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Abstract
We provide simple methods for computing exact
bounds on expected return and first passage times
in finite-state birth-death chains, when the transition
probabilities are imprecise, in the sense that they are
only known to belong to convex closed sets of proba-
bility mass functions. These so-called imprecise birth-
death chains are special types of time-homogeneous
imprecise Markov chains. We also present numerical
results and discuss the special case where the local
models are linear-vacuous mixtures, for which our
methods simplify even more.

Keywords. Birth-death chain, Markov chain, impre-
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1 Introduction

A birth-death chain [11, Section 9.4] is a special type
of time-homogeneous Markov chain that is used in
various scientific fields, including evolutionary biology
and queueing theory. We consider the generalised case
of an imprecise birth-death chain, where the transition
probabilities are imprecise, in the sense that they are
only known to belong to convex closed sets of proba-
bility mass functions—credal sets. This may be the
case because the transition probabilities are based on
partial expert knowledge or limited data, or for the
purposes of conducting a sensitivity analysis. Similar
models were already considered in Reference [2], which
presented results on limiting conditional distributions
for imprecise birth-death chains with one absorbing
state. Imprecise birth-death chains are themselves a
special case of so-called (time-homogeneous) impre-
cise Markov chains, which were studied in—amongst
others—References [5, 7, 9].

This paper focusses on—upward and downward—first
passage times and return times.1 For precise birth-
death chains, these have been studied in, for example,

1These are often called recurrence times as well.

Reference [8]. For the more general case of imprecise
birth-death chains, we are not aware of any results.
Our most important contribution are simple methods
for computing lower and upper—exact bounds for—
expected values of first passage times and return times
in finite-state imprecise birth-death chains. We also
present numerical results and discuss the special case
where the local models are linear-vacuous mixtures,
for which our methods simplify even more.

We start in section 2 by discussing the notion of a pre-
cise birth-death chain and then introduce our imprecise
version of it in Section 3. Section 4 defines return and—
upward and downward—first passage times and their
lower and upper expected values. In Sections 5 and 6,
we provide our methods for computing lower and upper
expected upward and downward first passage times.
We use these methods in section 7 to calculate lower
and upper expected return times. Section 8 discusses
the special case where the local models are linear-
vacuous mixtures and Section 9 presents numerical
results. We conclude the paper in Section 10.

2 Birth-Death Chains

Finite-state birth-death chains are special cases of
time-homogeneous finite-state Markov chains. Their
state space, denoted by X , is finite and can be linearly
ordered by an integer. Without loss of generality, we
may assume that X = {0, . . . , L}, with L ∈ N.2 At any
time point n ∈ N, the state of the chain is represented
by a random variable, denoted by Xn, which takes
values in the state space X . For every n ∈ N, the
sequence of variables X1, . . . , Xn is denoted by X1:n
and takes values x1:n := x1, . . . , xn in Xn. Similarly,
we use X1:∞ as a shorthand notation for the infinite
sequence X1, . . . , Xn, . . . Also, for every k ∈ N such
that k ≤ n, we let Xk:n and Xk:∞ be the sequences of
states from time point k to n or infinity, respectively.

2We do not consider zero to be a natural number.
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Since finite-state birth-death chains are special cases
of (time-homogeneous) Markov chains, they satisfy
the Markov condition, which requires that

En+1(·|x1:n) = En+1(·|xn) for all x1:n ∈ Xn, (1)

where En+1(·|xn) is the expectation operator that cor-
responds to the probability mass function p(Xn+1|xn)
for Xn+1, conditional on Xn = xn, and similarly for
En+1(·|x1:n). If the Markov chain is furthermore time-
homogeneous, then p(Xn+1|xn)—and therefore also
En+1(·|xn)—does not depend on n, which implies that
all the transition probabilities can be summarised by
means of a single stochastic matrix P of dimension
L + 1, by letting Pij := p(j|i) for all i, j ∈ X . In
the special case of a birth-death chain, this stochastic
matrix is tridiagonal, which expresses that transitions
are only possible between adjacent states. Hence, P
is of the form

P =




r0 p0 0 · · · · · · 0
q1 r1 p1 0 · · · 0
... . . . . . . . . . . . . ...
0 · · · 0 qL−1 rL−1 pL−1
0 · · · · · · 0 qL rL




where the elements of each row sum to 1. For any
i ∈ X/{0, L}, we will assume that the probabilities pi,
qi and ri are positive, and similarly for r0, p0, qL, rL.
Figure 1 depicts a graphical representation of a finite-
state birth-death chain.
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Figure 1: A birth-death chain with X = {0, . . . , L}

