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Birth-death chains

Birth-death chain            special type of Markov chain 

Finite state space                           , with   

Random variable      and a sequence of variables        , with               and  

A sequence can be infinite as well 

Sequence of state values                           in  

Markov condition  

where                    is the expectation operator with p.m.f   

Xk:n k,n 2 N k  n

X := {0, . . . ,L} L 2 N

Xn

Xk:•

x1:n := x1, . . . ,xn

X n
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n+1(·|x1:n) = E

n+1(·|xn

), 8x1:n 2 X n

p(X
n+1|xn

)

for     time-homogeneous p

Since finite-state birth-death chains are special cases
of (time-homogeneous) Markov chains, they satisfy
the Markov condition, which requires that

E

n+1(·|x1:n) = E

n+1(·|xn

) for all x1:n 2 Xn

, (1)

where E
n+1(·|xn

) is the expectation operator that cor-
responds to the probability mass function p(X

n+1|xn

)
for X

n+1, conditional on X

n

= x

n

, and similarly
for E

n+1(·|x1:n). If the Markov chain is furthermore
time-homogeneous, then p(X

n+1|xn

)—and therefore
also E

n+1(·|xn

)—does not depend on n, which implies
that all the transition probabilities can be summarised
by means of a single stochastic matrix P of dimension
L + 1, by letting P

ij

:= p(j|i) for all i, j 2 X . In the
special case of a birth-death chain, this stochastic ma-
trix is tridiagonal, which expresses that transitions are
only possible between adjacent states. Hence, P is of
the form

P =

0
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r0 p0 0 · · · · · · 0
q1 r1 p1 0 · · · 0
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. . .
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...
0 · · · 0 q
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L

r
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where the elements of each row sum to 1. For any
i 2 X/{0, L}, we will assume that the probabilities p

i

,
q

i

and r

i

are positive, and similarly for r0, p0, qL, rL.
Figure 1 depicts a graphical representation of a finite-
state birth-death chain.
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Figure 1: A birth-death chain with X = {0, . . . , L}

3 Imprecise birth-death chains

Imprecise birth-death chains are similar to precise
birth death chains. The main di↵erence is that the
probability mass functions that make up the matrix
P do not need to be specified exactly. They are only
known to belong to convex closed sets of probability
mass functions, called credal sets. Formally, for every
finite set Y, a credal set on Y is a closed and convex

subset of the set

⌃Y :=

⇢
⇡ 2 RY :

X

y2Y
⇡(y) = 1, (8y 2 Y)⇡(y) � 0

�

of all probability mass functions on Y.

For every i 2 X \ {0, L}, we consider a credal set Q
i

on X
m

:= {`, e, u}, where—for reasons that should
become clear soon—m stands for middle and `, e and
u stand for lower, equal and upper, respectively. For
the individual probability mass functions ⇡

i

2 Q

i

, we
will make frequent use of the notational convention
that

(p
i

, r

i

, q

i

) =
�
⇡

i

(`),⇡
i

(e),⇡
i

(u)
�
,

thereby establishing an intuitive connection with the
matrix P that characterises a precise birth-death
chain. Similarly, Q0 and Q

L

are taken to be credal
sets on X0 := {e, u} and X

L

:= {`, e}, respectively.
For their elements ⇡0 2 Q0 and ⇡

L

2 Q
L

, we adopt
the following notational conventions:

(r0, p0) =
�
⇡0(e),⇡0(u)

�

and
(q

L

, r

L

) =
�
⇡

L

(`),⇡
L

(e)
�
.

Since X0 is binary, Q0 is fully determined by the min-
imum and maximum value of p0, as ⇡0 ranges over
the elements of Q0. We denote this minimum and
maximum by p

0
and p0, respectively. Similarly, Q

L

is
fully determined by q

L

and q

L

.

For reasons of mathematical convenience, we adopt
the following positivity assumption.

Assumption 1 (Positivity assumption). The local
credal sets Q

i

, i 2 X , consist of strictly positive prob-
ability mass functions.

