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This dissertation is concerned with the study of discrete-time stochastic pro-
cesses, which are dynamical systems that change over time in an uncertain
way, and for which these changes only occur at discrete time instances. We
will specifically focus on those cases where the state of the process at any sin-
gle time instant can only take a finite number of possible values; the stochas-
tic process is then called a finite-state discrete-time stochastic process. To
describe and draw conclusions about the behaviour of such a stochastic pro-
cess, we use imprecise probability models, and in particular conditional up-
per expectations. These so-called global upper expectations exist in many
di�erent forms and shapes, and it is our aim in this dissertation to study the
theoretical aspects of these models, reveal the relations between them, and
suggest new suitable global upper expectations of our own invention.

Our narrative starts with the basic setting of a single (unknown) variable
taking values in a finite set, and presents three possible mathematical mod-
els for quantifying the uncertainty with respect to such a variable. These
three models are all called imprecise probability models, because they gen-
eralise the standard probability model—a probability measure, charge or
mass function—to robustly deal with those situations where it is infeasible
or not justified to specify such a ‘precise’ probability model. The first type
of imprecise probability model that we consider is a set of probability mass
functions (or credal set), which gathers all probability mass functions that
are deemed possible. The second type of imprecise probability model is a
set of acceptable gambles, and captures a subject’s beliefs by expressing her
attitude towards gambling on the value of the uncertain variable considered.
Finally, we also look at coherent upper and lower expectations; these can
be interpreted behaviourally, as expressing a subject’s infimum selling and
supremum buying prices, or more traditionally, as representing upper and
lower tight bounds on a collection of plausible (linear) expectations. We
discuss the well-known relations between these models and present some
basic extension procedures.

We thenmove on to consider the specific setting of discrete-time stochas-
tic processes. The act of modelling such a stochastic process starts at a local
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level, where we make assessments about how the process is going to change
from one time instant to the next. These assessments can typically be ac-
quired from data or subjective expert opinions, and are then mathematically
expressed in terms of one of the three types of imprecise uncertainty models
mentioned earlier. Though the local models form what is typically directly
available from observation, in the end, we are interested in more global fea-
tures of the process. These global features involve, for instance, upper and
lower (bounds on) expected hitting times, expected time average behaviour,
or hitting probabilities. In order to make inferences of such kind, we thus
want to extend and combine the local models into a single joint ‘global’
model, which in our case will always be a global upper expectation. Mathe-
matically speaking, these global models are extended real-valued operators
whose first argument is an extended real-valued function or variable on the
space of all possible infinite state sequences, and whose second argument is
a specific type of conditioning event.

Global upper expectations can be obtained in various di�erent frame-
works, using various di�erent techniques. We first consider three so-called
finitary global upper expectations. These global upper expectations are
characterised by the common property that they extend the local models
without the use of any continuity assumptions, which is why we call them
finitary. Their definitions are relatively simple and rely on concepts that are
well-known in the theory of imprecise probabilities. One is deduced in the
behavioural framework of sets of acceptable gambles, one is obtained as the
upper envelope of the expectations corresponding to a set of global—finitely
additive—probabilities, and one is defined axiomatically, as the natural ex-
tension under conditional coherence. We study the mathematical properties
of these global operators, present alternative characterisations for them, and
show that, if the local models from which these di�erent global upper ex-
pectations are derived are chosen in accordance with each other, then all
these finitary global upper expectations coincide. It will turn out, however,
that these finitary upper expectations only behave well on the domain of
bounded finitary variables, which are bounded real-valued functions that
depend on the states of the process only at a finite number of time instances.
This domain is not large enough for many practical purposes, which is why
we are inclined to look at other more involved types of global upper expec-
tations.

One first such type are the game-theoretic upper expectations intro-
duced and, for a large part, studied by Shafer and Vovk [85, 86]. These
types of global upper expectations start from sets of acceptable gambles,
or sometimes upper expectations, on a local level, and then use allowable
betting strategies—supermartingales—to turn these local assessments into
global assessments. Concretely, the game-theoretic upper expectation rep-
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resents a subject’s infimum starting capital such that, by using an allowable
betting strategy, he can surely hedge the uncertain pay-o� corresponding to
the considered variable. Multiple di�erent versions of game-theoretic upper
expectations have been used in the literature, and we first argue why one
of them is to be preferred over the others. We then go on to prove a broad
range of properties for this operator, with a strong emphasis on its continuity
properties. We show in particular that it satisfies continuity with respect to
bounded below increasing sequences, continuity with respect to decreasing
sequences of bounded above finitary variables, and continuity with respect
to decreasing lower cuts. These properties are considerably stronger than
those of the finitary global upper expectations, and they make the game-
theoretic upper expectation more suitable for use on general domains of
variables.

Next, we introduce and study global upper expectations that are cen-
trally based on the notion of a (countably additive) probability measure.
More precisely, we start from local sets of probability mass functions, com-
bine and extend these to form a set of plausible global probability measures,
and the associated global upper expectation is then the upper envelope of
the expectations corresponding to this set of global probability measures.
The domain of this global upper expectation is furthermore extended to
also include general, not necessarily measurable variables by relying on up-
per (Lebesgue) integrals. We again study the properties of this operator, and
in particular show that its continuity properties are comparable to those of
the game-theoretic upper expectation. These properties then allow us to es-
tablish that these two types of global upper expectations are equal on a fairly
large domain of variables; large enough to cover most practically relevant
inferences.

The final type of global upper expectation that we consider is an ax-
iomatic one, similar to the finitary axiomatic global upper expectation, but
where a continuity property is added as one of the defining axioms. Two
slightly di�erent versions of this continuity axiom—and thus also of the re-
sulting axiomatic global upper expectation—are considered; one is weaker
than the other, but since they both solely apply to sequences of bounded fini-
tary variables they are actually both fairly weak. We show that the axiomatic
upper expectation based on the stronger of the two axioms coincides with
the game-theoretic upper expectation, and therefore also for a large part
with the measure-theoretic upper expectation. The axiomatic upper expec-
tation based on the weaker axiom, on the other hand, can be seen as an
‘imprecise-probabilistic’ generalisation of the Daniell integral [19]. We show
that, though this weaker type of axiomatic upper expectation is sometimes
too conservative, it still is equal to its stronger counterpart, and therefore
possesses desirable properties, in many practical situations.
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Dit proefschrift richt zich op de studie van stochastische processen in dis-
crete tijd; dynamische systemen die op een onzekere manier veranderen
doorheen de tijd, en waarbij deze veranderingen zich enkel voordoen op
discrete tijdstippen. We zijn in het bijzonder geïnteresseerd in die geval-
len waar de toestand van het proces op elk tijdstip slechts een eindig aan-
tal waarden kan aannemen. Het proces heeft dan een zogenoemde ein-
dige toestandsruimte. Om het gedrag van een dergelijk proces wiskundig
te beschrijven, alsook om erover te redeneren, gebruiken we imprecieze-
waarschijnlijkheidsmodellen, en meer bepaald, conditionele bovenverwach-
tingswaardeoperatoren. Er bestaan veel verschillende soorten zulke zoge-
noemde ‘globale’ bovenverwachtingswaardeoperatoren, en het is ons doel
om de theoretische eigenschappen van deze operatoren te bestuderen, hun
onderlinge relaties te onthullen, en nieuwe gepaste conditionele bovenver-
wachtingswaardeoperatoren in te voeren.

Allereerst beschouwenwe het eenvoudige geval van een enkele onzekere
veranderlijke die een eindig aantal waarden kan aannemen, en behandelen
we drie soortenmodellen die ons in staat stellen om de onzekerheid over een
dergelijke veranderlijke wiskundig te beschrijven. Deze drie modellen wor-
den alle imprecieze-waarschijnlijkheidsmodellen genoemd, omdat ze het
klassieke waarschijnlijkheidsmodel – een waarschijnlijkheidsmaat, -lading,
of -massa – veralgemenen om robuust te kunnen handelen in die situaties
waar het niet mogelijk is, of niet gerechtvaardigd is, om zo’n klassiek ‘pre-
cies’ waarschijnlijkheidsmodel te specificeren. Het eerste type imprecieze-
waarschijnlijkheidsmodel is een verzameling van massafuncties, of ook cre-
dale verzameling genoemd. Zo’n verzameling bevat alle massafuncties die
we mogelijk achten. Het tweede type imprecieze-waarschijnlijkheidsmodel
is een verzameling van aanvaardbare gokken, en tracht iemands overtuigin-
gen voor te stellen door uit te drukken welke gokken over de waarde van een
onzekere veranderlijke hij of zij bereid is aan te gaan. Tot slot bekijken we
ook coherente boven- en onderverwachtingswaardeoperatoren; zij kunnen
gedragsmatig geïnterpreteerd worden, als iemands minimale verkoopsprij-
zen en maximale aankoopprijzen, of op een meer traditionele manier, als

xix



nauwe boven- en ondergrenzen op een verzameling vanmogelijke (lineaire)
verwachtingswaardeoperatoren. We bespreken de gekende relaties tussen
deze drie types modellen en behandelen enkele eenvoudige methoden die
ons in staat stellen om deze modellen uit te breiden.

Vervolgens kijken we naar de specifieke context van stochastische pro-
cessen in discrete tijd met eindige toestandsruimte. Het modelleren van
zo’n proces begint typisch op een lokaal niveau, waar we uitspraken doen
over hoe (wij geloven dat) het proces zal veranderen van het ene tijdstip
naar het volgende. Hiervoor kan men zich vaak baseren op beschikbare
data of op de mening van een ervaringsdeskundige. Deze lokale uitspra-
ken worden dan wiskundig voorgesteld door een van de drie imprecieze-
waarschijnlijkheidsmodellen die we zojuist hebben beschreven. Hoewel
men vaak wel een idee heeft over het lokale gedrag, zijn we uiteindelijk
voornamelijk geïnteresseerd in de meer globale kenmerken of eigenschap-
pen van een stochastisch proces. Zulke kenmerken zijn bijvoorbeeld boven-
en ondergrenzen op de verwachte tijd tot bereik, en boven- en ondergrenzen
op verwacht tijdsgemiddeld gedrag. Om conclusies te kunnen trekken over
zulke globale aspecten willen we de lokale modellen uitbreiden en combi-
neren tot een enkel globaal model, dat in ons geval de vorm zal aannemen
van een globale bovenverwachtingswaardeoperator. Zo’n globale bovenver-
wachtingswaardeoperator is wiskundig gezien een uitgebreid-reëlwaardige
functionaal wiens eerste argument een uitgebreid-reëlwaardige functie of
veranderlijke is op de ruimte van alle mogelijke oneindige toestandsrijen,
en wiens tweede argument een specifiek soort conditionerende gebeurtenis
is.

Globale bovenverwachtingswaardeoperatoren kunnen verkregen wor-
den op veel verschillende manieren. We behandelen eerst drie soorten
zogenoemde finitaire bovenverwachtingswaardeoperatoren. Deze boven-
verwachtingswaardeoperatoren worden gekarakteriseerd door de gemeen-
schappelijke eigenschap dat ze de lokale modellen uitbreiden zonder ge-
bruik te maken van enige continuïteitsaannames – daarom noemen we ze
dus finitair. De definities van deze modellen zijn relatief eenvoudig en steu-
nen op concepten die welgekend zijn in de imprecieze waarschijnlijkheids-
leer. Er is er een die afgeleid is uit het concept van een verzameling van
aanvaardbare gokken, een die de vorm aanneemt van bovengrenzen op de
verwachtingswaarden die overeenkomen met een verzameling van globale
– eindige additieve – waarschijnlijkheden, en een die axiomatisch gedefini-
eerd wordt, als de natuurlijke extensie onder conditionele coherentie. We
behandelen dewiskundige eigenschappen van deze globale operatoren, pre-
senteren alternatieve karakteriseringen, en tonen aan dat, als de lokale mo-
dellen waarvan deze globale modellen zijn afgeleid in overeenstemming zijn
met elkaar, alle finitaire bovenverwachtingswaardeoperatoren samenvallen.
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Anderzijds zullen we ook zien dat deze finitaire bovenverwachtingswaarde-
operatoren enkel geschikt zijn voor gebruik op het domein van begrensde
finitaire veranderlijken; dit zijn begrensde reëlwaardige functies die afhan-
gen van de toestanden van het proces op slechts een eindig aantal tijdstip-
pen. Dit domein is niet groot genoeg voor de meeste praktische doeleinden
en daarom zijn we ertoe genoopt om andere, meer complexe soorten globale
bovenverwachtingswaardeoperatoren te onderzoeken.

Een eerste dergelijke soort globale bovenverwachtingswaardeoperator
die we bekijken is de speltheoretische bovenverwachtingswaardeoperator,
ingevoerd en bestudeerd door Shafer en Vovk [85, 86]. Zulke globale ope-
ratoren starten, op een lokaal niveau, van verzamelingen van aanvaard-
bare gokken, of soms van lokale bovenverwachtingswaardeoperatoren, en
gebruiken dan toelaatbare gokstrategieën – supermartingalen – om deze
lokale informatie om te zetten naar globale bovenverwachtingswaarden.
Meer concreet geeft de speltheoretische bovenverwachtingswaardeopera-
tor het minimale startkapitaal aan waarmee iemand, door een toelaatbare
gokstrategie te kiezen en aan te houden, met zekerheid uiteindelijk meer
geld zal hebben dan de onzekere prijs die verbonden is met de beschouwde
veranderlijke. Verschillende versies van de speltheoretische bovenverwach-
tingswaardeoperator zijn in het verleden gebruikt en we tonen eerst aan
waarom een specifieke versie te verkiezen is boven alle anderen. Vervol-
gens bewijzen we een hele reeks eigenschappen voor deze operator, met een
bijzondere klemtoon op zijn continuïteitseigenschappen. We tonen onder
andere aan dat hij voldoet aan continuïteit ten opzichte van naar onder be-
grensde stijgende rijen, continuïteit ten opzichte van dalende rijen van naar
boven begrensde finitaire veranderlijken, en continuïteit ten opzichte van
dalende onder-sneden. Deze eigenschappen zijn beduidend sterker dan die
van de finitaire bovenverwachtingswaardeoperatoren, waardoor de spelthe-
oretische bovenverwachtingswaardeoperator geschikter is voor het gebruik
op een algemeen domein.

Daarnaast introduceren en behandelen we ook een globale bovenver-
wachtingswaardeoperator die afgeleid is uit het concept van een (aftelbaar
additieve) waarschijnlijkheidsmaat. Meer bepaald starten we van lokale
verzamelingen van massafuncties, vervolgens combineren we ze en breiden
we ze uit tot een verzameling van globale waarschijnlijkheidsmaten, en tot
slot definiëren we de geassocieerde globale bovenverwachtingswaardeope-
rator als de kleinste bovengrens van de verwachtingswaarden afgeleid uit
deze verzameling van globale waarschijnlijkheidsmaten. Door gebruik te
maken van (Lebesgue-)boven-integralen, wordt het domein van deze ope-
rator bovendien uitgebreid zodat het ook niet noodzakelijk meetbare ver-
anderlijken bevat. We onderzoeken de eigenschappen van deze maatthe-
oretische operator, en tonen in het bijzonder aan dat zijn continuïteitsei-
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genschappen gelijkaardig zijn aan die van de speltheoretische bovenver-
wachtingswaardeoperator. Deze eigenschappen stellen ons vervolgens in
staat om te bewijzen dat deze twee soorten operatoren samenvallen op een
betrekkelijk groot domein van veranderlijken; een domein dat de meeste
praktisch relevante veranderlijken bevat.

Een laatste soort globale bovenverwachtingswaardeoperator die we be-
kijken is axiomatisch gedefinieerd, gelijkaardig aan de finitaire axiomati-
sche globale bovenverwachtingswaardeoperator, met dit belangrijk verschil
dat er nu een continuïteitsaxioma wordt toegevoegd als een van de karak-
teriserende axioma’s. Twee enigszins verschillende versies van dit continu-
ïteitsaxioma – en dus ook van de resulterende axiomatische globale boven-
verwachtingswaardeoperator – worden behandeld; het ene is zwakker dan
het andere, maar aangezien ze allebei enkel betrekking hebben op rijen van
begrensde finitaire veranderlijken zijn ze eigenlijk beiden relatief zwak. We
tonen aan dat de axiomatische globale bovenverwachtingswaardeoperator
gebaseerd op het sterkere axioma samenvalt met de speltheoretische boven-
verwachtingswaardeoperator, en daardoor ook op een groot gebied samen-
valt met de maattheoretische bovenverwachtingswaardeoperator. Ander-
zijds kan de axiomatische globale bovenverwachtingswaardeoperator ge-
baseerd op het zwakkere axioma kan gezien worden als een ‘imprecies-
probabilistische’ veralgemening van de Daniell-integraal [19]. We tonen
aan dat, hoewel deze globale bovenverwachtingswaardeoperator in som-
mige gevallen te conservatief is, hij desondanks op een groot gebied sa-
menvalt met zijn axiomatisch sterkere tegenhanger, en dus veel van zijn
gewenste eigenschappen overneemt.
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—Chapter I—

I�����������

Probability measures are without doubt amongst the most common and cel-
ebrated mathematical tools to quantify beliefs and draw inferences about
the uncertain evolution of a discrete-time stochastic process [33, 52, 54,
90]. Recent decades however have seen the rise of an entire family of alter-
native and more general uncertainty models, which we commonly refer to
as imprecise probability models [3, 83, 106, 110]. These models are charac-
terised by the common property that they allow reasoning to be performed
in an informative and conservative way, even in those situations where it
is infeasible or inappropriate to specify a single probability measure. Such
situations may for instance arise when data about the considered stochastic
process is scarce, or when expert judgements are conflicting.

However, with the exception of game-theoretic upper and lower expec-
tations [85, 86], most imprecise probability models were not specifically
designed with the stochastic processes setting in mind. This setting is some-
what unique, and it is often not clear how imprecise probability models
can—and should—be adapted and applied to it. Some of the approaches
that we will discuss here are not entirely new, and can be seen as modified
versions of already existing approaches. Some others, then, are suggestions
of our own invention. Yet, whatever their origin, it is the possible proper-
ties of such adapted imprecise probability models that will turn out to be
decisive for reaching acceptance amongst a broad audience. Our aim in this
respect is to clarify, to shed light on the characteristic properties of these
models, and to bring forth the mathematical relations that either tie them
together or set them apart.

1.1 Context and motivation

A stochastic process can be roughly described as any system or phe-
nomenon that changes—typically over time—in an uncertain way. Such
processes are omnipresent and we have to deal with them in everyday life.
Think for instance of the COVID pandemic and the related number of in-
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fected people. Or, not unrelated to this, the fluctuations of the stock market.
A good understanding of such processes has never been more vital.

This dissertation is not a work on medicine or virology though, and
neither is it concerned with finance. We study stochastic processes from
a purely mathematical perspective, where they are regarded as collections
of uncertain variables or uncertain states indexed by time. We focus on
discrete-time stochastic processes [35, 45, 54, 86, 90], which are processes
whose time index takes values in the set of natural numbers—this in con-
trast with continuous-time stochastic processes [33, 52] where time takes
values in the set of positive real numbers. Such processes are typically ac-
companied by a number of parameters that describe—in a non-deterministic
manner—the (uncertain) values of the individual uncertain states. From
these parameters one aims to draw global inferences such as, for instance,
average/ergodic behaviour or expected hitting times. The mathematical re-
search on discrete-time stochastic processes, and in particular on discrete-
time Markov chains [45, 48, 54], has been going on for more than a cen-
tury, and our acquired insights about them are being applied extensively in
a wide variety of scientific fields, including mathematical finance [71, 79],
queueing theory [2, 71], biology [36, 41] and many more. Moreover, it
is worth noting that the mathematical treatment of discrete-time stochastic
processes goes back to the pioneering work of Huygens, de Fermat and Pas-
cal [51, 84]—often associated with the very dawn of probability theory—
where they first appeared as chance games between two or more players.

The act of modelling a discrete-time stochastic process almost always
starts o� on a local level, where we quantify beliefs about how the process
is likely to change from one time instant to the next. That is to say, for any
time instant 9 � 0 and for every possible evolution of the process up to
time 9, we make non-deterministic (or probabilistic) statements about the
state -9+1 at the next time instant. For instance, in the case of the COVID
pandemic, we typically specify the expected number of people that will be
infected by tomorrow or next week (being -9+1), based on a growth ratio
and the number of infected people during the past week or month. If such
local assessments are expressed in terms of probability mass functions or
probability distributions on the possible values of the next state -9+1, and
if these probabilities only depend on the current state of the process and
not on any past states, then we say that the process is a finite-state Markov
chain [45, 48, 54]—for instance, for the COVID pandemic, if our probabil-
ity distribution for tomorrow’s number of infected people only depends on
today’s number of infected people and today’s growth ratio, and not on any
past values of these variables. Markov chains are only special cases though,
and in general, assessments about the incremental change of the process’s
state may depend on the entire history of the process, and may also be
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mathematically expressed in terms of various uncertainty models di�erent
from probability mass functions or probability distributions. One restricting
assumption that we always make, though, is that the process’s state -9 at
any given time instant 9 can only take a finite number of di�erent possible
values.

One starts from local assessments because they are typically what is
readily available from data or expert knowledge, yet our eventual interest
typically lies in more global features of the stochastic process. This could in-
volve, for instance, the time average of a real-valued function on the states
of the process, or the time until the process state will attain a certain value.
In the case of the COVID pandemic, a typical question of interest would
be: ‘what is the expected time until all available intensive care beds in the
country are occupied?’ The local uncertainty models do not tell us anything
about such features—at least not directly. As such, we are confronted with a
challenge central in the study of all discrete-time stochastic processes: ‘How
do we combine and extend local uncertainty models such that we can make
informative judgements about global properties of the process?’

As it often goes with questions of considerable importance, this one too
does not have a single all-encompassing answer. There are many possible
routes one can follow, each with their own strengths and flaws. Perhaps
the most famous—or infamous depending on one’s perspective—one is the
measure-theoretic approach [5, 32, 81, 90, 112]. In this approach, the local
probabilities are combined and extended to a single (countably additive)
global probability measure on a su�ciently large domain of global events—
subsets of the space of all possible trajectories of the process. These global
probability measures then lead, by means of integration, to expectations,
which can on their turn be used to draw inferences.

Yet, in spite of its popularity, the measure-theoretic approach has some
drawbacks. One, for instance, is the multitude of abstract mathematical con-
cepts on which the theory is founded, which may hinder users to come to
grips with the practical meaning of the treated objects. The most important
however, we feel, is the fact that the theory assumes that beliefs about the lo-
cal dynamics can be modelled, for every possible history up until some time
instant, by a single probability mass function. When information or data
about the process is scarce, for instance due to time or budget restrictions, or
when it is inconsistent, for instance due to conflicting expert statements, it is
often unwarranted to specify such a single mass function [110]. During the
start of the COVID pandemic, for example, there was little epidemiological
data on which we could rely and, on top of that, expert opinions were seri-
ously divided. In those situations, we are typically—or should be—inclined
to act conservatively and only make partial judgements about probability
mass functions, leading us to consider an entire set of ‘plausible’ probability
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mass functions. In fact, in some cases, even sets of probability mass func-
tions do not su�ce or are not the appropriate tool to express a subject’s
beliefs.

To model the local dynamics in a more general and robust manner, we
instead use three types of so-called imprecise probability models [3, 83, 106,
110]. One type of model are the sets of probabilities—also known as credal
sets1—mentioned above. Another model are sets of acceptable gambles,
where a subject expresses its beliefs about an uncertain phenomenon by
simply specifying which gambles—uncertain payo�s depending on the out-
come(s) of the phenomenon—she is willing to accept (or reject). Lastly, we
also consider upper expectations; these are generalisations of the traditional
(linear) expectations and can be interpreted either behaviourally, as a sub-
ject’s infimum acceptable selling prices for gambles, or probabilistically, as
upper bounds on the expectations corresponding to a set of probabilities.

Though locally we will consider all three of the above imprecise prob-
ability models, in the end, on a global level, we will only be interested in
the resulting upper expectations or, better, the global upper expectations.
Mathematically speaking, such a global upper expectation is an operator
that associates with each (possibly extended) real-valued function/variable
5 on the sample space—the set of all possible infinite paths that the pro-
cess can follow—and any conditioning event2 �, an extended real number,
which we simply call the upper expectation of 5 conditional on �. One rea-
son for our focus on global upper expectations is that these operators arise
naturally in both a behavioural framework with sets of acceptable gambles
and a probabilistic framework with sets of probability charges or measures.
More important is that, regardless of the framework one works in, (global)
upper expectations are typically of central interest when one aims to draw
inferences about a stochastic process. In that respect, they fulfil the same
role as traditional linear expectations, with the caveat that they only provide
us with upper and lower bounds3 rather than precise numerical values for
inferences such as expected time-averages or expected hitting times. Yet,
this should not alarm us, nor surprise us; these partial judgements are only
a result of the fact that the local models were designed—in contrast to tra-
ditional precise models—with the purpose to correctly distinguish between

1The term ‘credal set’ is used more specifically to refer to sets of finitely additive probability
charges that are closed and convex.

2Strictly speaking, the conditioning events will not be general subsets of the sample space,
but will always assumed to correspond to a (single) possible history of the process up until
some finite time instant.

3Lower bounds are provided by (global) lower expectations rather than (global) upper ex-
pectations. Nonetheless, lower expectations are mathematically speaking equivalent to upper
expectations because they can be put in a one-to-one relation—this relation is often called the
conjugacy relation—hence, why we focus on upper expectations only.
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what is known and what is not known. Hence, the upper and lower bounds
provided by global upper expectations allow us, in the end, to reason in
a way that is more robust and conservative with respect to our own igno-
rance.4

The field of imprecise probabilities is, compared to traditional probabil-
ity theory, still in its infancy. For the purpose sketched above, where we
want to extend local models to a single global upper expectation, one could
employ numerous possible methods. Yet some of them have never been ap-
plied in this specific context before. Others are simply badly documented.
A first aim of this dissertation is to clarify on this account, by providing an
overview of the possible approaches and presenting suitable definitions for
each of them—sometimes developed here for the first time. We distinguish
between six types of global upper expectations, depending on the type of
local model they start from and the extension arguments they rely on.

A first class are the finitary global upper expectations. There are three of
them; one based on sets of finitely additive probabilities, one based on sets
of acceptable gambles, and one axiomatic type that is based on the notion
of conditional coherence for upper expectations [106, 110, 113]. We call
them finitary because they extend local models solely employing finitary
arguments—no continuity arguments are involved. Their definitions are
simple and intuitive, and follow from applying concepts well-known within
imprecise probability theory. Their critical shortcoming, however, is that
they only work well for functions on the sample space that are bounded and
finitary—the latter meaning that the function only depends on the states of
the process up to some finite time instant. This domain is insu�cient for
many practical purposes; the hitting time of a certain state value, for in-
stance, is a function on the sample space that depends on the entire infinite
path taken by the process and that may sometimes take the value +1.

A second and—we think—more interesting class of global upper expec-
tations are those whose definition involves one or more continuity assump-
tions. Such continuity assumptions allow us to broaden the domain of vari-
ables that can be mathematically reasoned with in a meaningful way. More
specifically, these continuity-based operators allow us to reason with ex-
tended real-valued (not necessarily finitary) functions on the sample space,
including hitting times/probabilities or limiting time averages. The catch,
though, is that their analysis is considerably more challenging.

A first such type of global upper expectation can be seen as a general-
isation of the measure-theoretic (linear) expectations that we spoke about
earlier. The starting point are sets of local probability mass functions—one

4Apart from Walley’s seminal work [110], we also recommend [57, Chapter 1] for a short
but excellent read on the motivation for upper expectations in stochastic processes.
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set for each possible finite history of the process. We pick a single probability
mass function from each of these sets and then construct a corresponding
global probability measure by using techniques familiar from classical mea-
sure theory.5 By repeating this for every possible selection of local probabil-
ity mass functions, we obtain an entire set of compatible global probability
measures. The resultingmeasure-theoretic upper expectation is then obtained
by taking an upper envelope over the expectations associated with this set
of global probability measures.

A second type of continuity-based global upper expectation that we
study are the game-theoretic upper expectations introduced and advocated
by Shafer and Vovk [85, 86]. As the name itself suggests, these operators
are derived from a game-theoretic type of reasoning, where the specifica-
tions of the local models, in the form of sets of acceptable gambles or up-
per expectations, characterise the moves of a first player—‘Forecaster’—and
where a second player—‘Skeptic’—aims to become rich by betting against
Forecaster’s moves. The possible evolutions of Skeptic’s capital form (su-
per)martingales, and the corresponding global upper expectation of a func-
tion 5 is the smallest possible value for which there is a (super)martingale
that starts in this value and eventually hedges—exceeds the value of— 5 .6

Game-theoretic upper expectations are attractive because they combine a
high level of generality with an easy-to-use constructive flavour, while still
satisfyingmany powerful limit laws and continuity properties. These advan-
tages have already led to game-theoretic upper expectations being applied
in a multitude of occasions [8, 26, 58, 60, 88].

Last in our list of continuity-based upper expectations is a suggestion of
our own. It is an axiomatic model that aims to combine the intuitive and uni-
versal elements of the finitary global upper expectations, and the powerful
mathematical properties of the continuity-based global upper expectations.
The axioms on which its construction is based are clear and simple; it is a
combination of the well-known coherence properties and a single, rather
weak continuity property. A conservativity argument is furthermore used
to determine, amongst all the global upper expectations that satisfy these
properties, our unique desired axiomatic model.

Apart from presenting, motivating and developing possible approaches
to arrive at a global upper expectation, a second aim of this dissertation—
which of course partially influences the first—is to study the properties of
these global upper expectations. In particular, a considerable part of our
work is devoted to proving—and disproving—continuity properties. Such

5The continuity assumption in this case comes disguised under the form of countable ad-
ditivity, which is by definition satisfied for a probability measure.

6The continuity assumption here comes disguised under the fact that we allow super-
martingales to hedge the considered variable at ‘infinity’.
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Figure 1.1 Overview of the approaches treated in this dissertation.

continuity properties are important from both a theoretical and a practi-
cal point of view, but their relevance is perhaps best illustrated by simply
recalling measure-theoretic expectations and how two of their most cele-
brated properties—the dominated convergence theorem and the monotone
convergence theorem—have contributed to the success of measure theory
in modern probability theory.

A final aim of the dissertation is to establish relations between the dif-
ferent types of global upper expectations. We will show that all finitary
global upper expectations coincide, at least if their respective local models
are chosen in accordance with each other. More importantly, we will show
that the same is, to a large extent, true for the continuity-based global upper
expectations. The merit of such connections is obvious as they allow us to
take results, properties and algorithms developed for only one type of global
upper expectation and apply them to all other equivalent global upper ex-
pectations. Even more important is that, due to such results, we may arrive
at a consensus about the proper choice of an imprecise global model; any of
the three is suitable because, in the end, it does not matter which is chosen.

1.2 Related work

As already mentioned, the study of discrete-time stochastic processes
goes back to the work of Christiaan Huygens [51] in 1657, who himself
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was inspired by the conversations between Blaise Pascal and Pierre de Fer-
mat [20, 84]. The early 20th century saw a burst of developments in the field
of measure theory, which were synthesized and used by Kolmogorov [56]
to form the mathematical foundations for his axiomatic approach to prob-
ability theory. Since then, probability theory—and the study of discrete-
time stochastic processes in specific—has been largely based on measure-
theoretic principles.

In spite of this popular status, it seems that relatively little attention was
devoted to rigorously developing a measure-theoretic approach in a stochas-
tic processes setting where initial local models come in the form of sets of
probabilities. Some considerable e�ort has already been put into generalis-
ing probability-based precise models for specific types of processes [10, 45,
92], but this research typically only involves global (upper and lower) ex-
pectations obtained from finitely additive probabilities (rather than count-
ably additive probabilities) and on the domain of finitary variables—in that
sense, they can hardly be called ‘measure-theoretic’. On the other hand,
the study of Miranda & Za�alon [66] is in line with what we will do, in
the sense that it examines the continuity properties of upper and lower en-
velopes over sets of countably additive probabilities (or previsions). Unfortu-
nately though, this study is not adapted to the stochastic processes setting.
Lopatatzidis [62] proposes a measure-theoretic model that is very similar to
our measure-theoretic global upper expectation, yet his results focus mainly
on the domain of finitary bounded variables. A recently discovered contribu-
tion is that of Cohen et al. [7]; their extended sub-linear expectations seem
closely related to our global measure-theoretic upper expectations, yet the
work in [7] seems to be mainly concerned with integrability conditions and
martingale properties, rather than properties of the global sub-linear expec-
tation operator—amore thorough examination is required before we can do
precise statements though. Finally, there is also the well-established theory
of capacities and Choquet integration as introduced by Choquet [6] and fur-
ther developed by Dellacherie [28], Denneberg [31], and Greco [42, 43].
This theory generalises the classical measure-theoretic picture to deal with
imprecision by using a capacity instead of a single probability measure. The
corresponding extension procedures are not specifically designed for the set-
ting of stochastic processes, yet the adaptation to this setting is rather im-
mediate and the resulting method is then close in spirit to what we will do
here. Nonetheless, the notion of a capacity—a specific type of non-additive
measure—is less general than the sets of probability charges/measures that
we will consider [14, 31, 106].

The relative lack of interest in measure-theoretic models within the field
of imprecise stochastic processes—and imprecise probabilities in general—
is most likely due to the fact that imprecise probabilities has its roots in
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the work of de Finetti [27], P. M. Williams [113] and Walley [110], who
all took betting behaviour rather than probability measures as a primitive
notion. The notion of coherence—central in the betting based approach
of [113] and [110]—has not been applied very often within the context
of discrete-time stochastic processes, except for those instances where the
process involves finitely many time steps, or where the variables of inter-
est are of the finitary type [9, 11, 25]. A more popular tool seems to be
the game-theoretic upper expectations developed by Shafer and Vovk [85,
86, 109]. Shafer and Vovk themselves drew inspiration from the work of
Ville [107], whose ideas did not receive immediate recognition and were
unjustly overlooked by many. Since the release of Shafer and Vovk’s first
book [86] however, game-theoretic probabilities and functionals have be-
come significantly more popular, leading to a multitude of advances [8, 9,
60, 62, 85, 88, 101]. Our contributions to the field of game-theoretic upper
expectations can be found in, among others, [95, 97, 98].

Finally, a related line of research that came under our attention only
recently, is that on the non-linear expectations introduced by Peng [73].
Especially the contributions of Denk et al. [30], Nendel [68] and, as men-
tioned earlier, Cohen et al. [7] bear a close connection with our work and
deserve to be further investigated.

1.3 Overview of the chapters

We start our narrative in Chapter 217 with the introduction of three im-
precise probability models: sets of probabilities, sets of acceptable gambles
and coherent upper (and lower) expectations. We consider a single un-
certain variable taking values in a finite possibility space, and show that a
subject’s beliefs about such a variable can be suitably expressed in either of
these three models. We employ well-known results by P. M. Williams [113]
and Walley [110] to establish close connections between the three models,
and also briefly discuss some extension methods.

The possibility space in Chapter 217 is assumed finite, because the mod-
els introduced there are used in Chapter 345 to define the local models of
our discrete-time stochastic processes, the state space of which we assume
to be finite. After we have done so, Chapter 345 splits into three major sec-
tions; each of them is devoted to a single type of local model, and shows how
these local models can be extended to a global upper expectation. These ex-
tensions will largely rely on rather well-established—finitary—notions such
as conditional coherence and conditional probability charges [18, 34, 106,
110, 113]. Due to the specific context of stochastic processes, elegant alter-
native characterisations can be given for these three finitary global upper ex-
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pectations. One is that the acceptability-based global upper expectation can
be seen to coincide with a modified type of game-theoretic upper expecta-
tion where supermartingales are required to hedge at a finite time horizon.
On the other hand, we also establish a convenient axiomatisation for the no-
tion of conditional coherence (for global upper expectations) and that of a
conditional probability charge. Finally, we show that all the di�erent types
of finitary global upper expectations coincide—if their respective local mod-
els are chosen in accordance with each other—and prove or disprove some
important properties. Crucially, we show that these finitary global upper
expectations lack basic continuity properties and are therefore unsuitable
to be applied on a general domain of variables.

The structure of Chapter 345 is then more or less repeated for the
continuity-based global upper expectations, but on a larger scale; Chap-
ter 4129 is devoted to game-theoretic upper expectations, Chapter 5217 is
devoted to measure-theoretic upper expectations, and Chapter 6283 studies
axiomatic continuity-based upper expectations. These three chapters form
the core of this dissertation, as most of our novel ideas and results are pre-
sented therein.