3 Imprecise Birth-Death Chains

Imprecise birth-death chains are similar to precise
birth death chains. The main difference is that the
probability mass functions that make up the matrix
P do not need to be specified exactly. They are only
known to belong to convex closed sets of probability
mass functions, called credal sets. Formally, for every
finite set Y, a credal set on Y is a closed and convex

subset of the set

ΣY :=
{
π ∈ RY :

∑

y∈Y
π(y) = 1, (∀y ∈ Y)π(y) ≥ 0

}

of all probability mass functions on Y.
For every i ∈ X \ {0, L}, we consider a credal set Qi
on Xm := {`, e, u}, where—for reasons that should
become clear soon—m stands for middle and `, e and
u stand for lower, equal and upper, respectively. For
the individual probability mass functions πi ∈ Qi, we
will make frequent use of the notational convention
that

(pi, ri, qi) =
(
πi(`), πi(e), πi(u)

)
,

thereby establishing an intuitive connection with the
matrix P that characterises a precise birth-death chain.
Similarly, Q0 and QL are taken to be credal sets on
X0 := {e, u} and XL := {`, e}, respectively. For their
elements π0 ∈ Q0 and πL ∈ QL, we adopt the following
notational conventions:

(r0, p0) =
(
π0(e), π0(u)

)

and
(qL, rL) =

(
πL(`), πL(e)

)
.

Since X0 is binary, Q0 is fully determined by the
minimum and maximum value of p0, as π0 ranges over
the elements of Q0. We denote this minimum and
maximum by p0 and p0, respectively. Similarly, QL is
fully determined by q

L
and qL.

For reasons of mathematical convenience, we adopt
the following positivity assumption.
Assumption 1 (Positivity assumption). The local
credal sets Qi, i ∈ X , consist of strictly positive prob-
ability mass functions.

This assumption implies—amongst many other use-
ful properties, such as Theorem 1—that the lower
probabilities p0 and q

L
are strictly positive.

We now use the credal sets Qi to define corresponding
credal setsMi on X . For all i ∈ X \ {0, L}, a prob-
ability mass function φi ∈ ΣX belongs toMi if and
only if there is some πi ∈ Qi such that

φi(j) =





qi if j = i− 1
ri if j = i

pi if j = i+ 1
0 otherwise

for all j ∈ X .

Similarly, φ0 belongs to M0 if and only if there is
some π0 ∈ Q0 such that

φ0(j) =





r0 if j = 0
p0 if j = 1
0 otherwise

for all j ∈ X
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and φL belongs to ML if and only if there is some
πL ∈ QL such that

φL(j) =





qL if j = L− 1
rL if j = L

0 otherwise
for all j ∈ X .

For any real-valued function f on X and any state i
in X , we now consider the corresponding lower and
upper expectation of f , defined by

E(f |i) := min
φi∈Mi

Eφi
(f) = min

φi∈Mi

{∑

j∈X
φi(j)f(j)

}

and

E(f |i) := max
φi∈Mi

Eφi
(f) = max

φi∈Mi

{∑

j∈X
φi(j)f(j)

}
,

where Eφi(f) :=
∑
j∈X φi(j)f(j). The resulting lower

and upper expectation operators are connected by con-
jugacy: E(f |i) = −E(−f |i). For that reason, without
loss of generality, we can focus on the lower expectation
operators E(·|i), i ∈ X .
An imprecise birth-death chain is now simply a time-
homogeneous imprecise Markov chain [5] that has these
lower previsions E(·|i)—or equivalently, the credal sets
Mi—as its local transition models. The correspond-
ing global uncertainty models are derived from the
conditional lower expectation operators En+1(·|x1:n),
defined for all n ∈ N and x1:n ∈ Xn by3

En+1(·|x1:n) = En+1(·|xn) := E(·|xn), (2)

where the first equality follows from the so-called im-
precise Markov condition and the second equality fol-
lows from time-homogeneity.

We want to stress here that the imprecise Markov con-
dition that is imposed by Equation (2) is not equiv-
alent to an element-wise application of the (precise)
Markov condition in Equation (1). We do not require
En+1(·|x1:n) and En+1(·|xn) to be equal; we only re-
quire the bounds on these expectations to be equal.
Imposing Equation (1) element-wise would be equiva-
lent to considering a set of precise birth-death chains,
each of which is required to satisfy the usual pre-
cise Markov assumption. Our approach imposes less
stringent constraints. Using imprecise-probabilistic
terminology: we impose epistemic irrelevance rather
than strong independence; more information can be
found in Reference [1].