This assumption implies—amongst many other useful
properties, such as Theorem 1—that the lower prob-
abilities p

0
and q

L

are strictly positive.

We now use the credal sets Q
i

to define correspond-
ing credal sets M

i

on X . For all i 2 X \ {0, L}, a
probability mass function �

i

2 ⌃X belongs to M
i

if
and only if there is some ⇡

i

2 Q
i

such that

�

i

(j) =

8
>>><

>>>:

q

i

if j = i� 1

r

i

if j = i

p

i

if j = i+ 1

0 otherwise

for all j 2 X .

Similarly, �0 belongs to M0 if and only if there is
some ⇡0 2 Q0 such that

�0(j) =

8
><

>:

r0 if j = 0

p0 if j = 1

0 otherwise

for all j 2 X

E

n+1(·|xn

)



Imprecise birth-death chains

Consider a matrix     with p.m.f. not precisely known 

For every           , the p.m.f. of the    row belong to a credal set 

Positivity assumption:                     and              for all                        strictly positive

and consists of elements     of the form

P

i 2 X i Mi

fi

fi( j) =

8
>>><

>>>:

qi if j = i�1

ri if j = i
pi if j = i+1

0 otherwise

i 2 X \{0,L} f
0

( j) =

8
><

>:

r
0

if j = 0

p
0

if j = 1

0 otherwise

fL( j) =

8
><

>:

qL if j = L�1

rL if j = L
0 otherwise

r0, p0,rL,qL qi,ri, pi i 2 X \{0,L}



Imprecise Markov condition

Lower and upper expectations of real-valued function     on

and for all                  , the imprecise Markov condition is

f X

E( f |i) := min
fi2Mi

Efi( f ) = min
fi2Mi

⇢
Â

j2X

fi( j) f ( j)
�

E( f |i) := max

fi2Mi
Efi( f ) = max
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⇢
Â

j2X

fi( j) f ( j)
�

E

n+1(·|x1:n) = E
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) := E(·|x
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)

x1:n 2 X n



Global uncertainty models

Based on the notion of submartingales, we derive global uncertainty models

For every           and every real-valued function     on  

                                                                  (time-homogeneity)

These models satisfy a version of the Law of Iterated expectation

By defining     on      by                                                   for all             , then  

n 2 N g X N

Xf 0 f 0(i0) := En+2:•(g(i
0,Xn+2:•)|i0) i0 2 X

En+1:•(g(Xn+1:•)|i) = En+1( f 0|i) = E( f 0|i)

and �

L

belongs to M
L

if and only if there is some
⇡

L

2 Q
L

such that

�

L

(j) =

8
><

>:

q

L

if j = L� 1

r

L

if j = L

0 otherwise

for all j 2 X .

For any real-valued function f on X and any state i

in X , we now consider the corresponding lower and
upper expectation of f , defined by

E(f |i) := min
�i2Mi

E

�i(f) = min
�i2Mi

⇢X

j2X
�

i

(j)f(j)

�

and

E(f |i) := max
�i2Mi

E

�i(f) = max
�i2Mi

⇢X

j2X
�

i

(j)f(j)

�
,

where E
�i(f) :=

P
j2X �

i

(j)f(j). The resulting lower
and upper expectation operators are connected by
conjugacy: E(f |i) = �E(�f |i). For that reason,
without loss of generality, we can focus on the lower
expectation operators E(·|i), i 2 X .

An imprecise birth-death chain is now simply a
time-homogeneous imprecise Markov chain [5] that
has these lower previsions E(·|i)—or equivalently,
the credal sets M

i

—as its local transition models.
The corresponding global uncertainty models are de-
rived from the conditional lower expectation operators
E

n+1(·|x1:n), defined for all n 2 N and x1:n 2 Xn by3

E

n+1(·|x1:n) = E

n+1(·|xn

) := E(·|x
n

), (2)

where the first equality follows from the so-called im-
precise Markov condition and the second equality fol-
lows from time-homogeneity.