Chapter 4129 starts with a discussion of the di�erent possible definitions
for a global game-theoretic upper expectation. We reason in a stepwiseman-
ner, always enlarging the domain of variables, and making modifications to
the original—most basic—definition in order to fit our needs. This part also
involves procedures for extending the local models—sets of acceptable gam-
bles, but also upper expectations—to deal with extended real-valued local
variables. Eventually, we end up with a version of the global game-theoretic
upper expectation that is equivalent to Shafer and Vovk’s latest version in
[85, Part II], but where our local models need not be expressed in terms of
upper expectations, but can also be expressed in terms of sets of acceptable
gambles. We then continue to present a series of fundamental results for this
global upper expectation; some of them have already been stated elsewhere,
and then we simply adapt their proofs to our setting; some of them are en-
tirely of our own invention. Among many other results, we prove a law of
iterated upper expectations, continuity from below, continuity from above
with respect to finitary gambles and Fatou’s lemma. At the end of the chap-
ter, we come back to the di�erent possible definitions of the game-theoretic
upper expectation, and show that, in retrospect, the version adopted by us
in the preceding part—and thus also the one adopted by Shafer and Vovk—
could have been replaced by an equivalent but more intuitive and direct
version.

Chapter 5217 starts o� as one would expect, by introducing some stan-
dard measure-theoretic notions and terminology. We define countable ad-
ditivity for the global (conditional) probability charges introduced in Chap-
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ter 345, and use the acquired so-called global probability measures to define
conditional linear expectations on measurable extended real-valued vari-
ables. A variant of the upper Lebesgue integral will then provide us with a
suitable—non-linear—extension to the domain of all extended real-valued
variables. In this precise setting, where we consider only a single local prob-
ability mass function for every possible history of the process, we show
that this measure-theoretic approach is entirely equivalent to the game-
theoretic approach. Afterwards, we consider the more general imprecise
setting where local models are given by sets of probability mass functions,
and define the corresponding global measure-theoretic upper expectation
as an upper envelope over the compatible ‘precise’ measure-theoretic upper
expectations. We then show that this imprecise measure-theoretic upper ex-
pectation satisfies several types of continuity, which on its turn allows us to
infer that measure-theoretic upper expectations and game-theoretic upper
expectations coincide on a fairly large domain; it includes all bounded mea-
surable variables and, for closed local models, all monotone limits of finitary
gambles.

In Chapter 6283, we propose to modify the finitary coherence-based ap-
proach from Chapter 345 by simply adding an extra continuity axiom (and a
straightforward monotonicity axiom). We discuss several possibilities, and
come up with a specific continuity axiom that su�ces for obtaining a global
upper expectation that is equally powerful as game-theoretic and measure-
theoretic upper expectations. In fact, we will show that this axiomatic global
upper expectation is always equal to the game-theoretic upper expectation,
and thus to a large extent also equal to the measure-theoretic upper expec-
tation. We moreover prove a series of alternative characterisations for this
axiomatic model, and show that it bears a close relationship with Daniell’s
notion of an upper integral [19].

The dissertation is concluded in Chapter 7323, where we look at the
larger picture and explain what role our work might play in further research
on stochastic processes.

1.4 Publications

This manuscript contains much of what I—with the help of many fellow
researchers—have developed during the past four years as a PhD student.
Many of the presented results can already be found elsewhere, yet this book
aims to synthesize them into a single all-encompassing picture. Specifically,
this dissertation gathers results from the following publications.

(i) Natan T’Joens, Gert de Cooman & Jasper De Bock. Continuity of the
Shafer-Vovk-Ville operator. In: Proceedings of the 9th International
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Conference on Soft Methods in Probability and Statistics. Vol. 832.
2018, pp. 200–207

(ii) Natan T’Joens, Jasper De Bock & Gert de Cooman. In search of a global
belief model for discrete-time uncertain processes. In: Proceedings of
the 11th International Symposium on Imprecise Probabilities: The-
ories and Applications. Vol. 103. 2019, pp. 377–385

(iii) Natan T’Joens, Jasper De Bock & Gert de Cooman. Game-theoretic up-
per expectations for discrete-time finite-state uncertain processes. In:
Journal of Mathematical Analysis and Applications 504.2 (2021)

(iv) Natan T’Joens, Jasper De Bock & Gert de Cooman. A particular upper
expectation as global belief model for discrete-time finite-state uncertain
processes. In: International Journal of Approximate Reasoning 131
(2021), pp. 30–55

(v) Natan T’Joens & Jasper De Bock. Global upper expectations for discrete-
time stochastic processes: in practice, they are all the same! In: Pro-
ceedings of the 12th International Symposium on Imprecise Proba-
bilities: Theories and Applications. Vol. 147. 2021, pp. 310–319

The present work also includes various new ideas and results that have never
been published before. The most significant among these, we believe, are:

• The connections between the di�erent possible axiomatic (continuity-
based) approaches, and how these on their turn relate to an imprecise
Daniell-like approach; see Section 6.3294 and Section 6.4302.

More modest, but still noteworthy unpublished contributions are:

• Many of the definitions and results presented in Chapter 345, includ-
ing the equivalence between acceptability-based and (finitary) game-
theoretic global upper expectations [Section 3.2.361], the axiomatisation
of conditional coherence [Section 3.4.181].

• The connections between local sets of acceptable extended real-valued
gambles and extended(-real valued) local upper expectations in Sec-
tion 4.3152.

• The results in Section 5.4240 and Section 5.5249, which generalise many
of those in Publication (v) above to deal with local sets of probability mass
functions that are not necessarily closed and convex.

During my time as a PhD student, I have also engrossed myself in the theory
of imprecise discrete-time Markov chains. Imprecise Markov chains are gen-
eralisations of classical ‘precise’ Markov chains, where local transition prob-
abilities are replaced by sets of local probabilities and where the Markov
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assumption applies to these sets as a whole—so these sets are assumed to
only depend on the current state of the process and not on any past states.7

The work presented here in this dissertation is intended for a setting with
general, not necessarily memoryless, local models—whether that be sets of
probabilities or other types of local models—and so it in particular applies
to the setting of imprecise Markov chains.

My work on imprecise Markov chains has focused on the long-term time
average behaviour—or ergodic behaviour—of these stochastic processes,
and on practical algorithms for computing certain types of inferences. I
have chosen not to include this work in this dissertation though, because
I feel that a more coherent and convincing story can be told by restricting
myself solely to the study of global upper expectations.

My work on imprecise Markov chains can be found in the following ar-
ticles.

(vi) Natan T’Joens, Thomas Krak, Jasper De Bock & Gert de Cooman. A
recursive algorithm for computing inferences in imprecise Markov
chains. In: Proceedings of the 15th European Conference on
Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty. Vol. 11726. 2019, pp. 455–465

(vii) Thomas Krak, Natan T’Joens & Jasper De Bock. Hitting times and
probabilities for imprecise Markov chains. In: Proceedings of the
11th International Symposium on Imprecise Probabilities: Theo-
ries and Applications. Vol. 103. 2019, pp. 265–275

(viii) Natan T’Joens & Jasper De Bock. Limit behaviour of upper and lower
expected time averages in discrete-time imprecise Markov chains.
In: Information Processing and Management of Uncertainty in
Knowledge-Based Systems, IPMU2020, Proceedings. Vol. 1237.
2020, pp. 224–238

(ix) Natan T’Joens & Jasper De Bock. Average behaviour in discrete-time
imprecise Markov chains: a study of weak ergodicity. In: Interna-
tional Journal of Approximate Reasoning 132 (2021), pp. 181–
205

(x) Jasper De Bock & Natan T’Joens. Average behaviour of imprecise
Markov chains: a single pointwise ergodic theorem for six di�er-
ent models. In: Proceedings of the 12th International Symposium
on Imprecise Probabilities: Theories and Applications. Vol. 147.
2021, pp. 90–99

7Strictly speaking, these are called imprecise Markov chains under epistemic irrelevance [8,
46].

13



Introduction

1.5 Navigating this dissertation

This work is divided into seven chapters—the current introductory chap-
ter included—and is provided with a list of symbols and a bibliography near
the end. Chapters are divided into sections, which are themselves some-
times further divided into subsections or even subsubsections—the latter
will not be numbered. Chapters are often accompanied by one or more ap-
pendix sections, where we then gather results and proofs that we believe
would otherwise, due to their technical nature or considerable size, obscure
some of our arguments in the main text.

External references are denoted by a number between square brackets;
the corresponding number in the bibliography at the end of this manuscript
then gives the full reference to the appropriate piece of literature. So, for in-
stance, [33] is a book on stochastic processes written by Doob and published
in 1953. This dissertation also includes a multitude of internal references to
theorems, lemmas, propositions, equations, . . . To enhance readability, we
accompany these internal references with a subscript number that indicates
the page on which the referred content can be found; so Theorem 4.4.4166
can be found on page 166. If the content to which we refer is on the previous
or subsequent page, then the subscript number is replaced by the symbols
x and y respectively; if the content is on the same double-page spread,
then the subscript is omitted. For instance, the next section is Section 1.6.

1.6 Some mathematical notations

We finish this initial chapter with the introduction of some basic notions
that will be used throughout the entire manuscript.

Number sets

We use N to denote the set of all natural numbers (without zero), and we
let N0 B N [ {0}. R is the set of all real numbers, and R�, R> and R<

are the subsets of, respectively, all non-negative, positive and negative ones.
We let R B R [ {+1,�1}, R> B R> [ {+1} and R� B R� [ {+1},
and we extend the strict total order relation < on R to R by positing that
�1 < 2 < +1 for all 2 2 R. We furthermore endow R with the usual
topology corresponding to the two-point compactification [40, Example 1
in Appendix C]. The open sets in R are then the open sets in R, the sets
{F 2 R : F > 2} and {F 2 R : F < 2} for all 2 2 R, and any union of these
sets.

14
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Most of the arithmetical operations in R are extended to R in a trivial
way; we let 2 +1 = +1 and 2 � 1 = �1 for all real 2, +1 +1 = +1 and
�1 �1 = �1, _ (+1) = (�_) (�1) = +1 and (�_) (+1) = _ (�1) = �1
for all _ 2 R>. Two important and perhaps less obvious conventions are
that 0 (+1) = 0 (�1) = 0 and that +1 � 1 = �1 + 1 = +1. The latter
is a typical convenient choice when working with upper expectations; see
[85, ‘Terminology and Notation’], where the same convention is adopted,
and [8], where the dual convention (+1 �1 = �1 +1 = �1) is adopted
because it considers lower expectations as the primary objects. So with our
conventions, for example, 0 � 1 implies that 0 � 1 � 0, but not necessarily
0 � 1 � 0 for any two 0 and 1 in R.

We say that a sequence {2<}<2N in R is increasing if 2<  2<+1 for all
< 2 N, and decreasing if 2< � 2<+1 for all < 2 N—so a sequence that
remains constant is both increasing and decreasing. We say that {2<}<2N is
strictly increasing or strictly decreasing if similar but strict versions of the
respective inequalities hold.

The infimum and supremum of the empty set ú are assumed to be equal
to +1 and �1, respectively.

Extended real-valued functions

For any two sets X and Y, we use XY to denote the set of all functions
5 : Y !X. We let L(Y) B R Y denote the set of all extended real-valued
functions on Y,8 and let Lb (Y) be the subset of all the bounded below
ones; that is, Lb (Y) is the set of all functions 5 2 L(Y) for which there is
a 2 2 R such that 5 (í) � 2 for all í 2 Y.

For any 5 2 L(Y), we let inf 5 B infí2Y 5 (í) and sup 5 B sup
í2Y 5 (í).

The binary relations =, , �, > and < on the set L(Y) of gambles are al-
ways intended to be taken point-wise, unless mentioned otherwise. So, for
any two 5 , 6 2 L(Y), we write 5  6 if 5 (í)  6(í) for all í 2 Y. Limits
of extended real-valued functions are also intended to be taken pointwise,
unless mentioned otherwise; so, for any 5 and ( 5<)<2N in L(Y), we write
that lim<!+1 5< = 5 if lim<!+1 5< (í) = 5 (í) for all í 2 Y. Similar conven-
tions are adopted for the limit inferior and limit superior of a sequence of
extended real-valued functions.

Furthermore, a sequence ( 5<)<2N in L(Y) is called increasing if it is
pointwise increasing and decreasing if it is pointwise decreasing, and sim-
ilarly for the strict versions of these notions. Equivalently, we can say that

8We will often refer to extended real-valued functions as extended real-valued ‘variables’;
see Chapter 345. However, this choice of terminology is somewhat tricky, as it may get confused
with the notion of an ‘uncertain variable’ introduced in Chapter 217, and so we therefore prefer
not to use it already here.

15



Introduction

( 5<)<2N is increasing if 5<  5<+1 for all < 2 N, and decreasing if 5< � 5<+1
for all < 2 N.

Gambles

Given any non-empty set Y, a gamble 5 on Y [75, 106, 110] is a(n) (ex-
tended) real-valued function on Y that is bounded, meaning that there is
a real number 2 � 0 such that �2  5 (í)  2 for all í 2 Y. The set of all
gambles on Y is denoted by L(Y). A specific type of gamble that will often
be encountered is the indicator I� of a set � ✓ Y; it takes the value 1 for all
í 2 � and 0 otherwise.

The conventions introduced above for extended real-valued functions
apply in particular to gambles. In this respect, it behoves us to mention that
it is somewhat unconventional to let > and < be point-wise operators be-
tween gambles; typically, the expression 5 > 6 for any 5 , 6 2 L(Y) is taken
to mean that 5 � 6 and 5 < 6, and similarly for the relation <. This alter-
native relation between two gambles will never be used in this dissertation
though—the only exception is in the notations that will be introduced next.

The set L� (Y) denotes the set of all gambles 5 2 L(Y) such that 5 � 0,
and similarly for L (Y), L> (Y) and L< (Y). Moreover, we let L� (Y) B
L (Y) \ {0} and L (Y) B L� (Y) \ {0}. In summary, we thus have that

L> (Y) ✓ L (Y) ✓ L� (Y) and L< (Y) ✓ L� (Y) ✓ L (Y).

The uniform closure cl (A) of a set of gambles A ✓ L(Y) is equal to
the set of all uniform limits of sequences in A [111, Theorem 11.7], [106,
Section 1.6]:

cl (A ) B
n
5 2 L(Y) : lim

<!+1
sup| 5 � 5< | = 0 for a sequence ( 5<)<2N in A

o
.

Furthermore, the positive linear span of a set of gambles A is denoted by
posi (A);

posi (A) B {P<

7=1 _7 57 : < 2 N, _7 2 R>, 57 2 A}.
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Consider a subject who is uncertain about the value that a variable . takes
in some set Y, referred to as the possibility space of . . The subject here
can be anyone/anything showing some form of intelligent or rational be-
haviour; be it You, Your Computer, or even Dear Mr. President. The vari-
able . might, for instance, be the state of the weather tomorrow—in which
case {Sunny,Cloudy,Rainy} could be an appropriate choice for Y—or the
stock price of Apple Inc. for a given time instant in the future—in this case,
Y = R�, where any real number í 2 Y is a price expressed in some cur-
rency. For obvious reasons, . is then referred to as an ‘uncertain’ or ‘random’
variable.

Given this general setting where we have a subject that is uncertain but
still has some beliefs about the value of an uncertain variable . , how do
we quantify these beliefs? This is far from a trivial task and, essentially,
this simple question lies at the hart of every mathematical theory of uncer-
tainty. In general, one may choose from a broad spectrum of formalisms and
mathematical languages to do so. Most commonly, probabilities are used for
this purpose, but as we will argue in this chapter, and as we have already
briefly mentioned in Chapter 11, a single probability distribution or mass
function is in many cases too restrictive to correctly assess a subject’s be-
liefs. We will therefore instead use three more general types of models; sets
of probabilities, (coherent) sets of acceptable gambles and coherent upper
(and lower) expectations. They are part of a larger family of so-called im-
precise probability models, which aim to describe uncertainty in a robust
and informative manner in situations where, loosely speaking, it is unwar-
ranted to specify a single probability distribution. Within this family, the
three previously mentioned types of models are among the most popular
and general ones; see, for instance, [12, 15, 16, 17, 22, 46, 75, 91, 106,
110].

In the current chapter, we introduce these three types of imprecise
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Modelling uncertainty for finite possibility spaces

probability models in a gentle manner and only consider the simple case
where the uncertain variable . takes values in a finite non-empty pos-
sibility space Y. Our focus is on finite possibility spaces because the—
unconditional—uncertainty models treated here will be used in the follow-
ing chapters as local models in stochastic processes with a finite state space;
see Section 3.1.248. Most of what we will present is directly borrowed from
the work of P. M. Williams [113] andWalley [110]. We introduce coherence
for unconditional upper expectations, discuss its connections with coherent
sets of acceptable gambles and sets of probabilities, and present the notion of
natural extension under coherence. Since much more is known about these
concepts than what we will present here, the current chapter may perhaps
appear rather dull or unimportant, especially to the better informed reader.
Yet, unimportant as it may seem, the simple set-up in this chapter forms a
perfect basis for some of our more involved arguments later on. Coherence,
for instance, will attain a more complex form in Chapter 345 when we apply
it to global upper expectations in a stochastic process. Most importantly, this
chapter already beautifully illustrates the special role that will be reserved
for (coherent) upper expectations in our entire story. They arise as objects
of interest in both behavioural frameworks such as that of sets of accept-
able gambles or game-theoretic probability, and probabilistic frameworks
such as that of finitely additive probabilities or measure-theoretic probabil-
ity, therefore forming the intersection between two complementary schools
of thought.

2.1 Modelling uncertainty with probabilities

One of the most common ways to model the beliefs of a subject is by
means of probabilities. A (finitely additive) probability on a finite possibil-
ity space Y is a function P that associates with each subset � ✓ Y a value
P (�) in the interval [0, 1]. This value P (�) expresses the degree to which
our subject believes that . will take a value in �; the closer this value is
to 1, the more likely our subject deems it that . 2 �. The occurrence that .
takes a value in � is called an event; in fact, we will henceforth leave the
interpretation implicit, and simply call any subset ⌫ ✓ Y an event. The
value P (�) for any event � is called the probability of �.

Probability charges and probability mass functions

Apart from the fact that a finitely additive probability P—also called a prob-
ability charge—should take values in [0, 1], it is also required to be nor-
malised and (finitely) additive. Normalisation says that the trivial event
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Y—that is, . taking a value in Y—happens with probability 1. Additivity
says that, for any two disjoint events � and ⌫, the probability of the event
� [ ⌫—that is, . taking a value in either � or ⌫—is the sum of the proba-
bilities P (�) and P (⌫). The following definition can be found in [5, 77, 89,
106], and uses the notation ¶(Y) B 2Y to denote the powerset of Y; the
set of all subsets of Y.

Definition 2.1 (Probabilities/probability charges). For any finite non-empty
set Y, we call P : ¶(Y) ! R a (finitely additive) probability or a probability
charge on Y if, for all �, ⌫ 2 ¶(Y),
P1. 0  P (�) [lower bounds];

P2. P (Y) = 1 [normalisation];

P3. � \ ⌫ = ú ) P (� [ ⌫) = P (�) + P (⌫) [finite additivity]. }

Since Y is assumed finite, it can easily be seen that probability charges
on Y are one-to-one—there is a bijective relation—with probability mass
functions on Y. The latter can simply be seen as probability charges re-
stricted to the singletons in Y.

Definition 2.2 (Probability mass functions). For any finite non-empty set
Y, we call > : Y ! R a probability mass function on Y if it takes values in
[0, 1] and is such that P

í2Y >(í) = 1. }

We use P(Y) to denote the set of all probability mass functions on
Y. We leave it to the reader to check that any probability mass function
> 2 P(Y) defines a probability charge P : ¶(Y) ! R by the relation
P (�) B P

í2� >(í) for all � 2 ¶(Y), and that any probability charge P has a
unique probability mass function > to which it is related in this way. Since,
probability mass functions are equally as general as probability charges on
Y, we prefer to use probability mass functions because of their simplicity.

Example 2.1.1. Consider a possibility space Y = {0, 1, 2} consisting of
three elements—these may for instance be three possible answers to a ques-
tion, and . is then the (unknown) correct answer. Let > : Y ! R be such
that >(0) = >(1) = >(2) = 1

3 . Then > is a probability mass function on
Y; more specifically, it models the situation where our subject deems it
equally likely that the correct answer . is 0, 1 or 2. Then > is also some-
times called the uniform distribution. Note that, for the probability charge
P corresponding to >, we have that P ({0}) = P ({1}) = P ({2}) = 1

3 , that
P ({0, 1}) = P ({1, 2}) = P ({0, 2}) = 2

3 , that P ({0, 1, 2}) = 1 and that
P (ú) = 0. ^
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A note on the interpretation of probabilities

We always interpret probabilities in a subjective way [27, 39, 110]; they
represent the beliefs of a person or a machine that is uncertain with respect
to some entity or phenomenon. These beliefs may be based on collected
data or experience, or just mere facts; e.g. COVID-vaccines make people less
susceptible to become infected by COVID. Yet, any two subjects need not to
assess the same probabilities to the di�erent possible outcomes; for their be-
liefs may be based on classified data or personal experience, or sometimes
an incomprehensible reasoning. The subjective interpretation of a probabil-
ity is also called the epistemic interpretation, and this interpretation can
further be divided into di�erent sub-interpretations [110]. One of them is
the behavioural interpretation that was advocated by de Finetti [27]; prob-
abilities then represent betting behaviour or preferences between a number
of possible actions. This behavioural interpretation is similar to the philos-
ophy underlying the sets of acceptable gambles framework, which we will
introduce shortly in Section 2.326.

In contrast with the subjective approach above, we could also interpret
probabilities in a frequentist or aleatoric way [39, 69]. Probabilities are
then considered to be physical properties of the system, not depending on
an observer. More precisely, the frequentist probability of an event is the
relative frequency of the times that this event occurs in a long series of ob-
servations; e.g. the probability of landing Heads when tossing a fair coin is
assumed to be 1

2 , because we land Heads half of the time when perform-
ing this experiment over and over again—for a su�ciently long time. This
frequentist interpretation of probability has a few drawbacks though; it is
highly unpractical since probabilities are to be derived from empirical study
only—for instance, we cannot rely on the (subjective) judgements of an
expert—and, perhaps more alarming, the interpretation only holds under
the assumption that experiments can be repeated—e.g. ‘what is the 50th
decimal digit of c?’. On the other hand, note that the subjective interpre-
tation always allows a subject himself/itself to employ a frequentist inter-
pretation. Because of this higher level of flexibility, we choose to adopt the
subjective interpretation. Nonetheless, none of our mathematical results ac-
tually hinge on this interpretation.

Gambles and expectations

A real-valued function 5 on Y is called a gamble on Y; note that, since we
are considering finite Y, any gamble on Y is always bounded, and so our
choice of terminology here is in accordancewith the traditional terminology;
see Section 1.616. A gamble 5 may represent an actual gamble; in that case
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2.1 Modelling uncertainty with probabilities

the uncertain—possibly negative—reward is equal to 5 (í) if the value of . is
í 2 Y, with 5 (í) being a price expressed in some given currency. In general,
however, we do not restrict ourselves to this interpretation and interpret a
gamble 5 as an abstract uncertain quantity that depends on the value of . .
The set of all gambles on Y is denoted by L(Y).

Given a probability mass function > on Y, we use the corresponding
expectation E> to make statements about gambles in L(Y); it is defined
by

E> ( 5 ) B
X
í2Y

>(í) 5 (í) for all 5 2 L(Y). (2.1)

The value E> ( 5 ) for any 5 2 L is then called the expected value of, or
simply the upper expectation of 5 . Using a frequentist interpretation, such
an expected value E> ( 5 ) then represents the average value of 5 taken over
a large number of observations of . . Our subjective interpretation, how-
ever, leaves room for whatever interpretation one prefers; for instance, an
expected value E> ( 5 ) may represent a subject’s fair price for the gamble 5 ,
where 5 is then interpreted as an actual uncertain reward depending on
the value of . . We will come back to the interpretation as fair prices in
Section 2.3.229.

Expectations are often an object of interest in probability theory because
they allow us to draw general inferences about a system, which can on its
turn lead to making decisions.

Example 2.1.2. Taking into account themental state of your girlfriend, wife
or husband—Happy (�), Tired ()) or Emotionally unstable (⇢)—, should
you continue discussing a delicate topic, or stop and go read a book? We
represent the former action by the gamble 51 = ( 51 (�), 51 ()), 51 (⇢)) =
(1, 0,�5) that turns out well ( 51 (�) = 1) if . is equal to �, but turns out
very bad ( 51 (⇢) = �5) if . = ⇢. The latter action is represented by the gam-
ble 52 = ( 52 (�), 52 ()), 52 (⇢)) = (0, 1,�1) that turns out well ( 52 ()) = 1) if .
is equal to ) , but also turns out somewhat bad ( 52 (⇢) = �1) if . = ⇢. If we
assess—purely hypothetical—the probabilities of �, ) and ⇢ as respectively
3
6 ,

2
6 and 1

6 , then we obtain that E ( 51) = � 2
6 and E ( 52) = 1

6 . Hence, the ex-
pectation of 52 is higher than that of 51, and you should therefore definitely
continue reading this book. ^

The following straightforward proposition says that expectations derived
from probability mass functions are always linear operators, which is why
we often call them linear expectations.

Proposition 2.1.3. For any probability mass function > on Y, any
5 , 6 2 L(Y) and any _ 2 R,
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(i) inf 5  E> ( 5 )  sup 5
1 [bounds];

(ii) E> ( 5 + 6) = E> ( 5 ) + E> (6) [additivity];

(iii) E> (_ 5 ) = _E> ( 5 ) [homogeneity].

Proof. These properties can be straightforwardly derived from the definitions of >
[Definition 2.219] and E> [Eq. (2.1)x].

Conversely, given an expectation E satisfying the properties (i)–(iii)
above, the restriction of this expectation operator to the space of all indi-
cators forms a probability charge. Indeed, it can easily be checked that the
set function P : ¶(Y) ! R defined by P (�) B E (I�) for all � 2 ¶(Y)
then satisfies P119–P319, and is therefore a probability charge on Y—recall
Section 1.616 for the definition of an indicator I�.

2.2 Modelling uncertainty with sets of probabilities

In the previous section, we have modelled a subject’s beliefs with a single
probability mass function on Y or, equivalently, a single probability charge
on Y. However, it may well be that a subject is unable or not willing to
specify such a single probability mass function. This especially occurs when
there is a lack of data or information about the system at hand, or when our
subject bases himself on conflicting expert advise (or other information).
Forcing our subject to choose a single probability mass function may then
lead to unwarranted decisions, as is illustrated by the next example.

Example 2.2.1. Consider a container with (possibly) three types of
coloured balls contained in it; red ones, green ones and blue ones. There are
6 balls in total, and exactly 2 of them are red. There is no other information
given—the remaining 4 balls may be all green, all blue, or any combination
of these colours. If . is the (uncertain) colour of a ball drawn from this
container, what is the probability of drawing Red, Blue or Green?

We have that Y = {', ⌫,⌧} and we can assume the probability >(') to
be equal to 2

6 . Yet, we have absolutely no idea about the values of the prob-
abilities >(⌧) and >(⌫) apart from the fact that they lie between 0 and 4

6 .
In standard ‘precise’ probability theory this lack of knowledge or beliefs is
typically modelled by assuming the probabilities >(⌧) and >(⌫) to be equal.
The expectation of the gamble 5 = ( 5 ('), 5 (⌧), 5 (⌫)) = (�1,�1, 3) would
then become

E ( 5 ) = 5 (')>C (') + 5 (⌧)>C (⌧) + 5 (⌫)>C (⌫) = �12
6 � 12

6 + 32
6 = 2

6 > 0
1Since the possibility space Y is finite here, the infimum and supremum can be replaced

by a minimum and a maximum.
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2.2 Modelling uncertainty with sets of probabilities

Hence, according to the reasoning above, 5 is a gamble with positive ex-
pected pay-o�—if for a minute we interpret its values as actual pay-o�s—
and we are therefore inclined to accept the gamble 5 . However, this con-
clusion is clearly inconsistent with reality; only few people would actually
be willing to accept 5 because there might be no blue balls in the container,
and then there is no chance of gaining any money at all. ^

2.2.1 Sets of probability mass functions

In order to model the beliefs of a subject in a more flexible and robust
way, we can use sets of probability mass functions P instead of a single
probability mass function; such a set can then loosely be interpreted as the
set of all probability mass functions our subject deems ‘possible’. One of
the most common and simple ways of obtaining such a set P is by specify-
ing upper and lower bounds on individual probabilities; e.g. our beliefs in
Example 2.2.1 are correctly represented by the set

P= {> 2 P(Y) : >(') = 2
6 } = {> 2 P(Y) : 2

6  >(')  2
6 }.

In general, however, such upper and lower bounds on individual probabili-
ties do not su�ce to characterise a set P ✓ P(Y).
Example 2.2.2. Consider again the container from Example 2.2.1 but
where it is now given that there are an equal amount of green and blue
balls, and where nothing is said (or known) about how many red balls there
are in the container. Our beliefs are in that case correctly represented by
the set

P= {> 2 P(Y) : >(⌧) = >(⌫)}.
Such a set P is called a comparative probability model [65]. It can be
checked that this set can never be characterised by only using upper and
lower bounds on the individual probabilities. ^

We will often call any set P ✓ P(Y) an imprecise probability model,
or simply an imprecise model, because it is a generalisation of the tradi-
tional probability mass function—a ‘precise’ model—where the individual
parameters/probabilities are only partially specified. Concerning the inter-
pretation of our setsP ✓ P(Y), let us mention that we do not regard the set
P to be an exhaustive or complete representation of our subject’s beliefs;
that is, the set Pmay include more than what our subject actually deems
possible. This seems sensible because in most realistic situations we can only
gather or represent part of a subject’s beliefs, simply because of constraints
on time, money, and so forth. We refer to Walley [110, Chapter 2] for more
details on such interpretational aspects, and for a more elaborate motivation
for imprecise probability models.
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Modelling uncertainty for finite possibility spaces

2.2.2 Upper and lower expectations from sets of probability mass
functions

Of course, since we are now considering sets of probability mass func-
tions P, we cannot specify a single expected value for each gamble any
more. Instead, we will have an entire set of such expected values. The up-
per and lower bounds of these sets are what we call the upper and lower
expectations corresponding to P.

Definition 2.3. For any non-empty set of probability mass functions P, the
corresponding upper and lower expectation EP and EP are defined, for all
5 2 L(Y), by

EP( 5 ) B sup
>2P

E> ( 5 ) = sup
>2P

X
í2Y

>(í) 5 (í) and

EP( 5 ) B inf
>2P

E> ( 5 ) = inf
>2P

X
í2Y

>(í) 5 (í). }

Upper and lower expectations are of major importance because, just as
their precise counterparts, they allow us to draw various non-trivial conclu-
sions, which on their turn may lead to decisions. Decision making becomes
somewhat more delicate than in the precise case though, since we can now
come up with several di�erent methods that each have their own advan-
tages and disadvantages; see e.g. [110, Section 3.9] and [50].

Example 2.2.3. Reconsider the situation from Example 2.2.122, where
P = {> 2 P(Y) : >(') = 2

6 } is the set that represents our beliefs about
the colour . of the ball that is drawn next. Then the corresponding upper
and lower expectation EP( 5 ) and EP( 5 ) of the gamble 5 = (�1,�1, 3) are
respectively 10

6 and �1. If we wish to remain conservative, then we should
base ourselves on the worst-case scenario, which is represented by the lower
expectation EP( 5 ) = �1 < 0. Hence, in that case, we should not accept the
gamble 5—indeed, this is similar to the conclusion that we made at the end
of Example 2.2.122. This corresponds to the �-maximin approach from [50].
On the other hand, the best-case scenario is represented by the upper expec-
tation EP( 5 ) = 5

3 > 0. Hence, if potential negative pay-o�s are little of an
issue, then based on this information we might want to accept the gamble
5 . This would then corresponds to the �-maximax approach from [50]. ^

Upper and lower expectations also satisfy several basic properties that
will turn out convenient later on. We list the most important ones.

Proposition 2.2.4. Consider any non-empty set P ✓ P(Y), and let EP and
EP be the upper and lower expectations corresponding to P according to Def-
inition 2.3. Then, for any 5 , 6 2 L(Y) and _ 2 R�,
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2.2 Modelling uncertainty with sets of probabilities

(i). EP(� 5 ) = �EP( 5 ) [conjugacy];

(ii). inf 5  EP( 5 )  EP( 5 )  sup 5 [bounds];

(iii). EP( 5 + 6)  EP( 5 ) + EP(6),
EP( 5 + 6) � EP( 5 ) + EP(6) [sub-/super-additivity];

(iv). EP(_ 5 ) = _EP( 5 ); EP(_ 5 ) = _EP( 5 ) [non-negative homogeneity].

Proof. All these properties can be easily deduced from Definition 2.3 .

Note in particular that, due to (i) above, upper and lower expectations
are related by conjugacy, and so it actually su�ces to only study either up-
per expectations or lower expectations; we will focus on upper expectations.

A special case of a set of probability mass functions is when P consists
of only a single probability mass function >. The upper and lower expecta-
tions are then equal, and their common values are then given by the linear
expectation E>. The corresponding upper and lower expectations are then
called self-conjugate.

In contrast to the above, ifPconsists of all the probability mass functions
in P(Y), then we call P the vacuous model; it represents a complete lack
of knowledge or beliefs about the value of . . The corresponding upper ex-
pectation EP( 5 ) for any 5 2 L(Y) is equal to sup 5 , and the corresponding
lower expectation EP( 5 ) is equal to inf 5 .

2.2.3 Upper and lower probabilities from sets of probability mass
functions

By restricting upper and lower expectations to the domain of all indi-
cators we obtain so-called upper and lower probabilities PP and PP, re-
spectively; so, for any set P ✓ P(Y), they are defined by PP(�) B EP(I�)
and PP(�) B EP(I�) for all � 2 ¶(Y). Alternatively, it follows from Defi-
nition 2.3 that, for all � 2 ¶(Y),

PP(�) B sup
>2P

P> (�) = sup
>2P

X
í2�

>(í);

PP(�) B inf
>2P

P> (�) = inf
>2P

X
í2�

>(í).

So upper and lower probabilities give tight upper and lower bounds on
the individual probabilities associated with a set P—as was to be expected
from their name—and are therefore an object of interest in many applica-
tions. As already mentioned, such upper and lower bounds on individual
probabilities can be used to derive a compatible set P of probability mass
functions from, but not all setsPcan be obtained in this way; see also [110,
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Modelling uncertainty for finite possibility spaces

Section 2.7.3].2 We therefore typically regard upper and lower probabili-
ties as secondary objects derived from sets of probabilities/probability mass
functions.

2.3 Modelling uncertainty with sets of acceptable gambles

It was briefly mentioned in Section 2.118 that probabilities can be given
a behavioural interpretation, yet there actually exists a full-fledged theory
that is entirely build on the idea that a subject’s betting behaviour ought to
be regarded as the fundamental primary object, rather than probabilities;
the theory of sets of acceptable gambles (or sets of desirable gambles) [75,
76, 106, 110, 113]. This theory has grown largely from the ideas presented
by P. M. Williams [113] and Walley [110]. We next outline some basic but
important concepts in this field, and show how they naturally lead us to
define corresponding upper and lower expectations.

2.3.1 Sets of acceptable gambles

In the current framework, any gamble 5 2 L(Y) is interpreted as an
uncertain—possibly negative—reward 5 (. ) that depends on the value of
the variable . . A central assumption here is that the (real-valued) rewards
or pay-o�s 5 (í) associated with such a gamble 5 represent linear utilities
for a subject, in the sense that, for any 2 2 R�, the price 2 5 (í) is worth 2

times as much as 5 (í). If a subject specifies that she finds a gamble 5 2
L(Y) acceptable, then we simply take this to mean that she is willing to
accept the uncertain reward associated with the gamble 5 [76, 106, 113].
Accepting a gamble is weaker than finding it desirable [110] or preferring
it above the status quo; our subject accepting a gamble 5 may also entail
that she is indi�erent with respect to exchanging 5 for the zero gamble 0—
which represents the status quo—and vice versa; see also Axiom D1! in the
definition of coherence.

The beliefs that a subject has about . will lead her to make statements
about which gambles 5 2 L(Y) she finds acceptable. For instance, if she is
completely certain that . takes—or, will take—the value í 2 Y, then she
will typically accept any gamble 5 2 L(Y) that gives her non-negative pay-
o� 5 (í) � 0 when . = í. Or, conversely, in case she is completely uncertain
about the value of . , she might only accept those gambles that are sure—
whatever the value of .—not to give her a negative pay-o�. In this way, one

2For closed and convex sets of mass functions, a su�cient condition for being fully char-
acterised by the corresponding upper and lower probabilities is that the associated upper (or
lower) expectation is 2-monotone; see [106, Theorem 6.22].
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2.3 Modelling uncertainty with sets of acceptable gambles

can thus see that a subject’s beliefs can be modelled by considering her set
of acceptable gambles D ✓ L(Y).