From the local assessments that are provided by Equa-
tion (2), we now derive global uncertainty models for

3In general, an initial model E1(·) is required as well. How-
ever, for our present purposes, it is not necessary to specify
one.

our imprecise Markov chain. For any i ∈ X and n′ ∈ N
such that n′ > n, the global uncertainty model for the
variables Xn+1:n′ , conditional on Xn = i, is a lower ex-
pectation operator En+1:n′(·|i) that takes real-valued
functions on Xn′−n as its argument. It is given by the
natural extension [10] of the models that were defined
in Equation (2); see Reference [4] for more details and
alternative interpretations. For the purposes of this
paper, we need global uncertainty models that are
even more general. In particular, for every i ∈ X and
n ∈ N, we need an uncertainty model for the infinite se-
quence of variables Xn+1:∞, conditional on Xn = i, in
the form of a lower expectation operator En+1:∞(·|i),
defined for all extended real-valued functions on XN.

These more general global models can be defined in
multiple ways, and typically require some additional
technical continuity argument; see Reference [3] for
a definition in terms of submartingales, which is the
one that we will adopt here. However, for our present
purposes, the exact definition is only relevant for The-
orem 1, which—due to the page limit constraint—is
stated without proof. Therefore, and in order to avoid
having to introduce the technical concept of a sub-
martingale, we choose not to provide a definition for
the global models En+1:∞(·|i). All that is important
for the developments in this paper is that these global
models are time-homogeneous and satisfy—a specific
version of—the law of iterated expectation. For every
n ∈ N and every extended real-valued function g on
XN, it holds that

En+1:∞(g(Xn+1:∞)|i) = En+2:∞(g(Xn+2:∞)|i). (3)

Furthermore, if we define the—possibly extended—
real-valued function f ′ on X by

f ′(i′) := En+2:∞(g(i′, Xn+2:∞)|i′) for all i′ ∈ X ,

then, if f ′ is real-valued, we have that

En+1:∞(g(Xn+1:∞)|i) = En+1(f ′|i) = E(f ′|i), (4)

where the second equality follows from Equation (2).

4 Return and First Passage Times

Consider a timepoint n ∈ N and two—possibly
identical—states i and j in X . If the variable Xn

has i as its value, then the corresponding first pas-
sage time to j—the number of time-steps required to
reach j—is a function τi→j(i,Xn+1:∞) of the infinite
sequence of variables Xn+1:∞, defined by the following
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recursion equation:

τi→j(i,Xn+1:∞)

:=
{

1 if Xn+1 = j

1 + τXn+1→j(Xn+1, Xn+2:∞) if Xn+1 6= j

= 1 + Ijc(Xn+1)τXn+1→j(Xn+1, Xn+2:∞) (5)

where Ijc is the indicator of jc := X \ {j}, defined by

Ijc(x) :=
{

0 if x = j

1 if x 6= j
for all x ∈ X .

If i = j, the corresponding first passage time is referred
to as the return time to i. The so-called upward and
downward first passage times correspond to the cases
i < j and i > j, respectively.

Due to Equation (3), we know that the lower expected
value

τ i→j,n := En+1:∞(τi→j(i,Xn+1:∞)|i)

and upper expected value

τ i→j,n := En+1:∞(τi→j(i,Xn+1:∞)|i)
:= −En+1:∞(−τi→j(i,Xn+1:∞)|i)

of the first passage time from i to j do not depend on
the specific timepoint n ∈ N that is chosen. For that
reason, we can simply denote them by τ i→j and τ i→j ,
respectively.

Theorem 1. If Assumption 1 is satisfied, then for all
i, j ∈ X , the lower and upper first passage times τ i→j
and τ i→j are real-valued and strictly positive.

By combining Equations (4) and (5) with Theorem 1,
we find that

τ i→j = 1 + E(Ijcτ•→j |i) (6)
and

τ i→j = 1 + E(Ijcτ•→j |i), (7)

where τ•→j and τ•→j are functions on X , defined for
all x ∈ X by

τ•→j(x) := τx→j and τ•→j(x) := τx→j .

Taking into account our definition for E(·|i), Equa-
tion (6) results in the following system of non-linear
equalities: for all j ∈ X , we have that

τ0→j = 1+ min
π0∈Q0

{
r0Ijc(0)τ0→j+p0Ijc(1)τ1→j

}
, (8)

τL→j = 1 + min
πL∈QL

{
qLIjc(L− 1)τL−1→j

+ rLIjc(L)τL→j
}

and, for all i ∈ X/{0, L}, that

τ i→j = 1 + min
πi∈Qi

{
qiIjc(i− 1)τ i−1→j + riIjc(i)τ i→j

+ piIjc(i+ 1)τ i+1→j
}
. (9)

A similar system of non-linear equalities can be derived
from Equation (7) as well. In the remainder of this
paper, we will solve these non-linear systems, leading
to simple expressions that can be used to compute
τ i→j and τ i→j , for any i, j ∈ X .

