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Abstract We study the robustness of performance predictions of discrete-time
finite-capacity queues by applying the framework of imprecise probabilities. More
concretely, we consider the Geo/Geo/1/L model with probabilities of arrival and
departure that are no longer fixed, but are allowed to vary within given intervals. We
distinguish between two concepts of independence in this framework, namely repe-
tition independence and epistemic irrelevance. In the first approach, we assume the
existence of time-homogeneous probabilities for arrival and departure, which leads us
to consider a collection of stationary queues. In the second, the stationarity assumption
is dropped and we allow the arrival and departure probabilities to vary from time point
to time point; they may even depend on the complete history of queue lengths. We
calculate bounds on the expected queue length, the probability of a particular queue
length and the probability of turning on the server. For the expected queue length,
both approaches coincide. For the other performance measures, we observe and dis-
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cuss various differences between the bounds obtained for these two approaches. One
of our observations is that ergodicity may break down due to imprecision: bounds on
expected time averages of certain functions on the state space are not necessarily equal
to the bounds on the expectation of that function at random instants in a steady-state
queue.

Keywords Geo/Geo/1/L · Imprecise probabilities · Time-homogeneous · Robust-
ness · Performance measures · Discrete-time queueing

Mathematics Subject Classification 60K25 · 90B22 · 37A50 · 60-08 · 60G20 ·
68M20

1 Introduction

The Achilles’ heel of queueing models for the use of decision support, prediction
and dimensioning in practical applications is that, usually, it is difficult to specify the
parameters of these models in a way that is both exact and reliable. A stochastic model
Y = f (X) assumes variables that are subject to randomness, and the convention is to
capture the extent of this randomness by assigning precise probabilities to all relevant
events. In particular, a specific probability distribution is put forward for the indepen-
dent variables X of the model, after which the challenge is to obtain the probability
distribution for Y, either analytically, algorithmically, by estimation or otherwise. It
is clear that the confidence we can put in the precise probability distribution for Y
depends both on how skilful the model f is and on how confident we are in the proba-
bility distribution forX. The goal of queueing theory in the last hundred years has been
to analyse increasingly generalised, complicated and intricate models f (·). Although
successful on its own, this approach often inspires overconfidence in its results, as the
second part, gaining confidence in the probability model for X, is not treated with the
same attention and is frequently neglected altogether. Once numbers are produced,
their dependence on the probability model for X is often all too easily forgotten.

In this paper, we do not question the relevance of the queueing model itself but
rather discuss the consequences of representing the stochastic quantities by a set of
distributions—a so-called credal set—rather than a single precise distribution. The
variables can have any of the distributions in the set, without preference and with-
out further specification. This allows for our beliefs about the input variables to be
expressed more robustly. For example, when the distribution of the number of arrivals
to a queue per time unit needs to be estimated from measured data, we put forward,
instead of a single distribution (chosen based on some criterion such as, for instance,
maximum likelihood), a credal set around this single distribution. This is a more pru-
dent and arguably more honest approach which, to some extent, allows us to account
for the unreliability of the estimation of the input variables in the queueing model.

This approach—expressing beliefs with credal sets—falls squarely within the the-
ory of imprecise probabilities, a theory that was brought to a synthesis by Williams
[33–35] and Walley [27,29], but goes back to Boole [4] and Keynes [16], with cru-
cial contributions by quite a number of statisticians and philosophers [17,21,24]. It
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looks at (conservative) probabilistic inference in the following way: how can we cal-
culate as efficiently as possible the consequences—in the sense of most conservative
tightest bounds—of making certain probability assessments. SinceWalley’s [27] sem-
inal work, significant advances have been made in the field.1 On the side of model
calibration, important work was done on coherently translating expert opinions or
measurements of data into imprecise probability models (elicitation) [3,18,28]. Sto-
chastic processes with imprecise models can also be described, in particular Markov
chains with finite state spaces and imprecise local models (i.e. imprecise transition
probabilities). Algorithms were constructed to calculate upper and lower expectations
for functions of the state after n steps [11]. Generalisations of using (Viterbi) fil-
ters for state estimation in hidden Markov models exist as well [12]. In all of these
applications, the crux of the matter is that for imprecise probabilities the concept of
independence of two random variables is no longer self-evident and splits up into
several notions. Amongst these, we explicitly mention repetition independence and
epistemic irrelevance, both of which will be explained and used further on.

In this contribution, our aim is to demonstrate the practical use of imprecise proba-
bilities for queueing analysis. For the sake of demonstration, the queueing model itself
was admittedly kept as simple as possible: a discrete-time finite-capacity queue with
Bernoulli arrivals and departures. In the classic framework of precise probabilities,
such a model poses no problems and all performance indicators can be obtained easily.
Even so, this simplicity serves all the better to exhibit the implications of imprecision
in the local models. For the Bernoulli variables involved, we specify a credal set by
stating a lower and upper probability for both the event of an arrival and for the event of
a departure during a slot. Performance of the queue is assessed in terms of (transient
and stationary) queue length and the server switching from idle to busy. Our main
conclusions are that

1. upper and lower expectations of the performance highly depend on the assumed
notion of independence;

2. ergodicity may break down under imprecision, and expected time averages are no
longer equivalent to ensemble averages.

For queueing theory, the second conclusion is particularly important. In the conven-
tional case of preciseMarkov chains, if the queue is irreducible, aperiodic and positive
recurrent, it is called ergodic and the idea of ‘mean value’ of a function on the state
space is unambiguous. The mean can either be seen as the expected time average over
a very long sample path, or it can be the expected value of that function at an arbitrary
time point. In the case of imprecision, these may be entirely different performance
metrics.

The imprecise probability framework is not the only attempt at a more robust
description of uncertainty. There is, for instance, also theDempster–Shafer theory [22],
interval probabilities [30], fuzzy set theory [37] and others. To some extent, one can
also characterise the influence of parameter uncertainty on performance predictions
strictly from within the framework of precise probabilities, for example, by studying

1 A good overview can be obtained by perusing the proceedings of the biennial ISIPTA conferences at
www.sipta.org.
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perturbations of the Markov chain underlying the queueing model [2,6]. For small
enough ε, the stationary vector πε of a perturbated chain with transition matrix (or
generator)Qε = Q+εQ′ is a power series in ε with coefficients that can be calculated
from Q′ and both the stationary vector and the deviation matrix of the original chain
Q [20]. Suchmethods provide a sensitivity analysis [5,19,31,36].Althoughvery useful
in many cases, they cover only small perturbations in one direction (that ofQ′) and are
generally not able to relate credal sets of input variable distributions to performance
bounds in case of epistemic irrelevance, as we will discuss further on. To the best of
our knowledge, the imprecise probability approach has not been applied to queueing
models before.

