Then

limsupM1(ω) = +∞, limsupM2(ω) = −∞, and limsup[M1(ω) +M2(ω)] = +∞, so the in-
equality is violated.
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Proposition 27. Consider any n ∈ N0 and any x1:n ∈X n. Then for any ex-
tended real-valued function g on Ω, we have that

EQ(g|x1:n) = EQ(g(x1:n,Xn+1:∞)|x1:n).

If we regard the conditional lower expectation EQ(g|x1:m) as a function of
x1:m, and we interpret this function EQ(g|X1:m) as a (possibly extended) real-
valued function on Ω, then we obtain our third result, which can be regarded
as a generalisation of the law of iterated expectations. Our formulation gener-
alises a result by Shafer and Vovk [66, Proposition 8.7], whose proof can only
be guaranteed to work for bounded real-valued functions; we provide a proof
that is better suited for dealing with extended real-valued ones.

Theorem 28 (Law of iterated expectations). Consider any n,m ∈N0 such that
m≤ n. Then for any extended real-valued function g on Ω, it holds that

EQ(g|X1:m) = EQ(EQ(g|X1:n)|X1:m).

Proof. Fix any z1:m ∈X m. Due to Proposition 27x, we prove that

EQ(g|z1:m) = EQ(EQ(g|z1:m,Xm+1:n)|z1:m).

First, consider any bounded above submartingale M ∈ M for which it
holds that limsupM (z1:m •) ≤ g(z1:m •). Then also, for any xm+1:n ∈X n−m,
limsupM (z1:m,xm+1:n •) ≤ g(z1:m,xm+1:n •), which, due to Equation (4.3)88
[for s :=(z1:m,xm+1:n)], implies that M (z1:m,xm+1:n)≤EQ(g|z1:m,xm+1:n). Fur-
thermore, this implies that M (z1:m,Xm+1:n) ≤ EQ(g|z1:m,Xm+1:n), and there-
fore we infer from Proposition 2692 [property G492 for s := z1:m], that also
EQ(M (z1:m,Xm+1:n)|z1:m)≤EQ(EQ(g|z1:m,Xm+1:n)|z1:m). Since it follows triv-
ially from Proposition 2390 that M (z1:m)≤ EQ(M (z1:m,Xm+1:n)|z1:m), this al-
lows us to infer that M (z1:m) ≤ EQ(EQ(g|z1:m,Xm+1:n)|z1:m). If we now use
Equation (4.3)88 [for s := z1:m], we find that

EQ(g|z1:m)≤ EQ(EQ(g|z1:m,Xm+1:n)|z1:m).

For the converse inequality, consider any function h ∈L (X n) such that
h(z1:m,xm+1:n) ≤ EQ(g|z1:m,xm+1:n) for all xm+1:n ∈ X n−m. Fix any ε > 0.
It then follows from Equation (4.3)88 [for s := (z1:m,xm+1:n)] that, for any
xm+1:n ∈ X n−m, there is some bounded above submartingale Mxm+1:n such
that

Mxm+1:n(z1:m,xm+1:n)≥ h(z1:m,xm+1:n)−
ε

2
and limsupMxm+1:n(z1:m,xm+1:n •)≤ g(z1:m,xm+1:n •).
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Now consider any h′ ∈L (X n) such that

h′(z1:m,xm+1:n) = Mxm+1:n(z1:m,xm+1:n)≥ h(z1:m,xm+1:n)−
ε

2
for all xm+1:n ∈X n−m,

then it follows from Proposition 2390 that there is a submartingale M ′ such
that M ′(z1:m)> EQ(h

′(X1:n)|z1:m)− ε

2 and M ′(z1:m,xm+1:n)≤ h′(z1:m,xm+1:n)

for all xm+1:n ∈X n−m. Now consider a submartingale M that assumes the
constant value M ′(z1:m) in all situations t ∈X ∗ such that either t = z1:m or
Γ(t) 6⊆ Γ(z1:m) and that moreover

∆M (z1:m,xm+1:k) =

{
∆M ′(z1:m,xm+1:k) if k < n
∆Mxm+1:n(z1:m,xm+1:k) if k ≥ n

for all k ≥ m and xm+1:k ∈X k−m.

It then follows that M (z1:m,xm+1:k) ≤Mxm+1:n(z1:m,xm+1:k) for all k ≥ n and
xm+1:k ∈ X k−m and, therefore, we find that M is bounded above and that
limsupM (z1:m,xm+1:n •)≤ g(z1:m,xm+1:n •) for all xm+1:n ∈X n−m, which im-
plies that limsupM (z1:m •)≤ g(z1:m, •), and also that EQ(g|z1:m)≥M (z1:m),
by applying Equation (4.3)88 [for s = z1:m]. Since M (z1:m) = M ′(z1:m) >
EQ(h

′(X1:n)|z1:m)− ε

2 , we find that EQ(g|z1:m) > EQ(h
′(X1:n)|z1:m)− ε

2 . Fur-
thermore, because h′(z1:m,Xm+1:n)≥ h(z1:m,Xm+1:n)− ε

2 , it follows from Propo-
sition 2793 and property G492 that

EQ(h
′(X1:n)|z1:m) =EQ(h

′(z1:m,Xm+1:n)|z1:m)

≥EQ

(
h(z1:m,Xm+1:n)−

ε

2

∣∣∣∣z1:m

)
= EQ

(
h(X1:n)−

ε

2

∣∣∣∣z1:m

)
,

which, due to G692, implies that EQ(h
′(X1:n)|z1:m) ≥ EQ(h(X1:n)|z1:m)− ε

2 .
Hence, we find that EQ(g|z1:m) > EQ(h(X1:n)|z1:m)− ε . Since this holds for
any ε > 0, we find that EQ(g|z1:m)≥ EQ(h(X1:n)|z1:m) and since this holds for
any h∈L (X n) such that h(z1:m,xm+1:n)≤ EQ(g|z1:m,xm+1:n) for all xm+1:n ∈
X n−m, it follows from Corollary 2491 that

EQ(g|z1:m)≥ EQ(EQ(g|z1:m,Xm+1:n)|z1:m).

The conditional upper expectations of Equation (4.4)88 satisfy suitably
adapted versions of Proposition 2793 and Theorem 28x; they follow imme-
diately from conjugacy and the respective version for lower expectations.

4.4 CONNECTION WITH MEASURE-THEORETIC APPROACH

Consider any imprecise stochastic process whose local models are sets of con-
ditional probability mass functions Px1:n for all x1:n ∈ X ∗, then we derive
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4.4 CONNECTION WITH MEASURE-THEORETIC APPROACH

our global lower and upper expectations EP and EP using Equations (3.26)80
and (3.27)80—for PT = PP . Since from each Px1:n we can derive local mod-
els Q(·|x1:n) and Q(·|x1:n) using Equations (3.29)82 and (3.30)82, we can also
derive global lower and upper expectations EQ and EQ using Equations (4.3)88
and (4.4)88. Therefore, we have two types of global models, namely the
measure-theoretic and the martingale-theoretic ones, and our goal in this sec-
tion is to investigate the connection between them. That is, we ask ourselves
whether the global lower and upper expectations EQ and EQ coincide with
EP and EP respectively for various types of measurable extended real-valued
functions on Ω.

Starting with n-measurable functions, we find that the global models de-
rived from the martingale-theoretic approach and the respective ones derived
from the measure-theoretic approach coincide if the event on which we condi-
tion belongs to X ∗.4

Theorem 29. Consider any m,n ∈ N0 such that m ≤ n, any x1:m ∈X m and
any n-measurable function h(X1:n). It then holds that

EQ(h(X1:n)|x1:m) = EP(h(X1:n)|x1:m);

EQ(h(X1:n)|x1:m) = EP(h(X1:n)|x1:m).

Proof. We provide the proof for the lower expectations; the proof for the upper
expectations is completely similar. It follows from Theorem 2894 and Corol-
lary 2591 that

EQ(h(X1:n)|x1:m) = Q(Q(. . .Q(h(X1:n)|X1:n−1) . . . |X1:m+1)|x1:m), (4.5)

which, by Theorem 2182, implies that indeed

EQ(h(X1:n)|x1:m) = EP(h(X1:n)|x1:m).

In the remainder of this section, we show how the two approaches are
connected for extended real-valued functions on Ω that are limits of non-
decreasing sequences of n-measurable functions. This is done in several steps.
First, we recall a property proved by [24, Theorem 3] that is satisfied by the
global models of the martingale-theoretic approach. This property states that
the global lower expectation of the extended real-valued function on Ω co-
incides with the limit of the global lower expectations of the n-measurable
functions of the non-decreasing sequence.

4A similar result for imprecise Markov chains is proved in Reference [26, Section 8]. More-
over, the two approaches also coincide with Williams’ natural extension. More information on
Williams’ natural extension can be found in References [74, 83, 84].
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4.4 CONNECTION WITH MEASURE-THEORETIC APPROACH

Theorem 30 ([24, Theorem 3]). Consider any situation s ∈X ∗ and any ex-
tended real-valued function g on Ω for which there is a non-decreasing se-
quence of n-measurable functions {hn}n∈N such that limn→+∞ hn = g. Then

EQ(g|s) = lim
n→+∞

EQ(hn|s).

In our next step, we investigate the connection between the two approaches
for stochastic processes, i.e when the local models are (precise, linear) expec-
tations, denoted by Q(·|x1:n) for all x1:n ∈ X ∗. In this case, the collection
of all local models Q(·|x1:n) will be denoted by Q, and for any s ∈X ∗, the
global lower and upper expectation of any extended real-valued function g on
Ω derived from the martingale-theoretic approach will be denoted by EQ(g|s)
and EQ(g|s) respectively. Moreover, since each Q(Xn+1|x1:n) can be uniquely
represented by a probability mass function p(Xn+1|x1:n), we have a probability
tree p that—because of Theorem 1571—corresponds to a unique conditional
probability measure P on C ∗σ and therefore, we infer that there is a one-to-one
correspondence between Q and P. The following property tells us that EQ(g|s)
coincides with EP(g|s) when g is a limit of a non-decreasing sequence of non-
negative n-measurable functions.

Theorem 31. Consider any situation s ∈X ∗ and any extended real-valued
function g on Ω for which there is a non-decreasing sequence of non-negative
n-measurable functions {hn}n∈N such that limn→+∞ hn = g. Then it holds that

EQ(g|s) = EP(g|s).

Proof. It follows from Theorem 30x that

EQ(g|s) = lim
n→+∞

EQ(hn|s). (4.6)

Due to Equation (3.19)75, we have that

EP(g|s) = lim
n→+∞

EP(hn|s). (4.7)

Moreover, it follows from Theorem 29x and the unicity of p and its corre-
sponding P that for all n ∈ N

EQ(hn|s) = EP(hn|s),

which implies that

lim
n→+∞

EQ(hn|s) = lim
n→+∞

EP(hn|s) (4.8)

The result now follows from Equations (4.6) , (4.7) and (4.8).

Before we prove our main result of this section, we present one more prop-
erty that is satisfied by the global models of the martingale-theoretic approach,
which goes as follows.
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Lemma 32. Consider any imprecise stochastic process whose local models
are lower expectations Q(·|t), and any stochastic process whose local models
are expectations Q(·|t) such that Q( f |t) ≥ Q( f |t) for all t ∈X ∗ and all f ∈
L (X ). For any s∈X ∗ and any extended real-valued function g on Ω, it then
holds that

EQ(g|s)≤ EQ(g|s)≤ EQ(g|s)≤ EQ(g|s).

Proof. First of all, it follows from property G592 that EQ(g|s)≤ EQ(g|s). Re-
garding the rest of the inequalities, we only prove that EQ(g|s)≤ EQ(g|s); the
proof for the upper case is completely similar.

Consider any bounded above submartingale M with respect to Q(·|·) such
that limsupM (ω)≤ g(ω) for all ω ∈ Γ(s). For all t ∈X ∗, it then holds that

Q(∆M (t)|t)≥ Q(∆M (t)|t)≥ 0,

where the first inequality holds because Q( f |t) ≥ Q( f |t) for all f ∈ L (X )
and the second follows from Equation (4.1)87. Therefore, we infer that M
is also a submartingale with respect to Q(·|·) and consequently, we have that
M (s)≤ EQ(g|s). Hence EQ(g|s)≤ EQ(g|s).

Finally, we have the following property which tells us that the global lower
and upper expectations of the martingale-theoretic approach are “at most as
precise as”—at least as conservative as—those derived from the measure-theoretic
approach. Note that for all t ∈X ∗, the local models Q(·|t) and Q(·|t) are now
given by Equations (3.29)82 and (3.30)82.

Theorem 33. Consider any situation s ∈X ∗ and any extended real-valued
function g on Ω for which there is a non-decreasing sequence of non-negative
n-measurable functions {hn}n∈N such that limn→+∞ hn = g. Then it holds that

EQ(g|s)≤ EP(g|s)≤ EP(g|s)≤ EQ(g|s).

Proof. We only prove that EQ(g|s)≤ EP(g|s) and that EP(g|s)≤ EQ(g|s);
the proof for EP(g|s)≤EP(g|s) follows from Equations (3.26)80 and (3.27)80.

Let G be the set of all collections Q such that Q( f |t) ≥ Q( f |t), for all
t ∈X ∗ and all f ∈L (X ), then it follows from Lemma 32 that for all Q ∈ G ,
EQ(g|s)≤ EQ(g|s), which implies that

EQ(g|s)≤ inf
Q∈G

EQ(g|s). (4.9)

It now follows from Theorem 31x that each P ∈ PP has a corresponding
collection Q ∈ G such that EQ(g|s) = EP(g|s). Hence

inf
Q∈G

EQ(g|s)≤ inf
P∈PP

EP(g|s). (4.10)
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Combining now Equation (4.10)x with Equation (3.26)80, we have that

inf
Q∈G

EQ(g|s)≤ EP(g|s),

which, due to Inequality (4.9)x, implies that EQ(g|s)≤ EP(g|s).
We now prove that EQ(g|s) ≥ EP(g|s). It follows from Lemma 32x that

for all Q ∈ G , EQ(g|s)≥ EQ(g|s), which implies that

sup
Q∈G

EQ(g|s)≤ EQ(g|s). (4.11)

It also follows from property G592 that EQ(g|s) ≤ EQ(g|s), for all Q ∈ G ,
which implies that

sup
Q∈G

EQ(g|s)≤ sup
Q∈G

EQ(g|s). (4.12)

Moreover, due to Theorem 3197, each P ∈ PP has a corresponding collection
Q ∈ G such that EQ(g|s) = EP(g|s) and therefore, we find that

sup
P∈PP

EP(g|s)≤ sup
Q∈G

EQ(g|s),

and by combining the aforementioned inequality with Inequality (4.12), we
infer that

sup
P∈PP

EP(g|s)≤ sup
Q∈G

EQ(g|s) (4.13)

Since EP(g|s) = supP∈PP
EP(g|s), by combining Inequality (4.13) with In-

equality (4.11), we finally find that EP(g|s)≤ EQ(g|s).

In Chapter 6151, we will see that for the function of first-passage times,
which is a measurable extended real-valued function on Ω, the inequalities
presented in Theorem 33x are in fact equalities. Since we do not have an
example where these inequalities are strict, we conjecture that the martingale-
theoretic approach may coincide with the measure-theoretic one on the domain
of measurable functions on Ω.
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5
IMPRECISE DISCRETE-TIME MARKOV

CHAINS

We now focus on a family of discrete-time stochastic processes, the so-called
Markov chains, which are named after Andrey Andreyevich Markov who first
introduced them [55]. These are stochastic processes that satisfy the Markov
property, which is a “memorylessness” property, in the sense that our beliefs
about the future state of the process depend only on the present state of the pro-
cess and not on its past states. Due to the Markov property, Markov chains can
be described by a reduced number of local models, which makes them appli-
cable to various scientific fields and also reduces the complexity of inference
problems.

We provide a brief analysis of classical discrete-time Markov chains. Sim-
ilarly to the general stochastic processes that were introduced in Chapter 357,
we build our Markov chains from probability trees. We also introduce two
additional types of functions. The first are the functions f (Xn) that depend on
a single state at some time point n ∈ N; we show how we can compute their
expectations conditional on a state value. The second type consists of what
we call time averages, which are a special family of n-measurable functions,
defined as the average of f (Xi) as i varies from 1 to n, and we show an al-
ternative way for the efficient computation of their expectations. Moreover,
if the Markov chain is time-homogeneous, i.e. when the local models do not
depend on time, in which case we simply call it homogeneous, we present
additional properties that are satisfied by the expectations of the two afore-
mentioned types of functions in the limit as n becomes infinitely large.

After this, we discuss imprecise Markov chains, which are imprecise sto-
chastic processes that satisfy an imprecise version of the Markov property.
The existing results on imprecise Markov chains assume that the local models
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5.1 MARKOV CHAINS

are credal sets—closed and convex sets of probability mass functions. We
extend these results by considering general sets of conditional probability mass
functions and develop new results of our own. Furthermore, we also consider
different independence concepts between the variables of the global models.
Choosing a different independence concept leads to differences in the global
lower and upper expectations of different types of functions, but also in the
efficiency of the computational methods used to calculate these expectations.
More specifically, the more stringent an independence concept is, the more
‘precise’ are the expectations. Finally, we prove that the global lower and
upper expectations of a function that depends on a single state Xn are more
‘imprecise’ than the respective expectations of its time average, when both
expectations are taken to the limit, i.e. for n→+∞.

5.1 MARKOV CHAINS

We begin by providing useful information for modelling uncertainty in (pre-
cise) Markov chains. We first discuss the Markov property and then discuss
the computation of expectations of various types of functions.

5.1.1 The Markov property

Consider any stochastic process characterised by a probability tree p ∈ PX ∗

and suppose that for all conditional probability measures P∈ Pp, the following
equality holds:

P(Xn+1|x1:n) = P(Xn+1|xn), for all n ∈ N and all x1:n ∈X n. (5.1)

Equation (5.1) is known as the Markov property1 and any discrete-time stochas-
tic process that satisfies it is called a Markov chain—see Reference [43, Def-
inition 2.1.1].2 Equation (5.1) tells us that for all n ∈ N, the state Xn+1 is
independent of the states X1:n−1 conditional on the value of Xn. In other words,
if we knew the values of the states X1:n−1, this would not change our beliefs
about Xn+1 given the value of Xn.

We now present a sufficient and necessary condition for a probability tree
to satisfy the Markov property.3

1Also known as Markov condition.
2In order to avoid confusion with the terminology used by the authors in Reference [43],

we call a Markov chain what they call a Markov process and we call a homogeneous Markov
chain—see Section 5.2109—what they call a Markov chain.

3This result may seem standard, but since our measure-theoretic framework is based on the
definitions of conditional probability and coherent conditional probability, it is not straightfor-
ward that the condition presented in Theorem 34 is sufficient for the Markov property to hold, in
particular when the probability of xn is zero.
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Theorem 34. A probability tree p ∈PX ∗ satisfies the Markov property if and
only if for all n ∈ N and all xn ∈X there is some probability mass function
qn(Xn+1|xn) such that

p(Xn+1|x1:n−1,xn) = qn(Xn+1|xn) for all x1:n−1 ∈X n−1. (5.2)

Proof. Recall that any P ∈ Pp is a coherent conditional probability on the do-
main Cσ , and therefore it follows from the combination of Equation (3.2)64
with Theorem 764 that P is also a conditional probability, and it further follows
from property CP663 that for all x1:k−1 ∈X k−1 and all xk,xk+1 ∈X

P(xk+1|x1:k−1,xk) = P(x1:k−1,xk,xk+1|x1:k−1,xk),

which, due to Equation (3.3)65, implies that

P(xk+1|x1:k−1,xk) = p(xk+1|x1:k−1,xk). (5.3)

For the “only if” part, it now follows from Equation (5.1)x and (5.3) that
P(Xn+1|xn) = P(Xn+1|x1:n) = p(Xn+1|x1:n) for all n ∈ N and all x1:n ∈ X n,
which implies that p(Xn+1|x1:n) does not depend on the state values x1:n−1 and
hence, Equation (5.2) is satisfied.

For the “if” part, suppose that Equation (5.2) holds. Consider any P ∈ Pp,
any k ∈ N and any xk,xk+1 ∈ X . Then it follows from Lemma 1368 [with
m = k−1, n = 1, c1 = 1 and A1 = ∪x1:k−1∈X k−1(x1:k−1,xk,xk+1)] that

min
x1:k−1∈X k−1

P(xk+1|x1:k−1,xk)≤ P(xk+1|xk)≤ max
x1:k−1∈X k−1

P(xk+1|x1:k−1,xk).

(5.4)
Furthermore, it follows from Equations (5.2) and (5.3) that

P(xk+1|x1:k−1,xk) = p(xk+1|x1:k−1,xk) = qk(xk+1|xk) for all x1:k−1 ∈X k−1.
(5.5)

If we combine Equation (5.5) with the inequalities in Equation (5.4), we find
that P(xk+1|xk) = qk(xk+1|xk), which, in combination with Equation (5.5), im-
plies that

P(xk+1|xk) = qk(xk+1|xk) = P(xk+1|x1:k−1,xk) for all x1:k−1 ∈X k−1.

Hence, Equation (5.1)x is indeed satisfied.

Theorem 34x tells us that the probability tree p of a Markov chain satisfies
Equation (5.2) and vice versa. The initial model p(X1|�) in this case will be
denoted by q�(X1). The set of all probability trees that satisfy Equation (5.2)
will be denoted by PM and clearly, PM ⊂ PX ∗ .

It follows from Equation (5.2) that a Markov chain is a process such that at
each time point n∈N, the transition probability p(xn+1|x1:n) from any situation
x1:n ∈X n to a situation x1:n+1 ∈X n+1 depends only on the last state value
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Figure 5.1: The initial part of a Markov chain with state space X = {a,b}.

xn and on the time point n. An example of a Markov chain is depicted in
Figure 5.1.

Since Markov chains are special stochastic processes, they satisfy all the
properties presented in Chapter 357. Consider now any extended real-valued
function g on Ω that does not depend on the first m states X1:m for some m∈N,
i.e. g(ω) = g(ω ′) for all ω,ω ′ ∈ Ω such that ωk = ω ′k for all k > m, and
for which there is a non-decreasing sequence of non-negative n-measurable
functions {hn}n∈N such that limn→+∞ hn = g. Then the expectation of any
such function g satisfies the following Markov property.

Theorem 35. Consider any Markov probability tree p ∈ PM and any condi-
tional probability measure P ∈ Pp. Consider as well any m ∈ N0, any x1:m ∈
X m, any xm+1 ∈X and any measurable extended (non-negative)4 real-valued
function g on Ω that does not depend on the first m states X1:m for which there
is a non-decreasing sequence of non-negative n-measurable functions {hn}n∈N

4The result can be extended to functions that are bounded below.
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such that limn→+∞ hn = g. Then

EP(g|x1:m,xm+1) = EP(g|xm+1).

Proof. Fix any x′1:m ∈X m and let {h′n}n∈N be the sequence of n-measurable
functions such that for all i ∈ {1, . . . ,m}, h′i is any i-measurable function, and
for all j ∈ N such that j > m, we have that h′j(z1: j) = h j(x′1:m,zm+1: j) for all
z1: j ∈X j, where clearly h′j does not depend on the first m states. Let now g′ :=
limn→+∞ h′n, then also g′ does not depend on the first m states and moreover,
for all z1:m ∈X m, we have that

g′(z1:m •) = lim
n→+∞

h′n(z1:m,Xm+1:n) = lim
n→+∞

hn(x′1:m,Xm+1:n) = g(x′1:m •),

and since g does not depend on the first m states, we infer that g′ = g. Hence,
for any measurable extended real-valued function g on Ω that does not de-
pend on the states X1:m and for which there is a non-decreasing sequence of
non-negative n-measurable functions {hn}n∈N such that limn→+∞ hn = g, we
can always construct a non-decreasing sequence of non-negative n-measurable
functions {h′n}n∈N such that for all n′ > m, h′n′ does not depend on the states
X1:m, and that limn→+∞ h′n = g. Therefore, w.l.o.g, we can assume that for all
k > m, hk does not depend on the first m states X1:m.

For all z1:m ∈X m and all k > m+1, it follows from Equation (3.18)74 that

EP(hk(X1:k)|z1:m,xm+1)

= ∑
xm+2:k∈X k−m−1

hk(z1:m,xm+1,xm+2:k)
k−1

∏
i=m+1

p(xi+1|z1:m,xm+1:i),

which due to Equation (5.2)102 becomes

EP(hk(X1:k)|z1:m,xm+1) =

∑
xm+2:k∈X k−m−1

hk(z1:m,xm+1,xm+2:k)
k−1

∏
i=m+1

qi(xi+1|xi).

Since hk does not depend on the first m states X1:m, we infer that

EP(hk(X1:k)|z1:m,xm+1) = EP(hk(X1:k)|x1:m,xm+1).

Since this is true for every k > m+1, we find that

lim
k→+∞

EP(hk(X1:k)|x1:m,xm+1) = lim
k→+∞

EP(hk(X1:k)|z1:m,xm+1),

and due to Equation (3.19)75, we find that

EP(g|x1:m,xm+1) = EP(g|z1:m,xm+1).

Since this is true for every z1:m ∈ X m, it follows from Lemma 1977 that
EP(g|x1:m,xm+1) = EP(g|xm+1).
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5.1.2 Expectations of functions that depend on a single state

Apart from general n-measurable functions and extended real-valued functions
that are limits of non-decreasing sequences of non-negative n-measurable ones,
from now on we will also consider an additional type of functions whose ex-
pectations are often studied in Markov chains. These are n-measurable func-
tions that only depend on the state at time n, for some n ∈ N. That is, any
n-measurable function h(X1:n) such that for all x1:n ∈X n, its value is given by
f (xn), for some f ∈L (X ). From now on, any such function will be denoted
generically by f (Xn).

Clearly, such a function f (Xn) does not depend on the first n− 1 states
and therefore, it follows from Theorem 35103 that for n > m, EP( f (Xn)|xm) =
EP( f (Xn)|x1:m) for all x1:m ∈X m. Hence, we can use Equation (3.21)76 to
compute it. However, there is also an alternative, more efficient approach for
computing EP( f (Xn)|xm) that is based on so-called transition operators.

Transition operators are linear operators denoted by Tn and given by

Tn : L (X )→L (X ) : f 7→ Tn f for all n ∈ N,

where, for all f ∈L (X ), Tn f is a function in L (X ) defined by

Tn f (xn) := ∑
xn+1∈X

f (xn+1)qn(xn+1|xn) for all xn ∈X , (5.6)

where qn(Xn+1|xn) is the local model of the Markov probability tree coming
from Equation (5.2)102. For n = 0, the initial model q� is associated with an
expectation operator denoted by E�. The following lemma now shows that
EP( f (Xn)|xm) can be expressed in terms of transition operators.5

Lemma 36. Consider any p ∈ PM and any P ∈ Pp. Consider as well any
n,m ∈ N such that n > m, any xm ∈X and any function f ∈L (X ). Then

EP
(

f (Xn)|xm
)
= TmTm+1. . .Tn−1 f (xm).

For the unconditional case, we have that

EP
(

f (Xn)
)
= E�

(
T1. . .Tn−1 f

)
.

Proof. The lemma follows directly from the combination of Equations (3.20)76
and (3.21)76 with Theorem 35103 and Equations (3.18)74, (5.2)102 and (5.6).

5A very similar result for homogeneous Markov chains can be found in Reference [81, Theo-
rem 9.1.1].
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5.1.3 Expectations of time averages

We introduce one more type of functions whose expectations are of interest
to us. These are the so-called time averages. Consider any n ∈ N and any
function f ∈L (X ), then the time average of f up to and including time point
n is an n-measurable function, denoted by [ f ](X1:n) and given by

[ f ](X1:n) :=
1
n

n

∑
i=1

f (Xi). (5.7)

Consider any p ∈ PM and any P ∈ Pp. Then for any n,m ∈ N0, any x1:m ∈
X m and any f ∈L (X ), it follows from Equation (5.7) and Lemma 102240
that

EP
(
[ f ](X1:n)|x1:m

)
=

1
n

[ n

∑
i=1

EP
(

f (Xi)|x1:m
)]
. (5.8)

If i > m, then EP( f (Xi)|x1:m) is given by Lemma 36x. If i≤m, it follows from
the sentence after Equation (3.21)76 that EP( f (Xi)|x1:m) = f (xi).

However, there is also an alternative approach for the computation of ex-
pectations of time averages that is based on transition operators, which as we
will see in Section 5.4.3118, can be generalised to imprecise Markov chains. In
this approach, we use a special function that is derived from transition opera-
tors. In particular, for any k,m ∈ N such that k > m and any f ′, f ′′ ∈L (X ),
the value of this function is denoted by ξ k

m( f ′, f ′′) and is a real-valued function
on X that is defined by

ξ
k
m( f ′, f ′′) :=

{
Tm f ′′ if k = m+1
ξ k−1

m ( f ′, f ′+Tk−1 f ′′) if k ≥ m+2.
(5.9)

Moreover, we let
ξ

k
m( f ′) := ξ

k
m( f ′, f ′). (5.10)

Observe also that for any λ ∈ R, any n ∈ N, any xn ∈X and any f ∈L (X ),
it follows from Equation (5.6)x that Tn(λ f )(xn) = λTn f (xn) and therefore, it
follows that

ξ
k
m(λ f ′,λ f ′′) = λξ

k
m( f ′, f ′′) for all f ′, f ′′ ∈L (X )

and all m,k ∈ N such that k > m. (5.11)

Finally, we can compute expectations of time averages according to the fol-
lowing lemma.

Lemma 37. Consider any p ∈ PM and any P ∈ Pp. Consider as well any
n,m ∈ N such that n > m, any x1:m ∈X m and any function f ∈L (X ). Then

EP
(
[ f ](X1:n)|x1:m

)
=

1
n

[ m

∑
i=1

f (xi)+ξ
n
m( f )(xm)

]
.
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For the unconditional case, with n > 1, we have that

EP
(
[ f ](X1:n)

)
=

1
n

E�
(

f +ξ
n
1 ( f )

)
.

Proof. We will only provide the proof for the conditional expectations; the
proof for the unconditional ones is completely analogous.

We first prove by induction that for all k∈N such that k >m and all f ′, f ′′ ∈
L (X ) the following holds:

EP

(
1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣x1:m

)
=

1
k

[ m

∑
i=1

f ′(xi)+ξ
k
m( f ′, f ′′)(xm)

]
. (5.12)

Indeed, for k = m+1, we observe that

EP

(
1

m+1

[ m

∑
i=1

f ′(Xi)+ f ′′(Xm+1)

]∣∣∣∣x1:m

)
=

1
m+1

EP

( m

∑
i=1

f ′(Xi)+ f ′′(Xm+1)

∣∣∣∣x1:m

)
=

1
m+1 ∑

xm+1∈X

( m

∑
i=1

f ′(xi)+ f ′′(xm+1)

)
p(xm+1|x1:m)

=
1

m+1

( m

∑
i=1

f ′(xi)+ ∑
xm+1∈X

f ′′(xm+1)p(xm+1|x1:m)

)
=

1
m+1

( m

∑
i=1

f ′(xi)+ ∑
xm+1∈X

f ′′(xm+1)qm(xm+1|xm)

)
=

1
m+1

( m

∑
i=1

f ′(xi)+Tm f ′′(xm)

)
=

1
m+1

( m

∑
i=1

f ′(xi)+ξ
m+1
m ( f ′, f ′′)(xm)

)
,

where the first equality follows from Lemma 102240, the second from Equa-
tion (3.18)74, the third holds because we have that ∑xm+1∈X p(xm+1|x1:m) = 1
since p(Xm+1|x1:m) is a probability mass function on X , the fourth follows
from Equation (5.2)102, the fifth from Equation (5.6)105 and the last from Equa-
tion (5.9)x.

Consider now any k > m+ 1 and assume that Equation (5.12) is true for
k−1. It follows from Theorem 1775 that

EP

(
1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣x1:m

)
= EP

(
EP

(
1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣X1:k−1

)∣∣∣x1:m

)
(5.13)
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and we observe that

EP

(
EP

(
1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣X1:k−1

)∣∣∣x1:m

)
= EP

(
1
k

k−1

∑
i=1

EP
(

f ′(Xi)
∣∣X1:k−1

)
+

1
k

EP
(

f ′′(Xk)
∣∣X1:k−1

)∣∣∣∣x1:m

)
= EP

(
1
k

[ k−1

∑
i=1

f ′(Xi)+EP( f ′′(Xk)|X1:k−1)

]∣∣∣∣x1:m

)
= EP

(
1
k

[ k−1

∑
i=1

f ′(Xi)+EP( f ′′(Xk)|Xk−1)

]∣∣∣∣x1:m

)
, (5.14)

where the first equality follows from Lemma 102240, the second follows from
the argument after Equation (5.8)106 and the last follows Theorem 35103.

We now find that

EP

(
1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣x1:m

)
= EP

(
1
k

[ k−1

∑
i=1

f ′(Xi)+EP( f ′′(Xk)|Xk−1)

]∣∣∣∣x1:m

)
= EP

(
1
k

[ k−1

∑
i=1

f ′(Xi)+Tk−1 f ′′(Xk−1)

]∣∣∣∣x1:m

)
= EP

(
1
k

[ k−2

∑
i=1

f ′(Xi)+ f ′(Xk−1)+Tk−1 f ′′(Xk−1)

]∣∣∣∣x1:m

)
= EP

(
k−1

k(k−1)

[ k−2

∑
i=1

f ′(Xi)+ f ′(Xk−1)+Tk−1 f ′′(Xk−1)

]∣∣∣∣x1:m

)
= EP

(
1

k−1

[ k−2

∑
i=1

k−1
k

f ′(Xi)+
k−1

k

(
f ′(Xk−1)+Tk−1 f ′′(Xk−1)

)]∣∣∣∣x1:m

)
,

where the first equality follows from Equations (5.13)x and (5.14), the second
follows from Lemma 36105. Since k−1

k ( f ′(Xk−1)+Tk−1 f ′′(Xk−1)) can be re-
garded as a function of Xk−1, it follows from the aforementioned equation and
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the induction hypothesis that

EP

(
1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣x1:m

)
=

1
k−1

[ m

∑
i=1

k−1
k

f ′(xi)+ξ
k−1
m

(
k−1

k
f ′,

k−1
k

( f ′+Tk−1 f ′′)
)
(xm)

]
=

1
k

[ m

∑
i=1

f ′(xi)+ξ
k−1
m
(

f ′, f ′+Tk−1 f ′′
)
(xm)

]
=

1
k

[ m

∑
i=1

f ′(xi)+ξ
k
m( f ′, f ′′)(xm)

]
,

where the second equality follows from Equation (5.11)106 and the last equality
follows from Equation (5.9)106. Finally, let k = n and f ′ = f ′′ = f , then the
result follows from Equation (5.10)106.

5.2 HOMOGENEOUS MARKOV CHAINS

We now discuss about a subclass of Markov chains, the so-called homogeneous
Markov chains and we present additional properties that are satisfied by the
expectations of functions that depend on a single state and of time averages
when they are taken to the limit.

5.2.1 Preliminaries

Consider any Markov chain and suppose now that its local models depend only
on the last state value and not on the time point. That is,

p(Xn+1|x1:n) = q(Xn+1|xn) for all x1:n ∈X ∗, (5.15)

where q(Xn+1|xn) is a probability mass function on X for every xn ∈X . The
initial model p(X1|�) is again denoted by q�(X1). Any Markov chain that
satisfies Equation (5.15) is called a homogeneous Markov chain.6 The set of
all probability trees that satisfy Equation (5.15) will be denoted by PHM and
we observe that PHM ⊂ PM ⊂ PX ∗ . An example of a homogeneous Markov
chain is depicted in Figure 5.2y.

Since the transition models of a homogeneous Markov chain depend only
on the state values in X and not on the time point n, they can be summarised
by a single so-called transition matrix. For any homogeneous Markov chain
with ordered state space X , this transition matrix is a |X | × |X | matrix,
where for any i, j ∈ X the element of the i-th row and j-th column rep-
resents the transition probability q( j|i)—also denoted by qi, j. The form of

6Also called a stationary Markov chain.
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q(X2|a)

q(X2|b)

q(X3|b)
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q(X3|a)

q(X3|a)

Figure 5.2: The initial part of a homogeneous Markov chain with state space
X = {a,b}.

the transition matrix M of a homogeneous Markov chain with state space
X = {0, . . . ,L}, where L ∈ N, can be seen below.

M =


q0,0 q0,1 · · · · · · q0,L
q1,0 q1,1 · · · · · · q1,L

...
. . . . . . . . .

...
qL−1,0 · · · · · · qL−1,L−1 qL−1,L
qL,0 · · · · · · qL,L−1 qL,L


Clearly, each row i of the stochastic matrix is the transition model q(·|i).

5.2.2 Properties of functions that depend on a single state

For functions that depend on a single state, we observe that all the properties
presented in Section 5.1.2105 will still hold. One difference is that since our
local models do not depend on time, we now have a single transition operator
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T instead of the many Tn, which is a linear operator given by

T : L (X )→L (X ) : f 7→ T f ,

where, for all f ∈L (X ), T f is a function in L (X ) defined by

T f (x) := ∑
y∈X

f (y)q(y|x) for all x ∈X . (5.16)

Obviously, the transition operator T is an alternative way to represent the tran-
sition matrix M, since T f = M f for all f ∈L (X ).7 For n = 0, we still have
a probability mass function p� that is represented by an expectation operator
E�. Therefore, the (conditional) expectation of any function f (Xn) is given by
Lemma 36105, where now Tn is replaced with T for all n ∈ N.

We now introduce our definition of an ergodic Markov chain, which goes
as follows.8

Definition 7. A homogeneous Markov chain with a transition operator T is
called ergodic if for all f ∈ L (X ), limn→+∞ T n f exists and is a constant
function.

The reason why ergodicity is important is because it implies the existence
of a unique limit expectation operator E∞. In particular, for any ergodic homo-
geneous Markov chain with a transition operator T and any f ∈L (X ), if we
let E∞( f ) be the constant value of limn→+∞ T n f , then

lim
n→+∞

EP( f (Xn)) = lim
n→+∞

E�(T n−1 f ) = lim
n→+∞

∑
x∈X

q�(x)T n−1 f (x)

= ∑
x∈X

q�(x) lim
n→+∞

T n f (x) = ∑
x∈X

q�(x)E∞( f ) = E∞( f ), (5.17)

where the first equality comes from Lemma 36105 and the fact that the Markov
chain is homogeneous. Moreover, the limit expectation operator E∞ does not
depend on the initial expectation operator E�, and it is furthermore the only
such operator that it is T -invariant, in the sense that E∞ = E∞ ◦ T ; see also
References [43, Theorem 4.1.6] and [54, Chapter 7].

One obvious question that comes to mind is under which conditions a ho-
mogeneous Markov chain is ergodic. A sufficient condition for ergodicity is
regularity [28, Definition 4.1].9

7This indicates that the linear operator T works on functions and is the dual of the linear
operator M that is usually taken to work on probabilities.

8There are numerous definitions for an ergodic Markov chain that do not necessarily deal with
the existence of a unique limiting distribution. More information about these definitions can be
found in Reference [43, Chapter V].

9Definition 8y is a special case of the definition of a regularly absorbing homogeneous im-
precise Markov chain [28]—we just need to consider the case where T = T = T and where the
top class is the complete set X . Furthermore, Definition 8y can also be found in—amongst
others—References [43, Theorem 4.1.2] and [54, Chapter 7], but in these cases it is connected
with definitions for ergodicity that are different from Definition 7.
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Definition 8. Consider a homogeneous Markov chain with transition matrix
M. If there is some m ∈N such that Mm(x,y)> 0 for all x,y ∈X , then we call
this Markov chain regular.

There are two ways to compute the limit expectation operator E∞ of an er-
godic Markov chain and consequently the limit expectation of any f ∈L (X ).
The first is to compute E∞ directly by solving the system of equations implied
by E∞ = E∞ ◦T . Let X = {0, . . . ,L}, where L ∈ N, and let also [π1, . . . ,πL]
be the probability mass function on X that corresponds to the limit opera-
tor E∞. We can then compute [π1, . . . ,πL] by solving the following system of
equations:

π j = ∑
i∈X

πiqi, j for all j ∈X ,

where qi, j are the entries of the transition matrix M, for all i, j ∈X . In other
words, πT is a left eigenvector of M with eigenvalue 1. The second approach is
to compute the limit limn→+∞ T n explicitly, which also yields the expectation
operator E∞. As we will see in Section 5.5.1126, this second approach can be
generalised to imprecise Markov chains.

5.2.3 Properties of time averages

Regarding time averages, the expectation of any time average [ f ](X1:n) is given
by Equation (5.8)106 or Lemma 37106, where now Tn is replaced with T for
all n ∈ N. Furthermore, for ergodic homogeneous Markov chains, we have
the following useful property which says that the limiting expectation of any
function that depends on a single state and the respective one of its time average
coincide.