Of course, our notion of acceptability has little meaning on its own; if
our subject chooses to be completely irrational in her specification of D—for
instance, she includes gambles 5 2 D that give her a (strictly) negative re-
ward irrespectively of what happens—it should not be expected that, using
whatever system of logical reasoning, this information will allow us to come
up with any sensible conclusions. Hence, in order to be practically mean-
ingful, we shall want to impose some minimal properties on D; properties
that translate our idea of rational behaviour.3 These properties are what we
call coherence.

Definition 2.4 (Coherent sets of acceptable gambles). We say that a set of
acceptable gambles D ✓ L(Y) is coherent if, for any two 5 , 6 2 L(Y) and
any _ 2 R>,

D1. L� (Y) ✓ D [accepting non-negative rewards];

D2. L� (Y) \ D = ú [avoiding partial loss];

D3. 5 , 6 2 D) 5 + 6 2 D [combination];

D4. 5 2 D) _ 5 2 D [scale invariance]. }

The definition above is entirely the same as that of [106, Definition 3.2],
apart from the fact that the scaling axiom [BA3] in [106, Definition 3.2] is
with non-negative _, whereas we only allow _ to be positive [D4]; our choice
is in that sense more in line with that of P. M.Williams [113, Footnote 1] and
Quaeghebeur et al. [76, Sections 2.10.7 and 2.4]. Nevertheless, this clearly
makes no di�erence, mathematically speaking, because the zero gamble is
always included in a set of acceptable gambles that is coherent according to
Definition 2.4 due to D1—which is in fact the reason why we prefer to keep
D4 as weak as possible.

Let us briefly clarify the meaning of the coherence axioms above. Prop-
erty D1 requires that a coherent set of acceptable gambles D should in-
clude all the 5 2 L� (Y) that surely give a non-negative reward; in other
words, our subject should always accept the status quo, and any gamble
that never makes her lose money, and that in some cases makes her receive
money. Property D2 on the other hand requires that a coherent set of accept-
able gambles D should never include any gambles 5 2 L� (Y) from which
our subject can never gain anything, and that in some cases make her lose
money—this requirement is called avoiding partial loss. The motivation for

3One could question, however, whether it is reasonable to assume that all subjects, if,
representing actual persons, indeed act rationally.
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Modelling uncertainty for finite possibility spaces

D1x and D2x is self-evident.4

Axioms D3x and D4x, on the other hand, are concerned with how ac-
ceptability of certain gambles lead us to conclusions about the acceptability
of other gambles. Axiom D3x says that, if two gambles 5 , 6 2 L(Y) are
acceptable, then their sum 5 + 6 should also be acceptable. Axiom D4x says
that, if a gamble 5 2 L(Y) is acceptable, then any scaled version _ 5 with
_ > 0 should also be acceptable. The motivation for D3x and D4x relies
on the fact that pay-o�s corresponding to gambles are assumed to be linear
utilities for our subject; we refer to [110, Section 2.2.4] for more details.
Note that D3x and D4x together imply that D should form a convex cone;
that is, posi (D) = D.

It can moreover easily be deduced from D1x and D3x that coherent
sets of acceptable gambles satisfy the following monotonicity property.

Corollary 2.3.1. For any set of acceptable gambles D ✓ L(Y) that is coher-
ent, and any two 5 , 6 2 L(Y),

D5. if 5 2 D and 5  6, then 6 2 D.

Furthermore, for the same reasons as for sets of probability mass func-
tionsPin Section 2.222, we again do not assume a coherent set of acceptable
gambles D to be an exhaustive representation of our subject’s beliefs. Math-
ematically speaking, this means that D may actually include less gambles
than the set of all gambles deemed acceptable by our subject.

Example 2.3.2. A special set of acceptable gambles D is the first orthant
L� (Y). It can be checked that D = L� (Y) is coherent, and more specifi-
cally that it is the smallest possible set of acceptable gambles that is coherent.
Since no gambles are included in D apart from the trivially acceptable ones,
this set D can be seen to model the case where our subject is not willing
to make any non-trivial commitments with regard to the uncertain value of
. . It is the acceptability-counterpart of the sets Pof probability mass func-
tions consisting of all possible probability mass functions (recall the end of
Section 2.2.224), and is also referred to as the vacuous model. ^

Example 2.3.3. In utter contrast to the vacuous model described above,
we can also consider maximal coherent sets of acceptable gambles [12];
coherent sets of acceptable gambles for which there exists no coherent set

4Axioms D1x and D2x can sometimes be found in a slightly di�erent form; some authors
prefer to exclude 0 from the set of trivially acceptable gambles, or sometimes only include the
strictly positive gambles in the set of trivially acceptable gambles; similar observations can be
made for the trivially non-acceptable gambles. Such weaker versions of Axioms D1x and D2x
are typically used when interpreting acceptability in a stronger way—in that case, it is often
called desirability or strict desirability. We refer to [76] for an overview on this matter.
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2.3 Modelling uncertainty with sets of acceptable gambles

of acceptable gambles that is strictly larger. For instance, if Y = {',⌧, ⌫}
are the three possible colours of a ball drawn from a container—Red, Green
and Blue, respectively—then the sets { 5 2 L(Y) : 5 (') + 5 (⌧) + 5 (⌫) � 0}
and { 5 2 L(Y) : 5 (') > 0} [ { 5 2 L(Y) : 5 (') = 0, 5 (⌧) + 5 (⌫) � 0}
are maximal coherent sets of acceptable gambles. The former corresponds
to the case where our subject deems the colours Red, Green and Blue all
equally likely to come up; the latter corresponds to case where our subject
is (almost) certain that the ball will be Red, and that, if it is known that the
ball is not Red or if he is not allowed to put stakes on the colour Red, he
deems it equally likely that either Green or Blue will come up. ^

2.3.2 Upper and lower expectations from sets of acceptable gambles

Given a coherent set of acceptable gambles D that models the beliefs
of our subject, we typically want to make judgements about the ‘value’ or
‘price’ of certain gambles of interest. To do so, we associate upper and lower
expectations with D.

Definition 2.5. For any coherent set of acceptable gambles D, the corre-
sponding upper and lower expectations ED and ED are real-valued opera-
tors on L(Y) defined, for all 5 2 L(Y), by

ED ( 5 ) B inf{U 2 R : U� 5 2 D} and ED ( 5 ) B sup{U 2 R : 5 �U 2 D}. }

So, for any 5 2 L(Y), the value ED ( 5 ) represents the infimum accept-
able selling price corresponding to D; indeed, for any U 2 R, accepting U� 5
is the same as accepting the transaction of selling the uncertain reward 5 for
the fixed price U. Conversely, ED ( 5 ) represents the supremum buying price
corresponding to D. Observe that ED ( 5 ) and ED ( 5 ) always lie between
inf 5 and sup 5 , and therefore are indeed both real, due to Axioms D127 and
D227.

Example 2.3.4. Reconsider the situation from Example 2.3.3 , and let
D1 B L� (Y) and D2 B { 5 2 L(Y) : 5 (') + 5 (⌧) + 5 (⌫) � 0}. Then it can
be inferred that the vacuous model D1 gives as upper and lower expectations
ED1 ( 5 ) = sup 5 and ED2 ( 5 ) = inf 5 for all 5 2 L(Y). On the other hand, for
the model D2, which considers Red, Green and Blue equally likely to come
up, the upper and lower expectations coincide and are equal to ED2 ( 5 ) =
ED2

( 5 ) = ( 5 (') + 5 (⌧) + 5 (⌫))/3 for all 5 2 L(Y). ^

It can be shown that upper and lower expectations corresponding to
coherent sets of acceptable gambles satisfy the same convenient properties
as upper and lower expectations corresponding sets of probabilities.
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Proposition 2.3.5. Consider any coherent set of acceptable gambles D, and let
ED and ED be the upper and lower expectations corresponding to D according
to Definition 2.5x. Then, for any 5 , 6 2 L(Y) and _ 2 R�,

(i) ED (� 5 ) = �ED ( 5 ) [conjugacy];

(ii) inf 5  ED ( 5 )  ED ( 5 )  sup 5 [bounds];

(iii) ED ( 5 + 6)  ED ( 5 ) + ED (6);
ED ( 5 + 6) � ED ( 5 ) + ED (6) [sub-/super-additivity];

(iv) ED (_ 5 ) = _ED ( 5 ); ED (_ 5 ) = _ED ( 5 ) [non-negative homogeneity].

Proof. Property (i) follows straightforwardly from Definition 2.5x. Indeed, for any
5 2 L(Y), we have that

ED (� 5 ) = inf{U 2 R : U + 5 2 D} = inf{�U 2 R : 5 � U 2 D}
= � sup{U 2 R : 5 � U 2 D} = �ED ( 5 ).

Properties (ii)–(iv) can be easily deduced from Definition 2.5x and the coherence
of D. Alternatively, they also follow from the fact that ED and ED are ‘coherent’ in
the sense of [106, Definition 4.10], and therefore that they satisfy the properties
in [106, Theorem 4.13].

Note again that, due to the conjugacy property (i) above, we can limit
ourselves to only working with upper expectations. In some instances, as
was the case for the upper and lower expectations ED2 and ED2

in the exam-
ple above, it can happen that the upper and lower expectation coincide—it
can be observed that this will always be the case for upper and lower ex-
pectations deduced from maximal coherent sets of acceptable gambles. The
upper and lower expectations are then again called self-conjugate. They
represent a subject’s fair prices [27]; indeed, for any 5 2 L(Y), if ED ( 5 )
denotes the common value of ED ( 5 ) and ED ( 5 ), then our subject is willing
to sell 5 for any price U higher than ED ( 5 ), and willing to buy 5 for any
price U lower than ED ( 5 ).

We do want to stress, however, that we consider the existence of fair
prices to be only a special case and that, in general, we allow infimum (ac-
ceptable) selling prices to be higher than supremum (acceptable) buying
prices; see (ii) above. By doing this, we allow for indeterminacy in a sub-
ject’s gambling behaviour, in the sense that our subject may choose, for any
price U 2 R and any gamble 5 2 L(Y), to neither sell 5 for U, nor buy 5

for U. If we were to restrict ourselves to only working with self-conjugate
(linear) expectations or maximal sets of acceptable gambles, then we would
always force our subject to either sell 5 for U, or buy 5 for U, which seems
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2.4 Coherent upper and lower expectations directly

like a strong and unnatural limitation.5 The case of maximal indeterminacy
is in Example 2.3.429 represented by the vacuous model ED1 , because there
ED1 ( 5 ) = sup 5 and ED1

( 5 ) = inf 5 for all 5 2 L(Y), and so our subject
is then only willing to sell or buy gambles in such a way that she can never
lose from her transactions. We again refer to Walley [110] for more details.

2.3.3 Upper and lower probabilities from sets of acceptable gambles

Just as we did in Section 2.2.325 for upper and lower expectations as-
sociated with sets of probability mass functions, we can associate an upper
and lower probability PD and PD with a coherent set of acceptable gam-
bles D by restricting the upper and lower expectations ED and ED to the
domain of indicators; so, for any coherent set of acceptable gambles D, we
let PD (�) B ED (I�) and PD (�) B ED (I�) for all � 2 ¶(Y). The upper
and lower probability PD and PD corresponding to a coherent set D do not
represent upper and lower bounds on possible individual probabilities as in
Section 2.2.325, but rather represent the infimum and supremum stakes at
which our subject is willing to bet on the occurence of an event. Indeed,
it follows from the definition of ED [Definition 2.529] that PD (�) for any
� 2 ¶(Y) is the infimum price U 2 R for which our subject is willing to
accept the the uncertain reward that is equal to U � 1 if � occurs, and that
is equal to U otherwise. Conversely, PD (�) for any � 2 ¶(Y) is the supre-
mum price U 2 R for which our subject is willing to accept the the uncertain
reward that is equal to 1 � U if � occurs, and that is equal to �U otherwise.

2.4 Coherent upper and lower expectations directly

We have seen in the previous sections that both the framework of (sets
of) probabilities and the framework of sets of acceptable gambles naturally
lead us to define upper (and lower) expectations, which are often more
convenient or interesting than the (sets of) probabilities or sets of accept-
able gambles they are derived from, especially when aiming to draw in-
ferences about the system at hand. The upper expectations deduced from
these frameworks moreover have some characteristic properties, which were
listed in Propositions 2.2.424 and 2.3.5 . In many cases, these character-
istic properties are all we need and care about—for instance, when deriv-
ing (other) mathematical properties or when performing calculations—-and
then the definitions of the upper expectations given above are rather lengthy

5The only exception where we would allow a subject to be indeterminate when working
with self-conjugate (linear) expectations, is when the proposed selling or buying price U is
exactly equal to ED ( 5 ).
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and indirect. Moreover, they also demand a user to base himself on ei-
ther the framework of probabilities or the framework of acceptable gam-
bles, and therefore to choose between two contrasting interpretations of an
upper expectation. In light of obtaining a more direct and universal defi-
nition of an upper expectation, a possible and logical strategy would be to
simply start from the properties in Propositions 2.2.424 and 2.3.530, and
propose them as defining axioms. This approach was followed by P. M.
Williams [113] and Walley [110]. They showed that the following three
simple axioms—which are the same as Proposition 2.2.4(ii)25–(iv)25 and
Proposition 2.3.5(ii)30–(iv)30—are enough to fully characterise the upper
expectations in Definitions 2.324 and 2.529; they are specified, for any real-
valued operator E : L(Y) ! R, any 5 , 6 2 L(Y) and _ 2 R�, by

C1. E ( 5 )  sup 5 [upper bound];

C2. E ( 5 + 6)  E ( 5 ) + E (6) [sub-additivity];

C3. E (_ 5 ) = _E ( 5 ) [non-negative homogeneity].

In accordance with Propositions 2.2.424 and 2.3.530, the lower expectation E
corresponding to an upper expectation E is simply defined by the conjugacy
relation;

E ( 5 ) B �E (� 5 ) for all 5 2 L(Y). (2.2)

The following uses C1–C3 to define the notion of a coherent upper ex-
pectation, and establishes our claim that these axioms are enough to char-
acterise the upper expectations from Definition 2.324 and Definition 2.529.

Definition 2.6. For any operator E : L(Y) ! R the following conditions
are equivalent. If any—and hence all—are satisfied then we call E a coher-
ent upper expectation, and the corresponding conjugate operator E defined
by Eq. (2.2) a coherent lower expectation.

(i) E satisfies C1–C3;

(ii) E is the upper envelope EP corresponding to some non-empty set P
of probability mass functions;

(iii) E is equal to the infimum selling prices ED corresponding to some
coherent set of acceptable gambles D. }

Proof. That (ii) implies (i) follows from Proposition 2.2.424. That (iii) implies (i)
follows from Proposition 2.3.530. That (i) implies (ii) follows from the lower envelope
theorem [110, Theorem 3.3.3 (b)] and conjugacy.6 That (i) implies (iii) follows from
[106, Theorem 4.2] and conjugacy.

6A similar result was actually first stated by Huber [49, Section 10.2], and later used by
Artzner et al. [1, Proposition 4.1] to characterise coherent risk measures.
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Note that no independent explicit definition of a—not necessarily
coherent—upper expectation has been given so far. Upper expectations
will appear in several di�erent contexts and take multiple di�erent forms
throughout this dissertation. In this chapter, they will always assume them
to be real-valued operators on L(Y), yet, in later chapters, they will be
modified to also take values in the extended real numbers R, or to even
take two arguments instead of only one. In general, no additional implicit
assumptions are made with respect to the form or properties of upper ex-
pectations; they will typically take a more specific form, but this will then
be mentioned explicitly at the point of relevance.

Apart from C1 –C3 , coherent upper and lower expectations addition-
ally satisfy some basic but convenient properties. The following result can
be easily deduced from [110, Section 2.6.1.] and the conjugacy relation
[Eq. (2.2) ].

Proposition 2.4.1. Consider any coherent upper expectation E on L(Y), let
E be defined by conjugacy, and fix any 5 , 6 2 L(Y) and ` 2 R. Then E and
E satisfy the following properties:

C4. 5  6 ) E ( 5 )  E (6) [monotonicity];

C5. inf 5  E ( 5 )  E ( 5 )  sup 5 [bounds];

C6. E ( 5 + `) = E ( 5 ) + ` [constant additivity];

C7. E ( 5 + 6)  E ( 5 ) + E (6)  E ( 5 + 6) [mixed super-/sub-additivity];

C8. for any sequence { 5<}<2N0 in L(Y): [uniform convergence]

lim
<!+1

sup | 5 � 5< | = 0 ) lim
<!+1

E ( 5<) = E ( 5 ).

2.5 Upper expectations are slightly less expressive

We have put forward coherent upper expectations as central objects of
interest because they can be given a universal meaning, as is established
by Definition 2.6 above, and because they often allow us to conveniently
draw inferences about the systems at hand; e.g. recall Examples 2.1.221
and 2.2.324. One could therefore be tempted to immediately express ev-
erything in terms of coherent upper expectations, yet care should be taken
here, since upper expectations are actually less expressive than sets of prob-
abilities or coherent sets of acceptable gambles. In other words, for any
coherent upper expectation E, the set P in Definition 2.6 need not to
be unique; there may be multiple sets of probabilities leading to the same
coherent upper expectation. Similar considerations hold for upper expec-
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tations deduced from coherent sets of acceptable gambles. Let us clarify
this.

If we want to associate a set of probability mass functions to a coherent
upper expectation E, one possibility is to consider the set of all probability
mass functions for which the associated expectation is smaller than (or equal
to) E:

P(E) B
�
> 2 P(Y) : (8 5 2 L(Y))P

í2Y >(í) 5 (í)  E ( 5 )
 
. (2.3)

It follows from [110, Section 3.3.3] and conjugacy that the upper
envelope—according to Definition 2.324—over this set P(E) indeed coin-
cides with E. Moreover, it also clear from Definition 2.324 that P(E) must
always be the largest such set. But P(E) should not necessarily be the only
such set as there can also be smaller ones. For instance, removing the points
that are not extreme7 from the convex set P(E)—and therefore making it
non-convex—does not alter the values of the upper expectation that results
from it [110, Theorem 3.6.2]. On the other hand, since we are consider-
ing suprema of expectations, the boundary structure of a set of probability
mass functions is often irrelevant as well, in the sense that any two sets
P1 and P2 that have the same closure8 will have the same resulting upper
expectation. This is also the reason why the one-to-one correspondence in
[110, Theorem 3.6.1] only involves sets of probabilities that are closed (or
compact).

Example 2.5.1. Suppose that the possibility space Y = {0, 1} consists of
two elements 0 and 1. Let >1, >2 2 P(Y) be two probability mass functions
on Y such that 0  >1 (0) < >2 (0)  1. Let P1 B {>1, >2},

P2 B {> 2 P(Y) : >1 (0)  >(0)  >2 (0)} and
P3 B {> 2 P(Y) : >1 (0) < >(0) < >2 (0)}.

The setsP1 andP2 are di�erent but have the same extreme points; namely
>1 and >2. On the other hand, it can be checked that P3 is not closed, but
that its closure is equal to P2 (which is trivially closed).

As far as the corresponding upper expectations are concerned, we have
that, for any 5 2 L(Y),

EP1 ( 5 ) = sup
>2{>1,>2 }

>(0) 5 (0) + [1 � >(0)] 5 (1)

= sup
>2{>1,>2 }

>(0) [ 5 (0) � 5 (1)] + 5 (1)

7An extreme point of a convex set ⌫ is an element in ⌫ that cannot be written as a convex
combination of other elements in ⌫.

8We here mean the closure under uniform convergence or the closure under pointwise
convergence; both are equivalent because Y is finite.
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2.5 Upper expectations are slightly less expressive

So if 5 (0) � 5 (1), then by the fact that >2 (0) > >1 (0) we know that EP1 ( 5 ) =
>2 (0) [ 5 (0)� 5 (1)] + 5 (1). If on the other hand 5 (0) < 5 (1), then by >2 (0) >
>1 (0) we have that EP1 ( 5 ) = >1 (0) [ 5 (0) � 5 (1)] + 5 (1). It can be inferred
in analogous way, and by using the definitions of P2 and P3, that the same
expressions hold for EP2 and EP3 ; that is,

EP2 ( 5 ) = EP3 ( 5 ) = >2 (0) [ 5 (0) � 5 (1)] + 5 (1) if 5 (0) � 5 (1) and
EP2 ( 5 ) = EP3 ( 5 ) = >1 (0) [ 5 (0) � 5 (1)] + 5 (1) if 5 (0) < 5 (1).

^

In a similar way, we have that the boundary structure of a coherent set
of acceptable gambles D has no impact on the associated upper expectation
ED. For instance, it can easily be proved using Definition 2.529 that two co-
herent sets of acceptable gambles with the same (uniform) closure will give
the same upper expectation. We do not prove this explicitly, but prefer to
illustrate this with an example. Furthermore, note that convexity is always
satisfied for a coherent set of acceptable gambles due to D327 and D427, and
therefore that there is no extra degree of freedom in this respect.

Example 2.5.2. Reconsider the situation from Example 2.3.429. Let D2 B
{ 5 2 L(Y) : 5 (') + 5 (⌧) + 5 (⌫) � 0} be defined as previously, and let
D3 B { 5 2 L(Y) : 5 (') + 5 (⌧) + 5 (⌫) > 0} [ {0}. Then it can easily
be checked that D2 and D3 are both indeed coherent sets of acceptable
gambles. Moreover, by Definition 2.529, we also have that, for all 5 2 L(Y),

ED2 ( 5 ) = ED2
( 5 ) = ( 5 (') + 5 (⌧) + 5 (⌫))/3 = ED3 ( 5 ) = ED3

( 5 ).

Yet, it is clear that D2 < D3 as for instance 6 = (6('), 6(⌧), 6(⌫)) B
(�1, 1

2 ,
1
2 ) is an element of D3 but not of D2. ^

Given a coherent upper expectation E, one possible coherent set of ac-
ceptable gambles that can be associated with E is the set D(E) that results
from interpreting E as infimum selling prices:

D(E) B
�
U � 5 : 5 2 L(Y) and U > E ( 5 )

 
[L� (Y)

=
�
5 2 L(Y) : 0 < E ( 5 )

 
[L� (Y), (2.4)

where we immediately used the coherence of E and conjugacy for the sec-
ond equality. As is pointed out in [114, Section 3.3] this set D(E) is the
smallest coherent set of acceptable gambles for which the associated upper
expectation—according to Definition 2.529—is equal to E.

The increased expressiveness of both coherent sets of acceptable gam-
bles and sets of probabilities compared to coherent upper expectations may
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Modelling uncertainty for finite possibility spaces

in some cases turn out to be practically relevant; we will henceforth devote
little attention to it though, and simply refer to [110, Sections 3.7] and [82]
for a more elaborate discussion on this matter. However, one of the major
reasons for bringing this topic to the fore is that it urges caution when mod-
elling stochastic processes, as we will do in the following chapters. For in
such a stochastic processes setting [Section 3.1.248], we usually start o�
from (multiple) local models, given as either sets of probability mass func-
tions, sets of acceptable gambles or upper expectations, and the central aim
is then to combine and extend these local models to obtain more global in-
formation about the stochastic process at hand. A naive approach would
be to immediately, from the start, express all local beliefs in terms of up-
per expectations and then simply extend from here on—as, in the end, we
will be interested in global upper expectations anyway. Yet, it is a priori not
given whether this is equivalent to first performing an extension in one of
themore general frameworks (sets of probabilities or sets of acceptable gam-
bles), and then afterwards transitioning to (the less expressive) global up-
per expectations—which is the preferred route if one wishes to preserve the
initial given information as much as possible. We will therefore—amongst
other reasons—study three separate approaches of constructing a global up-
per expectation; one for each of the three di�erent types of local models.

2.6 Extension of an uncertainty model

So far, we have established that a subject’s beliefs about an uncertain
variable . can be modelled in three di�erent ways; by means of a set of
probabilities, a coherent set of acceptable gambles, or a coherent upper ex-
pectation. Nonetheless, in practical situations, when eliciting beliefs from
a real-life subject, it should not be expected that such a subject will specify
an entire set of probabilities that she deems possible, or specify an entire
cone of gambles that she deems acceptable. Or, in the framework of upper
expectations, it seems unrealistic to ask our subject to immediately spec-
ify her infimum selling prices, or her upper bounds on linear expectations,
for all gambles in L(Y). Even if her beliefs itself can be expressed by a
full-fledged coherent upper expectation, in reality, we often do not have
the time, money or tools to gather all the necessary information needed to
characterise this upper expectation. Hence, whatever the framework we are
considering, the initial assessments of a subject typically do not match the
structural conditions of the models discussed before. As a result, in order
to draw inferences, we are confronted with the question of how to extend
initial partial assessments to fully developed sets of probabilities, coherent
sets of acceptable gambles or coherent upper expectations.
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2.6 Extension of an uncertainty model

2.6.1 Extensions for sets of probabilities

Performing an extension within the framework of sets of probabilities
or sets of acceptable gambles is rather straightforward. In fact, for sets of
probabilities, there does not really exist a concrete extension mechanism;
as briefly mentioned in Section 2.222, we usually start o� with some given
bounds on certain probabilities, or more generally, some restrictions on the
form of the possible probabilities. Our next step is then simply to consider
the largest set of probability mass functions that is compatible with these re-
strictions; so if R denotes a (not necessarily finite) collection of restrictions,
and compatibility of a probability mass function > with the restrictions R is
denoted by > ⇠ R, then {> 2 P(Y) : > ⇠ R} is the desired set of probability
mass functions. For instance, reconsidering Example 2.2.324, the collection
of restrictions R consisted only out of the restriction that >(') = 2

6 . The
reason why we consider the largest set among all possible ones is due to
conservativity considerations; taking smaller sets essentially means adding
more restrictions, and thus more information on top of what is given by our
subject. It could also be that the set {> 2 P(Y) : > ⇠ R} is empty and thus
that there are no probability mass functions compatible with the restrictions
R; in that case, we call R inconsistent.

2.6.2 Extensions for sets of acceptable gambles

Consider a (not necessarily coherent) set of acceptable gambles A ✓
L(Y) that represents the initial assessments of our subject. The set A
may take any form, and is most likely to include only a finite number of
gambles—and therefore not to be coherent. Adopting Axioms D127–D427
however allows us to say something about the acceptability of gambles that
are not included in A. Concretely, Axioms D127, D327 and D427 tell us that
our subject should accept, apart from the gambles in A itself, the gambles
in the cone

E(A) B posi (A [L� (Y)) =
(

<X
7=1

_7 57 : < 2 N, 57 2 A [L� (Y), _7 2 R>

)
,

which is obtained by including L� (Y) and taking all positive linear combi-
nations. Note that addingmore gambles to the set E(A) wouldmean adding
more information apart from what A and Axioms D127, D327 and D427 tell
us. If E(A) does not include any gambles from L� (Y)—and therefore does
not violate D227—then E(A) is coherent and, since nothing more can be
deduced from Axioms D127–D427, it is the smallest coherent set of accept-
able gambles extending the assessments A. So, since smaller coherent sets
of acceptable gambles are obviously more conservative, E(A) is then the
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Modelling uncertainty for finite possibility spaces

most conservative coherent set of acceptable gambles that extends A, and
is therefore our desired coherent extension of A.

However, it could of course also be that E(A)\L� (Y) < ú; in that case,
we infer from A that our subject is willing to accept a gamble in L� (Y).
By adopting D227, we have agreed upon the fact that this is irrational, and
this prevents us from extending her assessments A to a coherent set of ac-
ceptable gambles. We then call A inconsistent. These considerations are
gathered in the following definition [106, 110].

Definition 2.7. We say that a set A ✓ L(Y) of acceptable gambles is con-
sistent if E(A) \L� (Y) = ú. If this is the case, then E(A) is the smallest
coherent set of acceptable gambles including A, and it is called the natural
extension of A. }

Proof. It is clear from the definition of E(A) that this set E(A) satisfies D127, D327

and D427. If A is consistent, then E(A) additionally satisfies D227, and thus E(A)
is then coherent. It is moreover clear from the definition of E(A) that any other
coherent set of acceptable gambles including A must always include E(A) too, so
E(A) is indeed the smallest coherent set of acceptable gambles including A.

2.6.3 Direct extensions of upper expectations

Suppose now that our subject’s initial assessments are represented by
an upper expectation E : K ! R on some arbitrary domain K ✓ L(Y)—
these can represent infimum selling prices, upper bounds on linear expecta-
tions/probabilities or both. Again, it is most likely the subject only specifies
a finite number of values, and therefore that K is finite (but we do not
necessarily require K to be finite). Our aim is to extend E from K to the
entire space L(Y) such that the resulting extended operator is coherent in
the sense of Definition 2.632. As before, two crucial questions then come to
mind; ‘Under what conditions can we perform such an extension?’ and ‘If
there are multiple extensions possible, which one do we take?’.

General coherence

The following result gives an answer to our first question. It is stated as a
definition though, more specifically as a renewed definition of coherence.
Coherence was indeed already introduced earlier on, with Definition 2.632,
but the concept is well-known to generalise to upper expectations on general
domains K. This generalised notion immediately turns out to be su�cient
(and necessary) in order for a coherent extension—in the sense of Defini-
tion 2.632—to exist. The definition below is due to P. M. Williams [113], but

38



2.6 Extension of an uncertainty model

we use [106] in our proof because P. M. Williams [113] immediately gives
a version of coherence for conditional upper expectations.

Definition 2.8. Consider any upper expectation E : K ! R on an arbitrary
domain K ✓ L(Y). Then the following conditions are equivalent. If any—
and hence all—of them hold, we call E coherent.

(i) E is the restriction of a coherent upper expectation E0 : L(Y) ! R

according to Definition 2.632;

(ii) for all < 2 N, _0, _1, . . . , _< 2 R� and 50, 51, . . . , 5< 2 K,

sup

 
_0 ( 50 � E ( 50)) �

<X
7=1

_7 ( 57 � E ( 57))
!
� 0.

(iii) there is a non-empty set P of probability mass functions on Y such
that E coincides with EP on K;

(iv) there is a coherent set D of acceptable gambles such that E coincides
with ED on K. }

Proof. It is clear that due to Definition 2.632, conditions (i), (iii) and (iv) are equiva-
lent. The fact that (ii) is equivalent to (i) follows rather straightforwardly from [106,
Definition 4.10 (B) and (E)] and conjugacy.

What’s perhaps somewhat unfortunate about this general notion of co-
herence, or at least if we compare it to the simpler version in Definition 2.632,
is that it cannot be characterised in terms of the three simple axioms C132–
C332 any more; the requirement (i) above only uses C132–C332 in an indi-
rect manner; in general, it does not su�ce for an upper expectation E on
a general domain K to satisfy (the restricted versions of) C132–C332 to be
coherent. The requirement (ii) above is direct, but the involved expression
is, compared to C132–C332, more di�cult to grasp and makes mathematical
analysis less straightforward. This requirement can nevertheless be intu-
itively motivated on behavioural grounds; a topic for which we like to refer
to [110, Section 2.5]—note that a characterisation similar to (ii) can be
found in [110, Section 2.5.4].

The natural extension of an upper expectation

By condition (i) in the definition above it is clear that coherence is necessary
and su�cient in order for a coherent extension to the entire space L(Y)
to exist. Yet, even if the initial upper expectation E : K ! R is coherent,
this extension might still not be unique and so the question remains which
extension to pick. Once more, we will choose for the most conservative
extension; in this case that translates to choosing the (pointwise) largest
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upper expectation. For indeed, that larger upper expectations correspond
to more conservative—less committal or less informative—judgements can
be argued on the basis of the dual meaning of a coherent upper expectation.
Using an interpretation in terms of upper bounds on possible probabilities or
expectations, larger (or higher) coherent upper expectations mean higher
upper bounds, which are more conservative—less informative. On the other
hand, using an interpretation in terms of infimum selling prices, larger co-
herent upper expectations represent higher infimum selling prices, which
are again more conservative.

The most conservative—or thus the pointwise largest—coherent exten-
sion among all possible coherent extensions is called the natural extension
under coherence, or simply the natural extension [110, 113].

Definition 2.9. Consider a coherent upper expectation E : K ! R on an
arbitrary domain K ✓ L(Y). Then there is a—trivially unique—pointwise
largest coherent extension E0 of E to L(Y). This extended upper expecta-
tion E0 is called the natural extension of E. }

Proof. The existence of E0 follows from [106, Theorem 4.26(ii)] and conjugacy.

Two explicit expressions for the natural extension

Definition 2.9 guarantees that the natural extension of a coherent upper
expectation exists, yet the form and properties of this natural extension are
still to be derived implicitly from the fact that it satisfies C132–C833 and
the fact that it is the largest among all coherent extensions. More explicit
and tangible characterisations of this natural extension can nonetheless be
obtained by relying on the close connections with the frameworks of sets of
probabilities and sets of acceptable gambles.

Suppose once more that we are given a coherent upper expectation E on
some domain K ✓ L(Y). If we regard E as being upper bounds on possible
expectations corresponding to probabilities, then the set

P(E) B
�
> 2 P(Y) : (8 5 2 K)P

í2Y >(í) 5 (í)  E ( 5 )
 
, (2.5)

is the largest possible set of probability mass functions that is compatible
with the upper bounds represented by E. Note moreover that the expres-
sion above is simply a generalisation of the expression given for P(E) in
Section 2.533, which is why we are allowed to use the same notation. It can
be shown that, since E was assumed coherent, the set P(E) is non-empty
and has the natural extension E0 as its upper envelope. This result was first
stated by Walley [110, Section 3.3.3].
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2.6 Extension of an uncertainty model

Theorem 2.6.1. For any coherent upper expectation E on K ✓ L(Y), the
set P(E) is non-empty. Moreover, the natural extension E0 of E to L(Y) is
equal to the upper expectation EP(E ) deduced from P(E) according to Defini-
tion 2.324.

Proof. This follows from [110, Section 3.3.3] or [106, Theorem 4.38] and by ap-
plying conjugacy.

A similar thing can be done for sets of acceptable gambles. Consider a
coherent upper expectation E on some domain K ✓ L(Y), and let A(E)
be the set of all gambles that are deemed acceptable if we interpret E as
infimum selling prices; so we let

A(E) B
�
U � 5 : 5 2 K and U > E ( 5 )

 
. (2.6)

Note that, strictly speaking, A(E) is not the smallest—most conservative—
set of acceptable gambles that corresponds to the interpretation of E as rep-
resenting a subject’s infimum selling prices; indeed, this interpretation only
implies that, for any 5 2 K, there are U > E ( 5 ) arbitrarily close to E ( 5 ) for
which U � 5 is acceptable, and not that this is the case for all U > E ( 5 ). By
starting from A(E) as the initial set of acceptable gambles that corresponds
to E, we already implicitly adopt the property of coherence that, if U � 5

is acceptable, then V � 5 must also be acceptable for all V > U [D127 and
D327]. The expression for A(E) above is also similar to the one for D(E)
given in Section 2.533, but A(E) here is not necessarily coherent whereas
D(E) always is.

As was first pointed out by P. M. Williams [113, Theorem 1]—though
less explicitly and in a somewhat di�erent setting—the set A(E) is consis-
tent if E is coherent, and the upper expectation EE(A (E )) is then the natural
extension of E to L(Y).

Theorem 2.6.2. For any coherent upper expectation E on K ✓ L(Y), the set
of acceptable gambles A(E) is consistent. Moreover, the natural extension E0

of E to L(Y) is equal to the upper expectation EE(A (E )) according to Defini-
tion 2.529. It is given, for all 5 2 L(Y), by

E0( 5 ) = inf

(
U 2 R : U � 5 �

<X
7=1

_7

⇣
E ( 57) � 57

⌘
, < 2 N, 57 2 K, _7 2 R>

)
.

Proof. Suppose that E is coherent, and let E defined through conjugacy; so, for
all 5 such that � 5 2 K, we let E ( 5 ) B �E (� 5 ). Then it can be inferred from
Definition 2.839 (ii)39, that E is coherent in the sense of [106, Definition 4.10 (E)].
Hence, by [106, Definition 4.10(C)] and [106, Definition 4.6(A)], the set A(E) is
consistent in the sense of [106, Definition 3.4(B)], which in turn implies that it is
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consistent according to our Definition 2.738. That EE(A (E ) ) is equal to the natural
extension E0 then follows from [106, Theorem 4.26(ii)], conjugacy, and the fact
that our definition of E(·) is equivalent to the one of the natural extension in [106,
Theorem 3.7]. Finally, the expression for E0 in the statement above then follows from
[106, Definition 4.8] and conjugacy (and the fact that coherence implies ‘avoiding
sure loss’ [106, Definition 4.10]).