2 Concepts of independence for a queue with imprecise local models

We consider a discrete-time queue that is in exactly one of several states at each time
step n. For a particular time step, we refer to the imprecise probabilities (i.e. the credal
sets) of the transitions out of each state as the local model. For a precise Markov
chain, the local models are independent of each other and the question stands how
this independence transfers to imprecise local models. As mentioned previously, we
consider two different approaches in constructing a global imprecise probabilitymodel
(about the states at all time points) from the localmodels (describing the initial state and
transitions between states). We apply both approaches to a discrete-time single-arrival
single-departure queueing system, Geo/Geo/1/L, and study the effect on the system’s
performance of the local models, i.e. the upper and lower probabilities for both an
arrival and a departure during a slot. In the remainder, we aptly, though somewhat
inaccurately, refer to a particular distribution in a credal set of a local model as the
‘parameters of the model’. Since a local model involves Bernoulli variables, there is
no ambiguity between ‘parameter’, ‘distribution’ and ‘probability’.

The first approach is the one most closely related to conventional sensitivity analy-
sis. It is based on the notion of repetition independence [8] (RI) in the theory of
imprecise probabilities. Basically, we assume the parameters in the local models at
different times lie within a certain interval, but nevertheless be identical copies of each
other. We are interested in the robustness of the model against this imprecision. This is
quantified by calculating lower and upper expectations of certain functions of interest
of the output stochastic variables, i.e. the minimum and maximum expectation that
can be obtained by varying the parameters within the given ranges. The advantage of
this approach is the direct relation to sensitivity analysis, since all possible underlying
global models are precise Markov chains. A major disadvantage, however, is the com-
plexity of the model for a huge number of uncertain parameters and/or a function that
depends on many variables. Finding the upper expectation, for instance, is, in essence,
an optimisation problem: calculate the maximum expected value of a given function
for parameters in their respective ranges.

The second approach is more general. In the theory of imprecise probabilities, it is
referred to as epistemic irrelevance [10,27] (EI). We still assume that the parameters
lie within some intervals, but in contrast with what is required in the RI approach, the
parameters in the local models at different time points no longer have to be identical.
Perhaps it is best to illustrate this difference with an example. Assume a Geo/Geo/1/L
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queue with an imprecise arrival probability, i.e. a range of possible values of the arrival
probability is given.With RI, we assume that we do not know the arrival rate precisely,
but we know (or assume) it is the same at each instant. With the second approach, we
only assume that the arrival rate lies in the specified range at each instant. It does not
have to be the same at each instant. In fact, it can depend on the complete history of
the system. Now the underlying global models no longer have to be Markov chains, in
fact they could be any process on the state space with the only requirement that at each
instant n, and for any given history, the probabilities of arrival and departure lie within
the specified ranges. The advantage of the EI approach is that efficient algorithms exist
to calculate the corresponding lower and upper expectations [10]. These algorithms
are basically linear in time. No such algorithms exist for the first approach.

Clearly, the models that are included in the RI approach are included in the EI
approach as well (if the imprecise parameters lie in the same intervals). Therefore,
the latter approach typically leads to more conservative results, with larger upper
expectations and smaller lower expectations. However, in some cases, as we will
numerically and formally show, they lead to the same upper and lower expectations.
A conclusion that can then be drawn for EI is that, although extra imprecision is
included in themodel, theworst-case scenariowas already included in theRI approach.
However, as mentioned above, it is easier to do calculations assuming EI.

On the EI approach, however, some well-known results start to break down, as we
shall see further on. For instance, in the precise case, the stationary distribution of a
given output variable can be found from the transient distribution in twoways, namely,
via (i) taking the limit for time going to infinity or (ii) taking the average over time.
As already mentioned, we will show that in the imprecise case, for the EI approach,
this is no longer necessarily true. We provide some discussion on this and argue that
both approaches can be interesting from a practical point of view.

In the next sections, we discuss calculating expectations and probabilities in the
Geo/Geo/1/L queue. First, in Sect. 3, we consider the probabilities of arrival and
departure to be precisely known. We add imprecision in Sects. 4 and 5, meaning
that arrival and departure probabilities lie within an interval, and we are interested in
finding minima and maxima of expectations and probabilities under both RI and EI.
Finally, in Sect. 6, we run various experiments using both approaches, compare the
results and prove some properties.

3 Model description

We focus on a Geo/Geo/1/L queue, a simple but quite common example in queue-
ing theory. Following the notation, our system is a single-server queue of maximum
capacity (length) L , where L ∈ N and N is the set of all natural numbers, excluding
zero. We denote by N0 := N ∪ {0} the set of all non-negative integers. Arrivals and
departures occur according to geometric distributions, which we assume to be (sto-
chastically) independent. The queue content is observed during consecutive slots and
we assume that on slot boundaries a departure occurs prior to an arrival, a convention
called either Departures-First (DF) or Early Arrival System (EAS) [7]. We choose this
priority in order to avoid zero time servicing when the queue is empty. Furthermore,
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we assume that an item stays in the queue until served and that the service discipline
is work-conserving.

In the next section, we discuss ways to calculate expectations and probabilities in
a Geo/Geo/1/L queue, when the probabilities of arrival and departure are precisely
known. In such systems, it is typical to use the so-called balance equations [13], in
order to find the distribution of the queue lengths when the system is in a steady state.
For our purposes, we also require the transient solution [1], which is why we also
show another method for calculating probabilities or expectations in such queues. It
has the added advantage that it paves the way for our treatment of the EI approach.

3.1 The precise case

We start with precise parameters in our model, as the approaches that will be described
in the next sections are extensions of the precise case. Assume that, at any time point
and given any possible queue length, we have a probability of arrival and a probability
of departure, which are denoted by a and d, respectively. At each time point n ∈ N,
the queue length can then be represented by a random variable Xn taking values in
a set X = {0, . . . , L}. The probability of any length at time point n + 1 given that
Xn = xn , with xn ∈ X , is time-homogeneous and depends only on the value xn .