5 Lower and Upper Expected
Upward First Passage Times

We start by computing lower expected values of up-
ward first passage times, that is, for any i, j ∈ X such
that i < j, we will compute τ i→j . We initially focus
on calculating τ i→i+1, for i ∈ X \ {L}, and then show
that any lower expected upward first passage time can
be obtained as a sum of such terms. Similar results
are obtained for upper expected upward first passage
times.

Finding τ0→1 is easy. It follows from Equation (8),
with j = 1, that

τ0→1 = 1 + min
π0∈Q0

{r0τ0→1}

= 1 + min
π0∈Q0

{(1− p0)τ0→1}

= 1 + τ0→1 − max
π0∈Q0

{p0τ0→1}

= 1 + τ0→1 − p0τ0→1, (10)

where the second equality holds because π0 is a proba-
bility mass function and the last equality holds because
we know from Theorem 1 that τ0→1 is real-valued and
therefore finite. Since Theorem 1 also tells us that
τ0→1 is strictly positive, we infer from Equation (10)
that

τ0→1 = 1
p0
. (11)

Finding τ0→j , for j ∈ {2, . . . , L}, is more involved.
We start by establishing a connection with τ1→j . By
applying Equation (8), we find that

τ0→j = 1 + min
π0∈Q0

{r0τ0→j + p0τ1→j}

= 1 + min
π0∈Q0

{(1− p0)τ0→j + p0τ1→j}

= 1 + τ0→j + min
π0∈Q0

{p0(τ1→j − τ0→j)},
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which implies, due to Theorem 1, that

min
π0∈Q0

{p0(τ1→j − τ0→j)} = −1. (12)

Since the minimum in Equation (12) is negative and
p0 is a probability and therefore non-negative, it must
be that τ1→j − τ0→j < 0. Therefore, Equation (12) is
minimised for p0 = p0 and we find that

τ0→j = 1
p0

+ τ1→j . (13)

By combining Equations (11) and (13), we see that

τ0→j = τ0→1 + τ1→j for all j ∈ {2, . . . , L}. (14)

Since we already know τ0→1—see Equation (11)—we
are now left to find τ1→j .

We first consider the case j = 2. It follows from
Equation (9), with i = 1 and j = 2, that

τ1→2 = 1 + min
π1∈Q1

{q1τ0→2 + r1τ1→2}

= 1 + min
π1∈Q1

{q1τ0→2 + (1− q1 − p1)τ1→2}

= 1 + τ1→2 + min
π1∈Q1

{q1(τ0→2 − τ1→2)− p1τ1→2},

which implies, due to Theorem 1, that

min
π1∈Q1

{q1(τ0→2 − τ1→2)− p1τ1→2} = −1.

By applying Equation (14), for j = 2, we find that

min
π1∈Q1

{q1τ0→1 − p1τ1→2} = −1. (15)

Since we already know τ0→1, it follows from Assump-
tion 1 and the following lemma that τ1→2 is the unique
solution to Equation (15).
Lemma 2. Consider a credal set Q on Xm that con-
sists of strictly positive probability mass functions and
let c be a real constant. Then

min
π∈Q
{qc− pµ}

is a strictly decreasing function of µ.

This unique solution τ1→2 is furthermore easy to com-
pute. It follows from Lemma 2 that a simple bisection
method suffices.

Next, we consider the case j ∈ {3, . . . , L}. By applying
Equation (9), for such a j and with i = 1, we find that

τ1→j = 1 + min
π1∈Q1

{q1τ0→j + r1τ1→j + p1τ2→j}

= 1 + min
π1∈Q1

{q1τ0→j + (1− q1 − p1)τ1→j + p1τ2→j}

= 1 + τ1→j + min
π1∈Q1

{q1(τ0→j − τ1→j)

+ p1(τ2→j − τ1→j)},

which implies, due to Theorem 1, that

min
π1∈Q1

{q1(τ0→j − τ1→j) + p1(τ2→j − τ1→j)} = −1.