Extending non-coherent upper expectations

If we interpret upper expectations to be non-exhaustive representations of a
subject’s beliefs—as we usually do—then the requirement of extending an
initial upper expectation is in fact unnecessarily stringent. As in such a case,
there is nothing that prevents us from updating or sharpening the already
given upper expected values. If unnecessary, we prefer not to do this due
to conservativity considerations, but in some cases this additional freedom
of correcting already specified assessments provides the opportunity to still
come up with a coherent ‘sharpened’ model in cases where a (coherent)
extension would simply not exist. In particular, these cases occur if our
subject, in the act of specifying her initial upper expectation, does not fully
take into account the consequences of her own statements.

So, in such a case, we want our ‘extended’ upper expectation E0 onL(Y)
to dominate or sharpen the initial upper expectation E : K ! R; that is,
E0 should be equal to or smaller than E on K. If there exists at least one
such smaller—dominating—coherent upper expectation, then E is called
consistent, or is said to avoid sure loss [106, Definition 4.6]. In this case,
there must moreover always exist a pointwise largest—most conservative—
upper expectation that is coherent and dominates E, and this upper ex-
pectation is then typically also called the natural extension of E; see [110,
Section 3.1.2] or [106, Theorem 4.26(i)].9 As established by [106, Defi-
nition 4.10(C)] and the example below, consistency is strictly weaker than
coherence. Furthermore, if an upper expectation E is coherent—and there-
fore also consistent—then the generalised type of natural extension above
is the same as the natural extension from Definition 2.940; see [106, The-
orem 4.26]. So in that case it is again an actual extension, and thus the
freedom to sharpen a subject’s assessments only really becomes relevant if
we are dealing with non-coherent upper expectations.

Example 2.6.3. Consider any non-empty set Y with |Y | � 2, any 51 2
L(Y), let í 2 Y and let E be defined by E ( 51) B 51 (í) and E ( 5 ) B sup 5

for all 5 2 L(Y) \ { 51}. Then note that, if 51 (í) < 51 (H) for some H 2 Y such
that H < í, the upper expectation E is not coherent. Indeed, then 51 < 0

9Though, confusingly enough, it need not necessarily be an actual extension.
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and thus 2 51 < 51, which implies that

E (2 51) = sup(2 51) � 2 51 (H) > 2 51 (í) = 2E ( 51),

which violates non-negative homogeneity [C332] and sub-additivity [C232].
Yet, it is not di�cult to find a coherent upper expectation on L(Y) that
dominates E; e.g. consider the (linear) upper expectation E0 defined by
E0( 5 ) = 5 (í) for all 5 2 L(Y). So E is consistent and therefore, according
to [110, Section 3.1.2] or [106, Theorem 4.26(i)], its ‘natural extension’
exists. ^

We will never make use of the notions of consistency or sharpening for
upper expectations, though. The coming chapters deal with discrete-time
stochastic processes and will solely discuss extension procedures that allow
us to go from local upper expectations to global upper expectations. These
local upper expectations will always be assumed coherent (and defined on
the entire domain of all local gambles) from the start anyway, and so, similar
as explained here for the present simple finitary context, the extensions that
wewill be interested in will never sharpen or dominate the initial local upper
expectations. Of course, in order to adhere to a more realistic scenario, the
coherent local upper expectations can nevertheless be regarded as if they are
derived from some initial consistent—but not necessarily coherent—(local)
upper expectations as in the way set out above. We refer the interested
reader to [106, 110] for more details on the topic of consistency and natural
extension for non-coherent upper expectations.

In fact, the extension procedures described in the following chapters will
also never explicitly use the methods introduced here in Section 2.636 for fi-
nite possibility spaces. This is because the discrete-time stochastic processes
setting requires us to deal with (uncountably) infinite possibility spaces and
to perform specific types of extensions, for which themethods just presented
are inadequate. Our reason for nevertheless devoting an entire section to
them is because many of the key ideas underlying these methods are sim-
ilar but clearer than those that underlie the the more involved procedures
discussed in future chapters.
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Consider a subject whose beliefs about a—finite or infinite—series -1, -2,
-3, · · · , -9, · · · of uncertain variables we want to model. Each of these un-
certain variables -9 take values in the same finite non-empty setX, and the
index 9 2 N can be interpreted as a discrete time indication. For example,
9 2 N may denote the 9-th day of the year, and the variable -9 may be the
state of the weather in Ghent on that 9-th day. The state could then involve
detailed information about the weather—the average temperature, humid-
ity, air pressure, . . .—but it can also be a rough simplification, with the set
of possible values X for instance being {Sunny,Cloudy,Rainy}. Any such
sequence (-9)92N of uncertain variables, indexed by a discrete time variable
9 2 N, is what we call a discrete-time stochastic process.

In the previous chapter, we have seen how sets of probability mass func-
tions, sets of acceptable gambles, and coherent upper expectations can each
provide an appropriate way to model (unconditional) beliefs about a single
uncertain variable . taking values in a finite set. The context of stochastic
processes requires a somewhat more complicated set-up though, since we
have to deal not with a single, but with a possibly infinite sequence of un-
certain variables—the corresponding total possibility space will therefore
not necessarily be finite. Moreover, since it is a process—a physical system
changing through time—that we are modelling, we need a model that can
incorporate new information as it becomes available. If the process advances
one time step from 9 to 9 + 1, and the new value of the state -9+1 is pre-
sented, this should be taken into account by our uncertainty model. In other
words, we want to be able to condition on such newly arrived information,
and we therefore need a conditional global uncertainty model.

The current chapter aims to show how the notions of (sets of) probability
mass functions, sets of acceptable gambles, and coherent upper and lower
expectations as introduced previously for finite possibility spaces, can be
suitably adapted and generalised in order to develop joint global models for
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stochastic processes. We start in Section 3.1! from local assessments on
the variables -1, -2, -3, . . . individually. These assessments are expressed
in the form of one of the three types of (unconditional) uncertainty models
introduced in the previous chapter—this is possible because the local state
spaceX is always assumed to be finite. We then combine and extend these
local models in order to obtain a single global model, which will always take
the form of a conditional upper expectation. We will do this in di�erent
ways, depending on the type of local model that is started from.

In Section 3.256, we start from local sets of acceptable gambles and pro-
pose an extension that is entirely based on the behavioural framework of
sets of acceptable gambles [106, 113]. The resulting global upper expecta-
tions will then represent infimum (acceptable) selling prices. Furthermore,
it will also be shown that this upper expectation can be given an alternative
characterisation in terms of super- and submartingales; game-theoretic con-
cepts that represent allowable betting strategies. The game-theoretic upper
expectations considered in this chapter, however, are finitary in nature and
do not use the concept of superhedging at infinity; this is in contrast with the
Shafer and Vovk type of game-theoretic upper expectation [85, 86] treated
in Chapter 4129.

Section 3.369 then, considers global upper expectations deduced from
local probability mass functions. Our central notion to extend from a lo-
cal to a global level will be that of a conditional probability charge [18,
34]. From conditional probability charges we will derive global upper ex-
pectations by first using (Lebesgue-wise) integration and then taking upper
envelopes. Mark however that we do not necessarily consider countably ad-
ditive probability charges in this chapter; global upper expectations based
on countably additive probability charges—probability measures—will be
discussed in Chapter 5217. Not doing so not only makes our treatment more
general, but it also allows us to introduce probability-based global upper
expectations in a more tangible way, without having to introduce technical
machinery such as f-algebras or the notion of measurability corresponding
to such f-algebras.

A last type of global upper expectation is discussed in Section 3.480,
and is based on the framework of coherent upper and lower expectations.
We will first propose four simple axioms, common to both behavioural and
probability-based global upper expectations. This axiomatisation will more-
over be shown to be equivalent to the usual requirement of conditional co-
herence [106, 113]—a result that, to our knowledge, has not been stated
before. The global upper expectation will then subsequently be defined
as the most conservative extension (of the local upper expectations) under
these axioms—or, equivalently, the natural extension under conditional co-
herence. We conclude Section 3.480 by proving two alternative characterisa-
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tions for the axiomatic/coherence-based global upper expectation; the first
is a direct and explicit formula which can be used in practice to do infer-
ence; the second is a full axiomatisation—without conservatism—that will
turn out to be highly convenient in our further mathematical analysis.

In our penultimate section, Section 3.590, we study the relation between
the global models introduced and discussed in Section 3.256–3.480. It will
turn out that, if local models are chosen in a logical way to agree with one
another, then the corresponding global upper expectations will all be equal.
This is a fundamental—and new—result, that we argue to have merit in a
number of di�erent ways.

Finally, in Section 3.698, we expose the Achilles heel of this common
global model; it lacks some minimal—weak—continuity properties, there-
fore sometimes leading to extremely conservative, or even meaningless val-
ues for non-finitary variables—variables that depend on an infinite number
of process states. This ought not to surprise us entirely since, after all, none
of the global upper expectations treated here relies, in their definition, on
any continuity assumption. All extension mechanisms are finitary in na-
ture. Our reasons for nevertheless devoting an entire chapter to these ‘fini-
tary’ global upper expectations is threefold; first and foremost, these fini-
tary global upper expectations are actually perfectly suited if one is solely
interested in the domain of finitary bounded variables; secondly, our study
of them, and especially our observation that they lack minimal continuity
properties, urges the necessity of using the more involved continuity-based
global upper expectations in Chapter 4129–6283 when dealingwithmore gen-
eral domains; and finally, our choice is also due to didactic considerations,
since the finitary global upper expectations introduced here allow us to al-
ready set many fundamental ideas and concepts in place, before introducing
their more complicated continuity-based variants in Chapter 4129–6283.

3.1 Stochastic processes

Before we construct a global model for discrete-time stochastic pro-
cesses, we first elaborate on the underlying mathematical structure of such
a process. We introduce notions that are essential for a suitable treatment
of stochastic processes, and clarify what the di�erence is between local and
global uncertainty models.

3.1.1 About event trees, situations and paths

As mentioned earlier, any sequence (-9)92N of uncertain states taking
values in a state space X is called a discrete-time stochastic process. We
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will always assume that X is finite, and in this case the stochastic process
can be visualised in a so-called event tree; see Figure 3.1!. It presents each
possible partial (and possibly empty) realisation -1 = F1, -2 = F2, . . . , -9 =
F9 of the process as a finite sequence of state values F1:9 B F1F2 · · · F9 2X9.
These finite sequences of state values are called situations, and we gather
all of them in X⇤ B [92N0X

9. The empty sequence ⇤ B F1:0 = ú is
called the initial situation, and corresponds to the case where there are no
observations about the values of the states (-9)92N. The length of a situation
A 2X⇤ is denoted by |A|.

On the other hand, an infinite sequence l = F1F2F3 · · · of state values is
called a path; such a path l represents so to speak an entire (idealised) tra-
jectory or realisation of the process, where the 9-th state value of l, denoted
by l9, represents the value of the state -9 at time 9. We write ⌦ B XN to
denote the set of all paths. For any path l 2 ⌦ and any 9, ✓ 2 N0, we let
l9:9+✓ B l9 · · ·l9+✓ be the situation that consists of l’s 9-th to 9+ ✓-th state
values. We also let l9 B l1:9 for all l 2 ⌦ and all 9 2 N0. Furthermore,
an important type of event—a subset of ⌦—is the cylinder event �(A) of a
situation A 2X⇤; it is the set {l 2 ⌦ : l |A | = A} of all paths that go through
the situation A.

For any two situations A and B, we write AB 2X⇤ to denote the concate-
nation of A and B. The same can be done for the concatenation of a situation
A and a path l. The path Al will then clearly go through A and, in fact, we
can write the cylinder event �(A) as {Al : l 2 ⌦}. For any two situations
A, B 2 X⇤, we write that A v B or B w A, and say that A precedes B or that B
follows A, if there is some C 2 X⇤ such that AC = B. We then also say that B
starts with A. Furthermore, we write that A @ B or B A A, if A v B and A < B.
For any two A, B 2X⇤, if A v B then �(A) ◆ �(B), and if A @ B then �(A) � �(B).
If neither A @ B, nor B @ A, then we say that A and B are incomparable and
write that A k B. In that case, we have that �(A) \ �(B) = ú.

3.1.2 The local description of a stochastic process

Irrespectively of how we construct a conditional (global) uncertainty
model for a stochastic process (-9)92N, the starting point is almost always a
description of the local behaviour of the process. That is, how the process
state -9 is likely to change or develop from one time instant 9 to the next
9 + 1. In most applications, this is what is directly available from a subject,
being it either a real person, a bunch of data and/or knowledge about the
system. For example, given the stock -9 of face masks in some inventory at
the 9-th day of the year, we usually have an idea about howmany face masks
are likely to be produced and consumed—and, perhaps, thrown away—that
day, and hence, an idea about how many face masks -9+1 will be left by the
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Figure 3.1 The event tree of a discrete-time stochastic process with state
space X = {F, í}.

next day. Yet, it is less obvious to assess the expected time until the inventory
is out of stock, or, more importantly, what the probability is that such a ter-
rible event will ever happen! Such inferences involve the process behaviour
on a more global level and, in order to make statements about them, we will
need to combine and extend the given local assessments. However, it is far
from trivial how we should do so, especially in an imprecise probabilities
context and when dealing with an infinite time horizon. In fact, one could
argue that this is the prime reason why there exist multiple di�erent types
of global uncertainty models for stochastic processes; each of these global
models relies on a di�erent set of principles and assumptions to combine
and extend the local assessments.

But let us first return to the original problem of describing a stochas-
tic process locally. In a traditional precise context, this is commonly done
by specifying a (precise) probability tree >; such a tree maps each situ-
ation F1:9 2 X⇤ to a probability mass function >(·|F1:9) on the finite state
space X. Each so-called local mass function >(·|F1:9) then represents be-
liefs about the value of the next state -9+1, given that the partial realisation
-1:9 B -1 · · · -9 = F1:9 of the process was observed. The use of a single prob-
ability charge >(·|A) for each A 2X⇤ would however considerably restrict the
generality of our approach—for recall our considerations from Chapter 217.
We therefore instead use either of the following more general ‘imprecise’
approaches to model the local dynamics of a stochastic process.

First, we can simply consider a generalisation of the concept of a (pre-
cise) probability tree; an imprecise probability tree P• : A 2 X⇤ 7! PA

maps each situation A to a non-empty set of probability mass functionsPA on
X. Each of these sets of probability mass functionsPA is called a local set of

49



Finitary upper expectations in discrete-time stochastic processes

probability mass functions, and should be considered as containing all prob-
ability mass functions >(·|A) that a subject deems ‘possible’, where >(F |A) for
each F 2X represents the probability that - |A |+1 takes the value F given that
-1: |A | = A was observed. If an imprecise probability treeP• consists, for each
situation A 2 X⇤, of only a single probability mass function >(·|A), then we
regard the imprecise treeP• and the precise tree > : A 2X⇤ 7! >(·|A) as one
and the same object, and also simply call P• a precise probability tree.

A second possible approach to model the local dynamics of a stochastic
process is by means of an acceptable gambles tree; a map A• : A 2X⇤ 7!
AA that maps each situation A to a coherent set of acceptable gambles AA

onX. Such a set of acceptable gambles AA is called a local set of acceptable
gambles and, as was the case for a local set of probability mass functions,
expresses beliefs about the value of the next state - |A |+1. More precisely, it
contains the variables 5 2 L(X) for which a subject is willing to accept the
gamble 5 (- |A |+1) whose uncertain pay-o� depends on - |A |+1 given that she
observed -1: |A | = A.

Finally, we can also describe the local dynamics in terms of an upper
expectations tree Q• : A 2X⇤ 7! Q

A
; each situation A 2X⇤ is then mapped

to a coherent unconditional upper expectation Q
A
: L(X) ! R. Such

a coherent upper expectation Q
A
is called a local upper expectation and—

thoughQ
A
is an unconditional upper expectation in the technical sense—it is

interpreted as expressing a subject’s beliefs about the value of the next state
- |A |+1 given that -1: |A | = A was observed. Specifically, in accordance with our
considerations from Chapter 217, the value Q

A
( 5 ) for any A 2 X⇤ and any

5 2 L(X) can either be regarded as a subject’s infimum selling price for the
gamble 5 (- |A |+1), or as an upper envelope over a set of linear expectations
that a subject deems possible. Moreover, it may also be that our subject did
actually not specify an entire coherent upper expectation for each A 2 X⇤

in the first place, but that Q
A
is the natural extension of some general local

assessments made by her—which are then assumed to be consistent.
Using the methods from Chapter 217, we can relate acceptable gambles

trees, imprecise probability trees and upper expectations trees as follows.
For any acceptable gambles tree A•, the corresponding upper expectations
tree Q•,A is defined, for all 5 2 L(X) and A 2X⇤, by Definition 2.529:

Q
A,A ( 5 ) B inf

�
U 2 R : U � 5 2 AA

 
. (3.1)

It follows from Definition 2.632 that each Q
A,A is coherent, and therefore

that Q•,A is indeed an upper expectations tree. We say that any two trees
A• and Q• agree if they are related by this Eq. (3.1) or, equivalently, if Q• is
equal to Q•,A . Recall from Section 2.533 that there are typically multiple—
di�erent—coherent sets of acceptable gambles leading to the same coherent
upper expectation, and hence, there are also typically multiple di�erent
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Figure 3.2 The upper expectations tree Q• of a discrete-time stochastic pro-
cess with state space X = {F, í}.

acceptable gambles trees that agree with the same upper expectations tree.
Consequently, acceptable gambles trees are somewhat more expressive than
upper expectations trees.

Given an upper expectations tree Q•, one possible agreeing acceptable
gambles tree that can always be chosen is the tree A•,Q for which the set
A
A,Q for each A 2 X⇤ is derived from the coherent upper expectation Q

A

according to Eq. (2.4)35:

A
A,Q B { 5 2 L(X) : 0 < Q

A
( 5 )} [L� (X), (3.2)

whereQ
A
for any A 2X⇤ is the conjugate lower expectation corresponding to

Q
A
. Moreover, for any A 2X⇤, as was mentioned in Section 2.533, the coher-

ent set of acceptable gambles A
A,Q is the smallest—the most conservative—

one for which the associated upper expectation is equal to Q
A
. For any other

acceptable gambles tree A• that agrees withQ•, we thus have that A
A,Q ✓ AA

for all A 2X⇤.
The relations between imprecise probability trees and upper expecta-

tions trees can be deduced in a similar way. That is, for any imprecise prob-
ability tree P•, the corresponding upper expectations tree Q•,P is defined,
for all 5 2 L(X) and A 2X⇤, by Definition 2.324:

Q
A,P( 5 ) B sup

n X
F2X

5 (F)>(F |A) : >(·|A) 2PA

o
. (3.3)

Once more, it follows from Definition 2.632 that each Q
A,P is coherent, and

therefore that Q•,P is indeed an upper expectations tree. A special case is
whenP• is a precise probability tree >; in that case the corresponding upper
expectations tree Q•,P is equal to the upper expectations tree Q•,> defined
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by

QA,> ( 5 ) B
X
F2X

5 (F)>(F |A) for all 5 2 L(X) and all A 2X⇤. (3.4)

Recall from Eq. (2.1)21 and Proposition 2.1.321 that eachQA,> is then actually
a linear expectation, which is why we will often call Q•,> a linear expecta-
tions tree or simply an expectations tree instead of an upper expectations
tree.

We say that an imprecise probability tree P• and an upper expectations
tree Q• agree if they are related by Eq. (3.3)x or, equivalently, if Q• is equal
to Q•,P. It follows once more from the discussion in Section 2.533 that there
are (typically) multiple di�erent imprecise probability trees agreeing with
a single upper expectations tree, and thus that imprecise probability trees
can be regarded as to be somewhat more expressive than upper expectations
trees. Given an upper expectations tree Q•, one specific imprecise probabil-
ity tree that agrees with it is the tree P•,Q for which the set PA,Q for each
A 2X⇤ is derived from Q

A
according to Eq. (2.3)34:

PA,Q B
n
>(·|A) 2 P(X) : (8 5 2 L(X))

X
F2X

5 (F)>(F |A)  Q
A
( 5 )

o
. (3.5)

Then for any other imprecise probability treeP• that agrees withQ•, it again
follows from the discussion in Section 2.533 that PA ✓PA,Q for all A 2X⇤.

What’s important to note at this point is that, by specifying either an
acceptable gambles tree, an imprecise probability tree, or an upper expec-
tations tree, we parametrize the dynamics of a stochastic process. In other
words, as far as our theoretical study is concerned, we do not distinguish
between any two stochastic processes with the same state space X and
the same acceptable gambles tree/imprecise probability tree/upper expec-
tations tree, even though they may describe two completely di�erent phys-
ical systems in reality.

3.1.3 Global variables and global upper expectations

Acceptable gambles trees, imprecise probability trees and upper expec-
tations trees all parametrize a stochastic process by telling us how the pro-
cess is likely to change—or how we believe it to change—from one time
instant to the next, yet they do not give information, at least not directly,
about many practically relevant inferences such as, for example, the time
gF it takes until the process is in a given state F 2 X—that is, the hitting
time of F—or the 9-step time average 1

9

P
9

✓=1 ⌘(-✓) of a real-valued function
⌘(-✓) that depends on the state -✓ at a single time instant ✓. Such infer-
ences can depend, in the most general case, on the entire infinite trajectory
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or path l taken by the process. More specifically, these inferences can al-
ways be written as functions from the space of all paths ⌦ = XN to the
extended reals R = R[ {+1,�1}. For instance, the hitting time gF is given
by gF (l) B inf{9 2 N : l9 = F} for all l 2 ⌦ and the 9-step time average
of ⌘(-9) takes the value 1

9

P
9

✓=1 ⌘(l✓) for all l 2 ⌦.
For a general possibility space Y, we henceforth call the extended real-

valued functions in L(Y) = R Y extended real-valued variables on Y,
and more specifically, we call the functions in V B L(⌦) global variables,
and the functions in L(X) local variables.1 A similar distinction is made
between global gambles and local gambles, and we gather all of them in the
sets V B L(⌦) and L(X) respectively. We moreover let VB B LB (⌦) and
VC B LC (⌦) where B takes the form of any of the relations >,  or �, and
where C takes the form of any of the relations <, � or .

We often regard, for any 9 2 N0, the sequence -1:9 as the map on ⌦ that
returns the first 9 state values l1:9 of a path l 2 ⌦. For any 6 2 L(X9), we
then write 6(-1:9) to denote the global variable formed by the concatenation
6 � -1:9. Global variables of this type will play an important role further on,
and are called finitary variables; so a variable 5 2 V is called finitary if we
can write that 5 = 6(-1:9) for some 9 2 N and some 6 2 L(X9). Finitary
variables thus depend on the process state only at a finite number of time
instances. If we want to make clear that a finitary variable 5 = 6(-1:9)
depends specifically on the first 9 state values, the variable 5 will be called
9-measurable. We will then often allow ourselves a slight abuse of notation,
and write 5 (F1:9) for any F1:9 2 X9 to denote the constant value 5 (l) =
6(F1:9) of 5 for all l 2 �(F1:9). Note that if a variable 5 is 9-measurable for
some 9 2 N0, then it is trivially also ✓-measurable for all ✓ � 9; we will be
using this property a lot when working with finitary variables. We denote
the set of all finitary variables by F , and the set of all finitary gambles—
bounded finitary variables—by F . An example of a finitary gamble that we
will often encounter is the indicator 1F1:9 B I�(F1:9) of the cylinder event
�(F1:9) = {l 2 ⌦ : l9 = F1:9} corresponding to a situation F1:9 2X⇤.

In order to express beliefs about global variables, we aim to construct a
binary function E : V ⇥X⇤ ! R that maps each global variable 5 2 V and
each situation A 2X⇤ to an extended real number E ( 5 |A). Such an operator,
and more generally, any function E : K ! R on a subset K of V ⇥X⇤, will

1We referred to . as an uncertain or random variable in Chapter 217, yet the term ‘variable’
is henceforth used in a more formal fashion, to refer to any (not necessarily extended real-
valued) map 5 on the corresponding possibility space Y—which may for example be X or
⌦ in the context of stochastic processes. Often, a variable 5 will have the interpretation of
representing the uncertain quantity 5 (. ) that depends on the value of . in Y, but we typically
leave this interpretation implicit. The uncertain variable . itself is a variable in this more formal
sense by letting it correspond with the identity map on Y.
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be called a global upper expectation.
Many di�erent sorts of global upper expectations will be deduced

throughout the course of this manuscript, and there is no single interpre-
tation that covers them all. We can however categorise them in three di�er-
ent clusters, depending on their starting point and the corresponding inter-
pretational principles from which they result: behavioural global upper ex-
pectations deduced from acceptable gambles trees, probability-based global
upper expectations deduced from imprecise probability trees, and direct ax-
iomatic global upper expectations deduced from upper expectations trees.
This distinction is somewhat similar to the distinction made in Chapter 217
for coherent (unconditional) upper expectations, and once more, for each
of these di�erent approaches, global upper expectations are eventually the
main objects of interest when drawing inferences. They express an upper
‘value’ or an infimum selling ‘price’—behaviourally—or a tight upper bound
on (linear) expectations—probabilistically—for each global variable, which
can then in turn be used to make decisions with; see [110, Section 3.9]
and [50] or Example 2.2.324. It is exactly this role of a global upper ex-
pectation as being a universal object of interest that constitutes our main
reason for focussing our study on them—instead of global sets of acceptable
gambles or global sets of probability charges. Nevertheless, there are some
specific problems where the additional expressive power of sets of probabil-
ities and/or sets of acceptable gambles with respect to upper expectations
may actually play an important role, and where we are thus somewhat more
restricted in our approach; we refer to [82] or [110, Section 3.7] for a dis-
cussion of such cases.

Instead of a global upper expectation, one could just as well work with
a global lower expectation E : K ! R on a subset K of V ⇥X⇤. Such
a global lower expectation often has an interpretation or definition that is
complementary to that of a global upper expectation; behavioural global
lower expectations represents lower ‘values’ or supremum buying ‘prices’
for global variables, whereas probabilistic global lower expectations repre-
sent tight lower bounds on possible (linear) expectations of global variables.
We say ‘just as well’, because (as we will see) a global upper expectation E
and a global lower expectation E—of the same type and deduced from the
same local models—will always be related to each other by the conjugacy
relation:

E ( 5 |A) = �E (� 5 |A) for all ( 5 , A) 2 K such that (� 5 , A) 2 K .

Hence, there is no loss in generality by solely focussing on global upper
expectations; properties and results for global lower expectations can then
simply deduced from the relation above.
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Figure 3.3 Overview of the global upper expectations in this chapter.

Furthermore, for any global upper expectation E and any global lower
expectation E on a domain K ✓ V ⇥X⇤, the corresponding global upper
probability P and global lower probability P are defined by restricting E
and E to the indicators (and all situations); so, for any (�, A) 2 ¶(⌦) ⇥X⇤

such that (I�, A) 2 K, we let

P (�|A) B E (I� |A) and P (�|A) B E (I� |A).

In the present chapter, we will limit ourselves to building global upper
expectations only on global gambles V (and situations X⇤). Moreover, for
each of the three clustered types of global upper expectations described
above, we will only discuss the ones that are based on finitary arguments;
there will be no limit or continuity arguments involved in the extension from
the local uncertainty models to the corresponding global upper expectation.
This in contrast with Chapters 4129–6283, where we will modify the finitary
global upper expectations to incorporate some type of continuity argument;
see Fig. 3.3 for a schematic overview.

Furthermore, care to note that, though local upper expectations are by
definition assumed to be coherent, a similar (conditional version of the co-
herence) condition is not necessarily assumed for global upper expectations,
even if they are restricted to the domain V ⇥X⇤. Furthermore, though the
second argument of a global upper expectation is mathematically speaking
always a situation A 2 X⇤, this is actually no more than a shorthand no-
tation and should be understood as taking the (global) upper expectation
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conditional on the cylinder event �(A) ✓ ⌦. For any global upper expec-
tation E and any 5 2 V , we will let E ( 5 ) B E ( 5 |⇤) and E ( 5 ) B E ( 5 |⇤);
these should then be thought of as the unconditional global upper and lower
expectation of 5 . The slight misuse of notation where a situation A 2X⇤ is
used instead of its corresponding cylinder event �(A), will sometimes also
be adopted in other instances when it is clear from the context what we
mean; e.g. sup( 5 |A) denotes the supremum sup( 5 |�(A)). An (in)equality
is also sometimes subindexed by a situation, which then means that the
(in)equality only holds on the corresponding cylinder event; e.g. 5 A 6
means that 5 (l)  6(l) for all l 2 �(A).

3.2 Global upper expectations from acceptable gambles trees

The purpose of a global upper expectation is always to extend the local
uncertainty models, which may come in the form of an acceptable gambles
tree, an imprecise probability tree or an upper expectations tree. In the
current section, we consider the case where the local uncertainty models are
given in the form of an acceptable gambles tree. Moreover, our construction
of the corresponding global upper expectation will be entirely based on the
framework of sets of acceptable gambles as it was introduced in Chapter 217.

3.2.1 Extending local assessments to global assessments

Suppose that we are given an acceptable gambles tree A•. Recall that
AF1:9 for any F1:9 2X⇤ is then interpreted as the set of all gambles 5 2 L(X)
for which our subject finds the uncertain reward 5 (-9+1) acceptable, given
that she observed -1:9 = F1:9. This can be translated as saying that our
subject finds the global gamble 5 (-9+1)1F1:9 acceptable; indeed, this gamble
is equal to the uncertain reward 5 (-9+1) unless the path taken by the process
does not go through F1:9, in which case the gamble is called o�—meaning
that no money (or units of utility) is (are) exchanged. The set that gathers
all these acceptable global gambles is denoted by DA :

DA B { 5 (-9+1)1F1:9 : F1:9 2X⇤ and 5 2 AF1:9 }. (3.6)

Note that the set of acceptable gambles DA is simply a translation of the
local assessments A• to a global level without any additional information
included.

Next, we can extend DA in the usual way, using the coherence axioms

56



3.2 Global upper expectations from acceptable gambles trees

D127, D327 and D427, with ⌦ taking the role of Y:

E(DA) = posi
�
DA [ V�

�
=

(
<X
7=1

_7 57 : < 2 N, 57 2 DA [ V�, _7 2 R>

)
.

(3.7)
If DA is consistent—that is, if E(DA) \ V� = ú—then E(DA) is the small-
est coherent set of acceptable global gambles that includes DA and is then
called the natural extension of DA [Definition 2.738].

The following two lemmas reveal the remarkably simple nature of the
sets posi

�
DA

�
and E(DA), and will be used shortly to prove that DA is

consistent.

Lemma 3.2.1. For any acceptable gambles tree A• ,

posi
�
DA

�
=

⇢X
A2(

5A (- |A |+1)1A : finite set ( ⇢X⇤ and 5A 2 AA

�
.

Proof. It is clear by the definition of the positive span posi (·) and the set DA

[Eq. (3.6) ], that

posi
�
DA

�
◆

⇢X
A2(

5A (-|A|+1)1A : non-empty finite set ( ⇢X⇤ and 5A 2 AA

�
.

Since 0 2 AA for all A 2X⇤ by D127, it is also clear that 0 2 posi
�
DA

�
, and therefore

that
posi

�
DA

�
◆

⇢X
A2(

5A (-|A|+1)1A : finite set ( ⇢X⇤ and 5A 2 AA

�
.

To prove the converse inclusion, fix any 5 2 posi
�
DA

�
. Then there is an < 2 N,

an ⌘7 2 DA for all 7 2 {1, . . . , <}, and a _7 2 R> for all 7 2 {1, . . . , <}, such that
5 =

P
<

7=1 _7⌘7. Then, for any 7 2 {1, . . . , <}, we have by Eq. (3.6) that there is
an A7 2 X⇤ and a 67 2 AA

7
such that ⌘7 = 67 (-|A

7
|+1)1A

7
. Let ( be the set of all such

situations A7, and let
5A B

X
72{1,...,<}

A
7
=A

_767 for all A 2 (. (3.8)

Then we have that
X
A2(

5A (-|A|+1)1A =
X
A2(

X
72{1,...,<}

A
7
=A

_767 (-|A|+1)1A =
X
A2(

X
72{1,...,<}

A
7
=A

_767 (-|A
7
|+1)1A

7
=

X
A2(

X
72{1,...,<}

A
7
=A

_7⌘7

=
X

72{1,...,<}
_7⌘7 = 5

Moreover observe that ( ⇢X⇤ is a finite set because the situations A7 are enumerated
over the finite index set {1, . . . , <}. To see that 5A 2 AA for any A 2 (, it su�ces to
observe by Eq. (3.8) that 5A is a positive linear combination of gambles 67 2 AA and
to take into account that AA is a convex cone [because it is coherent].

Lemma 3.2.2. For any acceptable gambles tree A•,

E(DA) =
⇢
6 +

X
A2(

5A (- |A |+1)1A : finite set ( ⇢X⇤, 6 2 V� and 5A 2 AA

�
.
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Proof. It is clear by the definition of the positive span posi (·) and the set DA

[Eq. (3.6)56], that

E(DA ) = posi
�
DA [ V�

�
◆

⇢
6 +

X
A2(

5A (-|A|+1)1A : finite set ( ⇢X⇤
, 6 2 V� and 5A 2 AA

�
.

To prove the converse inclusion, fix any 5 2 E(DA ). Then by Eq. (3.7)x there is an
< 2 N, an 57 2 DA [V� for all 7 2 {1, . . . , <} and a _7 2 R> for all 7 2 {1, . . . , <}, such
that 5 = P

<

7=1 _7 57. Since V� is a convex cone that includes the zero gamble, there is
some 6 2 V� such that

5 =
X

72{1,...,<}
_7 57 =

X
72{1,...,<}
5
7
2V�

_7 57 +
X

72{1,...,<}
5
7
8V�

_7 57 = 6 +
X

72{1,...,<}
5
7
8V�

_7 57 = 6 +
X

72{1,...,<}
5
7
2DA \V�

_7 57, (3.9)

where the last step follows from the fact that 57 2 DA [ V� for all 7 2 {1, . . . , <}.
The latter sum P

72{1,...,<}, 5
7
2DA \V� _7 57 is clearly an element of posi

�
DA

�
if the sum

is taken over a non-empty set. If the sum is taken over an empty set, then it is
equal to 0 and therefore, since 0 2 posi

�
DA

�
by Lemma 3.2.1x, also an element of

posi
�
DA

�
. So, in either case, the sum is an element of posi

�
DA

�
and can therefore,

by Lemma 3.2.1x, be written as a sum P
A2( 5A (-|A|+1)1A for some finite set ( ⇢ X⇤

and gambles 5A 2 AA for all A 2 (. Hence, we have that

5 2
⇢
6 +

X
A2(

5A (-|A|+1)1A : finite set ( ⇢X⇤
, 6 2 V� and 5A 2 AA

�
,

which implies the desired inclusion.

The following proposition establishes that, for any acceptable gambles
tree A•, the set DA of acceptable gambles is consistent and thus that it can
be extended to a coherent set of acceptable gambles.

Proposition 3.2.3. For any acceptable gambles tree A•, the set DA defined by
Eq. (3.6)56 is consistent, and so E(DA) is the natural extension of DA .

Proof. According to Definition 2.738, we need to show that E(DA ) \ V� = ú, or
equivalently that, for any 5 2 E(DA ), we either have that 5 = 0 or that 5 (l) > 0
for some l 2 ⌦. From Lemma 3.2.2x, we know that 5 = 6 + P

A2( 5A (-|A|+1)1A for
some 6 2 V�, some finite set ( ⇢ X⇤ of situations and local gambles 5A 2 AA for
all A 2 (. If P

A2( 5A (-|A|+1)1A = 0, then we have that 5 � 0 and thus clearly that the
desired condition is satisfied. Otherwise, if P

A2( 5A (-|A|+1)1A < 0, let (0 ✓ ( be the set
of situations A in ( such that 5A < 0 [note that (0 must then be non-empty]. Fix any
F1:9 2 (0 such that there is no B 2 (0 such that B @ F1:9 [the existence of such a situation
F1:9 is guaranteed by the fact that any given situation is clearly preceded by only
finitely many other situations]. Then since 5F1:9 2 AF1:9 and 5F1:9 < 0, the coherence
[D227] of AF1:9 implies that there must be some F9+1 2 X such that 5F1:9 (F9+1) > 0.
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Then, for any path l 2 �(F1:9+1), we have that

5 (l) = 6(l) +
X
A2(

5A (l |A|+1)1A (l) = 6(l) +
X
A2(0

5A (l |A|+1)1A (l)

�
X
A2(0

5A (l |A|+1)1A (l) =
X
A2(0

A@F1:9+1

5A (l |A|+1)1A (l) +
X
A2(0

AwF1:9+1

5A (l |A|+1)1A (l)

= 5F1:9 (F9+1) +
X
A2(0

AwF1:9+1

5A (l |A|+1)1A (l) >
X
A2(0

AwF1:9+1

5A (l |A|+1)1A (l),

where the second step follows trivially from the definition of (0, the third from the
fact that 6 2 V�, the fourth from the fact that 1A (l) = 0 for any A k F1:9+1 [because
then �(A)\�(F1:9+1) = ú], the fifth from the fact that, due to our choice of F1:9, there
are no situations B 2 (0 such that B @ F1:9 [and from the fact that l9 = F1:9], and the
last from the fact that 5F1:9 (F9+1) > 0.