We want to stress here that the imprecise Markov con-
dition that is imposed by Equation (2) is not equiv-
alent to an element-wise application of the (precise)
Markov condition in Equation (1). We do not require
E

n+1(·|x1:n) and E

n+1(·|xn

) to be equal; we only re-
quire the bounds on these expectations to be equal.
Imposing Equation (1) element-wise would be equiva-
lent to considering a set of precise birth-death chains,
each of which is required to satisfy the usual precise
Markov assumption. Our approach imposes less strin-
gent constraints. Using imprecise-probabilistic termi-
nology: we impose epistemic irrelevance rather than
strong independence; more information can be found
in Reference [1].

3In general, an initial model E1(·) is required as well. How-
ever, for our present purposes, it is not necessary to specify
one.

From the local assessments that are provided by
Equation (2), we now derive global uncertainty mod-
els for our imprecise Markov chain. For any i 2 X and
n

0 2 N such that n0
> n, the global uncertainty model

for the variables X

n+1:n0 , conditional on X

n

= i, is
a lower expectation operator E

n+1:n0(·|i) that takes

real-valued functions on Xn

0�n as its argument. It
is given by the natural extension [10] of the models
that were defined in Equation (2); see Reference [4]
for more details and alternative interpretations. For
the purposes of this paper, we need global uncertainty
models that are even more general. In particular, for
every i 2 X and n 2 N, we need an uncertainty model
for the infinite sequence of variables X

n+1:1, condi-
tional on X

n

= i, in the form of a lower expectation
operator E

n+1:1(·|i), defined for all extended real-
valued functions on XN.

These more general global models can be defined in
multiple ways, and typically require some additional
technical continuity argument; see Reference [3] for
a definition in terms of submartingales, which is the
one that we will adopt here. However, for our present
purposes, the exact definition is only relevant for The-
orem 1, which—due to the page limit constraint—is
stated without proof. Therefore, and in order to avoid
having to introduce the technical concept of a sub-
martingale, we choose not to provide a definition for
the global models E

n+1:1(·|i). All that is important
for the developments in this paper is that these global
models are time-homogeneous and satisfy—a specific
version of—the law of iterated expectation. For every
n 2 N and every extended real-valued function g on
XN, it holds that

E

n+1:1(g(X
n+1:1)|i) = E

n+2:1(g(X
n+2:1)|i). (3)

Furthermore, if we define the—possibly extended—
real-valued function f

0 on X by

f

0(i0) := E

n+2:1(g(i0, X
n+2:1)|i0) for all i0 2 X ,

then, if f 0 is real-valued, we have that

E

n+1:1(g(X
n+1:1)|i) = E

n+1(f
0|i) = E(f 0|i), (4)

where the second equality follows from Equation (2).

4 Return and first passage times

Consider a timepoint n 2 N and two—possibly
identical—states i and j in X . If the variable X

n

has i
as its value, then the corresponding first passage time
to j—the number of time-steps required to reach j—is
a function ⌧

i!j

(i,X
n+1:1) of the infinite sequence of

variables X

n+1:1, defined by the following recursion



First passage time

The first passage time from    to    with               is

Due to time-homogeneity                                                       and 

                                                      will be denoted by           and  

Due to positivity assumption          and          are real-valued and strictly positive   

and have the form                                       and  

i j i, j 2 X

For          , we have the return time i = j

where       is the indicator function of jc := X \{ j}I jc

t i! j,n := En+1:•(ti! j(i,Xn+1:•)|i)

t i! j,n := En+1:•(ti! j(i,Xn+1:•)|i) t i! j t i! j

t i! j t i! j

t i! j = 1+E(I jct•! j|i) t i! j = 1+E(I jct•! j|i)

ti! j(i,Xn+1:•) :=

(
1 Xn+1 = j
1+ tXn+1! j(Xn+1,Xn+2:•) Xn+1 6= j

= 1+ I jc(Xn+1)tXn+1! j(Xn+1,Xn+2:•)



Lower expected upward first passage time

  