Theorem 38. Consider an ergodic homogeneous Markov chain characterised
by a probability tree p. Consider as well any P ∈ Pp and any f ∈ L (X ).
Then

lim
n→+∞

EP
(
[ f ](X1:n)

)
= lim

n→+∞
EP
(

f (Xn)
)
= E∞( f ).

Proof. Due to Equation (5.17)x, we have that limn→+∞ EP
(

f (Xn)
)
= E∞( f ),

which implies that for all ε > 0 there is some kε ∈ N such that for all k′ ≥ kε ,
it holds that

E∞( f )− ε ≤ EP( f (Xk′))≤ E∞( f )+ ε. (5.18)

Observe now that

liminf
n→+∞

1
n

n

∑
i=1

EP
(

f (Xi)
)

≥ liminf
n→+∞

1
n

kε−1

∑
i=1

EP
(

f (Xi)
)
+ liminf

n→+∞

1
n

n

∑
i=kε

EP
(

f (Xi)
)
. (5.19)
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Since ∑
kε−1
i=1 EP( f (Xi)) is a constant and n→+∞, we infer that

liminf
n→+∞

1
n

kε−1

∑
i=1

EP
(

f (Xi)
)
= 0. (5.20)

Moreover, for all n≥ kε , we have that

1
n

n

∑
i=kε

EP
(

f (Xi)
)
≥ n− kε +1

n

(
E∞( f )− ε

)
.

Hence, it follows that

liminf
n→+∞

1
n

n

∑
i=kε

EP
(

f (Xi)
)
≥ liminf

n→+∞

n− kε +1
n

(
E∞( f )−ε

)
=E∞( f )−ε, (5.21)

where the equality holds because E∞( f )−ε is constant and liminfn→+∞
n−kε

n =
1. By combining Equations (5.20) and (5.21) with Inequality (5.19)x, we find
that

liminf
n→+∞

1
n

n

∑
i=1

EP
(

f (Xi)
)
≥ E∞( f )− ε. (5.22)

Similarly,

limsup
n→+∞

1
n

n

∑
i=1

EP
(

f (Xi)
)
≤ E∞( f )+ ε. (5.23)

It now follows from Inequalities (5.22) and (5.23) that

E∞( f )− ε ≤ liminf
n→+∞

1
n

n

∑
i=1

EP
(

f (Xi)
)
≤ limsup

n→+∞

1
n

n

∑
i=1

EP
(

f (Xi)
)
≤ E∞( f )+ ε.

Since this holds for any ε > 0, we infer that

liminf
n→+∞

1
n

n

∑
i=1

EP
(

f (Xi)
)
= limsup

n→+∞

1
n

n

∑
i=1

EP
(

f (Xi)
)

= lim
n→+∞

1
n

n

∑
i=1

EP
(

f (Xi)
)
= E∞( f ). (5.24)

Finally, the result follows from Equations (5.8)106 and (5.24).

5.3 TOWARDS IMPRECISION

We have seen that the Markov property is a condition that can be expressed in
terms of the probability measure or the local models of a stochastic process,
or in terms of expectations. When generalising this condition to the case of
imprecise probability trees, it is conventional to express it in terms of lower
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(or upper) expectations. In particular, for an imprecise probability tree T , we
require that for all n ∈ N, all x1:n ∈X n and all f ∈L (X ):

ET

(
f (Xn+1)|x1:n

)
= ET

(
f (Xn+1)|xn

)
and

ET

(
f (Xn+1)|x1:n

)
= ET

(
f (Xn+1)|xn

)
, (5.25)

where the expectations ET ( f (Xn+1)|x1:n) and ET ( f (Xn+1)|x1:n) are given by
Equations (3.26)80 and (3.27)80 respectively. Equation (5.25) is known as the
imprecise Markov property and any imprecise stochastic process that satisfies
it is called an imprecise Markov chain.

Imprecise Markov chains are part of the theory of imprecise probabilities
and they have been studied in—amongst others—References [28,37,47,68,75–
77]. What is interesting about imprecise Markov chains is that we can adopt
different independence concepts among the states of the chain. Independence
concepts are often useful as they allow us to reduce the complexity of inference
problems. In Sections 5.4y—5.7142, we start from the most general indepen-
dence concept and we move to more stringent ones by imposing additional
constraints as we move along. In Section 5.8147, we also discuss similarities
and differences that arise in the global lower and upper expectations under the
different independence concepts.

For each of the independence concepts that we will consider, and each of
the corresponding types of imprecise Markov chains, our starting point will
be a collection of local models. More specifically, for every n ∈ N and every
x∈X , we consider a set Qn,x of conditional probability mass functions qn(·|x)
on X . Furthermore, we also consider an initial model Q�, which is again a
set of probability mass functions on X . Each set Qn,x has a corresponding
lower and upper expectation, which are denoted by Qn(·|x) and Qn(·|x) and
defined by

Qn( f |x) := inf
{

∑
y∈X

f (y)p(y) : p ∈Qn,x

}
(5.26)

Qn( f |x) := sup
{

∑
y∈X

f (y)p(y) : p ∈Qn,x

}
(5.27)

for all f ∈L (X ). The lower and upper expectations that correspond to the
initial model Q� are denoted by Q

�
(·) and Q�(·) respectively.

We will also consider the case where Qn,x does not depend on n, and will
then be denoted by Qx. Each Qx has a corresponding lower and upper expec-
tation, which are now denoted by Q(·|x) and Q(·|x) and defined by

Q( f |x) := inf
{

∑
y∈X

f (y)p(y) : p ∈Qx

}
(5.28)

Q( f |x) := sup
{

∑
y∈X

f (y)p(y) : p ∈Qx

}
(5.29)
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for all f ∈L (X ). For the initial situation, we again have the lower and upper
expectations Q

�
(·) and Q�(·).

5.4 IMPRECISE MARKOV CHAINS UNDER EPISTEMIC IRREL-
EVANCE

We start by introducing the independence concept of epistemic irrelevance in
imprecise Markov chains, and we discuss how to compute lower and upper
expectations of various functions for this type of imprecise Markov chain.

5.4.1 Epistemic irrelevance

In Section 3.780, we introduced a specific way for obtaining an imprecise
stochastic process, by using sets of conditional probability mass functions. We
started by associating with each situation x1:n ∈X ∗ a non-empty set of con-
ditional probability mass functions Px1:n on X and then derived an imprecise
probability tree TP using Equation (3.28)80.

We here consider the special case where the sets Px1:n are derived from the
local models in Section 5.3113. In particular, we assume that

Px1:n = Qn,xn for all n ∈ N and all x1:n ∈X n (5.30)

and that P� =Q�. In this case, we use TQ as an alternative notation for TP .
Since the imprecise probability tree TQ is a set of probability trees, it has a

corresponding set of conditional probability measures on Cσ , which we denote
by PQ. Furthermore, since each set Px1:n can be associated with a lower and
an upper expectation operator, denoted by Q(·|x1:n) and Q(·|x1:n) respectively,
due to Equation (5.30), we now have that Q(·|�) =Q

�
(·) and Q(·|�) =Q�(·),

and that

Q(·|x1:n) = Qn(·|xn) and Q(·|x1:n) = Qn(·|xn) for all n ∈ N and all x1:n ∈X n,
(5.31)

where Qn(·|xn) and Qn(·|xn) are given by Equations (5.26)x and (5.27)x.
The imprecise stochastic process that we have just derived by using the lo-

cal models Qn,x and Q� is called an imprecise Markov chain under epistemic
irrelevance [10, 23, 27, 28, 78]. The reason why it is called like that is because
the variables X1:n−1 are epistemically irrelevant to Xn+1 given Xn, which means
that if we already know Xn, then additionally observing X1:n−1 does not affect
our beliefs about Xn+1. Epistemic irrelevance is therefore clearly a notion of
independence. It is called ‘epistemic’ in order to emphasise that it is a state-
ment about beliefs; in this case, beliefs about local probability mass functions,
in the form of sets of candidates for them. It is called ‘irrelevance’—instead of
‘independence’—to emphasise that it is asymmetric. An example of an impre-
cise Markov chain under epistemic irrelevance is shown in Figure 5.3y. Since

115



5.4 IMPRECISE MARKOV CHAINS UNDER EPISTEMIC IRRELEVANCE

b

b

b

a

a

b

a

a

b

b

a

a

b

a

Q�

Q1,a

Q1,b

Q2,b

Q2,b

Q2,a

Q2,a

Figure 5.3: The initial part of an imprecise Markov chain under epistemic
irrelevance with state space X = {a,b}.

an imprecise Markov chain under epistemic irrelevance is a special case of a
general imprecise stochastic process, all properties presented in Sections 3.679
and 3.780 will still hold. Global lower and upper expectations of measur-
able extended real-valued functions g on Ω conditional on B ∈ 〈X ∗〉 \ {∅}
in imprecise Markov chains under epistemic irrelevance are defined by Equa-
tions (3.26)80 and (3.27)80—for PT = PQ—and will be denoted by Eei

Q(g|B)
and Eei

Q(g|B) respectively. In the coming sections, we show that these global
lower and upper expectations of different types of functions satisfy various ver-
sions of the imprecise Markov property and focus on the computational aspects
of these global expectations.

5.4.2 Global lower and upper expectations of functions that depend on
a single state

We first show that the global lower and upper expectations of functions that
depend on a single state satisfy an imprecise Markov property when the inde-
pendence concept is epistemic irrelevance. This imprecise Markov property

116



5.4 IMPRECISE MARKOV CHAINS UNDER EPISTEMIC IRRELEVANCE

is a direct consequence of Theorem 44123 and therefore, it is stated without
proof.

Theorem 39. Consider an imprecise Markov chain under epistemic irrele-
vance. Consider as well any m,n ∈ N such that n > m, any x1:m−1 ∈X m−1,
any xm ∈X and any function f ∈L (X ). Then

Eei
Q( f (Xn)|xm) = Eei

Q( f (Xn)|x1:m−1,xm);

Eei
Q( f (Xn)|xm) = Eei

Q( f (Xn)|x1:m−1,xm).

In the case of Markov chains, we showed that we can compute expectations
of functions that depend on single state using transition operators. We now
generalise the idea of transition operators to imprecise Markov chains under
epistemic irrelevance. We introduce lower and upper transition operators [28],
which will be used for computing global lower and upper expectations of dif-
ferent types of functions. For any n ∈ N, this time we have the non-linear
operators T n and T n given by

T n : L (X )→L (X ) : f 7→ T n f ;

T n : L (X )→L (X ) : f 7→ T n f ,

where for all f ∈L (X ), T n f and T n f are functions in L (X ) defined by

T n f (x) :=Qn( f |x) = inf
{

∑
y∈X

f (y)p(y) : p ∈Qn,x

}
(5.32)

T n f (x) :=Qn( f |x) = sup
{

∑
y∈X

f (y)p(y) : p ∈Qn,x

}
(5.33)

for all x ∈X .
Our next result is a generalisation of Lemma 36105 and states that the global

lower and upper expectation of any function that depends on a single state can
be expressed in terms of lower and upper transition operators.10

Lemma 40. Consider an imprecise Markov chain under epistemic irrelevance.
Consider as well any m,n ∈ N such that n > m, any xm ∈X and any function
f ∈L (X ). Then

Eei
Q( f (Xn)|xm) = T mT m+1. . .T n−1 f (xm);

Eei
Q( f (Xn)|xm) = T mT m+1. . .T n−1 f (xm).

10A similar version of Lemma 40 for imprecise Markov chains whose local models are credal
sets and where the functions under study are general n-measurable functions can be found in
Reference [28].
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For the unconditional case, we have that

Eei
Q( f (Xn)) = Q

�
(T 1. . .T n−1 f );

Eei
Q( f (Xn)) = Q�(T 1. . .T n−1 f ).

Proof. The statement of the lemma follows directly from the combination of
Theorem 39x, Equations (5.32)x and (5.33)x with Theorem 2182.

The practical importance of this result is that it provides us with an efficient
method for computing lower and upper expectations of functions that depend
on a single state. The reason for this efficiency, is because the number of
local optimisation problems that we need to solve is linear with respect to
the number of time points that are considered. Indeed, at each time point,
evaluating the lower or upper transition operator only requires us to compute
|X | (lower or upper) expected values. The resulting function is then plugged
into the lower or upper transition operator associated with the previous time
point and we repeat this procedure till we reach the situation on which we
conditioned.

5.4.3 Global lower and upper expectations of time averages

Regarding global lower and upper expectations of time averages, we can com-
pute them using functions that are based on lower and upper transition oper-
ators. For any k,m ∈ N such that k > m and any f ′, f ′′ ∈ L (X ), we now
introduce ξ

k
m
( f ′, f ′′) and ξ

k
m( f ′, f ′′), which are real-valued functions on X

that are defined by

ξ
k
m
( f ′, f ′′) :=

{
T m f ′′ if k = m+1
ξ

k−1
m

( f ′, f ′+T k−1 f ′′) if k ≥ m+2.
(5.34)

and

ξ
k
m( f ′, f ′′) :=

{
T m f ′′ if k = m+1

ξ
k−1
m ( f ′, f ′+T k−1 f ′′) if k ≥ m+2.

(5.35)

We also let

ξ
k
m
( f ′) := ξ

k
m
( f ′, f ′) and ξ

k
m( f ′) := ξ

k
m( f ′, f ′). (5.36)

Observe that for any λ ∈R≥0, any n∈N, any xn ∈X and any f ∈L (X ),
since T n(λ f ) is an infimum of expectations it follows from Lemma 102240 that
T n(λ f )(xn) = λT n f (xn) and therefore, it follows that

ξ
k
m
(λ f ′,λ f ′′) = λξ

k
m
( f ′, f ′′) and ξ

k
m(λ f ′,λ f ′′) = λξ

k
m( f ′, f ′′) (5.37)

for all f ′, f ′′ ∈L (X ) and all m,k ∈ N such that k > m.
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We are now ready to present the following lemma which is a generalisation
of Lemma 37106.11

Lemma 41. Consider an imprecise Markov chain under epistemic irrelevance.
Consider as well any m,n ∈ N such that n > m, any x1:m ∈X m and any func-
tion f ∈L (X ). Then

Eei
Q([ f ](X1:n)|x1:m) =

1
n

[ m

∑
i=1

f (xi)+ξ
n
m
( f )(xm)

]
;

Eei
Q([ f ](X1:n)|x1:m) =

1
n

[ m

∑
i=1

f (xi)+ξ
n
m( f )(xm)

]
.

For the unconditional case, with n > 1, we have that

Eei
Q([ f ](X1:n)) =

1
n

Q
�

(
f +ξ

n
1
( f )
)
;

Eei
Q([ f ](X1:n)) =

1
n

Q�

(
f +ξ

n
1( f )

)
.

Proof. We will only provide the proof for the global lower expectations con-
ditional on x1:m; the proofs for the global upper ones and for the unconditional
case are completely analogous.

We first prove by induction that for all k∈N such that k >m and all f ′, f ′′ ∈
L (X ) the following holds:

Eei
Q

(
1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣x1:m

)
=

1
k

[ m

∑
i=1

f ′(xi)+ξ
k
m
( f ′, f ′′)(xm)

]
.

(5.38)
For k = m+1, we observe that

Eei
Q

(
1

m+1

[ m

∑
i=1

f ′(Xi)+ f ′′(Xm+1)

]∣∣∣∣x1:m

)
=

1
m+1

Eei
Q

([ m

∑
i=1

f ′(Xi)+ f ′′(Xm+1)

]∣∣∣∣x1:m

)
=

1
m+1

Q
([ m

∑
i=1

f ′(xi)+ f ′′(Xm+1)

]∣∣∣∣x1:m

)
=

1
m+1

[ m

∑
i=1

f ′(xi)+Q( f ′′(Xm+1)|x1:m)

]
, (5.39)

where the first equality follows from the definition of Eei
Q combined with

Lemma 102240, the second from Theorem 2182 and Equation (3.31)82, and
11For the more general case of credal networks under epistemic irrelevance, an extended ver-

sion of this result can be found in Reference [21], under the additional assumption that the local
models are closed and convex.
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the last equality holds because, since ∑
m
i=1 f ′(xi) is a constant and Q(·|x1:m) is

an infimum of expectations, it follows from Lemmas 102240 and 106241 that
∑

m
i=1 f ′(xi) can be taken out of the infimum.

Furthermore, we find that

Eei
Q

(
1

m+1

[ m

∑
i=1

f ′(Xi)+ f ′′(Xm+1)

]∣∣∣∣x1:m

)
=

1
m+1

[ m

∑
i=1

f ′(xi)+Q( f ′′(Xm+1)|x1:m)

]
=

1
m+1

[ m

∑
i=1

f ′(xi)+Qm( f ′′(Xm+1)|xm)

]
=

1
m+1

[ m

∑
i=1

f ′(xi)+T m f ′′(xm)

]
=

1
m+1

[ m

∑
i=1

f ′(xi)+ξ
m+1
m

( f ′, f ′′)(xm)

]
,

where the first equality follows from Equation (5.39)x, the second equality
from Equation (5.31)115, the third equality from Equation (5.32)117 and the
last equality from Equation (5.34)118.

Now consider any k > m+1 and assume that Equation (5.38)x is true for
k−1. It follows from Theorem 2182 that

Eei
Q

(
1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣x1:m

)
= Q

(
. . .Q

(
1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣X1:k−1

)
. . .

∣∣∣∣x1:m

)
= Eei

Q

(
Q
(

1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣X1:k−1

)∣∣∣∣x1:m

)
. (5.40)

Consider also any z1:k−1 ∈X k−1 and observe that

Q
(

1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣z1:k−1

)
= Q

(
1
k

[ k−1

∑
i=1

f ′(zi)+ f ′′(Xk)

]∣∣∣∣z1:k−1

)
=

1
k

[ k−1

∑
i=1

f ′(zi)+Q( f ′′(Xk)|z1:k−1)

]
=

1
k

[ k−1

∑
i=1

f ′(zi)+Qk−1( f ′′(Xk)|zk−1)

]
(5.41)

where the first equality follows from Equation (3.31)82, the last equality fol-
lows from Equation (5.31)115 and the second holds because, since ∑

k−1
i=1 f ′(zi)

is a constant and Q(·|z1:k−1) is an infimum of expectations, it follows from
Lemmas 106241 and 102240 that ∑

m
i=1 f ′(xi) and 1

k can be taken out of the infi-
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mum. Furthermore, observe that

Eei
Q

(
1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣x1:m

)
= Eei

Q

(
1
k

[ k−1

∑
i=1

f ′(Xi)+Qk−1( f ′′(Xk)|Xk−1)

]∣∣∣∣x1:m

)
= Eei

Q

(
1
k

[ k−1

∑
i=1

f ′(Xi)+T k−1 f ′′(Xk−1)

]∣∣∣∣x1:m

)
= Eei

Q

(
1
k

[ k−2

∑
i=1

f ′(Xi)+ f ′(Xk−1)+T k−1 f ′′(Xk−1)

]∣∣∣∣x1:m

)
= Eei

Q

(
k−1

k(k−1)

[ k−2

∑
i=1

f ′(Xi)+ f ′(Xk−1)+T k−1 f ′′(Xk−1)

]∣∣∣∣x1:m

)
= Eei

Q

(
1

k−1

[ k−2

∑
i=1

k−1
k

f ′(Xi)+
k−1

k

(
f ′(Xk−1)+T k−1 f ′′(Xk−1)

)]∣∣∣∣x1:m

)
,

(5.42)

where the first equality follows from the combination of Equation (5.40)x with
Equation (5.41)x and the second equality follows from Equation (5.32)117. If
we regard now k−1

k ( f ′(Xk−1)+T k−1 f ′′(Xk−1)) as a function on X , it follows
from Equation (5.42) and the inductions hypothesis that

Eei
Q

(
1
k

[ k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

]∣∣∣∣x1:m

)
=

1
k−1

[ m

∑
i=1

k−1
k

f ′(xi)+ξ
k−1
m

(
k−1

k
f ′,

k−1
k

f ′+T k−1 f ′′
)
(xm)

]
=

1
k

[ m

∑
i=1

f ′(xi)+ξ
k−1
m

( f ′, f ′+T k−1 f ′′)(xm)

]
=

1
k

[ m

∑
i=1

f ′(xi)+ξ
k
m
( f ′, f ′′)(xm)

]
,

where the second equality follows from Equation (5.37)118 and the last equality
follows from Equation (5.34)118. Finally, let k = n and f ′ = f ′′ = f , then the
result follows from Equation (5.36)118.

Similarly to what happened for functions that depend on a single state,
we find that lower and upper transition operators facilitate the computation of
lower and upper expectations of time averages. As we can see from Equa-
tions (5.34)118 and (5.35)118 and Lemma 41119, the only difference is that we
additionally plug the function f into every lower or upper transition operator.
Here too, this method allows for efficient computations whose complexity is
linear in the number of time points.
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5.4.4 Global lower and upper expectations of measurable extended
real-valued functions

In this section, we discuss global lower and upper expectations of extended
(non-negative) real-valued functions g on Ω that do not depend on the first m
states X1:m for some m ∈ N, and for which there is a non-decreasing sequence
of non-negative n-measurable functions {hn}n∈N such that limn→+∞ hn = g.
These global lower and upper expectations satisfy an imprecise Markov prop-
erty, which is stated in Theorem 44y.

Before we present Theorem 44y, we first show two properties that are
satisfied by the aforementioned global lower and upper expectations which
will be used in the proof of Theorem 44y.

Lemma 42. Consider an imprecise Markov chain under epistemic irrelevance.
Consider as well any P ∈ PQ, any m ∈N, any x1:m ∈X m, any xm+1 ∈X and
any extended real-valued function g on Ω that does not depend on the first m
states X1:m for which there is a non-decreasing sequence of non-negative n-
measurable functions {hn}n∈N such that limn→+∞ hn = g. Then there is some
P′ ∈ PQ such that

EP(g|x1:m,xm+1) = EP′(g|z1:m,xm+1) for all z1:m ∈X m.

Proof. Let p ∈ TQ be the probability tree that corresponds to P. It follows
from Equations (5.30)115 and (3.28)80 that there is some p′ ∈TQ such that for
all i ∈ N\{1, . . . ,m+1} and all z′1:i ∈X i,

p′(Xi+1|z′1:i) = p(Xi+1|x1:m,xm+1,z′m+2:i).

Let P′ ∈ PQ be any conditional probability measure whose corresponding
probability tree is p′. Consider now any z1:m ∈ X m, then it follows from
the argumentation in the beginning of proof of Theorem 35103 that, w.l.o.g, we
can assume for all k > m, that hk does not depend on the first m states X1:m and
therefore for all k > m+ 1, due to Equation (3.18)74 and the properties of p′

and p, that

EP(hk(X1:k)|x1:m+1) = ∑
xm+2:k∈X k−m−1

h(x1:m,xm+1,xm+2:k)
k−1

∏
j=m+1

p(x j+1|x1: j)

= ∑
xm+2:k∈X k−m−1

h(x1:m,xm+1,xm+2:k)
k−1

∏
j=m+1

p′(x j+1|z1:m,xm+1: j)

= ∑
xm+2:k∈X k−m−1

h(z1:m,xm+1,xm+2:k)
k−1

∏
j=m+1

p′(x j+1|z1:m,xm+1: j)

= EP′(hk(X1:k)|z1:m,xm+1).
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Since EP(hk(X1:k)|x1:m,xm+1) = EP′(hk(X1:k)|z1:m,xm+1) for all k > m+1, we
further infer that

lim
n→+∞

EP(hn(X1:n)|x1:m,xm+1) = lim
n→+∞

EP′(hn(X1:n)|z1:m,xm+1),

which, due to Equation (3.19)75, implies that

EP(g|x1:m,xm+1) = EP′(g|z1:m,xm+1).

Lemma 43. Consider an imprecise Markov chain under epistemic irrelevance.
Consider as well any m∈N, any x1:m ∈X m, any xm+1 ∈X and any extended
real-valued function g on Ω that does not depend on the first m states X1:m
for which there is a non-decreasing sequence of non-negative n-measurable
functions {hn}n∈N such that limn→+∞ hn = g. Then

Eei
Q(g|x1:m,xm+1) = Eei

Q(g|z1:m,xm+1) for all z1:m ∈X m.

Proof. Fix any ε > 0. Then there is some P ∈ PQ such that

EP(g|x1:m,xm+1)≤ Eei
Q(g|x1:m,xm+1)+ ε. (5.43)

Consider any z1:m ∈X m, then it follows from Lemma 42x that there is some
P′ ∈ PQ such that

EP′(g|z1:m,xm+1) = EP(g|x1:m,xm+1). (5.44)

Since Eei
Q(g|z1:m,xm+1) ≤ EP′(g|z1:m,xm+1), it follows from Equation (5.44)

and Inequality (5.43) that Eei
Q(g|z1:m,xm+1) ≤ Eei

Q(g|x1:m,xm+1)+ ε and since
this holds for any ε > 0, we infer that Eei

Q(g|z1:m,xm+1) ≤ Eei
Q(g|x1:m,xm+1).

The result now follows from symmetry.

Theorem 44. Consider an imprecise Markov chain under epistemic irrele-
vance. Consider as well any m ∈ N, any x1:m ∈ X m, any xm+1 ∈ X and
any extended real-valued function g on Ω that does not depend on the first
m states X1:m for which there is a non-decreasing sequence of non-negative
n-measurable functions {hn}n∈N such that limn→+∞ hn = g. Then

Eei
Q(g|x1:m,xm+1) = Eei

Q(g|xm+1) and Eei
Q(g|x1:m,xm+1) = Eei

Q(g|xm+1).

Proof. We will only provide the proof for the global lower expectations; the
proof for the global upper ones is completely analogous.

We first prove that Eei
Q(g|x1:m,xm+1) ≤ Eei

Q(g|xm+1). Fix any ε > 0. Then
there is some P ∈ PQ such that

EP(g|xm+1)≤ Eei
Q(g|xm+1)+ ε. (5.45)
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It follows from Lemma 1977 that

min
z1:m∈X m

EP(g|z1:m,xm+1)≤ EP(g|xm+1),

and since Eei
Q(g|z1:m,xm+1)≤ EP(g|z1:m,xm+1) for all z1:m ∈X m, we find that

min
z1:m∈X m

Eei
Q(g|z1:m,xm+1)≤ EP(g|xm+1). (5.46)

It now follows from Lemma 43x that

Eei
Q(g|x1:m,xm+1) = min

z1:m∈X m
Eei

Q(g|z1:m,xm+1). (5.47)

By combining Equation (5.47) with Inequalities (5.46) and (5.45)x, we infer
that Eei

Q(g|x1:m,xm+1) ≤ Eei
Q(g|xm+1)+ ε , and since this holds for any ε > 0,

we infer that Eei
Q(g|x1:m,xm+1)≤ Eei

Q(g|xm+1).
It now remains to prove that Eei

Q(g|xm+1) ≤ Eei
Q(g|x1:m,xm+1). Fix any

ε > 0. Then there is some P∗ ∈ PQ such that

EP∗(g|x1:m,xm+1)≤ Eei
Q(g|x1:m,xm+1)+ ε. (5.48)

It now follows from Lemma 42122 that there is some P′ ∈ PQ such that

EP′(g|z1:m,xm+1) = EP∗(g|x1:m,xm+1) for all z1:m ∈X m. (5.49)

Also, it follows from Equation (5.49) and Lemma 1977 that EP′(g|z1:m,xm+1) =
EP′(g|xm+1) for all z1:m ∈X m, and therefore, due to Equation (5.49), we find
that

EP′(g|xm+1) = EP∗(g|x1:m,xm+1). (5.50)

Since Eei
Q(g|xm+1)≤EP′(g|xm+1), it follows from Equation (5.50) and Inequal-

ity (5.48) that Eei
Q(g|xm+1) ≤ Eei

Q(g|x1:m,xm+1) + ε , and since this holds for
any ε > 0, we infer that Eei

Q(g|xm+1)≤ Eei
Q(g|x1:m,xm+1), which completes the

proof.

5.4.5 A martingale-theoretic approach for global lower and upper ex-
pectations

So far, we have constructed global lower and upper expectations in imprecise
Markov chains under epistemic irrelevance using the measure-theoretic ap-
proach. We now investigate how we can construct them using the martingale-
theoretic approach. From the analysis that took place in Chapter 486, we
know that the martingale-theoretic approach works with local models that are
lower and upper expectation operators rather than sets of conditional proba-
bility mass functions. Therefore, instead of working with the sets of condi-
tional probability mass functions Qn,x, we here consider their corresponding
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lower and upper expectation operators Qn(·|x) and Qn(·|x), with n ∈ N and
x∈X , and use Equation (5.31)115 to define our local models. For any situation
s ∈X ∗ and any extended real-valued function g on Ω, the global lower and
upper expectations of g conditional on s are then defined by Equations (4.3)88
and (4.4)88 and will be denoted by Eei

Q(g|s) and Eei
Q(g|s) respectively.

Since martingale-theoretic imprecise Markov chains under epistemic ir-
relevance can be regarded as a special case of general martingale-theoretic
imprecise stochastic processes, we infer that all the properties presented in
Sections 4.3.289 and 4.495 will still hold. Hence, it follows from Theorem 2996
that the global lower and upper expectations of functions that depend on a finite
number of states, for instance functions that depend on a single state and time
averages, defined by the martingale-theoretic approach will coincide with the
respective ones defined by the measure-theoretic approach. However, we were
only able to prove inequalities, not equalities, for global lower and upper ex-
pectations of extended real-valued functions that are limits of non-decreasing
sequences of non-negative n-measurable functions; see Theorem 3398.

Note that the martingale-theoretic approach allows conditioning only on
single situations. Therefore, it might seem as if the global models defined by
this approach do not satisfy the imprecise Markov property, because the latter
needs conditioning on multiple situations. Fortunately, these global models
satisfy a property that is similar to the imprecise Markov one. Specifically,
for any m ∈ N0, any situation s ∈ X m, any x ∈ X and any extended real-
valued function g on Ω that does not depend on the first m states, we can
show that the global lower and upper expectations Eei

Q(g|s,x) and Eei
Q(g|s,x)

do not depend on s, in the sense that for any situation t ∈X m, it holds that
Eei

Q(g|s,x) = Eei
Q(g|t,x) and Eei

Q(g|s,x) = Eei
Q(g|t,x).

Proposition 45. Consider an imprecise Markov chain under epistemic irrele-
vance. Consider as well any m ∈ N0, any s, t ∈X m, any x ∈X and any ex-
tended real-valued function g on Ω that does not depend on the first m states,
then

Eei
Q(g|s,x) = Eei

Q(g|t,x) and Eei
Q(g|s,x) = Eei

Q(g|t,x).

Proof. We will only provide the proof for the global lower expectations; the
proof for the global upper ones is completely analogous.

Consider any M ∈M such that limsupM (s,x•) ≤ g(s,x•), and let M ′

be the real process defined by letting M ′(t,x,u) := M (s,x,u) for all u ∈
X ∗, and letting M ′(v) = M (s,x) for all v ∈X ∗ such that Γ(v) 6⊂ Γ(t,x).
M ′ is clearly a bounded above submartingale because M is, and moreover
M ′(t,x) = M (s,x) and limsupM ′(t,x•) = limsupM (s,x•) ≤ g(s,x•) =
g(t,x•), whence, by Equation (4.3)88

Eei
Q(g|s,x) = sup{M (s,x) : M ∈M and limsupM (s,x•)≤ g(s,x•)}

≤ sup{M ′(t,x) : M ′ ∈M and limsupM ′(t,x•)≤ g(t,x•)}= Eei
Q(g|t,x)
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and since this holds for any s, t ∈X m, we infer that Eei
Q(g|s,x) = Eei

Q(g|t,x).

Proposition 45x allows us to introduce a new notation for global lower
and upper expectations of extended real-valued functions g on Ω that do not
depend on the first m states X1:m, with m ∈ N0:

Eei
Q|m+1(g|x) := Eei

Q(g|s,x) and Eei
Q|m+1(g|x) := Eei

Q(g|s,x) for all s ∈X m.
(5.51)

Obviously, Eei
Q|m+1(g|·) and Eei

Q|m+1(g|·) are extended real-valued functions on
X .

5.5 HOMOGENEOUS IMPRECISE MARKOV CHAINS UNDER

EPISTEMIC IRRELEVANCE

Consider now an imprecise Markov chain under epistemic irrelevance where
Equation (5.30)115 is replaced by

Px1:n = Qxn for all n ∈ N and all x1:n ∈X n (5.52)

and where, consequently, Equation (5.31)115 is replaced by

Q(·|x1:n) = Q(·|xn) and Q(·|x1:n) = Q(·|xn) for all n ∈ N and all x1:n ∈X n,
(5.53)

with Q(·|xn) and Q(·|xn) given by Equations (5.28)114 and (5.29)114.
This particular type of imprecise stochastic process is called a homoge-

neous imprecise Markov chain under epistemic irrelevance. An example of
such an imprecise Markov chain is shown in Figure 5.4y. Clearly, a homo-
geneous imprecise Markov chain under epistemic irrelevance is simply an im-
precise Markov chain under epistemic irrelevance whose local models do not
depend on time. Therefore, all the properties presented in Sections 5.4.2116—
5.4.5124 will still hold. Moreover, due to the homogeneity of the imprecise
Markov chain, we will see in Sections 5.5.1 and 5.5.2129 that additional prop-
erties are satisfied by some types of global lower and upper expectations.

5.5.1 Properties of global lower and upper expectations of functions
that depend on a single state

Similarly to Section 5.4.2116, we can compute global lower and upper expec-
tations of functions that depend on a single state in homogeneous imprecise
Markov chains under epistemic irrelevance by using lower and upper transi-
tion operators. This time the lower and upper transition operators do not de-
pend on time. Specifically, we have the transition operators T and T , which
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Figure 5.4: The initial part of a homogeneous imprecise Markov chain under
epistemic irrelevance with state space X = {a,b}.

are non-linear operators that are given by

T : L (X )→L (X ) : f 7→ T f ;

T : L (X )→L (X ) : f 7→ T f ,

where for all f ∈L (X ), T f and T f are functions in L (X ) defined by

T f (x) := Q( f |x) = inf
{

∑
y∈X

f (y)p(y) : p ∈Qx

}
(5.54)

T f (x) := Q( f |x) = sup
{

∑
y∈X

f (y)p(y) : p ∈Qx

}
, (5.55)

for all x∈X . Therefore, due to Lemma 40117, for all m,n∈N such that n>m,
all x1:m ∈X m and all f ∈L (X ), the global lower and upper expectation of
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f at time n conditional on x1:m are computed as follows:12

Eei
Q( f (Xn)|x1:m) = T n−m f (xm) and Eei

Q( f (Xn)|x1:m) = T n−m f (xm), (5.56)

where we denote by T n−m the (n−m)-fold composition of T itself, that is

T n−m :=
n−m︷ ︸︸ ︷

T ×·· ·×T ,

and similarly for T n−m. Analogously for the unconditional case, we find that

Eei
Q( f (Xn)) = Q

�
(T n−1 f ) and Eei

Q( f (Xn)) = Q�(T
n−1 f ). (5.57)

As in the case of homogeneous Markov chains, also in homogeneous im-
precise Markov chains under epistemic irrelevance the global lower and upper
expectations of functions that depend on a single state satisfy various proper-
ties when taken to the limit. We first introduce the concept of ergodicity for
homogeneous imprecise Markov chains under epistemic irrelevance [38].

Definition 9. A homogeneous imprecise Markov chain under epistemic irrele-
vance with a lower transition operator T is called ergodic if for all f ∈L (X ),
limn→+∞ T n f exists and is a constant function.

We now show that ergodicity implies the existence of a unique limit ex-
pectation operator E∞. For any ergodic homogeneous imprecise Markov chain
under epistemic irrelevance with a lower transition operator T and any f ∈
L (X ), if we let E∞( f ) be the constant value of limn→+∞ T n f , it follows from
Equation (5.57) that limn→+∞ Eei

Q( f (Xn)) = limn→+∞ Q
�
(T n−1 f ). Since for

all k ∈ N, it holds that minT k−1 f ≤ Q
�
(T k−1 f ) ≤ maxT k−1 f , and since the

limit of the left- and right-hand side exist and are both equal to E∞( f ) we find
that

lim
n→+∞

Eei
Q( f (Xn)) = E∞( f ).

Furthermore, the limit expectation operator E∞ does not depend on the ini-
tial lower expectation operator Q

�
and it is the only such operator that is T -

invariant, in the sense that E∞ = E∞ ◦ T ; see also Reference [28, Theorem
5.1].

A sufficient condition for a homogeneous imprecise Markov chain under
epistemic irrelevance to be ergodic is to be regularly absorbing [28, Defini-
tion 4.1].13 The definition of a regularly absorbing homogeneous imprecise
Markov chain under epistemic irrelevance—presented in Reference [28]—is
mainly expressed in terms of upper transition operators. Since we prefer work-
ing with lower transition operators and due to the conjugacy between lower and

12A similar result for homogeneous imprecise Markov chains under epistemic irrelevance,
whose local models are credal sets, can be found in Reference [28].

13An extensive work on necessary and sufficient conditions can be found in Reference [38].
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upper transition operators, i.e. T ( f ) = −T (− f ) for all f ∈L (X ), we will
make use of the following equivalent definition.

Definition 10. A homogeneous Markov chain under epistemic irrelevance is
called regularly absorbing if the following holds:

Y :=
{

x ∈X : (∃m ∈ N)(∀k ≥ m)(∀y ∈X )−T k(−Ix)(y)> 0
}
6=∅,

and if moreover for all y∈X \Y there is some m∈N such that T mIY (y)> 0.

Note that if a homogeneous imprecise Markov chain under epistemic irrele-
vance is regularly absorbing, then it is also ergodic, but not vice versa.

Regarding the computation of E∞, unfortunately, we cannot compute it
easily or directly by solving the system E∞ = E∞ ◦T because this is a system
of non-linear equations and it is not guaranteed that it can be solved. Luckily,
we can compute the global lower expectation of any function f ∈L (X ) in
the limit by computing the limit limn→+∞ T n f explicitly.

5.5.2 Properties of the global lower and upper expectations defined by
the martingale-theoretic approach

In the beginning of Section 5.5126, we mention that a homogeneous imprecise
Markov chain under epistemic irrelevance is a special case of an imprecise
Markov chain under epistemic irrelevance. This implies that we can also de-
rive our global lower and upper expectations by using the martingale-theoretic
approach, where now the local models, i.e. the lower and upper expectation
operators, satisfy Equation (5.53)126. All the properties presented in Sec-
tion 5.4.5124 will still hold and we also present additional properties that hold
due to the homogeneity of the local models.

The first property is a Markov property for the global models. It states that
all global conditional lower and upper expectations are completely determined
by the global conditional expectations Eei

Q(·|x) and Eei
Q(·|x), x ∈X .

Lemma 46. Consider an imprecise Markov chain under epistemic irrelevance.
Consider any extended real-valued function g on Ω, any situation s ∈X ∗ and
any x ∈X , then

Eei
Q(g|s,x) = Eei

Q(g(s•)|x) and Eei
Q(g|s,x) = Eei

Q(g(s•)|x).

A perhaps more familiar way of writing this is

Eei
Q(g(X1:∞)|s,x) = Eei

Q(g(s,X1:∞)|x) and Eei
Q(g(X1:∞)|s,x) = Eei

Q(g(s,X1:∞)|x).

Proof. We will only provide the proof for the global lower expectations; the
proof for the global upper ones is completely analogous.
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Consider, for ease of notation, the extended real-valued function g′ on Ω

such that g′ := g(s•). Consider any bounded above submartingale M such
that limsupM (s,x•)≤ g(s,x•), and let M ′ be the real process that is defined
by M ′(u) := M (s,u) for all u ∈X ∗. M ′ is clearly a bounded above sub-
martingale because M is, and also M ′(x) = M (s,x) and limsupM ′(x•) =
limsupM (s,x•)≤ g(s,x•) = g′(x•), whence, by Equation (4.3)88

Eei
Q(g|s,x) = sup{M (s,x) : M ∈M and limsupM (s,x•)≤ g(s,x•)}

≤ sup{M ′(x) : M ′ ∈M and limsupM ′(x•)≤ g′(x•)}= Eei
Q(g
′|x).

Conversely, consider now any bounded above submartingale M such that
limsupM (x•) ≤ g′(x•), and let M ′ be the real process defined by letting
M ′(s,x,u) := M (x,u) for all u ∈X ∗, and letting M ′(t) := M (x) in all situ-
ations t ∈X ∗ such that Γ(t) 6⊂ Γ(s,x). Then M ′ is clearly a bounded above
submartingale because M is, and moreover we have that M ′(s,x) = M (x)
and limsupM ′(s,x•) = limsupM (x•) ≤ g′(x•) = g(s,x•), whence, again
by Equation (4.3)88

Eei
Q(g
′|x) = sup{M (x) : M ∈M and limsupM (x•)≤ g′(x•)}

≤ sup{M ′(s,x) : M ′ ∈M and limsupM ′(s,x•)≤ g(s,x•)}
= Eei

Q(g|s,x).