Next, let F9+2 be any state in X if F1:9+1 8 (0, or otherwise, if F1:9+1 2 (0, let F9+2
be such that 5F1:9+1 (F9+2) > 0; the latter is possible because of the same reasons as
before. Then for any l 2 �(F1:9+2) ⇢ �(F1:9+1), we have by the inequality above that

5 (l) >
X
A2(0

AwF1:9+1

5A (l |A|+1)1A (l) =
X
A2(0

A=F1:9+1

5A (l |A|+1)1A (l) +
X
A2(0

AwF1:9+2

5A (l |A|+1)1A (l)

=
X
A2(0

A=F1:9+1

5A (F9+2) +
X
A2(0

AwF1:9+2

5A (l |A|+1)1A (l)

�
X
A2(0

AwF1:9+2

5A (l |A|+1)1A (l),

where the second equality follows from the fact that l |F1:9+1 |+1 = l9+2 = F9+2 because
l 2 �(F1:9+2), and where the last inequality follows from how we chose F9+2. We can
now simply repeat the same reasoning; let F9+3 be any state in X if F1:9+2 8 (

0, or
otherwise, if F1:9+2 2 (0, let F9+3 be such that 5F1:9+2 (F9+3) > 0 [which is again possible
because of the same reasons as before]. Then for any l 2 �(F1:9+3) ⇢ �(F1:9+2), we
have by the previous inequality that

5 (l) >
X
A2(0

AwF1:9+2

5A (l |A|+1)1A (l) =
X
A2(0

A=F1:9+2

5A (l |A|+1)1A (l) +
X
A2(0

AwF1:9+3

5A (l |A|+1)1A (l)

=
X
A2(0

A=F1:9+2

5A (F9+3) +
X
A2(0

AwF1:9+3

5A (l |A|+1)1A (l)

�
X
A2(0

AwF1:9+3

5A (l |A|+1)1A (l).

We can continue to do this, choosing new consecutive states F9+4, F9+5, . . . in the
same way, until at some point we encounter an F9+< for which there are no situations
in A 2 (0 anymore such that A w F1:9+<, which is guaranteed to happen because ( and
(
0 are finite. Then we have that

X
A2(0

AwF1:9+<

5A (l |A|+1)1A (l) = 0,
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and hence, by the argument above, that 5 (l) > 0. So we conclude that E(DA )\V� =
ú and therefore that DA is consistent.

3.2.2 The global upper and lower expectation associated with a set
of acceptable global gambles

Given an acceptable gambles tree A•, we have associated with it a global
set of acceptable gambles DA and shown that the natural extension of this
global set DA exists—it is equal to E(DA). The global upper expectation
EA : V ⇥X⇤ ! R and global lower expectation EA : V ⇥X⇤ ! R corre-
sponding to A• are now defined as follows; for all ( 5 , A) 2 V ⇥X⇤,

EA ( 5 |A) B inf{U 2 R : (U � 5 )1A 2 E(DA)}; (3.10)
EA ( 5 |A) B sup{U 2 R : ( 5 � U)1A 2 E(DA)}.

The upper and lower expectation EA and EA are related by conjugacy, and
so it su�ces to focus on the upper expectation EA .

Corollary 3.2.4 (Conjugacy). For any acceptable gambles tree A• and ( 5 , A) 2
V ⇥X⇤, we have that EA ( 5 |A) = �EA (� 5 |A).

Proof. Observe that

�EA (� 5 |A) = � inf{U 2 R : (U + 5 )1A 2 E(DA )}
= sup{�U 2 R : (U + 5 )1A 2 E(DA )}
= sup{U 2 R : (�U + 5 )1A 2 E(DA )} = EA ( 5 |A).

The definition of EA is, in spirit, similar to the definition of an uncon-
ditional upper expectation that corresponds to a coherent set of acceptable
gambles [see Definition 2.529], in the sense that EA again represents infi-
mum acceptable selling prices corresponding to the set E(DA). However,
the formula is now somewhat altered to suitably deal with conditioning on
situations. More concretely, it is based on the interpretation that if, condi-
tional on any situation A 2X⇤, a subject finds it acceptable to sell a gamble
5 2 V for the price U 2 R, this is taken to mean that she finds the gamble
(U� 5 )1A acceptable, because this gamble is equal to U� 5 if the process goes
through A, and is called o� otherwise (in which case no money—or units of
utility—is exchanged). Note that this interpretation is in line with Walley’s
contingent interpretation of conditional upper expectations (or previsions)
[110, Section 6.1.1]. The definition above moreover agrees with traditional
definitions, which are usually stated for general conditioning events instead
of only situations; see for instance [114, Eq. (2)].
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3.2 Global upper expectations from acceptable gambles trees

3.2.3 The global upper expectation corresponding to an acceptable
gambles tree: It’s only a game!

The expression for the upper expectation EA given in Eq. (3.10) is not
very elegant, and quite impractical if one desires to compute its values; it
indirectly characterises EA based on the set E(DA), which itself ought to be
deduced from Eq. (3.7)57 or Lemma 3.2.257. A more direct characterisation
can however be given if we make use of the notions of super- and submartin-
gales. As we will see, this alternative characterisation arises naturally from
game-theoretic principles, and will therefore allow us to interpret EA in a
game-theoretic way. We start by introducing the concepts of a real process,
a betting process and a sub-/supermartingale.

Real processes, betting processes, sub- and supermartingales

A real process C is simply a real-valued map on the situationsX⇤. We will
often use it to describe the evolution of a subject’s capital as he gambles on
the subsequent values of the process state -9; in that case, wewill sometimes
call it a capital process. A betting process G is a map that associates with
each situation A 2 X⇤ a local gamble G(A) 2 L(X). The value of the local
gamble G(A) in F 2X is then denoted by G(A) (F). With any betting process
G, we associate a real process C G defined by

C G (F1:9) B
9�1X
✓=0

G(F1:✓) (F✓+1) for all F1:9 2X⇤.

So C G denotes the evolution of a subject’s capital if he starts with zero cap-
ital and gambles according to G on the subsequent state values. Conversely,
with any real process C, we can also associate a betting process � C given
by

� C(F1:9) B C(F1:9·) � C(F1:9) for all F1:9 2X⇤,

where C(F1:9·) is the local gamble that assumes the value C(F1:9í) in í 2X.
We call � C the process di�erence of C. Note that, for any real process
C, the process di�erence � C is the unique betting process G such that
C = C(⇤) + C G.

Now, given an acceptable gambles tree A•, we say that a betting process
G is acceptable if G(A) 2 AA for all A 2X⇤. A real process M is then called a
submartingale according to A•, if the corresponding process di�erence �M
is acceptable—or, equivalently, if there is an acceptable betting process G
such that M = M(⇤) + C G. A real process M is called a supermartingale
according to A• if ��M(A) 2 AA for all A 2 X⇤ (or, equivalently, if there is
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an betting process G such that �G is acceptable and M = M(⇤) + C G).2

Hence, M is a supermartingale if and only if �M is a submartingale.
A submartingale M thus describes the possible evolutions of a subject’s

capital if he adopts a strategy that, for each possible situation A 2X⇤, picks
a local gamble �M(A) 2 AA among the ones that are regarded acceptable
by the local model AA. Or, if the sets A• are specified by the subject him-
self, a submartingale describes the possible evolutions of his capital if he
chooses to gamble simply according to his own beliefs. The notion of a su-
permartingale, which will be more central in our treatment than that of a
submartingale, can be interpreted in an equally intuitive way yet requires us
to consider a second subject that gambles against the beliefs AA of our first
subject. To make this more concrete, we imagine the following game be-
tween two subjects—or, better, two players—in which we use terminology
that is similar to that of Shafer and Vovk [85].

The first player specifies, for each A 2 X⇤, the set of gambles AA that
he finds acceptable (which should be coherent); this player is called Fore-
caster. The second player, called Skeptic, will take Forecaster up on his
commitments. More concretely, Skeptic plays according to the following
protocol, where M(⇤) 2 R denotes his (arbitrary) starting capital, where
9 2 N0 is any point in time and -1:9 = F1:9 is any possible history up until
time 9:

i. Skeptic chooses a local gamble 6 2 �AF1:9 B {� 5 : 5 2 AF1:9 }.
ii. The value F9+1 of the next state -9+1 is revealed.
iii. Skeptic’s capital becomes M(F1:9+1) = M(F1:9) + 6(F9+1).

Observe that, at any given situation F1:9 2X⇤, Skeptic is required to choose
from the gambles in �AF1:9 and not the gambles in AF1:9 . The reason is that
Forecaster accepts any gamble 5 (-9+1) for which 5 2 AF1:9 , or equivalently,
is willing to o�er the gamble � 5 (-9+1) to someone else. So, since Skeptic
plays against Forecaster, he can only choose gambles 6(-9+1) = � 5 (-9+1) for
which 6 2 �AF1:9 .

Now note that supermartingales can be interpreted as the possible evolu-
tions of Skeptic’s capital if he uses a strategy to play against Forecaster in the
protocol above. Indeed, any map �M : A 2 X⇤ 7! �M(A) 2 �AA is a pos-
sible gambling strategy for Skeptic; by the definition of a supermartingale
this implies that the real process M given by M(⇤) + P

9�1
✓=0 �M(F1:✓) (F✓+1)

for all F1:9 2 X⇤, which describes the corresponding evolution of Skeptic’s
capital if he starts with an initial capital of M(⇤), is a supermartingale.

2This alternative characterisation in terms of acceptable betting processes will be used in
Section 4.2.3145.
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3.2 Global upper expectations from acceptable gambles trees

The set of all supermartingales for a given acceptable gambles tree A•

will be denoted by M(A•); the corresponding set of submartingales by
M(A•). Note that the initial value C(⇤) of a process C—which can be seen
as our subject’s initial capital—is irrelevant for whether C is a supermartin-
gale or not; if C 2 M(A•) then also U + C 2 M(A•) for all U 2 R.

The following lemma describes the monotone behaviour of a sub- or
supermartingale along a path; it will be used later on in various proofs.

Lemma 3.2.5. Consider any acceptable gambles tree A•, any M 2 M(A•),
F1:9 2X⇤ and ✓ � 9. Then we have that

M(F1:9) M(F1:9+1)  · · · M(F1:✓) for some F9+1:✓ 2X✓�9
.

Furthermore, the converse inequalities hold for any supermartingale
M 2 M(A•).

Proof. To prove the statement for a submartingale M 2 M(A•), first observe that,
for any A 2 X⇤, there is an F 2 X such that M(A)  M(AF). Indeed, assume
ex absurdo that this is not the case, and so M(A) > M(AF) for all F 2 X. This
implies that �M(A) < 0. But this is in contradiction with M 2 M(A•), because
the latter implies that �M(A) 2 AA and thus, by the coherence [D227] of AA, that
�M(A) 8 L< (X). As a result, we must have that M(A)  M(AF) for some F 2 X.
Since this holds for any general A 2 X⇤, we can iteratively apply this implication
starting from F1:9 to infer that there is indeed some F9+1:✓ 2X✓�9 such thatM(F1:9) 
M(F1:9+1)  · · · M(F1:✓). The second statement about supermartingales inM(A•)
then follows trivially from the statement about submartingales and the definition of
a supermartingale.

Global game-theoretic upper expectations

For any real process C and any 9 2 N0, let C(-1:9) denote the 9-measurable
gamble that assumes the value C(l9) in l 2 ⌦; so C(-1:9) is the gamble
obtained by stopping C at time 9. Then, given a set M(A•) of supermartin-
gales corresponding to an acceptable gambles tree A•, we define the corre-
sponding finitary game-theoretic upper expectation Ef

A,V : V ⇥X⇤ ! R

as follows:3 for any 5 2 V and A 2X⇤,

Ef
A,V ( 5 |A) B inf

�
M(A) : M 2 M(A•) and (99 � |A|) M(-1:9) �A 5

 
.

(3.11)
Taking into account the interpretation of a supermartingale as described
above, the upper expectation Ef

A,V can be given a straightforward meaning:
for any ( 5 , A) 2 V ⇥X⇤, EA ( 5 |A) is the infimum starting capital for Skeptic

3The superscript ‘f ’ in E f
A,V is intended to refer to ‘finitary’, whereas the subscript ‘V’ is

intended to refer to Jean Ville [107] as pointed out in Section 4.1131.
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in the situation A such that, by playing against Forecaster according to the
protocol above, he can declare a finite point in time 9 � |A| where he will
surely have more money than the reward associated with the global gamble
5 . Remark that the ‘surely’ here refers to the fact that this is the case irre-
spectively of the path l taken through the situation A. In other words,
any starting capital in A larger than EA ( 5 |A) allows Skeptic to (super-)hedge
the global gamble 5 at a finite time point in the future.

The finitary game-theoretic lower expectation Ef
A,V can be defined in

a complementary way as Ef
A,V using submartingales instead of supermartin-

gales; for any 5 2 V and A 2X⇤,

Ef
A,V ( 5 |A) B sup

�
M(A) : M 2 M(A•) and (99 � |A|) M(-1:9) A 5

 
.

We do not go into full detail on how the definition above can be interpreted
in a game-theoretic setting but, roughly speaking, submartingales can be
seen as the possible evolutions of Forecaster’s capital when Skeptic is bet-
ting against him, and the lower expectation Ef

A,V ( 5 |A) is then Forecaster’s
supremum starting capital in A such that it is still possible for Skeptic to—
surely—prevent Forecaster from ending up with more money than the pay-
o� corresponding to the gamble 5 . The lower expectation Ef

A,V is once more
related to the upper expectation Ef

A,V by conjugacy, which is why we will
henceforth focus on Ef

A,V.

Corollary 3.2.6 (Conjugacy). For any acceptable gambles tree A• and ( 5 , A) 2
V ⇥X⇤, we have that Ef

A,V ( 5 |A) = �E
f
A,V (� 5 |A).

Proof. Since, for any real process M, M 2 M(A) if and only if �M 2 M(A), we
have that

�Ef
A,V (� 5 |A)
= � inf

�
M(A) : M 2 M(A•) and (99 � |A|) M(-1:9) �A � 5

 
= sup

�
�M(A) : M 2 M(A•) and (99 � |A|) M(-1:9) �A � 5

 
= sup

�
M(A) : (�M) 2 M(A•) and (99 � |A|) (�M) (-1:9) �A � 5

 
= sup

�
M(A) : M 2 M(A•) and (99 � |A|) M(-1:9) A 5

 
= Ef

A,V ( 5 |A).

At this point, readers that are familiar with the global game-theoretic
upper expectations suggested by Glenn Shafer and Vladimir Vovk [85, 86,
109] will surely have noticed the close relation with our expression for Ef

A,V
in Eq. (3.11)x. In fact, the conceptual ideas that we have presented above
are entirely the same and largely due to them.4 There are various impor-
tant technical di�erences, though, which we will currently not discuss in

4The close resemblance with Shafer and Vovk’s game-theoretic framework in [86] clarifies
the title of this section.
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detail. The most important di�erence, at this point, is the fact that Shafer
and Vovk’s game-theoretic upper expectations involve supermartingales that
(super-)hedge the considered gamble only at an infinite time horizon and
not necessarily at a finite time horizon as is the case for Ef

A,V. These types of
game-theoretic upper expectations, where (super-)hedging happens at an
infinite time horizon, will be the subject of Chapter 4129. We will there also
discuss in great detail what the correspondences and di�erences are with
Shafer and Vovk’s framework.

An equivalence between EA and Ef
A,V

The following theorem establishes that, for any acceptable gambles tree A•,
the upper expectation EA obtained from A• using the standard coherence
arguments is entirely the same as the finitary game-theoretic upper expec-
tation Ef

A,V; see also Fig. 3.4y. Due to its considerable length, we relegate
the proof to Appendix 3.A102.

Theorem 3.2.7. For any acceptable gambles tree A• ,

EA ( 5 |A) = Ef
A,V ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

The game-theoretic upper expectation Ef
A,V can thus be seen as an alter-

native characterisation for EA , yet more intuitive and with a more construc-
tive flavour. Furthermore, it is exactly this game-theoretic upper expectation
that will be later on, in Chapter 4129, suitably adapted to involve a continuity
argument. This will then give us a definition of the game-theoretic upper
expectation that is in line with Shafer and Vovk their game-theoretic up-
per expectations. Moreover, note that the equality above also holds for the
lower expectations EA and Ef

A,V because they are both related to their re-
spective upper expectations by conjugacy [see Corollary 3.2.460 and Corol-
lary 3.2.6 ].

3.2.4 The law of iterated upper expectations

We conclude this section on behavioural upper expectations with proving
a law of iterated upper expectations [8, 62, 86]; a generalised version
of the law of iterated expectations or law of total probability in measure-
theoretic probability [89, Section 1.3.2]. The law will be crucial later on, in
Section 3.590, when we relate EA and Ef

A,V to other types of global upper
expectations.

We start with two lemmas, of which the first establishes a slightly mod-
ified expression for Ef

A,V and the second implies that Ef
A,V is real-valued on

V ⇥X⇤.

65



Finitary upper expectations in discrete-time stochastic processes

Q•

A•

P•

DA E(DA )

M(A•)

EAE f
A,V

Eq. (3.1)50
Eq. (3.2)51

Eq. (3.3)51
Eq. (3.5)52

Eq. (3.6)56 Eq. (3.7)57

Eq. (3.10)60
Sect. 3.2.361

Eq. (3.11)63

Thm. 3.2.7x

up
pe

r
ex

pe
ct
at
io
ns

ac
ce

pt
ab

le
ga

m
bl
es

se
ts

of
pr

ob
ab

ili
tie

s

local level global level
initial domain finitary domain entire domain

Figure 3.4 Schematic overview of the finitary behavioural approaches.

Lemma 3.2.8. For any acceptable gambles tree A•, we have that, for all
( 5 , A) 2 V ⇥X⇤,

Ef
A,V ( 5 |A) = inf{M(A) : M 2 M(A•) and (99 � |A|) (8✓ � 9)M(-1:✓) �A 5 }.

Proof. Fix any ( 5 , A) 2 V ⇥X⇤. That

Ef
A,V ( 5 |A)  inf{M(A) : M 2 M(A•) and (99 � |A|) (8✓ � 9)M(-1:✓) �A 5 }

is clear from the definition of Ef
A,V [Eq. (3.11)63]. To prove the converse inequality,

fix any M 2 M(A•) such that M(-1:9) �A 5 for some 9 � |A|. Let M0 be the
real process defined, for all F1:✓ 2 X⇤, by M0(F1:✓) B M(F1:✓) if ✓  9, and by
M0(F1:✓) B M(F1:9) if ✓ > 9. Then, for any F1:✓ 2 X⇤, �M0(F1:✓) is either equal to
�M(F1:✓) or equal to 0. Since ��M(F1:✓) 2 AF1:✓ because M 2 M(A•), and since
0 2 AF1:✓ due to D127, we have that ��M0(F1:✓) 2 AF1:✓ . Since this holds for any
F1:✓ 2X⇤, we have that M0 2 M(A•). Moreover, it is clear from the definition of M0

that M0(-1:✓) = M(-1:9) for all ✓ � 9, which by the fact that M(-1:9) �A 5 implies
that M0(-1:✓) �A 5 for all ✓ � 9. Hence, we have that

inf{M̃(A) : M̃ 2 M(A•) and (99̃ � |A|) (8✓̃ � 9)M̃(-1:✓̃) �A 5 } M0(A) = M(A),
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3.2 Global upper expectations from acceptable gambles trees

where the last equality follows from the definition of M0 and the fact that 9 � |A|.
Since the inequality above holds for any M 2 M(A•) such that M(-1:9) �A 5 for
some 9 � |A|, we have by Eq. (3.11)63 that

inf{M(A) : M 2 M(A•) and (99 � |A|) (8✓ � 9)M(-1:✓) �A 5 }  Ef
A,V ( 5 |A),

as desired.

Lemma 3.2.9. For any acceptable gambles tree A• and any ( 5 , A) 2 V ⇥X⇤,
we have that

inf ( 5 |A)  Ef
A,V ( 5 |A)  sup( 5 |A).

In particular, we have that Ef
A,V ( 5 |A) 2 R.

Proof. To see that Ef
A,V ( 5 |A)  sup( 5 |A), simply observe that the real process M

that is equal to the constant sup( 5 |A) everywhere is, by D127 of the local sets AA,
a supermartingale in M(A•), and is clearly such that M(-1:9) �A 5 for some 9 �
|A| [in fact it holds for all 9 2 N0]. On the other hand, assume ex absurdo that
Ef

A,V ( 5 |A) < inf ( 5 |A). Then according to Eq. (3.11)63 there is a M 2 M(A•) such
that M(A) < inf ( 5 |A) and M(-1:9) �A 5 for some 9 � |A|. But Lemma 3.2.563 says
that there is a F |A|+1:9 2X9�|A| such that

M(AF |A|+1:9) M(A) < inf ( 5 |A).

This is in contradiction with the fact that M(-1:9) �A 5 �A inf ( 5 |A). As a result, we
must have that Ef

A,V ( 5 |A) � inf ( 5 |A).

For any 5 2 V , any F1:9 2 X⇤ and any ✓ 2 N, we use the
notation EA ( 5 |F1:9-9+1:9+✓) to denote the 9 + ✓-measurable variable tak-
ing the value EA ( 5 |F1:9F 0

9+1:9+✓) for all F 0
9+1:9+✓ 2 X✓, and the notation

EA (EA ( 5 |-1:9+1) |-1:9) to denote the 9-measurable variable taking the value
EA (EA ( 5 |-1:9+1) |F1:9) for all F1:9 2 X9. Note that EA (EA ( 5 |-1:9+1) |F1:9)
is well-defined, because EA ( 5 |-1:9+1) is a gamble due to Lemma 3.2.9 and
Theorem 3.2.765. Analogous notations will be used for the global upper
expectation Ef

A,V, and for all other global upper expectations in this disser-
tation.

Proposition 3.2.10 (Law of iterated upper expectations). For any acceptable
gambles tree A•, any 5 2 V and any 9 2 N0, we have that

Ef
A,V ( 5 |-1:9) = Ef

A,V (E
f
A,V ( 5 |-1:9+1) |-1:9),

and
EA ( 5 |-1:9) = EA (EA ( 5 |-1:9+1) |-1:9).

Proof. Fix any 5 2 V and any F1:9 2 X⇤. We first establish the statement for
the game-theoretic upper expectation Ef

A,V, and to that end, we begin by prov-
ing the inequality Ef

A,V (E
f
A,V ( 5 |-1:9+1) |F1:9)  Ef

A,V ( 5 |F1:9). If Ef
A,V ( 5 |F1:9) = +1,
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Finitary upper expectations in discrete-time stochastic processes

then this inequality is trivially satisfied. If Ef
A,V ( 5 |F1:9) < +1 then, for any real

number U > Ef
A,V ( 5 |F1:9), there is according to Lemma 3.2.866 a supermartingale

M 2 M(A•) such that M(F1:9)  U and M(-1:✓) �F1:9 5 for all ✓ larger or equal
than some 90 � 9. Then it is clear that, for any F9+1 2 X, M(-1:✓) �F1:9+1 5 for all
✓ larger or equal than 9

0 + 1 � 9 + 1, and hence, again by Lemma 3.2.866, we have
that Ef

A,V ( 5 |F1:9+1)  M(F1:9+1). Since this holds for any F9+1 2 X, we obtain that
Ef

A,V ( 5 |-1:9+1) F1:9 M(-1:9+1). Let M0 be the real process that is equal to M for
all situations that precede F1:9 or are incomparable with F1:9, and that is equal to
the constant M(F1:9+1) for all situations that follow F1:9+1 for some F9+1 2X. Then,
because Ef

A,V ( 5 |-1:9+1) F1:9 M(-1:9+1), we also have that

Ef
A,V ( 5 |-1:9+1) F1:9 M0(-1:9+1) =F1:9 M0(-1:9+✓) for all ✓ � 1.

Moreover, observe that M0 2 M(A•). Indeed, for any B 2 X⇤, �M0(B) is either
equal to �M(B) or equal to zero. If it is equal to �M(B), then since M 2 M(A•)
we have that ��M0(B) 2 AB. If it is equal to zero, then by the coherence [D127]
of AB we also have that ��M0(B) 2 AB. Hence, in both cases, ��M0(B) 2 AB, and
since this holds for any B 2 X⇤ we indeed have that M0 2 M(A•). Recalling that
Ef

A,V ( 5 |-1:9+1) F1:9 M0(-1:9+✓) for all ✓ � 1, this implies by Lemma 3.2.866 and the
fact that Ef

A,V ( 5 |-1:9+1) is a (bounded) gamble by Lemma 3.2.9x that

Ef
A,V (E

f
A,V ( 5 |-1:9+1) |F1:9) M0(F1:9) = M(F1:9)  U.

Since this holds for any real U > Ef
A,V ( 5 |F1:9), we indeed have that

Ef
A,V (E

f
A,V ( 5 |-1:9+1) |F1:9)  Ef

A,V ( 5 |F1:9).

To prove the converse inequality, start by recalling that Ef
A,V ( 5 |-1:9+1) is bounded

[due to Lemma 3.2.9x]. Then Lemma 3.2.9x says that Ef
A,V (E

f
A,V ( 5 |-1:9+1) |F1:9)

is real. Fix any real U > Ef
A,V (E

f
A,V ( 5 |-1:9+1) |F1:9) and any n 2 R>. Then by

Lemma 3.2.866 there must be a real process M 2 M(A•) such that M(F1:9)  U and
M(-1:✓) �F1:9 E

f
A,V ( 5 |-1:9+1) for all ✓ larger or equal than some 90 � 9. Fix any F9+1 2

X. Then it follows that M(-1:✓) �F1:9+1 E f
A,V ( 5 |F1:9+1) for all ✓ larger or equal than

9
0+1 � 9+1, which by Lemma 3.2.563 implies thatM(F1:9+1) � Ef

A,V ( 5 |F1:9+1). Since
M(F1:9+1) is real—because it is a real process—and sinceM(F1:9+1) � Ef

A,V ( 5 |F1:9+1),
it follows from Lemma 3.2.866 that there is a real process MF1:9+1 2 M(A•) such that
MF1:9+1 (F1:9+1)  M(F1:9+1) + n and MF1:9+1 (-1:✓) �F1:9+1 5 for all ✓ larger or equal
than some 9F

9+1 � 9 + 1. This holds for any F9+1 2 X, so since X is finite, there is
moreover a finite 900 B maxF

9+12X 9F
9+1 � 9+1 such that MF1:9+1 (-1:✓) �F1:9+1 5 for all

✓ � 900 and F9+1 2X.
Let M⇤ be the process that is equal to M+n for all situations that precede or are

incomparable with F1:9, and that is equal to MF1:9+1 for all situations that follow F1:9+1
for some F9+1 2 X. Since, as we have just shown previously, MF1:9+1 (-1:✓) �F1:9+1 5

for all F9+1 2X and all ✓ � 9
00 � 9 + 1 � 9, and since M⇤ (-1:✓) =F1:9+1 MF1:9+1 (-1:✓)

for all F9+1 2 X and all ✓ � 9 + 1 � 9, we have that M⇤ (-1:✓) �F1:9 5 for all
✓ � 900 � 9 + 1 � 9. We furthermore show that M⇤ 2 M(A•).

68



3.3 Global upper expectations from imprecise probability trees

For any F9+1 2 X, we have that M⇤ (F1:9+1) = MF1:9+1 (F1:9+1)  M(F1:9+1) + n,
implying that M⇤ (F1:9·) M(F1:9·) + n and therefore that

� �M⇤ (F1:9) = �M⇤ (F1:9·) + M⇤ (F1:9) � �M(F1:9·) + M⇤ (F1:9) � n
= �M(F1:9·) + M(F1:9) = ��M(F1:9).

Since ��M(F1:9) 2 AF1:9 by the fact thatM 2 M(A•), we have by D127 and D327 that
��M⇤ (F1:9) 2 AF1:9 . Moreover, for all situations B A F1:9, we have that �M⇤ (B) =
�M(B) and therefore, since M 2 M(A•), that ��M⇤ (B) 2 AB. For all situations
B 2 X⇤ such that B w F1:9+1 for some F9+1 2 X, we have that �M⇤ (B) = �MF1:9+1 (B)
and therefore—again since MF1:9+1 2 M(A•)—also that ��M⇤ (B) 2 AB. All together,
we have that ��M⇤ (B) 2 AB for all B 2X⇤, and therefore that M⇤ 2 M(A•).

Recalling that moreover M⇤ (-1:✓) �F1:9 5 for all ✓ � 9
00 � 9 and M⇤ (F1:9) =

M(F1:9) + n  U + n, Lemma 3.2.866 implies that Ef
A,V ( 5 |F1:9)  M⇤ (F1:9)  U + n.

This holds for any n 2 R> and any real U > Ef
A,V (E

f
A,V ( 5 |-1:9+1) |F1:9), so we conclude

that indeed Ef
A,V ( 5 |F1:9)  Ef

A,V (E
f
A,V ( 5 |-1:9+1) |F1:9).

This proves the desired statement for the game-theoretic upper expectation
Ef

A,V. The desired statement for the upper expectation EA then follows from Theo-
rem 3.2.765.

3.3 Global upper expectations from imprecise probability trees

In this section, we take imprecise probability trees as the primary object
that parametrizes our stochastic process. Starting from these trees, we use
concepts such as global probability charges and global linear expectations to
build a corresponding global upper expectation. Later on, in Section 3.590,
we will then moreover see that these probability-based global upper expec-
tations are equivalent to the previously discussed behavioural global upper
expectations EA and Ef

A,V.

3.3.1 Global probability charges

Our construction of the probability-based global upper expectation will
fundamentally rely on the notion of a conditional probability charge. To
introduce such conditional probability charges, we require the notion of an
algebra. An algebra or field A on a non-empty—general—set Y is a col-
lection of subsets of Y that contains the empty subset ú ⇢ Y and that is
closed under finite unions and complementation; that is, for any �, ⌫ ✓ A,
we have that � [ ⌫ 2 A and that �2 B Y \ � 2 A. It then follows that A
also contains the set Y and that it is closed under finite intersections. The
largest algebra on Y is the powerset ¶(Y) B { � ✓ Y} and the smallest
algebra is {Y,ú}. For any algebra A ✓ ¶(Y), we use the notation A� to
denote A \ {ú}.
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Finitary upper expectations in discrete-time stochastic processes

The following definition of a conditional probability charge is due to
Dubins [34, Section 3] and Regazzini [78, Definition 2], who simply call
this object a ‘conditional probability’.

Definition 3.1 (Conditional probability charges). Let A,B be any two al-
gebras (or fields) on Y such that B ✓ A. Then we call P : A ⇥ B� ! R a
conditional probability charge if, for all �, ⇠ 2 A and ⌫, ⇡ 2 B�,
CP1. 0  P (�|⌫) [lower bounds];

CP2. ⌫ ✓ �) P (�|⌫) = 1 [normalisation];

CP3. � \ ⇠ = ú ) P (� [ ⇠ |⌫) = P (�|⌫) + P (⇠ |⌫) [finite additivity];

CP4. ⇡ \ ⌫ < ú ) P (� \ ⇡|⌫) = P (�|⇡ \ ⌫)P (⇡|⌫) [Bayes’ rule]. }

The definition above will in our context only be applied to the case where
the possibility space Y takes the form of the sample space ⌦. Moreover,
we are also not interested in probabilities conditional on general events in
¶(⌦), but rather only in probabilities conditional on situations A 2 X⇤—
or better, on their corresponding cylinder events �(A). Therefore, we pro-
pose the following definition of a global probability charge, where we use
�(X⇤) B {�(A) : A 2X⇤} to denote the set of all cylinder events.

Definition 3.2 (Global probability charges). For any algebra A on ⌦ such
that �(X⇤) ✓ A, we say that P : A⇥X⇤ ! R is a global probability charge
if, for all �, ⇠ 2 A and all A, B 2X⇤ such that A v B,
GP1. 0  P (�|A) [lower bounds];

GP2. �(A) ✓ �) P (�|A) = 1 [normalisation];

GP3. � \ ⇠ = ú ) P (� [ ⇠ |A) = P (�|A) + P (⇠ |A) [finite additivity];

GP4. P (� \ �(B) |A) = P (�|B)P (B |A) [Bayes’ rule]. }

Axiom GP2 indicates that we take conditioning on a situation A 2 X⇤ to
mean the same as conditioning on its cylinder event �(A). We will sometimes
also let a situation be the first argument of a global probability charge; it
then simply refers to its corresponding cylinder event—see e.g. Eq. (3.12)72.

It can easily be seen that, for any two algebrasA,B on Y with �(X⇤) ✓
B ✓ A, the restriction of a conditional probability charge on A ⇥ B� to
A⇥�(X⇤)—orA⇥X⇤—satisfies GP1–GP4, and therefore that it is a global
probability charge. The converse implication is less trivial however; the fol-
lowing result establishes that it holds nonetheless. Moreover, it also shows—
see point (iii)! below—that any global probability charge according to Def-
inition 3.2 is a ‘conditional probability’ in the sense of [4] or a ‘coherent
conditional probability’ in the sense of [62]. Especially the version in [62,
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3.3 Global upper expectations from imprecise probability trees

Definition 5] is important to us because we will often use results from [62,
Section 3.4] in future derivations.

Proposition 3.3.1. For any algebra A on ⌦ such that �(X⇤) ✓ A, and any
map P : A ⇥X⇤ ! R, the following statements are equivalent:

(i) P is a global probability charge;

(ii) P is the restriction of a conditional probability charge P 0 defined on
¶(⌦) ⇥ ¶(⌦)�;

(iii) for all < 2 N, all _1, . . . , _< 2 R and all (�1, A1), . . . , (�<, A<) 2
A ⇥X⇤.

sup
⇣ <X
7=1

_71A
7

�
I�

7
� P (�7 |A7)

� ��� [<
7=1 �(A7)

⌘
� 0.5

As far as the proof of the result above is concerned; we are convinced that it
follows from the statements in [4, p. 73], since a global probability charge
according to Definition 3.2 seems to always satisfy conditions (a), (b1)
and (b2) in [4, p. 73]. We nonetheless choose to give an independent and
self-contained proof in Appendix 3.B105, since we can deduce it fairly easily
from our axiomatisation of coherence for global upper expectations further
on [Theorem 3.4.384].

As a consequence of the result above, global probability charges inherit
the same basic properties satisfied by conditional probability charges—the
proof of the following result is left as an exercise for the reader.

Proposition 3.3.2. For any global probability charge P onA⇥X⇤, any � 2 A
and A 2X⇤, we have that

GP5. P (⌦|A) = 1;

GP6. P (ú|A) = 0;

GP7. 0  P (�|A)  1;

GP8. P (�|A) = P (� \ �(A) |A).

It readily follows from GP1 , GP3 and GP5 that, for any global prob-
ability charge P on A ⇥X⇤ and any fixed situation A 2X⇤, the set function
P (·|A) : A! R is a(n) (unconditional) probability charge onA in the sense
of [77, 106], or a finitely additive probability measure in the sense of [5]. In

5The definition in [4] additionally requires the infimum of P<

7=1 _71A7
�
I�

7
� P (�7 |A7)

�
over

[<
7=1�(A7) to be smaller than or equal to 0, but it can be observed that this is implied by (iii); it

su�ces to switch the signs of the _7 ’s. On the other hand, [62, Definition 5] uses a maximum
instead of a supremum, and in our case too the supremum could actually be replaced by a
maximum because it is taken over a finite number of (finite) values.

71



Finitary upper expectations in discrete-time stochastic processes

particular, if we speak about the unconditional (global) probability charge
corresponding to P, we always mean P (·) B P (·|⇤).

3.3.2 Global probability charges from precise probability trees

Before building a global upper expectation from a general imprecise
probability tree, we first restrict ourselves to the special case that our
stochastic process is described by a precise probability tree > : A 2 X⇤ 7!
>(·|A). We intend to use the local probability mass functions >(·|A) for all
A 2 X⇤ to make assertions about global probability charges. These asser-
tions can straightforwardly be deduced from the interpretation of the mass
functions >(·|A): we will want to impose, for any global probability charge
P corresponding to >, the condition that

P (F1:9+1 |F1:9) = >(F9+1 |F1:9) for all 9 2 N0 and all F1:9+1 2X9+1
. (3.12)

Note that Eq. (3.12) is the same as the condition that is being imposed in
[62, Eq. (3.3)]. In fact, in general, much of what we will do in the current
section can be seen to be similar to—and inspired by—the work in [62,
Section 3.4].