 For all                        , we have that   

For all        satisfying the positivity assumption, with                       ,  

and     a real constant, then                          is strictly decreasing in  

The first passage time from    to    with               and i j i, j 2 X i < j

t0!1 =
1
p0

i 2 X \{0,L} min
fi2Mi

{qit i�1!i � pit i!i+1}=�1

i 2 X \{0,L}Mi

c min
fi2Mi

{qc� pµ} µ



Lower expected upward first passage time

We can calculate             recursively  

Using a bisection method, as long as we have calculated             … 

Moreover, 

 For all                        , s.t               , we have that   

 For all            , such that         , we have that 

min
fi2Mi

{qit i�1!i � pit i!i+1}=�1

t i!i+1

t i�1!i

i 2 X \{0,L} i+1 < j t i! j = t i!i+1 + t i+1! j

i < j t i! j =
j�1

Â
k=i

tk!k+1i 2 X



Lower expected downward first passage time

Similarly to the upward case… 

   

For all                        , we have that    

 For all           , such that         , we have that 

The first passage time from    to    with               and i j i, j 2 X i > j

tL!L�1 =
1
qL

i > ji 2 X

i 2 X \{0,L} min
fi2Mi

{�qit i!i�1 + pit i+1!i}=�1

t i! j =
i�1

Â
k= j

tk+1!k



Lower expected return time

Combining the results from expected upward with these of downward first 

passage times 

   

  

and for all  

  

The first passage time from    to    with               and i j i, j 2 X i = j

t0!0 = 1+ min
f02M0

{p0t1!0}= 1+ p0t1!0

tL!L = 1+ min
fL2ML

{qLtL�1!L}= 1+qLtL�1!L

i 2 X \{0,L}

t i!i = 1+ min
fi2Mi

{qit i�1!i + pit i+1!i}



Linear vacuous mixtures

The set       is a subset of the simplex  

For any          ,         is the subset of       containing p.m.f. 

Given precise                and                 for any  

  

  

 and for all  

  

i 2 X

SXMi

SXi SX fi

ei 2 [0,1) i 2 X

M0 =
�
(1� e0)f ⇤

0 + e0f 0
0 : f 0

0 2 SX0

 

ML =
�
(1� eL)f ⇤

L + eLf 0
L : f 0

L 2 SXL

 

i 2 X \{0,L}

Mi =
�
(1� ei)f ⇤

i + eif 0
i : f 0

i 2 SXi

 

f ⇤
0 ,f ⇤

L ,f ⇤
i



Linear vacuous mixtures

We can also define  

                          and                                 for all   

                          and                                 for all  

Expected lower upward, downward first passage and return times 

  

qi
:= (1� ei)q⇤i qi := (1� ei)q⇤i + ei i 2 X \{0}

i 2 X \{L}pi
:= (1� ei)p⇤i pi := (1� ei)p⇤i + ei

t i!i+1 = Âi
k=0

’i
`=k+1 q

`

’i
m=k pm

t i!i�1 = ÂL
k=i

’k�1
`=i p

`

’k
m=i qm

t i!i = 1+qit i�1!i + pit i+1!i



Linear vacuous mixtures

Consider state space                         ,                     and  

                   

                                   then, for all 

we calculate lower and upper expected return times 

X := {0, . . . ,4}

i 2 X \{0,L}

ei = e = 0.4

⌧0!4 16.635
⌧0!4 1420
⌧4!0 8.093
⌧4!0 81.32

Table 1: Final results for the general example.

⌧0!1 2.5 ⌧4!3 1.666
⌧1!2 3.889 ⌧3!2 2.051
⌧2!3 4.814 ⌧2!1 2.169
⌧3!4 5.432 ⌧1!0 2.206
⌧0!1 6.666 ⌧4!3 5
⌧1!2 43.333 ⌧3!2 12
⌧2!3 226.666 ⌧2!1 23.2
⌧3!4 1143.333 ⌧1!0 41.12

Table 2: Intermediate results for the general example.