Hence, the conditional probability distribution for Xn+1 can be fully described by
xn and by the probabilities of arrival and departure. The conditional probability mass
function for this local model is therefore denoted by q(·|xn, a, d). If xn = 0, then

q(xn+1|0, a, d) :=

⎧
⎪⎨

⎪⎩

1 − a if xn+1 = 0

a if xn+1 = 1

0 otherwise

for all xn+1 ∈ X . (1)

If 0 < xn < L , then for all xn+1 ∈ X :

q(xn+1|xn, a, d) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d(1 − a) if xn+1 = xn − 1

da + (1 − d)(1 − a) if xn+1 = xn
(1 − d)a if xn+1 = xn + 1

0 otherwise.

(2)

Finally, if xn = L , then

q(xn+1|L , a, d) :=

⎧
⎪⎨

⎪⎩

d(1 − a) if xn+1 = L − 1

1 − d(1 − a) if xn+1 = L

0 otherwise

for all xn+1 ∈ X . (3)

Figure 1 depicts these local probabilities at any time point for various queue lengths.
As will be readily inferred from this figure, we can model theGeo/Geo/1/L queue as a
tree, where at each node, we have conditional probabilities for the transition to a child
node. This yields a so-called probability tree [23].
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n n+ 1

q(·|L, a, d) L

L

L− 1

q(·|l, a, d) l

l + 1

l

l − 1

q(·|0, a, d) 0

1

0

da+ (1− d)(1− a)

(1− d)a

d(1− a)

a

1− a

d(1− a)

1− d(1− a)

Fig. 1 At any time point n and for each possible queue length xn ∈ {0, . . . , L}, we have a conditional
probability mass function q(·|xn , a, d), where a and d are the time-homogeneous probabilities of arrival
and departure, respectively

0 1 · · · L − 1 L

a

1 − a

(1− d)a

da+ (1− d)(1− a)

d(1− a)

(1− d)a

d(1− a)

(1− d)a

da+ (1− d)(1− a)

d(1− a) d(1− a)

1 − d(1 − a)

Fig. 2 All the possible transitions from one state to another when the probability of arrival is a and the one
for departure is d

In aGeo/Geo/1/L queue, we have analytical formulas for calculating the probability
limn→∞ Pr[Xn = k], ∀k ∈ X . Since we have time-homogeneous probabilities a
and d for arrival and departure, respectively, our queue has the birth–death chain
representation depicted in Fig. 2. Let X be the length of the queue in steady state, so
X = limn→∞ Xn ; then the balance equations are

aPr[X = 0] = d(1 − a)Pr[X = 1]
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and
(1 − d)aPr[X = k − 1] = d(1 − a)Pr[X = k] , for 2 ≤ k ≤ L .

By combining these equations with the unitary constraint and solving the resulting
system of equations, we find—if 0 < a < 1 and 0 < d < 1—that

Pr[X = 0] = d − a

d − (1−d)LaL+1

(d(1−a))L

. (4)

and

Pr[X = k] = (1 − d)k−1ak

(d(1 − a))k
Pr[X = 0] , for 1 ≤ k ≤ L . (5)

Alternatively, we can use the law of iterated expectations to compute expectations of
functions, and regard probabilities as special cases. Although this approach is more
involved, it has the advantage that it does not require us to restrict attention to the steady
state. Also, as we will see further on, it is very similar to the imprecise approach with
EI. For the sake of notational convenience, for any finite set Y , we denote the linear
space of all real-valued functions f on Y by L (Y ).

For any function f ∈ L (X n), with n ∈ N andX n :=
n

︷ ︸︸ ︷
X × · · · × X , we define

its expectation as

E1:n( f ) := E ( f (X1:n)) =
∑

x1:n∈X n

f (x1:n)p(x1:n), (6)

where X1:n := X1, . . . , Xn is a sequence of queue lengths taking values in X n ,
x1:n := x1, . . . , xn is an realization of X1:n and

p(x1:n) := Pr[X1 = x1, . . . , Xn = xn].

In many cases, p(x1:n) is not directly available and all we have to start from are (i) the
conditional probabilities

p(xi+1|x1:i ) := Pr[Xi+1 = xi+1|X1 = x1, . . . , Xi = xi ]

and the corresponding conditional expectation operators Ei+1(·|x1:i ), defined for all
g ∈ L (X i+1) by

Ei+1(g|x1:i ) :=
∑

xi+1∈X
g(x1:i+1)p(xi+1|x1:i );

and (ii) the initial probabilities

pX1(x1) := Pr[X1 = x1]
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with corresponding expectation operators E1, as defined for all g ∈ L (X ) by

E1(g) :=
∑

x1∈X
g(x1)p(x1).

In those cases, since p(x1:n) = p(x1)
∏n−1

i=1 p(xi+1|x1:i ), it follows that

E1:n( f ) =
∑

x1:n∈X n

f (x1:n)p(x1)
n−1∏

i=1

p(xi+1|x1:i )

=
∑

x1∈X
p(x1)

∑

x2∈X
p(x2|x1) · · ·

∑

xn∈X
f (x1:n)p(xn|xn−1)

= E1(E2(E3(. . . En( f |X1:n−1) . . . |X1:2)|X1)), (7)

a version of the law of total probability that is also known as the law of iterated
expectations.

Similarly, for any h ∈ L (X ), we let En(h) := E(h(Xn)). This expected value
can again be computed by means of the law of iterated expectations; it suffices to
particularise f (X1:n) to h(Xn):

En(h) = E1(E2(E3( . . . En(g(Xn)|X1:n−1) . . . |X1:2)|X1)) (8)

Although these equations apply generally, we are mainly interested in our specific
case, where, for all i ∈ N and x1:i ∈ X i , the conditional probability mass function

p(·|x1:i ) = q(·|xi , a, d) (9)

only depends on xi , since a and d are considered to be fixed. In that case, Ei+1(·|X1:i )
can be identified with amap Ei+1(·|Xi ) fromL (X ) toL (X ) and evaluating Eq. (8)
therefore has a computational complexity that is linear in n. For any fixed a and d, we
will denote the models in probability trees of the form (9) by pa,d and use the notation
E

pa,d
1:n and E

pa,d
n to refer to the corresponding expectation operators.