We now introduce the shift operator θ on N by letting θ(n) := n+ 1 for
all n ∈ N. This induces a shift operator on Ω: θω is the path with (θω)n :=
ωθ(n) =ωn+1 for all n∈N. And this also induces a shift operation on functions
g on Ω: θg is the function defined by (θg)(ω) := g(θω) for all ω ∈Ω.

Proposition 47. Let m ∈ N0. If a function g on Ω does not depend on the first
m states, then θg does not depend on the first m+1 states.

Proof. Assume g does not depend on the first m states, so there is some func-
tion g′ such that g(s•) = g′ for all s ∈X m. Then for all x ∈X , s ∈X m and
all ω ∈Ω:

(θg)(x,s,ω) = g(θ(x,s,ω)) = g(s,ω) = g′(ω),

which concludes the proof.

Therefore, for any function g on paths that does not depend on the first m
states, it holds that g(ω) = g(s,θ mω) for all s ∈X m and ω ∈ Ω, and we can
also write it as g = g(sθ m •).

Our last result is a shift invariance property that is satisfied by the global
lower and upper expectations.

130
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Proposition 48. Consider an imprecise Markov chain under epistemic irrele-
vance. Let m ∈ N and consider any extended real-valued function g on Ω that
does not depend on the first m−1 states. Then for all k ∈ N0:

Eei
Q|m(g|·) = Eei

Q|m+k(θ
kg|·) and Eei

Q|m(g|·) = Eei
Q|m+k(θ

kg|·).

Proof. We will only provide the proof for the global lower expectations; the
proof for the global upper ones is completely analogous.

It clearly suffices to prove the statement for k = 1. Consider any s∈X m−1

and any x,y ∈X , then it follows from Equation (5.51)126 and Lemma 46129
that

Eei
Q|m(g|x) = Eei

Q(g|s,x) = Eei
Q(g(s•)|x)

and also that

Eei
Q|m+1(θg|x) = Eei

Q(θg|y,s,x) = Eei
Q(θg(y,s•)|x).

Now observe that θg(y,s•) = g(θ(y,s•)) = g(s•).14

Proposition 48 will turn out to be useful in Chapter 6151, where we compute
global lower and upper expected first-passage and return times in a special
type of homogeneous imprecise Markov chains, the so-called imprecise time-
homogeneous birth-death chains.

5.6 IMPRECISE MARKOV CHAINS UNDER COMPLETE INDE-
PENDENCE

In this section, we present a more stringent independence concept for imprecise
Markov chains than epistemic irrelevance, called complete independence. As
far as the computation of expectations is concerned, complete independence
coincides with epistemic irrelevance when it comes to global lower and up-
per expectations of functions that depend on a single state and time averages.
However, as far as we can tell, this might not be the case for more general
functions.

5.6.1 Complete independence

Consider an imprecise Markov chain under epistemic irrelevance and let TQ

be the the corresponding imprecise probability tree that we defined in Sec-
tion 5.4.1115. Now let

T M
Q :=

{
p ∈ PM : p ∈TQ

}
= TQ ∩PM. (5.58)

14Note that Proposition 48 might not hold for imprecise Markov chains under epistemic irrel-
evance that are not homogeneous. Since the local models at times n and n− 1 conditional on x
might differ, Eei

Q|n(g|x) and Eei
Q|n+1(θg|x) might differ as well.
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This imprecise probability tree T M
Q has a corresponding set of conditional

probability measures on Cσ , which we denote by PM
Q. Clearly, T M

Q ⊆ TQ

and PM
Q ⊆ PQ, where PQ is the corresponding set of conditional probability

measures on Cσ of TQ.
The imprecise stochastic process associated with the set PM

Q is called an
imprecise Markov chain under complete independence [15,62]. We infer from
Equation (5.58)x that the difference between epistemic irrelevance and com-
plete independence is that under the former concept we consider probability
trees that are derived from all possible combinations of the conditional prob-
abilities of the local models, whereas under the latter we consider only those
that correspond to Markov chains.

For any measurable extended real-valued function g on Ω and any B ∈
〈X ∗〉 \ {∅}, the global lower and upper expectation of g conditional on B
will be denoted by Eci

Q(g|B) and Eci
Q(g|B) respectively and they are defined as

follows:

Eci
Q(g|B) := inf

{
EP(g|B) : P ∈ PM

Q

}
; (5.59)

Eci
Q(g|B) := sup

{
EP(g|B) : P ∈ PM

Q

}
. (5.60)

If the function g under study is a measurable extended real-valued one on Ω

that does not depend on the first m states X1:m, for some m ∈ N, and is a limit
of a non-decreasing sequence of non-negative n-measurable functions, then its
global lower and upper expectation satisfy the following imprecise Markov
property.

Theorem 49. Consider an imprecise Markov chain under complete indepen-
dence. Consider as well any m ∈ N0, any x1:m ∈X m, any xm+1 ∈X and
any measurable extended real-valued function g on Ω that does not depend on
the first m states X1:m for which there is a non-decreasing sequence of non-
negative n-measurable functions {hn}n∈N such that limn→+∞ hn = g. Then

Eci
Q(g|x1:m,xm+1) = Eci

Q(g|xm+1) and Eci
Q(g|x1:m,xm+1) = Eci

Q(g|xm+1).

Proof. We will only provide the proof for the global lower expectations; the
proof for the global upper ones is completely analogous. Observe that

Eci
Q(g|x1:m,xm+1) = inf

{
EP(g|x1:m+1) : P ∈ PM

Q

}
= inf

{
EP(g|xm+1) : P ∈ PM

Q

}
= Eci

Q(g|xm+1),

where the first and the last equality follow from Equation (5.59) and the sec-
ond equality follows from Theorem 35103 since every P ∈ PM

Q is a conditional
probability measure that corresponds to a Markov chain.
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We close this section with a technical lemma that will be used in the proofs
of Theorems 51137 and 52138 further on.

Lemma 50. Consider an initial model Q�, and for each n ∈ N and each
x ∈X , a set of conditional probability mass functions Qn,x as introduced in
Section 5.3113. Consider as well any m ∈ N0, any n ∈ N, any x1:m ∈X m and
any f ′, f ′′ ∈L (X ). Then

Eci
Q

(n−1

∑
i=1

f ′(Xi)+ f ′′(Xn)
∣∣∣x1:m

)
= Eei

Q

(n−1

∑
i=1

f ′(Xi)+ f ′′(Xn)
∣∣∣x1:m

)
;

Eci
Q

(n−1

∑
i=1

f ′(Xi)+ f ′′(Xn)
∣∣∣x1:m

)
= Eei

Q

(n−1

∑
i=1

f ′(Xi)+ f ′′(Xn)
∣∣∣x1:m

)
.

Proof. We will only provide the proof for the global lower expectations; the
proof for the global upper ones is completely analogous.

If m = 0 and n = 1, we have that Eci
Q( f ′′(X1)) = Eei

Q( f ′′(X1)) = Q
�
( f ′′). If

m 6= 0 and n≤m, it follows from the argument following Equation (3.18)74 that
EP(∑

n−1
i=1 f ′(Xi)+ f ′′(Xn)|x1:m) = ∑

n−1
i=1 f ′(xi)+ f ′′(xn) for all P ∈ PQ. There-

fore, and because PM
Q ⊆ PQ, it follows from the definitions of Eei

Q and Eci
Q

that

Eci
Q

(n−1

∑
i=1

f ′(Xi)+ f ′′(Xn)

∣∣∣∣x1:m

)
= inf

{
EP

(n−1

∑
i=1

f ′(Xi)+ f ′′(Xn)

∣∣∣∣x1:m

)
: P ∈ PM

Q

}
=

n−1

∑
i=1

f ′(xi)+ f ′′(xn) = inf
{

EP

(n−1

∑
i=1

f ′(Xi)+ f ′′(Xn)

∣∣∣∣x1:m

)
: P ∈ PQ

}
= Eei

Q

(n−1

∑
i=1

f ′(Xi)+ f ′′(Xn)

∣∣∣∣x1:m

)
.

We now prove the rest of the cases using induction. That is, for all n ∈ N
such that n > max{m,1} and all f ′, f ′′ ∈L (X ), we will prove that

Eci
Q

( n−1

∑
i=1

f ′(Xi)+ f ′′(Xn)

∣∣∣∣x1:m

)
= Eei

Q

(n−1

∑
i=1

f ′(Xi)+ f ′′(Xn)

∣∣∣∣x1:m

)
. (5.61)

Consider any k > max{m,1} and assume that Equation (5.61) holds for n =
k−1. We will prove that it holds for n = k as well.
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It follows from Theorem 2182 [repeatedly] that

Eei
Q

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
= Q

(
. . .Q

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣X1:k−1

)
. . .

∣∣∣∣x1:m

)
= Eei

Q

(
Q
( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣X1:k−1

)∣∣∣∣x1:m

)
. (5.62)

Observe that for any z1:k−1 ∈X k−1

Q
( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣z1:k−1

)
= Q

( k−1

∑
i=1

f ′(zi)+ f ′′(Xk)

∣∣∣∣z1:k−1

)
=

k−1

∑
i=1

f ′(zi)+Q( f ′′(Xk)|z1:k−1) =
k−1

∑
i=1

f ′(zi)+Qk−1( f ′′(Xk)|zk−1)

=
k−1

∑
i=1

f ′(zi)+T k−1 f ′′(zk−1), (5.63)

where the first equality follows from Equation (3.31)82; the second holds be-
cause, since ∑

k−1
i=1 f ′(zi) is a constant and Q(·|z1:k−1) is an infimum of ex-

pectations, it follows from Lemmas 102240 and 106241 that ∑
k−1
i=1 f ′(zi) can

be taken out; the third equality follows from Equation (5.31)115; and the last
equality follows from Equation (5.32)117. Since Equation (5.63) holds for any
z1:k−1 ∈X k−1, it follows from Equation (5.62) that

Eei
Q

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
= Eei

Q

( k−1

∑
i=1

f ′(Xi)+T k−1 f ′′(Xk−1)

∣∣∣∣x1:m

)
= Eei

Q

( k−2

∑
i=1

f ′(Xi)+ f ′(Xk−1)+T k−1 f ′′(Xk−1)

∣∣∣∣x1:m

)
.

Due to the induction hypothesis and the fact that f ′(Xk−1)+T k−1 f ′′(Xk−1) can
be regarded as a function on X , the aforementioned equation implies that

Eei
Q

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
= Eci

Q

( k−2

∑
i=1

f ′(Xi)+ f ′(Xk−1)+T f ′′(Xk−1)

∣∣∣∣x1:m

)
= Eci

Q

( k−1

∑
i=1

f ′(Xi)+T f ′′(Xk−1)

∣∣∣∣x1:m

)
. (5.64)
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We now prove Equation (5.61)133 by showing first that Eei
Q(∑k−1

i=1 f ′(Xi)+

f ′′(Xk)|x1:m)≥Eci
Q(∑k−1

i=1 f ′(Xi)+ f ′′(Xk)|x1:m) and then that Eei
Q(∑k−1

i=1 f ′(Xi)+

f ′′(Xk)|x1:m)≤ Eci
Q(∑k−1

i=1 f ′(Xi)+ f ′′(Xk)|x1:m).
Fix any ε > 0. Then there is some Pε ∈ PM

Q such that

EPε

( k−1

∑
i=1

f ′(Xi)+T f ′′(Xk−1)

∣∣∣∣x1:m

)
≤Eci

Q

( k−1

∑
i=1

f ′(Xi)+T f ′′(Xk−1)

∣∣∣∣x1:m

)
+

ε

2
,

(5.65)
and for any x ∈X , there is also some px ∈Qk−1,x such that

∑
y∈X

f ′′(y)px(y)≤ inf
{

∑
y∈X

f ′′(y)q(y) : q ∈Qk−1,x

}
+

ε

2
= T k−1 f ′′(x)+

ε

2
,

(5.66)
where the equality follows from Equation (5.32)117.

Let p ∈ T M
Q be the probability tree that corresponds to Pε . It follows

from Equation (5.58)131 that there is some p∗ ∈ T M
Q such that for all i ∈

{1, . . . ,k− 2} and all z1:i ∈X i, it holds that p∗(Xi+1|z1:i) = p(Xi+1|z1:i), and
for all z1:k−2 ∈X k−2 and all x ∈X , it holds that p∗(Xk|z1:k−2,x) = px(Xk) .
Consider now any P∗ ∈ Pp∗ , then P∗ ∈ PM

Q and also

EP∗

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
= EP∗

(
EP∗

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣X1:k−1

)∣∣∣∣x1:m

)
= EP∗

( k−1

∑
i=1

f ′(Xi)+EP∗( f ′′(Xk)|X1:k−1)

∣∣∣∣x1:m

)
, (5.67)

where the first equality follows from Theorem 1775, and the second equality
from Lemmas 102240 and 106241 and the argument after Equation (3.18)74. For
all z1:k−1 ∈X k−1, it follows from Equation (3.18)74, the structure of p∗ and
Inequality (5.66) that

EP∗( f ′′(Xk)|z1:k−1) = ∑
y∈X

f ′′(y)p∗(y|z1:k−1)

= ∑
y∈X

f ′′(y)pzk−1(y)≤ T k−1 f ′′(zk−1)+
ε

2
.

135



5.6 IMPRECISE MARKOV CHAINS UNDER COMPLETE INDEPENDENCE

Hence, by combining Equation (5.67) with Lemma 103240, we further find that

EP∗

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
≤ EP∗

( k−1

∑
i=1

f ′(Xi)+T k−1 f ′′(Xk−1)+
ε

2

∣∣∣∣x1:m

)
= EPε

( k−1

∑
i=1

f ′(Xi)+T k−1 f ′′(Xk−1)+
ε

2

∣∣∣∣x1:m

)
= EPε

( k−1

∑
i=1

f ′(Xi)+T k−1 f ′′(Xk−1)

∣∣∣∣x1:m

)
+

ε

2

≤ Eci
Q

( k−1

∑
i=1

f ′(Xi)+T k−1 f ′′(Xk−1)

∣∣∣∣x1:m

)
+ ε, (5.68)

where the first equality follows from Equation (3.18)74 and the structure of
p∗, the last equality holds because of Lemmas 102240 and 106241 and the last
inequality follows from Inequality (5.65)x. Since Inequality (5.68) holds for
all ε > 0, we infer that

EP∗

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
≤ Eci

Q

( k−1

∑
i=1

f ′(Xi)+T k−1 f ′′(Xk−1)

∣∣∣∣x1:m

)
,

and therefore, due to Equation (5.64)134, also that

EP∗

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
≤ Eei

Q

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
and since P∗ ∈ PM

Q, also that

Eci
Q

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
≤ Eei

Q

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
.

Finally, observe that

Eei
Q

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
= inf

{
EP

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
: P ∈ PQ

}
≤ inf

{
EP

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
: P ∈ PM

Q

}
= Eci

Q

( k−1

∑
i=1

f ′(Xi)+ f ′′(Xk)

∣∣∣∣x1:m

)
,
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where the first and the last equality follow from the definition of global lower
expectations under epistemic irrelevance and complete independence, respec-
tively, and the inequality holds because PM

Q ⊆ PQ.

5.6.2 Global lower and upper expectations of functions that depend on
a single state

For global lower and upper expectations of functions that depend on a single
state, it makes no difference whether we adopt epistemic irrelevance or com-
plete independence. The corresponding theorem goes as follows.15

Theorem 51. Consider an initial model Q� and for each n ∈ N and each
x ∈X , a set of conditional probability mass functions Qn,x as introduced in
Section 5.3113. Consider as well any n,m ∈ N such that n > m, any xm ∈X
and any function f ∈L (X ). Then

Eci
Q( f (Xn)|xm) = Eei

Q( f (Xn)|xm) and Eci
Q( f (Xn)|xm) = Eei

Q( f (Xn)|xm).

For the unconditional case, for any n ∈ N and any f ∈L (X ), we have that

Eci
Q( f (Xn)) = Eei

Q( f (Xn)) and Eci
Q( f (Xn)) = Eei

Q( f (Xn)).

Proof. We only provide the proof the global lower expectations; the proof for
the global upper ones is completely analogous.

It follows from Lemma 50133 [for f ′′ = f , f ′ = 0 and m = 0] that

Eci
Q( f (Xn)) = Eei

Q( f (Xn)).

Similarly, for any x1:m−1 ∈X m−1, Lemma 50133 [again for f ′′ = f and f ′ = 0]
implies that

Eci
Q( f (Xn)|x1:m) = Eei

Q( f (Xn)|x1:m)

and therefore, it follows from Theorems 49132 and 39117 that Eci
Q( f (Xn)|xm) =

Eei
Q( f (Xn)|xm).

5.6.3 Global lower and upper expectations of time averages

Similarly to the case of global lower and upper expectations of functions that
depend on a single state, the global lower and upper expectations of time aver-
ages in imprecise Markov chains under complete independence coincide with
the respective ones under epistemic irrelevance. The corresponding theorem
goes as follows.

15A similar theorem for homogeneous imprecise Markov chains whose local models are credal
sets was proved in Reference [5, Theorem 11.4].
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Theorem 52. Consider an initial model Q� and for each n ∈ N and each
x ∈X , a set of conditional probability mass functions Qn,x as introduced in
Section 5.3113. Consider as well any m ∈ N0, any n ∈ N, any x1:m ∈X m and
any function f ∈L (X ). Then

Eci
Q([ f ](X1:n)|x1:m) = Eei

Q([ f ](X1:n)|x1:m);

Eci
Q([ f ](X1:n)|x1:m) = Eei

Q([ f ](X1:n)|x1:m).

Proof. Observe that

Eci
Q([ f ](X1:n)|x1:m) = Eci

Q

(
1
n

n

∑
i=1

f (Xi)

∣∣∣∣x1:m

)
= Eei

Q

(
1
n

n

∑
i=1

f (Xi)

∣∣∣∣x1:m

)
= Eei

Q([ f ](X1:n)|x1:m),

where the first and the last equality follow from Equation (5.7)106 and the sec-
ond equality follows from Lemma 50133 [for f ′′ = f ′ = 1

n f ].

5.6.4 Global lower and upper expectations of more general functions

For general n-measurable functions or extended real-valued functions that are
limits of non-decreasing sequences of non-negative n-measurable functions,
the global lower and upper expectations for imprecise Markov chains under
complete independence may not coincide with the respective ones under epis-
temic irrelevance. This is clarified through the following example.

Example 8. Consider the set X = {a,b}, the interval I = [1/4,3/4] and the
following sets of probability mass functions on X :

Q� := {(1/2,1/2)}, Q2,b := {(0,1)} and

Q2,a = Q1,a = Q1,b := {(q,1−q) : q ∈ I}. (5.69)

Consider also any imprecise Markov chain under epistemic irrelevance and any
imprecise Markov chain under complete independence, whose state space is
X and local models at times n= 0,1,2 are given by Equation (5.69). Consider
as well the function h in L (X 3) with values h(a, ·,a) = h(b, ·,b) = 0 and
h(a, ·,b) = h(b, ·,a) = 1.

We will calculate the lower expectations Eei
Q(h(X1:3)) and Eci

Q(h(X1:3)).
Starting with Eei

Q(h(X1:3)), it follows from Theorem 2182 that

Eei
Q(h(X1:3)) = Q

�
(Q(Q(h(X1:3)|X1:2)|X1)) = Q

�
(h′′(X1)), (5.70)

with h′′(X1) := Q(h′(X1:2)|X1) and h′(X1:2) := Q(h(X1:3)|X1:2).
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For h′(a,a), it follows from Equation (3.31)82 that

h′(a,a) = Q(h(X1:3)|a,a) = Q(h(a,a,X3)|a,a)

and, due to Equation (5.31)115, that Q(h(a,a,X3)|a,a) = Q2(h(a,a,X3)|a).
Therefore, it follows from Equation (5.26)114 that

h′(a,a) = Q2(h(a,a,X3)|a) = inf
{

∑
y∈X

h(a,a,y)p(y) : p ∈Q2,a

}
= inf

{
h(a,a,a)p(a)+h(a,a,b)p(b) : p ∈Q2,a

}
= inf

{
h(a,a,a)q+h(a,a,b)(1−q) : q ∈ I

}
= inf

{
1−q : q ∈ I

}
= 1− 3

4
=

1
4
,

where the fourth equality follows from Equality (5.69)x and the sixth holds
because I is a closed interval consisting of strictly positive values and therefore
the infimum inf{1−q : q ∈ I} is obtained for the largest value in I.

Since, due to Equality (5.69)x, Q2,b consists of a single probability mass
function, it is easy to see that h′(a,b) = Q2(h(a,b,X3)|b) = 1.

Similarly, we find that h′(a,b) = Q2(h(b,a,X3)|a) = 1/4 and h′(b,b) =
Q2(h(b,b,X3)|b) = 0.

We then calculate h′′(X1). For X1 = a, it follows from Equations (3.31)82
and (5.31)115 that

h′′(a) = Q(h′(X1:2)|a) = Q(h′(a,X2)|a) = Q1(h
′(a,X2)|a).

Since we know that h′(a,a) = 1/4 and h′(a,b) = 1, it follows from Equa-
tion (5.26)114 that

h′′(a) = Q1(h
′(a,X2)|a) = inf

{
∑

y∈X
h′(a,y)p(y) : p ∈Q1,a

}
= inf

{
h′(a,a)p(a)+h′(a,b)p(b) : p ∈Q1,a

}
= inf

{
h′(a,a)q+h′(a,b)(1−q) : q ∈ I

}
= inf

{1
4

q+1−q : q ∈ I
}
= inf

{
1− 3

4
q : q ∈ I

}
= 1− 3

4
· 3

4
=

7
16

,

where the fourth equality follows from Equality (5.69)x and the seventh holds
because I is a closed interval consisting of strictly positive values and therefore
the infimum inf{1− 3

4 q : q ∈ I} is obtained for the largest value in I. In a
completely similar way, we find that h′′(b) = 1/16. Finally, we have that

Eei
Q(h(X1:3)) = Q

�
(h′′(X1)) = inf

{
∑

y∈X
h′′(y)p(y) : p ∈Q�

}
= h′′(a)

1
2
+h′′(b)

1
2
=

7
16
· 1

2
+

1
16
· 1

2
=

1
2
(

7
16

+
1

16
) =

1
4

(5.71)
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where the first equality follows from Equation (5.70)138, the second equality
follows from the definition of Q

�
(·) and the third equality follows from Equal-

ity (5.69)138.
We now calculate Eci

Q(h(X1:3)), for which we have that

Eci
Q(h(X1:3)) = inf

{
EP(h(X1:3)) : P ∈ PM

Q

}
= inf

{
∑

x1:3∈X 3

h(x1:3)
2

∏
i=0

p(xi+1|x1:i) : p ∈T M
Q

}
= inf

{
h(a,a,a)p(a|a,a)p(a|a)p(a|�)+h(a,a,b)p(b|a,a)p(a|a)p(a|�)

+h(a,b,a)p(a|a,b)p(b|a)p(a|�)+h(a,b,b)p(b|a,b)p(b|a)p(a|�)

+h(b,a,a)p(a|b,a)p(a|b)p(b|�)+h(b,a,b)p(b|b,a)p(a|b)p(b|�)

+h(b,b,a)p(a|b,b)p(b|b)p(b|�)+h(b,b,b)p(b|b,b)p(b|b)p(b|�)

: p ∈T M
Q

}
= inf

{
q2(b|a)q1(a|a)q�(a)+q2(b|b)q1(b|a)q�(a)

+q2(a|a)q1(a|b)q�(b)+q2(a|b)q1(b|b)q�(b) : q2(·|a) ∈Q2,a,

q2(·|b) ∈Q2,b, q1(·|a) ∈Q1,a, q1(·|b) ∈Q1,b and q� ∈Q�

}
= inf

{
(1−q′′)q′

1
2
+(1−q′)

1
2
+2(1−q′)

1
2
+q′′q∗

1
2

: q∗,q′,q′′ ∈ I
}

= inf
{

q′′q∗
1
2
−q′′q′

1
2
+

1
2

: q∗,q′,q′′ ∈ I
}

= inf
{

q′′
1
2
(q∗−q′)+

1
2

: q∗,q′,q′′ ∈ I
}
=

3
4
· 1

2

(
1
4
− 3

4

)
+

1
2

=−3
4
· 1

2
· 1

2
+

1
2
=− 3

16
+

1
2
=

5
16

(5.72)

where the first equality follows from Equation (5.59)132, the second follows
from Equation (3.18)74, the fourth equality follows from Equation (5.58)131,
the fifth follows from Equation (5.69)138 and the eighth equality holds be-
cause the infimum is obtained for the smallest possible value of q′′(q ∗−q′)
and therefore, it is easy to see that this value is obtained for q′′ = q′ = 3/4 and
q∗ = 1/4.

Finally, due to Equations (5.71)x and (5.72), we infer that Eei
Q(h(X1:3))<

Eci
Q(h(X1:3)). ♦

Although there are also cases in which epistemic irrelevance and complete
independence coincide, such as the lower and upper expected first-passage
times of Chapter 6151, this example illustrates that this is not true in general.
Therefore, we will require new computational methods for computing global
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lower and upper expectations that correspond to imprecise Markov chains un-
der complete independence.

However, unfortunately, there are no known efficient methods for comput-
ing global lower and upper expectations of general n-measurable functions,
let alone of more general measurable functions, in imprecise Markov chains
under complete independence. For this reason, we now propose a brute-force
approach for approximating global lower and upper expectations of general
n-measurable functions for small n ∈ N.16 We describe the approach for con-
ditional expectations; the unconditional ones follow similarly.

Consider any n,m ∈N such that n > m and any situation x1:m ∈X m. Con-
sider as well any n-measurable function h(X1:n) and suppose that we want
to calculate Eci

Q(h(X1:n)|x1:m) and Eci
Q(h(X1:n)|x1:m). We first select k ∈ N

conditional probability mass functions from each local model Qi,x , for all
i ∈ {m, . . . ,n− 1} and all x ∈ X —for i = m, we only need to consider k
conditional probability mass functions from Qm,xm . We then construct the im-
precise probability tree by considering all possible combinations of the se-
lected conditional probability mass functions. For each probability tree in
the constructed imprecise probability, we compute the global conditional ex-
pectation of h(X1:n), among which the lowest value is the approximation for
Eci

Q(h(X1:n)|x1:m) and the highest value for Eci
Q(h(X1:n)|x1:m). In the uncondi-

tional case, we follow the same procedure and additionally, we select k proba-
bility mass functions from the initial model Q�.

This approach is quite inefficient in general. And, not only does it not
guarantee that we will achieve the global infimum or supremum, but it is also
computationally expensive and we have no idea about the error. For any n,m∈
N0 such that n > m, we need to calculate k(n−m−1)|X |+1 global expectations.

5.6.5 Homogeneous imprecise Markov chains under complete inde-
pendence

For homogeneous imprecise Markov chains under complete independence, ev-
erything mentioned in Sections 5.6.1131–5.6.4138 holds in the exact same way
and the only difference now is that the local models do not depend on time
and hence, they satisfy Equation (5.52)126. Therefore, we can compute global
lower and upper expectations of functions that depend on a single state and
time averages using lower and upper transition operators T and T . In the case
of general n-measurable functions, for small n ∈ N, we can again use the ap-
proach described in Section 5.6.4138.

16When n is large, it might not be feasible to compute expectations of general n-measurable
functions even under epistemic irrelevance. By applying Theorem 2182 to any n-measurable func-
tion h(X1:n), we need to solve ∑

n−1
i=i |X |i +1 optimisation problems in order to find Eei

Q(h(X1:n)).
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5.7 IMPRECISE MARKOV CHAINS UNDER REPETITION INDE-
PENDENCE

We now present an even more stringent independence concept than epistemic
irrelevance and complete independence, which can be used in homogeneous
imprecise Markov chains, and which is called repetition independence. But, as
we will see, under repetition independence, we may not be able to efficiently
compute global lower and upper expectations of various types of functions,
even for those that depend only on a single state.

5.7.1 Repetition independence

Consider a homogeneous imprecise Markov chain under epistemic irrelevance
and let TQ be the corresponding imprecise probability tree as defined in Sec-
tion 5.4.1115. We now impose an additional constraint that is stronger that
the one imposed on (homogeneous) imprecise Markov chains under complete
independence. Instead of the imprecise probability TQ or the imprecise prob-
ability T M

Q given by Equation (5.58)131, we consider the set

T HM
Q :=

{
p ∈ PHM : p ∈TQ

}
= TQ ∩PHM. (5.73)

This imprecise probability tree T HM
Q has a corresponding set of conditional

probability measures on Cσ , which we denote by PHM
Q . It is easy to see that

T HM
Q ⊆T M

Q ⊆TQ and PHM
Q ⊆ PM

Q ⊆ PQ.
The set PM

Q corresponds to an imprecise stochastic process that is called
a homogeneous imprecise Markov chain under repetition independence [14].
Judging by Equation (5.73), we see that under repetition independence, from
all combinations of the probability mass functions of the local models we con-
sider only the probability trees that correspond to homogeneous imprecise
Markov chains, whereas in the case of complete independence we consider
those that correspond to—not necessarily homogeneous—Markov chains and
in the case of epistemic irrelevance we consider all possible combinations.

For any measurable extended real-valued function g on Ω and any B ∈
〈X ∗〉\{∅}, the global lower and upper expectation of g conditional on B will
be denoted by Eri

Q(g|B) and Eri
Q(g|B), respectively, and are defined as follows:

Eri
Q(g|B) := inf

{
EP(g|B) : P ∈ PHM

Q

}
; (5.74)

Eri
Q(g|B) := sup

{
EP(g|B) : P ∈ PHM

Q

}
. (5.75)

Global lower and upper expectations of measurable extended real-valued func-
tions on Ω that do not depend on the first m states X1:m, for some m ∈ N, and
that are limits of some non-decreasing sequence of non-negative n-measurable
functions satisfy the following imprecise Markov property.
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Theorem 53. Consider a homogeneous imprecise Markov chain under repeti-
tion independence. Consider as well any m ∈ N0, any x1:m ∈X m, any xm+1 ∈
X and any measurable extended real-valued function g on Ω that does not de-
pend on the first m states X1:m and for which there is a non-decreasing sequence
of non-negative n-measurable functions {hn}n∈N such that limn→+∞ hn = g.
Then

Eri
Q(g|x1:m,xm+1) = Eri

Q(g|xm+1) and Eri
Q(g|x1:m,xm+1) = Eri

Q(g|xm+1).

Proof. We will only provide the proof for the global lower expectations; the
proof for the global upper ones is completely analogous.

Observe that

Eri
Q(g|x1:m,xm+1) = inf

{
EP(g|x1:m,xm+1) : P ∈ PHM

Q

}
= inf

{
EP(g|xm+1) : P ∈ PHM

Q

}
= Eri

Q(g|xm+1),

where the first and the last equality follow from Equation (5.74)x and the sec-
ond equality follows from Theorem 35103 since every P∈ PHM

Q is a conditional
probability measure that corresponds to a homogeneous Markov chain.

5.7.2 Global lower and upper expectations

In general, there are no known efficient methods for computing global lower
and upper expectations in homogeneous Markov chains under repetition in-
dependence. Furthermore, the results may differ from those obtained under
epistemic irrelevance and complete independence. In fact, even for the com-
putation of global lower and upper expectations of functions that depend on a
single state, the following example illustrates that we can no longer use lower
and upper transition operators.

Example 9. Consider the set X = {a,b}, the interval I = [1/4,3/4] and the
following sets of probability mass functions on X :

Q� := {(1/2,1/2)}, Qa := {(q,1−q) : q ∈ I} and Qb := {(1,0)}. (5.76)

Consider also any homogeneous imprecise Markov chain under epistemic ir-
relevance and any homogeneous imprecise Markov under repetition indepen-
dence, whose state space is X and local models at times n = 0,1,2 are given
by Equation (5.76). Consider as well the function f in L (X ) defined by
f (a) := 0 and f (b) := 1.

We will calculate the lower expectations Eei
Q( f (X3)) and Eri

Q( f (X3)). Start-
ing with Eei

Q( f (X3))—which is equal to Eci
Q( f (X3)) due to Theorem 51137—it

follows from Equation (5.57)128 that

Eei
Q( f (X3)) = Q

�
(T 2 f ).
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For T f (a), it follows from Equation (5.54)127 that

T f (a) = inf
{

∑
y∈X

f (y)p(y) : p ∈Qa

}
= inf

{
f (a)p(a)+ f (b)p(b) : p ∈Qa

}
= inf

{
f (a)q+ f (b)(1−q) : q ∈ I

}
= inf

{
1−q : q ∈ I

}
= inf

{
1−q : q ∈ I

}
= 1− 3

4
=

1
4
,

where the third equality follows from Equation (5.76)x and the sixth holds
because I is a closed interval consisting of strictly positive values and therefore
the infimum inf{1−q : q ∈ I} is obtained for the largest value in I.

Since, due to Equation (5.76)x, Qb consists of a single probability mass
function, it is easy to see that T f (b) = 0.

Moving on, we calculate T 2 f (a) and we find that

T 2 f (a) = inf
{

∑
y∈X

T f (y)p(y) : p ∈Qa

}
= inf

{
T f (a)p(a)+T f (b)p(b) : p ∈Qa

}
= inf

{
T f (a)q+T f (b)(1−q) : q ∈ I

}
= inf

{1
4

q : q ∈ I
}
=

1
4
· 1

4
=

1
16

where the first equality follows from Equation (5.54)127 and the fact that T f
is a function on X , the third equality follows from Equation (5.76)x and the
fifth holds because I is a closed interval consisting of strictly positive values
and therefore the infimum inf{ 1

4 q : q ∈ I} is obtained for the smallest value in
I. Similarly, we find that T 2 f (b) = 1/4.

Finally, it follows from Equation (5.57)128 that

Eei
Q( f (X3)) = Q

�
(T 2 f ) = inf

{
∑

y∈X
T 2 f (y)p(y) : p ∈Q�

}
= inf

{
T 2 f (a)p(a)+T 2 f (b)p(b) : p ∈Q�

}
=

1
16
· 1

2
+

1
4
· 1

2

=
1
2
(

1
16

+
1
4
) =

1
2
· 5

16
=

5
32

. (5.77)

We now calculate Eri
Q( f (X3)), for which we have that

Eri
Q( f (X3)) = inf

{
EP( f (X3)) : P ∈ PHM

Q

}
= inf

{
∑

x1:3∈X 3

f (x3)
2

∏
i=0

p(xi+1|x1:i) : p ∈T HM
Q

}
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= inf
{

f (a)p(a|a,a)p(a|a)p(a|�)+ f (b)p(b|a,a)p(a|a)p(a|�)

+ f (a)p(a|a,b)p(b|a)p(a|�)+ f (b)p(b|a,b)p(b|a)p(a|�)

+ f (a)p(a|b,a)p(a|b)p(b|�)+ f (b)p(b|b,a)p(a|b)p(b|�)

+ f (a)p(a|b,b)p(b|b)p(b|�)+ f (b)p(b|b,b)p(b|b)p(b|�)

: p ∈T HM
Q

}
= inf

{
q(b|a)q(a|a)q�(a)+q(b|b)q(b|a)q�(a)

+q(b|a)q(a|b)q�(b)+q(b|b)q(b|b)q�(b)

: q(·|a) ∈Qa, q(·|b) ∈Qb and q� ∈Q�

}
= inf

{(
1−q(a|a)

)
q(a|a)1

2
+
(
1−q(a|a)

)1
2

: q(·|a) ∈Qa

}
= inf

{(
1−q′

)
q′

1
2
+
(
1−q′

)1
2

: q′ ∈ I
}
= inf{−q′2

1
2
+

1
2

: q′ ∈ I}

=−
(3

4

)2
· 1

2
+

1
2
=− 9

16
· 1

2
+

1
2
=− 9

32
+

1
2
=

7
32

, (5.78)

where the first equality follows from Equation (5.59)132, the second follows
from Equation (3.18)74, the fourth equality follows from Equation (5.73)142
and the definition of f , the fifth and sixth equality follow from Equation (5.76)143
and the eighth equality holds because I is a closed interval consisting of strictly
positive values and therefore the infimum inf{−q′2 1

2 +
1
2 : q′ ∈ I} is obtained

for the largest value in I.
Finally, due to Equations (5.77)x and (5.78), we infer that Eei

Q( f (X3)) <
Eri

Q( f (X3)). ♦

Nevertheless, there are some specific cases where epistemic irrelevance,
complete independence and repetition independence lead to the same result.
The following proposition, which will turn out to be useful in Chapter 7189
when we compare these three independence concepts with a fourth one, pro-
vides a first example.

Proposition 54. Consider an initial model Q� and for each x ∈ X , a set
of conditional probability mass functions Qx, as introduced in Section 5.3113.
Consider as well any function f ∈L (X ) and any k ∈ {1,2}. Then

Eei
Q( f (Xk)) = Eci

Q( f (Xk)) = Eri
Q( f (Xk));

Eei
Q( f (Xk)) = Eci

Q( f (Xk)) = Eri
Q( f (Xk)).

Proof. We will only provide the proof for the global lower expectations; the
proof for the global upper ones is completely analogous.

The fact that Eei
Q( f (Xk))=Eci

Q( f (Xk)) follows directly from Theorem 51137.
Therefore, we will prove that Eei

Q( f (Xk)) = Eri
Q( f (Xk)).
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For k = 1, we find that

Eei
Q( f (X1)) = inf

{
EP( f (X1)) : P ∈ PQ

}
= inf

{
∑

x∈X
p(x) f (x) : p ∈TQ

}
= inf

{
∑

x∈X
q�(x) f (x) : q� ∈Q�

}
= inf

{
∑

x∈X
p(x) f (x) : p ∈T HM

Q

}
= inf

{
EP( f (X1)) : P ∈ PHM

Q

}
= Eri

Q( f (X1)),

and similarly for k = 2, we have that

Eei
Q( f (X2)) = inf

{
EP( f (X2)) : P ∈ PQ

}
= inf

{
∑

x1:2∈X 2

f (x2)p(x2|x1)p(x1|�) : p ∈TQ

}
= inf

{
∑

x1:2∈X 2

f (x2)q(x2|x1)q�(x1) :

(∀x1 ∈X )q(·|x1) ∈Qx1 ,q� ∈Q�

}
= inf

{
∑

x1:2∈X 2

f (x2)p(x2|x1)p(x1|�) : p ∈T HM
Q

}
= inf

{
EP( f (X2)) : P ∈ PHM

Q

}
= Eri

Q( f (X2)),

where the first equality follows from the definition of Eei
Q, the second and fifth

equality follow from Equation (3.18)74, the third equality follows from Equa-
tion (3.28)80 [the way probability trees are constructed under epistemic irrele-
vance, where P� = Q� and Px1:n = Qxn for all x1:n ∈X ∗ \{�}], the fourth
equality follows from Equations (3.28)80 and (5.73)142 [the way probability
trees are constructed under repetition independence] and the last equality fol-
lows from Equation (5.74)142.

Another special case where epistemic irrelevance, complete independence
and repetition independence coincide are the lower and upper expected first-
passage and return times in imprecise birth-death chains that we will study in
Chapter 6.

However, in general, and as was illustrated by Example 9, repetition inde-
pendence does not coincide with epistemic irrelevance or complete indepen-
dence. In those cases, new computational methods are required. However,
unfortunately, exact efficient methods are not available. Nevertheless, it is
possible to approximate global lower and upper expectations of functions that
depend on a single state and n-measurable ones, for small n ∈ N. We consider
an approach that is similar to the one for global lower and upper expectations
in imprecise Markov chains under complete independence that was introduced
in Section 5.6.4138. Here too, this approach does not guarantee that a global
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infimum or supremum is achieved, nor do we know anything about the error,
and it can generally be quite inefficient.

Consider any n,m ∈N such that n > m and any situation x1:m ∈X m. Con-
sider as well any n-measurable function h(X1:n) and suppose that we want to
calculate Eri

Q(h(X1:n)|x1:m) and Eri
Q(h(X1:n)|x1:m). We first select k ∈ N condi-

tional probability mass functions from each local model Qx for all x ∈X . We
then construct the imprecise probability tree by considering all possible combi-
nations of the selected conditional probability mass functions—there are k|X |

in total, except for the case n = m+ 1 where there are k. For each probabil-
ity tree in the constructed imprecise probability tree, we compute the global
conditional expectation of h(X1:n), among which the lowest value is the ap-
proximation for Eri

Q(h(X1:n)|x1:m) and the highest value is the approximation
for Eri

Q(h(X1:n)|x1:m). The same method can be used also for the approxi-
mation of Eri

Q( f (Xn)|x1:m) and Eri
Q( f (Xn)|x1:m) for any f ∈ L (X ). In the

unconditional case, we can follow a similar procedure if we additionally select
k probability mass functions from the initial model Q�—there are now k|X |+1

combinations.

5.8 DISCUSSION

We have seen that we can adopt various types of independence when working
with imprecise Markov chains. In this section, we briefly discuss the effects
that the different independence concepts have on the global lower and upper
expectations.