In combination with Equation (14), this results in

min
π1∈Q1

{q1τ0→1 + p1(τ2→j − τ1→j)} = −1. (16)

Since we know from Assumption 1 and Lemma 2 that
the equation

min
π1∈Q1

{q1τ0→1 + p1µ} = −1

has a unique solution µ, it follows directly from Equa-
tions (15) and (16) that

τ1→j = τ1→2 + τ2→j for all j ∈ {3, . . . , L}. (17)

At this point, we already know how to compute τ0→1
and τ1→2 and we have also established the following
additivity property:

τ i→j = τ i→i+1 + τ i+1→j

for all i ∈ {0, 1} and j ∈ {i+2, . . . , L}. Continuing in a
similar way, we now derive an expression for computing
τ2→3 and prove that the above additivity property
holds for i = 2 as well. By applying Equation (9), for
i = 2 and j = 3, we find that

τ2→3 = 1 + min
π2∈Q2

{q2τ1→3 + r2τ2→3}

= 1 + min
π2∈Q2

{q2τ1→3 + (1− q2 − p2)τ2→3}

= 1 + τ2→3 + min
π2∈Q2

{q2(τ1→3 − τ2→3)− p2τ2→3},

which implies, due to Theorem 1, that

min
π2∈Q2

{q2(τ1→3 − τ2→3)− p2τ2→3} = −1.

By applying Equation (17), for j = 3, we find that

min
π2∈Q2

{q2τ1→2 − p2τ2→3} = −1. (18)

Since we have already computed τ1→2, it follows from
Assumption 1 and Lemma 2 that τ2→3 is the unique
solution to Equation (18) and that this unique solution
can furthermore easily be computed by means of a
bisection method.

Next, by applying Equation (9), for i = 2 and j in
{4, . . . , L}, we find that

τ2→j = 1 + min
π2∈Q2

{q2τ1→j + r2τ2→j + p2τ3→j}

= 1 + min
π2∈Q2

{q2τ1→j + (1− q2 − p2)τ2→j + p2τ3→j}

= 1 + τ2→j + min
π2∈Q2

{q2(τ1→j − τ2→j)

+ p2(τ3→j − τ2→j)},
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which implies, due to Theorem 1, that

min
π2∈Q2

{q2(τ1→j − τ2→j) + p2(τ3→j − τ2→j)} = −1.

In combination with Equation (17), this results in

min
π2∈Q2

{q2τ1→2 + p2(τ3→j − τ2→j)} = −1. (19)

It now follows from Equations (18) and (19), Assump-
tion 1 and Lemma 2, that

τ2→j = τ2→3 + τ3→j for all j ∈ {4, . . . , L}.

At this point, it should be clear that, by continuing in
this way, we obtain the following two results.
Proposition 3. For all i ∈ X \ {0, L}, we have that

min
πi∈Qi

{qiτ i−1→i − piτ i→i+1} = −1. (20)

Proposition 4. For all i, j ∈ X such that i+ 1 < j,
we have that

τ i→j = τ i→i+1 + τ i+1→j .

For any i ∈ X \{L}, the value of τ i→i+1 can therefore
be computed recursively. For i = 0, we simply apply
Equation (11). For any other i ∈ X \ {0, L}, it follows
from Assumption 1, Lemma 2 and Proposition 3 that
τ i→i+1 is the unique solution to Equation (20), which
can be obtained by means of a bisection method. In
this equation, the value of τ i−1→i has already been
computed earlier on in this recursive procedure.

The following additivity result is a direct consequence
of Proposition 4.
Corollary 5. For any i, j ∈ X such that i < j, we
have that

τ i→j =
j−1∑

k=i
τk→k+1.

It implies that the recursive techniques that we devel-
oped in this section can be used to compute any lower
expected upward first passage time.

Similar results can be proved for upper expected values
of upward first passage times. We only provide the final
expressions; the derivation is completely analogous. In
this case, the starting point is that

τ0→1 = 1
p0

(21)

For any i ∈ X \ {0, L}, the value of τ i→i+1 can then
be computed recursively, due to Assumption 1 and the
following two results.

Proposition 6. For all i ∈ X \ {0, L}, we have that

max
πi∈Qi

{qiτ i−1→i − piτ i→i+1} = −1.

Corollary 7. Consider a credal set Q on Xm that
consists of strictly positive probability mass functions
and let c be a real constant. Then

max
π∈Q
{qc− pµ}

is a strictly decreasing function of µ.

