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Consider a continuous time and finite-state
Markov process with state space X . At any time
t ∈ [0,+∞), the stochastic matrix of the process
Pt is derived from a transition rate matrix Q. For
i, j ∈ X , the element at the i row and j column
of Q is denoted by Q(i, j). For the matrix Q, the
following properties hold

(P1) Q(i, j) ≥ 0 for all i, j ∈ X such that i 6= j
(P2) ∑

j∈X
Q(i, j) = 0, ∀i ∈ X

A matrix Q is said to be bounded if Q(i, i) > −∞
for all i ∈ X or, equivalently, if ‖Q‖ < ∞. Our
results hold for various types of norm, but the
one we consider is the infinite norm defined by
‖Q‖ := ‖Q‖∞ = max{∑j∈X |Q(i, j)| : i ∈ X}.

When Q is bounded, then Pt satisfies the Kol-
mogorov backward equation

d
dt

Pt = QPt. (1)

If we let ft(i) := Et( f |X0 = i), with f a real-
valued function on the finite state space X and
i ∈ X an initial state, then we can rewrite Equa-
tion (1) as follows

d
dt

ft = Q ft. (2)

Combined with the boundary condition f0 = f ,
the unique solution of Equation (2) is ft = etQ f .
Instead of considering a time-invariant Q, we can
also let Qt be a function of the time t. In that case,
Equation (2) can be rewritten as

d
dt

ft = Qt ft. (3)

which, in general, has no analytical solution.

The Precise Case

Set of matrices Instead of a single transition matrix Q, we consider a set of such matrices, denoted by Q. We
assume that each matrix in Q is bounded and satisfies (P1) and (P2). Let R be the set of all rate matrices, then
for any set Q ⊆ R of rate matrices, we let

Qi := {Q(i, ·) : Q ∈ Q} for all i ∈ X ,

and we say that Q has separately specified rows if

Q ∈ Q(∀i ∈ X ) Q(i, ·) ∈ Qi.

We further assume that Q is the convex hull of a finite number of extreme transition rate matrices.

Our Approach At any time t ∈ [0,+∞), the only assumption we make about Qt is that it is an element of Q.
Every such possible choice of non-stationary transition rate matrices will, by (3), result in a—possibly different—
solution ft. Our goal is to calculate exact lower and upper bounds for the set of all these solutions ft, as denoted
by f

t
and f t. In the recent work of Škulj and with respect to the lower bound, f

t
is the solution to

d
dt

f
t
= min

Q∈Q
Q f

t
, with boundary condition f

0
= f . (4)

Since Q is the convex hull of a finite number of extreme transition rate matrices and that the solution to (4) is
continuous, there must be time points 0 = t0 < t1 < . . . < tn < tn+1 < . . . such that, for all t ∈ τn := [tn, tn+1],
the minimum in (4) is obtained by the same extreme transition rate matrix Qτn ∈ Q. We call these time points tn
flipping times. Equation (4) is then piecewise linear and has the following solution

f
t
= e(t−tn)Qτne(tn−tn−1)Qτn−1 . . . e(t2−t1)Qτ1et1Qτ0 f , for t ∈ [tn, tn+1]. (5)

Calculating Lower Expectations We need to find the flipping times tn and the corresponding extreme transi-
tion rate matrices Qτn when calculating the lower expectation of a given f on X . It can be proved that for any
pair of matrices Q, Q′ in Q, we have that

if Q f < Q′ f , then Qτ0 6= Q′

where Q f < Q′ f if Q f (i) ≤ Q′ f (i) for all i ∈ X and Q f 6= Q′ f . In this way, we can eliminate matrices Q′, which
do not yield the minimum expected value of f up to some t > 0. Since Q has separately specified rows, then the
matrix Qτ0 is the one that minimises Q f at each row separately. Hence, Qτ0 belongs to the set

Qτ0 := {Q ∈ Q : Q f (i) ≤ Q′ f (i), ∀i ∈ X and ∀Q′ ∈ Q \ {Q}}.

In practice, Qτ0 might not be a singleton and in this case, for any two matrices Q, Q′ in Qτ0, we have that
Q f = Q′ f . It can be further proved that

if Qk f < Q′k f and Qk′ f = Q′k
′
f for all k′ ∈ {1, . . . , k− 1}, then Qτ0 6= Q′ (6)

From (6), we understand that if Qτ0 is not a singleton, for any matrix Q in Qτ0 we calculate Q2 f and we compare
them, in order to eliminate more matrices. If still the resulted set is not a singleton, from the remaining ones we
calculate Q3 f and so on, till we are left with one matrix, which will be the matrix Qτ0.