Our first remark is that the more constraints we impose on the global mod-
els, the more precise our models become, in the sense that the distance be-
tween lower and upper expectation decreases. The reason why this happens is
because the more stringent the independence concept is, the less conditional
probability measures we consider for deriving our global models. For impre-
cise Markov chains, the global models under epistemic irrelevance use the set
PQ, whereas the respective ones under complete independence use the set PM

Q,
for which it holds that PM

Q ⊆ PQ. Similarly, for the homogeneous case, where
we also consider global models under repetition independence that use the set
PHM

Q , we have that PHM
Q ⊆ PM

Q ⊆ PQ. These observations are formalised in the
following lemmas; the proofs are obvious and are therefore omitted.

Lemma 55. Consider an initial model Q� and for each n ∈ N and each x ∈
X , a set of conditional probability mass functions Qn,x as introduced in Sec-
tion 5.3113. Consider also any B ∈ 〈X ∗〉 \{∅} and any measurable extended
real-valued function g on Ω for which there is a non-decreasing sequence of
non-negative n-measurable functions {hn}n∈N such that limn→+∞ hn = g. Then

Eei
Q(g|B)≤ Eci

Q(g|B)≤ Eci
Q(g|B)≤ Eei

Q(g|B).

147



5.8 DISCUSSION

Lemma 56. Consider an initial model Q� and for each x ∈X , a set of con-
ditional probability mass functions Qx, as introduced in Section 5.3113. Con-
sider as well any B ∈ 〈X ∗〉 \ {∅} and any measurable extended real-valued
function g on Ω for which there is a non-decreasing sequence of non-negative
n-measurable functions {hn}n∈N such that limn→+∞ hn = g. It then holds that

Eei
Q(g|B) ≤ Eci

Q(g|B) ≤ Eri
Q(g|B) ≤ Eri

Q(g|B) ≤ Eci
Q(g|B) ≤ Eei

Q(g|B).

Finally, we present an interesting property of lower and upper expecta-
tions of functions that depend on a single state and their respective time aver-
ages, when these are taken over a time window whose width becomes infinitely
large.

Lemma 57. Consider a homogeneous imprecise Markov chain under epis-
temic irrelevance. Consider as well any m ∈ N0, any x1:m ∈ X m and any
function f ∈L (X ). Then

liminf
n→+∞

Eei
Q( f (Xn)|x1:m)≤ liminf

n→+∞
Eei

Q([ f ](X1:n)|x1:m)

≤ limsup
n→+∞

Eei
Q([ f ](X1:n)|x1:m)≤ limsup

n→+∞

Eei
Q( f (Xn)|x1:m).

Proof. The middle inequality follows directly from the definitions of liminf
and limsup. For the rest of the inequalities, we will only provide the proof for
the global lower expectations; the proof for the global upper ones is completely
analogous.

For any n ∈ N, it follows from the definition of Eei
Q(·|x1:m) and Equa-

tion (5.7)106 that

Eei
Q([ f ](X1:n)|x1:m) = inf

{
EP

(
1
n

n

∑
i=1

f (Xi)

∣∣∣∣x1:m

)
: P ∈ PQ

}
,

and by combining this with Lemma 102240, we find that

Eei
Q([ f ](X1:n)|x1:m) = inf

{
1
n

n

∑
i=1

EP( f (Xi)|x1:m) : P ∈ PQ

}
.

Since coefficients can be taken out of the infimum, we further infer that

Eei
Q([ f ](X1:n)|x1:m) =

1
n

inf
{ n

∑
i=1

EP( f (Xi)|x1:m) : P ∈ PQ

}
. (5.79)

Combining Equation (5.79) with the fact that an infimum of a sum is greater
than or equal to the sum of infima, we have that

Eei
Q([ f ](X1:n)|x1:m)≥

1
n

n

∑
i=1

inf
{

EP( f (Xi)|x1:m) : P ∈ PQ

}
=

1
n

n

∑
i=1

Eei
Q( f (Xi)|x1:m),
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whence

liminf
n→+∞

Eei
Q([ f ](X1:n)|x1:m)≥ liminf

n→+∞

1
n

n

∑
i=1

Eei
Q( f (Xi)|x1:m). (5.80)

Since f is real-valued and for all n ∈N, min f ≤ Eei
Q( f (Xn)|x1:m)≤max f ,

we infer that for all n ∈ N, Eei
Q( f (Xn)|x1:m) is real-valued and therefore, that

liminfn→+∞ Eei
Q( f (Xn)|x1:m) is also real-valued. Fix now any k ∈ N. Then for

all n > k, we have that

1
n

n

∑
i=1

Eei
Q( f (Xi)|x1:m) =

1
n

k

∑
i=1

Eei
Q( f (Xi)|x1:m)+

1
n

n

∑
i=k+1

Eei
Q( f (Xi)|x1:m)

≥ 1
n

k

∑
i=1

Eei
Q( f (Xi)|x1:m)+

n− k
n

inf
`≥k+1

Eei
Q( f (X`)|x1:m)

and since this hold for all n > k, we further find that

liminf
n→+∞

1
n

n

∑
i=1

Eei
Q( f (Xi)|x1:m)

≥ liminf
n→+∞

(
1
n

k

∑
i=1

Eei
Q( f (Xi)|x1:m)+

n− k
n

inf
`≥k+1

Eei
Q( f (X`)|x1:m)

)
≥ liminf

n→+∞

(
1
n

k

∑
i=1

Eei
Q( f (Xi)|x1:m)

)
+ liminf

n→+∞

(
n− k

n
inf

`≥k+1
Eei

Q( f (X`)|x1:m)

)
,

(5.81)

where the second inequality follows from the fact that an infimum of a sum is
greater or equal to the sum of infima. Since ∑

k
i=1 Eei

Q( f (Xi)|x1:m) is a constant,
we have that

liminf
n→+∞

(
1
n

k

∑
i=1

Eei
Q( f (Xi)|x1:m)

)
= 0. (5.82)

Since limn→+∞
n−k

n = 1 and inf`≥k+1 Eei
Q( f (X`)|x1:m) does not depend on n, we

infer that

liminf
n→+∞

(
n− k

n
inf

`≥k+1
Eei

Q( f (X`)|x1:m)

)
= inf

`≥k+1
Eei

Q( f (X`)|x1:m). (5.83)

Combining Equations (5.82) and (5.83) with Inequality (5.81), we find that

liminf
n→+∞

1
n

n

∑
i=1

Eei
Q( f (Xi)|x1:m)≥ inf

`≥k+1
Eei

Q( f (X`)|x1:m)

and since this holds for any k ∈ N, we have that

liminf
n→+∞

1
n

n

∑
i=1

Eei
Q( f (Xi)|x1:m)≥ lim

k→+∞
inf

`≥k+1
Eei

Q( f (X`)|x1:m)

= liminf
k→+∞

Eei
Q( f (Xk)|x1:m), (5.84)
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where the equality follows from the definition of the limit inferior. Finally, the
result follows by combining Equation (5.84)x with Equation (5.80)x.

Although Lemma 57148 is formulated and proved for homogeneous impre-
cise Markov chains epistemic irrelevance, it should be clear that the proof does
not depend on the independence concept chosen and therefore, Lemma 57148
holds also for complete and repetition independence. For complete indepen-
dence, since the global lower and upper expectations of functions that de-
pend on a single state and time averages coincide with the respective ones
under epistemic irrelevance, they coincide when they are taken to the limit as
well. Finally, as we will see in Section 7.6206, under epistemic irrelevance and
complete independence the inequalities in Lemma 57148 are typically strict,
whereas for repetition independence, they tend to be equalities.
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6
IMPRECISE DISCRETE-TIME BIRTH-DEATH

CHAINS

In this chapter, we discuss a special class of homogeneous imprecise Markov
chains, which we call imprecise birth-death chains. We first give a brief de-
scription of a precise birth-death chain and then we introduce our version of an
imprecise birth-death chain by allowing our local models to be sets of probabil-
ity mass functions and adopting—at least in the beginning—the independence
concept of epistemic irrelevance.

We focus on—upward and downward—first-passage and return times,1

which are expressed by an extended real-valued function on the set of all paths
Ω and we provide a method for computing their global lower and upper ex-
pected values. For precise birth-death chains, expected first-passage times
have been studied in Reference [71]. For imprecise birth-death chains, we
here first define global lower and upper expected first-passage and return times
according to the martingale-theoretic approach. Under mild assumptions, we
then prove that any such global lower or upper expected first-passage and re-
turn time is real-valued. Next, we show that global lower and upper expected
first-passage and return times satisfy a system of non-linear equations, and we
develop a simple recursive method for solving it.

Along the way, we also prove some useful properties that are satisfied by
our global lower and upper expected first-passage and return times. In partic-
ular, when the local models of an imprecise birth-death chain are closed sets
of probability mass functions, any lower or upper expected first-passage or re-
turn time can always be obtained by considering a specific precise birth-death
chain.

1Also known as recurrence times.
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All our methods can also be used in the measure-theoretic approach, be-
cause, as we will see, any global lower or upper expected first-passage or re-
turn time defined according to the measure-theoretic approach coincides with
the corresponding one defined according to the martingale-theoretic approach.
Similarly, for the measure-theoretic approach, we also prove that the choice of
the independence concept does not affect the global lower and upper expected
first-passage and return times.

6.1 BIRTH-DEATH CHAINS

Birth-death chains [81, Section 9.4] are a special type of homogeneous Markov
chains, where transitions from a given state are possible only to that same state
or to adjacent ones. They constitute a class of models that are characterised by
a specific structure and allow our computational methods to be simplified in
certain cases. They are used in various scientific fields, including evolutionary
biology [2, Chapter 3] and queueing theory [34].

Since birth-death chains are homogeneous Markov chains, they are com-
pletely determined by an initial model and by their transition models, the latter
of which can be summarised by a transition matrix—see Equation (5.2.1)110—
that is in addition tridiagonal due to the fact that transitions from a given state
are possible only to that same state or to adjacent ones. Hence, the transition
matrix of a birth-death chain with a finite ordered state space X = {0, . . . ,L},
where L ∈ N, has the following form:

M =


r0 w0 0 · · · · · · 0
b1 r1 w1 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 bL−1 rL−1 wL−1
0 · · · · · · 0 bL rL

 , (6.1)

where the elements of each row sum to 1. For all i ∈X \ {0,L}, we will as-
sume that the probabilities wi, bi and ri are strictly positive, and similarly for
r0,w0,bL,rL. Such a birth-death chain not only has a a tree-like representation—
see Figure 5.2110—it also has a chain-like representation, as depicted in Fig-
ure 6.1y.

6.2 IMPRECISE BIRTH-DEATH CHAINS

The concept of a birth-death chain can be made imprecise by letting its local
models be sets of conditional probability mass functions. This yields a special
class of homogeneous imprecise Markov chains. In the rest of this section, we
explain how they are constructed and described.

For every i ∈X \{0,L}, consider any set of conditional probability mass
functions Ri on Xm := {`,e,u}, where m stands for middle and `, e and u
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0 1 · · · L−1 L

w0

r0

w1

r1

b1

wL−2

b2

wL−1

rL−1

bL−1 bL

rL

Figure 6.1: A birth-death chain with state space X = {0, . . . ,L}

stand for lower, equal and upper, respectively, and where for any πi ∈Ri, we
make use of the notational convention that (bi,ri,wi) = (πi(`),πi(e),πi(u)).2

Consider as well any set of conditional probability mass functions R0 on
X0 := {e,u} and any set of conditional probability mass functions RL on
XL := {`,e}. For any π0 ∈ R0 and πL ∈ RL, we also make use of the nota-
tional conventions that (r0,w0) = (π0(e),π0(u)) and (bL,rL) = (πL(`),πL(e)).
Finally, we also adopt notational conventions for the lower and upper proba-
bility masses that correspond to the sets Ri for all i ∈X . Similarly to Equa-
tion (2.2)40, we define the following:

(∀i ∈X ) ri := inf{ri : πi ∈Ri} and ri := sup{ri : πi ∈Ri}; (6.2)

(∀i ∈X \{0}) bi := inf{bi : πi ∈Ri} and bi := sup{bi : πi ∈Ri}; (6.3)
(∀i ∈X \{L}) wi := inf{wi : πi ∈Ri} and wi := sup{wi : πi ∈Ri}. (6.4)

For reasons of mathematical convenience, we will restrict ourselves to sets
Ri that satisfy the following assumption.

Assumption 6.1. For every i∈X , Ri is closed and consists of strictly positive
probability mass functions.

It follows from Assumption 6.1 that the infima and the suprema in Equa-
tions (6.2)—(6.4) are actually minima and maxima. Moreover, Assumption 6.1
implies—amongst other useful consequences such as Theorem 58156 further
on—that 0 < wi ≤ wi < 1 for all i ∈X \ {L} and that 0 < bi ≤ bi < 1 for all
i ∈X \{0}.

We now use the sets of conditional probability mass functions Ri to define
corresponding sets of conditional probability mass functions Qi on X . For all
i ∈X \{0,L}, a conditional probability mass function q(·|i) ∈ ΣX belongs to

2In Propositions 67166, 64164 and 59162, we consider sets R of conditional probability
mass functions on Xm that are not necessarily associated with a state value i ∈ X \ {0,L}.
There too, similarly, for each π ∈ R, we make use of the notational convention that (b,r,w) =
(π(`),π(e),π(u)).
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Qi if and only if there is some πi ∈Ri such that

q( j|i) =


bi if j = i−1
ri if j = i
wi if j = i+1
0 otherwise

for all j ∈X . (6.5)

Similarly, q(·|0) belongs to Q0 if and only if there is some π0 ∈R0 such that

q( j|0) =


r0 if j = 0
w0 if j = 1
0 otherwise

for all j ∈X (6.6)

and q( j|L) belongs to QL if and only if there is some πL ∈RL such that

q( j|L) =


bL if j = L−1
rL if j = L
0 otherwise

for all j ∈X . (6.7)

For all i ∈X , the set of conditional probability mass functions Qi has a
corresponding lower and an upper expectation operator, which are denoted by
Q(·|i) and Q(·|i) and, for all f ∈L (X ), are defined as

Q( f |i) := min
{

∑
x∈X

f (x)pi(x) : pi ∈Ri

}
(6.8)

Q( f |i) := max
{

∑
x∈X

f (x)pi(x) : pi ∈Ri

}
. (6.9)

The sets of conditional probability mass functions that we have just in-
troduced, and their corresponding lower and upper expectation operators, can
now be used to construct a special type of imprecise Markov chain, which we
call an imprecise birth-death chain.3 For the initial situation we have an ar-
bitrary set of probability mass functions Q� on X with corresponding lower
and upper expectation operators Q

�
and Q�. Moreover, for all f ∈L (X ) and

all i ∈X , the lower and upper transition operators T and T are now defined
by T f (i) := Q( f |i) and T f (i) := Q( f |i), where Q( f |i) and Q( f |i) are given by
Equations (6.8) and (6.9) respectively.

Since an imprecise birth-death chain is a special case of a homogeneous
imprecise Markov chain, we can again choose among different types of inde-
pendence for building our global models. In Sections 6.3y—6.7168, our impre-
cise birth-death chains adopt epistemic irrelevance and we use the martingale-
theoretic approach to study lower and upper expected first-passage and return

3Similar models have already been considered in Reference [17].
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times. In Section 6.8177, we will also consider lower and upper expected first-
passage and return times based on the measure-theoretic approach under dif-
ferent independence concepts and we will prove that they coincide with the
corresponding ones based on the martingale-theoretic approach regardless of
the independence concept chosen.

6.3 FIRST-PASSAGE AND RETURN TIMES

We now introduce the variable that represents first-passage (or return) times
and we define its lower and upper expectation in an imprecise birth-death chain
under epistemic irrelevance, using the martingale-theoretic approach.

Consider a time n ∈ N, two—possibly identical—states i and j in X and
any x1:n−1 ∈X n−1. Suppose that the imprecise birth-death chain starts out at
time n in the situation (x1:n−1, i), then we ask ourselves how long it will take
to reach the state value j, or if i = j, for the imprecise birth-death chain to
return to the state value i. To study this, we introduce the extended real-valued
function τn

i→ j given by:4

τ
n
i→ j(ω) :=

{
0 if ωn 6= i
inf{m ∈ N : ωn+m = j} if ωn = i.

(6.10)

We call this number of time-steps the first-passage time of j conditional on
X1:n = (x1:n−1, i), and when i = j, we call it the return time of i. The so-
called upward and downward first-passage times correspond to the cases i < j
and i > j, respectively. The goal is to compute the lower and upper expecta-
tions Eei

Q(τ
n
i→ j|x1:n−1, i) and Eei

Q(τ
n
i→ j|x1:n−1, i) of these first-passage and return

times.
In order to do that, we first observe that θτn

i→ j = τ
n+1
i→ j . Consider now the

lower expectation Eei
Q(τ

n
i→ j|x1:n−1, i) for any x1:n−1 ∈X n−1. Then, since τn

i→ j
clearly does not depend on the first n−1 states X1:n−1, we infer from Proposi-
tion 45125 and Equation (5.51)126 that

Eei
Q(τ

n
i→ j|x1:n−1, i) = Eei

Q|n(τ
n
i→ j|i). (6.11)

Moreover, we infer from Proposition 48131 that

Eei
Q|n+1(τ

n+1
i→ j |i) = Eei

Q|n+1(θτ
n
i→ j|i) = Eei

Q|n(τ
n
i→ j|i),

so we conclude that Eei
Q(τ

n
i→ j|x1:n−1, i) neither depends on the initial segment

x1:n−1, nor on its length n−1. A similar conclusion holds for Eei
Q(τ

n
i→ j|x1:n−1, i).

In order to reflect these findings in our notation, we will from now on denote

4The reason why this function is extended real-valued is because τn
i→ j(ω) = +∞ if ωn+m 6= j

for all m ∈ N.
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the lower and upper expected first-passage time from i to j by τ i→ j and τ i→ j,
respectively; they are defined by

τ i→ j := Eei
Q(τ

1
i→ j|i) = Eei

Q|n(τ
n
i→ j|i) (6.12)

and
τ i→ j := Eei

Q(τ
1
i→ j|i) = Eei

Q|n(τ
n
i→ j|i). (6.13)

The following theorem establishes a first convenient property of τ i→ j and
τ i→ j, which follows from Assumption 6.1153.

Theorem 58. For all i, j ∈ X , the lower and upper expected first-passage
times τ i→ j and τ i→ j are real-valued and strictly positive.

Proof. Since it follows from Equation (6.10)x that inf{τ1
i→ j(ω) : ω ∈ Γ(i)} ≥

1 and from Equations (6.12) and (6.13) that

τ i→ j = Eei
Q(τ

1
i→ j|i) and τ i→ j = Eei

Q(τ
1
i→ j|i), (6.14)

property G592 implies that 1≤ τ i→ j ≤ τ i→ j, and therefore, the only thing that
we still need to prove is that τ i→ j <+∞. We will do this by showing that there
is some bounded above supermartingale M0 in M such that

liminfM0(ω)≥ τ
1
i→ j(ω) for all ω ∈ Γ(i). (6.15)

Indeed, since it follows from Equations (6.14) and (4.4)88 that

τ i→ j = Eei
Q(τ

1
i→ j|i) := inf{M (i) : M ∈M and liminfM (ω)≥ τ

1
i→ j(ω)

for all ω ∈ Γ(i)},

Equation (6.15) will then imply that τ i→ j ≤M0(i)<+∞.
Consider the values εu

0 := 1/w0 and εd
L := 1/bL. Using εu

0 and εd
L , we now

define recursively, for all x ∈X \{0,L}:

ε
u
x :=

1
wx

+
bx

wx
ε

u
x−1 and ε

d
x :=

1
bx

+
wx

bx
ε

d
x+1. (6.16)

Due to Assumption 6.1153, we have that εu
0 and εd

L , as well as εu
x and εd

x , for all
x ∈X \{0,L}, are strictly positive and real-valued. Now let ∆ j ∈L (X ) be
defined by

∆ j(i′) :=


0 if i′ = j

∑
j−1
`=i′ ε

u
` if i′ < j

∑
i′
`= j+1 εd

` if i′ > j
for all i′ ∈X , (6.17)
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and consider the real process M0, defined for all m ∈ N0 and x1:m ∈X m by

M0(x1:m) :=



1+Q(∆ j|i) if m ∈ {0,1} or x1 6= i;
m−1+∆ j(xm) if x1 = i, m≥ 2 and

(∀k ∈ {2, . . . ,m−1}) xk 6= j;
M0(x1:m−1) if x1 = i, m≥ 2 and

(∃k ∈ {2, . . . ,m−1}) xk = j.

(6.18)

In the remainder of this proof, we show that Inequality (6.15)x holds, by prov-
ing that M0 ∈M and that liminfM0(ω)≥ τ1

i→ j(ω) for all ω ∈ Γ(i).
We start by proving that liminfM0(ω)≥ τ1

i→ j(ω) for all ω ∈ Γ(i). We
consider two cases: τ1

i→ j(ω) < +∞ and τ1
i→ j(ω) = +∞. If τ1

i→ j(ω) < +∞,
then with m := τ1

i→ j(ω)+1, Equation (6.10)155 implies that

ωm = j and (∀k ∈ {2, . . . ,m−1})ωk 6= j,

and therefore, because of Equations (6.18) and (6.17)x, for all n ≥ m, it fol-
lows that

M0(ω
n) = M0(ω

m) = m−1+∆ j( j) = τ
1
i→ j(ω),

which implies that liminfn→∞ M0(ω
n) = τ1

i→ j(ω). If τ1
i→ j(ω) = +∞, Equa-

tion (6.10)155 implies that ωk 6= j for all k ≥ 2, and therefore, it follows from
Equation (6.18) that

liminf
n→∞

M0(ω
n) = liminf

n→∞
(n−1+∆ j(ωn))≥ liminf

n→∞
(n−1) = +∞ = τ

1
i→ j(ω),

where the inequality holds because, due to Equation (6.17)x, we have that

∆ j(ωn)≥ 0.

We now prove that M0 belongs to M. From Equation (6.17)x, we in-
fer that ∆ j ≥ 0 and therefore, it follows from property C545 that Q(∆ j|i) ≥ 0.
Hence, due to Equation (6.18), it follows that M0 is bounded below by 0.
Therefore, in order to prove that M0 ∈M, it remains to prove that M0 is a su-
permartingale, or equivalently, that Q�(∆M0(�))≤ 0 and Q(∆M0(x1:m)|xm)≤
0 for all m ∈ N and x1:m ∈X m.

The first inequality is easily proved: since Equation (6.18) implies that
∆M0(�) = 0, it follows from property C545 that Q�(∆M0(�)) = 0. So, con-
sider any m ∈ N and any x1:m ∈X m, then we need to prove that

Q(∆M0(x1:m)|xm)≤ 0.

We distinguish amongst three types of situations x1:m.
If x1 6= i or xk = j for at least one k in {2, . . . ,m}, then as before, Equa-

tion (6.18) implies that ∆M0(x1:m) = 0, and therefore, it follows from prop-
erty C545 that Q(∆M0(x1:m)|xm) = 0.
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If m = 1 and x1 = i, then

Q(∆M0(i)|i) =Q(1+∆ j− [1+Q(∆ j|i)]|i)
=Q(∆ j−Q(∆ j|i)|i) = Q(∆ j|i)−Q(∆ j|i) = 0,

where the first equality follows from Equation (6.18)x and the third equality
from property C845.

The remaining situations x1:m are those for which m≥ 2, x1 = i and xk 6= j
for all k in {2, . . . ,m}. Before tackling this type of situation, we first present
some useful equations. For all x ∈X , it follows from Equation (6.18) that

∆M0(x1:m)(x) = (m+1)−1+∆ j(x)−(m−1+∆ j(xm)) = 1+∆ j(x)−∆ j(xm).
(6.19)

Combining Equation (6.19) with Equation (6.17) results in

∆M0(x1:m)(xm) = 1. (6.20)

Also, if xm 6= L, then since xm 6= j, we find that

∆M0(x1:m)(xm +1) = 1+∆ j(xm +1)−∆ j(xm) =

{
1− εu

xm if xm < j;
1+ εd

xm+1 if xm > j;
(6.21)

similarly, if xm 6= 0, we have that

∆M0(x1:m)(xm−1) = 1+∆ j(xm−1)−∆ j(xm) =

{
1+ εu

xm−1 if xm < j;
1− εd

xm if xm > j.
(6.22)

We now consider three cases: xm = 0, xm = L and xm 6∈ {0,L}.
If xm = 0, it follows from Equations (6.6)154 and (6.9)154 that

Q(∆M0(x1:m)|xm) = max
π0∈R0

{(1−w0)∆M0(x1:m)(0)+w0∆M0(x1:m)(1)}

= max
π0∈R0

{(1−w0)+w0(1− ε
u
0 )}= max

π0∈R0
{−w0ε

u
0}+1

=−w0ε
u
0 +1 = 0,

where the second equality follows from Equations (6.20) and (6.21) and the
fourth holds because εu

0 is strictly positive.
If xm = L, it follows from Equations (6.7)154 and (6.9)154 that

Q(∆M0(x1:m)|xm) = max
πL∈RL

{bL∆M0(x1:m)(L−1)+(1−bL)∆M0(x1:m)(L)}

= max
πL∈RL

{bL(1− ε
d
L )+(1−bL))}= max

πL∈RL
{−bLε

d
L}+1

=−bLε
d
L +1 = 0,
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where the second equality follows from Equations (6.20)x and (6.22)x and
the fourth holds because εd

L is strictly positive.
If xm 6∈ {0,L}, it follows from Equations (6.5)154 and (6.9)154 that

Q(∆M0(x1:m)|xm) = max
πxm∈Rxm

{
bxm∆M0(x1:m)(xm−1)

+(1−bxm −wxm)∆M0(x1:m)(xm)

+wxm∆M0(x1:m)(xm +1)
}

=


max

πxm∈Rxm
{bxmε

u
xm−1−wxmε

u
xm}+1 if xm < j;

max
πxm∈Rxm

{−bxmε
d
xm +wxmε

d
xm+1}+1 if xm > j,

where the last equality holds because of Equations (6.20)x–(6.22)x. Hence,
if xm < j, we find that

Q(∆M0(x1:m)|xm) = max
πxm∈Rxm

{bxmε
u
xm−1−wxmε

u
xm}+1

≤ max
πxm∈Rxm

{bxmε
u
xm−1}+ max

πxm∈Rxm
{−wxmε

u
xm}+1

=bxmε
u
xm−1−wxm

ε
u
xm +1 = 0,

where the second equality holds because εu
xm−1 and εu

xm are strictly positive and
the third equality follows from (6.16)156. Similarly, if xm > j, we find that

Q(∆M0(x1:m)|xm) = max
πxm∈Rxm

{−bxmε
d
xm +wxmε

d
xm+1}+1

≤ max
πxm∈Rxm

{−bxmε
d
xm}+ max

πxm∈Rxm
{wxmε

d
xm+1}+1

=−bxm
ε

d
xm +wxmε

d
xm+1 +1 = 0.

In the rest of this section, we will derive a system of non-linear equations
for lower and upper expected first-passage times. The starting point for this
derivation is the fact that

τ i→ j = Eei
Q(τ

1
i→ j|i) = Eei

Q(E
ei
Q(τ

1
i→ j|i,X2)|i), (6.23)

which is a direct consequence of Theorem 2894 and Proposition 2793. Next, in
order to express Eei

Q(τ
1
i→ j|i,X2) in terms of lower expected first-passage times,

we start by observing that

τ
1
i→ j(i,X2:∞) =

{
1 if X2 = j
1+ τ2

z→ j(i,z,X3:∞) if X2 = z 6= j

=1+ ∑
z∈X \{ j}

Iz(X2)τ
2
z→ j(i,z,X3:∞), (6.24)
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where we adopt the convention that 0 ·+∞ = 0. If we now consider any z ∈
X \{ j}, then we infer from Equation (6.24)x, Proposition 2793 [repeatedly]
and property G692 that

Eei
Q(τ

1
i→ j|i,z) =Eei

Q(τ
1
i→ j(i,z,X3:∞)|i,z) = Eei

Q(1+ τ
2
i→ j(i,z,X3:∞)|i,z)

=1+Eei
Q(τ

2
i→ j(i,z,X3:∞)|i,z) = 1+Eei

Q(τ
2
i→ j|i,z) = 1+ τz→ j.

Similarly, we infer from Equation (6.24)x, Proposition 2793 and property G592
that

Eei
Q(τ

1
i→ j|i, j) = Eei

Q(τ
1
i→ j(i, j,X3:∞)|i, j) = Eei

Q(1|i, j) = 1.

Hence, from the two aforementioned equations it follows that

Eei
Q(τ

1
i→ j|i,X2) = 1+ ∑

z∈X \{ j}
Iz(X2)τz→ j,

and by combining this with Equation (6.23)x, we find that

τ i→ j =Eei
Q

(
1+ ∑

z∈X \{ j}
Iz(X2)τz→ j

∣∣∣∣i)= 1+Eei
Q

(
∑

z∈X \{ j}
Iz(X2)τz→ j

∣∣∣∣i)
=1+Q

(
∑

z∈X \{ j}
Izτz→ j

∣∣∣∣i),
where the second equality follows from property G692 and the last equality
from Corollary 2591 combined with the fact that τz→ j is real-valued due to
Theorem 58156.

Because of Equations (6.5)154–(6.7)154, we now finally obtain the follow-
ing system of non-linear equations: for all j ∈X , we have that

τ0→ j = 1+ min
π0∈R0

{
r0I¬ j(0)τ0→ j +w0I¬ j(1)τ1→ j

}
(6.25)

and

τL→ j = 1+ min
πL∈RL

{
bLI¬ j(L−1)τL−1→ j + rLI¬ j(L)τL→ j

}
(6.26)

and, for all i ∈X /{0,L}, we have that

τ i→ j = 1+ min
πi∈Ri

{
biI¬ j(i−1)τ i−1→ j + riI¬ j(i)τ i→ j +wiI¬ j(i+1)τ i+1→ j

}
,

(6.27)
where we let I¬ j := 1− I j. Using a completely analogous derivation, we also
find that

1+Q
(

∑
z∈X \{ j}

Izτz→ j

∣∣∣∣i), (6.28)

which gives rise to a similar system of non-linear equations.
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In order to compute τ i→ j and τ i→ j, we need to solve these systems of
equations. However, since the equations in these systems are non-linear, it is
not always feasible to solve them directly. Fortunately, as we will show in the
following three sections, it is possible to transform them into simple recursive
expressions, which can then be used to compute τ i→ j and τ i→ j for all i, j ∈X .

6.4 LOWER AND UPPER EXPECTATIONS OF UPWARD FIRST-
PASSAGE TIMES

We start by computing lower expectations of upward first-passage times, that
is, for all i, j ∈X such that i < j, we will compute τ i→ j. We initially focus
on computing τ i→i+1, for i ∈X \{L}, and then show that any lower expected
upward first-passage time can be obtained as a sum of such terms. Similar
results are obtained for upper expected upward first-passage times.

Finding τ0→1 is easy. It follows from Equation (6.25), with j = 1, that

τ0→1 = 1+ min
π0∈R0

r0τ0→1 = 1+ min
π0∈R0

(1−w0)τ0→1

= 1+ τ0→1− max
π0∈R0

w0τ0→1 = 1+ τ0→1−w0τ0→1,

where the second equality holds because π0 is a probability mass function on
a binary set and the last equality holds because we know from Theorem 58156
that τ0→1 is real-valued and therefore finite. Hence, since we know from The-
orem 58156 that τ0→1 is strictly positive and real-valued, it follows that

τ0→1 =
1

w0
. (6.29)

Finding τ0→ j, for j ∈ {2, . . . ,L}, is more involved. We start by establishing
a connection with τ1→ j. By applying Equation (6.25)x, we find that

τ0→ j = 1+ min
π0∈R0

{r0τ0→ j +w0τ1→ j}= 1+ min
π0∈R0

{(1−w0)τ0→ j +w0τ1→ j}

= 1+ τ0→ j + min
π0∈R0

w0(τ1→ j− τ0→ j),

which implies, due to Theorem 58156, that

min
π0∈R0

w0(τ1→ j− τ0→ j) =−1. (6.30)

Since the minimum in Equation (6.30) is negative and w0 is a probability and
therefore non-negative, it must be that τ1→ j − τ0→ j < 0. Therefore, Equa-
tion (6.30) is minimised for w0 = w0 and we find that

τ0→ j =
1

w0
+ τ1→ j. (6.31)
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By combining Equations (6.29)x and (6.31)x, we see that

τ0→ j = τ0→1 + τ1→ j for all j ∈ {2, . . . ,L}. (6.32)

Since we already know τ0→1—see Equation (6.29)x—we are now left to find
τ1→ j.

We first consider the case j = 2. There, it follows from Equation (6.27)160,
with i = 1 and j = 2, that

τ1→2 =1+ min
π1∈R1

{b1τ0→2 + r1τ1→2}

=1+ min
π1∈R1

{b1τ0→2 +(1−b1−w1)τ1→2}

=1+ τ1→2 + min
π1∈R1

{b1(τ0→2− τ1→2)−w1τ1→2},

which implies, due to Theorem 58156, that

min
π1∈R1

{b1(τ0→2− τ1→2)−w1τ1→2}=−1.

By applying Equation (6.32) for j = 2 we then find that

min
π1∈R1

{b1τ0→1−w1τ1→2}=−1. (6.33)

Therefore, and because we already know the value of τ0→1, it follows from
Assumption 6.1153 and the following lemma that τ1→2 is the unique solution
to Equation (6.33).

Proposition 59. Consider a closed set R on Xm that consists of strictly posi-
tive probability mass functions and let c be a real constant. Then

min
π∈R
{bc−wµ}

is a strictly decreasing function of µ .

Proof. Consider any µ1,µ2 ∈ R, such that µ2 > µ1. Then,

min
π∈R
{bc−wµ1}= min

π∈R
{bc−wµ2 +w(µ2−µ1)}

≥ min
π∈R
{bc−wµ2}+min

π∈R
{w(µ2−µ1)}> min

π∈R
{bc−wµ2}

where the last inequality holds because, since µ2−µ1 > 0,

min
π∈R
{w(µ2−µ1)}= (µ2−µ1)min

π∈R
w,

where minπ∈R w > 0 because the closed set R consists of strictly positive
probability mass functions.
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This shows that the unique solution τ1→2 is furthermore easy to compute. In-
deed, it follows from Proposition 59x that a simple bisection method suffices.

Next, we consider the case j ∈ {3, . . . ,L}. By applying Equation (6.27)160,
for such a j and with i = 1, we find that

τ1→ j = 1+ min
π1∈R1

{b1τ0→ j + r1τ1→ j +w1τ2→ j}

= 1+ min
π1∈R1

{b1τ0→ j +(1−b1−w1)τ1→ j +w1τ2→ j}

= 1+ τ1→ j + min
π1∈R1

{b1(τ0→ j− τ1→ j)+w1(τ2→ j− τ1→ j)},

which implies, due to Theorem 58156, that

min
π1∈R1

{b1(τ0→ j− τ1→ j)+w1(τ2→ j− τ1→ j)}=−1.

In combination with Equation (6.32)x, this results in

min
π1∈R1

{b1τ0→1 +w1(τ2→ j− τ1→ j)}=−1. (6.34)

Since we know from Assumption 6.1153 and Proposition 59x that the equation

min
π1∈R1

{b1τ0→1 +w1µ}=−1

has a unique solution µ , it follows directly from Equations (6.33)x and (6.34)
that

τ1→ j = τ1→2 + τ2→ j for all j ∈ {3, . . . ,L}. (6.35)

At this point, we already know how to compute τ0→1 and τ1→2 and we have
also established the following additivity property:

τ i→ j = τ i→i+1 + τ i+1→ j

for all i ∈ {0,1} and j ∈ {i+ 2, . . . ,L}. By continuing in this way, we obtain
the following two results, which are direct consequences of Lemma 81181 in
Appendix 6.A181.

Proposition 60. For any i ∈X \{0,L}, we have that

min
πi∈Ri
{biτ i−1→i−wiτ i→i+1}=−1. (6.36)

Proposition 61. For all i, j ∈X such that i+1 < j, we have that

τ i→ j = τ i→i+1 + τ i+1→ j.
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For all i ∈ X \ {L}, the value of τ i→i+1 can therefore be computed re-
cursively. For i = 0, we simply apply Equation (6.29)161. For any other
i ∈ X \ {0,L}, it follows from Assumption 6.1153 and Propositions 59162
and 60x that τ i→i+1 is the unique solution to Equation (6.36), which can be
obtained by means of a bisection method. In this equation, the value of τ i−1→i
has already been computed earlier on in this recursive procedure.

The following additivity result is a consequence of Proposition 61x.

Corollary 62. For all i, j ∈X such that i < j, we have that

τ i→ j =
j−1

∑
k=i

τk→k+1.

Proof. For j = i+1, this result is trivial. For j = i+2, it follows from Propo-
sition 61x that

τ i→i+2 = τ i→i+1 + τ i+1→i+2.

Similarly, for j > i+ 2, by applying Proposition 61x multiple times, we find
that

τ i→ j = τ i→i+1 + τ i+1→ j = τ i→i+1 + τ i+1→i+2 + τ i+2→ j

= τ i→i+1 + τ i+1→i+2 + . . .+ τ j−1→ j =
j−1

∑
k=i

τk→k+1.

It implies that the recursive techniques that we developed in this section can be
used to compute any lower expected upward first-passage time.

Similar results can be proved for upper expectations of upward first-passage
times. We only provide the final expressions; the derivation is completely anal-
ogous. In this case, the starting point is that

τ0→1 =
1
p0

. (6.37)

For all i ∈X \ {0,L}, the value of τ i→i+1 can then be computed recursively,
due to Assumption 6.1153 and the next two results. The first result is a direct
consequence of Lemma 82182 in Appendix 6.A181.

Proposition 63. For all i ∈X \{0,L}, we have that

max
πi∈Ri
{biτ i−1→i−wiτ i→i+1}=−1. (6.38)

Proposition 64. Consider a closed set R on Xm that consists of strictly posi-
tive probability mass functions and let c be a real constant. Then

max
π∈R
{bc−wµ}

is a strictly decreasing function of µ .
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Proof of Proposition 64. Consider any µ1,µ2 ∈ R, such that µ2 > µ1. Then,

max
π∈R
{bc−wµ2}= max

π∈R
{bc−wµ1 +w(µ1−µ2)}

≤max
π∈R
{bc−wµ1}+max

π∈R
{w(µ1−µ2)}< max

π∈R
{bc−wµ1}

where the last inequality holds because

max
π∈R
{w(µ1−µ2)}= (µ1−µ2)max

π∈R
w

where maxπ∈R w > 0 because the closed set R consists of strictly positive
probability mass functions.

Due to our next result, this recursive technique allows us to compute arbi-
trary upper expected upward first-passage times.

Proposition 65. For all i, j ∈X such that i < j, we have that

τ i→ j =
j−1

∑
k=i

τk→k+1.

Proof. For j = i + 1, this result is trivial. For j = i + 2, it follows from
Lemma 82182 that

τ i→i+2 = τ i→i+1 + τ i+1→i+2

Similarly, for j > i+2, by applying Lemma 82182 multiple times, we find that

τ i→ j = τ i→i+1 + τ i+1→ j = τ i→i+1 + τ i+1→i+2 + τ i+2→ j

= τ i→i+1 + τ i+1→i+2 + . . .+ τ j−1→ j =
j−1

∑
k=i

τk→k+1.

6.5 LOWER AND UPPER EXPECTATIONS OF DOWNWARD FIRST-
PASSAGE TIMES

Lower and upper expectations of downward first-passage times can be com-
puted in more or less the same way. The main difference is that the recursive
expressions now start from the other side, that is, from i = L.5 We find that

τL→L−1 =
1
bL

and τL→L−1 =
1
bL

. (6.39)

5Our presentation of—and proofs for—the results in this section are adapted versions of the
ones in Section 6.4161. An alternative method would be to observe that a downward first-passage
time from i to j is the same as an upward first-passage time from L− i to L− j in a new imprecise
birth-death chain, obtained by reversing the order of the states, and by switching the role of w and
b accordingly.

165



6.5 LOWER AND UPPER EXPECTATIONS OF DOWNWARD FIRST-PASSAGE
TIMES

For all i ∈X \{0,L}, due to Assumption 6.1153, the values of τ i→i−1 and
τ i→i−1 can now be computed recursively, using the next two results. The first
result is a direct consequence of Lemmas 83184 and 84186 in Appendix 6.A181.

Proposition 66. For all i ∈X \{0,L}, we have that

min
πi∈Ri
{−biτ i→i−1 +wiτ i+1→i}=−1 and max

πi∈Ri
{−biτ i→i−1 +wiτ i+1→i}=−1.

Proposition 67. Consider a closed set R on Xm that consists of strictly posi-
tive probability mass functions and let c be a real constant. Then

min
π∈R
{−bµ +wc} and max

π∈R
{−bµ +wc}

are strictly decreasing functions of µ .