Due to Corollary 5, we know that

⌧0!4 = ⌧0!1 + ⌧1!2 + ⌧2!3 + ⌧3!4, (33)

where, using Equation (11),

⌧0!1 = 1/p0 = 2.5.

By plugging this value for ⌧0!1 in Equation (20), for
i = 1, we find that

min
⇡12Q

{2.5q1 � p1⌧1!2} = �1

As we know from Lemma 2, this equality has a unique
solution that can for example be obtained by means of
a bisection method. We find that ⌧1!2 = 3.889. Simi-
larly, in a recursive fashion, we find that ⌧2!3 = 4.814
and ⌧3!4 = 5.432. A final application of Equa-
tion (33) tells us that ⌧0!4 = 16.635. ⌧0!4, ⌧4!0 and
⌧4!0 can be computed analogously; the results are
given in Table 1. Intermediate results can be found
in Table 2.

Linear-vacuous example

Consider a precise birth-death chain with state space
X = {0, 1, 2, 3, 4}—L = 4—and the following proba-
bility matrix:

P

⇤ =

0

BBBB@

0.55 0.45 0 0 0
0.3 0.5 0.2 0 0
0 0.3 0.5 0.2 0
0 0 0.3 0.5 0.2
0 0 0 0.6 0.4,

1

CCCCA

which is completely characterised by the probability
mass functions ⇡⇤

0 = (0.55, 0.45), ⇡⇤
L

= (0.6, 0.4) and,
for all i 2 X \ {0, L}, ⇡⇤

i

= ⇡

⇤ = (0.3, 0.5, 0.2).

We now let "

i

= " = 0.4 for all i 2 X and consider
the imprecise birth-death chain that has the corre-
sponding linear-vacuous credal sets as its local mod-
els. In this way, we obtain the following lower and
upper probabilities:

p

0
= 0.27, p0 = 0.67, q

L

= 0.36, q
L

= 0.76

and, for all i 2 X \ {0, L}:

q

i

= 0.18, q
i

= 0.58, p
i

= 0.12, p
i

= 0.52.

For all i 2 X \ {0, L}, the credal set Q
i

is equal to
Q"

⇡

⇤ , which is the convex hull of the following three
extreme points:

(0.58, 0.3, 0.12), (0.18, 0.7, 0.12), (0.18, 0.3, 0.52).

Figure 3 provides a graphical representation of this
credal set Q"

⇡

⇤ .

q

r

p

⇡

⇤

Figure 3: The grey zone depicts the credal set Q"

⇡

⇤

from the birth-death chain in the the linear-vacuous
example.

The lower and upper expected return times that cor-
respond to this particular example can be found in
Table 3. For the sake of this example, we compute
⌧1!1 explicitly.

We start by applying Equation (32) for i = 1, which
tells us that

⌧1!1 = 1+q

1
⌧0!1+p

1
⌧2!1 = 1+0.18⌧0!1+0.12⌧2!1.

Therefore, since we know from Equations (30)
and (31) that

⌧0!1 =
1

p0

= 1.492

and

⌧2!1 =
1

q2

+
p

2

q2q3

+
p

2
p

3

q2q3q4

= 2.154,

we find that ⌧1!1 = 1.526.

i ⌧

i!i

⌧

i!i

0 1.584 91.41
1 1.526 24.956
2 1.678 17.845
3 1.656 79.71
4 2.037 503.724

Table 3: Lower and upper expected return times for
the birth-death chain in the linear-vacuous mixture
example.

10 Summary and future work

We have presented a simple method for computing
lower and upper expected—upward and downward—
first passage times and return times in imprecise
birth-death chains, have presented numerical results,
and have discussed a special case for which our
method simplifies even more.

In future research, we plan to try and apply simi-
lar methods to (a) other simple types of imprecise
Markov chains—di↵erent from birth-death chains—
such as, for example, the Bonus-Malus systems that
are described in Reference [6] and (b) continuous—
rather than discrete—time models.
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As we know from Lemma 2, this equality has a unique
solution that can for example be obtained by means of
a bisection method. We find that ⌧1!2 = 3.889. Simi-
larly, in a recursive fashion, we find that ⌧2!3 = 4.814
and ⌧3!4 = 5.432. A final application of Equa-
tion (33) tells us that ⌧0!4 = 16.635. ⌧0!4, ⌧4!0 and
⌧4!0 can be computed analogously; the results are
given in Table 1. Intermediate results can be found
in Table 2.