Due to the next result, this recursive technique allows
us to compute arbitrary upper expected upward first
passage times.
Proposition 8. For any i, j ∈ X such that i < j, we
have that

τ i→j =
j−1∑

k=i
τk→k+1

6 Lower and Upper Expected
Downward First Passage Times

Lower and upper expected values of downward first
passage times can be computed in more or less the
same way. The main difference is that the recursive
expressions now start from the other side, that is, from
i = L. We find that

τL→L−1 = 1
qL

(22)

and
τL→L−1 = 1

q
L

(23)

For any i ∈ X \ {0, L}, due to Assumption 1, the
values of τ i→i−1 and τ i→i−1 can now be computed
recursively, using the following two results.
Proposition 9. For all i ∈ X \ {0, L}, we have that

min
πi∈Qi

{−qiτ i→i−1 + piτ i+1→i} = −1

and
max
πi∈Qi

{−qiτ i→i−1 + piτ i+1→i} = −1

Corollary 10. Consider a credal set Q on Xm that
consists of strictly positive probability mass functions
and let c be a real constant. Then

min
π∈Q
{−qµ+ pc} and max

π∈Q
{−qµ+ pc}

are strictly decreasing functions of µ.

Once we have computed τ i→i−1 and τ i→i−1 for all
i ∈ X \ {L}, the following result enables us to easily
obtain all other lower and upper expected downward
first passage times.
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Proposition 11. For any i, j ∈ X such that i > j,
we have that

τ i→j =
i−1∑

k=j
τk+1→k and τ i→j =

i−1∑

k=j
τk+1→k

7 Lower and Upper Expected Return
Times

Lower and upper expected return times can now be
computed very easily. By applying Equations (8)–(9),
with j equal to 0, L and i, respectively, we find that

τ0→0 = 1 + min
π0∈Q0

{p0τ1→0} = 1 + p0τ1→0, (24)

τL→L = 1 + min
πL∈QL

{qLτL−1→L} = 1 + q
L
τL−1→L

(25)

and, for all i ∈ X \ {0, L}, that
τ i→i = 1 + min

πi∈Qi

{qiτ i−1→i + piτ i+1→i} (26)

In these expressions, the lower expected first passage
times τ1→0, τL−1→L, τ i−1→i and τ i+1→i can be com-
puted using the recursive techniques that we developed
in the previous two sections. Similarly, for the upper
case, we find that

τ0→0 = 1 + max
π0∈Q0

{p0τ1→0} = 1 + p0τ1→0, (27)

τL→L = 1 + max
πL∈QL

{qLτL−1→L} = 1 + qLτL−1→L

(28)

and, for all i ∈ X \ {0, L}, that
τ i→i = 1 + max

πi∈Qi

{qiτ i−1→i + piτ i+1→i}. (29)

Again, the upper expected first passage times τ1→0,
τL−1→L, τ i−1→i and τ i+1→i that appear in these ex-
pressions can be computed with the recursive tech-
niques that were introduced above.

8 Linear-Vacuous Mixtures

We now apply our results to the special case where all
the local models are linear-vacuous mixtures. In that
case, the computation of lower and upper expected
first passage and return times becomes even simpler.

We start from given strictly positive probability mass
functions π∗0 = (r∗0 , p∗0) ∈ ΣX0 , π∗L = (q∗L, r∗L) ∈ ΣXL

and, for all i ∈ X \ {0, L}, π∗i = (q∗i , r∗i , p∗i ) ∈ ΣXm
.

Furthermore, for all i ∈ X , we consider some real-
valued εi ∈ [0, 1). We use these parameters to de-
fine the following so-called linear-vacuous [10, Sec-
tion 2.9.2] local credal sets:

Q0 = Qε0
π∗0

:= {(1− ε0)π∗0 + ε0π
′
0 : π′0 ∈ ΣX0} ,

QL = QεL

π∗
L

:= {(1− εL)π∗L + εLπ
′
L : π′L ∈ ΣXL

}

and, for all i ∈ X \ {0, L},

Qi = Qεi

π∗
i

:= {(1− εi)π∗i + εiπ
′
i : π′i ∈ ΣXm

} ,

which can be regarded as neighbourhood models for
the probability mass functions π∗i , i ∈ X . Furthermore,
for all i ∈ X \ {0}, we define

q
i

:= (1− εi)q∗i and qi := (1− εi)q∗i + εi

and, for all i ∈ X \ {L},

p
i

:= (1− εi)p∗i and pi := (1− εi)p∗i + εi,

which are the minimum and maximum values of qi
and pi, for πi ∈ Qi, respectively.
In this special case, Equation (20) can be solved ana-
lytically. For all i ∈ X \ {0, L}, we find that

min
πi∈Qi

{qiτ i−1→i − piτ i→i+1}

= min
π′∈ΣXm

{
[(1− εi)q∗i + εiq

′
i]τ i−1→i

− [(1− εi)p∗i + εip
′
i]τ i→i+1

}

= (1− εi)(q∗i τ i−1→i − p∗i τ i→i+1)
+ εi min

π′
i
∈ΣXm

{q′iτ i−1→i − p′iτ i→i+1}

= (1− εi)(q∗i τ i−1→i − p∗i τ i→i+1)− εiτ i→i+1

= q
i
τ i−1→i − piτ i→i+1,

where the third equation holds because we know from
Theorem 1 that τ i−1→i and τ i→i+1 are real-valued and
positive. Therefore, for all i ∈ X \ {0, L}, it follows
directly from Equation (20) that

τ i→i+1 = 1
pi

+
q
i

pi
τ i−1→i.