3.2 Introduction to the imprecise case

In the next sections, we will add imprecision to our assessments, meaning that we
assume that arrival and departure probabilities lie within an interval. Instead of a
single pair a and d, we have intervals of arrival and departure probabilities, denoted
by [a, a] and [d, d], respectively. The local models are then described as follows. For
any i ∈ N and any x1:i ∈ X i , we assume that p(·|x1:i ) belongs to the set

Qxi := {q(·|xi , a, d) : a ∈ [a, a], d ∈ [d, d]}. (10)

However, we do not specify which value p(·|x1:i ) takes within this set. Similarly,
we assume that pX1 is known to belong to some closed set Q1 of probability mass
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functions, but we do not specify which value it takes within this set. Since we do
not specify exact values for these local probabilities, we cannot provide exact values
for derived global probabilities or expectations either. Instead, we will assess the
robustness of a probability or an expected value with respect to variations of p(·|x1:i )
within Qxi—and pX1 ∈ Q1—by computing tight lower and upper bounds for them.
Since probabilities are just special cases of expectations, we focus on expectations,
leading us to introduce the notion of a lower and upper expectation, denoted by E and
E , respectively.

Depending on how the probability mass functions p(·|x1:i ), x1:i ∈ X i , are allowed
to be chosen from the sets Qxi , xi ∈ X , different lower and upper expectations are
obtained. We distinguish between two extreme cases: repetition independence and
epistemic irrelevance.

4 The RI approach: repetition independence

We first introduce the case of repetition independence (RI). Under the RI approach,
we assume that there are time-homogeneous a ∈ [a, a] and d ∈ [d, d] such that
p(·|x1:i ) = q(·|xi , a, d) ∈ Qxi for all i ∈ N and x1:i ∈ X i . pX1 is taken to be an
element of Q1. As before, generic probability trees of this form are denoted by pa,d

and the corresponding expectation operators are denoted by E
pa,d
1:n and E

pa,d
n . We use

T RI to refer to the set of all probability trees pa,d . The lower and upper expectations
that are obtained by optimising over the elements of this set are denoted by ERI and
ERI, respectively. This type of optimisation is in line with the classical approach to
sensitivity analysis in such systems.

For example, for any time point n and any f ∈ L (X n), we define

ERI
1:n( f ) := min

{
E

pa,d
1:n ( f ) : pa,d ∈ T RI

}
,

E
RI
1:n( f ) := max

{
E

pa,d
1:n ( f ) : pa,d ∈ T RI

}
,

(11)

with pa,d as in Sect. 3.1. Similarly, for any time point n and any h ∈ L (X ), we let

ERI
n (h) := min

{
E

pa,d
n (h) : pa,d ∈ T RI

}
,

E
RI
n (h) := max

{
E

pa,d
n (h) : pa,d ∈ T RI

}
.

(12)

Other types of lower and upper expectations—for example, conditional ones—are
defined analogously.

If 0 < a < 1 and 0 < d < 1, it follows from the discussion in the previous section
that

lim
n→∞ ERI

n (h) = min

⎧
⎨

⎩

∑

x∈X
h(x)Pr[X = x] : a ∈ [a, a], d ∈ [d, d]

⎫
⎬

⎭
, (13)
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where the stationary probabilities Pr[X = x] are given by Eqs. (4) and (5). A similar

expression holds for limn→∞ E
RI
n (h).

Computationally, we are able to evaluate Eq. (13) by means of brute force solvers.
However, for Eqs. (11) and (12), for large n, this is no longer tractable. In those cases,
we can approximate the lower (or upper) expectation in (11) and (12) by selecting a
finite number of probabilities a in [a, a] and d in [d, d] and calculating the expectations
for all possible combinations. For a single such combination ofa and d, we compute the
corresponding expectation by applying the law of iterated expectations—see Eqs. (7)
and (8)—with p(xi+1|x1:i ) as in Eq. (9).

Unfortunately, this approximation method is not guaranteed to return the global
minimum (or maximum) expectation of the function under study.

5 The EI approach: epistemic irrelevance

The case of epistemic irrelevance (EI) is more general than that of RI. In the EI
approach, we do not assume time-homogeneous probabilities of arrival and depar-
ture. Instead, for all i ∈ N and all x1:i ∈ X i , we consider (possibly different)
probabilities of arrival and departure ax1:i ∈ [a, a] and dx1:i ∈ [d, d] and let
p(·|x1:i ) = q

(·|xi , ax1:i , dx1:i
) ∈ Qxi . pX1 is taken to be an element of Q1. Generic

probability trees of this form are denoted by pA,D , and the corresponding expectation
operators are denoted by E

pA,D
1:n and E

pA,D
n . We use T EI to refer to the set of all prob-

ability trees pA,D . The lower and upper expectations that are obtained by optimising
over the elements of this set are denoted by EEI and EEI, respectively.

For example, for any time point n and any f ∈ L (X n), we define

EEI
1:n( f ) := min

{
E

pA,D
1:n ( f ) : pA,D ∈ T EI

}
,

E
EI
1:n( f ) := max

{
E

pA,D
1:n ( f ) : pA,D ∈ T EI

}
.

(14)

Similarly, for any time point n and any h ∈ L (X ), we let

EEI
n (h) := min

{
E

pA,D
n (h) : pA,D ∈ T EI

}
,

E
EI
n (h) := max

{
E

pA,D
n (h) : pA,D ∈ T EI

}
.

(15)

Other types of lower and upper expectations—for example, conditional ones—are
defined analogously.

Interestingly, these lower and upper expectations can be computed by means of a
generalised version of the law of iterated expectations. It makes use of the (non-linear)
operator Q

1
, defined for all f ∈ L (X ) by

Q
1
( f ) = min

{ ∑

x1∈X
p(x1) f (x1) : pX1 ∈ Q1

}

,
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and, for all n ∈ N, the (non-linear) projection operator Q
n+1

(·|X1:n) : L (X n+1) →
L (X n), defined for all f ∈ L (X n+1) and x1:n ∈ X n by

Q
n+1

( f |x1:n) = min

⎧
⎨

⎩

∑

xn+1∈X
q(xn+1|xn, a, d) f (x1:n+1) : a ∈ [a, a], d ∈ [d, d]

⎫
⎬

⎭

= min

⎧
⎨

⎩

∑

xn+1∈X
q(xn+1|xn, a, d) f (x1:n+1) : a ∈ {a, a}, d ∈ {d, d}

⎫
⎬

⎭
,

(16)

where the last equality follows because, if we fix either of the parameters a or d, then∑
xn+1∈X q(xn+1|xn, a, d) f (x1:n+1)becomes a linear function of the other parameter.

Theorem 1 ([11, Theorem 3.2] Concatenation Formula) For any n ∈ N and m ∈ N0,
with m < n, and any f ∈ L (X n):

EEI
1:n( f |X1:m) = Q

m+1
(Q

m+2
(. . . Q

n
( f |X1:n−1) . . . |X1:m+1)|X1:m).