Linear-vacuous example

Consider a precise birth-death chain with state space
X = {0, 1, 2, 3, 4}—L = 4—and the following proba-
bility matrix:

P

⇤ =

0
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0.55 0.45 0 0 0
0.3 0.5 0.2 0 0
0 0.3 0.5 0.2 0
0 0 0.3 0.5 0.2
0 0 0 0.6 0.4
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which is completely characterised by the probability
mass functions ⇡⇤

0 = (0.55, 0.45), ⇡⇤
L

= (0.6, 0.4) and,
for all i 2 X \ {0, L}, ⇡⇤

i

= ⇡

⇤ = (0.3, 0.5, 0.2).

We now let "

i

= " = 0.4 for all i 2 X and consider
the imprecise birth-death chain that has the corre-
sponding linear-vacuous credal sets as its local mod-
els. In this way, we obtain the following lower and
upper probabilities:

p

0
= 0.27, p0 = 0.67, q

L

= 0.36, q
L

= 0.76

and, for all i 2 X \ {0, L}:

q

i

= 0.18, q
i

= 0.58, p
i

= 0.12, p
i

= 0.52.

For all i 2 X \ {0, L}, the credal set Q
i

is equal to
Q"

⇡

⇤ , which is the convex hull of the following three
extreme points:

(0.58, 0.3, 0.12), (0.18, 0.7, 0.12), (0.18, 0.3, 0.52).

Figure 3 provides a graphical representation of this
credal set Q"
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Figure 3: The grey zone depicts the credal set Q"
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from the birth-death chain in the the linear-vacuous
example.

The lower and upper expected return times that cor-
respond to this particular example can be found in
Table 3. For the sake of this example, we compute
⌧1!1 explicitly.

We start by applying Equation (32) for i = 1, which
tells us that

⌧1!1 = 1+q

1
⌧0!1+p

1
⌧2!1 = 1+0.18⌧0!1+0.12⌧2!1.

Therefore, since we know from Equations (30)
and (31) that

⌧0!1 =
1

p0

= 1.492

and

⌧2!1 =
1

q2

+
p

2

q2q3

+
p

2
p

3

q2q3q4

= 2.154,

we find that ⌧1!1 = 1.526.
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In combination with Proposition 8 and 11, these equa-
tions allow us to easily compute all upper expected
upward first passage times and all lower and upper
expected downward first passage times for the linear-
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9 Numerical results

We end by computing lower and upper expected first
passage and return times for two examples of impre-
cise birth-death chains. The first is a general example
of an imprecise birth-death chain and the second one
is an imprecise birth-death chain with linear-vacuous
local models. In both examples, we takeQ

i

to be iden-
tical for all i 2 X \{0, L}, and simply denote it by Q,
which is a credal set on X

m

. Some of the lower and
upper expected values that we compute have many
decimal points; we present them up to the third dec-
imal point.

General example

Consider an imprecise birth-death chain with state
space X = {0, 1, 2, 3, 4}, that is, L = 4. Let Q0 be
determined by p

0
= 0.15 and p0 = 0.4 and let Q

L

be
determined by q
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= 0.2 and q
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= 0.6. The credal set
Q is taken to be the convex hull of the following 10
extreme points, which are of the form ⇡ = (q, r, p).

(0.65, 0.15, 0.2), (0.6, 0.25, 0.15), (0.5, 0.4, 0.1),
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(0.25, 0.35, 0.4), (0.3, 0.25, 0.45), (0.4, 0.17, 0.43),

(0.55, 0.1, 0.35)

Figure 2 provides a graphical representation of this
credal set Q.4
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Figure 2: The grey zone depicts the credal set Q from
the birth-death chain in the general example.