Proof. Consider any µ1,µ2 ∈ R, such that µ2 > µ1. Then

min
π∈R
{−bµ1 +wc}= min

π∈R
{b(µ2−µ1)−bµ2 +wc}

≥ min
π∈R
{b(µ2−µ1)}+min

π∈R
{−bµ2 +wc}> min

π∈R
{−bµ2 +wc},

where the last inequality holds because

min
π∈R
{b(µ2−µ1)}= (µ2−µ1)min

π∈R
b

where minπ∈R b> 0 because the closed set R consists of strictly positive prob-
ability mass functions.

Similarly,

max
π∈R
{−bµ2 +wc}= max

π∈R
{b(µ1−µ2)−bµ1 +wc}

≤max
π∈R
{b(µ1−µ2)}+max

π∈R
{−bµ1 +wc}< max

π∈R
{−bµ1 +wc},

where the last inequality holds because

max
π∈R
{b(µ1−µ2)}= (µ1−µ2)max

π∈R
b,

where maxπ∈R b > 0 because the closed set R consists of strictly positive
probability mass functions.

Once we have computed τ i→i−1 and τ i→i−1 for all i ∈X \ {L}, the fol-
lowing result enables us to easily obtain all other lower and upper expected
downward first-passage times.
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Proposition 68. For all i, j ∈X such that i > j, we have that

τ i→ j =
i−1

∑
k= j

τk+1→k and τ i→ j =
i−1

∑
k= j

τk+1→k.

Proof. We first prove the lower case. For j = i− 1, this result is trivial. For
j = i−2, it follows from Lemma 83184 that

τ i→i−2 = τ i→i−1 + τ i−1→i−2

Similarly, for j < i−2, by applying Lemma 83184 multiple times, we find that

τ i→ j = τ i→i−1 + τ i−1→ j = τ i→i−1 + τ i−1→i−2 + τ i−2→ j

= τ i→i−1 + τ i−1→i−2 + . . .+ τ j+1→ j =
i−1

∑
k= j

τk+1→k.

Next, we prove the upper case. For j = i− 1, this result is trivial. For
j = i−2, it follows from Lemma 84186 that

τ i→i−2 = τ i→i−1 + τ i−1→i−2

Similarly, for j < i−2, by applying Lemma 84186 multiple times, we find that

τ i→ j = τ i→i−1 + τ i−1→ j = τ i→i−1 + τ i−1→i−2 + τ i−2→ j

= τ i→i−1 + τ i−1→i−2 + . . .+ τ j+1→ j =
i−1

∑
k= j

τk+1→k.

6.6 LOWER AND UPPER EXPECTATIONS OF RETURN TIMES

Given the results in the previous two sections, lower and upper expected return
times can now be computed very easily. By applying Equations (6.25)160–
(6.27)160, with j equal to 0, L and i, respectively, we find that

τ0→0 = 1+ min
π0∈R0

w0τ1→0 = 1+w0τ1→0 (6.40)

and
τL→L = 1+ min

πL∈RL
bLτL−1→L = 1+bLτL−1→L (6.41)

and, for all i ∈X \{0,L}, that

τ i→i = 1+ min
πi∈Ri
{biτ i−1→i +wiτ i+1→i}. (6.42)

In these expressions, the lower expected first-passage times τ1→0, τL−1→L,
τ i−1→i and τ i+1→i can be computed using the recursive techniques that we
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developed in the previous two sections. Similarly, for the upper expectation
case, we find that

τ0→0 = 1+ max
π0∈R0

w0τ1→0 = 1+w0τ1→0 (6.43)

and
τL→L = 1+ max

πL∈RL
bLτL−1→L = 1+bLτL−1→L (6.44)

and, for all i ∈X \{0,L}, that

τ i→i = 1+ max
πi∈Ri
{biτ i−1→i +wiτ i+1→i}. (6.45)

Again, the upper expected first-passage times τ1→0, τL−1→L, τ i−1→i and τ i+1→i
that appear in these expressions can be computed with the recursive techniques
that were introduced above.

6.7 PRECISE BIRTH-DEATH CHAINS AS A SPECIAL CASE

Since birth-death chains are a special case of imprecise birth-death chains,
our results for imprecise birth-death chains can also be applied to birth-death
chains. We now study this special case in some detail, and establish a con-
nection with the more general one. For now, we will still be focusing on the
martingale-theoretic approach. The measure-theoretic approach will be con-
sidered in Section 6.8177.

6.7.1 Expected first-passage and return times in precise birth-death
chains

Clearly, a birth-death chain can be regarded as a special type of imprecise
birth-death chain. It corresponds to the case where all sets of probability mass
functions are singletons, that is, Q� = {q�} and, for all i∈X , Ri = {πi}. We
refer to this special type of imprecise birth-death chain as a precise birth-death
chain. For these precise birth-death chains, as the following result implies,
lower and upper expected first-passage and return times coincide.

Proposition 69. Consider an imprecise birth-death chain such that, for all
i ∈X , Ri = {πi}. Then

τ i→ j = τ i→ j for all i, j ∈X .

Proof. This result is an immediate consequence of the fact that, in this case,
our recursive equations for computing τ i→ j become identical to the equations
that we use to compute τ i→ j. For example, for upward first-passage times,
Equation (6.29)161 is now identical to Equation (6.37)164 because w0 = w0 =
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w0, and Equation (6.36)163 is now identical to Equation (6.38)164 because,
since Ri = {πi}, the minimum and maximum disappear. Similar observa-
tions can also be made for all the other recursive equations in Section 6.4161–
Section 6.6167.

Notice that this result does not require that the initial set of probability
mass functions Q� should be a singleton. This is not surprising: since none
of the methods in Section 6.4161–Section 6.6167 require the use of Q�, it fol-
lows that Q� has no effect on first-passage or return times. Therefore, for
our present purposes, all the relevant parameters of a birth-death chain can
be represented by a single transition matrix M, the form of which is given by
Equation (6.1)152. Due to Proposition 69x, with any such matrix M, we can
associate a unique expected first-passage time from i ∈X to j ∈X , defined
by

τ
M
i→ j := τ i→ j = τ i→ j for all i, j ∈X . (6.46)

If i = j, then τM
i→i is called an expected return time. As it turns out, we can de-

rive closed-form expressions for these expected first-passage and return times.
The following lemma presents such an expression for a specific type of ex-
pected upward first-passage times.

Proposition 70. Consider a precise birth-death chain of which the transition
matrix M is given by Equation (6.1)152. Then for all i ∈X \{L}, we have that

τ
M
i→i+1 =

i

∑
k=0

∏
i
`=k+1 b`

∏
i
m=k wm

. (6.47)

Proof. We provide a proof by induction. Since w0 = w0, it follows from
Equations (6.46) and (6.29)161 that τM

0→1 = τ0→1 = 1/w0 = 1/w0, proving Equa-
tion (6.47) for i = 0.

Consider now any i ∈X \ {0,L} and let us assume, as our induction hy-
pothesis, that the result is true for i−1. Since Ri = {πi}, it follows from Propo-
sition 60163 and Equation (6.46) that biτ

M
i−1→i−wiτ

M
i→i+1 =−1, and therefore,

Assumption 6.1153 implies that

τ
M
i→i+1 =

1
wi

+
bi

wi
τ

M
i−1→i =

1
wi

+
bi

wi

i−1

∑
k=0

∏
i−1
`=k+1 b`

∏
i−1
m=k wm

=
1
wi

+
i−1

∑
k=0

∏
i
`=k+1 b`

∏
i
m=k wm

=
i

∑
k=0

∏
i
`=k+1 b`

∏
i
m=k wm

,

where the second equality follows from the induction hypothesis.

Based on this result, it is now easy to obtain expressions for all the other ex-
pected upward first-passage times, because it follows from Corollary 62164 and
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Equation (6.46)x that

τ
M
i→ j =

j−1

∑
k=i

τ
M
k→k+1 for all i, j ∈X such that i < j. (6.48)

Similarly, for expected downward first-passage times, it follows from Propo-
sition 68167 and Equation (6.46)x that

τ
M
i→ j =

i−1

∑
k= j

τ
M
k+1→k for all i, j ∈X such that i > j, (6.49)

where the individual terms in the summation are given by Proposition 71.

Proposition 71. Consider a precise birth-death chain of which the transition
matrix M is given by Equation (6.1)152. Then for all i ∈X \{0}, we have that

τ
M
i→i−1 =

L

∑
k=i

∏
k−1
`=i w`

∏
k
m=i bm

.

Proof. This proof is completely analogous to the proof of Proposition 70x.
Again, we provide a proof by induction. Since bL = bL, it follows from Equa-
tions (6.46)x and (6.39)165 that τM

L→L−1 = τL→L−1 = 1/bL = 1/bL, proving the
result for i = L.

Consider now any i ∈X \ {0,L} and let us assume, as our induction hy-
pothesis, that the result is true for i+ 1. Since Ri = {πi}, it follows from
Proposition 66166 and Equation (6.46)x that −biτ

M
i→i−1 +wiτ

M
i+1→i =−1, and

therefore, Assumption 6.1153 implies that

τ
M
i→i−1 =

1
bi

+
wi

bi
τ

M
i+1→i =

1
bi

+
wi

bi

L

∑
k=i+1

∏
k−1
`=i+1 w`

∏
k
m=i+1 bm

=
1
bi

+
L

∑
k=i+1

∏
k−1
`=i w`

∏
k
m=i bm

=
L

∑
k=i

∏
k−1
`=i w`

∏
k
m=i bm

,

where the second equality follows from the induction hypothesis.

Closed-form expressions for expected return times can now be derived
from Equations (6.40)167–(6.45)168, which, for precise birth-death chains, re-
duce to the following simple expressions:

τ
M
0→0 = 1+w0τ

M
1→0 and τ

M
L→L = 1+bLτ

M
L−1→L (6.50)

and
τ

M
i→i = 1+biτ

M
i−1→i +wiτ

M
i+1→i for all i ∈X \{0,L}. (6.51)
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6.7.2 Connecting imprecise birth-death chains with precise ones.

Birth-death chains are not just a special case of imprecise birth-death chains,
they are also closely related to them in a more general way. In particular, for
first-passage and return times, the lower and upper expectations of an imprecise
birth-death chain are achieved by a (precise) birth-death chain.

Since we already know from Section 6.7.1168 that the initial model q� ∈
Q� of birth-death chains does not influence their expected first-passage and
return times, we will conveniently represent them by means of their transition
matrix M. Depending on the type of bound that we are considering, a different
type of transition matrix M will be needed to achieve the bound. We will
specify the essential features of these different types by means of selection
methods. For any given imprecise birth-death chain, such a selection method
describes a specific way of choosing a transition matrix M.

For lower expected upward first-passage times, we use the following selec-
tion method.

Selection Method LUk
Let M be any transition matrix of the form in Equation (6.1)152 such that

1. if k 6= 0, then w0 = w0;

2. for all ` ∈ {1, . . . ,k−1}

(b`,r`,w`) ∈ argmin
π`∈R`

{b`τ`−1→`−w`τ`→`+1}.

Indeed, as our next result establishes, for any given imprecise birth-death chain,
its lower expected upward first-passage time can be obtained by a birth-death
chain whose transition matrix M is selected according to the method above.

Theorem 72. Consider an imprecise birth-death chain, some k ∈X , and a
birth death chain whose transition matrix M is obtained from the imprecise
birth-death chain by means of Selection Method LUk. Then for all i, j ∈X
such that i < j ≤ k, τ i→ j = τM

i→ j.

Proof. Due to Corollary 62164 and Equation (6.48)x, it clearly suffices to
prove that

τ i→i+1 = τ
M
i→i+1 for all i < k. (6.52)

We provide a proof by induction. Since we know from Selection Method LUk 1
that w0 = w0, it follows from Equation (6.29)161 and Proposition 70169 that
τ0→1 = 1/w0 = 1/w0 = τM

0→1, which proves Equation (6.52) for i = 0.
Consider now any i ∈ {1, . . . ,k− 1} and let us assume, as our induction

hypothesis, that Equation (6.52) is true for i−1, that is, τ i−1→i = τM
i−1→i. Then

on the one hand, if we apply Proposition 60163 to the imprecise birth-death
chain, it follows from Selection Method LUk 2 that biτ i−1→i−wiτ i→i+1 =−1.
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On the other hand, if we apply Proposition 60163 to the birth-death chain with
transition matrix M, we find that biτ

M
i−1→i−wiτ

M
i→i+1 = −1. By combining

these two statements with the induction hypothesis, it follows that wiτ i→i+1 =
wiτ

M
i→i+1, which, because of Assumption 6.1153, implies that τ i→i+1 = τM

i→i+1,
as required.

This result is at its most powerful if we choose k = L. In that case, it follows
that all the lower expected upward first-passage times τ i→ j, with i, j ∈X such
that i < j, can be obtained by the same birth-death chain.

Similar results also hold for upper expected upward first-passage times.

Selection Method UUk
Let M be any transition matrix of the form in Equation (6.1)152 such that

1. if k 6= 0, then w0 = w0;

2. for all ` ∈ {1, . . . ,k−1},

(b`,r`,w`) ∈ argmax
π`∈R`

{b`τ`−1→`−w`τ`→`+1}.

Theorem 73. Consider an imprecise birth-death chain, some k ∈X , and a
birth death chain whose transition matrix M is obtained from the imprecise
birth-death chain by means of Selection Method UUk. Then for all i, j ∈X
such that i < j ≤ k, τ i→ j = τM

i→ j.

Proof. Due to Proposition 65165 and Equation (6.48)170, it suffices to prove
that

τ i→i+1 = τ
M
i→i+1 for all i < k. (6.53)

We provide a proof by induction. Since we know from Selection Method
UUk 1 that w0 = w0, it follows from Equation (6.37)164 and Proposition 70169
that τ0→1 = 1/w0 = 1/w0 = τM

0→1, which proves Equation (6.53) for i = 0.
Consider now any i∈ {1, . . . ,k−1} and let us assume, as our induction hy-

pothesis, that Equation (6.53) is true for i−1, that is, τ i−1→i = τM
i−1→i. Then on

the one hand, if we apply Proposition 63164 to the imprecise birth-death chain,
it follows from Selection Method UUk 2x that biτ i−1→i−wiτ i→i+1 =−1. On
the other hand, if we apply Proposition 63164 to the birth-death chain with
transition matrix M, we find that biτ

M
i−1→i−wiτ

M
i→i+1 = −1. By combining

these two statements with the induction hypothesis, it follows that wiτ i→i+1 =
wiτ

M
i→i+1, which, because of Assumption 6.1153, implies that τ i→i+1 = τM

i→i+1,
as required.

As before, this result is most powerful if we choose k = L, because it then
implies that every upper expected upward first-passage time can be obtained
by the same birth-death chain.
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At first sight, it seems as though Theorems 72171 and 73x could provide
us with a simple method for computing lower and upper expected upward first-
passage times, thereby providing an alternative for the recursive equations in
Section 6.4161. All we have to do is (a) construct a transition matrix M ac-
cording to an appropriate selection method and then (b) use this matrix M to
apply the closed-form expressions in Section 6.7.1168. However, this method
is not practical. The issue here is step (a). For example, executing Selection
Method LUk 2171 is not just a matter of choosing w` =w` and b` = b`, because,
depending on the shape of R`, it may not be possible to attain these extrema
simultaneously. Therefore, finding the optimal tuples (b`,r`,w`) requires us
to know the value of τ`→`+1 for all ` ∈ {0, . . . ,k− 1}. However, in practice,
we don’t know these values yet. In fact, the whole point of computing lower
expected upward first-passage times is to obtain these values. Therefore, The-
orems 72171 and 73x should not be regarded as the basis of a computational
method. Instead, their main importance is the theoretical insight that the lower
and upper expected upward first-passage times that correspond to an imprecise
birth death chain are achieved by (precise) birth-death chains.

Completely analogous conclusions can be drawn for lower and upper down-
ward first-passage times, using the following selection methods and results.

Selection Method LDk
Let M be any stochastic matrix of the form in Equation (6.1)152 such that

1. if k 6= L, then bL = bL;

2. for all ` ∈ {k+1, . . . ,L−1},

(b`,r`,w`) ∈ argmin
π`∈R`

{−b`τ`→`−1 +w`τ`+1→`}.

Theorem 74. Consider an imprecise birth-death chain, some k ∈X , and a
birth death chain whose transition matrix M is obtained from the imprecise
birth-death chain by means of Selection Method LDk. Then for all i, j ∈X
such that k ≤ j < i, τ i→ j = τM

i→ j.

Proof of Theorem 74. Due to Proposition 68167 and Equation (6.49)170, it suf-
fices to prove that

τ i→i−1 = τ
M
i→i−1 for all i > k. (6.54)

We provide a proof by induction. Since we know from Selection Method LDk 1
that bL = bL, it follows from Equation (6.39)165 and Proposition 71170 that
τL→L−1 = 1/bL = 1/bL = τM

L→L−1, which proves Equation (6.54) for i = L.
Consider now any i ∈ {k + 1, . . . ,L− 1} and let us assume, as our in-

duction hypothesis, that Equation (6.54) is true for i + 1, that is, τ i+1→i =
τM

i+1→i. Then on the one hand, if we apply Proposition 66166 to the imprecise
birth-death chain, it follows from Selection Method LDk 2 that −biτ i→i−1 +
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wiτ i+1→i =−1. On the other hand, if we apply Proposition 66166 to the birth-
death chain with transition matrix M, we find that−biτ

M
i→i−1+wiτ

M
i+1→i =−1.

By combining these two statements with the induction hypothesis, it follows
that biτ i→i−1 = biτ

M
i→i−1, which, because of Assumption 6.1153, implies that

τ i→i−1 = τM
i→i−1, as required.

Selection Method UDk
Let M be any transition matrix of the form in Equation (6.1)152 such that

1. if k 6= L, then bL = bL;

2. for all ` ∈ {k+1, . . . ,L−1},

(b`,r`,w`) ∈ argmax
π`∈R`

{−b`τ`→`−1 +w`τ`+1→`}.

Theorem 75. Consider an imprecise birth-death chain, some k ∈X , and a
birth death chain whose transition matrix M is obtained from the imprecise
birth-death chain by means of Selection Method UDk. Then for all i, j ∈X
such that k ≤ j < i, τ i→ j = τM

i→ j.

Proof of Theorem 75. Due to Proposition 68167 and Equation (6.49)170, it suf-
fices to prove that

τ i→i−1 = τ
M
i→i−1 for all i > k. (6.55)

We provide a proof by induction. Since we know from Selection Method
UDk 1 that bL = bL, it follows from Equation (6.39)165 and Proposition 71170
that τL→L−1 = 1/bL = 1/bL = τM

L→L−1, which proves Equation (6.55) for i = L.
Consider now any i ∈ {k + 1, . . . ,L− 1} and let us assume, as our in-

duction hypothesis, that Equation (6.55) is true for i + 1, that is, τ i+1→i =
τM

i+1→i. Then on the one hand, if we apply Proposition 66166 to the imprecise
birth-death chain, it follows from Selection Method UDk 2 that −biτ i→i−1 +
piτ i+1→i =−1. On the other hand, if we apply Proposition 66166 to the birth-
death chain with transition matrix M, we find that−biτ

M
i→i−1 + piτ

M
i+1→i =−1.

By combining these two statements with the induction hypothesis, it follows
that biτ i→i−1 = biτ

M
i→i−1, which, because of Assumption (6.1)153, implies that

τ i→i−1 = τM
i→i−1, as required.

These results are at their most powerful if we choose k = 0. In that case, all
the lower expected downward first-passage times τ i→ j, with i, j ∈X such that
j < i, can be obtained by the same birth-death chain, and similarly for the
upper expected downward first-passage times.

This is not the case for lower and upper expected return times: there may
not be a single birth-death chain for which all lower expected return times are
obtained, nor is there guaranteed to be a single birth-death chain for which
all the upper expected return times are obtained. Nevertheless, as we show in

174



6.7 PRECISE BIRTH-DEATH CHAINS AS A SPECIAL CASE

Theorems 76 and 77y below, it is always possible to select one birth-death
chain for each specific lower expected return time and one for each specific
upper expected return time, using the following selection methods.

Selection Method LRk
Let M be any transition matrix of the form in Equation (6.1)152 such that

1. if k 6= 0, then w0 = w0, and if k = 0, then w0 = w0;

2. for all ` ∈ {1, . . . ,k−1},

(b`,r`,w`) ∈ argmin
π`∈R`

{b`τ`−1→`−w`τ`→`+1}.

3. if k 6= 0 and k 6= L, then

(bk,rk,wk) ∈ argmin
πk∈Rk

{bkτk−1→k +wkτk+1→k};

4. for all ` ∈ {k+1, . . . ,L−1},

(b`,r`,w`) ∈ argmin
π`∈R`

{−b`τ`→`−1 +w`τ`+1→`}.

5. if k 6= L, then bL = bL, and if k = L, then bL = bL.

Theorem 76. Consider an imprecise birth-death chain, some k ∈X , and a
birth death chain whose transition matrix M is obtained from the imprecise
birth-death chain by means of Selection Method LRk. Then τk→k = τM

k→k.

Proof. First observe that, since Selection Method LRk implies Selection Method
LUk and LDk, we can use Theorems 72171 and 74173 to find that(

k 6= 0⇒ τk−1→k = τ
M
k−1→k

)
and

(
k 6= L⇒ τk+1→k = τ

M
k+1→k

)
(6.56)

We now prove the theorem for k = 0. Since we know from Selection
Method LRk 1 that w0 = w0, it follows from Equations (6.40)167 and (6.56)
that

τ0→0 = 1+w0τ1→0 = 1+w0τ1→0 = 1+w0τ
M
1→0

and therefore, due to Equation (6.50)170, we infer that τ0→0 = τM
0→0.

The case k = L is proved similarly. Since we know from Selection Method
LRk 5 that bL = bL, it follows from Equations (6.41)167 and (6.56) that

τL→L = 1+bLτL−1→L = 1+bLτL−1→L = 1+bLτ
M
L−1→L

and therefore, due to Equation (6.50)170, we find that τL→L = τM
L→L.
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It remains now to prove the theorem for the case k ∈ {1, . . . ,L−1}. Since
we know from Selection Method LRk 3x that

(bk,rk,wk) ∈ argmin
πk∈Rk

{bkτk−1→k +wkτk+1→k},

it follows from Equations (6.42)167 and (6.56)x that

τk→k = 1+qkτk−1→k +wkτk+1→k = 1+bkτ
M
k−1→k +wkτ

M
k+1→k

and therefore, Equation (6.51)170 implies that τk→k = τM
k→k, as required.

Selection Method URk
Let M be any transition matrix of the form in Equation (6.1)152 such that

1. if k 6= 0, then w0 = w0, and if k = 0, then w0 = w0;

2. for all ` ∈ {1, . . . ,k−1},

(b`,r`,w`) ∈ argmax
π`∈R`

{b`τ`−1→`−w`τ`→`+1}.

3. if k 6= 0 and k 6= L, then

(bk,rk,wk) ∈ argmax
πk∈Rk

{bkτk−1→k +wkτk+1→k};

4. for all ` ∈ {k+1, . . . ,L−1},

(b`,r`,w`) ∈ argmax
π`∈R`

{−b`τ`→`−1 +w`τ`+1→`}.

5. if k 6= L, then bL = bL, and if k = L, then bL = bL.

Theorem 77. Consider an imprecise birth-death chain, some k ∈X , and a
birth death chain whose transition matrix M is obtained from the imprecise
birth-death chain by means of Selection Method URk. Then τk→k = τM

k→k.

Proof. First observe that, since Selection Method URk implies Selection Method
UUk and UDk, we can use Theorems 73172 and 75174 to find that(

k 6= 0⇒ τk−1→k = τ
M
k−1→k

)
and

(
k 6= L⇒ τk+1→k = τ

M
k+1→k

)
(6.57)

We now prove the theorem for k = 0. Since we know from Selection
Method URk 1 that w0 = w0, it follows from Equations (6.43)168 and (6.57)
that

τ0→0 = 1+w0τ1→0 = 1+w0τ1→0 = 1+w0τ
M
1→0
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and therefore, due to Equation (6.50)170, we infer that τ0→0 = τM
0→0.

The case k = L is proved similarly. Since we know from Selection Method
URk 5x that qL = qL, it follows from Equations (6.44)168 and (6.57)x that

τL→L = 1+bLτL−1→L = 1+bLτL−1→L = 1+bLτ
M
L−1→L

and therefore, due to Equation (6.50)170, we find that τL→L = τM
L→L.

It remains now to prove the theorem for the case k ∈ {1, . . . ,L−1}. Since
we know from Selection Method LRk 3x that

(bk,rk,wk) ∈ argmax
πk∈Rk

{bkτk−1→k +wkτk+1→k},

it follows from Equations (6.45)168 and (6.57)x that

τk→k = 1+bkτk−1→k +wkτk+1→k = 1+bkτ
M
k−1→k +wkτ

M
k+1→k

and therefore, Equation (6.51)170 implies that τk→k = τM
k→k, as required.

6.8 CONNECTION WITH MEASURE-THEORETIC APPROACH

The lower and upper expected first-passage and return times that we have dis-
cussed, so far, are defined by the martingale-theoretic approach. We now study
the case where lower and upper expected first-passage and return times are de-
fined by the measure-theoretic approach, and establish the connection with the
corresponding ones defined by the martingale-theoretic approach.

Since an imprecise birth-death chain is a special case of a homogeneous
imprecise Markov chain, it is associated with an imprecise probability tree
TQ, T M

Q or T HM
Q , depending on the chosen independence concept. In this

particular case, Q is now the collection of local models of the imprecise birth-
death chain that was introduced in Section 6.2152, i.e. Q� and, for all i ∈X ,
Qi. Of course, any (precise) birth-death chain for which the initial model q�
belongs to Q� and each of the transition models belongs to Qi is an element
of the imprecise probability tree T HM

Q , and therefore also of T M
Q and TQ.

However, T M
Q and TQ also contain other probability trees, which do not nec-

essarily correspond to a (homogeneous) birth-death chain.
As we will show here, for the purposes of computing lower and upper

expected first-passage or return times, the probability trees in TQ and T M
Q

that do not correspond to a (homogeneous) birth-death chain are not essential,
because for first-passage and return times, their lower and upper expectations
are achieved by the birth-death chains in T HM

Q .
Since the measure-theoretic approach as we have described it applies only

to measurable functions, we first need to make sure that first-passage times
are measurable. As the following result shows, any first-passage and return
time is measurable, and is moreover the limit of a non-decreasing sequence of
non-negative n-measurable functions.
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Lemma 78. Consider any m ∈ N and any i, j ∈X . Then τm
i→ j is measur-

able and moreover, there is a non-decreasing sequence of non-negative n-
measurable functions {hn}n∈N such that τm

i→ j = limn→+∞ hn.

Proof. It suffices to prove that there is a non-decreasing sequence of non-
negative n-measurable functions {hn}n∈N such that τm

i→ j = limn→+∞ hn and it
will then follow from Lemma 1673 and Theorem 98238 that τm

i→ j is also mea-
surable.

For all ` ∈ {1, . . . ,m}, let h` be defined by h`(ω) := 0 for all ω ∈ Ω. For
all n ∈ N\{1, . . . ,m} and all ω ∈Ω, let hn be defined by

hn(ω) :=


0 if ωm 6= i;
n−m if ωm = i and (∀k ∈ {m+1, . . . ,n})ωk 6= j;
k∗(ω,n) if ωm = i and (∃k ∈ {m+1, . . . ,n})ωk = j,

(6.58)

where k∗(ω,n) := min{k ∈ {m + 1, . . . ,n} : ωk = j} −m. Clearly, hn is n-
measurable and non-negative for all n ∈ N, and the sequence {hn}n∈N is non-
decreasing.

For all ω ∈ Ω with ωm 6= i, it follows from Equations (6.10)155 and (6.58)
that τm

i→ j(ω) = hn(ω) = 0 for all n ∈ N, which implies that

τ
m
i→ j(ω) = lim

n→+∞
hn(ω) = 0. (6.59)

For all ω ∈ Ω with ωm = i, we have that either j is reached at some time
k ∈ N \ {1, . . . ,m} or j is never reached. In the first case, it follows from
Equations (6.10)155 and (6.58) that τm

i→ j(ω) = hn(ω) = k−m for all n ∈ N \
{1, . . . ,k−1}, which implies that

τ
m
i→ j(ω) = lim

n→+∞
hn(ω) = k−m. (6.60)

In case j is never reached, it follows from Equation (6.10)155 that τm
i→ j(ω) =

+∞ and from Equation (6.58) that hn(ω) = n−m for all n ∈ N \ {1, . . . ,m},
which implies that limn→+∞ hn(ω) = +∞ and therefore that

τ
m
i→ j(ω) = lim

n→+∞
hn(ω) = +∞. (6.61)

It now follows from Equations (6.59), (6.60) and (6.61) that indeed

τ
m
i→ j(ω) = lim

n→+∞
hn(ω) for all ω ∈Ω.

Since first-passage and return times are measurable, lower and upper ex-
pected first-passage and return times in imprecise birth-death chains can now
be defined straightforwardly by the measure-theoretic approach and we can
adopt different independence concepts. For all n ∈ N and all i, j ∈ X , the
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lower and upper expectations under epistemic irrelevance Eei
Q(τn

i→ j|Xn = i) and
Eei

Q(τn
i→ j|Xn = i) are defined by Equations (3.26)80 and (3.27)80, for PT = PQ

and with
(Xn = i) =

⋃
x1:n−1∈X n−1

Γ(x1:n−1, i).

Similarly, lower and upper expected first-passage and return times under com-
plete independence are denoted by Eci

Q(τn
i→ j|Xn = i) and Eci

Q(τn
i→ j|Xn = i) and

defined by Equations (5.59)132 and (5.60)132, and the respective ones under
repetition independence are denoted by Eri

Q(τn
i→ j|Xn = i) and Eri

Q(τn
i→ j|Xn = i)

and defined by Equations (5.74)142 and (5.75)142.
Next, we investigate the connection between the measure-theoretic ap-

proach and the martingale-theoretic approach in birth-death chains. In the
beginning of Section 6.7.1168, we mentioned that a birth-death chain can be
regarded as a imprecise birth-death chain whose local models, that is Q� and
Qi for all i ∈X , are singletons. Besides the fact that in this case the local
models Qi can be represented by a single transition matrix M, it also follows
that TQ now consists of a single unique probability tree p ∈ T HM

Q . Since
T HM

Q ⊆ T M
Q ⊆ TQ, this implies that T HM

Q = T M
Q = TQ = {p}. As the fol-

lowing theorem shows, for any P∈Pp, the expected first-passage or return time
EP(τ

n
i→ j|Xn = i) coincides with the respective one defined by the martingale-

theoretic approach, that is, τM
i→ j.

Theorem 79. Consider a birth-death chain with unique probability tree p, of
which the transition matrix M is given by Equation (6.1)152. Consider as well
any n ∈ N and any P ∈ Pp. For all i, j ∈X , it then holds that

τ
M
i→ j = EP(τ

n
i→ j|Xn = i).

Proof. Consider any x1:n−1 ∈X n−1 and observe that

τ
M
i→ j = τ i→ j = Eei

Q(τ
n
i→ j|x1:n−1, i)≤ Eei

Q(τn
i→ j|x1:n−1, i) = Eei

Q(τn
i→ j|Xn = i)

≤ EP(τ
n
i→ j|Xn = i)≤ Eei

Q(τn
i→ j|Xn = i) = Eei

Q(τn
i→ j|x1:n−1, i)

≤ Eei
Q(τ

n
i→ j|x1:n−1, i) = τ i→ j = τ

M
i→ j,

where the first and the last equality follow from Equation (6.46)169, the sec-
ond equality follows from Equations (6.12)156 and (6.11)155, the third and
the fourth equality follow from Theorem 44123 combined with Lemma 78x,
the fifth equality follows from Equation (6.13)156 and the upper expectation
version of Equation (6.11)155, and finally the first and last inequality follow
from Theorem 3398 combined with Lemma 78x. Since we have that τM

i→ j ≤
EP(τ

n
i→ j|Xn = i)≤ τM

i→ j, we also infer that τM
i→ j = EP(τ

n
i→ j|Xn = i).

We are now ready to present the main result of this section, which is a gen-
eralisation of Theorem 79. In particular, this theorem says that lower and upper
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expected first-passage and return times defined by the martingale-theoretic ap-
proach coincide with the corresponding ones defined by the measure-theoretic
approach, under any of the independence concepts we have been considering.

Theorem 80. Consider an imprecise birth-death chain, any n ∈ N and any
i, j ∈X . Then

Eei
Q(τn

i→ j|Xn = i) = Eci
Q(τn

i→ j|Xn = i) = Eri
Q(τn

i→ j|Xn = i) = τ i→ j;

Eei
Q(τn

i→ j|Xn = i) = Eci
Q(τn

i→ j|Xn = i) = Eri
Q(τn

i→ j|Xn = i) = τ i→ j.

Proof. We will only provide the proof for the lower expectations; the proof for
the upper ones is completely analogous.

Let M be the transition matrix obtained from the imprecise birth-death
chain by means of Selection Method LUk or Selection Method LDk or Se-
lection Method LRk depending on whether i < j or i > j or i = j. Then it
follows from Theorems 72171, 74173 and 76175 that

τ i→ j = τ
M
i→ j. (6.62)

Since M is constructed from probability mass functions in the sets Rx, and con-
sequently in local models Qx, for x ∈X , it follows from Equation (5.73)142
that there is some p ∈ T HM

Q such that p(y|s,x) = M(x,y) for all x,y ∈ X
and all s ∈X ∗, where M(x,y) is the element of M at row x and column y.
Consider any such probability tree p, then there is a birth-death chain with
unique probability tree p, of which the transition matrix is M. It then fol-
lows from Theorem 79x that for any n ∈ N and any P ∈ Pp, it holds that
τM

i→ j = EP(τ
n
i→ j|Xn = i), and therefore, due to Equation (6.62), that

τ i→ j = EP(τ
n
i→ j|Xn = i). (6.63)

Since p ∈ T HM
Q and P ∈ Pp, we infer that P ∈ PHM

Q . Hence, it follows from
Equation (5.74)142 that EP(τ

n
i→ j|Xn = i)≥ Eri

Q(τn
i→ j|Xn = i), and due to Equa-

tion (6.63), we find that

τ i→ j ≥ Eri
Q(τn

i→ j|Xn = i). (6.64)

Consider now any x1:n−1 ∈X n−1. Then

τ i→ j = Eei
Q(τ

n
i→ j|x1:n−1, i)≤ Eei

Q(τn
i→ j|x1:n−1, i)

= Eei
Q(τn

i→ j|Xn = i)≤ Eci
Q(τn

i→ j|Xn = i)≤ Eri
Q(τn

i→ j|Xn = i), (6.65)

where the first equality follows from Equations (6.12)156 and (6.11)155, the
second equality follows from Theorem 44123 combined with Lemma 78178,
the first inequality follows from Theorem 3398 combined with Lemma 78178
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and the last two inequalities follow from Lemma 56147, again combined with
Lemma 78178.

By combining Equation (6.64)x with Equation (6.65)x, it follows that

Eei
Q(τn

i→ j|Xn = i) = Eci
Q(τn

i→ j|Xn = i) = Eri
Q(τn

i→ j|Xn = i) = τ i→ j.

In Chapter 7189, we will introduce an additional independence concept and
we will see that Theorem 80x applies to this concept also for lower and upper
expected first-passage times but not always for lower and upper expected return
times.

6.A USEFUL PROPERTIES

In this appendix, we have gathered some useful properties that allow us to
prove more elegantly some of the results stated in Sections 6.4161 and 6.5165.

Lemma 81. For all k ∈X \{0,L}, we have that

min
πk∈Rk

{bkτk−1→k−wkτk→k+1}=−1,

and that, for all ` in X such that ` > k:

τk−1→` = τk−1→k + τk→`.

Proof. For k = 1, we have proved in the main text that the lemma holds; see
Equations (6.32)162 and (6.33)162. We will now generalise it using induction.
Assuming that the lemma is true for k− 1, with k ∈X \ {0,1,L}, we prove
that it is also true for k.

Consider any ` > k. By taking Equation (6.27)160, for i = k−1 and j = `,
we find that

τk−1→` = 1+ min
πk−1∈Rk−1

{bk−1τk−2→`+ rk−1τk−1→`+wk−1τk→`}

= 1+ min
πk−1∈Rk−1

{bk−1τk−2→`+(1−bk−1−wk−1)τk−1→`+wk−1τk→`}

= 1+ τk−1→`+ min
πk−1∈Rk−1

{bk−1(τk−2→`− τk−1→`)−wk−1(τk−1→`− τk→`)},

which, due to Theorem 58156, implies that

min
πk−1∈Rk−1

{bk−1(τk−2→`− τk−1→`)−wk−1(τk−1→`− τk→`)}=−1.

In combination with the induction hypothesis, which implies that τk−2→` =
τk−2→k−1 + τk−1→`, the equation above results in

min
πk−1∈Rk−1

{bk−1τk−2→k−1−wk−1(τk−1→`− τk→`)}=−1. (6.66)
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Due to Proposition 59162 and the induction hypothesis, which implies that

min
πk−1∈Rk−1

{bk−1τk−2→k−1−wk−1τk−1→k}=−1.

we infer from Equation (6.66)x that τk−1→`− τk→` = τk−1→k, and therefore
that

τk−1→` = τk−1→k + τk→` (6.67)

By taking now Equation (6.27)160, for i = k and j = k+1, we find that

τk→k+1 = 1+ min
πk∈Rk

{bkτk−1→k+1 + rkτk→k+1}

= 1+ min
πk∈Rk

{bkτk−1→k+1 +(1−bk−wk)τk→k+1}

= 1+ τk→k+1 + min
πk∈Rk

{bk(τk−1→k+1− τk→k+1)−wkτk→k+1},

which, due to Theorem 58156, implies that

min
πk∈Rk

{bk(τk−1→k+1− τk→k+1)−wkτk→k+1}=−1.

By combining this with Equation (6.67), for `= k+1, we find that

min
πk∈Rk

{bkτk−1→k−wkτk→k+1}=−1.

Lemma 82. For all k ∈X \{0,L}, we have that

max
πk∈Rk

{bkτk−1→k−wkτk→k+1}=−1,

and that, for all ` in X such that ` > k:

τk−1→` = τk−1→k + τk→`.

Proof. For any k ∈X \ {0,L} and ` ∈X such that ` > k, applying Equa-
tion (6.28)160 for i = k and j = ` yields

τk→` = 1+Q
(

∑
z∈X \{`}

Izτz→`

∣∣∣∣k)
= 1+ max

πk∈Rk
{bkI¬`(k−1)τk−1→`+ rkI¬`(k)τk→`+wkI¬`(k+1)τk+1→`}.

(6.68)

We now first prove the case k = 1. By applying Equation (6.28)160 for i = 0,
we find that

τ0→ j =1+Q
(

∑
z∈X \{`}

Izτz→`

∣∣∣∣0)
=1+ max

π0∈R0

{
r0I¬ j(0)τ0→ j +w0I¬ j(1)τ1→ j

}
. (6.69)
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Consider any ` ∈X such that ` > 1. By applying Equation (6.69)x for j = `,
we then find that

τ0→` = 1+ max
π0∈R0

{
r0τ0→`+w0τ1→`}= 1+ max

π0∈R0

{
(1−w0)τ0→`+w0τ1→`}

= 1+ τ0→`+ max
π0∈R0

{
−w0(τ0→`− τ1→`)},

which, due to Theorem 58156, implies that

max
π0∈R0

{
−w0(τ0→`− τ1→`)}=−1⇒ τ0→` =

1
w0

+ τ1→`.

By combining this with Equation (6.37)164, we find that

τ0→` = τ0→1 + τ1→`. (6.70)

By taking Equation (6.68)x, for k = 1 and `= 2, we find that

τ1→2 = 1+ max
π1∈R1

{b1τ0→2 + r1τ1→2}

= 1+ max
π1∈R1

{b1τ0→2 +(1−b1−w1)τ1→2}

= 1+ τ1→2 + max
π1∈R1

{b1(τ0→2− τ1→2)−w1τ1→2}

which, due to Theorem 58156, implies that

max
π1∈R1

{b1(τ0→2− τ1→2)−w1τ1→2}=−1.

By combining this with Equation (6.70), for `= 2, we find that

max
π1∈R1

{b1τ0→1−w1τ1→2}=−1.