We start by establishing the existence of a global probability charge that
respects Eq. (3.12) and that is defined on the smallest possible domain: the
set hX⇤i ⇥X⇤, with hX⇤i the (smallest) algebra generated by the cylinder
events �(X⇤). That the algebra hX⇤i exists follows from the discussion in
[5, p. 27–28].

Lemma 3.3.3. The algebra hX⇤i exists and, for any � ✓ ⌦, we have that
� 2 hX⇤i if and only if it is a finite union of (disjoint) cylinder events. If this is
the case, then we moreover have that � = [H1:✓ 2⇠�(H1:✓) for some ✓ 2 N0 and
⇠ ✓X✓.

Proof. To establish the existence, first note that a ‘cylinder event of rank <’ accord-
ing to [5] is in our language a finite union [A

7
�(A7) of cylinder events of situations

A7 of length <. Any such ‘cylinder event of rank <’ must clearly be an element of any
algebra that includes �(X⇤), and so since [5, p. 27–28] says that the set of ‘cylin-
der events of all ranks’ form an algebra, this algebra must be the smallest algebra
including �(X⇤) and thus be equal to hX⇤i. This establishes existence, and also im-
mediately that any � 2 hX⇤i is the finite union [H1:✓2⇠�(H1:✓) for some ✓ 2 N0 and
⇠ ✓ X✓, and thus that � is the finite union of (disjoint) cylinder events. It then
remains to show the converse; that any finite union of (disjoint) cylinder events is
an element of hX⇤i. This follows straightforwardly from the definition of the algebra
hX⇤i.

The next proposition not only confirms the existence of a global proba-
bility charge on hX⇤i ⇥X⇤ satisfying Eq. (3.12), it also says that this prob-
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3.3 Global upper expectations from imprecise probability trees

ability charge is unique and that its values can be computed in an intuitive
way. The result is entirely the same as [62, Lemma 14], apart from the
fact that [62, Lemma 14] uses conditional probability measures—see [62,
Definition 6 and below]—instead of global probability charges. The famil-
iarized reader, however, may notice that on the current domain of interest
hX⇤i ⇥X⇤ there is no di�erence between the two notions, therefore allow-
ing us to nevertheless use [62, Lemma 14]. A formal proof of this result can
be found in Appendix 3.B105.

Proposition 3.3.4. For any precise probability tree >, there is a unique global
probability charge P> on hX⇤i ⇥X⇤ that respects Eq. (3.12) . Specifically,
for any F1:9 2X⇤, any ✓ 2 N0 and any ⇠ ✓X✓,6

P> ([H1:✓ 2⇠�(H1:✓) |F1:9) =
X
H1:✓ 2⇠

P> (H1:✓ |F1:9),

with P> (H1:✓ |F1:9) =
8>>><
>>>:

Q
✓�1
7=9 >(H7+1 |H1:7) if 9 < ✓ and H1:9 = F1:9

1 if 9 � ✓ and H1:✓ = F1:✓

0 otherwise.

The domain hX⇤i ⇥ X⇤ is also immediately the largest domain that
we will consider for a global probability charge satisfying Eq. (3.12) —
at least, in this chapter. The reason is that, on a domain that is larger than
hX⇤i ⇥X⇤—e.g. ¶(⌦) ⇥X⇤ or f(X⇤) ⇥X⇤ with f(X⇤) the f-algebra gener-
ated by hX⇤i (see Chapter 5217)—there is not necessarily one unique global
probability charge satisfying Eq. (3.12) . Uniqueness can however be pre-
served on the larger domain f(X⇤) ⇥X⇤, if we would additionally impose
countable additivity or f-additivity on a global probability charge; see Chap-
ter 5217. As mentioned in the introduction of this chapter, we choose not to
do so yet and first study an approach that is solely based on finitely ad-
ditive probability charges. Finitely additive probabilities were advocated
by [27, 35, 77], and are more popular than their countably additive vari-
ants in the field of imprecise probabilities, due to their generality and their
strong relationship with coherent upper expectations [105, 106, 110, 113].
Nonetheless, we will see in Section 3.698 that the resulting finitary global
upper expectation is not satisfactory for a general domain V ⇥X⇤, and so
we will continue in Chapter 5217 to study a more involved approach that is
based on countably additive global probability charges.

Furthermore, observe that there is another important aspect in which
our approach here di�ers from more traditional measure-theoretic ap-
proaches [5, 89]: we consider conditional (global) probabilities to be

6By Lemma 3.3.3 , any � 2 hX⇤ i can be written as [H1:✓2⇠�(H1:✓) for some ✓ 2 N0 and
⇠ ✓X✓.
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equally as fundamental as unconditional (global) probabilities, whereas the
typical measure-theoretic practices consider unconditional probabilities to
be primary objects and then deduce conditional probabilities from uncon-
ditional probabilities by means of Bayes’ rule. That is, for an uncondi-
tional probability charge P on an algebra A, the corresponding probabil-
ity P (�|⌫) conditional on any ⌫ 2 A� is in that case defined by P (�|⌫) B
P (� \ ⌫)/P (⌫). Of course, the latter is ill-defined if P (⌫) < 0, a prob-
lem that is then usually ‘solved’ by allowing P (�|⌫) to take an arbitrary
value. Such an approach is inadequate when one wishes to retain infor-
mation about given conditional probabilities—the local ones in our case.
Indeed, the unconditional probability charge P (·) = P (·|Y) corresponding
to a given conditional probability charge P (·|·) does in general not allow us
to recover P (·|·). Hence the reason why we prefer to use conditional proba-
bility charges instead.

Lastly, though we choose not to extend a global probability charge be-
yond the domain hX⇤i ⇥X⇤, it is nevertheless possible to do so—this can
be seen to follow from [78, Theorem 4] and the fact that, as pointed out by
Proposition 3.3.171, global probability charges are equivalent to ‘coherent
conditional probabilities’ restricted to a particular domain. Since in general
this means giving up unicity, we would have to work with a (non-empty)
set of global probability charges instead of a single one. By defining a (lin-
ear) expectation for each global probability charge in this set—using the
integration techniques described below—and then subsequently taking an
upper envelope over this set, we could come up with an alternative version
of the global upper expectation E> defined here, in Definition 3.578. Such
an approach, however, is conceptually rather di�erent from what is done
in classical (measure-theoretic) probability theory—and also from what we
will do in Chapter 5217—where a single probability charge or measure al-
ways forms the central starting point.7

3.3.3 Global linear/upper expectations from precise probability trees

To obtain global linear expectations and upper expectations from global
probability charges, we will use the S-integral [47, 77, 105, 106]. We
choose to use this integral because (i) it is a conceptually easy type of inte-
gral, popular among those who study general (finitely additive) probability
charges, and (ii) it is equivalent to the well-known Lebesgue integral that we

7A reader that is familiar with Williams’s notion of conditional coherence [72, 114]
may nevertheless infer from the ‘envelope theorem’ [72, Section 3.1] and the fact that our
probability-based global upper expectation E> is coherent (see Corollary 3.5.694 and Theo-
rem 3.4.384), that this alterative approach leads to a global upper expectation that is equivalent
to E>.
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3.3 Global upper expectations from imprecise probability trees

will use later on—see Definition 5.3228—but adapted to deal with general
algebras and probability charges.

The measure-theoretic concepts that will be introduced in the following
sections are taken largely from [106, Section 1.8 and Chapter 8]. These
concepts deviate somewhat from the standard definitions, because they are
adapted to deal with general algebras and general (finitely additive) prob-
ability charges on algebras. Measurability, for instance, is in the standard
case typically only associated with f-algebras, not with general algebras.
One may easily observe from [106, Section 1.8 and Chapter 8] that the
adapted notions that we use here are simple generalisations of the standard
measure-theoretic concepts.

Simple global gambles and measurable global gambles

For any algebra (or field) A on ⌦, we say that a gamble 5 2 V is A-simple
[106, Definition 1.16] if 5 = P

<

7=1 07I�7 for some < 2 N, 01, . . . , 0< 2 R and
�1, . . . , �< 2 A, and P

<

7=1 07I�7 is then called a representation of 5 . So the
linear span

span (A) B
�P

<

7=1 07I�7 : < 2 N, 07 2 R, �7 2 A
 

is the set of all A-simple gambles. A gamble 5 2 V is then called A-
measurable [106, Definition 1.17 (B)] if it is in the uniform closure of
span (A), meaning that there is a sequence ( 5<)<2N of A-simple gambles
such that

lim
<!+1

sup| 5 � 5< | = 0.

If it is clear from the context which algebra A we are considering, we will
simply call gambles simple or measurable, instead of respectively A-simple
and A-measurable.

In this chapter, we will mainly be concerned with hX⇤i-simple gambles,
which can easily be seen to be equal to finitary gambles.

Lemma 3.3.5. We have that F = span (hX⇤i).

Proof. Since for any finitary gamble 5 2 F there is a 9 2 N0 such that we can write
5 =

P
F1:92X9 5 (F1:9)1F1:9 , and since all cylinder events are by definition included in

hX⇤i, it follows that F ✓ span (hX⇤i). Conversely, consider any 5 2 span (hX⇤i).
Let P

<

7=1 07I�7 be any representation of 5 . For any 7 2 {1, . . . , <}, we have by
Lemma 3.3.372 that �7 is a finite union [;7

8=1�(A7, 8) of (disjoint) cylinder events �(A7, 8).
So then we have that I�

7
=

P
;
7

8=1 1A7, 8 for all 7 2 {1, . . . , <}, and therefore that

5 =
<X
7=1

07I�
7
=

<X
7=1

;
7X

8=1
071A

7, 8
.
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Hence, it is clear that 5 can thus be written asP✓

9=1 191B9 for some ✓ 2 N0, 11, . . . , 1✓ 2
R and B1, . . . , B✓ 2 X⇤. So if > is the maximum of the lengths of the situations
B1, . . . , B✓, it is clear that 5 =

P
✓

9=1 191B9 depends only on the states -1:>, and thus
that 5 is finitary.

The S-integral or the Lebesgue integral

For the definition of the S-integral, we follow [106, Definition 8.24] but
immediately state a version adapted to the context of stochastic processes.

Definition 3.3. Consider any probability charge P on the algebra hX⇤i, and
any 5 2 V . Then the S-integral of 5 exists if the upper and lower S-integral
of 5 , respectively given by

π
5dP B inf

(
<X
7=1

sup( 5 |�7)P (�7) : �7 2 hX⇤i and (�7)<7=1 partitions ⌦

)
;

π
5dP B sup

(
<X
7=1

inf ( 5 |�7)P (�7) : �7 2 hX⇤i and (�7)<7=1 partitions ⌦

)
,

coincide. In that case, the S-integral of 5 is given by the common valueØ
5dP B

Ø
5dP =

Ø
5dP. }

The following result gives an alternative characterisation for the S-
integral in terms of hX⇤i-simple functions, and allows us to easily relate
the integral with other—perhaps more familiar—types of integrals; e.g. the
Lebesgue integral.

Proposition 3.3.6. For any probability charge P on the algebra hX⇤i, the
following statements hold.

(i) For any hX⇤i-simple 5 2 V and any representation P
<

7=1 07I�7 of 5 ,π
5dP =

<X
7=1

07P (�7).

(ii) For any general 5 2 V , we have that
π

5dP = inf
⇢π

6dP : 6 2 span (hX⇤i) and 6 � 5

�
and

π
5dP = sup

⇢π
6dP : 6 2 span (hX⇤i) and 6  5

�
.

Proof. Property (i) follows from the definition of the D-integral on all hX⇤i-simple
gambles [106, Definition 8.13] and its equivalence with the S-integral [106, The-
orem 8.32]. Property (ii) follows from the equivalence between the S-integral and
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3.3 Global upper expectations from imprecise probability trees

the Lebesgue integral [106, Theorem 8.28], and the fact that, as we have just stated,
the D-integral inside the definition of the Lebesgue integral [106, Definition 8.27]
is equal to the S-integral on the domain of hX⇤i-simple gambles.

This result shows that indeed, as claimed above, the (upper/lower) S-
integral is completely equivalent to the (upper/lower) Lebesgue integral
given in [106, Definition 8.27]; see also [106, Theorem 8.28]. So why do
we not use the (upper/lower) Lebesgue integral as our main integral here?
One reason is that we find the definition of the S-integral more direct and
elegant. Another is that we already want to adhere to the choice of inte-
gral made in Chapter 5217 when we will deal with (f-additive) probability
spaces. We will there use Billingsley’s [5] version of the Lebesgue integral
which, amusingly enough, is much more similar to Definition 3.3 than the
definition of the Lebesgue integral given in [106, Definition 8.27]. Because
of the mathematical equivalence, and because we do not want our treatment
to be obscured by semantic delicacies, we henceforth simply refer to the
(upper/lower) S-integral Definition 3.3 —or thus Lebesgue (upper/lower)
integral—as the (upper/lower) integral.

We next use this integral to define the global expectation corresponding
to a precise probability tree.

Definition 3.4. Consider any precise probability tree >, let P> be the unique
global probability charge from Proposition 3.3.473, and let P |A

>
B P> (·|A) for

any A 2X⇤. Then the global expectation E> is defined by E> ( 5 |A) B
Ø
5dP |A

>

for all ( 5 , A) 2 V ⇥X⇤ such that
Ø
5dP |A

>
exists. }

It can be inferred from [106, Proposition 8.17] and [106, Theorem 8.32]
that, for all hX⇤i-measurable gambles, the integral exists and thus also
the expectation E>. Moreover, by [106, Theorem 8.32] and [77, Theo-
rem 4.4.13 (ii)], for any A 2 X⇤, we have that the integral

Ø
· dP |A

>
, and

thus the expectation E> (·|A), is a linear operator on the domain where it
exists, which is why we sometimes call E> a global linear expectation.8

For gambles that are not hX⇤i-measurable, upper and lower integrals
may not coincide anymore. A possible alternative would then be to work
with either the upper or the lower integral itself—for these are defined on
all gambles. The reason why this is usually not done in standard ‘precise’
probability theory, is that this cannot be done without giving up linearity
of the resulting global operator. We do not consider this to be a problem
though; we will in general consider imprecise local models instead of the

8In the field of coherent upper and lower expectations, the term ‘(conditional) linear ex-
pectation’ or ‘(conditional) linear prevision’ is typically used in a more general sense to refer to
a self-conjugate coherent (conditional) upper expectation; see e.g. [106, Definition 13.28].
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mass functions >(·|A) that we are now considering, so it should not be ex-
pected that linearity of the resulting global (upper) expectation can be pre-
served anyway.

Definition 3.5. Consider any precise probability tree >, let P> be the unique
global probability charge from Proposition 3.3.473, and let P |A

>
B P> (·|A)

for any A 2 X⇤. Then the global upper expectation E> and global lower
expectation E

>
are defined, for all ( 5 , A) 2 V ⇥X⇤, by

E> ( 5 |A) B
π

5dP |A
>

= inf

(
<X
7=1

sup( 5 |�7)P |A
>
(�7) : �7 2 hX⇤i and (�7)<7=1 partitions ⌦

)
.

E
>
( 5 |A) B

π
5dP |A

>

= sup

(
<X
7=1

inf ( 5 |�7)P |A
>
(�7) : �7 2 hX⇤i and (�7)<7=1 partitions ⌦

)
. }

Obviously, we define our global upper expectation E> as an upper in-
tegral and not as a lower integral, because the former is always larger or
equal than the latter, and conversely for the global lower expectation E

>
.

The lower expectation E
>
is once more related to the upper expectation E>

by conjugacy.

Corollary 3.3.7 (Conjugacy). For any precise probability tree >, we have that
E
>
( 5 |A) = �E> (� 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. For any ( 5 , A) 2 V ⇥X⇤, we have that

�E> (� 5 |A) = � inf
⇢

<X
7=1

sup(� 5 |�7)P |A
>
(�7) : �7 2 hX⇤i and (�7)<7=1 partitions ⌦

�

= sup
⇢

<X
7=1
� sup(� 5 |�7)P |A

>
(�7) : �7 2 hX⇤i and (�7)<7=1 partitions ⌦

�

= sup
⇢

<X
7=1

inf ( 5 |�7)P |A
>
(�7) : �7 2 hX⇤i and (�7)<7=1 partitions ⌦

�

= E
>
( 5 |A).

This allows us to henceforth again focus mainly on upper expectations E>.
Observe by Definition 3.4x and Definition 3.376 that E> is an extension

of E>. In particular, E> retains the basic form that the integral assumes on
hX⇤i-simple gambles—or, by Lemma 3.3.575, on finitary gambles. Com-
bined with Proposition 3.3.473, this leads to the following result.
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3.3 Global upper expectations from imprecise probability trees

Proposition 3.3.8. Consider any precise probability tree >. Then, for all
( 5 , F1:9) 2 F ⇥X⇤,

E> ( 5 |F1:9) = E> ( 5 |F1:9) =
P

H1:✓ 2X✓ 5 (H1:✓)P> (H1:✓ |F1:9)
=

P
F
9+1:✓ 2X✓�9 5 (F1:✓)

Q
✓�1
7=9 >(F7+1 |F1:7),

where P> on hX⇤i ⇥X⇤ is related to > according to Proposition 3.3.473, and
where ✓ > 9 is any natural number such that 5 is ✓-measurable.

Proof. Fix any 5 2 F , any F1:9 2X⇤ and any ✓ > 9 such that 5 is ✓-measurable—this
is always possible because 5 is finitary. Then we have that 5 = P

H1:✓2X✓ 5 (H1:✓)1H1:✓ ,
and so that 5 is hX⇤i-simple and that P

H1:✓2X✓ 5 (H1:✓)1H1:✓ is a representation of 5 .
Hence, due to Proposition 3.3.6(i)76 and Definition 3.477, we have that E> ( 5 |F1:9) =P

H1:✓2X✓ 5 (H1:✓)P> (H1:✓ |F1:9). Since E> is an extension of E>, we also have that

E> ( 5 |F1:9) = E> ( 5 |F1:9) =
P

H1:✓2X✓ 5 (H1:✓)P> (H1:✓ |F1:9).

The last equality in statement above then follows immediately from Proposi-
tion 3.3.473.

3.3.4 Global upper and lower expectations from imprecise probabil-
ity trees

Suppose that we are now given a general imprecise probability tree P•

that associates with each situation A a set of probability mass functions PA.
Then we can apply the extension procedure from the previous section to
every precise probability tree > that is constructed by selecting, in each sit-
uation A, a probability mass function >(·|A) from the setPA. Any such precise
probability tree > is called compatible with P• and we make this clear by
writing > ⇠ P•. The upper (resp. lower) envelope over the global upper
(lower) expectations E> (E

>
) corresponding to the compatible precise trees

> ⇠P• is then what we refer to as the global upper (lower) expectation EP

(EP) corresponding to P•.

Definition 3.6. Consider any imprecise probability tree P•. The global up-
per expectation EP and global lower expectation EP are defined, for all
( 5 , A) 2 V ⇥X⇤, by

EP( 5 |A) B sup{E> ( 5 |A) : > ⇠P•} and EP( 5 |A) B inf{E
>
( 5 |A) : > ⇠P•},

with E> and E
>
for any > ⇠P• given by Definition 3.5 . }

The probability-based upper and lower expectations EPand EPare once
more related by conjugacy, therefore allowing us to focus mainly on upper
expectations in the sequel.
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Corollary 3.3.9 (Conjugacy). For any imprecise probability tree P, we have
that EP( 5 |A) = �EP(� 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. For any ( 5 , A) 2 V ⇥X⇤, we have that

�EP(� 5 |A) = � sup
>⇠P•

E> (� 5 |A) = inf
>⇠P•
�E> (� 5 |A) = inf

>⇠P•
E
>
( 5 |A) = EP( 5 |A),

where the penultimate step follows from the conjugacy between E> and E
>
for any

precise tree >; recall Corollary 3.3.778.

If we restrict ourselves to the finitary domain F ⇥X⇤, the values of the
global upper expectation EP can be obtained from the following simple ex-
pression.

Corollary 3.3.10. Consider any imprecise probability tree P•. Then, for all
( 5 , F1:9) 2 F ⇥X⇤,

EP( 5 |F1:9) = sup
�
E> ( 5 |F1:9) : > ⇠P•

 
= sup

� P
F
9+1:✓ 2X✓�9 5 (F1:✓)

Q
✓�1
7=9 >(F7+1 |F1:7) : > ⇠P•

 
,

where ✓ > 9 is any natural number such that 5 is ✓-measurable.

Proof. This follows immediately from Proposition 3.3.8x and Definition 3.6x.

3.4 Global upper expectations from upper expectations trees

Lastly, we consider the case where local dynamics are described by an
upper expectations tree Q• and ask ourselves the question how this tree can
be extended to a global upper expectation. Of course, we could associate
with Q• an agreeing acceptable gambles tree A• or an agreeing imprecise
probability tree P•, and then subsequently use the global upper expecta-
tions EA or EP from the respective frameworks. Yet this would raise the
question of which framework to pick and, if we would have chosen one,
which agreeing tree to choose; for recall that Eq. (3.2)51 and Eq. (3.5)52 re-
spectively provide expressions for an agreeing acceptable gambles tree and
an agreeing imprecise probability tree, but that these are not necessarily
the only agreeing acceptable gambles tree or agreeing imprecise probabil-
ity tree. Moreover, any of these approaches is rather indirect, both philo-
sophically and mathematically speaking, because we would start from the
framework of upper expectations, we would then switch to either the frame-
work of acceptable gambles or the framework of probability charges, only
to switch back in the end to the framework of upper expectations.
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Figure 3.5 Schematic overview of the finitary probabilistic approach.

Instead, to propose a more direct and interpretationally neutral global
upper expectation, we will put forward some basic axioms common to both
behavioural and probability-based global upper expectations. These axioms,
together, will turn out to be equivalent to the well-known requirement of
(conditional) coherence [106, 113]. We will use them as a tool to extend
local upper expectations to a global upper expectation, and the resulting
operator will be equivalent to the natural extension under coherence.9

3.4.1 An axiomatisation of coherence for global upper expectations

Consider any global upper expectation E on a domain K = I ⇥X⇤ ✓
V ⇥X⇤ where I is a linear space of global gambles containing all constants
and is such that 51A 2 I for all 5 2 I and A 2 X⇤. Consider also the
following basic axioms for E; for all 5 , 6 2 I, all _ 2 R� and all A, B 2 X⇤

such that A v B,
9More specifically, the natural extension of the upper expectation Epre

Q defined by
Eq. (3.13)85.
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WC1. E ( 5 |A)  sup( 5 |A) [upper bound];

WC2. E ( 5 + 6 |A)  E ( 5 |A) + E (6 |A) [sub-additivity];

WC3. E (_ 5 |A) = _E ( 5 |A) [non-negative homogeneity];

WC4. E
�
( 5 � E ( 5 |B))1B

��
A

�
= 0 [Bayes’ rule].

It can then be observed that the behavioural global upper expectation
EA—and thus also Ef

A,V—and the probability-based global upper expecta-
tion EPboth satisfy the axioms above. Wewill not explicitly prove this result
here, though, because it will later on simply follow from a more powerful
result; see Corollary 3.5.694.

Proposition 3.4.1. For any acceptable gambles tree A• and any imprecise
probability tree P•, the global upper expectations EA , Ef

A,V and EP satisfy
WC1–WC4.

Note that Proposition 3.4.1 on itself is already a motivation for adopting
WC1–WC4 as axioms to impose on a global upper expectation E; on the
one hand, the axioms follow from a behavioural interpretation of E as being
the upper expectation EA or Ef

A,V (or their restriction to I ⇥X⇤) corre-
sponding to some acceptable gambles tree A•, and on the other hand, the
axioms also follow from a probability-based interpretation of E as being the
upper expectation EP (or its restriction) corresponding to some imprecise
probability tree P•.

But there is more to WC1–WC4 than meets the eye; they are actually
equivalent to the requirement of conditional coherence for global upper ex-
pectations. This requirement is similar to, but more general than, the notion
of coherence that was introduced in Section 2.431 and Section 2.6.338 for
unconditional upper expectations on a finite possibility space—recall for in-
stance that the local upper expectations Q

A
are assumed to be coherent.

Compare for instance the expression below to that in Definition 2.8(ii)39.
Conditional coherence was first formally introduced by P.M.Williams [113],
yet his original definition required a particular structure on the domain of
an upper expectation, and so we immediately adopt the generalised version
that was established later on [72, 104, 106]. We also immediately apply
this definition to our context where we consider global upper expectations
instead of general conditional upper expectations.

Definition 3.7 (coherence for global upper expectations). A global upper ex-
pectation E on K ✓ V ⇥X⇤ is coherent if, for all < 2 N0, all _0, _1, . . . , _< 2
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R� and all ( 50, A0), ( 51, A1), . . . , ( 5<, A<) 2 K,

sup

 
_01A0

⇣
50 � E ( 50 |A0)

⌘
�

<X
7=1

_71A
7

⇣
57 � E ( 57 |A7)

⌘ ��� [<
7=0 �(A7)

!
� 0. }

The following corollary establishes that coherent global upper expec-
tations are real-valued, which makes our definition above agree with tra-
ditional definitions of coherence, which immediately apply to real-valued
conditional upper expectations [72, 113].

Corollary 3.4.2. Any coherent global upper expectation E on a domain K ✓
V ⇥X⇤ is real-valued.

Proof. Assume ex absurdo that E ( 5 |A) = +1 for some ( 5 , A) 2 K. Then we have
that

sup
⇣
1A ( 5 � E ( 5 |A)) |A

⌘
= sup

⇣
5 � E ( 5 |A) |A

⌘
= sup ( 5 �1|A) = sup (�1|A) = �1.

This is clearly in contradiction with the definition of coherence. In an analo-
gous way, we can check that E ( 5 |A) < �1 for all ( 5 , A) 2 K, because then
sup

�
� 1A ( 5 � E ( 5 |A)) |A

�
= �1. As a result, E must be real-valued.

Though the definition of coherence may look abstract, it can actually
be argued for on strong grounds and in a similar way as its unconditional
counterpart; it is once more based on the dual interpretation that E, on the
one hand, can represent the infimum selling prices corresponding to a set of
acceptable gambles, and on the other hand, that it can represent the upper
envelope of the (conditional) expectations corresponding to a set of possi-
ble (conditional) probability charges. These connections are made math-
ematically firm by well-known results such as [113, Prop. 2, Theorems 1
and 2]—note the analogy of these results with the unconditional variants
in Section 2.431 and Section 2.636. In view of these results, it ought not to
surprise us that EA—and thus Ef

A,V—for any A• and EP for anyP• are both
coherent; the former is obtained as the infimum selling prices correspond-
ing to the coherent set E(DA) of acceptable gambles; the latter is obtained
as the upper envelope of the global expectations E>—if, for the sake of con-
ceptual ease, we restrict ourselves to a domain where the expectations E> all
exist—corresponding to the probability charges P> with > ⇠P•. We do not
go into further detail concerning the motivation and interpretation of con-
ditional coherence, and simply leave it to the current conceptual treatment;
for a more elaborate discussion of the topic, we refer to the abundance of
literature hereof [72, 106, 110, 113].

The following theorem now says that the basic axiomsWC1 –WC4 are
indeed equivalent to the requirement of coherence for global upper expecta-
tions, at least if the domain of the considered global upper expectations has a
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structure that is rich enough. Therefore, and because of Proposition 3.4.182,
EA—and thus Ef

A,V—and EP are indeed coherent for any acceptable gam-
bles tree A• and any imprecise probability tree P•.

Theorem 3.4.3. Consider any global upper expectation E on a domain K =
I ⇥X⇤ ✓ V ⇥X⇤ where I is a linear space of global gambles containing all
constants and is such that 51A 2 I for all 5 2 I and A 2 X⇤. Then E is
coherent if and only if it satisfies WC182–WC482.

It is rather well-known that (conditional) coherence for general condi-
tional upper or lower expectations can be axiomatised in a similar way as
what is done here; see e.g. [106, Theorem 13.33]. The main di�erence,
however, is that such results always require the domain of a conditional up-
per expectation to have a particular structure; a structure that is not satisfied
by the domain I⇥X⇤—or I⇥ �(X⇤)—of the global upper expectations in
the theorem above. Indeed, in [106, Theorem 13.33] for instance, the set
of conditioning events is assumed to be closed under finite unions, which is
clearly not satisfied by the set of conditioning events �(X⇤) here. The proof
of Theorem 3.4.3 is therefore independent and does not rely on results such
as [106, Theorem 13.33]; it can be found in Appendix 3.C107.

We next give an extensive list of properties that are satisfied by any global
upper expectation that satisfies WC182–WC482, or, equivalently, that is co-
herent. The proof of this result, too, is relegated to Appendix 3.C107.

Proposition 3.4.4. Consider any global upper expectation E on a domain I⇥
X⇤ ✓ V ⇥X⇤ where I is a linear space of global gambles containing all the
constants, and let E : I ⇥X⇤ ! R be the corresponding conjugate lower
expectation. If E satisfies WC182–WC382, then for any 5 , 6 2 I, ` 2 R, and
A 2X⇤,

WC5. 5 A 6 ) E ( 5 |A)  E (6 |A) [monotonicity];

WC6. inf ( 5 |A)  E ( 5 |A)  E ( 5 |A)  sup( 5 |A) [bounds];

WC7. E ( 5 + ` |A) = E ( 5 |A) + ` [constant additivity];

WC8. E ( 5 + 6 |A)  E ( 5 |A) + E (6 |A)  E ( 5 + 6 |A)
[mixed super-/sub-additivity];

WC9. for any sequence { 5<}<2N0 in I: [uniform convergence]

lim
<!+1

sup ( | 5 � 5< | |A) = 0 ) lim
<!+1

E ( 5< |A) = E ( 5 |A).

Furthermore, if we assume that I is moreover such that 51A 2 I for any
5 2 I and A 2X⇤, and that E satisfiesWC482, then E additionally satisfies the
following properties; for any 5 2 I, A, B 2X⇤ such that A v B, and F1:9 2X⇤,
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3.4 Global upper expectations from upper expectations trees

WC10. E
�
( 5 � E ( 5 |B))1B |A

�
= 0;

WC11. E ( 5 |A) = E ( 51A |A) and E ( 5 |A) = E ( 51A |A);
WC12. E ( 5 |F1:9)  E (E ( 5 |F1:9-9+1) |F1:9) and

E ( 5 |F1:9) � E
�
E ( 5 |F1:9-9+1) |F1:9

�
;

WC13. E ( 5 |-1:9)  E (E ( 5 |-1:9+1) |-1:9) and
E ( 5 |-1:9) � E

�
E ( 5 |-1:9+1) |-1:9

�
;

WC14. E ( 5 |B) � 0) E ( 51B |A) � 0;

WC15. E ( 51B |A) > 0) E ( 5 |B) > 0.

In particular, all the properties above hold for any global upper expectation
E that satisfies WC182–WC482 and that is defined on the domain V ⇥X⇤ or
F ⇥X⇤.

3.4.2 From local to global upper expectations using coherence

Consider any upper expectations tree Q•. We now want to use Ax-
ioms WC182–WC482 (or coherence), to extend the local upper expectations
Q
A
to a single global upper expectation. However, since these two types of

upper expectations involve completely di�erent domains, it is mathemati-
cally not entirely clear what it means for a global upper expectation to ‘ex-
tend’ the local upper expectations Q

A
. To formalise this, we first transform

the local assessments Q
A
into equivalent assessments about a preliminary

global upper expectation Epre
Q on a subset of V ⇥X⇤—similar to how we

went from an acceptable gambles tree A• to the set DA ; see Eq. (3.6)56.
We do this in accordance with the interpretation of the local upper ex-

pectations Q
A
; recall from Section 3.1.248 that QA

( 5 ) for any A 2X⇤ and any
5 2 L(X) is interpreted as the (coherent) upper expectation—which can
itself be interpreted behaviourally or in terms of probabilities—of 5 (- |A |+1)
given that the history of the process is -1: |A | = A. The translation to a global
level is thus straightforward: we define the global upper expectation Epre

Q by

Epre
Q ( 5 (-9+1) |F1:9) B Q

F1:9 ( 5 ) for all ( 5 (-9+1), F1:9) 2 Kpre, (3.13)

with Kpre B {( 5 (-9+1), F1:9) : 9 2 N0, F1:9 2X9
, 5 2 L(X)}. Note that this

transformation from Q• to Epre
Q does not add, nor remove information; it is

merely a di�erent representation. Hence, we will often speak of Q• and Epre
Q

as being one and the same object. For instance, if we say that a global upper
expectation E on K ✓ V ⇥X⇤ extends the tree Q•, then, mathematically
speaking, we take this to mean that E extends Epre

Q ; that is to say, that the
domain of E includes Kpre and that E coincides with Epre

Q on Kpre.
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The natural extension under coherence

The global upper expectation that we are after is thus required to satisfy, on
the one hand, Eq. (3.13)x, and on the other hand, Axioms WC182–WC482
(or coherence). A question that already comes to mind then, is whether
such a global upper expectation always exists. It will soon be shown that the
answer is positive, however, let us already think ahead and pose ourselves
the question: if there are multiple global upper expectations satisfying these
conditions, which one do we choose?

It is a question similar to the one raised in Section 2.636, and our an-
swer follows once more from conservativity considerations. To that end, we
start from the interpretation that higher/larger upper expectations are more
conservative—or less informative—uncertaintymodels. This can be justified
on the basis of all the global upper expectations that we have previously
seen—EA , Ef

A,V and EP—but, actually, it also plainly follows from inter-
preting a global upper expectation E as either representing infimum selling
prices for global gambles—not necessarily those resulting from a tree A•—
or representing upper bounds on possible global expectations corresponding
to possible global probability charges—not necessarily those resulting from
a tree P•. Indeed, under the first interpretation, higher upper expectations
mean higher selling prices, which is clearly more conservative; under the
second interpretation, higher upper expectations correspond to higher up-
per bounds on the possible global expectations or probability charges, which
is again less informative and hence more conservative. Recall moreover that
the notion of coherence—and thus also Axioms WC182–WC482—is also mo-
tivated by this same dual interpretation, so it indeed makes sense to com-
bine Axioms WC182–WC482 with the interpretation that larger global upper
expectations are more conservative.

Now, given an upper expectations tree Q•, our model of interest will
be the most conservative global upper expectation on V ⇥X⇤ that extends
Epre
Q and satisfies WC182–WC482 (or equivalently, that is coherent). In the

field of imprecise probabilities, and just as we did in Chapter 217, the most
conservative extension of an upper expectation (conditional or not) under
some set � of properties is, if it exists, typically called the natural extension
under � [106, 110]. If � is the requirement of coherence, then the ‘under �’
is often dropped and it is then simply called the natural extension without
further ado. In this chapter, we are thus considering the standard natural
extension of Epre

Q , yet later on in Chapter 6283 we will also consider natural
extensions under more involved conditions.

Definition 3.8. For any upper expectations tree Q•, the global upper expec-
tation EQ is, if it exists, the natural—the pointwise largest—extension of
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3.4 Global upper expectations from upper expectations trees

Epre
Q to V ⇥X⇤ under WC182–WC482. Furthermore, Efin

Q is, if it exists, the
natural extension of Epre

Q to F ⇥X⇤ underWC182–WC482. The corresponding
lower expectations EQ and EQ,fin are defined by conjugacy. }

Though we have defined the lower expectations EQ and EQ,fin using the
conjugacy relation, one could also define them asmost conservative—now in
the sense of being the lowest—global lower expectations that satisfy axioms
similar but complementary to WC182–WC482 (see for instance [106, Theo-
rem 13.11]), and that extend local—conjugate—lower expectations. Both
approaches are entirely equivalent, but for the sake of brevity and since we
are following an axiomatic approach anyway, we have chosen to go with the
former.

The following corollary shows thatWC182–WC482 in the definition above
can be replaced by the notion of (conditional) coherence.

Corollary 3.4.5. For any upper expectations tree Q•, EQ is (if it exists) the
natural extension of Epre

Q to V ⇥X⇤ under coherence, and Efin
Q is (if it exists)

the natural extension of Epre
Q to F ⇥X⇤ under coherence.

Proof. This follows immediately from Definition 3.8 and Theorem 3.4.384.