By combining this recursive expression with Equa-
tion (11), we can derive explicit expressions. For all
i ∈ X \ {L}, we find that:

τ i→i+1 =
i∑

k=0

∏i
`=k+1 q`∏i
m=k pm

. (30)

In combination with Corollary 5, this equation allows
us to easily compute all lower expected upward first
passage times for the linear-vacuous case.

Similar results can be obtained for upper expected
upward first passage times and for lower and up-
per expected downward first passage times. For all
i ∈ X \ {0, L}, we find that
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τ i→i+1 = 1
p
i

+ qi
p
i

τ i−1→i,

τ i→i−1 = 1
qi

+
p
i

qi
τ i+1→i

and
τ i→i−1 = 1

q
i

+ pi
q
i

τ i+1→i.

By combining these recursive equations with Equa-
tions (21), (22) and (23), respectively, we can obtain
explicit expressions. For all i ∈ X \ {L}, we find that

τ i→i+1 =
i∑

k=0

∏i
`=k+1 q`∏i
m=k pm

and, for all i ∈ X \ {0}, we find that

τ i→i−1 =
L∑

k=i

∏k−1
`=i p`∏k
m=i qm

(31)

and

τ i→i−1 =
L∑

k=i

∏k−1
`=i p`∏k
m=i qm

.

In combination with Proposition 8 and 11, these equa-
tions allow us to easily compute all upper expected
upward first passage times and all lower and upper
expected downward first passage times for the linear-
vacuous case.

For the lower and upper return times, we still use
Equations (24) and (25) if i = 0 and Equations (27)
and (28) if i = L. If i ∈ X \ {0, L}, then, for this
linear-vacuous case, Equations (26) and (29) can be
simplified. We find that

τ i→i = 1 + min
πi∈Qi

{qiτ i−1→i + piτ i+1→i}

= 1 + min
π′

i
∈ΣXm

{
[(1− εi)q∗i + εiq

′
i]τ i−1→i

+ [(1− εi)p∗i + εip
′
i]τ i+1→i

}

= 1 + (1− εi)(q∗i τ i−1→i + p∗i τ i+1→i)
= 1 + q

i
τ i−1→i + p

i
τ i+1→i. (32)

and that

τ i→i = 1 + (1− εi)(q∗i τ i−1→i + p∗i τ i+1→i)
+ εi max{τ i−1→i, τ i+1→i}

= 1 + max{qiτ i−1→i + p
i
τ i+1→i,

q
i
τ i−1→i + piτ i+1→i}.

9 Numerical Results

We end by computing lower and upper expected first
passage and return times for two examples of imprecise
birth-death chains. The first is a general example of an
imprecise birth-death chain and the second one is an
imprecise birth-death chain with linear-vacuous local
models. In both examples, we take Qi to be identical
for all i ∈ X \{0, L}, and simply denote it by Q, which
is a credal set on Xm. Some of the lower and upper
expected values that we compute have many decimal
points; we present them up to the third decimal point.

General Example

Consider an imprecise birth-death chain with state
space X = {0, 1, 2, 3, 4}, that is, L = 4. Let Q0 be
determined by p0 = 0.15 and p0 = 0.4 and let QL be
determined by q

L
= 0.2 and qL = 0.6. The credal set

Q is taken to be the convex hull of the following 10
extreme points, which are of the form π = (q, r, p).

(0.65, 0.15, 0.2), (0.6, 0.25, 0.15), (0.5, 0.4, 0.1),
(0.43, 0.45, 0.12), (0.33, 0.5, 0.17), (0.27, 0.43, 0.3),
(0.25, 0.35, 0.4), (0.3, 0.25, 0.45), (0.4, 0.17, 0.43),
(0.55, 0.1, 0.35)

Figure 2 provides a graphical representation of this
credal set Q.4

q

rp

Figure 2: The grey zone depicts the credal set Q from
the birth-death chain in the general example.