We will now generalise our proof using induction. Assuming that the lemma
is true for k− 1, with k ∈ X \ {0,1,L}, we prove that it is also true for k.
Consider any ` > k. It follows from Equation (6.68)x that

τk−1→` = 1+ max
πk−1∈Rk−1

{bk−1τk−2→`+ rk−1τk−1→`+wk−1τk→`}

= 1+ max
πk−1∈Rk−1

{bk−1τk−2→`+(1−bk−1−wk−1)τk−1→ j +wk−1τk→`}

= 1+ τk−1→`+ max
πk−1∈Rk−1

{bk−1(τk−2→`− τk−1→`)−wk−1(τk−1→`− τk→`)},

which, due to Theorem 58156, implies that

max
πk−1∈Rk−1

{bk−1(τk−2→`− τk−1→`)−wk−1(τk−1→`− τk→`)}=−1.
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In combination with the induction hypothesis, which implies that τk−2→` =
τk−2→k−1 + τk−1→`, the equation above results in

max
πk−1∈Rk−1

{bk−1τk−2→k−1−wk−1(τk−1→`− τk→`)}=−1. (6.71)

Due to Proposition 64164 and the induction hypothesis, which implies that

max
πk−1∈Rk−1

{bk−1τk−2→k−1−wk−1τk−1→k}=−1,

we infer from Equation (6.71) that τk−1→`−τk→` = τk−1→k, and therefore that

τk−1→` = τk−1→k + τk→` (6.72)

By taking now Equation (6.68)182, for `= k+1, we find that

τk→k+1 = 1+ max
πk∈Rk

{bkτk−1→k+1 + rkτk→k+1}

= 1+ max
πk∈Rk

{bkτk−1→k+1 +(1−bk−wk)τk→k+1}

= 1+ τk→k+1 + max
πk∈Rk

{bk(τk−1→k+1− τk→k+1)−wkτk→k+1},

which, due to Theorem 58156, implies that

max
πk∈Rk

{bk(τk−1→k+1− τk→k+1)−wkτk→k+1}=−1.

By combining this with Equation (6.72), for `= k+1, we find that

max
πk∈Rk

{bkτk−1→k−wkτk→k+1}=−1.

Lemma 83. For all k ∈X \{0,L}, we have that

min
πk∈Rk

{−bkτk→k−1 +wkτk+1→k}=−1,

and that, for all ` in X such that k > `:

τk+1→` = τk+1→k + τk→`.

Proof. We first prove the case k = L− 1. Consider any ` ∈X such that ` <
L−1. By taking Equation (6.26)160, for j = `, we find that

τL→` = 1+ min
πL∈RL

{
bLτL−1→`+ rLτL→`}

= 1+ min
πL∈RL

{
bLτL−1→`+(1−bL)τL→`}

= 1+ τL→`+ min
πL∈RL

{
−bL(τL→`− τL−1→`)},
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which, due to Theorem 58156, implies that

min
πL∈RL

{
−bL(τL→`− τL−1→`)}=−1⇒ τL→` =

1
bL

+ τL−1→`.

By combining this with Equation (6.39)165, we find that

τL→` = τL→L−1 + τL−1→`. (6.73)

By applying Equation (6.27)160 for i = L−1 and j = L−2, we find that

τL−1→L−2 = 1+ min
πL−1∈RL−1

{rL−1τL−1→L−2 +wL−1τL→L−2}

= 1+ min
πL−1∈RL−1

{(1−bL−1− pL−1)τL−1→L−2 +wL−1τL→L−2}

= 1+ τL−1→L−2 + min
πL−1∈RL−1

{−bL−1τL−1→L−2

+wL−1(τL→L−2− τL−1→L−2)}

which, due to Theorem 58156, implies that

min
πL−1∈RL−1

{−bL−1τL−1→L−2 +wL−1(τL→L−2− τL−1→L−2)}=−1.

Combining the equation above with Equation (6.73), for `= L−2, we find that

min
πL−1∈RL−1

{−bL−1τL−1→L−2 +wL−1τL→L−1}=−1,

We will now generalise the proof using induction. Assuming that the
lemma is true for k + 1, with k ∈X \ {0,L− 1,L}, we prove that it is also
true for k.

Consider any ` ∈X such that ` < k. By applying Equation (6.27)160 for
i = k+1 and j = `, we find that

τk+1→` = 1+ min
πk+1∈Rk+1

{bk+1τk→`+ rk+1τk+1→`+wk+1τk+2→`}

= 1+ min
πk+1∈Rk+1

{bk+1τk→`+(1−bk+1−wk+1)τk+1→`+wk+1τk+2→`}

= 1+ τk+1→`+ min
πk+1∈Rk+1

{−bk+1(τk+1→`− τk→`)

+wk+1(τk+2→`− τk+1→`)},

which, due to Theorem 58156, implies that

min
πk+1∈Rk+1

{−bk+1(τk+1→`− τk→`)+wk+1(τk+2→`− τk+1→`)}=−1.

In combination with the induction hypothesis, which implies that τk+2→` =
τk+2→k+1 + τk+1→`, the equation above results in

min
πk+1∈Rk+1

{−bk+1(τk+1→`− τk→`)+wk+1τk+2→k+1}=−1. (6.74)
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Due to Proposition 67166 and the induction hypothesis, which implies that

min
πk+1∈Rk+1

{−bk+1τk+1→k +wk+1τk+2→k+1}=−1,

we infer from Equation (6.74)x that τk+1→`− τk→` = τk+1→k, and therefore
that

τk+1→` = τk+1→k + τk→` (6.75)

By taking now Equation (6.27)160, for i = k and j = k−1, we find that

τk→k−1 = 1+ min
πk∈Rk

{rkτk→k−1 +wkτk+1→k−1}

= 1+ min
πk∈Rk

{(1−bk−wk)τk→k−1 +wkτk+1→k−1}

= 1+ τk→k−1 + min
πk∈Rk

{−bkτk→k−1 +wk(τk+1→k−1− τk→k−1)},

which, due to Theorem 58156, implies that

min
πk∈Rk

{−bkτk→k−1 +wk(τk+1→k−1− τk→k−1)}=−1.

By combining this with Equation (6.75), for `= k−1, we find that

min
πk∈Rk

{−bkτk−1→k +wkτk+1→k}=−1.

Lemma 84. For all k ∈X \{0,L}, we have that

max
πk∈Rk

{−bkτk→k−1 +wkτk+1→k}=−1,

and that, for all ` in X such that k > `:

τk+1→` = τk+1→k + τk→`.

Proof. We first prove the case k = L− 1. By taking Equation (6.28)160, for
i = L, we find that

τL→ j =1+Q
(

∑
z∈X \{`}

Izτz→`

∣∣∣∣L)
=1+ max

πL∈RL

{
bLI¬ j(L−1)τL−1→ j + rLI¬ j(L)τL→ j

}
. (6.76)

Consider any ` ∈ X such that ` < L− 1. By applying Equation (6.76) for
j = `, we find that

τL→` = 1+ max
πL∈RL

{
bLτL−1→`+ rLτL→`}

= 1+ max
πL∈RL

{
bLτL−1→`+(1−bL)τL→`}

= 1+ τL→`+ max
πL∈RL

{
−bL(τL→`− τL−1→`)},
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which, due to Theorem 58156, implies that

max
πL∈RL

{
−bL(τL→`− τL−1→`)}=−1⇒ τL→` =

1
bL

+ τL−1→`.

By combining this with Equation (6.39)165, we find that

τL→` = τL→L−1 + τL−1→`. (6.77)

By taking Equation (6.68)182, for k = L−1 and `= L−2, we find that

τL−1→L−2 = 1+ max
πL−1∈RL−1

{rL−1τL−1→L−2 +wL−1τL→L−2}

= 1+ max
πL−1∈RL−1

{(1−bL−1−wL−1)τL−1→L−2 +wL−1τL→L−2}

= 1+ τL−1→L−2 + max
πL−1∈RL−1

{−bL−1τL−1→L−2

+wL−1(τL→L−2− τL−1→L−2)}

which, due to Theorem 58156, implies that

max
πL−1∈RL−1

{−bL−1τL−1→L−2 +wL−1(τL→L−2− τL−1→L−2)}=−1.

Combining the equation above with Equation (6.77), for `= L−2, we find that

max
πL−1∈RL−1

{−bL−1τL−1→L−2 + pL−1τL→L−1}=−1.

We will now generalise the proof using induction. Assuming that the
lemma is true for k + 1, with k ∈X \ {0,L− 1,L}, we prove that it is also
true for k.

Consider any ` < k. By taking Equation (6.28)160, for i = k+1 and j = `,
we find that

τk+1→` = 1+ max
πk+1∈Rk+1

{bk+1τk→`+ rk+1τk+1→`+wk+1τk+2→`}

= 1+ max
πk+1∈Rk+1

{bk+1τk→ j +(1−bk+1−wk+1)τk+1→ j +wk+1τk+2→`}

= 1+ τk+1→`+ max
πk+1∈Rk+1

{−bk+1(τk+1→`− τk→`)

+wk+1(τk+2→`− τk+1→`)},

which, due to Theorem 58156, implies that

max
πk+1∈Rk+1

{−bk+1(τk+1→`− τk→`)+wk+1(τk+2→`− τk+1→`)}=−1.

In combination with the induction hypothesis, which implies that τk+2→` =
τk+2→k+1 + τk+1→`, the equation above results in

max
πk+1∈Rk+1

{−bk+1(τk+1→`− τk→`)+wk+1τk+2→k+1}=−1. (6.78)
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Due to Proposition 67166 and the induction hypothesis, which implies that

max
πk+1∈Rk+1

{−bk+1τk+1→k +wk+1τk+2→k+1}=−1,

we infer from Equation (6.78)x that τk+1→`− τk→` = τk+1→k, and therefore
that

τk+1→` = τk+1→k + τk→`. (6.79)

By taking Equation (6.28)160, for i = k and j = k−1, we find that

τk→k−1 = 1+ max
πk∈Rk

{rkτk→k−1 +wkτk+1→k−1}

= 1+ max
πk∈Rk

{(1−bk−wk)τk→k−1 +wkτk+1→k−1}

= 1+ τk→k−1 + max
πk∈Rk

{−bkτk→k−1 +wk(τk+1→k−1− τk→k−1)},

which, due to Theorem 58156, implies that

max
πk∈Rk

{−bkτk→k−1 +wk(τk+1→k−1− τk→k−1)}=−1.

By combining this with Equation (6.79), for `= k−1, we find that

max
πk∈Rk

{−bkτk−1→k +wkτk+1→k}=−1.

188



7
AN APPLICATION TO QUEUEING

In this chapter our aim is to demonstrate the use of imprecise probabilities
for robust queueing analysis. A queueing model is a stochastic process, for
which the transition models are derived from an arrival and a departure pro-
cess. We focus on the Geo/Geo/1/L queue, where the arrival and the departure
processes obey geometric distributions, in the sense that at each time point an
arrival occurs with probability a ∈ [0,1] and a departure occurs with probabil-
ity d ∈ [0,1]. A Geo/Geo/1/L queue is a special case of a birth-death chain
and therefore allows for the efficient computation of expectations of various
functions.

Afterwards, we introduce an imprecise version of the Geo/Geo/1/L queue.
More specifically, instead of a single pair of arrival and departure probabilities,
we assume that these probabilities belong to intervals and can take any value
within the respective interval at each time point. This yields a special type of
imprecise birth-death chain and we also introduce an additional independence
concept that seems suitable for such an imprecise chain. We call this inde-
pendence concept fixed-parameter repetition independence because it borrows
elements from—but it is more stringent than—repetition independence.

We also present some properties and numerical results regarding various
performance measures that are used in queueing theory. We construct an im-
precise Geo/Geo/1/L queue and we calculate the lower and upper expected
(average) queue length, (average) probability of each queue length, (average)
probability of ‘turning on the server’, and first-passage and return times under
the different independence concepts. For some of these performance measures,
we prove that it makes no difference which independence concept is adopted.
In the rest of the cases, we discuss the differences that arise.
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7.1 IMPRECISION AND QUEUEING THEORY

The Achilles heel of queueing models for the use of decision support and pre-
diction in practical applications is that, usually, it is difficult to specify the
parameters of these models in a way that is both exact and reliable. In the most
general form, a queueing model is treated as a stochastic model Y = s(X),
where the probabilistic information about X is typically expressed in terms of
parameters. The problem, then, is to obtain a probabilistic description of Y , ei-
ther analytically, algorithmically, by estimation or otherwise. The confidence
we can put in our inferences about Y depends on how skilful the model s(·) is
and how confident we are about our probabilistic description of X .

The goal of queueing theory in the last hundred years has been to anal-
yse increasingly generalised, complicated and intricate models s(·). Although
successful on its own, the drawback of this approach is that it often inspires
overconfidence in its results, because the task of gaining confidence in the—
parameters of the—probability model for X is not treated with the same atten-
tion. Once numbers are produced, their dependence on the parameters of the
queueing model is often too easily forgotten. For this reason, we will analyse
queueing models from an imprecise point of view in the same way we have
done so far for stochastic processes. For example, when the probability of an
arrival or the probability of a departure in a queue needs to be specified, we will
allow for set-valued assessments. This is a more prudent and arguably more
honest approach which, to some extent, allows accounting for the unreliability
of the estimation of the input parameters in the queueing model.

The framework of imprecise probabilities is not the only attempt towards
a more robust description of uncertainty in queueing theory. Amongst oth-
ers, we have the Dempster–Shafer theory [63], interval probabilities [79] and
fuzzy set theory [86]. To some extent, one can also characterise the influ-
ence of parameter uncertainty on performance measures strictly from within
the framework of precise probabilities, for example by studying perturbations
of the Markov chain underlying the queueing model [3, 12]. For small enough
ε , the limiting distribution of a perturbated Markov chain with transition ma-
trix Mε = M + εM′ is a power series in ε with coefficients that can be cal-
culated from M′ and both the stationary distribution and the deviation ma-
trix of the original chain M [61]. Such methods provide a sensitivity analy-
sis [11, 59, 80, 85]. Although very useful in many cases, they cover only small
perturbations in one direction—that of M′—and are generally not able to relate
sets of input parameters to performance bounds when general independence
concepts are adopted like, for instance, the one of epistemic irrelevance.
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7.2 THE GEO/GEO/1/L QUEUE AND HOW TO MAKE IT IMPRE-
CISE

For the sake of demonstration and due to the fact that the merging between
imprecise probabilities and queueing theory is quite unexplored, the queueing
model that we consider is admittedly kept as simple as possible. That is, we
consider a Geo/Geo/1/L queue which we then make imprecise by allowing
the local models to be sets of probability mass functions instead of just single
ones. This simplicity serves all the better to exhibit the implications of the
local models when these are no longer single probability mass functions but
sets of them. We also present an additional independence concept that can be
applied to the imprecise version of the Geo/Geo/1/L .

7.2.1 The Geo/Geo/1/L queue

One standard way to describe a queueing model is by using Kendall’s notation.
That is, a queueing model is denoted by A/D/S/L, where A stands for the ar-
rival process, D for the departure process, S for the number of servers and L for
the maximum length of the queue. Here we focus on the Geo/Geo/1/L queue,
which is a simple but quite common example in queueing theory. Following
Kendall’s notation, our system is a single-server queue of maximum length L,
where L ∈ N. Arrivals and departures occur according to geometrical distri-
butions, i.e. if we are given a probability a for the arrival to occur it means
that the probability of the first arrival at time point k is given by (1− a)k−1a
and similarly for the departure. Arrivals and departures are assumed to be
(stochastically) independent. Another assumption is that the content of the
queue is observed between consecutive time points and we assume that at each
time point, a departure occurs prior to an arrival, a convention called either
Departures-First (DF) or Early Arrival System (EAS) [13].1 We choose this
priority in order to avoid zero time servicing when the queue is empty. Fur-
thermore, we assume that an item stays in the queue until served and that the
service discipline is work-conserving.

We now provide a more detailed description of this Geo/Geo/1/L queue;
see also Reference [1, Section 6.2]. Assume that, at any time point and given
any possible queue length, we have a probability of arrival and a probability of
departure, which are denoted by a and d respectively. At each time point n∈N,
the possible queue lengths are represented by the state space X = {0, . . . ,L}.
The probability of any length in X at time point n + 1 conditional on the
previous length xn ∈X does not depend on time, but only on the values xn,
a and d. This implies that our transition models are conditional probability

1In queueing theory, it is typical to say that the content of the queue is observed during con-
secutive time slots and that arrivals and departures occur at slot boundaries. In our case, a slot is
the time between two discrete time points.
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mass functions q(·|xn) which—according to the assumptions described in the
previous paragraph—are defined as follows:

If xn = 0, then

q(xn+1|0) :=


1−a if xn+1 = 0
a if xn+1 = 1
0 otherwise

for all xn+1 ∈X . (7.1)

If xn ∈X \{0,L}, then for all xn+1 ∈X :

q(xn+1|xn) :=


d(1−a) if xn+1 = xn−1
da+(1−d)(1−a) if xn+1 = xn

(1−d)a if xn+1 = xn +1
0 otherwise.

(7.2)

Finally, if xn = L, then

q(xn+1|L) :=


d(1−a) if xn+1 = L−1
1−d(1−a) if xn+1 = L
0 otherwise

for all xn+1 ∈X . (7.3)

A graphical representation of these transition models is shown in Figure 7.1y.
They can also be described by the following transition matrix:

M =


1−a a 0 · · ·

d(1−a) da+(1−d)(1−a) (1−d)a · · ·
...

. . . . . . . . .
· · · d(1−a) da+(1−d)(1−a) (1−d)a
0 · · · d(1−a) 1−d(1−a)


(7.4)

For the initial situation, we assume a probability mass function q� on X . It
clearly follows from Equations (6.1)152 and (7.4) that a Geo/Geo/1/L queue is
a birth-death chain, and consequently it can also have a chain-like representa-
tion; see Figure 7.2194. The probability tree that is associated with the local
models that we have just introduced will be denoted by qa,d .

Additionally to the assumptions mentioned in the beginning of this section,
we assume that 0 < a < 1 and 0 < d < 1. The reason for this assumption is that
it guarantees ergodicity. In particular, consider a Geo/Geo/1/L queue of which
the transition matrix is given by Equation (7.4), where now the three diagonals
consist of strictly positive elements, then it follows from Definition 8112 that
the queue is regular and therefore, ergodic. An ergodic Geo/Geo/1/L queue
offers analytical formulas for computing the probability limn→+∞ P(Xn = k),
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n n+1

q(·|L) L

L

L−1

q(·|`) `

`+1

`

`−1

q(·|0) 0

1

0

da+(1−d)(1−a)

(1−d)a

d(1−a)

a

1−a

d(1−a)

1−d(1−a)

Figure 7.1: At any time point n and for each possible queue length xn ∈
{0, . . . ,L}, we have a conditional probability mass function q(·|xn), where a
and d are the probabilities of arrival and departure respectively.
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0 1 · · · L−1 L

a

1−a

(1 − d)a

da + (1− d)(1− a)

d(1 − a)

(1 − d)a

d(1 − a)

(1 − d)a

da + (1− d)(1− a)

d(1 − a) d(1 − a)

1− d(1− a)

Figure 7.2: All the possible transitions from one state to another when the
probability of arrival is a and the one for departure is d.

which we simply denote by P(X = k) for all k∈X .2 In order to find these limit
probabilities of the queue lengths, we use the so-called balance equations [35]:

aP(X = 0) = d(1−a)P(X = 1)

and
(1−d)aP(X = k−1) = d(1−a)P(X = k) for 2≤ k ≤ L.

By combining these equations with the fact that ∑k∈X P(X = k) = 1 and solv-
ing the resulting system of equations, we find—if 0 < a < 1 and 0 < d < 1—
that

P(X = 0) =
d−a

d− (1−d)LaL+1

dL(1−a)L

. (7.5)

and

P(X = k) =
(1−d)k−1ak

dk(1−a)k P(X = 0) for 2≤ k ≤ L. (7.6)

Alternatively, we can compute—not only in the limit—the probabilities
of the possible queue lengths using the law of iterated expectations by re-
garding the probability of a queue length as the expectation of the indicator
of this length.3 Consider any n ∈ N and any k ∈ X , then we know that
(Xn = k) := ∪x1:n−1∈X n−1Γ(x1:n−1,k). Let An,k :=(Xn = k), it then follows from
Lemma 105240 that EP(IAn,k) = P(Xn = k). Furthermore, it is easy to see that
IAn,k(X1:∞) = Ik(Xn), where the indicator Ik is a function on X . Now let T be
the transition operator defined by Equation (5.16)111 that is associated with the
transition models of the Geo/Geo/1/L queue, it then follows from Lemma 36105
with respect to the homogeneous transition operator T that

P(Xn = k) = E�(T n−1Ik),

2In queueing theory, X represents the length of the queue when the latter is in a steady state.
3This approach is also know as computing the transient solution. More details about the

transient solution for homogeneous Markov chains can be found in Reference [1, Section 3.8].
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where E� is the expectation operator that corresponds to the initial model q�.
Moreover, we have that

P(X = k) = lim
n→+∞

E�(T n−1Ik) = lim
n→+∞

EP
(
Ik(Xn)

)
,

and since the queue is ergodic, it follows from Equation (5.17)111 that

P(X = k) = E∞(Ik), (7.7)

where E∞ is the unique limit expectation operator of the ergodic Geo/Geo/1/L
queue.

In the classic framework of precise probabilities, the Geo/Geo/1/L queue
poses no problems and all performance measures can be obtained easily. One
reason why this happens is because the Geo/Geo/1/L queue is a (homoge-
neous) birth-death chain and many performance measures are computed di-
rectly by just using the probability of arrival and the probability of departure.
For instance, under the assumption that both the arrival and the departure prob-
ability are strictly positive, we can compute expectations in the limit of gen-
eral functions in L (X ) and time averages by using a closed-form expression.
More specifically, for any f ∈L (X ), it follows from Equation (5.17)111 that
limn→+∞ EP( f (Xn)) = E∞( f ), and due to Equation (7.7), we find that

E∞( f ) = ∑
x∈X

f (x)P(X = x),

where P(X = x) is given by Equations (7.5)x and (7.6)x for all x∈X . More-
over, it follows from Theorem 38112 that ∑x∈X f (x)P(X = x) is equal to the
limit expectation of the time average of f . When there is imprecision, how-
ever, this may no longer be the case. The reason for this is that we will allow
the probabilities of arrival and departure to vary over time and history of state
values, which implies that we consider also non-homogeneous queues.

7.2.2 An imprecise version of the Geo/Geo/1/L queue

We now generalise the concept of a Geo/Geo/1/L queue by making it im-
precise. More specifically, suppose that instead of a single pair a and d, we
consider intervals of arrival and departure probabilities, denoted by [a,a] and
[d,d], respectively, such that 0 < a ≤ a < 1 and 0 < d ≤ d < 1. Using [a,a]
and [d,d], we first define sets of probability mass functions on the sets Xm,
X0 and XL—introduced in the beginning of Section 6.2152—as follows:

R0 :=
{

π0 ∈ ΣX0 : π0(e) = 1−a, π0(u) = a and a ∈ [a,a]
}

; (7.8)

RL :=
{

πL ∈ ΣXL : πL(`) = d(1−a), πL(e) = 1−d(1−a),

a ∈ [a,a] and d ∈ [d,d]
}
. (7.9)
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For all i ∈X \{0,L}, we have that

Ri :=
{

πi ∈ ΣXm : πi(`) = d(1−a), πi(e) = da+(1−d)(1−a),

πi(u) = (1−d)a, a ∈ [a,a] and d ∈ [d,d]
}
. (7.10)

For each x ∈ X , we now consider a transition model Qx on X that is
defined by Rx according to Equations (6.5)154–(6.7)154, and consider also
an initial model Q� on X . These local models form a specific imprecise
birth-death chain, which we call an imprecise Geo/Geo/1/L queue. Further-
more, since we assume that 0 < a ≤ a < 1 and 0 < d ≤ d < 1, this impre-
cise queue satisfies Assumption 6.1153. Also, due to our notational convention
that (bi,ri,wi) = (πi(`),πi(e),πi(u)) for all πi ∈ Ri and all i ∈ X \ {0,L},
(r0,w0) = (π0(e),π0(u)) for all π0 ∈ R0 and (bL,rL) = (πL(`),πL(e)) for all
πL ∈RL, we infer that (r0,w0) = (1−a,a), (bL,rL) = (d(1−a),1−d(1−a))
and (bi,ri,wi) = (d(1−a),da+(1−d)(1−a),a(1−d)), where a ∈ [a,a] and
d ∈ [d,d].

Since an imprecise Geo/Geo/1/L queue is an imprecise birth-death chain,
and consequently a homogeneous imprecise Markov chain, we can choose be-
tween different independence concepts and approaches for building our global
models. In particular, we can choose among epistemic irrelevance, complete
independence and repetition independence, as introduced in Chapter 5100. Apart
from these three independence concepts, we can also adopt an additional in-
dependence concept that is suitable for imprecise Geo/Geo/1/L queues, and
which will be introduced in Section 7.3y. Regarding the approach used for
defining our global models, we can distinguish between the measure-theoretic
and the martingale-theoretic approach.

For the bounds on the performance measures that are presented in Sec-
tions 7.5202—7.8219, we take into consideration all possible independence con-
cepts. In summary, these bounds are lower and upper expectations of functions
that depend on one or two states, time averages and first-passage times. When
it comes to global lower and upper expectations of functions that depend on a
single state and time averages, it follows from Theorems 51137 and 52138 that
epistemic irrelevance coincides with complete independence, but not necessar-
ily with the rest of the independence concepts; see Example 9143 and also Sec-
tions 7.6206 and 7.7210. As far as lower and upper expected first-passage and
return times are concerned, it makes no difference whether we adopt epistemic
irrelevance, complete or repetition independence. In Section 7.8.2225, however,
we will see that this is not the case for the additional independence concept.
For epistemic irrelevance, regarding the approach used to define our global
models, we consider both the measure-theoretic approach and the martingale-
theoretic approach. Not surprisingly, the chosen approach does not affect our
results, and we can therefore adopt computational methods that are based on
either of them. Regarding functions that depend on one or two states and
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time averages, it follows from Theorem 2996 that the measure-theoretic ap-
proach coincides with the martingale-theoretic one. Furthermore, due to The-
orem 80180, this is also the case for lower and upper expected first-passage and
return times.

We end this section by presenting a useful simplification of the expression
for T f (x) that is given by Equation (5.54)127, for the specific case of our im-
precise Geo/Geo/1/L queue of which the transition models Qx are now derived
from the sets Rx that are given by Equations (7.8)195–(7.10)x. First of all, we
find that

T f (0) = min
{
(1−a) f (0)+a f (1) : a ∈ [a,a]

}
= min

{
(1−a) f (0)+a f (1) : a ∈ {a,a}

}
. (7.11)

Secondly, we have that

T f (L) = min
{

d(1−a) f (L−1)+ [1−d(1−a)] f (L) : a ∈ [a,a], d ∈ [d,d]
}

=min
{

d(1−a) f (L−1)+ [1−d(1−a)] f (L) : a ∈ {a,a}, d ∈ {d,d}
}
.

(7.12)

Moreover, for all x ∈X \{0,L}, we find that

T f (x) = min
{

d(1−a) f (x−1)+ [(1−d)(1−a)+da] f (x)

+(1−d)a f (x+1) : a ∈ [a,a], d ∈ [d,d]
}

= min
{

d(1−a) f (x−1)+ [(1−d)(1−a)+da] f (x)

+(1−d)a f (x+1) : a ∈ {a,a}, d ∈ {d,d}
}
,

(7.13)

where the second equality comes from Proposition 350 (for I1 = [d,d], I2 =
[a,a] and ΨI1,I2 = Qx). Similar simplifications apply to T f as well.

7.3 FIXED-PARAMETER REPETITION INDEPENDENCE

In this section, we introduce an independence concept that borrows elements
from—but it is more stringent than—repetition independence. Consider the
sets Qx that are given by Equations (7.8)195—(7.10)x and, for the initial sit-
uation �, consider any set of probability mass functions Q� on X . Each of
the independence concepts that we have so far seen then leads to a different
set of probability trees: TQ, T M

Q and T HM
Q . Furthermore, for every a ∈ [a,a],

d ∈ [d,d] and q� ∈Q�, the corresponding probability tree qa,d , as introduced
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in Section 7.2.1191, clearly belongs to each of these sets. However, there might
be other probability trees in these sets that are not of the form qa,d . For ex-
ample, consider any probability tree of which the transition model associated
with the queue length 0 is given by Equation (7.1)192 for a = a and for which
the rest of the transition models are given by Equations (7.2)192 and (7.3)192
for a = a and d = d. Such a probability tree belongs to TQ, T M

Q and T HM
Q ,

but is not of the form qa,d . This observation leads us to introduce a fourth type
of imprecise probability tree which is denoted by T O

Q and defined by

T O
Q :=

{
qa,d : a ∈ [a,a], d ∈ [d,d] and q� ∈Q�

}
, (7.14)

where, as in Section 7.2.1191, qa,d is a probability tree which is obtained for
a single homogeneous arrival probability a, a single homogeneous departure
probability d and a single probability mass function q� on X .4 The impre-
cise probability tree T O

Q has a corresponding set of conditional probability
measures on Cσ , which we denote by PO

Q. The set PO
Q corresponds to an

imprecise Geo/Geo/1/L queue and we call the independence concept that is
satisfied by the states of the process fixed-parameter repetition independence.
Clearly, we have that T O

Q ⊆ T HM
Q ⊆ T M

Q ⊆ TQ and, consequently, also that
PO

Q ⊆ PHM
Q ⊆ PM

Q ⊆ PQ.
Regarding lower and upper expectations under fixed-parameter indepen-

dence, for any measurable extended real-valued function g on Ω and any B ∈
〈X ∗〉 \ {∅}, the global lower and upper expectation of g conditional on B,
denoted by Efi

Q(g|B) and Efi
Q(g|B) respectively, are defined by

Efi
Q(g|B) := inf

{
EP(g|B) : P ∈ PO

Q

}
; (7.15)

Efi
Q(g|B) := sup

{
EP(g|B) : P ∈ PO

Q

}
. (7.16)

Combining the fact that PO
Q ⊆ PHM

Q ⊆ PM
Q ⊆ PQ with the definitions of the

global lower and upper expectation under the different independence concepts,
we have the following property, which is trivial and therefore stated without
proof.

Lemma 85. Consider an initial model Q� and for each x ∈X , a set of con-
ditional probability mass functions Qx as defined in Section 7.2.2195. Con-
sider as well any B ∈ 〈X ∗〉 \ {∅} and any measurable extended real-valued
function g on Ω for which there is a non-decreasing sequence of non-negative
n-measurable functions {hn}n∈N such that limn→+∞ hn = g. It then holds that

Eei
Q(g|B)≤ Eci

Q(g|B)≤ Eri
Q(g|B)≤ Efi

Q(g|B)

≤ Efi
Q(g|B)≤ Eri

Q(g|B)≤ Eci
Q(g|B)≤ Eei

Q(g|B).
4For readers that are familiar with the concept of “separately specified rows” [18], it may be

of interest to know that, in contrast with imprecise Markov chains under epistemic irrelevance,
complete independence and repetition independence, the local models of an imprecise Markov
chain under fixed-parameter repetition independence may not satisfy this property.
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Computationally speaking, we cannot always compute global lower and
upper expectations under fixed-parameter repetition independence exactly. Fur-
thermore, the results may differ from those obtained under epistemic irrele-
vance, complete independence and repetition independence. The following
example illustrates this.

Example 10. Consider the set X = {0,1,2} and the intervals Ia = [1/5,2/5]
and Id = [2/5,3/5]. Consider also any imprecise Geo/Geo/1/L queue under epis-
temic irrelevance and any imprecise Geo/Geo/1/L queue under fixed-parameter
repetition independence such that, for both of these models, the state space is
X , the initial model is Q� := (1/3,1/3,1/3) and the local models at time n = 1
are derived from Equations (7.8)195–(7.10)196 with [a,a] := Ia and [d,d] := Id .

We will calculate the lower expectations Eei
Q(I1(X2))—which coincides

with Eci
Q(I1(X2)) and Eri

Q(I1(X2)) due to Proposition 54145—and Efi
Q(I1(X2)),

and will show that they differ. Starting with Eei
Q(I1(X2)) it follows from Equa-

tion (5.57)128 that
Eei

Q(I1(X2)) = Q
�
(T I1). (7.17)

For T I1(0), it follows from Equation (7.11)197 that

T I1(0) = min
{
(1−a)I1(0)+aI1(1) : a ∈ Ia

}
= min

{
(1−a)I1(0)+aI1(1) : a ∈

{1
5
,

2
5
}}

= min
{

a : a ∈
{1

5
,

2
5
}}

=
1
5
.

Similarly, by using Equations (7.12)197 and (7.13)197, we find that T I1(2) =
6/25 and T I1(1) = 11/25.

Finally, it follows from Equation (7.17) that

Eei
Q(I1(X2)) = Q

�
(T I1) = inf

{
∑

y∈X
T I1(y)p(y) : p ∈Q�

}
= inf

{
T I1(0)p(0)+T I1(1)p(1)+T I1(2)p(2) : p ∈Q�

}
=

1
3
· 1

5
+

1
3
· 11

25
+

1
3
· 6

25
=

1
3
(

1
5
+

11
25

+
6

25
) =

1
3
· 22

25
=

22
75

. (7.18)

We now calculate Efi
Q(I1(X2)), for which we have that

Efi
Q(I1(X2)) = inf

{
EP(I1(X2)) : P ∈ PO

Q

}
= inf

{
∑

x1:2∈X 2

I1(x2)
1

∏
i=0

p(xi+1|x1:i) : p ∈T O
Q

}
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= inf
{
I1(0)q(0|0)q�(0)+ I1(1)q(1|0)q�(0)+ I1(0)q(0|1)q�(1)

+ I1(1)q(1|1)q�(1)+ I1(2)q(2|1)q�(1)+ I1(1)q(1|2)q�(2)

+ I1(2)q(2|2)q�(2) : qa,d ∈T O
Q

}
= inf

{
a

1
3
+[da+(1−d)(1−a)]

1
3
+d(1−a)

1
3

: a ∈ Ia, d ∈ Id

}
= inf

{1
3
+da

1
3

: a ∈ Ia, d ∈ Id

}
= inf

{1
3
(1+da) : a ∈ Ia, d ∈ Id

}
=

1
3
(1+

2
5
· 1

5
) =

1
3
· 27

25
=

27
75

, (7.19)

where the first equality follows from Equation (7.15)198, the second equality
follows from Equation (3.18)74, the third follows from Equation (7.14)198, the
fourth equality follows from Equations (7.1)192–(7.3)192 and the seventh equal-
ity holds because Ia and Id are closed intervals consisting of strictly positive
values and therefore the infimum inf{ 1

3 (1+ da) : a ∈ Ia, d ∈ Id} is obtained
for the smallest value in Id and the smallest value in Ia.

Finally, due to Equations (7.18)x and (7.19), we infer that Eei
Q(I1(X2) <

Efi
Q(I1(X2)). ♦

For that reason, we here propose a method for approximating global lower
and upper expectations under fixed-parameter repetition independence which
is similar to the one for repetition independence described in Section 5.7.2143.
For instance, consider any n,m ∈N such that n > m, any situation x1:m ∈X m,
any function f ∈L (X ) and suppose that we want to compute Efi

Q( f (Xn)|x1:m).
This time, we select k probabilities from [a,a] and k probabilities from [d,d],
and we compute the global expectations for all possible combinations of the
selected probabilities. The smallest value among these global expectations is
then our approximation for the lower global expectation. In the unconditional
case, we additionally select k probability mass functions from Q�. In a similar
way we can approximate (conditional) global upper expectations of functions
f ∈L (X ) and also global lower and upper expectations of their respective
time average. With this method we need to compute k2 global expectations in
the conditional case and k3 global expectations in the unconditional case.

7.4 OUR EXAMPLE OF AN IMPRECISE GEO/GEO/1/L QUEUE

From the analysis in Section 7.2.2195, we infer that any imprecise Geo/Geo/1/L
queue can be constructed by specifying a maximum queue length L, an inter-
val of arrival probabilities, an interval of departure probabilities and an initial
model. For the bounds on the performance measures that are calculated in Sec-
tions 7.5202–7.8219, we have considered an imprecise Geo/Geo/1/L queue with
L = 7, where the probability interval for an arrival is [0.5,0.6] and the one for a
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departure [0.7,0.8]. For the initial model Q�, we used a vacuous model—the
set of all probability mass functions on X , namely ΣX .

For repetition independence and fixed-parameter repetition independence,
as mentioned before, exact computations are in general infeasible. There-
fore, in those cases, we approximate global lower and upper expectations
by selecting a number of probabilities and then computing the global expec-
tations for all possible combinations of the selected probabilities—see Sec-
tions 5.7.2143 and 7.3197. In particular, we select eleven different values for the
arrival and departure probabilities, and eight different probability mass func-
tions for the different initial models: arrival probabilities take values in the set
{0.5,0.51, . . . ,0.6}, departure probabilities in the set {0.7,0.71, . . . ,0.8}, and
initial models are selected from the extreme points of ΣX .

Note that, in contrast with the approximation methods described in Sec-
tions 5.7.2143 and 7.3197, the number of selected probability mass functions
for the initial model is not the same as the number of selected arrival and de-
parture probabilities. The reason why we selected only the extreme points
of ΣX for the initial model is because our approximations for unconditional
global lower and upper expectations under (fixed-parameter) repetition inde-
pendence will not be better for any other selection of initial models in ΣX . We
only explain in more detail why this statement is true for unconditional global
lower expectations under fixed-parameter repetition independence of functions
that depend on a single state. The cases of unconditional global upper expec-
tations of functions that depend on a single state under fixed-parameter inde-
pendence, unconditional global lower and upper expectations of time averages
under fixed-parameter repetition independence, and also all the respective ones
under repetition independence, are completely analogous.

Indeed, consider any n ∈ N, any f ∈L (X ), any a ∈ [a,a], any d ∈ [d,d]
and any q� ∈ ΣX . Let qa,d ∈ T O

Q be the probability tree that is derived from
a, d and q�. Let also T be the transition operator that is associated with the
transition models of qa,d , and E� be the expectation operator that corresponds
to q�. Consider now any P ∈ Pqa,d , then it follows from Lemma 36105—for
the homogeneous transition operator T —that EP( f (Xn)) = E�(T n−1 f ). Since
T n−1 f is a real-valued function on X , it then follows from property P138 that

minT n−1 f ≤ E�(T n−1 f )≤maxT n−1 f .

Let y∗ ∈ argminx∈X T n−1 f (x) and let also q∗� be the probability mass function
in ΣX that assigns the probability mass 1 to y∗ and 0 to any x ∈X \ {y∗}.
Clearly, q∗� is one of the extreme points of ΣX . Let now E∗� be the expectation
operator that corresponds to q∗�, then we have that E∗�(T

n−1 f ) = minT n−1 f
and therefore that E∗�(T

n−1 f )≤ E�(T n−1 f ).

201



7.5 EXPECTED QUEUE LENGTH

7.5 EXPECTED QUEUE LENGTH

The first performance measure that we deal with is the expected queue length.
At any time point n ∈ N, the queue length is given by Xn, which implies that
it depends on a single state and hence, it follows from Theorem 51137 that
epistemic irrelevance coincides with complete independence. Furthermore,
it follows from Theorem 2996 that the measure-theoretic approach coincides
with the martingale-theoretic one. We adopt the measure-theoretic approach
and we compute the global lower and upper expected queue length at time n,
for increasing values of n.

Under epistemic irrelevance and complete independence, we calculate the
global lower and upper expected queue length using Equation (5.57)128. For
repetition independence and fixed-parameter repetition independence, we cal-
culate the global lower and upper expected queue length according the proce-
dures described in Sections 5.7.2143 and 7.3197 respectively using the selected
arrival and departure probabilities that were presented in Section 7.4200.

We start by calculating unconditional global lower and upper expected
queue length at time n, and also upper expected queue length at time n con-
ditional on the event that the queue is empty at time 1, for increasing values
of n, under both epistemic irrelevance and fixed-parameter repetition indepen-
dence; see Figure 7.3y. In the previous paragraph, we mentioned that we
calculate global lower and upper expectations under epistemic irrelevance and
complete independence using Equation (5.57)128, which applies to uncondi-
tional global lower and upper expectations. However, our experiments con-
sider conditional ones as well. This is not a problem because we can regard
the global upper expected queue length at time n conditional on the event that
the queue is empty at time 1 as an unconditional global upper expectation
where the initial model is the probability mass function in ΣX that assigns the
probability mass 1 to the empty queue—state value 0—and probability mass
0 to any x ∈X \ {0}. Let q∗� be the aforementioned probability mass func-
tion in ΣX , then for all f ∈ L (X ), it follows from Equation (5.56)128 that
Eei

Q( f (Xn)|X1 = 0) = T n−1 f (0), and we further observe that

∑
y∈X

q∗�(y)T
n−1 f (y) = T n−1 f (0),

which, because of Equation (5.57)128, is equal to Eei
Q(Xn) with respect to the

initial model Q� = {q∗�}.
Under epistemic irrelevance, we observe convergence for both the global

lower and upper expectation, regardless of whether we use the vacuous initial
model or start from an empty queue, where the latter, as explained earlier, can
be regarded as a special case of an unconditional expectation. This is due to
the fact that the probability intervals of arrival and departure consist of strictly
positive probabilities, which can be shown to imply that there is some n′ ∈ N
such that for all ` ≥ n′, −T `(−Ix) > 0 for all x ∈ X , and it then follows
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Figure 7.3: Global lower and upper expected queue length.

from Definition 10129 that the imprecise Geo/Geo/1/L queue is regularly ab-
sorbing. Therefore, the imprecise queue is also ergodic and it follows from
Definition 9128 and the analysis in Section 5.5.1126 that the global lower and
upper expected queue length converge to a value that is independent of the
initial model or initial state. Furthermore, for any single homogeneous arrival
and departure probability the corresponding Geo/Geo/1/L queue is also regular
(Definition 8112), and consequently ergodic, which, due to Equation (5.17)111,
implies that the global lower and upper expected queue length under fixed-
parameter independence also converges to a value that is independent of the
initial model or initial state.