Before we establish the existence and the—trivial—uniqueness of these
global upper expectations EQ and Efin

Q , it still behoves us to clarify why we
want to choose, among all the global upper expectations extending Epre

Q and
satisfying WC182–WC482, the most conservative global upper expectation.
Our reason is simple; choosing any other—smaller—global upper expecta-
tion would mean adding ‘information’—or assumptions—not given by Epre

Q
nor by WC182–WC482. We are not necessarily arguing that it is undesirable
to impose more than WC182–WC482 though—we ourselves will impose an
additional property later on in Chapter 6283—but since adding assumptions
impacts generality in the negative, it seems logical to start with a study of
the global upper expectation EQ (or Efin

Q ) that is solely based on the mini-
mal requirements WC182–WC482 (or coherence) and nothing more. For if
EQ then turns out to be a suitable global upper expectation with desirable
features, the better. If not, and one desires to impose additional properties,
then EQ will still provide a conservative upper bound.

3.4.3 Existence, uniqueness, and an axiomatisation

Unlike the definitions of EA , Ef
A,V and EP

10, the definitions of EQ and
Efin
Q are based on a non-constructive argument; they are simply operators
10Note that by Proposition 3.3.473 the transition from a precise probability tree > to the

corresponding global probability charge P> , and thus also the rest of the definition of EP, can
be regarded as constructive.
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satisfying a bunch of properties. Hence, there is no guarantee yet that these
operators exist, nor that they are unique—though the latter is trivial. In the
current section, we establish this existence and uniqueness.

One possible way to prove the existence and uniqueness, is by showing
that Epre

Q itself is coherent; it can then be derived from well-known results
such as [106, Definition 13.25] that the natural extensions EQ and Efin

Q un-
der coherence both exist (and are trivially unique). The coherence of Epre

Q ,
and the existence and form of the natural extensions EQ and Efin

Q , could
perhaps also be derived from the Marginal Extension Theorem in [64, The-
orem 2]. The issue however is that, apart from the fact that using this result
would first require us to extend the domain of Epre

Q in a basic yet specific
way, and require us to work with new concepts such as separate coherence
and conditioning on partitions, the result is only valid when we would want
to extend a family of conditional upper or lower expectations corresponding
to a finite series of partitions of the sample space ⌦. The partitions would
in our case be formed by the sets {�(A) : |A| = <} consisting of all cylinder
events of a certain length < 2 N0, yet there are infinitely many such parti-
tions and so [64, Theorem 2] cannot be immediately applied here.

Instead of proving the coherence of Epre
Q or using [64, Theorem 2], we

opt for the following approach; we present a set of axioms—aimed to be
as weak as possible—that is su�cient for being equal to natural extensions
EQ and Efin

Q , and show that there always is a global upper expectation sat-
isfying these axioms. This guarantees the existence and trivial uniqueness,
and it also immediately provides an axiomatisation—without conservativ-
ity arguments—for the upper expectations EQ and Efin

Q . We gather these
findings in one result, the proof of which can be found in Appendix 3.D114.

Theorem 3.4.6. For any upper expectations tree Q•, the upper expectations
EQ and Efin

Q exist. Furthermore, Efin
Q is the unique global upper expectation

on F ⇥X⇤ satisfying the following axioms (stated for a general global upper
expectation E on F ⇥X⇤):

NE1. E ( 5 (-9+1) |F1:9) = Q
F1:9 ( 5 ) for all 5 2 L(X) and F1:9 2X⇤.

NE2. E ( 5 |A) = E ( 51A |A) for all 5 2 F and A 2X⇤.

NE3. E ( 5 |-1:9) = E (E ( 5 |-1:9+1) |-1:9) for all 5 2 F and 9 2 N0 such that
E ( 5 |-1:9+1) is real-valued.

Moreover, EQ is the unique global upper expectation on V ⇥X⇤ satisfying
NE1–NE3 and the following axiom (with E any global upper expectation on
V ⇥X⇤):

NE4. E ( 5 |A) = inf
�
E (6 |A) : 6 2 F and 6 �A 5

 
for all 5 2 V and all A 2X⇤.
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3.4 Global upper expectations from upper expectations trees

The axiomatisation above is rather simple; NE1 demands compatibil-
ity with the local models, and NE2 guarantees that the second argument
of a global upper expectation plays the role of a conditioning event. NE2 
is furthermore the same as WC1185, so it is satisfied by any coherent global
upper expectation. NE3 says that Property WC1385—which is satisfied
by any coherent global upper expectation—holds with equality. In other
words, NE3 says that the law of iterated upper expectations—recall Sec-
tion 3.2.465—holds on the domain F ⇥X⇤. Note that the axiom only applies
to those instances where E ( 5 |-1:9+1) is real-valued, because then E ( 5 |-1:9+1)
is a (finitary) gamble and it can therefore be considered as an argument for
the upper expectation E (·|-1:9). If E ( 5 |-1:9+1) would not be real-valued—
which is possible for a general global upper expectation E—then the expres-
sion E (E ( 5 |-1:9+1) |-1:9) would be meaningless. Of course, since EQ and Efin

Q
are always real-valued due to Proposition 3.4.4 [WC684] and their defini-
tions, NE3 holds for EQ and Efin

Q in all cases. In fact, though NE3 only
involves the domain F ⇥X⇤, it will be shown in Section 3.5.393 that the law
of iterated upper expectations holds for EQ on the entire domain V ⇥X⇤.

Together, Axioms NE1 –NE3 uniquely determine the values of a
global upper expectation on all finitary gambles; more specifically, it
straightforwardly leads to the form of Efin

Q stated in Proposition 3.5.996—
see also Lemma 3.D.5116. Axiom NE4 , then, imposes that a global upper
expectation’s value on a general gamble in V can be approximated arbitrar-
ily closely from above by its values on the finitary gambles in F .

It can be observed rather straightforwardly from Theorem 3.4.6 above
that EQ is an extension of Efin

Q . But, in fact, we can even prove more.

Corollary 3.4.7. For any upper expectations tree Q•, EQ is the natural—
pointwise largest—extension of Efin

Q under monotonicity [WC584].

Proof. That EQ extends Efin
Q follows from Theorem 3.4.6 . That EQ , and thus also

Efin
Q , is monotone [WC584] follows from Proposition 3.4.484 and the fact that EQ

satisfies WC182–WC482 by definition. So it remains to show that EQ ( 5 |A) � E ( 5 |A)
for any ( 5 , A) 2 V ⇥X⇤ and any global upper expectation E on V ⇥X⇤ that ex-
tends Efin

Q and that is monotone [WC584]. And indeed, since EQ satisfies NE4 by
Theorem 3.4.6 ,

EQ ( 5 |A) = inf
�
EQ (6 |A) : 6 2 F and 6 �A 5

 
= inf

n
Efin

Q (6 |A) : 6 2 F and 6 �A 5
o

= inf
�
E (6 |A) : 6 2 F and 6 �A 5

 
� E ( 5 |A),

where the last step follows from WC584.

It is well-known that the natural extension (under coherence) is transi-
tive [106, Section 13.7.3] and therefore that EQ is automatically the nat-
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ural extension of Efin
Q under coherence. However, what is striking about

Corollary 3.4.7x is that, as far as this extension from F ⇥X⇤ to V ⇥X⇤

is concerned, we can replace coherence by the much weaker property of
monotonicity. As we will explain in Section 3.698, the fact that monotonic-
ity is the only property relating the values of EQ on (V \ F ) ⇥X⇤ to those of
Efin
Q (or EQ) on F ⇥X⇤ is somewhat problematic when interested in general,

non-finitary inferences.

3.5 Relation between the three approaches

The current section is concerned with how the axiomatic global upper
expectations EQ and Efin

Q relate to, on the one hand, the behavioural global
upper expectations EA and Ef

A,V, and on the other hand, the probability-
based global upper expectation EP. As it will turn out, these global upper
expectations are all equal if, respectively, the tree A• agrees with Q•, and
the tree P• agrees with Q•.

3.5.1 Relation between axiomatic and behavioural global upper ex-
pectations

We first show that, for any two trees A• and Q• that agree according to
Eq. (3.1)50, the global set of acceptable gambles E(DA) and the global up-
per expectation EQ also ‘agree’, in the sense that the infimum selling prices
EA deduced from E(DA) coincide with the values of EQ . One may have
noticed, however, when reading through Appendix 3.D114, that our proof of
Theorem 3.4.688 was fundamentally based on the result that Ef

A,V (or EA)
satisfies NE188–NE488, and therefore that the equality with EQ was essen-
tially already proved there.

Theorem 3.5.1. For any acceptable gambles tree A• and upper expectations
tree Q• that agree according to Eq. (3.1)50, we have that

EA ( 5 |A) = Ef
A,V ( 5 |A) = EQ ( 5 |A) for all 5 2 V and all A 2X⇤.

Proof. Lemma 3.D.3115 says that Ef
A,V satisfies NE188–NE488. Hence, by Theo-

rem 3.4.688, E
f
A,V is equal to EQ . That this also holds for EA then follows from

Theorem 3.2.765.

3.5.2 Relation with probability-based global upper expectations

Next, we show that for any two agreeing trees P• and Q•, the global
upper expectation EP [Definition 3.679] obtained by taking an upper enve-
lope over all the global upper expectations E> corresponding to a compatible
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Figure 3.6 Schematic overview of the possible finitary approaches and their
connections.

precise probability tree > ⇠P•, is equal to the axiomatic upper expectation
EQ . The proof of this result will be given at the end of this Section 3.5.2 .

Theorem 3.5.2. Consider any imprecise probability tree P• and any upper
expectations tree Q• that agree according to Eq. (3.3)51. Then we have that

EP( 5 |A) = EQ ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

It then also immediately follows from Theorem 3.5.1 that EP, EA and
Ef

A,V coincide if P• and A• agree with a common upper expectations tree
Q• according to Eq. (3.3)51 and Eq. (3.1)50, respectively. See Fig. 3.6 for a
schematic overview of the connections between the global upper expecta-
tions EP, EA , Ef

A,V and EQ .
As a special interesting case, Theorem 3.5.2 says that EP and EQ co-

incide if P• consists of only a single precise probability tree >. Note that
EP, as defined by Definition 3.679, then simply reduces to E>, given by Def-
inition 3.578. Furthermore, using Proposition 3.3.879 and restricting to the
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domain to F ⇥X⇤, it follows that EQ can be expressed as a simple finite
weighted sum.

Corollary 3.5.3. Consider any precise probability tree > and let Q• be the
agreeing expectations tree according to Eq. (3.4)52. Then, for any ( 5 , A) 2
F ⇥X⇤, we have that

EQ ( 5 |A) = E> ( 5 |A) =
P

F
9+1:✓ 2X✓�9 5 (F1:✓)

Q
✓�1
7=9 >(F7+1 |F1:7),

where ✓ > 9 is any natural number such that 5 is ✓-measurable.

In order to prove Theorem 3.5.2x, we show that EP satisfies NE188–
NE488, and then subsequently use Theorem 3.4.688 to infer that EP is equal
to EQ . We start by establishing that EP satisfies NE188–NE388, which can al-
most immediately be seen to follow from [62, Theorem 21]. In the proof of
this result, and also further on in this dissertation, we rely on the following
notation (which was also already used in Appendix 3.D114). For any situa-
tion F1:9 2X⇤ and any (9 + 1)-measurable gamble 6(-1:9+1), let 6(F1:9·) be
the local gamble on X that assumes the value 6(F1:9+1) in F9+1 2X. Then,
for any upper expectations tree Q•, any 9 2 N0 and any (9 + 1)-measurable
gamble 6(-1:9+1), we use Q

-1:9 (6(-1:9+1)) to denote the 9-measurable gam-
ble defined by

Q
-1:9 (6(-1:9+1)) (F1:9) B Q

F1:9 (6(F1:9·)) for all F1:9 2X9

.

Observe that Q
-1:9 (6(-1:9+1)) is indeed bounded and therefore a gamble,

because the local upper expectation Q
F1:9 (6(F1:9·)) for all F1:9 2 X9 is real

due to coherence [C533].

Proposition 3.5.4. For any imprecise probability treeP• and the agreeing up-
per expectations tree Q• according to Eq. (3.3)51, the global upper expectation
EP satisfies NE188–NE388.

Proof. [62, Theorem 21] says that, for any 9, ✓ 2 N0 such that ✓ > 9, and any
(✓ + 1)-measurable gamble ⌘,

E0P(⌘|-1:9) = Q
-1:9

�
Q
-1:9+1

�
· · · Q

-1:✓�1

�
Q
-1:✓ (⌘)

�
· · ·

� �
, (3.14)

with E0P defined according to [62, Eq. (3.27)]. The latter is di�erent from our
definition of EP [Definition 3.679] because [62, Eq. (3.27)] involves probability
measures—countably additive probability charges—instead of general probability
charges. This makes no di�erence in the expression above though, because the two
global upper expectations coincide on finitary gambles; indeed, it can be checked
from [62, Eqs. (3.18) and (3.27)] that, for any finitary gamble 5 2 F and any
F1:9 2X⇤,

E0P( 5 |F1:9) = sup
� P

F
9+1:✓2X✓�9 5 (F1:✓)

Q
✓�1
7=9 >(F7+1 |F1:7) : > ⇠P•

 
,
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where ✓ � 9 is any natural number for which 5 is ✓-measurable. Hence, according
to Corollary 3.3.1080, we indeed have that E0P( 5 |F1:9) = EP( 5 |F1:9) for all ( 5 , F1:9) 2
F ⇥X⇤. Then it follows from Eq. (3.14) and Lemma 3.D.5116 that EP coincides [on
F ⇥X⇤] with any global upper expectation E on F ⇥X⇤ that satisfies NE188–NE388.
Lemma 3.D.3115 gaurantees the existence of such a global upper expectation E, so
we indeed find that EP satisfies NE188–NE388.

The proof of the fact that EP satisfies NE488 is rather technical and there-
fore relegated to Appendix 3.E120.

Proposition 3.5.5. For any imprecise probability tree P•, the global upper
expectation EP satisfies NE488.

Proof of Theorem 3.5.291. Proposition 3.5.4 says that EP satisfies NE188–NE388.
Proposition 3.5.5 says that EP satisfies NE488. Hence, we infer by Theorem 3.4.688

that EP is equal to EQ .

3.5.3 Implications of the equality between the three types of upper
expectations

The fact that the three types of global upper expectations—EA (or Ef
A,V),

EP and EQ—are all equal if the respective trees agree has a number of inter-
esting consequences. First of all, it is clear that the three di�erent types of
global upper expectations each rely on their own set of methods and ideas
to extend local models to global models, and so it is remarkable from a
philosophical point of view that, whether one uses gambling, probabilities
or axioms as a tool, one always ends up with the same global upper expec-
tation. Moreover, the fact that all these approaches lead to the same global
upper expectation significantly broadens the scope of this common upper
expectation; for a user may choose whatever framework suits him the best,
depending on e.g. his background knowledge or on practical considerations.
Finally, there are also a number of important mathematical consequences of
which we will now highlight the most important ones.

Coherence properties

Since the di�erent types of global upper expectations are all equal (if the
corresponding trees agree), it follows that all these global upper expecta-
tions share the same properties. Hence, any of the properties that were
previously proved to hold for one type of global upper expectation, can now
immediately be established for all other global upper expectations. In par-
ticular, since EQ is coherent and satisfiesWC182–WC1585, this is also true for
EA and EP. The fact that EA is coherent (or satisfies WC182–WC482), how-
ever, also straightforwardly follows from Lemma 3.C.1109 or Lemma 3.D.6117
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(whose proofs can be seen to follow from standard results such as [113,
Proposition 2]). That EP is coherent could also be shown using a result
such as [106, Proposition 13.42], which says that the lower (upper) enve-
lope of a set of coherent conditional lower (upper) expectations is itself a
coherent conditional lower (upper) expectation. In order to use this result,
however, we would thus first be required to prove that E> is a coherent global
upper expectation for any precise probability tree >.

Corollary 3.5.6. For any acceptable gambles tree A•, the global upper expec-
tations EA and Ef

A,V are coherent and satisfy WC182–WC1585. The same
holds for the upper expectation EP corresponding to any imprecise probability
tree P•.

Proof. The fact that EA and Ef
A,V satisfy WC182–WC1585 follows from Theo-

rem 3.5.190, the fact that EQ for any upper expectations tree Q• that agrees with
A• according to Eq. (3.1)50 satisfies WC182–WC482 by definition, and Proposi-
tion 3.4.484. The coherence of these global upper expectations thenmoreover follows
from Theorem 3.4.384. The statement about EP follows from Theorem 3.5.291, and
again the definition of EQ [for any upper expectations tree Q• that agrees with P•

according to Eq. (3.3)51], Proposition 3.4.484 and Theorem 3.4.384.

Note that the corollary above also establishes Proposition 3.4.182 stated
earlier on in Section 3.4.181. One can easily check that Proposition 3.4.182
was never used as a tool in any of the proofs so far, and thus that there is no
possibility that we have been adopting any type of circular reasoning. The
order was chosen in this particular fashion simply because, as mentioned in
Section 3.4.181, we regard Proposition 3.4.182 as part of our motivation to
impose WC182–WC482 on a global upper expectation.

Law of iterated upper expectations

Another important consequence is that the global upper expectations EQ
and EP are guaranteed to satisfy the law of iterated upper expectations on
the entire domain V ⇥X⇤. It was already shown above that these upper
expectations satisfy NE388, and thus (since they are real-valued due to co-
herence [WC684]) that they satisfy the law of iterated upper expectations
on the restricted domain F ⇥X⇤. The fact that this property can be extended
to the entire domain V ⇥X⇤ follows from Proposition 3.2.1067 which says
that EA satisfies the law of iterated upper expectations on V ⇥X⇤.

Corollary 3.5.7 (Law of iterated upper expectations). For any upper expec-
tations tree Q•, any 5 2 V and any 9 2 N0, we have that

EQ ( 5 |-1:9) = EQ (EQ ( 5 |-1:9+1) |-1:9).
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The same holds for the upper expectation EP corresponding to any imprecise
probability tree P•, and for Efin

Q if 5 2 F .

Proof. The first statement follows from Theorem 3.5.190 and Proposition 3.2.1067.
The second statement follows from Theorem 3.5.291, Theorem 3.5.190 [applied to
the upper expectations tree Q• that agrees with P• according to Eq. (3.3)51] and
Proposition 3.2.1067. The last statement about Efin

Q follows from the fact that EQ

extends Efin
Q [Corollary 3.4.789].

Overdimensioned local models

Perhaps the most remarkable consequence of all is that, even though accept-
able gambles trees and imprecise probability trees are both more expressive
than upper expectations trees when it comes to parametrising the local dy-
namics of a stochastic process [Section 3.1.248], this additional expressive
power vanishes when solely looking at the resulting global upper expecta-
tions.

Corollary 3.5.8. For any two acceptable gambles trees A• and A0• with the
same agreeing upper expectations tree Q•,A = Q•,A0 ,

EA ( 5 |A) = EA0 ( 5 |A) and Ef
A,V ( 5 |A) = Ef

A0,V ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Similarly, for any two imprecise probability trees P• and P0
• with the same

agreeing upper expectations tree Q•,P = Q•,P0 , we have that

EP( 5 |A) = EP0 ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

That acceptable gambles trees and imprecise probability trees are more
expressive than upper expectations trees was already discussed in Sec-
tion 3.1.248. More precisely, as mentioned and illustrated in Section 2.533,
any two local sets of acceptable gambles with the same (uniform) closure—
so not necessarily with the same border structure—have the same agreeing
local upper expectation. Similarly, any two local sets of probability mass
functions lead to the same agreeing local upper expectation if their convex
closures are equal. According to the corollary above, analogous considera-
tions hold on a global level, when we consider the global upper expectations
deduced from either acceptable gambles trees, imprecise probability trees
and upper expectations trees. In other words, it does not matter whether we
first—already on a local level—transition to the less expressive framework
of upper expectations and do all the extensions in this framework, or first
remain in one of the more expressive frameworks, do all the extensions here,
and only transition in the end to the framework of upper expectations—the
resulting global upper expectations will always be the same; see Fig. 3.691
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Finitary upper expectations in discrete-time stochastic processes

for a visual representation. This is not trivial because, in general, the bor-
der structure of a coherent set of acceptable gambles or a set of probability
charges may in fact impact the corresponding conditional upper expecta-
tions; see e.g. [75, Section 1.6.6]. In fact, later on when we have intro-
duced global upper expectations based on countably additive probability
charges and defined on a domain of extended real-valued variables (and sit-
uations), we will encounter instances where the boundary structure of the
local sets of probabilitiesP• impacts the corresponding global upper expec-
tation greatly; see Section 5.4.2245.

Direct explicit expressions

The axiomatic characterisations for EQ and Efin
Q given in Theorem 3.4.688 are

elegant and universal in nature, but they are on the other hand inconvenient
in practice, when we need to compute the actual values of these operators.
Moreover, we know by Theorem 3.5.190 and Theorem 3.5.291 that EA , Ef

A,V
and EP coincide with EQ (and Efin

Q ) for appropriately chosen local models,
and so that the expressions in Eq. (3.10)60, Eq. (3.11)63 and Definition 3.679
can be used as alternative tools to compute the values of EQ (and Efin

Q ), yet
these expressions are still rather indirect and not the most practical to work
with. To address this, we next present explicit expressions for EQ and Efin

Q
that allow us to straightforwardly compute their values, starting from the
values of the—initially given—local upper expectations Q•. Of course, by
Theorem 3.5.190 and Theorem 3.5.291, these expressions can also be used
to compute the values of EA , Ef

A,V and EP.
We start with establishing the expression for the upper expectation Efin

Q
on the finitary domain F ⇥X⇤.

Proposition 3.5.9. For any upper expectations tree Q•, any F1:9 2 X⇤, and
any (✓ + 1)-measurable gamble 5 (-1:✓+1) 2 F with ✓ � 9,

Efin
Q ( 5 (-1:✓+1) |F1:9) = Q

-1:9

�
Q
-1:9+1

�
· · · Q

-1:✓�1

�
Q
-1:✓ ( 5 (-1:✓+1))

�
· · ·

� �
(F1:9).

Furthermore, the same expression holds for EA , Ef
A,V and EP, with A• and

P• any two trees that agree with Q•.

Proof. The expression for Efin
Q follows immediately from Lemma 3.D.5116 and The-

orem 3.4.688. The remaining statement then follows from Theorem 3.5.190 and
Theorem 3.5.291.

In order to use the expression above to compute the value of
Efin
Q ( 5 (-1:✓+1) |F1:9), it should be read backwards; one should start with

the inner term 6✓ (-1:✓) B Q
-1:✓ ( 5 (-1:✓+1)), and compute 6✓ (F1:9H9+1:✓) =
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Q
F1:9H9+1:✓ ( 5 (F1:9H9+1:✓·)) for all H9+1:✓ 2X✓�9; subsequently, one should con-

sider 6✓�1 (-1:✓�1) B Q
-1:✓�1

�
Q
-1:✓ ( 5 (-1:✓+1))

�
and use the previously ob-

tained values of 6✓ (-1:✓) to compute its values in F1:9H9+1:✓�1 for all H9+1:✓�1 2
X✓�9�1 according to

6✓�1 (F1:9H9+1:✓�1) = Q
F1:9H9+1:✓�1

�
6✓ (F1:9H9+1:✓�1·)

�
.

By repeating this procedure, one eventually arrives at the value of 69 (F1:9) B
Q
-1:9

�
· · · Q

-1:✓�1

�
Q
-1:✓ ( 5 (-1:✓+1))

�
· · ·

�
(F1:9). We refer to [100] for a more

detailed explanation of comparable methods for imprecise Markov chains.
Once we have obtained the values of Efin

Q , those of EQ can easily be de-
rived from it by means of the following expression. Note moreover that this
expression is similar to the expression of the natural extension under coher-
ence stated in [106, Theorem 13.55].

Proposition 3.5.10. For any upper expectations tree Q•, and any ( 5 , A) 2
V ⇥X⇤,

EQ ( 5 |A) = inf
n
Efin
Q (6 |A) : 6 2 F and 6 �A 5

o
.

Furthermore, the equality above remains to hold if we replace EQ and/or Efin
Q

by either EA , Ef
A,V or EP, with A• and P• any two trees that agree with Q•.

Proof. The expression for EQ follows immediately from the fact that EQ satisfies
NE488 by Theorem 3.4.688, and the fact that, also due to Theorem 3.4.688, EQ ex-
tends Efin

Q . The remaining statement then follows from Theorem 3.5.190 and The-
orem 3.5.291, and the fact that EQ coincides with Efin

Q on F ⇥X⇤ due to Theo-
rem 3.4.688.

The result above already establishes a fairly direct and simple charac-
terisation for EQ as being the infimum value that Efin

Q takes on all dominat-
ing finitary gambles. However, this way of expressing the values of EQ can
be simplified even further: we can restrict ourselves to taking the infimum
value of Efin

Q on a single specific sequence of dominating finitary gambles—
instead of on all dominating ones. In fact, as is established by the following
lemma, it can be seen that this is true for any global upper expectation that
is monotone on F ⇥X⇤ and satisfies NE488.

Lemma 3.5.11. Consider any global upper expectation E : V ⇥X⇤ ! R that
is monotone [WC584] on F ⇥X⇤ and satisfies NE488. Then, for any 5 2 V and
A 2X⇤, we have that

E ( 5 |A) = lim
<!+1

E (6< |A) = inf
<2N

E (6< |A),

where (6<)<2N is the decreasing sequence of finitary gambles defined, for all
< 2 N, by

6< (l) = 6< (l<) B sup
l̃2�(l<)

5 (l̃) for all l 2 ⌦.
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Proof. Note that lim<!+1 E (6< |A) exists and that lim<!+1 E (6< |A) = inf<2N E (6< |A),
because (6<)<2N is decreasing and E is monotone on F⇥X⇤. So it su�ces to prove that
E ( 5 |A) = lim<!+1 E (6< |A). Due to the definition of (6<)<2N, we have that 5  6< for
all < 2 N, and therefore by NE488 that also E ( 5 |A)  E (6< |A) for all < 2 N. Hence, we
have that E ( 5 |A)  lim<!+1 E (6< |A). To see that the converse inequality is also true,
observe that, for any real 0 > inf{E (6 |A) : 6 2 F and 6 �A 5 }, there is a 60 2 F such
that 60 �A 5 and 0 � E (60 |A). Since 60 is finitary, it is ;-measurable for some ; � |A|.
Consider any l 2 �(A) and note that l; w A and therefore that �(l;) ✓ �(A). Then,
since 60 �A 5 , we also have that 60(l̃) � 5 (l̃) for all l̃ 2 �(l;) ✓ �(A). But 60 is ;-
measurable, so 60(l̃) = 6

0(l;) is constant for all l̃ 2 �(l;). Hence, 60(l;) � 5 (l̃)
for all l̃ 2 �(l;), and therefore

6
0(l;) � sup

l̃2�(l; )
5 (l̃) = 6; (l;).

This holds for any l 2 �(A), so we have that 60 �A 6; and therefore, by the mono-
tonicity of E on F⇥X⇤, that E (60 |A) � E (6; |A). Since (6<)<2N is decreasing and, again,
E is monotone on F ⇥X⇤, this implies that E (60 |A) � lim<!+1 E (6< |A). By the fact
that 0 � E (60 |A), we have thus that 0 � lim<!+1 E (6< |A). Since this holds for any real
0 > inf{E (6 |A) : 6 2 F and 6 �A 5 }, and since E ( 5 |A) = inf{E (6 |A) : 6 2 F and 6 �A 5 }
by NE488, we infer that E ( 5 |A) � lim<!+1 E (6< |A).

Corollary 3.5.12. For any upper expectations tree Q•, any 5 2 V and A 2X⇤,
we have that

EQ ( 5 |A) = lim
<!+1

Efin
Q (6< |A) = inf

<2N
Efin
Q (6< |A),

where (6<)<2N is the decreasing sequence of finitary gambles defined, for all
< 2 N, by

6< (l) = 6< (l<) B sup
l̃2�(l<)

5 (l̃) for all l 2 ⌦.

Furthermore, the statement above remains to hold if we replace EQ and/or Efin
Q

by either EA , Ef
A,V or EP, with A• and P• any two trees that agree with Q•.

Proof. The statement for EQ follows immediately from Lemma 3.5.11x, the fact
that EQ satisfiesWC584 by Proposition 3.4.484 [and because it satisfiesWC182–WC482

by definition], the fact that EQ satisfies NE488 by Theorem 3.4.688, and the fact that
EQ extends Efin

Q by Corollary 3.4.789. The remaining statement then follows from
Theorem 3.5.190 and Theorem 3.5.291, and the fact that EQ coincides with Efin

Q on
F ⇥X⇤ due to Theorem 3.4.688.

3.6 Finitary global upper expectations are not enough

From all we know so far—or rather, all what has been told so far—it
seems that any of the global upper expectations discussed above, whether
that is EA , Ef

A,V, EP or EQ , seems to have all features one could possible
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3.6 Finitary global upper expectations are not enough

desire; due to its equivalence with other models, it can interpreted and mo-
tivated in various ways; it has an abundance of convenient mathematical
properties, including WC182–WC1585 and the law of iterated upper expec-
tations; and its values can in practice be straightforwardly computed using
the explicit expressions in Lemma 3.D.5116 and Lemma 3.5.1197. Unfortu-
nately however, as the title of this section predicts, there is a price to pay—a
price that we are not willing to accept. To get a clue of where the deficit lies,
let us go back to Corollary 3.4.789 and the discussion below it. There, it was
pointed out that the extension of the global upper expectation EQ—which
we can now also equivalently regard as EA , Ef

A,V or EP—from the domain
F ⇥X⇤ to V ⇥X⇤ did not entail much; this extension is solely based on
evoking the monotonicity property. It is therefore to be expected that this
extension will sometimes lead to rather uninformative conclusions about the
global upper expectation of some specific global non-finitary gambles. The
following simple example confirms our suspicion.

The example is expressed in terms of a(n) (im)precise probability tree >
and the corresponding global upper expectation E>, however, one could just
as well repeat the same reasoning with an agreeing upper expectations tree
or an agreeing acceptable gambles tree, and their respective global upper
expectations. The example will also involve the upper probability P> corre-
sponding to the upper expectation E>; recall from Section 3.1.352 that P> is
simply obtained from E> by restricting to the indicators.

Example 3.6.1. Consider a state space X B {0, 1} consisting of two ele-
ments, and a precise probability tree > consisting of probability mass func-
tions that put all mass on 0; so >(0|A) = 1 and >(1|A) = 0 for all A 2 X⇤.
Now consider the event �1 of ever hitting the state 1; so �1 B ⌦\{000 · · · }.
Since, at each time instant 9 2 N0 and for any possible history H1:9 2X9, the
local probability mass function >(·|H1:9) assigns probability 1 to 0, we also
expect that probability 1 is assigned to the event that the first 9 states are all
equal to 0, with 9 2 N0 any arbitrary time instant—and this in fact follows
from Proposition 3.3.473. By idealisation, we would thus expect that prob-
ability 1 is assigned to the path l = 000 · · · , and therefore that probability
0 is assigned to �1. But this is not what happens.

Indeed, recall Lemma 3.5.1197—which holds for E> because of Proposi-
tion 3.5.593 and Corollary 3.5.694—which says that, for the sequence (6<)<2N
defined by 6< (l) B sup

l̃2�(l<) I�1 (l̃) for all l 2 ⌦ and all < 2 N,

P> (�1) = E> (I�
1
) = lim

<!+1
E> (6<).

Since every cylinder event �(A) includes a path for which 1 appears at
least one time, and thus a path that is in �1, we obtain that 6< (l) =
sup

l̃2�(l<) I�1 (l̃) = 1 for all l 2 ⌦ and all < 2 N. So by WC684 [which
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Finitary upper expectations in discrete-time stochastic processes

we can apply due to Corollary 3.5.694], we have that E> (6<) = 1 for all
< 2 N. Hence, by the equality above, we find that P> (�1) = 1; the upper
probability of �1 is 1.

The fact that this outcome P> (�1) = 1 is not in line with what we would
desire, is only strengthened if we additionally take into account the values
of the ‘stopped’ upper hitting probabilities. Indeed, let �9

1
for any 9 2 N0 be

the event of hitting 1 before time 9 + 1;

�
9

1
B ⌦ \ �(09) = [

H1:92X9\{09 }�(H1:9), (3.15)

where 0
9 simply denotes the situation consisting of 9 times 0. One may

check that �9

1
= [9�1

✓=0�(0✓1) and �1 = [✓2N0�(0✓1), and therefore that
lim9!+1 �9

1
= �1. On the other hand, for any 9 2 N0, we have by Proposi-

tion 3.3.879 and Eq. (3.15) that

P> (�9

1
) = E> (I�9

1

) =
X

H1:92X9\{09 }
P> (H1:9) =

X
H1:92X9\{09 }

9�1Y
7=0

>(H7+1 |H1:7) = 0,

where the last equality follows from the fact that, for any H1:9 2X9 such that
H7+1 = 1 for some 7 2 {0, . . . , 9 � 1}, we have that >(H7+1 |H1:7) = >(1|H1:7) = 0
by assumption. As a result, we obtain that

lim
9!+1

P> (�9

1
) = 0 < 1 = P> (�1).

In summary, we thus have that the upper probability P> (�9

1
) of hitting 1

before time 9+1 is equal to zero for all 9 2 N0, but that the upper probability
P> (�1) of hitting 1 over an infinite time interval is one. ^

In the example above, we see that the global upper expectation E>

takes values on the finitary gambles I
�
9

1

that we would expect. For the
non-finitary gamble I�

1
, however, this is not the case; its resulting value

is extremely conservative—even vacuous—and seems to disregard any in-
formation given by the local models. Unfortunately, this phenomenon is not
unique to the specific example above, nor to the probability-based global
upper expectation E>; as already mentioned under Corollary 3.4.789, and
as can also be seen from Corollary 3.5.1298, the values of EQ—and thus by
Theorem 3.5.291 and Theorem 3.5.190 the values of EP, EA , Ef

A,V—on non-
finitary gambles are derived from the values of Efin

Q (or EQ , EP, EA , Ef
A,V)

on F ⇥X⇤ by only relying on monotonicity; a basic property that is often not
powerful enough to make informative statements about non-finitary gam-
bles. This is our first concern with the use of EP, EA , Ef

A,V or EQ as a global
model.

Secondly, and equally as important: the domain of these global upper
expectations. They are only defined for (global) gambles, so real-valued
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3.6 Finitary global upper expectations are not enough

functions that are bounded. However, many of the inferences encountered
in practice require the computation of (upper and lower) expectations of
functions that are not bounded, and often not even real-valued. For one,
the hitting time g0 of a state 0 2X = {0, 1} [see Section 3.1.352] takes the
value +1 in the path l = 111 · · · .

The reason that we have chosen, for now, to only consider global
gambles (and situations) as a domain for a global upper expectation, is
largely because the frameworks of sets of acceptable gambles and coher-
ent upper/lower expectations as initially developed by P. M. Williams [113]
and Walley [110] did not involve extended real-valued functions. For they
were built on the idea that gambles—bounded real-valued functions—can
be interpreted as uncertain pay-o�s, and that upper expectations can be
interpreted as infimum selling prices for such gambles. Such an interpreta-
tion of course becomes somewhat less obvious if uncertain pay-o�s can be
infinite in value. The problem of extending this theory beyond the domain
of bounded real-valued functions was already addressed by Tro�aes & De
Cooman [106, Part Two], yet still only to deal with unbounded real-valued
functions and not extended real-valued functions. On the other hand, most
references [77, 106] on finitely additive probability charges that we are
aware of, also only involve integration over real-valued functions. All to-
gether, it thus seemed as a natural choice to first consider and study the
domain of gambles and situations.

In the coming chapters, it is our aim to put forward other global models
that deal with these two issues each in their own distinct way. Once more,
we shall consider three di�erent types: a (non-finitary) game-theoretic
model, a measure-theoretic model, and an axiomatic model. Philosophi-
cally speaking, they can be seen as continuations of, respectively, the fini-
tary game-theoretic upper expectation Ef

A,V, the probability-based upper
expectation EP, and the axiomatic upper expectation EQ presented in the
current chapter. The main di�erence is that the new models will not extend
the local models solely using finitary principles, but also using one or more
continuity arguments. To clarify this distinction, we will often refer—and
already have been referring—to Ef

A,V, EA , EP, and EQ all together as the
finitary global upper expectations.

As a final remark before we move on, note that the finitary global up-
per expectations introduced in this chapter actually behave in a satisfactory
way if we are solely interested in the finitary domain F ⇥X⇤. Indeed, the
undesirable behaviour that was illustrated by Example 3.6.199 only occurs
if we look at non-finitary gambles. This observation will be used in Chap-
ter 6283, where we will argue for the use of an axiomatic continuity-based
global upper expectation, and where Efin

Q will serve as our starting point.
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— A��������� —

3.A Proof of Theorem 3.2.7

The proof of Theorem 3.2.765 relies on the following lemma, which uses
the notation S< (A•) for any < 2 N0 to denote the set of all submartingales
stopped at some time 9 larger than <, and with zero initial value:

S< (A•) B
�
M(-1:9) : M 2 M(A•),M(⇤) = 0 and 9 � <

 
.