For this particular example, we now compute ⌧0!4,
⌧0!4, ⌧4!0 and ⌧4!0.

4We represent ⌃Xm by means of a equilateral triangle of
height one. The elements ⇡ = (q, r, p) of ⌃Xm correspond to
points in this triangle. For every such ⇡, the value of q, r, p is
equal to the perpendicular distance from that point to the edge
that opposes the corresponding corner.
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passage and return times for two examples of impre-
cise birth-death chains. The first is a general example
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local models. In both examples, we takeQ
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tical for all i 2 X \{0, L}, and simply denote it by Q,
which is a credal set on X
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. Some of the lower and
upper expected values that we compute have many
decimal points; we present them up to the third dec-
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General example

Consider an imprecise birth-death chain with state
space X = {0, 1, 2, 3, 4}, that is, L = 4. Let Q0 be
determined by p
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= 0.15 and p0 = 0.4 and let Q
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be
determined by q
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= 0.6. The credal set
Q is taken to be the convex hull of the following 10
extreme points, which are of the form ⇡ = (q, r, p).
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Figure 2: The grey zone depicts the credal set Q from
the birth-death chain in the general example.

For this particular example, we now compute ⌧0!4,
⌧0!4, ⌧4!0 and ⌧4!0.

4We represent ⌃Xm by means of a equilateral triangle of
height one. The elements ⇡ = (q, r, p) of ⌃Xm correspond to
points in this triangle. For every such ⇡, the value of q, r, p is
equal to the perpendicular distance from that point to the edge
that opposes the corresponding corner.

⌧0!4 16.635
⌧0!4 1420
⌧4!0 8.093
⌧4!0 81.32

Table 1: Final results for the general example.

⌧0!1 2.5 ⌧4!3 1.666
⌧1!2 3.889 ⌧3!2 2.051
⌧2!3 4.814 ⌧2!1 2.169
⌧3!4 5.432 ⌧1!0 2.206
⌧0!1 6.666 ⌧4!3 5
⌧1!2 43.333 ⌧3!2 12
⌧2!3 226.666 ⌧2!1 23.2
⌧3!4 1143.333 ⌧1!0 41.12

Table 2: Intermediate results for the general example.

Due to Corollary 5, we know that

⌧0!4 = ⌧0!1 + ⌧1!2 + ⌧2!3 + ⌧3!4, (33)

where, using Equation (11),

⌧0!1 = 1/p0 = 2.5.

By plugging this value for ⌧0!1 in Equation (20), for
i = 1, we find that

min
⇡12Q

{2.5q1 � p1⌧1!2} = �1

As we know from Lemma 2, this equality has a unique
solution that can for example be obtained by means of
a bisection method. We find that ⌧1!2 = 3.889. Simi-
larly, in a recursive fashion, we find that ⌧2!3 = 4.814
and ⌧3!4 = 5.432. A final application of Equa-
tion (33) tells us that ⌧0!4 = 16.635. ⌧0!4, ⌧4!0 and
⌧4!0 can be computed analogously; the results are
given in Table 1. Intermediate results can be found
in Table 2.

Linear-vacuous example

Consider a precise birth-death chain with state space
X = {0, 1, 2, 3, 4}—L = 4—and the following proba-
bility matrix:
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from the birth-death chain in the the linear-vacuous
example.

The lower and upper expected return times that cor-
respond to this particular example can be found in
Table 3. For the sake of this example, we compute
⌧1!1 explicitly.

We start by applying Equation (32) for i = 1, which
tells us that

⌧1!1 = 1+q

1
⌧0!1+p

1
⌧2!1 = 1+0.18⌧0!1+0.12⌧2!1.

Therefore, since we know from Equations (30)
and (31) that
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and
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= 2.154,

we find that ⌧1!1 = 1.526.



Conclusions and future work

 Simple methods for computing lower and upper expected first passage and    

     return times

 Applying similar methods to other type of chains, e.g. Bonus-Malus systems

 Applying similar methods to continuous time systems