7.5.1 Monotonicity

In Figure 7.3, we also observe that the results under epistemic irrelevance co-
incide with those under fixed-parameter repetition independence, which due to
Lemma 85198, implies that both concepts also coincide with complete indepen-
dence and repetition independence. Therefore, we will not refer to complete
independence and repetition independence for the rest of this section. Un-
der fixed-parameter repetition independence, we obtain, reasonably, the global
lower expected queue length for the smallest probability of arrival (0.5) and
the largest probability of departure (0.8). This happens due to the “monotonic-
ity” of the function used. In particular, under epistemic irrelevance, although
we do not require the use of a single homogeneous probability of arrival and
departure, one can show that for these functions, the optimal choice for the
arrival probabilities is to always consider the minimum value, and the optimal
choice for the departure probability is to always consider the maximum value.
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This is due to the “monotonicity” of the argument function, as made clear in
the following theorem—similar (suitably adapted) results hold for the global
upper expectation, and for functions f ∈L (X ) that are non-increasing on X
rather than non-decreasing.

Theorem 86. Consider any n ∈ N and any f ∈L (X ) such that

f (k)≤ f (k+1) for all k ∈ {0, . . . ,L−1}. (7.20)

Then, in an imprecise Geo/Geo/1/L queue under epistemic irrelevance with
parameters in intervals [a,a] and [d,d], the lower expected value Eei

Q( f (Xn))
is obtained for homogeneous parameters a and d, and the upper expected value
Eei

Q( f (Xn)) for a and d.

Proof. We provide the proof for global lower expectations; the proof for the
global upper ones is completely analogous.

Due to Equation (5.57)128, the result follows—by induction—if for any
function f ∈L (X ) that satisfies Equation (7.20), we can show (a) that T f is
obtained for a = a and d = d and (b) that T f also satisfies Equation (7.20).

For all x ∈ {1, . . . ,L}, let mx := f (x)− f (x−1) ≥ 0, where the inequality
follows from Equation (7.20). We first prove (a). For x = 0, Equation (7.11)197
implies that

T f (0) = min
{
(1−a) f (0)+a f (1) : a ∈ {a,a}

}
= min

{
( f (0)+am1 : a ∈ {a,a}

}
= f (0)+am1, (7.21)

where the last step holds because m1 ≥ 0. Similarly, for x ∈ {1, . . . ,L− 1},
Equation (7.13)197 implies that

T f (x) = min
{

d(1−a) f (x−1)+ [(1−d)(1−a)+da] f (x)

+(1−d)a f (x+1) : a ∈ {a,a},d ∈ {d,d}
}

= min
{

f (x)−d(1−a)mx +(1−d)amx+1 : a ∈ {a,a},d ∈ {d,d}
}

= f (x)−d(1−a)mx +(1−d)amx+1, (7.22)

where the last step holds because mx ≥ 0 and mx+1 ≥ 0. Finally, for x = L,
Equation (7.12)197 implies that

T f (L) = min
{

d(1−a) f (L−1)+ [1−d(1−a)] f (L) : a ∈ {a,a},d ∈ {d,d}
}

= min
{

f (L)−d(1−a)mL : a ∈ {a,a},d ∈ {d,d}
}

= f (L)−d(1−a)mL, (7.23)

where the last step holds because mL ≥ 0. This concludes the proof of (a).
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We now prove (b): T f (x+ 1)−T f (x) ≥ 0 for all x ∈ {0, . . . ,L− 1}. For
x = 0, this holds because it follows from Equations (7.21)x and (7.22)x that

T f (1)−T f (0) =
(

f (1)−d(1−a)m1 +(1−d)am2
)
− ( f (0)+am1)

= m1−d(1−a)m1 +(1−d)am2−am1

≥ m1−d(1−a)m1−am1 = (1−a)(1−d)m1 ≥ 0

For x ∈ {1, . . . ,L− 2}, this holds because it follows from Equation (7.22)x
that

T f (x+1)−T f (x) =
(

f (x+1)−d(1−a)mx+1 +(1−d)amx+2
)

−
(

f (x)−d(1−a)mx +(1−d)amx+1
)

= mx+1−d(1−a)mx+1 +(1−d)amx+2 +d(1−a)mx− (1−d)amx+1

≥ mx+1−d(1−a)mx+1− (1−d)amx+1 = (1−a)(1−d)mx+1 ≥ 0.

For x=L−1, this holds because it follows from Equations (7.22)x and (7.23)x
that

T f (L)−T f (L−1) =
(

f (L)−d(1−a)mL
)

−
(

f (L−1)−d(1−a)mL−1 +(1−d)amL
)

= mL−d(1−a)mL +d(1−a)mL−1− (1−d)amL

≥ mL−d(1−a)mL− (1−d)amL

=
(
(1−d)(1−a)+da

)
mL ≥ 0.

7.5.2 Expected average queue length

The average queue length at any time point n ∈ N is the average of the queue
length over the time points 1 through n, that is 1

n ∑
n
i=1 Xi. For the global lower

and upper expected average queue length, things are similar to the case of the
global lower and upper expected queue length. Since the average queue length
is a time average, it follows from Theorem 52138 that epistemic irrelevance
coincides with complete independence and furthermore, it follows from The-
orem 2996 that the measure-theoretic approach coincides with the martingale-
theoretic one. Again adopting the measure-theoretic approach, we calculate
the global lower and upper expected average queue length under epistemic ir-
relevance (or complete independence) according to Lemma 41119 using the ho-
mogeneous lower and upper transition operators T and T , and the correspond-
ing ones under repetition independence and fixed-parameter repetition inde-
pendence according the procedures described in Sections 5.7.2143 and 7.3197
respectively.

We first calculate the global lower and upper expected average queue length
at time n, for increasing values of n, under both epistemic irrelevance and fixed-
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Figure 7.4: Global lower and upper expected average queue length.

parameter repetition independence; see Figure 7.4. We find again that epis-
temic irrelevance coincides with fixed-parameter independence and therefore,
due to Lemma 85198, both concepts also coincide with complete independence
and repetition independence. For fixed-parameter repetition independence, al-
though the convergence is rather slow, Figure 7.5y seems to suggest that the
lower expected queue length and lower expected average queue length con-
verge to the same value. Furthermore, since we have just seen that neither
of these two objects depends on the chosen independence concept, the same
is true for repetition independence, complete independence and epistemic ir-
relevance. Hence, in this case, we find that the inequality in Lemma 57148 is
actually an equality.

7.6 PROBABILITY OF DIFFERENT QUEUE LENGTHS

For a precise Geo/Geo/1/L queue P, we know from Section 7.2.1191 that for
any n ∈ N and any k ∈X , the probability P(Xn = k) of queue length k at time
n is equal to EP(Ik(Xn)). In fact, this equality clearly holds for any conditional
probability measure P. Since we now consider local models as defined in Sec-
tion 7.2.2195, which are associated with various sets of conditional probability
measures, we can use this equality to derive similar equalities for global lower
and upper probabilities of queue lengths. We will only do this explicitly for
epistemic irrelevance. The derivations for the other independence concepts are
analogous.

Consider an imprecise Geo/Geo/1/L queue under epistemic irrelevance,
then we know that it corresponds to a set of conditional probability measures
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Figure 7.5: Global lower and upper expected (average) queue length.

PQ. The global lower probability of queue length k at time n is therefore de-
fined by inf{P(Xn = k) : P ∈ PQ}, and we observe that

inf
{

P(Xn = k) : P ∈ PQ

}
= inf

{
EP(Ik(Xn)) : P ∈ PQ

}
= Eei

Q(Ik(Xn)).

For the global upper probability of queue length k at time n, we find that

sup
{

P(Xn = k) : P ∈ PQ

}
= Eei

Q(Ik(Xn)).

We also discuss global lower and upper average probabilities of the differ-
ent queue lengths. In the precise-probabilistic framework, the average proba-
bility of queue length k up to time n is given by 1

n ∑
n
i=1 P(Xi = k) and due to

Lemma 102240 and the fact that P(Xi = k) = EP(Ik(Xi)), we find that

1
n

n

∑
i=1

P(Xi = k) = EP

(
1
n

n

∑
i=1

Ik(Xi)

)
. (7.24)

Consider now an imprecise Geo/Geo/1/L queue under epistemic irrelevance,
then the global lower average probability of queue length k up to time n is
defined by inf{ 1

n ∑
n
i=1 P(Xi = k) : P ∈ PQ} and we observe that

inf
{

1
n

n

∑
i=1

P(Xi = k) : P ∈ PQ

}
= inf

{
EP(

1
n

n

∑
i=1

Ik(Xi)) : P ∈ PQ

}
=Eei

Q

(
1
n

n

∑
i=1

Ik(Xi)

)
,
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where the first equality follows from Equation (7.24)x. For the upper case, we
have that

sup
{

1
n

n

∑
i=1

P(Xi = k) : P ∈ PQ

}
= Eei

Q

(
1
n

n

∑
i=1

Ik(Xi)

)
.

Similar arguments hold for the other independence concepts.
Since the different queue lengths at time n are functions that depend on

a single state and their respective average ones are time averages, it follows
from Theorem 51137 that epistemic irrelevance coincides with complete inde-
pendence, and it also follows from Theorem 2996 that for epistemic irrelevance,
the measure-theoretic approach coincides with the martingale-theoretic ap-
proach. Hence, we will not refer to complete independence and the martingale-
theoretic approach for the remainder of this section. By adopting the measure-
theoretic approach, we calculate the lower and upper (average) probability for
all k ∈X using the same methods that were used for the global lower and
upper (average) expected queue length.

We begin by showing, in Tables 7.1y– 7.3211, the global lower and up-
per (average) probability of every possible queue length at time n under epis-
temic irrelevance and fixed-parameter repetition independence as n approaches
infinity. For the lower and upper probabilities under fixed-parameter repeti-
tion independence we used Equations (7.5)194 and (7.6)194. Moreover, for the
results under fixed-parameter repetition independence, we provide—between
parentheses—the probabilities of arrival and departure (a,d), for which the
global lower or upper expectation was obtained.

For k ∈ {0,7}, as in the case of the expected queue length, the results under
epistemic irrelevance coincide with the respective ones under fixed-parameter
repetition independence and therefore, due to Lemma 85198, also under com-
plete independence and repetition independence. Again, this is due to the
“monotonicity” of the function used. However, this is not the case for the
other queue lengths, i.e. k ∈ {1,2 . . . ,6}, and in the rest of this section, we
discuss these as well as other differences.

The probability mass functions used for the calculation of lower and up-
per probabilities of the different states depend on the chosen independence
concept. For example, as we can see in Table 7.2210, under fixed-parameter
repetition independence, the global upper probability of having queue length 1
in the limit is obtained for a= 0.55 and d = 0.8. On the other hand, as we know
from Equation (5.57)128 in combination with Equations (7.11)197—(7.13)197,
the optimisation problem that needs to be solved under epistemic irrelevance
only considers extreme values of a, that is a or a. This implies that, in this
case, the probability tree used depends on the chosen type of independence.
It is therefore not surprising that the values of Eei

Q(I1(Xn)) and Efi
Q(I1(Xn)),

for n → +∞, are different. As is to be expected from Lemma 85198, we
have that Eei

Q(I1(Xn))≥ Efi
Q(I1(Xn)), and in this case, we further infer that
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k 0 7

limn→+∞ Eei
Q(Ik(Xn)) 0.1486 0.0001

limn→+∞ Eei
Q( 1

n ∑
n
i=1 Ik(Xi)) 0.1486 0.0001

limn→+∞ Eei
Q(Ik(Xn)) 0.3750 0.0225

limn→+∞ Eei
Q( 1

n ∑
n
i=1 Ik(Xi)) 0.3750 0.0225

limn→+∞ Efi
Q(Ik(Xn))

0.1486 0.0001
(0.6,0.7) (0.5,0.8)

limn→+∞ Efi
Q( 1

n ∑
n
i=1 Ik(Xi))

0.1486 0.0001
(0.6,0.7) (0.5,0.8)

limn→+∞ Efi
Q(Ik(Xn))

0.3750 0.0225
(0.5,0.8) (0.6,0.7)

limn→+∞ Efi
Q( 1

n ∑
n
i=1 Ik(Xi))

0.3750 0.0225
(0.5,0.8) (0.6,0.7)

Table 7.1: Global lower and upper (average) probabilities of queue lengths 0
and 7 under epistemic irrelevance and fixed-parameter repetition independence
for n→+∞.

Eei
Q(I1(Xn))> Efi

Q(I1(Xn)). Similar conclusions can be drawn for Eei
Q(I1(Xn)),

for which it holds that Eei
Q(I1)> Efi

Q(I1(Xn)) as shown in Table 7.2y. The
global lower and upper probabilities under repetition independence lie between
the respective ones under epistemic irrelevance and fixed-parameter repetition
independence.

Judging from Tables 7.1– 7.3211, we see that the global lower and upper av-
erage probabilities under fixed-parameter repetition independence are included
between the global lower and upper probabilities, when both are taken to the
limit. Under fixed-parameter repetition independence, this is to be expected.
More specifically, the lower and upper probabilities will coincide with the re-
spective ones of the averages, due to Theorem 38112, since for each selection
of arrival and departure probability the resulting Geo/Geo/1/L queue is regular,
and therefore ergodic.

Under epistemic irrelevance, Lemma 57148 only guarantees an inequality.
A lower (or upper) expectation and a corresponding average one might be ob-
tained for different probability trees. In other words, under epistemic irrele-
vance, the ‘worst-case’ scenario in the limit is never better than the ‘average
worst-case’ scenario. Our results in Tables 7.1– 7.3211—where the limits infe-
rior and superior in the lemma are actually limits—confirm this result. Also,
as we can see, in some cases, strict inequalities can be observed. We stress that
both scenarios are practically relevant. The probability of being in state k at
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k 1 2 3

limn→+∞ Eei
Q(Ik(Xn)) 0.2909 0.1081 0.0276

limn→+∞ Eei
Q( 1

n ∑
n
i=1 Ik(Xi)) 0.3093 0.1100 0.0289

limn→+∞ Eei
Q(Ik(Xn)) 0.5344 0.2684 0.1683

limn→+∞ Eei
Q( 1

n ∑
n
i=1 Ik(Xi)) 0.5173 0.2577 0.1492

limn→+∞ Efi
Q(Ik(Xn))

0.3185 0.1172 0.0293
(0.6,0.7) (0.5,0.8) (0.5,0.8)

limn→+∞ Efi
Q( 1

n ∑
n
i=1 Ik(Xi))

0.3185 0.1172 0.0293
(0.6,0.7) (0.5,0.8) (0.5,0.8)

limn→+∞ Efi
Q(Ik(Xn))

0.4775 0.2065 0.1316
(0.55,0.8) (0.6,0.72) (0.6,0.7)

limn→+∞ Efi
Q( 1

n ∑
n
i=1 Ik(Xi))

0.4775 0.2065 0.1316
(0.55,0.8) (0.6,0.72) (0.6,0.7)

Table 7.2: Global lower and upper (average) probabilities of queue lengths 1, 2
and 3 under epistemic irrelevance and fixed-parameter repetition independence
for n→+∞.

time n is important for a single customer who would arrive at time instant n,
while the average probability of being in state k is important from the system
operator’s point of view.

The global lower and upper average probabilities under repetition indepen-
dence are not given, but will of course lie within the respective average ones
under epistemic irrelevance and fixed-parameter repetition independence.

Finally, in order to get an idea of how lower and upper (average) proba-
bilities of queue lengths evolve over time, Figures 7.6y and 7.7212 depict the
global lower and upper probabilities under epistemic irrelevance and fixed-
parameter independence and the respective average ones, for queue length 1.
In Figure 7.8212, we provide a direct comparison of the global lower and up-
per probabilities under epistemic irrelevance with the respective average ones,
again for queue length 1.

7.7 TURNING ON THE SERVER

In this section, we present our results for the (average) probability of “turning
on the server”. Consider any n ∈ N, then turning on the server at time n+ 1
means that the queue length at time n+ 1 is 1 and the queue length at time n
is 0. This is expressed by the event Sn+1 := ∪x1:n−1∈X n−1Γ(x1:n−1,0,1), and it
follows from Lemma 105240 that EP(ISn+1) = P(Sn+1). Moreover, since ISn+1
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k 4 5 6

limn→+∞ Eei
Q(Ik(Xn)) 0.0069 0.0017 0.00044

limn→+∞ Eei
Q( 1

n ∑
n
i=1 Ik(Xi)) 0.0073 0.0018 0.00046

limn→+∞ Eei
Q(Ik(Xn)) 0.1053 0.0648 0.0388

limn→+∞ Eei
Q( 1

n ∑
n
i=1 Ik(Xi)) 0.0902 0.0559 0.0352

limn→+∞ Efi
Q(Ik(Xn))

0.0073 0.0018 0.00046
(0.5,0.8) (0.5,0.8) (0.5,0.8)

limn→+∞ Efi
Q( 1

n ∑
n
i=1 Ik(Xi))

0.0073 0.0018 0.00046
(0.5,0.8) (0.5,0.8) (0.5,0.8)

limn→+∞ Efi
Q(Ik(Xn))

0.0846 0.0544 0.0350
(0.6,0.7) (0.6,0.7) (0.6,0.7)

limn→+∞ Efi
Q( 1

n ∑
n
i=1 Ik(Xi))

0.0846 0.0544 0.0350
(0.6,0.7) (0.6,0.7) (0.6,0.7)

Table 7.3: Global lower and upper (average) probabilities of queue lengths 4, 5
and 6 under epistemic irrelevance and fixed-parameter repetition independence
for n→+∞.
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Figure 7.6: Global lower and upper probability of queue length 1 under epis-
temic irrelevance and fixed-parameter repetition independence.
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Figure 7.7: Global lower and upper average probability of queue length 1 under
epistemic irrelevance and fixed-parameter repetition independence.
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Figure 7.8: Global lower and upper (average) probability of queue length 1
under epistemic irrelevance.
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is (n+1)-measurable and does not depend on the first n−1 states X1:n−1, ISn+1
can be replaced by a function that depends only on the states Xn:n+1, which in
this case is I0(Xn)I1(Xn+1). Hence, the probability of turning on the server at
time n+1 is given by EP(I0(Xn)I1(Xn+1)).

The average probability of turning on the server up to time n+1 is defined
by 1

n ∑
n
i=1 P(Si+1). Also in this case, we can express such a probability in terms

of indicators in the following way:

1
n

n

∑
i=1

P(Si+1)=
1
n

n

∑
i=1

EP(ISi+1)=EP

(
1
n

n

∑
i=1

ISi+1

)
=EP

(
1
n

n

∑
i=1

I0(Xi)I1(Xi+1)

)
,

(7.25)
where the second equality follows from Lemma 102240.

Since we work with local models as defined in Section 7.2.2195, and con-
sequently with sets of conditional probability measures, we need to define the
global lower and upper (average) probability of turning on the server at time
n + 1 for any n ∈ N. We only show how these probability bounds are de-
fined under epistemic irrelevance; for the other independence concepts these
are defined in a similar way. Consider an imprecise Geo/Geo/1/L queue under
epistemic irrelevance. This implies that we have a set of conditional probabil-
ity measures PQ and the global lower probability is then the infimum over all
P(Sn+1) for P ∈ PQ. Therefore, we find that it is given by

inf
{

P(Sn+1) : P ∈ PQ

}
= inf

{
EP(I0(Xn)I1(Xn+1)) : P ∈ PQ

}
= Eei

Q(I0(Xn)I1(Xn+1)).

Similarly, the global upper probability of turning on the server at time n+1 is
given by

sup
{

P(Sn+1) : P ∈ PQ

}
= Eei

Q(I0(Xn)I1(Xn+1)).

Next, we discuss global lower and upper average probabilities of turning
on the server up to time n + 1. Consider again an imprecise Geo/Geo/1/L
queue under epistemic irrelevance. Then the global lower average probability
of turning on the server up to time n+1 is given by

inf
{

1
n

n

∑
i=1

P(ISi+1) : P ∈ PQ

}
= inf

{
EP

(
1
n

n

∑
i=1

I0(Xi)I1(Xi+1)

)
: P ∈ PQ

}
= Eei

Q

(
1
n

n

∑
i=1

I0(Xi)I1(Xi+1)

)
,

where the first equality follows from Equation (7.25). The upper average prob-
ability of turning on the server up to time n+1 is

sup
{

1
n

n

∑
i=1

P(ISi+1) : P ∈ PQ

}
= Eei

Q

(
1
n

n

∑
i=1

I0(Xi)I1(Xi+1)

)
.
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Similar expressions apply for the rest of the independence concepts as well.
We will now show how we compute the global lower and upper (average)

probability of turning on the server when the independence concept is epis-
temic irrelevance. Consider any n ∈ N and any x1:n ∈X n, and observe that

Eei
Q(I0(Xn)I1(Xn+1)|x1:n) = Q(I0(Xn)I1(Xn+1)|x1:n)

= Q(I0(xn)I1(Xn+1)|x1:n) = I0(xn)Q(I1(Xn+1)|x1:n) = I0(xn)Q(I1(Xn+1)|xn)

= I0(xn)T I1(xn), (7.26)

where the first equality follows from Theorem 2182, the second follows from
Equation (3.31)82, the third holds because, since I0(xn) is a positive coefficient
and Q(·|x1:n) is an infimum of expectations, it follows from Lemma 102240 that
I0(xn) can be taken out, the fourth equality follows from Equation (5.53)126
and the last follows from Equation (5.54)127.

Finally, observe that

Eei
Q(I0(Xn)I1(Xn+1)) = Eei

Q(Eei
Q(I0(Xn)I1(Xn+1)|X1:n))

= Eei
Q(I0(Xn)T I1(Xn)) = Q

�

(
T n−1(I0T I1)

)
, (7.27)

where the first equality follows from Theorem 2182, the second follows from
Equation (7.26) and the last follows from Equation (5.57)128.

Similarly, for the global upper probability of turning on the server at time
n+1, we find that

Eei
Q(I0(Xn)I1(Xn+1)) = Q�

(
T n−1

(I0T I1)
)
. (7.28)

For the lower and upper average probability of turning on the server, we
use recursive functions that are based on lower and upper transition operators
T and T . For any k ∈ N and any f ∈L (X ), these real-valued functions on
X are denoted by ψ

k
( f ) and ψk( f ) and defined recursively as

ψ
k
( f ) := ∑

y∈X
IyT
(
I0(y)I1 +ψ

k−1
( f )
)
(y) (7.29)

and
ψk( f ) := ∑

y∈X
IyT
(
I0(y)I1 +ψk−1( f )

)
(y), (7.30)

with initial value ψ
0
( f ) = ψ0( f ) = f .

We can now compute the lower and upper average probability of turning
on the server under epistemic irrelevance, using the following lemma.
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Lemma 87. Consider a homogeneous imprecise Markov chain under epis-
temic irrelevance and any n ∈ N, then

Eei
Q

(
1
n

n

∑
i=1

I0(Xi)I1(Xi+1)

)
=

1
n

Q
�

(
ψ

n
(0)
)
;

Eei
Q

(
1
n

n

∑
i=1

I0(Xi)I1(Xi+1)

)
=

1
n

Q�

(
ψn(0)

)
.

Proof. We will only provide the proof for the global lower expectations; the
proof for the global upper ones is completely analogous.

We first prove by induction that for all k ∈ N and all f ∈L (X ) the fol-
lowing holds:

Eei
Q

( k

∑
i=1

I0(Xi)I1(Xi+1)+ f (Xk+1)

)
= Q

�

(
ψ

k
( f )
)
. (7.31)

Consider first any x1 ∈X and observe that

Q
(
I0(X1)I1(X2)+ f (X2)

∣∣x1
)
= Q

(
I0(x1)I1(X2)+ f (X2)

∣∣x1
)

= T
(
I0(x1)I1 + f

)
(x1), (7.32)

where the first equality follows from Equation (3.31)82 and the second follows
from Equation (5.54)127. Therefore, for k = 1, we find that

Eei
Q

(
I0(X1)I1(X2)+ f (X2)

)
= Q

�

(
Q
(
I0(X1)I1(X2)+ f (X2)

∣∣X1
))

= Q
�

(
∑

x1∈X
Ix1(X1)Q

(
I0(x1)I1(X2)+ f (X2)

∣∣∣x1

))
= Q

�

(
∑

x1∈X
Ix1T

(
I0(x1)I1 + f

)
(x1)

)
= Q

�

(
ψ

1
( f )
)
,

where the first equality follows from Theorem 2182, the third follows from
Equation (7.32) and the last from Equation (7.29)x.

Now consider any k ≥ 2 and assume that Equation (7.31) is true for k−1.
It follows from Theorem 2182 that

Eei
Q

( k

∑
i=1

I0(Xi)I1(Xi+1)+ f (Xk+1)

)
= Q

�

(
. . .Q

( k

∑
i=1

I0(Xi)I1(Xi+1)+ f (Xk+1)

∣∣∣∣X1:k

)
. . .

)
= Eei

Q

(
Q
( k

∑
i=1

I0(Xi)I1(Xi+1)+ f (Xk+1)

∣∣∣∣X1:k

))
. (7.33)
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Consider now any x1:k ∈X k and observe that

Q
( k

∑
i=1

I0(Xi)I1(Xi+1)+ f (Xk+1)

∣∣∣∣x1:k

)
= Q

( k−1

∑
i=1

I0(xi)I1(xi+1)+ I0(xk)I1(Xk+1)+ f (Xk+1)

∣∣∣∣x1:k

)
=

k−1

∑
i=1

I0(xi)I1(xi+1)+Q
(
I0(xk)I1(Xk+1)+ f (Xk+1))

∣∣x1:k
)

=
k−1

∑
i=1

I0(xi)I1(xi+1)+Q
(
I0(xk)I1(Xk+1)+ f (Xk+1)

∣∣xk
)

=
k−1

∑
i=1

I0(xi)I1(xi+1)+T
(
I0(xk)I1 + f

)
(xk), (7.34)

where the first equality follows from Equation (3.31)82, the second equality
holds because, since ∑

k−1
i=1 I0(xi)I1(xi+1) is a constant and Q(·|x1:k−1) is an

infimum of expectations, it follows from Lemmas 102240 and 106241 that we
can take ∑

k−1
i=1 I0(xi)I1(xi+1) out of the infimum, the third equality follows from

Equation (5.53)126 and the last equality follows from Equation (5.54)127.
Furthermore, observe that

Eei
Q

( k

∑
i=1

I0(Xi)I1(Xi+1)+ f (Xk+1)

)
= Eei

Q

(
Q
( k

∑
i=1

I0(Xi)I1(Xi+1)+ f (Xk+1)

∣∣∣∣X1:k

))
= Eei

Q

( k−1

∑
i=1

I0(Xi)I1(Xi+1)+ ∑
xk∈X

Ixk(Xk)T
(
I0(xk)I1 + f

)
(xk)

)
= Q

�

(
ψ

k−1

(
∑

xk∈X
Ixk T

(
I0(xk)I1 + f

)
(xk)

))
= Q

�

(
ψ

k
( f )
)
,

where the first equality follows from Equation (7.33)x, the second follows
from Equation (7.34), the third follows from the induction hypothesis since
∑xk∈X Ixk T (I0(xk)I1 + f )(xk) is a function on X and the last follows from
Equation (7.29)214.

It now follows from Equation (7.31)x by letting k = n, f = 0 and multi-
plying both sides with 1

n that

1
n

Eei
Q

( n

∑
i=1

I0(Xi)I1(Xi+1))

)
=

1
n

Q
�

(
ψ

n
(0)
)
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and since Eei
Q(·) is an infimum of expectations, it follows from Lemma 102240

that

Eei
Q

(
1
n

n

∑
i=1

I0(Xi)I1(Xi+1))

)
=

1
n

Q
�

(
ψ

n
(0)
)
.

Since the function of turning on the server at time n+ 1 and the corre-
sponding one for the average are both (n+1)-measurable, it follows from The-
orem 2996 that the measure-theoretic approach coincides with the martingale-
theoretic approach. Hence, we will not refer to the martingale-theoretic ap-
proach for the remainder of this section.

For the lower and upper (average) probability of turning on the server un-
der complete independence, we can use the approach that was described in
Section 5.6.4138. More specifically, for the lower probability of turning on the
server at time n+ 1, with n ∈ N, we can construct a transition operator Ti for
each i ∈ {1, . . . ,n}, where each Ti is defined by Equation (5.6)105 and the local
models associated with it are derived from some arrival and departure probabil-
ities of the selected ones presented in Section 7.4200. Each Ti can be regarded
as a transition matrix of the form in Equation (6.1)152 of which each row k∈X
is now constructed from a probability ai,k ∈ [a,a] and a probability di,k ∈ [d,d].
This implies that at each time point and given a state value we can choose an ar-
rival and a departure probability from the selected ones regardless of the choice
of arrival and departure probabilities at the same time point but given another
state value or at any other time point and given any state value. This yields a
collection of transition operators {T1,T2, . . . ,Tn} and we can then consider all
such possible collections of transition operators that can be constructed from
all possible combinations of the selected arrival and departure probabilities.
Then we use a version of Equation (7.27)214 adapted to the transition operators
Ti and the selected initial models presented in Section 7.4200, i.e. the extreme
points of ΣX , in order to compute the global expectations of turning on the
server, among which we consider the smallest to be the approximation for the
global lower probability of turning on the server. In a similar way we can com-
pute an approximation of the global upper probability of turning on the server
and also the lower and upper average ones. In the latter case, we can again use
each collection of transition operators {T1,T2, . . . ,Tn} and calculate for each
such collection the global average probability and finally choose the smallest
among these averages to be our approximation for the global lower average
probability of turning on the server. For each collection of transition operators,
we can use the formulas presented in Lemma 87214 adapted to the transition
operators Ti.

Similar considerations apply for repetition independence, where we com-
pute lower and upper (average) probabilities of turning on the server according
to the method described in Section 5.7.2143. In particular, we now construct
homogeneous transition operators T , as defined by Equation (5.16)111, for each
possible selection of the arrival and departure probabilities presented in Sec-
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limn→+∞ Eei
Q(I0(Xn)I1(Xn+1)) 0.0743

limn→+∞ Eei
Q( 1

n ∑
n
i=1 I0(Xi)I1(Xi+1)) 0.0866

limn→+∞ Eei
Q(I0(Xn)I1(Xn+1)) 0.2250

limn→+∞ Eei
Q( 1

n ∑
n
i=1 I0(Xi)I1(Xi+1)) 0.2000

limn→+∞ Efi
Q(I0(Xn)I1(Xn+1)) 0.0892

limn→+∞ Efi
Q( 1

n ∑
n
i=1 I0(Xi)I1(Xi+1)) 0.0892

limn→+∞ Efi
Q(I0(Xn)I1(Xn+1)) 0.1875

limn→+∞ Efi
Q( 1

n ∑
n
i=1 I0(Xi)I1(Xi+1)) 0.1875

Table 7.4: Global lower and upper (average) probability of of turning on
the server under epistemic irrelevance and fixed-parameter repetition indepen-
dence for n→+∞.

tion 7.4200. This time, T can be regarded as transition matrix of the form in
Equation (6.1)152 of which each row k∈X is derived from an arrival probabil-
ity ak ∈ [a,a] and a departure probability dk ∈ [d,d]. We then compute global
expectations using (adapted versions of) Equation (7.27)214 and Lemma 87214
for each possible homogeneous transition operator T that can be derived from
the selected probabilities. Finally, we choose the smallest value to be the ap-
proximation for the global lower (average) probability of turning on the server.
An approximation for the global upper (average) probability of turning on the
server is computed similarly.

The method for computing the lower and upper (average) probability un-
der fixed-parameter repetition independence, as defined in Section 7.3197, is
similar to the one under repetition independence. The difference is that our
transition operators now are only allowed to include a single arrival and a sin-
gle departure probability from the selected ones, that is, T can now be repre-
sented by a transition matrix of the form in Equation (7.4)192. In other words,
we consider all possible Geo/Geo/1/L queues that can be constructed from the
selected arrival and departure probabilities presented in Section 7.4200 and for
each of the queues we compute the probability of turning on the server. From
all the calculated probabilities of turning on the server, we consider the small-
est to be the approximation for the global lower probability of turning on the
server and the largest to be the approximation for the upper one. Similarly we
calculate the respective average probabilities.

In Figures 7.9y and 7.10220, we depict the lower and upper (average) prob-
ability of turning on the server, under both epistemic irrelevance and fixed-
parameter repetition independence. The results obtained for n→+∞ are given
in Table 7.4.

Our observations are similar to the ones for the queue lengths 1 to 6.
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Figure 7.9: Global lower and upper probability of turning on the server.

First of all, the lower (and upper) probabilities of turning on the server de-
pend on the chosen independence concept. It follows from Lemma 85198 that
Eei

Q(I0(Xn)I1(Xn+1))≤ Efi
Q(I0(Xn)I1(Xn+1)), and for n→+∞, we see that the

inequality can in fact be strict. Due to Lemma 85198, the lower probability of
turning on the server under complete independence or repetition independence
will lie between the respective ones under epistemic irrelevance and fixed-
parameter repetition independence. Similar conclusions hold for the upper
probability of turning on the server. Moreover, under fixed-parameter repeti-
tion independence, our example seems to suggest that the bounds on the aver-
age probability converge to the respective bounds on the probability at a single
time point. Under epistemic irrelevance, however, the “worst-case” scenario in
the limit is again at least as bad as the “average worst-case” scenario. We also
observe that Eei

Q( 1
n ∑

n
i=1 I0(Xi)I1(Xi+1))≤ Efi

Q( 1
n ∑

n
i=1 I0(Xi)I1(Xi+1)), and for

n→+∞, we further see that the inequality is strict.
Finally, Lemma 85198 implies that the lower average probability of turning

on the server under complete independence or repetition independence will lie
between the respective ones under epistemic irrelevance and fixed-parameter
repetition independence, and similarly for the upper.

7.8 EXPECTED FIRST-PASSAGE AND RETURN TIMES

The last performance measures to be discussed are expected first-passage and
return times. It follows from Theorem 80180 that lower and upper expected
first-passage and return times defined by the martingale-theoretic approach
coincide with the respective ones defined by the measure-theoretic approach
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Figure 7.10: Global lower and upper average probability of turning on the
server.

and also that epistemic irrelevance coincides with complete independence and
repetition independence. In the next two sections, we compare the coincid-
ing lower and upper expected first-passage and return times obtained under
the aforementioned independence concepts with those obtained under fixed-
parameter repetition independence.

7.8.1 Expected first-passage times

In Sections 6.4161 and 6.5165, we have described a method for computing
lower and upper expected first-passage times. Regarding lower and upper up-
ward expected first-passage times, for any i, j ∈X such that i < j, τ i→ j and
τ i→ j are given by the expressions in Corollary 62164 and Proposition 65165 re-
spectively. These expressions include lower and upper expected first-passage
times τk→k+1 and τk→k+1 for all k ∈ {i, . . . , j− 1}, which can be calculated
recursively using a bisection method; see Propositions 60163 and 59162, and
Propositions 63164 and 64164. Similarly, in the case of lower and upper down-
ward expected first-passage times, for any i, j ∈X such that i > j, τ i→ j and
τ i→ j are given by the expressions in Proposition 68167. These expressions
include lower and upper expected first-passage times τ`→`−1 and τ`→`−1 for
all ` ∈ { j + 1, . . . , i}, which can be calculated recursively using a bisection
method; see Propositions 66166 and 67166.

In an imprecise Geo/Geo/1/L queue, things become even simpler when it
comes to lower and upper first-passage times. In order to show that, we start
by presenting a property that is satisfied by lower and upper upward expected
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first-passage times when the local models are defined as in Section 7.2.2195.

Theorem 88. Consider an imprecise Geo/Geo/1/L queue with parameters in
intervals [a,a] and [d,d] such that 0 < a < a < 1 and 0 < d < d < 1, a
Geo/Geo/1/L queue with transition matrix M of the form in Equation (7.4)192
such that a = a and d = d, and a Geo/Geo/1/L queue with transition matrix
M′ of the form in Equation (7.4)192 such that a = a and d = d. Then for all
i, j ∈X such that i < j, τ i→ j = τM

i→ j and τ i→ j = τM′
i→ j.

Proof. For the statement about lower expected first-passage times, it follows
from from Equations (6.1)152 and (7.4)192, Theorem 72171 and Selection Meth-
ods LUL 1171 and 2171 that all we need to prove is that w0 = a and that for all
` ∈ {1, . . . ,L−1}(

d(1−a),da+(1−d)(1−a),a(1−d)
)
∈ argmin

π`∈R`

{b`τ`−1→`−w`τ`→`+1}.

The fact that w0 = a is trivial, since we have that [w0,w0] = [a,a]. For all
` ∈ {1, . . . ,L−1}, we find that

min
π`∈R`

{b`τ`−1→`−w`τ`→`+1}= min
a∈[a,a],
d∈[d,d]

{d(1−a)τ`−1→`−a(1−d)τ`→`+1}

= d(1−a)τ`−1→`−a(1−d)τ`→`+1,

where the second equality holds because it follows from Theorem 58156 that
τ`−1→` and τ`→`+1 are positive and real-valued which implies that the mini-
mum is obtained for the probability mass function that minimises d(1−a) and
maximises a(1−d).

For upper expected first-passage times, it follows from Equations (6.1)152
and (7.4)192, Theorem 73172 and Selection Methods UUL 1172 and 2172 that all
we need to prove is that w0 = a and that for all ` ∈ {1, . . . ,L−1}(

d(1−a),da+(1−d)(1−a),a(1−d)
)
∈ argmax

π`∈R`

{b`τ`−1→`−w`τ`→`+1}.

The fact that w0 = a is trivial, since we have that [w0,w0] = [a,a]. For all
` ∈ {1, . . . ,L−1}, we find that

max
π`∈R`

{b`τ`−1→`−w`τ`→`+1}= max
a∈[a,a],
d∈[d,d]

{d(1−a)τ`−1→`−a(1−d)τ`→`+1}

= d(1−a)τ`−1→`−a(1−d)τ`→`+1,

where the second equality holds because it follows from Theorem 58156 that
τ`−1→` and τ`→`+1 are positive and real-valued which implies that the maxi-
mum is obtained for the probability mass function that maximises d(1−a) and
minimises a(1−d).
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Theorem 88x tells us that lower and upper expected upward first-passage
times in an imprecise Geo/Geo/1/L queue are obtained by precise Geo/Geo/1/L
queues. In particular, for any two intervals of parameters [a,a] and [d,d] such
that 0 < a < a < 1 and 0 < d < d < 1, any lower expected upward first-passage
time is obtained by the Geo/Geo/1/L queue with homogeneous parameters a
and d and any upper expected upward first-passage time is obtained by the
Geo/Geo/1/L queue with homogeneous parameters a and d. From a computa-
tional point of view, Theorem 88x implies that we can directly compute lower
and upper upward expected first-passage times by computing the expected up-
ward first-passage times τM

i→ j and τM′
i→ j according to Equation (6.48)170 and

Proposition 70169; see Tables 7.5225 and 7.6226 for some numerical results.
The behaviour of lower and upper expected downward first-passage times

in imprecise Geo/Geo/1/L queues is analogous. This time, we find that any
lower expected downward first-passage time is obtained by the Geo/Geo/1/L
queue with homogeneous parameters a and d and any upper expected down-
ward first-passage time is obtained by the Geo/Geo/1/L queue with homoge-
neous parameters a and d.

Theorem 89. Consider an imprecise Geo/Geo/1/L queue with parameters in
intervals [a,a] and [d,d] such that 0 < a < a < 1 and 0 < d < d < 1, a
Geo/Geo/1/L queue with transition matrix M of the form in Equation (7.4)192
such that a = a and d = d, and a Geo/Geo/1/L queue with transition matrix
M′ of the form in Equation (7.4)192 such that a = a and d = d. Then for all
i, j ∈X such that i > j, τ i→ j = τM

i→ j and τ i→ j = τM′
i→ j.

Proof. Starting with lower expected first-passage times, it follows from Equa-
tions (6.1)152 and (7.4)192, Theorem 74173 and Selection Methods LD0 1173
and 2173 that all we need to prove is that bL = d(1− a) and that for all ` ∈
{1, . . . ,L−1}(

d(1−a),da+(1−d)(1−a),a(1−d)
)
∈ argmin

π`∈R`

{w`τ`+1→`−b`τ`→`−1}.