This result is essentially well known [11]; for ease of comprehension, we reconstruct
the proof in the Appendix using our notation. In summary, given any sequence of
queue lengths, we can use different probabilities of arrival and departure, as long as
they lie within [a, a] and [d, d], respectively. Therefore, we can optimise with respect
to every p(·|x1:i ) separately.

The advantage of Theorem 1 is that it allows for extremely efficient computations.
For example, since Q

i+1
(h(Xi+1)|X1:i ) only depends on Xi , it follows from Theo-

rem 1 that evaluating EEI
n ( f ) has a computational complexity that is linear in n. On

the other hand, in general, evaluating ERI
n ( f ) can only be done approximately, and

becomes increasingly inefficient as the approximation becomes better. Other examples
of optimisations problems that are easy for the case of epistemic irrelevance, but hard
for the case of repetition independence, are discussed further on.

6 Properties and results

In this section, we present some bounds on various expectations and probabilities that
are essential for queues and we discuss similarities and differences among the two
independence approaches.

6.1 RI included in EI

Figure 3 illustrates how the two approaches differ in terms of arrival and departure
probabilities in the probability tree. Because of the difference in the selection of the
local probabilities, we easily get the following property.
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Fig. 3 The difference between
the RI and the EI approaches in
the local conditional models: in
the first approach, we require a
time-homogeneous pair of
arrival and departure
probabilities, whereas in the
second, we can have different
arrival and departure
probabilities at any sequence of
queue lengths

Lemma 1 For any n ∈ N and m ∈ N0, with m < n, and any f ∈ L (X n):

EEI
1:n( f |X1:m) ≤ ERI

1:n( f |X1:m) ≤ E
RI
1:n( f |X1:m) ≤ E

EI
1:n( f |X1:m)

Proof This is trivial because T RI is clearly a subset of T EI. 	

In the remainder, we calculate various interesting performance measures of queues

using both approaches and we compare the results. More specifically, we examine
the expected queue length and the expected average queue length, for which we find
that the two approaches coincide. Next, we calculate the lower and upper (average)
probability for each possible queue length. We finish by calculating the lower and
upper (average) probability of ‘turning on the server’—a transition from queue length
0 to 1. For some of these performance measures, we also prove a number of useful
theoretical properties.

All our experiments concern a queue with L = 7, where the probability interval
for an arrival is [0.5, 0.6] and the one for a departure [0.7, 0.8]. For the initial set
of probabilities Q1, we use a vacuous model—the set of all probability mass func-
tions. For the RI approach, we use eleven different values for the arrival and departure
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Fig. 4 Lower and upper expected queue length

probabilities and we calculated the corresponding expectations for all possible com-
binations. In particular, arrival probabilities take values in the set {0.5, 0.51, . . . , 0.6}
and departures in {0.7, 0.71, . . . , 0.8}. This implies that the lower (and upper) expec-
tations we obtain for these values might not correspond exactly to the actual minimum
(or maximum) expectation of the function under study.

6.2 Expected queue length

Figure 4 depicts lower and upper expected queue lengths at time n, for increasing
values of n, and for both approaches. We observe convergence for both the lower and
the upper expectedvalue, regardless ofwhetherweuse the vacuous initialmodel or start
from an empty queue. This is not surprising because, under very weak assumptions,
such convergence will always happen, and is furthermore independent of the choice
of the initial model; see [15] for the RI case and [11, Theorem 6.1] for the EI case.

6.2.1 Monotonicity

In Fig. 4, we also observe that the results under the EI approach coincide with those
of the RI. Under the RI approach, we obtain, reasonably, the lower expected queue
length for the smallest probability of arrival (0.5) and the largest probability of depar-
ture (0.8). Under the EI approach, although we do not require the use of a single
time-homogeneous probability of arrival and probability of departure, one can show
that in this case, the optimal choice for the arrival probability is to always consider
the minimum value, and the optimal choice for the departure probability is to always
consider the maximum value. This is due to the ‘monotonicity’ of the argument func-
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Fig. 5 Lower and upper expected average queue length

tion, as made clear in the following theorem whose proof we have delegated to the
Appendix. Similar (suitably adapted) results hold for the upper expectation, and for
functions h that are non-increasing in k rather than non-decreasing.

Theorem 2 Consider any n ∈ N and any h ∈ L (X ) such that

h(k) ≤ h(k + 1) for all k ∈ {0, . . . , L − 1}. (17)

Then, in aGeo/Geo/1/L queue with parameters in intervals [a, a] and [d, d], the lower
expected value EEI

n (h) is obtained for time-homogeneous parameters a and d, and the

upper expected value E
EI
n (h) for a and d.

6.2.2 Expected average queue length

In Fig. 5, we depict the lower and upper expected average queue length, where the
average is being taken over the time points 1 through n. In the precise case, it is well
known that—if the expected queue length converges—this expected average queue
length converges, at a slower rate, to the same value as the expected queue length.
Although the convergence is very slow, our experiments seem to suggest that similar
behaviour occurs for our lower and upper bounds on the expected (average) queue
length, regardless of whether we use RI or EI.
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For the EI approach, computing lower expected average queue lengths is easy. For
example, for any h ∈ L (X ), it follows from Theorem 1 that

EEI
1:n

(
1

n

n∑

i=1

h(Xi )

)

= 1

n
EEI
1:n

(
n∑

i=1

h(Xi )

)

= 1

n
Q

1

(

. . . Q
n−1

(

Q
n

(
n∑

i=1

h(Xi )|X1:n−1

)

|X1:n−2

)

. . .

)

= 1

n
Q

1

(
h(X1) + . . . Q

n−1

(
h(Xn−1) + Q

n
(h(Xn)|X1:n−1)|X1:n−2

)
. . .
)
.

Therefore, if we let Q be an operator from L (X ) to L (X ), defined for all f ∈
L (X ) by

Q f (y) = min

⎧
⎨

⎩

∑

x∈X
q(x |y, a, d) f (x) : a ∈ [a, a], d ∈ [d, d]

⎫
⎬

⎭

= min

⎧
⎨

⎩

∑

x∈X
q(x |y, a, d) f (x) : a ∈ {a, a}, d ∈ {d, d}

⎫
⎬

⎭
for all y ∈ X ,

(18)

then

EEI
1:n

(
1

n

n∑

i=1

h(Xi )

)

= 1

n
Q

1

(
h + Q

(
h + . . . Q

(
h + Q(h)

)
. . .
))

,

where the right-hand side consists of n nested simple optimisation problems. The
lower expected average queue length is obtained by choosing h(Xi ) = Xi . The upper
expected average queue length can be computed analogously; similar expressions hold
for the precise case as well and, by evaluating this precise version for different values
of a and d, the RI approach can be computed.

