Computational methods for imprecise continuous-time birth-death processes: a preliminary study of flipping times

Stavros Lopatatzidis, Jasper De Bock, Gert de Cooman

The Precise Case

Consider a continuous time and finite-state Markov process with state space X. At any time $t \in [0, \infty)$, the stochastic matrix of the process P_t is derived from a transition rate matrix Q. For $i,j \in X$, the element at the i row and j column of Q is denoted by $Q(i,j)$. For the matrix Q, the following properties hold

(P1) $Q(i,j) \geq 0$ for all $i,j \in X$ such that $i \neq j$
(P2) $\sum_{j \in X} Q(i,j) = 0$, $i \in X$

A matrix Q is said to be bounded if $Q(i,j) > -\infty$ for all $i,j \in X$ or, equivalently, if $\|Q\| < \infty$. Our results hold for various types of norms, but the one we consider is the infinite norm defined by $\|Q\| := \max_{i \in X} \sum_{j \in X} |Q(i,j)|$.

When Q is bounded, then Q_t satisfies the Kolmogorov backward equation

$$dQ_t = Q_t dt$$

(1)

If we let $f_t(i) = E_t(X_0 = i)$, with f a real-valued function on the finite state space X and $t \in X$ an initial state, then we can rewrite Equation (1) as

$$dQ_t = f_t dt$$

(2)

Combined with the boundary condition $f_0 = f$, the unique solution of Equation (2) is $Q_t = e^{tf}$. Instead of considering a time-invariant Q, we can also let Q_t be a function of the time t. In that case, Equation (2) can be rewritten as

$$dQ_t = f_t dt$$

(3)

which, in general, has no analytical solution.

A "messy" case

Consider the state space $X := \{0, 1, 2, 3\}$, the following set of bounded matrices

$$\left\{ \begin{pmatrix} -p_i & p_i & 0 & 0 \\ q_j & -q_j & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -\tau \end{pmatrix} : a_i \in [-a, a] \text{ and } b_j \in [-b, b] \right\}$$

and a function f of the form $[c_1, c_2, f_1, f_2]$. In this case, we cannot efficiently identify $Q_{0,t}$, because for $Q, Q' \in Q$, we have that $Q + Q' = Q + Q'$ for all $k \in N$.

Is there a simple way to check when two different matrices Q, Q' yield the same expected value, without calculating Qk and $Q'k$ for all k?

The Imprecise Case

Set of matrices Instead of a single transition matrix Q, we consider a set of such matrices, denoted by Q. We assume that each matrix in Q is bounded and satisfies (P1) and (P2). Let X be the set of all rate matrices, then for any set $Q \subseteq X$ of rate matrices, we let

$$Q := \{Q(i,j) : Q \in Q\}$$

for all $i \in X$,

and we say that Q has separately specified rows if

$$Q \in Q\{\forall i \in X\} \{Q(i,) \in Q_i\}$$

We further assume that Q is the convex hull of a finite number of extreme transition rate matrices.

Our Approach At any time $t \in [0, \infty)$, the only assumption we make about Q_t is that it is an element of Q. Every such possible choice of non-stationary transition rate matrices will yield τ finite numbers of possible solutions. τ goal is to calculate exact lower and upper bounds for the set of all these solutions f_t as denoted by f_t and f_t. In the recent work of [5] and with respect to the lower bound, f_t is the solution to

$$dQ_t = \min_{Q \in Q} Q_t dt$$

with boundary condition $f_t = f$.

Since Q is the convex hull of a finite number of extreme transition rate matrices and that the solution to (4) is continuous, there must be time points $0 = t_0 < t_1 < \ldots < t_k < t_{k+1} < \ldots$ such that, for all $t \in \mathbb{N}$, $\{t_0, t_1, t_2, \ldots\}$, the minimum in (4) is obtained by the same extreme transition rate matrix $Q_0 \in Q$. We call these time points t_0. Equation (4) is then piecewise linear and has the following solution

$$f_t = e^{tf}Q_0$$

(5)

Calculating Lower Expectations We need to find the flipping times t_0 and the corresponding extreme transition rate matrices Q_0, when calculating the lower expectation of a given f on X. It can be proved that for any pair of matrices $Q, Q' \in Q$, we have that

$$\text{if } Q < Q', \text{ then } Q_0 \neq Q'$$

where $Q_t < Q'_t$ if $Q(i,j) \leq Q'(i,j)$ for all $i \in X$ and $Q' \neq Q$. In this way, we can eliminate matrices Q', which do not yield the minimum expected value of f up to some $t > 0$. Since Q has separately specified rows, then the matrix Q_0 is the one that minimises Q' at each row separately. Hence, Q_0 belongs to the set $Q = \{Q : Q(i,j) \leq Q'(i,j), i \in X \text{ and } Q \in Q \}$.