Since bL ∈ {d(1−a) : a∈ [a,a] and d ∈ [d,d]}, we infer that bL = d(1−a).
For all ` ∈ {1, . . . ,L−1}, we find that

min
π`∈R`

{w`τ`+1→`−b`τ`→`−1}= min
a∈[a,a],
d∈[d,d]

{a(1−d)τ`+1→`−d(1−a)τ`→`−1}

= a(1−d)τ`+1→`−d(1−a)τ`→`−1,

where the second equality holds because it follows from Theorem 58156 that
τ`→`−1 and τ`+1→` are positive and real-valued, and therefore the minimum is
obtained for the probability mass function that maximises d(1− a) and min-
imises a(1−d).
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For the upper expectations, it follows from Equations (6.1)152 and (7.4)192,
Theorem 75174, Selection Methods UD0 1174 and 2174 that all we need to prove
is that bL = d(1−a) and that for all ` ∈ {1, . . . ,L−1}(

d(1−a),da+(1−d)(1−a),a(1−d)
)
∈ argmax

π`∈R`

{w`τ`+1→`−b`τ`→`−1}.

Since bL ∈ {d(1−a) : a∈ [a,a] and d ∈ [d,d]}, we have that bL = d(1−a).
For all ` ∈ {1, . . . ,L−1}, we infer that

max
π`∈R`

{w`τ`+1→`−b`τ`→`−1}= max
a∈[a,a],
d∈[d,d]

{a(1−d)τ`+1→`−d(1−a)τ`→`−1}

= a(1−d)τ`+1→`−d(1−a)τ`→`−1,

where the second equality holds because it follows from Theorem 58156 that
τ`→`−1 and τ`+1→` are positive and real-valued which implies that the maxi-
mum is obtained for the probability mass function that minimises d(1−a) and
maximises a(1−d).

Similarly to the case of lower and upper expected upward first-passage
times, we can directly compute lower and upper expected downward first-
passage times by computing the expected downward first-passage times τM

i→ j
and τM′

i→ j according to Equation (6.49)170 and Proposition 71170. Numerical
results can again be found in Tables 7.5225 and 7.6226.

Finally, due to Theorem 80180, we infer that Theorems 88221 and 89x
apply also for lower and upper expected first-passage times defined by the
measure-theoretic approach, provided that we adopt epistemic irrelevance, com-
plete independence or repetition independence. Moreover, since for all i, j ∈
X such that i 6= j, τ i→ j and τ i→ j are obtained by Geo/Geo/1/L queues, we ex-
pect that they will also coincide with the respective ones under fixed-parameter
repetition independence. The following theorems clarify these statements.

Theorem 90. Consider a Geo/Geo/1/L queue with probability tree p ∈ T O
Q ,

of which the transition matrix M is given by Equation (7.4)192. Consider as
well any n ∈ N and any P ∈ Pp. For all i, j ∈X , it then holds that

τ
M
i→ j = EP(τ

n
i→ j|Xn = i).

Proof. Since T O
Q ⊆ T HM

Q , the result follows directly from Theorem 79179.
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Theorem 91. Consider the local models as defined in Section 7.2.2195. Con-
sider as well any n ∈ N and any i, j ∈X such that i 6= j. Then

Eei
Q(τn

i→ j|Xn = i) =Eci
Q(τn

i→ j|Xn = i)

=Eri
Q(τn

i→ j|Xn = i) = Efi
Q(τn

i→ j|Xn = i) = τ i→ j;

Eei
Q(τn

i→ j|Xn = i) =Eci
Q(τn

i→ j|Xn = i)

=Eri
Q(τn

i→ j|Xn = i) = Efi
Q(τn

i→ j|Xn = i) = τ i→ j.

Proof. We will only provide the proof for the lower expectations; the proof for
the upper ones is completely analogous.

Due to Lemmas 85198 and 78178 and Theorem 3398, it suffices to prove that
τ i→ j = Efi

Q(τn
i→ j|Xn = i).

If i < j, we let M be the transition matrix of the form in Equation (7.4)192
with a = a and d = d, otherwise if i > j, we let M be the transition matrix
of the form in Equation (7.4)192 with a = a and d = d. It then follows from
Theorems 88221 and 89222 that

τ i→ j = τ
M
i→ j. (7.35)

It also follows from Equation (7.14)198 that there is some qa,d ∈T O
Q such that

qa,d(y|s,x) = M(x,y) for all x,y ∈X and all s ∈X ∗, where M(x,y) is the
element of M at row x and column y. Consider any such probability tree qa,d ,
then there is a Geo/Geo/1/L queue with unique probability tree qa,d , of which
the transition matrix is M. It then follows from Theorem 90x that for any
n ∈ N and any P ∈ Pqa,d , it holds that τM

i→ j = EP(τ
n
i→ j|Xn = i), and therefore,

due to Equation (7.35), that

τ i→ j = EP(τ
n
i→ j|Xn = i). (7.36)

Since qa,d ∈ T O
Q and P ∈ Pqa,d , we infer that P ∈ PO

Q. Hence, it follows from
Equation (7.15)198 that EP(τ

n
i→ j|Xn = i)≥ Efi

Q(τn
i→ j|Xn = i), and due to Equa-

tion (7.36), we find that

τ i→ j ≥ Efi
Q(τn

i→ j|Xn = i).

For the converse inequality, we infer that

τ i→ j = Eei
Q(τn

i→ j|Xn = i)≤ Efi
Q(τn

i→ j|Xn = i),

where the first equality follows from Theorem 80180 and the second inequality
follows from Lemma 85198.
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k 0 1 2 3

τ0→k 2.6666 1.6667 9.8148 28.0453
τ1→k 3.3331 1.9332 8.1481 26.3786
τ2→k 6.6656 3.3325 3.8809 18.2305
τ3→k 9.9957 6.6626 3.3301 6.7022
τ4→k 13.3160 9.9829 6.6504 3.3203
τ5→k 16.5973 13.2642 9.9316 6.6016
τ6→k 19.7223 16.3892 13.0566 9.7266
τ7→k 22.2223 18.8892 15.5566 12.2266
τ0→k 6.7278 2 20 102
τ1→k 9.5463 3.2330 18 100
τ2→k 18.8405 9.2942 9.0902 82
τ3→k 27.7425 18.1963 8.9021 34.6292
τ4→k 36.0347 26.4884 17.1942 8.2921
τ5→k 43.3779 33.8317 24.5375 15.6354
τ6→k 49.2453 39.6990 30.4048 21.5028
τ7→k 52.8167 43.2705 33.9763 25.0742

Table 7.5: Lower and upper expected first-passage and return times τ i→k and
τ i→k for all i ∈X and all k ∈ {0, . . . ,3}.

7.8.2 Expected return times

We close this chapter by discussing lower and upper expected return times
in imprecise Geo/Geo/1/L queues under the different independence concepts.
Having calculated all possible lower and upper expected first-passage times
in Section 7.8.1220, we now calculate lower and upper expected return times
using Equations (6.40)167—(6.45)168. The obtained lower and upper expected
first-passage and return times are given in Tables 7.5 and 7.6y. As we know
from Theorem 80180, this approach is valid for the independence concepts of
epistemic irrelevance, complete and repetition independence.

Regarding fixed-parameter repetition independence, we know from Equa-
tions (7.15)198 and (7.15)198 that global lower and upper expected return times
are obtained by precise Geo/Geo/1/L queues. Furthermore, it follows from
Theorem 90223 that for any precise Geo/Geo/1/L queue we can compute the
expected return time using its transition matrix instead of its corresponding
conditional probability measure. Therefore, for each selection of arrival and
departure probabilities from the sets presented in Section 7.4200 we calculate
the expected return time using Equations (6.50)170 and (6.51)170. Among the
calculated expected return times, the smallest value serves as an approximation
for the global lower expected return time and the largest as an approximation
for the global upper expected return time. The obtained lower and upper ex-
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k 4 5 6 7

τ0→k 61.9593 120.2700 216.5312 371.8262
τ1→k 60.2926 118.6034 214.8645 370.1596
τ2→k 52.1445 110.4552 206.7163 362.0114
τ3→k 33.9140 92.2248 188.4859 343.7810
τ4→k 11.0866 58.3107 154.5719 309.8669
τ5→k 3.2813 17.8895 96.2611 251.5562
τ6→k 6.4063 3.125 28.4031 155.2951
τ7→k 8.9063 5.625 2.5 44.4826
τ0→k 440 1802 7260 29102
τ1→k 438 1800 7258 29100
τ2→k 420 1782 7240 29082
τ3→k 338 1700 7158 29000
τ4→k 136.9343 1362 6820 28662
τ5→k 7.3433 546.3867 5458 27300
τ6→k 13.2106414 5.8673 2184.5571 21842
τ7→k 16.7821 9.4388 3.5714 8737.8

Table 7.6: Lower and upper expected first-passage and return times τ i→k and
τ i→k for all i ∈X and all k ∈ {4, . . . ,7}.

pected return times under fixed-parameter repetition independence are given
in Table 7.7y. We also provide—between parentheses—the probabilities of
arrival and departure (a,d), for which the lower or upper expectation was ob-
tained.

For k ∈ {0,7}, by comparing the results in Tables 7.5x and 7.6 with these
in Table 7.7y, we see that the results under epistemic irrelevance coincide with
the respective ones under fixed-parameter independence. This is due to the
fact that τ0→0 and τL→L are always obtained by the Geo/Geo/1/L queue whose
transition matrix consists of probability mass functions that use the smallest
probability of arrival and the largest probability of departure—and vice versa
for τ0→0 and τL→L.

Theorem 92. Consider an imprecise Geo/Geo/1/L queue with parameters in
intervals [a,a] and [d,d] such that 0 < a < a < 1 and 0 < d < d < 1, a
Geo/Geo/1/L queue with transition matrix M of the form in Equation (7.4)192
such that a = a and d = d, and a Geo/Geo/1/L queue with transition matrix M′

of the form in Equation (7.4)192 such that a = a and d = d. Then τ0→0 = τM
0→0

and τ0→0 = τM′
0→0.

Proof. Observe that

τ0→0 = 1+a τ1→0 = 1+a τ
M
1→0 = τ

M
0→0,
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Efi
Q(τn

0→0|Xn = 0)
2.6666

Efi
Q(τ1

0→0|Xn = 0)
6.7278

(0.5,0.8) (0.6,0.7)

Efi
Q(τn

1→1|Xn = 1)
2.0942

Efi
Q(τn

1→1|Xn = 1)
3.1396

(0.55,0.8) (0.6,0.7)

Efi
Q(τn

2→2|Xn = 2)
4.8426

Efi
Q(τn

2→2|Xn = 2)
8.5330

(0.6,0.72) (0.5,0.8)

Efi
Q(τn

3→3|Xn = 3)
7.5971

Efi
Q(τn

3→3|Xn = 3)
34.1320

(0.6,0.7) (0.5,0.8)

Efi
Q(τn

4→4|Xn = 4)
11.8177

Efi
Q(τn

4→4|Xn = 4)
136.5281

(0.6,0.7) (0.5,0.8)

Efi
Q(τn

5→5|Xn = 5)
18.3831

Efi
Q(τn

5→5|Xn = 5)
546.1125

(0.6,0.7) (0.5,0.8)

Efi
Q(τn

6→6|Xn = 6)
28.5960

Efi
Q(τn

6→6|Xn = 6)
2184.45

(0.6,0.7) (0.5,0.8)

Efi
Q(τn

7→7|Xn = 7)
44.4826

Efi
Q(τn

7→7|Xn = 7)
8737.8

(0.6,0.7) (0.5,0.8)

Table 7.7: Lower and upper expected return times under fixed-parameter repe-
tition independence.

where the first equality follows from Equation (6.40)167 combined with the fact
that [w0,w0] = [a,a], the second equation follows from Theorem 89222 and the
third equality follows from Equation (6.50)170.

Similarly, we find that

τ0→0 = 1+a τ1→0 = 1+a τ
M′
1→0 = τ

M′
0→0,

where the first equality follows from Equation (6.43)168 combined with the fact
that [w0,w0] = [a,a], the second equation follows from Theorem 89222 and the
third equality follows from Equation (6.50)170.

Theorem 93. Consider an imprecise Geo/Geo/1/L queue with parameters in
intervals [a,a] and [d,d] such that 0 < a < a < 1 and 0 < d < d < 1, a
Geo/Geo/1/L queue with transition matrix M of the form in Equation (7.4)192
such that a = a and d = d, and a Geo/Geo/1/L queue with transition matrix M′

of the form in Equation (7.4)192 such that a = a and d = d. Then τL→L = τM
L→L

and τL→L = τM′
L→L.

Proof. Observe first that

τL→L = 1+d(1−a)τL−1→L = 1+d(1−a)τM
L−1→L = τ

M
L→L,
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where the first equality follows from Equation (6.41)167 combined with the
fact that min{d(1−a) : a ∈ [a,a] and d ∈ [d,d]}= d(1−a), the second equal-
ity follows from Theorem 88221 and the third equality follows from Equa-
tion (6.50)170.

For the upper case, we infer that

τL→L = 1+d(1−a)τL−1→L = 1+d(1−a)τM′
L−1→L = τ

M′
L→L,

where the first equality follows from Equation (6.44)168 combined the fact
that max{d(1− a) : a ∈ [a,a] and d ∈ [d,d]} = d(1− a), the second equal-
ity follows from Theorem 88221 and the third equality follows from Equa-
tion (6.50)170.

Theorem 94. Consider the local models as defined in Section 7.2.2195. Con-
sider as well any n ∈ N and any i ∈ {0,L}. Then

Eei
Q(τn

i→i|Xn = i) =Eci
Q(τn

i→i|Xn = i)

=Eri
Q(τn

i→i|Xn = i) = Efi
Q(τn

i→i|Xn = i) = τ i→i;

Eei
Q(τn

i→i|Xn = i) =Eci
Q(τn

i→i|Xn = i)

=Eri
Q(τn

i→i|Xn = i) = Efi
Q(τn

i→i|Xn = i) = τ i→i.

Proof. We will only provide the proof for the lower expectations; the proof for
the upper ones is completely analogous.

Due to Lemmas 85198 and 78178 and Theorem 3398, it suffices to prove that
τ i→i = Efi

Q(τn
i→i|Xn = i).

If i = 0, we let M be the transition matrix of the form in Equation (7.4)192
with a = a and d = d, otherwise if i = L, we let M be the transition matrix
of the form in Equation (7.4)192 with a = a and d = d. It then follows from
Theorems 92226 and 93x that

τ i→i = τ
M
i→i. (7.37)

It also follows from Equation (7.14)198 that there is some qa,d ∈T O
Q such that

qa,d(y|s,x) = M(x,y) for all x,y ∈X and all s ∈X ∗, where M(x,y) is the
element of M at row x and column y. Consider any such probability tree qa,d ,
then there is a Geo/Geo/1/L queue with unique probability tree qa,d , of which
the transition matrix is M. It then follows from Theorem 90223 that for any
n ∈ N and any P ∈ Pqa,d , it holds that τM

i→i = EP(τ
n
i→i|Xn = i), and therefore,

due to Equation (7.37), that

τ i→i = EP(τ
n
i→i|Xn = i). (7.38)

Since qa,d ∈ T O
Q and P ∈ Pqa,d , we infer that P ∈ PO

Q. Hence, it follows from
Equation (7.15)198 that EP(τ

n
i→i|Xn = i) ≥ Efi

Q(τn
i→i|Xn = i), and due to Equa-

tion (7.38), we find that

τ i→i ≥ Efi
Q(τn

i→i|Xn = i).
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For the converse inequality, we infer that

τ i→i = Eei
Q(τn

i→i|Xn = i)≤ Efi
Q(τn

i→i|Xn = i),

where the first equality follows from Theorem 80180 and the second inequality
follows from Lemma 85198.

For all k ∈ {1, . . . ,6}, things are similar to what happened for the lower
and upper probability of having queue length k. For example, judging by Ta-
ble 7.7227, Efi

Q(τn
1→1|Xn = 1) is obtained for a = 0.55 and d = 0.8. However,

τ1→1 is not necessarily obtained for homogeneous parameters a and d. For
example, as we can see by comparing Table 7.5225 with Table 7.7227, τ1→1
is strictly smaller than Efi

Q(τn
1→1|Xn = 1). Hence, we conclude that fixed-

parameter repetition independence does not necessarily coincide with the other
independence concepts when it comes to lower and upper expected return
times.
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8
CONCLUSIONS

In this dissertation, we have discussed different computational methods for—
making robust inferences using—lower and upper expectations in imprecise
Markov chains, but also in more general imprecise stochastic processes. The
imprecise stochastic processes that we considered were derived from sets of
probability mass functions and typically, we can approximate lower and upper
expectations by selecting a number of collections of probability mass func-
tions and calculating the precise expectation for each of them. In most of the
cases, however, there are more efficient ways for calculating lower and upper
expectations, in which the sets of probability mass functions are directly used.
This is because in such cases various properties were satisfied, such as the
generalised law of iterated expectation, which turned out to be of significant
importance for the methods we developed.

Our ability to develop methods for computing lower and upper expecta-
tions should be—at least partially—credited to the martingale-theoretic ap-
proach. Indeed, this approach allows us to prove various theoretical results
which not only render sub- and supermartingales a simple and proper tool for
defining lower and upper expectations, but also shed light on the similarities
and differences with the standard measure-theoretic approach, something that
gives us the freedom to choose our approach for building our global models,
depending on the context. In many cases, the martingale-theoretic approach
extends the measure-theoretic approach and offers technical advantages.

A particular feature of the martingale-theoretic approach, when applied to
imprecise Markov chains, is that epistemic irrelevance is adopted by default.
This is one of the important reasons why we could prove the properties that
lead to efficient computations for lower and upper expectations, because they
may not work under other independence concepts. On the other hand, in some
cases, we were able to prove that the global models obtained under epistemic
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irrelevance coincide with the respective ones obtained under other indepen-
dence concepts. For the rest of the cases, the global models under epistemic
irrelevance can be considered as fairly good approximations for the lower and
upper expectations obtained under other independence concepts; see for exam-
ple Chapter 7189. Another characteristic of epistemic irrelevance is that when
it is assumed in an imprecise Markov process, it gives us the ability to con-
sider stochastic processes that are not Markov chains and therefore, it opens
research avenues to the field of optimisation in more general processes.

Our work has also shown that the theory of imprecise probabilities consti-
tutes a coherent and well-defined framework with a lot of potential for develop-
ing—and also improving existing—computational methods for modelling un-
certainty. Furthermore, we have seen that we can relax assumptions that fre-
quently appear in this theory, such as closedness and convexity of the sets of
probability mass functions. In this dissertation, we witnessed that by drop-
ping these assumptions we can still prove existing powerful properties such as
the generalised law of iterated expectations, and can still find cases where the
measure-theoretic approach and the martingale-theoretic one coincide. Since
the martingale-theoretic approach works only with lower and upper expecta-
tion operators, or equivalently, with closed and convex sets of probability mass
functions, this implies that in these cases, the additional probability mass func-
tions that need to be considered will not affect our inferences.

Our last conclusion is about the theory of stochastic processes: some things
that are often taken for granted in the theory of stochastic processes should be
handled with caution when imprecision takes place. We are mainly referring
to our result that in the limit, for epistemic irrelevance and complete indepen-
dence, the bounds on the expected value of the time average of a function can
be included in the respective ones for the expected value of that function at
a single point in time. From a practical point of view, since the ‘worst-case’
scenario in the limit may be worse than the ‘average worst-case’ scenario, this
can lead to false predictions if—as in the precise case—we regard these sce-
narios as equivalent. This was illustrated in our queueing application when we
calculated the (average) upper probability of ‘turning on the server’.

Regarding future research and starting with discrete-time imprecise stochas-
tic processes, there are quite a few challenges. One challenging problem is to
find ways for modelling imprecise stochastic processes whose state spaces are
infinite. Another challenging problem is the development of efficient meth-
ods for computing lower and upper expected first-passage and return times in
imprecise birth-death chains, or other similar processes, while dropping the
assumption that the local models are closed and consist of strictly positive
probability mass functions. Of course, these are just some first ideas on future
research on the topic of discrete-time imprecise stochastic processes. There
are many more problems left that are of theoretical and/or practical interest.

The next natural thing is to see whether the results presented in this disser-
tation can be applied in a continuous-time regime. The first steps on imprecise
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continuous-time stochastic processes have been achieved, but still there are
limitations on the type of inferences we can make—see References [22,33,48,
58, 69, 73]. Regarding imprecise continuous-time Markov chains, one partic-
ularly challenging problem could be the development of methods for efficient
computations of lower and upper expectations of functions that depend on in-
finitely many time points. In such a problem, it would also be interesting to
investigate whether we can develop a martingale-theoretic approach and also
methods for computing lower and upper first-passage and return times.

Finally, it would be interesting to apply our results on imprecise stochastic
processes to more complicated—discrete or continuous-time—queueing mod-
els than the imprecise Geo/Geo/1/L one. A starting point for such a research
line would be imprecise Geo/Geo/c/L queueing models, where the number
of servers in the queue can be more than one, or discrete-time single-server
queueing models of which the arrivals and departures occur according to more
general—so not necessarily geometrically distributed—probability distribu-
tions.
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A
MEASURE-THEORETIC PROBABILITY

Consider a variable X whose exact value we do not know, though we know that
it belongs to a set Ω. We do not impose any constraints on the size of Ω, in
the sense that Ω can be either finite or countably infinite or even uncountably
infinite. One common way to model our uncertainty about X is by using the
framework of measure-theoretic probability [45], for which we provide some
preliminaries in this appendix.

The essential tool for modelling uncertainty when using the framework of
measure-theoretic probability is the so-called probability space, denoted by the
triple (Ω,F ,P). The set Ω, in which our variable takes values, is called sample
space. Any subset of Ω is called an event.1 The set of all events is denoted
by 2Ω and F is a specific subset of 2Ω of a type called σ -algebra or σ -field.
The last element, that is P, of a probability space is a σ -additive probability
measure and it is a function that assigns probabilities to the events in F .

The outline of the appendix goes as follows. In Section A.1y, we intro-
duce the concepts of algebra and σ -algebra and we discuss how these can be
generated from a set of events. In Section A.2236, we introduce finitely addi-
tive and σ -additive probability measures and we discuss how we can extend a
σ -additive probability measure on an algebra to a σ -additive probability mea-
sure on the generated σ -algebra. Then, in Section A.3237, we present the types
of functions for which we can compute expected values, the so-called measur-
able functions, and finally in Section A.4239, we explain the procedure of how
to compute the expected value of a measurable function.

The concepts and the ideas that are presented in this appendix are not new
and they are part of the wider field of measure theory. Definitions, theorems,

1The empty set ∅ and Ω itself are also considered to be subsets of Ω.
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A.1 ALGEBRAS, σ -ALGEBRAS AND GENERATORS

propositions and other properties that are stated throughout this appendix can
be found in References [9, 60, 82].

A.1 ALGEBRAS, σ -ALGEBRAS AND GENERATORS

We first introduce the concept of algebra, which is defined as follows.

Definition 11 ([9, Chapter 1, Section 2]). Consider any non-empty sample
space Ω. Then a set of events F0 ⊆ 2Ω is called an algebra if

A1. Ω ∈F0;

A2. if A ∈F0, then also Ac ∈F0, with Ac := Ω\A;

A3. if A,B ∈F0, then also A∪B ∈F0.

It follows from (A3) that an algebra is closed under finite unions. We can also
infer that an algebra is closed under finite intersections. For any A,B in F0,
we have that

Ac,Bc ∈F0⇒ Ac∪Bc ∈F0⇒ (Ac∪Bc)c ∈F0⇒ A∩B ∈F0,

where the first and the third statement follows from (A2), the second from (A3)
and the fourth from De Morgan’s law, which says that A∩B = (Ac∪Bc)c.

Next, we introduce the concept of a σ -algebra, which is defined as follows.

Definition 12 ([9, Chapter 1, Section 2]). Consider any non-empty sample
space Ω. Then, a set of events F ⊆ 2Ω is a σ -algebra if it is an algebra and if
for all {An}n∈N ∈F , it holds that ∪∞

n=1An ∈F .

From this definition, we understand that a σ -algebra is an algebra that is also
closed under countably infinite unions. Using the property of countably infinite
unions together with (A2), we can also show that a σ -algebra is closed under
countably infinite intersections.

Let now H be a set of events in 2Ω, we can then construct the smallest
algebra containing H . This algebra is denoted by 〈H 〉 and in fact, it is the
intersection of all algebras containing H . Note that 〈H 〉 is not necessarily
a σ -algebra. Fortunately, we can also generate the smallest σ -algebra that
contains all the events in H . This σ -algebra is denoted by σ(H ) and σ(·)
is called the generator operator. In the following example, we illustrate the
concepts of 〈H 〉 and σ(H ).

Example 11. Consider the sample space consisting of infinite sequences of
coin tosses, that is Ω = {H,T}N. A generic element of Ω is denoted by ω .
For all n ∈ N, the n-th outcome of a sequence ω ∈Ω is denoted by ωn, taking
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A.1 ALGEBRAS, σ -ALGEBRAS AND GENERATORS

values in {H,T}, and its first n outcomes are denoted by ωn, taking values in
{H,T}n. For all n ∈ N and all x1:n ∈ {H,T}n, consider now the event

Γ(x1:n) :=
{

ω ∈Ω : ω
n = x1:n

}
. (A.1)

Since there is one-to-one correspondance between Γ(x1:n) and x1:n, from now
on we will use only the notation x1:n to indicate the event Γ(x1:n). The set of
all events defined by Equation (A.1) is denoted by {H,T}∗ and defined by

{H,T}∗ :=
{

x1:n ∈ {H,T}n : n ∈ N
}
. (A.2)

The algebra 〈{H,T}∗〉 is the set that contains all events that depend on a finite
number of coin tosses. For instance, the event ‘Heads at the second toss’ is an
event that depends on a finite number of coin tosses and it can be derived by
T H ∪HH, where T H,HH ∈ {H,T}∗.

However, there are events that are not included in 〈{H,T}∗〉. Such an
event, for example, is the event ‘only Heads’ denoted by H∞. Therefore, we
need the σ -algebra σ({H,T}∗), which allows us to consider events that de-
pend on an infinite number of coin tosses. For instance, the event ‘at least one
occurrence of Heads’ depends on an infinite number of coin tosses and is given
by ∪∞

n=0T nH or alternatively by Ω\T ∞, where T nH ∈ {H,T}∗ for all n ∈N.♦

The events defined by Equation (A.1) are known as cylinder events and the
algebra 〈{H,T}∗〉 is known as the algebra generated by the cylinder events.
Both the cylinder events and the algebra generated by them play a key role in
the stochastic processes that we consider in Chapter 357. In general, for any
finite set X , such that Ω =X N, we denote by 〈X ∗〉 the algebra generated by
the cylinder events of Ω, and as we will see in Section A.2y, we can specify
a probability measure on 〈X ∗〉, and then extend this measure to the generated
σ -algebra σ(X ∗).

We close this section by introducing a special type of σ -algebra that is
common in measure-theoretic probability and turns out to be useful in later
sections where we consider R-valued functions, where R is the set of extended
real numbers, defined by R := R∪{−∞,+∞}. This σ -algebra is the so-called
Borel σ -algebra and with respect to any topological space, it is the σ -algebra
generated by the topology of that topological space. Here, we are only in-
terested in the Borel σ -algebra on R, whose standard topology is the order
topology associated with the natural ordering on R. The order topology of R
can also be seen as the set of all open subsets of R, where a set U ⊆ R is an
open set if for all x ∈U

either x ∈ R and ∃a,b ∈ R such that a < x < b and (a,b)⊆U

or x =−∞ and ∃b ∈ R such that x < b and [−∞,b)⊆U

or x =+∞ and ∃a ∈ R such that a < x and (a,+∞]⊆U.

The definition of the Borel σ -algebra on the extended real line goes as follows.
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A.2 PROBABILITY MEASURES

Definition 13. Consider a sample space Ω = R. Let now O be the set of all
open subsets of R. Then the σ -algebra generated by O , that is σ(O), is called
the Borel σ -algebra on R and is denoted by BR.

One useful property of BR is that it can be generated from sets of extended real
intervals. That is,

BR =σ({[a,+∞] : a ∈ R}) = σ({(a,+∞] : a ∈ R})
=σ({[−∞,b] : b ∈ R}) = σ({[−∞,b) : b ∈ R}). (A.3)

A.2 PROBABILITY MEASURES

Given a sample space Ω and a σ -algebra F on it, we have a so-called measur-
able space, denoted by (Ω,F ). In this section, we discuss assigning probabili-
ties to σ -algebras through a so-called σ -additive probability measure, denoted
by P, and then we will have a complete characterisation of the probability
space (Ω,F ,P). We first introduce the concept of a σ -additive probability
measure, which is defined as follows.

Definition 14 ([9, Chapter 1, Section 2]). Consider any sample space Ω and
an algebra F0 on it. Then a σ -additive probability measure is a function
P : F0→ [0,1], which has the following properties

Σ1. 0≤ P(A)≤ 1 for all A ∈F0;

Σ2. P(Ω) = 1 and P(∅) = 0;

Σ3. if {An}n∈N is a sequence of pairwise disjoint events in F0 with ∪∞
n=1An

also in F0, then P(∪∞
n=1An) = ∑

∞
n=1 P(An).

Another important definition, similar to Definition 14, is that of a finitely addi-
tive probability measure.

Definition 15 ([9, Chapter 1, Section 2]). Consider any sample space Ω and
an algebra F0 on it. Then, a finitely additive probability measure is a function
P0 : F0→ [0,1], which has the following properties

Σ4. 0≤ P0(A)≤ 1 for all A ∈F0;

Σ5. P0(Ω) = 1 and P0(∅) = 0;

Σ6. if A,B are disjoint events in F0, then P0(A∪B) = P0(A)+P0(B).

Note that a σ -additive probability measure is always finitely additive but
not necessarily vice versa. As it is sometimes natural to construct a finitely
additive probability measure on an algebra, we might in those cases want to
investigate whether this probability measure is also σ -additive. One interesting
case is the algebra generated by the cylinder events, where finite additivity
implies σ -additivity. This is due to the following theorem.
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A.3 MEASURABLE FUNCTIONS

Theorem 95 ([9, Chapter 1, Section 2, Theorem 2.3]). Any finitely additive
probability measure on the algebra that is generated by the cylinder events is
also σ -additive.

The reason why we emphasise σ -additive probability measures on algebras
is because they can always be extended to unique σ -additive probability mea-
sures on the corresponding generated σ -algebras. This is due to Carathéodory’s
theorem, which goes as follows.

Theorem 96 ([82, Chapter 1, Theorem 1.7]). Consider any sample space Ω

equipped with an algebra F0 and a σ -additive probability measure P0 : F0→
[0,1]. Then there is a unique σ -additive probability measure P on σ(F0) such
that P = P0 on F0.

There are cases where the extension of a σ -additive probability measure
on an algebra only allows us to compute the probabilities of a limited number
of events. For instance, suppose we have the sample space Ω = {H,T}N and
the algebra F0 = {Ω,H,T,∅}, where H stand for ‘Heads at the first coin toss’
and similarly T stands for ‘Tails at the first coin toss’. Suppose as well that
we have a σ -additive probability measure P0 on F0. In this example, we have
that σ(F0) = F0 and therefore the extension of P0 to σ(F0) is again P0. On
the other hand, if we consider the algebra generated by the cylinder events
〈{H,T}∗〉 and a σ -additive probability measure P0 on 〈{H,T}∗〉, then we are
able to uniquely extend this probability measure to a σ -additive probability
measure on the σ -algebra σ({H,T}∗). In this way, we will be able to assign
probabilities to events that belong to σ({H,T}∗) and not to 〈{H,T}∗〉, such
as the event ‘at least one occurrence of Heads’.

A.3 MEASURABLE FUNCTIONS

In the previous sections, we discussed specifying a σ -algebra F for a sam-
ple space Ω and a σ -additive probability measure P on F , giving thus a clear
image of what a probability space (Ω,F ,P) is. As our next goal is to use
probability spaces for computing expectations, in this section we present some
preliminaries on the type of functions for which we can compute their expecta-
tions. We first introduce the concept of a measurable function, which is defined
as follows.

Definition 16. Consider a measurable space (Ω,F ) and a function g : Ω→
R, then g is called a measurable function if

g−1(B) ∈F for all B ∈ BR,

where g−1(A) :=
{

ω ∈Ω : g(ω) ∈ A
}

for any A⊆ R.
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A.3 MEASURABLE FUNCTIONS

According to Definition 16x, an extended real-valued function g is mea-
surable with respect to a σ -algebra F , if g−1(B) ∈F for all B ∈ BR. This
condition can be be simplified because BR is generated by a set of extended
real intervals as shown in Equation (A.3)236. The corresponding theorem goes
as follows.

Theorem 97 ([82, Chapter 3, Section 3.2]). Consider a measurable space
(Ω,F ) and any set I of extended real intervals such that σ(I ) = BR. Con-
sider also a function g : Ω→R. Then g is a measurable function if and only if
g−1(A) ∈F for all A ∈I .

Common types of extended real-valued functions are infn∈N gn, supn∈N gn,
limn→∞ gn, liminfn→∞ gn and limsupn→∞ gn, where {gn}n∈N is any sequence of
real-valued measurable functions. According to the following theorem, these
extended real-valued functions are measurable.

Theorem 98 ([9, Chapter 2, Section 13, Theorem 13.4]). Consider any se-
quence {gn}n∈N of real-valued measurable functions on Ω. Then

• the extended real-valued functions infn∈N gn, supn∈N gn, liminfn→∞ gn
and limsupn→∞ gn are measurable;

• if limn→∞ gn(ω) exists for all ω ∈ Ω, then the extended real-valued
function limn→∞ gn is measurable.

The set of all extended real-valued measurable functions is denoted byM and
the set of all non-negative extended real-valued measurable functions byM+.

We now introduce two special types of functions that belong to M and
which will turn out to be useful when we compute expectations. The first one
is the indicator already introduced for finite spaces in Chapter 236. We now
extend its definition as follows.

Definition 17. Consider any sample space Ω and any event A ∈ 2Ω. Then the
function IA, defined by

IA(ω) :=

{
1 if ω ∈ A
0 if ω 6∈ A

for all ω ∈Ω

is called the indicator of A.

For the indicators, the following lemma holds.

Lemma 99 ([60, Chapter 8]). Given any measurable space (Ω,F ) and any
A⊆Ω, the indicator IA is measurable if and only if A ∈F .

Next, we introduce the so-called simple functions, which are defined as
follows.
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A.4 EXPECTATIONS IN PROBABILITY SPACES

Definition 18. Consider any measurable space (Ω,F ). If there is some n∈N,
such that for all i ∈ {1, . . . ,n}, there are ci ∈ R and Ai ∈F such that

h(ω) =
n

∑
i=1

ciIAi(ω) for all ω ∈Ω

then h is called a simple function.

The set of all simple functions is denoted by S and the set of all non-negative
simple functions by S+. By combining Lemma 99x with the following lemma,
we find that simple functions are measurable.

Lemma 100 ([82, Chapter 3, Section 3.3]). For all g,g1,g2 ∈M and all c∈R,
it holds that

g1 +g2 ∈M, g1g2 ∈M and cg ∈M.

The main advantage of simple functions is that they have a finite number of
values. In addition, we can use non-negative simple functions to represent
non-negative measurable functions. The following proposition clarifies this
statement.

Theorem 101 ([60, Chapter 8, Theorem 8.8]). Consider any measurable func-
tion g inM+. Then, there is a non-decreasing sequence of non-negative simple
functions {hn}n∈N, such that limn→+∞ hn(ω) = g(ω) for all ω ∈Ω.

Theorem 101 leads us to suspect that we will be able to prove interesting prop-
erties and results concerning extended real-valued measurable functions using
simple functions.

A.4 EXPECTATIONS IN PROBABILITY SPACES

Now that we have presented all the essential information regarding probabil-
ity spaces and measurable functions, we show how to compute unconditional
expectations of measurable functions. For conditional expected values of mea-
surable functions, we provide all the necessary information in Chapter 486,
where many results are based on properties that are stated here.

In order to define the expectation of a measurable function, the standard
way is to use the so-called (Lebesgue) integral. For any probability space
(Ω,F ,P) and any measurable function g : Ω→ R≥0, where R≥0 = R≥0 ∪
{+∞}, the expectation of g with respect to P is defined by

EP(g) :=
∫

Ω

g(ω)dP(ω) :=
∫

∞

0
g∗(t)dt, (A.4)

where the integral on the left-hand side is a Lebesgue integral, the integral on
the right-hand side is a Riemann integral and g∗(t) := P({ω ∈Ω : g(ω)> t}).
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We move now to general measurable functions g : Ω → R, which—as
shown in Reference [60, Chapter 10]—can be uniquely decomposed into the
difference of the two non-negative measurable functions g+ and g− defined by

g+(ω) := max{g(ω),0}=

{
g(ω) if g(ω)> 0
0 otherwise

and (A.5)

g−(ω) := max{−g(ω),0}=

{
−g(ω) if g(ω)< 0
0 otherwise

.

Under the condition that min{EP(g+),EP(g−)}<+∞, the expectation of g is
given by

EP(g) =
∫

Ω

g+(ω)dP(ω)−
∫

Ω

g−(ω)dP(ω). (A.6)

Lebesgue integrals satisfy various properties and we present some basic
ones adapted to the context of expectations.

Lemma 102 (Linearity; [60, Chapter 10]). For any probability space (Ω,F ,P)
and any pair of extended real-valued functions g1,g2 in M such that g1 + g2
and g1−g2 are defined in R,2 the following holds

EP(αg1 +βg2) = αEP(g1)+βEP(g2), for all α,β ∈ R.

Lemma 103 (Monotonicity; [60, Chapter 10, Theorem 10.4 (iv)]). Consider a
probability space (Ω,F ,P) and a pair of extended real-valued functions g1,g2
inM such that min{EP(g+1 ),EP(g−1 )}<+∞, min{EP(g+2 ),EP(g−2 )}<+∞ and
g1 ≤ g2. Then EP(g1)≤ EP(g2).

Theorem 104 (Beppo Levi’s Monotone Convergence Theorem; [60, Chapter
9, Theorem 9.6]). Consider any probability space (Ω,F ,P), any g ∈M+ and
any non-decreasing sequence of non-negative real-valued measurable func-
tions {hn}n∈N such that limn→+∞ hn = g. Then

lim
n→+∞

EP(hn) = EP(g).

Since the sequence {hn}n∈N in Theorem 104 is non-decreasing and non-negative,
then due to Lemma 103, we also find that

lim
n→+∞

EP(hn) = sup
n∈N

EP(hn) = EP(g). (A.7)

Lemma 105 ([60, Chapter 9, Properties 9.3 (i)]). Consider any probability
space (Ω,F ,P), then

EP(IA) = P(A) for all A ∈F .

2This means that the sum and the subtraction do not lead to +∞−∞.
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Lemma 106. Consider any probability space (Ω,F ,P), any c ∈ R and any g
inM such that g(ω) = c for all ω ∈Ω. It then holds that EP(g) = c.

Proof. This follows from the fact that

EP(g) = EP(cIΩ) = EP(
1
2

cIΩ +
1
2

cIΩ) =
1
2

cEP(IΩ)+
1
2

cEP(IΩ)

= cEP(IΩ) = cP(Ω) = c,

where the first equality follows from the fact that g(ω) = c for all ω ∈ Ω,
the third from Lemma 102x, the fifth from Lemma 105x and the last from
property Σ2236 in Definition 14236.

We now provide a very brief explanation why it makes sense to define
expected values of measurable functions by Lebesgue integrals. Given a prob-
ability space (Ω,F ,P), we have the following:

Step 1. For all A ∈F , it follows from Lemma 105x that EP(IA) = P(A);

Step 2. From Definition 18239, we know that for all h ∈ S+, there is n ∈ N
and for all i ∈ {1, . . . ,n}, there are Ai ∈ F and ci ∈ R≥0, such that
h = ∑

n
i=1 ciIAi . Therefore, it follows from Lemma 102x and Step 1

that the expected value of h is given by

EP(h) =
n

∑
i=1

ciE(IAi) =
n

∑
i=1

ciP(Ai);

Step 3. For all g ∈M+, it follows from Theorem 101239 and Equation (A.7)
that the expected value E(g) is given by

EP(g) = sup
{

EP(h) : h ∈ S+ and h≤ g
}

; (A.8)

Step 4. For all g ∈M such that min{EP(g+),EP(g−)} < +∞, the expected
value E(g) is then given by

EP(g) = EP(g+)−EP(g−),

where each of the expectations on the right-hand side come from Equa-
tion (A.8) and g+, g− from Equation (A.5)x.

For the expected value of a non-negative simple function, we just need Step 1
and Step 2. Similarly, if the function under study is a non-negative measurable
function we need Step 1–Step 3 and finally if it is extended real-valued we
need Step 1–Step 4.
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