6.3 (Average) probability of different queue lengths

In Tables 1 and 2, we show the lower and upper (average) probability of every possible
queue length as n tends to infinity. For the results under the RI approach, we also
provide—between parentheses—the probabilities of arrival and departure (a, d), for
which the lower or upper expectation was obtained. Notice that probabilities of queue
lengths can be treated as expectations of indicators, where Ik is the indicator of k, as
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Table 1 Probabilities of queue lengths 0, . . . , 3 for n → ∞
k 0 1 2 3

EEI
n (Ik ) 0.1486 0.2909 0.1081 0.0276

EEI
1:n( 1n

∑n
i=1 Ik (Xi )) 0.1486 0.3093 0.1100 0.0289

EEI
n (Ik ) 0.3750 0.5344 0.2684 0.1683

EEI
1:n( 1n

∑n
i=1 Ik (Xi )) 0.3750 0.5173 0.2577 0.1492

ERI
n (Ik ) 0.1486 0.3185 0.1172 0.0293

(0.6, 0.7) (0.6, 0.7) (0.5, 0.8) (0.5, 0.8)

ERI
1:n( 1n

∑n
i=1 Ik (Xi )) 0.1486 0.3185 0.1172 0.0293

(0.6, 0.7) (0.6, 0.7) (0.5, 0.8) (0.5, 0.8)

ERI
n (Ik ) 0.3750 0.4775 0.2065 0.1316

(0.5, 0.8) (0.55, 0.8) (0.6, 0.72) (0.6, 0.7)

ERI
1:n( 1n

∑n
i=1 Ik (Xi )) 0.3750 0.4775 0.2065 0.1316

(0.5, 0.8) (0.55, 0.8) (0.6, 0.72) (0.6, 0.7)

Table 2 Probabilities of queue lengths 4, . . . , 7 for n → ∞
k 4 5 6 7

EEI
n (Ik ) 0.0069 0.0017 0.00044 0.0001

EEI
1:n( 1n

∑n
i=1 Ik (Xi )) 0.0073 0.0018 0.00046 0.0001

EEI
n (Ik ) 0.1053 0.0648 0.0388 0.0225

EEI
1:n( 1n

∑n
i=1 Ik (Xi )) 0.0902 0.0559 0.0352 0.0225

ERI
n (Ik ) 0.0073 0.0018 0.00046 0.0001

(0.5, 0.8) (0.5, 0.8) (0.5, 0.8) (0.5, 0.8)

ERI
1:n( 1n

∑n
i=1 Ik (Xi )) 0.0073 0.0018 0.00046 0.0001

(0.5, 0.8) (0.5, 0.8) (0.5, 0.8) (0.5, 0.8)

ERI
n (Ik ) 0.0846 0.0544 0.0350 0.0225

(0.6, 0.7) (0.6, 0.7) (0.6, 0.7) (0.6, 0.7)

ERI
1:n( 1n

∑n
i=1 Ik (Xi )) 0.0846 0.0544 0.0350 0.0225

(0.6, 0.7) (0.6, 0.7) (0.6, 0.7) (0.6, 0.7)

defined by

Ik(x) :=
{
1 if x = k

0 otherwise
for all x ∈ X .

For k ∈ {0, 7}, as in the case of the expected queue length, both approaches yield
identical results.

Again, this is due to the ‘monotonicity’ of the function used. However, this is not
the case for the other queue lengths, i.e. k ∈ {1, 2, . . . , 6}. In the paragraphs below,
we discuss these and other differences between the two approaches.
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6.3.1 RI versus EI

The two approaches sometimes use different probability mass functions towards the
calculation of lower (or upper) bounds. For example, as we can see in Table 1, for the
RI approach, the stationary upper probability of having queue length 1 is obtained for
a = 0.55 and d = 0.8. On the other hand, as we know from Theorem 1 and Eq. (16),
the optimisations in the EI approach only consider extreme values of a, that is a or a.
This implies that, in this case, the two approaches use different probability trees. It is
therefore not surprising that the limiting values of EEI

n (I1) and ERI
n (I1), for n → ∞,

are different. As is to be expected from Lemma 1, we have that EEI
n (I1) ≥ ERI

n (I1).
In this case, we find that EEI

n (I1) > ERI
n (I1).

6.3.2 Marginal versus average

Judging from Tables 1 and 2, we see that the bounds on the limiting values of the
averages are included in the stationary bounds.

For the RI approach, this is to be expected. In fact, for that approach, if 0 < a ≤
a < 1 and 0 < d ≤ d < 1, the stationary bounds will coincide with the bounds for
the limiting values of the averages because this is true for every precise model in our
optimisation problem.

For the EI approach, equality is not necessarily obtained. An expected lower (or
upper) average value and a respective single one might be obtained for different prob-
ability mass functions. However, in the limit, as the following result establishes, we
do obtain the following inequalities; the proof can be found in the Appendix.

Theorem 3 For all k ∈ {0, . . . , L}, it holds that

lim inf
n→∞ EEI

n (Ik) ≤ lim inf
n→∞ EEI

1:n

(
1

n

n∑

i=1

Ik(Xi )

)

≤ lim sup
n→∞

E
EI
1:n

(
1

n

n∑

i=1

Ik(Xi )

)

≤ lim sup
n→∞

E
EI
n (Ik).

In other words, for the EI approach, the ‘worst-case’ scenario in the limit is never better
than the ‘average worst-case’ scenario. Our experiments in Tables 1 and 2—where the
limit inferiors and limit superiors in the theorem are actually limits—confirm this
result. Also, as we can see, in some cases, strict inequalities can be observed. We
stress that both scenarios are practically relevant. The probability of being in state k at
time n is important for a single customer who would arrive at time instant n, while the
average probability of being in state k is important from the system operator’s point
of view. In the precise case, if 0 < a < 1 and 0 < d < 1, these are equal in the
long run—as n tends to infinity—but this is no longer guaranteed to be the case when
imprecision is added. In Figs. 6 and 7, we show the lower and upper probabilities,
single and average ones respectively, for queue length 1. In Fig. 8, we show the lower
and upper probabilities, single and average ones, under EI for queue length 1.
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Fig. 6 Lower and upper probability of queue length 1
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Fig. 7 Lower and upper average probability of queue length 1

6.4 Turning on the server

In Figs. 9 and 10, we depict the lower and upper probability and average probability of
‘turning on the server’. At a single time point n + 1, this is taken to be the probability
of having queue length 1 at time point n + 1 and queue length 0 at time point n.
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Fig. 8 (Average) probability of queue length 1 in the EI approach

For the EI approach, computing the lower average probability of turning on the
server is easy. Indeed, it follows from Theorem 1 that

EEI
1:n+1

(
1

n

n∑

i=1

I0(Xi )I1(Xi+1)

)

= 1

n
EEI
1:n+1

(
n∑

i=1

I0(Xi )I1(Xi+1)

)

= 1

n
Q

1

(

. . . Q
n

(

Q
n+1

(
n∑

i=1

I0(Xi )I1(Xi+1)|X1:n

)

|X1:n−1

)

. . .