For this particular example, we now compute τ0→4,
τ0→4, τ4→0 and τ4→0.

Due to Corollary 5, we know that

τ0→4 = τ0→1 + τ1→2 + τ2→3 + τ3→4, (33)

4We represent ΣXm by means of a equilateral triangle of
height one. The elements π = (q, r, p) of ΣXm correspond to
points in this triangle. For every such π, the value of q, r, p is
equal to the perpendicular distance from that point to the edge
that opposes the corresponding corner.
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τ0→4 16.635
τ0→4 1420
τ4→0 8.093
τ4→0 81.32

Table 1: Final results for the general example.

τ0→1 2.5 τ4→3 1.666
τ1→2 3.889 τ3→2 2.051
τ2→3 4.814 τ2→1 2.169
τ3→4 5.432 τ1→0 2.206
τ0→1 6.666 τ4→3 5
τ1→2 43.333 τ3→2 12
τ2→3 226.666 τ2→1 23.2
τ3→4 1143.333 τ1→0 41.12

Table 2: Intermediate results for the general example.

where, using Equation (11),

τ0→1 = 1/p0 = 2.5.

By plugging this value for τ0→1 in Equation (20), for
i = 1, we find that

min
π1∈Q

{2.5q1 − p1τ1→2} = −1

As we know from Lemma 2, this equality has a unique
solution that can for example be obtained by means of
a bisection method. We find that τ1→2 = 3.889. Simi-
larly, in a recursive fashion, we find that τ2→3 = 4.814
and τ3→4 = 5.432. A final application of Equation (33)
tells us that τ0→4 = 16.635. τ0→4, τ4→0 and τ4→0
can be computed analogously; the results are given in
Table 1. Intermediate results can be found in Table 2.

Linear-Vacuous Example

Consider a precise birth-death chain with state space
X = {0, 1, 2, 3, 4}—L = 4—and the following proba-
bility matrix:

P ∗ =




0.55 0.45 0 0 0
0.3 0.5 0.2 0 0
0 0.3 0.5 0.2 0
0 0 0.3 0.5 0.2
0 0 0 0.6 0.4,




which is completely characterised by the probability
mass functions π∗0 = (0.55, 0.45), π∗L = (0.6, 0.4) and,
for all i ∈ X \ {0, L}, π∗i = π∗ = (0.3, 0.5, 0.2).

We now let εi = ε = 0.4 for all i ∈ X and consider
the imprecise birth-death chain that has the corre-
sponding linear-vacuous credal sets as its local models.

In this way, we obtain the following lower and upper
probabilities:

p0 = 0.27, p0 = 0.67, q
L

= 0.36, qL = 0.76

and, for all i ∈ X \ {0, L}:

q
i

= 0.18, qi = 0.58, p
i

= 0.12, pi = 0.52.

For all i ∈ X \ {0, L}, the credal set Qi is equal to
Qεπ∗ , which is the convex hull of the following three
extreme points:

(0.58, 0.3, 0.12), (0.18, 0.7, 0.12), (0.18, 0.3, 0.52).

Figure 3 provides a graphical representation of this
credal set Qεπ∗ .

q

rp

π∗

Figure 3: The grey zone depicts the credal set Qεπ∗
from the birth-death chain in the the linear-vacuous
example.

The lower and upper expected return times that cor-
respond to this particular example can be found in
Table 3. For the sake of this example, we compute
τ1→1 explicitly.

We start by applying Equation (32) for i = 1, which
tells us that

τ1→1 = 1 + q1τ0→1 + p1τ2→1

= 1 + 0.18τ0→1 + 0.12τ2→1.

Therefore, since we know from Equations (30) and (31)
that

τ0→1 = 1
p0

= 1.492

and

τ2→1 = 1
q2

+
p2
q2q3

+
p2p3
q2q3q4

= 2.154,

we find that τ1→1 = 1.526.
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i τ i→i τ i→i
0 1.584 91.41
1 1.526 24.956
2 1.678 17.845
3 1.656 79.71
4 2.037 503.724

Table 3: Lower and upper expected return times for
the birth-death chain in the linear-vacuous mixture
example.

10 Summary and Future Work

We have presented a simple method for computing
lower and upper expected—upward and downward—
first passage times and return times in imprecise birth-
death chains, have presented numerical results, and
have discussed a special case for which our method
simplifies even more.

In future research, we plan to try and apply similar
methods to (a) other simple types of imprecise Markov
chains—different from birth-death chains—such as,
for example, the Bonus-Malus systems that are de-
scribed in Reference [6] and (b) continuous—rather
than discrete—time models.
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