In practice, Q_0 might not be a singleton and in this case, for any two matrices $Q, Q' \in Q$, we have that $Q < Q'$: it can be further proved that

$$Q < Q' \Rightarrow Q' < Q' \Rightarrow Q'$$

(6)

From (6), we understand that if Q_0 is not a singleton, for any matrix $Q \in Q$, we calculate $Q' < Q'$ and we compare them, in order to eliminate more matrices. If still the result set is a singleton, from the remaining ones we calculate $Q' < Q'$ and so on, till we are left with one matrix, which will be the matrix Q_0.

Having found Q_0, then, due to (5), $f_t = e^{tf}Q_0$ and $Q_0 = [0, t]$. The only thing left to find is the flipping time t_f. If there exists Q_0, such that $Q < Q_0$ and for which we obtain the minimum expected value for some $t > 0$, then due to continuity, the derivative of the system evaluated at $t = t_f$ should be equal for both Q_0 and Q_\in. Therefore, from (3) combined with the boundary condition f_t, we have that

$$Q_0 e^{tf}Q_0 = Q_0 e^{tf}Q_0$$

(7)

We solve (7) with respect to t_f, for each row separately. At each row i, for Q_0, we test all possible extreme matrices from Q_0. Among the solutions of t_i, the smallest positive real one is the first flipping time and the corresponding matrix—if it is unique—is the matrix Q_0. If we cannot uniquely identify Q_0 in this way, we follow a procedure that is similar to the one that we used to identify Q_0. By continuing in this way, we can find all the flipping times and their corresponding transition rate matrices.

Imprecise Birth-Death Process

We focus on the case where every state has an interval-valued birth and/or death rate. The transition rate matrices have the following form

$$\begin{pmatrix} -\lambda_0 & \lambda_0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & -\mu_i & \lambda_i & \cdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \mu_j - \mu_j & 0 \end{pmatrix}$$

where, for all $i \in \{0, \ldots, L - 1\}$ and $j \in \{1, \ldots, L\}$, $\lambda_i \in [\lambda_i, \bar{\lambda}_i]$ and $\mu_j \in [\mu_j, \bar{\mu}_j]$ and $L \in \mathbb{N}$. In this way, we have a set of matrices Q with finite numbers of extreme points, separately specified rows and which avoids the special case above.

Numerical Results

We calculate the lower expected probability of state 1, $E(X_t = 1 | X_0 = 1)$, of an imprecise birth-death chain with state space $X := \{0, 1, 2, 3\}$ for t approaching infinity. The set of transition rate matrices Q is derived from the intervals $\lambda_i \in [1, 3]$ and $\mu_j \in [2, 5]$. For $i \in \{0, \ldots, L - 1\}$ and $j \in \{1, \ldots, L\}$ and the input function is $f = [0, 1, 0, 0]$. Following the procedure described before, we start by finding a matrix Q_0, such that $Q_0 < Q' \forall Q' \in Q$. Due to the values of f, there are multiple Q_0 which minimise Q'. These matrices have the following form:

$$Q' = \begin{pmatrix} -1 & 0 & 0 \\ 5 & -8 & 3 \\ 0 & 2 & -2 \end{pmatrix}$$

where $\lambda_1 \in [1, 3]$ and $\mu_3 \in [2, 5]$. Let Q_0 be the set containing all the matrices of the above form.

Continuing with the procedure, we check whether there is a matrix Q_0 in Q', such that $Q' < Q'_0 \forall Q' \in Q' \subseteq Q' \setminus \{Q_0\}$. Indeed, there is such a matrix and therefore we have that

$$Q_0 = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 5 & -8 & 3 & 0 \\ 0 & 2 & -2 & -2 \end{pmatrix}$$

for which the flipping time is $t_f = 0.6403991$ and Q_0 is

$$Q_0 = \begin{pmatrix} -3 & 2 & 3 & 0 \\ -2 & 5 & 3 & 0 \\ 0 & 2 & -2 & -2 \end{pmatrix}$$

For the matrix Q_0, there is no flipping time and by taking $t \rightarrow \infty$, we find that, for all $i \in X$,

$$\lim_{t \rightarrow \infty} E(X_t = 1 | X_0 = i) = 0.6937540788.$$