)

= 1

n
Q

1

⎛

⎝. . . Q
n

⎛

⎝
n−1∑

i=1

I0(Xi )I1(Xi+1) +
∑

xn∈X
Q(I0(xn)I1)|X1:n−1

⎞

⎠ . . .

⎞

⎠

= 1

n
Q

1

⎛

⎝
∑

x1∈X
Q

⎛

⎝· · · +
∑

xn−1∈X
Q

⎛

⎝I0(xn−1)I1 +
∑

xn∈X
Q(I0(xn)I1)

⎞

⎠

⎞

⎠

⎞

⎠,

where the last expression consists of n nested simple optimisation problems. The upper
average probability of turning on the server can be computed in an analogous way;
similar expressions hold for the precise case as well and, by evaluating this precise
version for different values of a and d, the RI approach can be computed.

For n → ∞, we obtain the following results:

(a) limn→∞ EEI
1:n+1(I0(Xn)I1(Xn+1)) = 0.0743

(b) limn→∞ EEI
1:n+1

( 1
n

∑n
i=1 I0(Xi )I1(Xi+1)

) = 0.0866
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Fig. 9 Lower and upper probability of turning on the server

(c) limn→∞ EEI
1:n+1(I0(Xn)I1(Xn+1)) = 0.2250

(d) limn→∞ EEI
1:n+1

( 1
n

∑n
i=1 I0(Xi )I1(Xi+1)

) = 0.2000
(e) limn→∞ ERI

1:n+1(I0(Xn)I1(Xn+1)) = 0.0892
(f) limn→∞ ERI

1:n+1

( 1
n

∑n
i=1 I0(Xi )I1(Xi+1)

) = 0.0892
(g) limn→∞ ERI

1:n+1(I0(Xn)I1(Xn+1)) = 0.1875
(h) limn→∞ ERI

1:n+1

( 1
n

∑n
i=1 I0(Xi )I1(Xi+1)

) = 0.1875

As before, we observe that for the EI approach, the ‘worst-case’ scenario in the limit
is never better than the ‘average worst-case’ scenario.

7 Conclusions

We have analysed various performance measures of a Geo/Geo/1/L queueing sys-
tem with interval probabilities instead of conventional precise probabilities under two
‘independence’ approaches, namely repetition independence (RI) and epistemic irrel-
evance (EI). The RI approach, which assumes that the lower (or upper) expectation
is achieved by a precise time-homogeneous Markov chain, is not as robust as the EI
approach for which the minimisation (or maximisation) is over all precise probability
trees, as long as the branch probabilities lie in the respective intervals. This implies,
in practical terms, that a ‘worst-case’ scenario for the output variable can be worse for
EI. However, for monotone functions on the state spaceX , the EI approach coincides
with RI.

Specifically for the EI approach, we witness differences between the bounds on the
expected (time-)averages of an output variable and the bounds on the corresponding
stationary expectation. The stationary expectations in the limit aremore robust than the
averages under the EI approach, meaning that a ‘worst-case’ scenario at one specific
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Fig. 10 Lower and upper average probability of turning on the server

time point in the future might be worse than the average one up to that time point.
This observation holds practical consequences for the use of queueing models when
imprecision is involved. We are used to thinking of queueing systems as ergodic
Markov chains with precise parameters, for which we are foremost interested in the
unique stationary distribution over its state space. This distribution can then be used to
calculate expectations of steady-state performance metrics. In the precise case, these
expectations are also predictions for the limiting values of time averages over a long
sample path. Under imprecision with epistemic irrelevance, however, these limiting
values may have lower and upper expectations that differ from the lower and upper
expectations in an arbitrary steady-state instant.

In a recent paper [9], we have tried to shed more theoretical light on this ergodicity
issue. It was shown earlier [11,14,26] that there is a large class of so-called Perron–
Frobenius-like imprecise Markov chains—to which the queueing models under EI we
study here belong, unless a = 0 or d = 0—for which the lower expectations EEI

n (·)
converge pointwise to a unique steady-state lower expectation EEI∞(·). We were able to
show that for such imprecise Markov chains—in contradistinction with their precise
counterparts—the time average 1

n

∑n
k=1 h(Xk) does not necessarily converge (almost

surely), but that nevertheless

EEI∞(h) ≤ lim inf
n→∞

1

n

n∑

k=1

h(Xk) ≤ lim sup
n→∞

1

n

n∑

k=1

h(Xk) ≤ E
EI
∞(h) almost surely,

and that (of course) also limn→∞ 1
n

∑n
k=1 E

EI
k (h) = EEI∞(h) for all h ∈ L (X ). That

we nevertheless observed in Sect. 6.3 that limn→∞ EEI
1:n
( 1
n

∑n
k=1 h(Xk)

) ≥ EEI∞(h)

is then due to the typical superadditivity of lower expectation operators [25,27].

123



Queueing Syst (2016) 82:75–101 97

In future research, we plan to investigate further similarities and divergences of the
two approaches from a state-dependent approach [32, Chap. 9, Sect. 4], where again
we would assume imprecision in the parameters. Another interesting problem to be
tackled is the efficient calculation of the bounds under both approaches for queueing
systems that use other types of arrival and/or departure processes.
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Appendix

Proofs

Proof of Theorem 1 First notice that

EEI
1:n( f |X1:m) = min

{
E

pA,D
1:n ( f |X1:m) : pA,D ∈ T EI

}

= min
{
E

pA,D
1:n−1

(
E

pA,D
1:n ( f |X1:n−1)|X1:m

)
: pA,D ∈ T EI

}

= min

{

E
pA,D
1:n−1

(

E
p′
A,D

1:n ( f |X1:n−1)|X1:m
)

: pA,D ∈ T EI, p′
A,D ∈ T EI

}

= min
{
E

pA,D
1:n−1

(
EEI
1:n( f |X1:n−1)|X1:m

) : pA,D ∈ T EI
}

= EEI
1:n−1

(
EEI
1:n( f |X1:n−1)|X1:m

)
,

where the crucial third equality holds because the local probabilities of the probability
trees in T EI are chosen independently of each other. By continuing in this way, we
find that

EEI
1:n( f |X1:m)

= EEI
1:n−1

(
EEI
1:n( f |X1:n−1)|X1:m

)

= EEI
1:n−2

(
EEI
1:n−1

(
EEI
1:n( f |X1:n−1)|X1:n−2

)
|X1:m

)

= . . .