Having found Qτ0, then, due to (5), f
t1
= et1Qτ0 f and τ0 := [0, t1]. The only thing left to find is the flipping time t1.

If there exists Qτ1, such that Qτ1 6= Qτ0 and for which we obtain the minimum expected value for some t > t1,
then due to continuity, the derivative of the system evaluated at t = t1 should be equal for both Qτ1 and Qτ0.
Therefore, from (3) combined with the boundary condition f

t1
, we have that

Qτ0et1Qτ0 f = Qτ1et1Qτ0 f . (7)

We solve (7) with respect to t1, for each row separately. At each row i, for Qτ1, we test all possible extreme
matrices from Qi. Among the solutions of t1, the smallest positive real one is the first flipping time and the
corresponding matrix—if it is unique—is the matrix Qτ1. If we cannot uniquely identify Qτ1 in this way, we follow
a procedure that is similar to the one that we used to identify Qτ0. By continuing in this way, we can find all the
flipping times and their corresponding transition rate matrices.

The Imprecise Case

Consider the state space X := {0, 1, 2, 3}, the follow-
ing set Q of bounded matrices


−pi pi 0 0
qj −qj 0 0
0 0 −r r
0 0 s −s

 : ai ∈ [a, a] and bj ∈ [b, b]


and a function f of the form [c, c, f2, f3]

T. In this case,
we cannot efficiently identify Qτ0, because for any
Q, Q′ ∈ Q, we have that Qk f = Q′k f , for all k ∈N.

Is there a simple way to check when two different
matrices Q, Q′ yield the same expected value, with-
out calculating Qk and Q′k for all k?

A ”messy” case

We focus on the case where every state has an
interval-valued birth and/or death rate. The transi-
tion rate matrices have the following form

−λ0 λ0 0 · · · · · · · · · 0
... . . . . . . . . . . . . . . . ...
0 · · · µi −(µi + λi) λi · · · 0
... . . . . . . . . . . . . . . . ...
0 · · · · · · · · · 0 µL −µL


where, for all i ∈ {0, . . . , L− 1} and j ∈ {1, . . . , L},
λi ∈ [λ, λ] and µj ∈ [µ, µ] and L ∈ N. In this way,
we have a set of matrices Q with finite numbers of
extreme points, separately specified rows and which
avoids the special case above.

Imprecise Birth-Death Process

We calculate the lower expected probability of state 1,
E(Xt = 1|X0 = i), of an imprecise birth-death chain
with state space X := {0, 1, 2, 3} for t approaching in-
finity. The set of transition rate matrices Q is derived
from the intervals λi ∈ [1, 3] and µj ∈ [2, 5], for all
i ∈ {0, . . . , L− 1} and j ∈ {1, . . . , L} and the input func-
tion is f = [0, 1, 0, 0]T.

Following the procedure described before, we start by
finding a matrix Q, such that Q f < Q′ f for all Q′ ∈
X \ Q. Due to the values of f , there are multiple Q,
which minimise Q f . These matrices have the following
form:

Q∗ =


−1 1 0 0

5 −8 3 0
0 2 −(2 + λ2) λ2
0 0 µ3 −µ3


where λ2 ∈ {1, 3} and µ3 ∈ {2, 5}. Let Q∗ be the set
containing all the matrices of the above form.

Continuing with the procedure, we check whether there
is a matrix Q in Q∗, such that Q2 f < Q′2 f for all
Q′ ∈ Q∗ \ {Q}. Indeed, there is such a matrix and
therefore we have that

Qτ0 =


−1 1 0 0

5 −8 3 0
0 2 −5 3
0 0 2 −2


for which the flipping time is t1 = 0.6403991 and Qτ1 is

Qτ1 =


−3 3 0 0

2 −5 3 0
0 2 −5 3
0 0 2 −2


For the matrix Qτ1 there is no flipping time and by taking
t→ ∞, we find that, for all i ∈ X :

lim
t→∞

E(Xt = 1|X0 = i) = 0.0937540788.

Numerical Results