= EEI
1:m+1

(
EEI
1:m+2

(
. . . EEI

1:n−1

(
EEI
1:n( f |X1:n−1)|X1:n−2

)
. . . |X1:m+1

)
|X1:m

)
.

The result now follows because

EEI
1:1(h) = min

{
E

pA,D
1:1 (h) : pA,D ∈ T EI

}

= min

⎧
⎨

⎩

∑

x1∈X
p(x1)h(x1) : pX1 ∈ Q1

⎫
⎬

⎭
= Q

1
(h) for all h ∈ L (X ),
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and because, for all i ∈ N:

EEI
1:i+1(h|X1:i ) = min

{
E

pA,D
1:i+1(h|X1:i ) : pA,D ∈ T EI

}

= min

{ ∑

xi+1∈X
q
(
xi+1|Xi , aX1:i , dX1:i

)
h(X1:i , xi+1) :

(∀x1:i ∈ X i ) ax1:i ∈ [a, a], (∀x1:i ∈ X i ) dx1:i ∈ [d, d]
}

= Q
i+1

(h|X1:i ) for all h ∈ L (X i+1).

Proof of Theorem 2 We provide the proof for EEI
n (h); the proof for E

EI
n (h) is com-

pletely analogous. It follows from Eqs. (16) and (18) and Theorem 1 that

EEI
n (h) = Q

1
Qn−1h.

Therefore, the result follows—by induction—if, for any function h ∈ L (X ) that
satisfies Eq. (17), we can show (a) that Qh also satisfies Eq. (17) and (b) that, for all
y ∈ X , the minimum in

Qh(y) = min

⎧
⎨

⎩

∑

x∈X
q(x |y, a, d)h(x) : a ∈ {a, a}, d ∈ {d, d}

⎫
⎬

⎭
(19)

is obtained for a = a and d = d .
For all y ∈ {1, . . . , L}, letmy := h(y)−h(y−1) ≥ 0, where the inequality follows

from Eq. (17).
We first prove (b). For y = 0, Eqs. (1) and (19) imply that

Qh(0) = min
{
(1 − a)h(0) + ah(1) : a ∈ {a, a}, d ∈ {d, d}}

= min
{
h(0) + am1 : a ∈ {a, a}, d ∈ {d, d}} = h(0) + am1, (20)

where the last step holds because m1 ≥ 0. Similarly, for y ∈ {1, . . . , L − 1}, Eqs. (2)
and (19) imply that

Qh(y) = min
{[d(1 − a)]h(y − 1) + [(1 − d)(1 − a) + da]h(y)

+ [(1 − d)a]h(y + 1) : a ∈ {a, a}, d ∈ {d, d}}

= min
{
h(y) − d(1 − a)my + (1 − d)amy+1 : a ∈ {a, a}, d ∈ {d, d}}

= h(y) − d(1 − a)my + (1 − d)amy+1, (21)

where the last step holds because my ≥ 0 and my+1 ≥ 0.
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Finally, for y = L , Eqs. (3) and (19) imply that

Qh(L) = min
{[d(1 − a)]h(L − 1) + [1 − d(1 − a)]h(L) : a ∈ {a, a}, d ∈ {d, d}}

= min
{
h(L) − d(1 − a)mL : a ∈ {a, a}, d ∈ {d, d}}=h(L) − d(1 − a)mL ,

(22)

where the last step holds because mL ≥ 0. This concludes the proof of (b).
We now prove (a): Qh(y + 1) − Qh(y) ≥ 0 for all y ∈ {0, . . . , L − 1}. For y = 0,

this holds because it follows from Eqs. (20) and (21) that

Qh(1) − Qh(0) = (h(1) − d(1 − a)m1 + (1 − d)am2
)− (h(0) + am1

)

= m1 − d(1 − a)m1 + (1 − d)am2 − am1

≥ m1 − d(1 − a)m1 − am1 = (1 − a)(1 − d)m1 ≥ 0.

For y ∈ {1, . . . , L − 2}, this holds because it follows from Eq. (21) that

Qh(y + 1) − Qh(y)

= (h(y + 1) − d(1 − a)my+1 + (1 − d)amy+2
)

− (h(y) − d(1 − a)my + (1 − d)amy+1
)

= my+1 − d(1 − a)my+1 + (1 − d)amy+2 + d(1 − a)my − (1 − d)amy+1

≥ my+1 − d(1 − a)my+1 − (1 − d)amy+1 = (1 − a)(1 − d)my+1 ≥ 0.

For y = L − 1, this holds because it follows from Eqs. (21) and (22) that

Qh(L) − Qh(L − 1) = (h(L) − d(1 − a)mL
)

− (
h(L − 1) − d(1 − a)mL−1 + (1 − d)amL

)

= mL − d(1 − a)mL + d(1 − a)mL−1 − (1 − d)amL

≥ mL − d(1 − a)mL − (1 − d)amL

= ((1 − d)(1 − a) + da
)
mL ≥ 0.

Proof of Theorem 3 For all n ∈ N, it follows from subadditivity [27, Chap. 2.6.1(e)]
that

EEI
1:n

(
1

n

n∑

i=1

Ik(Xi )

)

≥ 1

n

n∑

i=1

EEI
1:n(Ik(Xi )) = 1

n

n∑

i=1

EEI
i (Ik),

whence

lim inf
n→∞ EEI

1:n

(
1

n

n∑

i=1

Ik(Xi )

)

≥ lim inf
n→∞

1

n

n∑

i=1

EEI
i (Ik) ≥ lim inf

n→∞ EEI
n (Ik),
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where the last inequality follows from the definition of the limit inferior. The proof
for the upper expectations is completely analogous; the inequalities are reversed and
subadditivity is replaced by superadditivity.
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