Lemma 3.A.1. posi
�
DA

�
= S< (A•) for any acceptable gambles tree A• and

any < 2 N0.

Proof. To prove that posi
�
DA

�
✓ S< (A•), fix any 5 2 posi

�
DA

�
. Then, due to

Lemma 3.2.157, there is a finite set ( ⇢X⇤ of situations and corresponding gambles
5A 2 AA for all A 2X⇤, such that 5 = P

A2( 5A (-|A|+1)1A. Let �M be the betting process
defined, for all A 2 X⇤, by �M(A) = 5A if A 2 (, and �M(A) = 0 otherwise. Then
since 5A 2 AA for all A 2 (, and 0 2 AA for all A 2 X⇤ because AA satisfies D127, we
have that �M is acceptable and thus that the corresponding real process M [that
starts with initial value M(⇤) B 0] is a submartingale inM(A•). Let 9 2 N0 be such
that 9 � < and such that 9� 1 is larger than or equal to the maximum of the lengths
of the situations in ( [which is a natural number because ( is finite]. Then, to show
that M(-1:9) = 5 , consider any l 2 ⌦ and note that

M(-1:9) (l) = M(l1:9) =
9�1X
✓=0

�M(l1:✓) (l✓+1)

=
X

✓2{0,...,9�1}
l1:✓2(

�M(l1:✓) (l✓+1) +
X

✓2{0,...,9�1}
l1:✓8(

�M(l1:✓) (l✓+1)

=
X

✓2{0,...,9�1}
l1:✓2(

�M(l1:✓) (l✓+1) =
X

✓2{0,...,9�1}
l1:✓2(

5l1:✓ (l✓+1) (3.16)

where the penultimate and last step follow from our definition of �M. The last term
involves a sum over the situations {l1:✓ 2 ( : ✓ 2 {0, . . . , 9 � 1}}, but note that,
since 9 � 1 is larger than or equal to the largest possible length of a situation in (,
we could equivalently write it as a sum over

{l1:✓ 2 ( : ✓ 2 N0} = {A 2 ( : (9✓ 2 N0) A = l1:✓} = {A 2 ( : l 2 �(A)}.

So we get that
X

✓2{0,...,9�1}
l1:✓2(

5l1:✓ (l✓+1) =
X
A2(

l2�(A)

5A (l |A|+1) =
X
A2(

5A (l |A|+1)1A (l) = 5 (l).

Combined with Eq. (3.16), this gives us that M(-1:9) (l) = 5 (l). Since this holds
for any l 2 ⌦, we obtain that M(-1:9) = 5 as desired. Together with the fact that
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M 2 M(A•), M(⇤) = 0 and 9 � <, we find that 5 2 S< (A•). Since this is true for
any 5 2 posi

�
DA

�
, it follows that posi

�
DA

�
✓ S< (A•).

The converse inclusion can be proved in a similar but easier fashion. Fix any
M 2 M(A•) such that M(⇤) = 0, and any 9 � <. Let ( B {A 2X⇤ : |A|  9 � 1} and
let 5A B �M(A) for all A 2 (. Then ( is a finite set of situations because X is finite.
Moreover, 5A 2 AA for all A 2 (, because M 2 M(A•) and therefore �M(A) 2 AA.
So it su�ces to prove that M(-1:9) =

P
A2( 5A (-|A|+1)1A, because it then follows from

Lemma 3.2.157 that M(-1:9) 2 posi
�
DA

�
as desired. To that end, observe that

M(F1:9) = M(⇤) +
9�1X
✓=0

�M(F1:✓) (F✓+1) =
9�1X
✓=0

�M(F1:✓) (F✓+1) for all F1:9 2X9

,

because M(⇤) = 0 by assumption. Hence, since the above holds for all F1:9 2X9,

M(-1:9) =
9�1X
✓=0

X
F1:✓2X✓

�M(F1:✓) (-✓+1)1F1:✓ (-1:✓) =
X
A2(

�M(A) (-|A|+1)1A (-1:|A| )

=
X
A2(

5A (-|A|+1)1A,

where the second equality follows from the definition of (, and the last from the
definition of the gambles 5A.

Proof of Theorem 3.2.765. Fix any 5 2 V and A 2 X⇤. First note that, if we com-
bine Lemmas 3.2.157 and 3.2.257, we clearly get that E(DA ) = V�+posi

�
DA

�
, which

on its turn implies by Lemma 3.A.1 that E(DA ) = V� + S< (A•) for all < 2 N0.11 As
a result, by Eq. (3.10)60, for all < 2 N0,

EA ( 5 |A) = inf{U 2 R : (U� 5 )1A 2 E(DA )} = inf{U 2 R : (U� 5 )1A 2 (V� +S< (A•))}.
(3.17)

Let us now establish that
EA ( 5 |A) � Ef

A,V ( 5 |A). (3.18)

To that end, fix any < � |A| and any U 2 R such that (U� 5 )1A 2 (V� +S< (A•)). Then,
by the definition of S< (A•), there is some 6 2 V�, some M 2 M(A•) with M(⇤) = 0
and some 9 � <, such that

(U � 5 )1A = 6 + M(-1:9). (3.19)

Then we certainly have that U � 5 =A 6 + M(-1:9), which by the fact that 6 2 V� in
turn implies that U � 5 �A M(-1:9), and therefore that

U �M(-1:9) �A 5 . (3.20)

Next, let M0 be the real process defined by M0(A) B U �M(A) for all A 2 X⇤.
Then, for any A 2 X⇤, we have that ��M0(A) = �M(A) and so, since M 2 M(A•),
that ��M0(A) 2 AA. Hence, M0 is a supermartingale in M(A•). Moreover, by

11The sum K1 + K2 between two sets K1,K2 ✓ V is defined as usually, as the set { 5 +
6 : 5 2 K1, 5 2 K2 }.

103



Finitary upper expectations in discrete-time stochastic processes

Eq. (3.20)x, we have that M0(-1:9) �A 5 . Let us next show that M( Ã) � 0 for
all Ã v A.

Suppose ex absurdo that M( Ã) < 0 for some Ã v A. Since we know that
M(⇤) = 0, we infer that there must be some B 2X⇤ and F 2X such that BF v Ã for
which M(B) � 0 and M(BF) < 0. Then we have that �M(B) (F) < 0. This implies by
the coherence [D227] of AB that there is some í 2X \ {F} such that �M(B) (í) > 0,
and so, since M(B) � 0, that M(Bí) > 0. By Lemma 3.2.563, this implies that, for
all ✓ � |Bí |, there is some F |Bí |+1:✓ 2X✓�|Bí | such that M(BíF |Bí |+1:✓) > 0. Hence, since
9 � < � |A| � | Ã| � |BF | = |Bí |, there is some path l 2 �(Bí) such that M(l9) > 0.
Furthermore, recall that 6 2 V�, so we also have that M(l9) + 6(l) > 0. Due to
Eq. (3.19)x, this in turn implies that (U� 5 (l))1A (l) > 0. In particular, this implies
that l 2 �(A). Recalling that BF v Ã v A, this would imply that l 2 �(BF), yet this is
in contradiction with the earlier assumption that l 2 �(Bí) [and the fact that í < F].
Hence, we must indeed have that M( Ã) � 0 for all Ã v A.

The consideration above implies that M0(A) = U �M(A)  U. Combining this
with the earlier considerations that M0 2 M(A•), that M0(-1:9) �A 5 and that 9 �
< � |A|, we find by Eq. (3.11)63 that

Ef
A,V ( 5 |A) M0(A)  U.

Since this holds for all U 2 R such that (U � 5 )1A 2 (V� + S< (A•)), we infer by
Eq. (3.17)x that Eq. (3.18)x holds.

To prove the converse inequality—that EA ( 5 |A)  Ef
A,V ( 5 |A)—fix any M 2

M(A•) such that M(-1:9) �A 5 with 9 � |A|. Let M0 be the real process defined
by

M0(B) B
(
M(A) �M(B) for all B w A
M(A) �M(A) = 0 for all B A A.

Then note that �M0(B) = ��M(B) for all B w A, and �M0(B) = 0 otherwise. Hence,
since ��M(B) 2 AB for all B 2X⇤, and since 0 2 AB [because AB satisfies D127] for
all B 2X⇤, we have that M0 2 M(A•). Moreover, by the definition of M0, and since
9 � |A|, we also have that M0(-1:9) =A M(A) �M(-1:9). So, by our assumptions
about M, we infer that

M0(-1:9) =A M(A) �M(-1:9) A M(A) � 5 .

This means that M0(-1:9)1A  (M(A) � 5 )1A. Note that, since 9 � |A| and due
to the definition of M0, the gamble M0(-1:9) is zero outside �(A). Hence, the lat-
ter inequality can be simplified to M0(-1:9)  (M(A) � 5 )1A. So the variable
6 B (M(A)� 5 )1A�M0(-1:9) is non-negative, and also bounded because 5 is bounded
and M0(-1:9) is bounded [because X is finite]. As a consequence, we have that
6 2 V� and that

6 + M0(-1:9) = (M(A) � 5 )1A .
Since M0(⇤) = 0 [by the definition of M0], and since M0 2 M(A•), we have that,
with < = 9,

(M(A) � 5 )1A 2 (V� + S< (A•)).
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This in turn implies that

inf{U 2 R : (U � 5 )1A 2 (V� + S< (A•))} M(A). (3.21)

Hence, it follows from Eq. (3.17)103 that EA ( 5 |A)  M(A). Since this holds for any
M 2 M(A•) such that M(-1:9) �A 5 with 9 � |A|, we infer from Eq. (3.11)63 that
EA ( 5 |A)  Ef

A,V ( 5 |A) as desired.

3.B Proofs of the results in Section 3.3

Proof of Proposition 3.3.171. We show that (i)71) (iii)71) (ii)71) (i)71. So let
us start by proving that (iii)71 holds for any global probability charge P on A ⇥X⇤.
In order to do so we will associate a global (upper) expectation EP with P, and show
that this expectation EP satisfies WC182–WC482 on its domain. This will then imply
by Theorem 3.4.384 that EP is coherent according to Definition 3.782, and (iii)71
will then straightforwardly follow by restricting the domain of this expectation EP .
Furthermore, we want to point out that the proof of Theorem 3.4.384 is independent
of the current result [Proposition 3.3.171] or any other results in Section 3.369. This
guarantees that there can be no misunderstanding about whether we have adopted
any type of circular reasoning.

First note that, for any A 2 X⇤, since the functional P (·|A) : A ! R satisfies
GP170–GP370 and, by Proposition 3.3.271, GP571, it is a probability charge according
to [106, Definition 1.15]. Hence, according to [106, Definition 8.13], we can define
EP (·|A) : span (A) ! R by

EP ( 5 |A) B
<X
7=1

07P (�7 |A) for any 5 2 span (A) ,

with P
<

7=1 07I�7 any representation of 5 ; so < 2 N, 01, . . . , 0< 2 R and �1, . . . , �< 2 A
are such that 5 = P

<

7=1 07I�7 . Let us check that EP satisfies WC182–WC482.
To see that WC182 holds, start by observing that, since EP (·|A) for any A 2X⇤ is

defined according to [106, Definition 8.13], [106, Theorem 8.15] says that EP (·|A) is
a ‘linear prevision’ on span (A), and thus by [106, Corollary 4.14(i)] that EP (6 |A) 
sup 6 for all 6 2 span (A). Now fix any 5 2 span (A) and let P

<

7=1 07I�7 be any
representation of 5 . Then we have that

EP ( 5 |A) =
<X
7=1

07P (�7 |A) =
<X
7=1

07P (�7 \ �(A) |A) = EP

⇣ <X
7=1

07I�
7
\�(A)

��
A

⌘

= EP

⇣ <X
7=1

07I�
7
1A

��
A

⌘
= EP ( 51A |A),

where the second equality follows from Proposition 3.3.271[GP871]. In a similar
way, since 6 B 51A + sup( 5 |A)I�(A) 2 is in span (A) [because �(A) and �(A)2 are in
A ◆ hX⇤i], we also have that EP (6 |A) = EP (61A |A) = EP ( 51A |A). Now, since EP (6 |A) 
sup 6 by our considerations above, and since sup 6 = sup( 5 |A), we indeed find that
EP ( 5 |A) = EP ( 51A |A) = EP (6 |A)  sup( 5 |A). This establishes WC182.
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We leave it for the reader to check that EP also satisfies WC282–WC382. To prove
WC482, consider any 5 2 span (A) and A, B 2 X⇤ such that A v B. Let P

<

7=1 07I�7 be
any representation of 5 . Then we have that

( 5 � EP ( 5 |B))1B = (
<X
7=1

07I�
7
� EP ( 5 |B))1B =

<X
7=1

07I�
7
1B � EP ( 5 |B)1B

=
<X
7=1

07I�
7
\�(B) � EP ( 5 |B)I�(B) .

Since �(B) 2 A and �7 \ �(B) 2 A for all 7 2 {1, . . . , <} because A is by assumption
an algebra that includes hX⇤i, and thus all cylinder events �(X⇤), P

<

7=1 07I�7\�(B) �
EP ( 5 |B)I�(B) is a representation of the gamble ( 5 � EP ( 5 |B))1B [and thus also ( 5 �
EP ( 5 |B))1B 2 span (A)]. So by the definition of EP , we have that

EP
�
( 5 � EP ( 5 |B))1B |A

�
=

P
<

7=1 07P (�7 \ �(B) |A) � EP ( 5 |B)P (B |A)
=

P
<

7=1 07P (�7 |B)P (B |A) � EP ( 5 |B)P (B |A)
= EP ( 5 |B)P (B |A) � EP ( 5 |B)P (B |A) = 0,

where the second equality follows from GP470, and the third follows once more from
the definition of EP and the fact that P<

7=1 07I�7 is a representation of 5 .
So EP satisfies WC182–WC482, and is therefore coherent by Theorem 3.4.384. Fix

any < 2 N, any; 2 N0 such that;  <, any _1, . . . , _; 2 R�, any _;+1, . . . , _< 2 R<,
and any (�1, A1), . . . , (�<, A<) 2 A⇥X⇤. Then, for all _0 2 R� and all (�0, A0) 2 A⇥
X⇤, by Definition 3.782 and since _1, . . . , _;,�_;+1, . . . ,�_< are all non-negative,

sup
⇣
_01A0

�
I�0 � EP (I�0 |A0)

�
�

;X
7=1

_71A
7

�
I�

7
� EP (I�

7
|A7)

�

�
<X

7=;+1
(�_7)1A

7

�
I�

7
� EP (I�

7
|A7)

� ��� [<
7=0 �(A7)

⌘
� 0.

In particular, by letting _0 be equal to 0 and A0 be equal to one of the situations
A1, · · · , A<, we have that

sup
✓
�

;X
7=1

_71A
7

�
I�

7
� EP (I�

7
|A7)

�
+

<X
7=;+1

_71A
7

�
I�

7
� EP (I�

7
|A7)

� ��� [<
7=1 �(A7)

◆
� 0,

or equivalently,

0  sup
⇣
�P

;

7=1 _71A7
�
I�

7
� EP (I�

7
|A7)

�
+ P

<

7=;+1 _71A7
�
I�

7
� EP (I�

7
|A7)

� ��� [<
7=1 �(A7)

⌘

= sup
⇣ P

<

7=1 _71A7
�
1 � I�

7
� (1 � EP (I�

7
|A7))

�
+ P

<

7=;+1 _71A7
�
I�

7
� EP (I�

7
|A7)

� ��� [<
7=1 �(A7)

⌘

= sup
⇣P

<

7=1 _71A7

⇣
I�2

7

� (1 � P (�7 |A7))
⌘
+ P

<

7=;+1 _71A7
�
I�

7
� P (�7 |A7)

� ��� [<
7=1 �(A7)

⌘

= sup
⇣P

<

7=1 _71A7

⇣
I�2

7

� P (�2
7
|A7)

⌘
+ P

<

7=;+1 _71A7
�
I�

7
� P (�7 |A7)

� ��� [<
7=1 �(A7)

⌘
,

where the second equality follows from the definition of EP , and the last from GP270

and GP370. Since the above holds for any < 2 N, any sequence of reals _1, . . . , _< 2 R
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[we simply distinguished between the non-negative and the negative ones] and all
(�1, A1), . . . , (�<, A<) 2 A ⇥X⇤, and since A is an algebra and thus closed under
complementation, we indeed have that (iii)71 in Proposition 3.3.171 holds.

In order to prove that (iii)71 ) (ii)71, suppose that P : A ⇥X⇤ ! R satisfies
(iii)71. Then [62, Theorem 8] guarantees that we can extend P to the domain ¶(⌦)⇥
¶(⌦)� such that it remains to satisfy (iii)71. This extension P0 : ¶(⌦) ⇥ ¶(⌦)� ! R

satisfies CP170–CP470 according to [62, Theorem 7]. Hence, P is the restriction of a
conditional probability charge P0 on ¶(⌦) ⇥ ¶(⌦)� according to Definition 3.170.

Finally, the fact that (ii)71) (i)71 follows straightforwardly from the definitions
of a conditional probability charge [Definition 3.170] and a global probability charge
[Definition 3.270].

Proof of Proposition 3.3.473. [62, Lemma 14] establishes the existence of a
unique ‘conditional probability measure’ P on hX⇤i ⇥X⇤ satisfying Eq. (3.12)72 and
being of the appropriate form as described in Proposition 3.3.473. According to [62,
Definition 6], such a ‘conditional probability measure’ P is simply a ‘coherent con-
ditional probability’ [62, Definition 5] for which P (·|A) : hX⇤i ! R for any A 2 X⇤

is f-additive; see also Definition 5.1221 further below. As established by Proposi-
tion 3.3.171, a ‘coherent conditional probability’ on hX⇤i ⇥X⇤ is a global probability
charge and vice versa, and so the notion of a ‘conditional probability measure’ [62]
on hX⇤i ⇥X⇤ is equivalent to the notion a global probability charge P0 on hX⇤i ⇥X⇤

for which P0(·|A) : hX⇤i ! R for any A 2X⇤ is f-additive. Yet, for any global prob-
ability charge P0 on hX⇤i ⇥X⇤ and any A 2 X⇤, we have by [5, Theorem 2.3] that
the finite additivity of P0(·|A) on hX⇤i automatically implies its f-additivity, so our
notion of a (general) global probability charge on hX⇤i ⇥X⇤ is equivalent to the
notion of a ‘conditional probability measure’ [62] on hX⇤i ⇥X⇤. Our proposition
thus indeed follows from [62, Lemma 14].

3.C Proofs of the results in Section 3.4.1

Proof of Proposition 3.4.484. We first prove WC684. Consider any A 2 X⇤, and
note that E (0|A) = 0 because of WC382 and our convention that 0 (+1) = 0 (�1) =
0. Therefore, for all 5 2 I, it follows from WC282 that 0  E ( 5 |A) + E (� 5 |A), or
equivalently [since +1 � 1 = +1], that �E (� 5 |A)  E ( 5 |A). Applying WC182 to
both sides, we find that inf ( 5 |A) = � sup(� 5 |A)  �E (� 5 |A)  E ( 5 |A)  sup( 5 |A).
Property WC684 now follows readily from the definition of E.

To see that the remaining properties hold, note that WC684 implies that the map
E (and therefore also E) is real-valued on I ⇥X⇤. Properties WC584 and WC784–
WC984 then follow from WC182–WC382 using arguments well-known in the field
of coherent upper and lower expectations; see, for instance, the proof of [106,
Lemma 13.13], where they use lower expectations instead of upper expectations,
and where ‘gambles’ have a more general meaning because there they can also be
unbounded.
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Now suppose that I is, apart from a linear space of global gambles that contains
all constants, also such that 51A 2 I for all 5 2 I and A 2X⇤. Moreover suppose that
E additionally satisfies WC482. To prove the remaining properties, we will implicitly
make use of the fact that, due to WC684, E is real-valued. Consider any 5 2 I and
any two A, B 2 X⇤ such that A v B. That WC1085 holds, follows immediately from
conjugacy; indeed, we have that

E
�
( 5 � E ( 5 |B))1B |A

�
= �E

�
(� 5 + E ( 5 |B))1B |A

�
= �E

⇣ �
(� 5 ) � E ((� 5 ) |B)

�
1B |A

⌘
= 0,

where the last step follows from applying WC482 to the gamble (� 5 ).
To proveWC1185, note that, for any ` 2 R, we have that E (`1A |A) = E (`1A |A) = `

due to WC684. Hence, from WC482 we obtain in particular that

0 = E
⇣
( 5 � E ( 5 |A))1A |A

⌘ WC282 E ( 51A |A) + E
⇣
�E ( 5 |A)1A |A

⌘
= E ( 51A |A) � E ( 5 |A).

But on the other hand, WC482 also implies that

0 = E
⇣
( 5 � E ( 5 |A))1A |A

⌘ WC884� E ( 51A |A) + E
⇣
�E ( 5 |A)1A |A

⌘
= E ( 51A |A) � E ( 5 |A).

So we find that E ( 5 |A) = E ( 51A |A) as desired. The expression for the lower expecta-
tions then follows from conjugacy.

We continue by proving WC1285. Consider any 5 2 I and any F1:9 2 X⇤, and
note that WC482 implies that

E
⇣
( 5 � E ( 5 |F1:9+1))1F1:9+1 |F1:9

⌘
= 0 for all F9+1 2X.

As a consequence, we have that

0 =
P

F
9+12X E

⇣
( 5 � E ( 5 |F1:9+1))1F1:9+1 |F1:9

⌘

� E
⇣P

F
9+12X ( 5 � E ( 5 |F1:9+1))1F1:9+1 |F1:9

⌘

= E
⇣P

F
9+12X 51F1:9+1 �

P
F
9+12X E ( 5 |F1:9+1)1F1:9+1 |F1:9

⌘
,

where the inequality follows from WC282 and the fact thatX is finite. But note that
P

F
9+12X 51F1:9+1 = 51F1:9 and

P
F
9+12X E ( 5 |F1:9+1)1F1:9+1 = E ( 5 |F1:9-9+1)1F1:9 ,

so we get that

0 � E
⇣
51F1:9 � E ( 5 |F1:9-9+1)1F1:9 |F1:9

⌘
� E

�
51F1:9 |F1:9

�
� E

⇣
E ( 5 |F1:9-9+1)1F1:9 |F1:9

⌘
,

where the last inequality follows from WC884 and conjugacy. It now only remains to
apply WC1185 to each of the above terms, to find that indeed

E
⇣
E ( 5 |F1:9-9+1) |F1:9

⌘
� E ( 5 |F1:9) .

The inequality for the lower expectations then follows readily from conjugacy.
Next, WC1385 can be seen as a fairly straightforward consequence ofWC1285. In-

deed, the expression for the upper expectations holds, by our definition of E ( 5 |-1:9)
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and E
⇣
E ( 5 |-1:9+1) |-1:9

⌘
, if E ( 5 |F1:9)  E

⇣
E ( 5 |-1:9+1) |F1:9

⌘
for all F1:9 2 X9. But

this follows from applying WC1185 twice, and then using WC1285:

E
⇣
E ( 5 |-1:9+1) |F1:9

⌘
= E

⇣
E ( 5 |-1:9+1) 1F1:9 |F1:9

⌘
= E

⇣
E ( 5 |F1:9-9+1) 1F1:9 |F1:9

⌘

= E
⇣
E ( 5 |F1:9-9+1) |F1:9

⌘
� E ( 5 |F1:9) .

The inequality for the lower expectations then follows once more from conjugacy.
To see that WC1485 holds, suppose that E ( 5 |B) � 0, and observe that

E
�
( 5 � E ( 5 |B))1B |A

� WC884 E ( 51B |A) + E
�
�E ( 5 |B))1B |A

�
= E ( 51B |A) � E

�
E ( 5 |B)1B |A

�
WC382= E ( 51B |A) � E ( 5 |B)E (1B |A)  E ( 51B |A) ,

where we are allowed to use WC382 in the third step because E ( 5 |B) � 0, and where
the last step follows from the fact that E ( 5 |B) � 0 and, because of 1B � 0 and WC684,
that E (1B |A) � 0. Since the left-hand side of the expression above is equal to 0 due
to WC1085, we find that 0  E ( 51B |A) as desired.

Finally, in order to prove WC1585, assume that E ( 51B |A) > 0 and observe that

E
�
( 5 � E ( 5 |B))1B |A

�
� E ( 51B |A) + E

�
�E ( 5 |B))1B |A

�
= E ( 51B |A) � E

�
E ( 5 |B)1B |A

�
> �E

�
E ( 5 |B)1B |A

�
,

where the first step follows fromWC282 and conjugacy, and where the last inequality
follows from the fact that E ( 51B |A) > 0. The left-hand side of this expression is again
equal to 0 [due to WC1085], and so we have that

0 < E
�
E ( 5 |B)1B |A

� WC684 sup(E ( 5 |B)1B |A)  max{0, E ( 5 |B)}.

As a result, we have that E ( 5 |B) > 0.
The last statement, the fact that all the properties WC584–WC1585 hold for a

global upper expectation E that satisfies WC182–WC482 and that is defined on V ⇥
X⇤ or F ⇥X⇤, is trivial because it can easily be checked that both V and F are
linear spaces of global gambles containing all the constants and are invariant under
multiplication with indicators of situations.

Lemma 3.C.1. Consider any global upper expectation E on a domainI⇥X⇤ ✓
V ⇥X⇤ such that I is a linear space of global gambles. Then E is coherent if
there is a coherent set of acceptable global gambles D such that

E ( 5 |A) = inf{U 2 R : (U � 5 )1A 2 D} for all ( 5 , A) 2 I ⇥X⇤.

Proof. This result follows from [114, Proposition 1] as a special case. Indeed, sup-
pose that there is a coherent set of acceptable global gambles D such that

E ( 5 |A) = inf{U 2 R : (U � 5 )1A 2 D} for all ( 5 , A) 2 I ⇥X⇤
. (3.22)
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Then since D satisfies D127 and D227 by definition, it also satisfies properties C1’ and
C2’ in [114, Section 3]; care to note that the conditional events ⇢ in [114] are in our
case subsets of the sample space ⌦, and the ‘random quantities’ in [114] here take
the form of global gambles 5 on ⌦. Then if we let the conditional events ⇢7 in [114,
Proposition 1] be of the form �(A) with A 2 X⇤, then this result says that, if IA is a
linear subspace of V for all A 2X⇤, the global upper expectation E ⇤ defined, for all
A 2X⇤ and all 5 2 IA, by

E ⇤ ( 5 |A) B inf{U 2 R : (U � 5 )1A 2 D},

is coherent [Definition 3.782]. In particular, this is true if we let IA for all A 2 X⇤

be equal to the fixed linear space I, and then E ⇤ is equal to E due to Eq. (3.22)x.
Hence, since E ⇤ is coherent, E is coherent too.

Proof of Theorem 3.4.384. Necessity of WC182–WC482 can be inferred from [114,
Section 3.1]. In particular, note that any coherent global upper expectation E [Def-
inition 3.782] on I ⇥X⇤, is a (specific) ‘upper conditional prevision’ according to
[114, Definition 1], where the linear spaces X⇢ in [114, Definition 1] are here all
equal to the fixed linear space I, and where the real-valuedness of E is guaranteed
by Corollary 3.4.283.

To prove su�ciency, suppose that E satisfies WC182–WC482 and let

D B
⇢

<X
7=1

671A
7
+ ⌘ : < 2 N0, 67 2 I, A7 2X⇤

, E (67 |A7) > 0, ⌘ 2 L� (⌦)
�
.

We will show that D is coherent and that its corresponding infimum selling prices
operator ED , defined by

ED ( 5 |A) B inf{U 2 R : (U � 5 )1A 2 D} for all ( 5 , A) 2 V ⇥X⇤
, (3.23)

coincides with E on I ⇥X⇤. Lemma 3.C.1x will then imply that E is coherent.
Let us first check that D is coherent. It is clear from the definition of D that D127

and D327 are satisfied. To see that D427 is satisfied, consider any _ > 0 and any 5 2
D, and let us check that _ 5 2 D. Since 5 2 D, we can write that 5 = P

<

7=1 671A7 +⌘ for
some < 2 N0, 61, . . . , 6< 2 I, A1, . . . , A< 2X⇤, with E (67 |A7) > 0 for all 7 2 {1, . . . , <},
and some ⌘ 2 L� (⌦). Multiplying with _ > 0 gives us _ 5 = P

<

7=1 _671A7 + _⌘. For all
7 2 {1, . . . , <}, we have that E (67 |A7) > 0, which by WC382 implies that

0 < _E (67 |A7) = E (_67 |A7),

and where E (_67 |A7) is well-defined because 67 2 I and I is a linear space—and
thus _67 2 I. Since moreover ⌘ 2 L� (⌦), and therefore _⌘ 2 L� (⌦), it follows
that, indeed, by the definition of D,

_ 5 =
<X
7=1

_671A
7
+ _⌘ 2 D.

Finally, to prove that D227 holds, assume ex absurdo that there is a gamble 5 2 D
such that 5 2 L� (⌦). The fact that 5 2 D again implies that 5 = P

<

7=1 671A7 + ⌘ for
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some < 2 N0, 61, . . . , 6< 2 I, A1, . . . , A< 2X⇤, with E (67 |A7) > 0 for all 7 2 {1, . . . , <},
and some ⌘ 2 L� (⌦). Since 5 2 L� (⌦) and ⌘ 2 L� (⌦), we know that < � 1.
Note that the gamble P

<

7=1 671A7 = 5 � ⌘ is then an element of I because of our
assumptions about I [linear space and closed under multiplying with indicators of
situations] and because 67 2 I for all 7 2 {1, . . . , <}. Moreover, since 5 2 L� (⌦) and
since ⌘ � 0, we have that 5 � ⌘  0 and 5 � ⌘ < 0. Then, for all 1  7  <, we have
by WC684 that E ( 5 � ⌘|A7)  0. But on the other hand, consider any 7 2 {1, . . . , <}
such that A7 has minimal length among the situations A1, . . . , A< [it is clear that there
is such an 7]. Then there are no 8 2 {1, . . . , <} such that A8 @ A7, and therefore

E ( 5 � ⌘|A7) = E (P<

8=1 681A8 |A7)
WC282�

<X
8=1

E (681A
8
|A7)

=
X
1 8<
A
8
wA

7

E (681A
8
|A7) +

X
1 8<
A
8
@A

7

E (681A
8
|A7) +

X
1 8<
A
8
k A

7

E (681A
8
|A7)

=
X
1 8<
A
8
wA

7

E (681A
8
|A7) +

X
1 8<
A
8
k A

7

E (681A
8
|A7).

By WC1185 and WC684, we have that E (681A
8
|A7) = E (681A

8
1A

7
|A7) = E (0|A7) = 0 for any

A8 k A7, and so the above implies that

E ( 5 � ⌘|A7) =
X
1 8<
A
8
wA

7

E (681A
8
|A7) =

X
1 8<
A
8
=A

7

E (681A
8
|A8) +

X
1 8<
A
8
AA

7

E (681A
8
|A7)

Note that the first sum in the expression above is strictly larger than zero because,
by assumption, we have that E (68 |A8) > 0 for all 1  8  <, and so by WC1185 that
E (681A

8
|A8) > 0 for all 1  8  <. The second sum is larger or equal than zero, because

the fact that E (68 |A8) > 0 for all 1  8  < implies by WC1485 that E (681A
8
|A7) � 0 for

all 1  8  < such that A8 A A7. Hence, both sums taken together, we should have
that E ( 5 � ⌘|A7) > 0. Yet, this is in contradiction with our earlier conclusion. As a
result, the set of acceptable gambles D satisfies D227, and together with D127 and
D327–D427, we obtain that D is coherent. It now remains to prove that E coincides
with the upper expectation ED corresponding to D according to Eq. (3.23) .

As a first step, we prove that for any 5 2 V and any B 2X⇤,

51B 2 D) 51B 2 D|B , (3.24)

with

D|B B
⇢

<X
7=1

671BA
7
+ ⌘ : < 2 N0, 67 2 I, A7 2X⇤

, E (67 |BA7) > 0, ⌘ 2 L� (⌦)
�
.

So fix any 5 2 V and any B 2X⇤ such that 51B 2 D = D|⇤. Let 9 2 N0 and F1:9 2X9

be such that F1:9 = B. If 9 = 0, then the desired implication is trivially true because
in that case 51B 2 D|⇤ = D|B. So consider the case that 9 � 1 and let ✓ < 9. We show
that

51B 2 D|F1:✓ ) 51B 2 D|F1:✓+1 . (3.25)
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Suppose that 51B 2 D|F1:✓ and therefore that, for some < 2 N0, 61, . . . , 6< 2 I,
A1, . . . , A< 2X⇤, with E (67 |F1:✓A7) > 0 for all 7 2 {1, . . . , <}, and some ⌘ 2 L� (⌦),

51B =
<X
7=1

671F1:✓ A7 + ⌘.

The situations A1, . . . , A< 2 X⇤ can be categorised in three di�erent groups [where
the order of the situations within these individual groups is of no importance]; let
C1, . . . , C; 2X⇤ be those situations in A1, . . . , A< that start with F✓+1; let D1, . . . , D> 2
X⇤ be those situations in A1, . . . , A< that start with a di�erent state than F✓+1; and let
E1, . . . ,E<�;�> 2X⇤ all be equal to the empty situation ⇤. Let Z1, . . . , Z;, [1, . . . , [>
and \1, . . . , \<�;�> be the corresponding categorisation of the gambles 61, . . . , 6<; so
we have that E (Z7 |F1:✓C7) > 0, E ([7 |F1:✓D7) > 0 and E (\7 |F1:✓) = E (\7 |F1:✓E7) > 0.
Then we get that

51B =
;X
7=1

Z71F1:✓+1C0
7

+
>X
7=1

[71F1:✓ D7 +
<�;�>X
7=1

\71F1:✓ + ⌘, (3.26)

where, for all 7 2 {1, . . . ,;}, the situation C
0
7
is such that C7 = F✓+1C

0
7
. Note that

F1:✓+1 k F1:✓D7 for any D7, and therefore that 1F1:✓+11F1:✓ D7 = 0. Since moreover F1:✓+1 v B,
and therefore that 1F1:✓+11B = 1B, multiplying Eq. (3.26) with 1F1:✓+1 gives us

51B =
;X
7=1

Z71F1:✓+1C0
7

+
<�;�>X
7=1

\71F1:✓+1 + ⌘1F1:✓+1 . (3.27)

By assumption, we have that E (Z7 |F1:✓+1C07) = E (Z7 |F1:✓C7) > 0 for all 7 2 {1, . . . ,;}.
Since also ⌘ � 0, and therefore ⌘1F1:✓+1 � 0, it follows from the expression above
and the definition of D|F1:✓+1 that then 51B 2 D|F1:✓+1 if < � ; � > = 0, or, in case that
< � ; � > � 1, if

E
�P

<�;�>
7=1 \7 |F1:✓+1

�
> 0. (3.28)

To see that these conditions are met—that is, that <�;� > � 1 implies Eq. (3.28)—
we substract Eq. (3.27) from Eq. (3.26); this gives us

0 =
>X
7=1

[71F1:✓ D7 +
<�;�>X
7=1

\7 (1F1:✓ � 1F1:✓+1 ) + ⌘(1 � 1F1:✓+1 ),

or, equivalently, that
<�;�>X
7=1

\71F1:✓+1 =
>X
7=1

[71F1:✓ D7 +
<�;�>X
7=1

\71F1:✓ + ⌘(1 � 1F1:✓+1 ).

Since each \7 and each [7 is by assumption an element of I, it follows from the
assumptions about I that also each \71F1:✓+1 , each [71F1:✓ D7 and each \71F1:✓ in the
expression above is an element of I. Since I is moreover a linear space, it therefore
follows from the expression above that ⌘(1 � 1F1:✓+1 ) 2 I. Hence, we can take the
lower expectation of both sides conditional on F1:✓ and immediately apply WC282,
to find that

E
�P

<�;�>
7=1 \71F1:✓+1 |F1:✓

�
�

>X
7=1

E
�
[71F1:✓ D7 |F1:✓

�
+

<�;�>X
7=1

E
�
\71F1:✓ |F1:✓

�
+ E

�
⌘(1 � 1F1:✓+1 ) |F1:✓

�
�

>X
7=1

E
�
[71F1:✓ D7 |F1:✓

�
+

<�;�>X
7=1

E (\7 |F1:✓) , (3.29)
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where the second inequality follows from WC1185 and the fact that
E

�
⌘(1 � 1F1:✓+1 ) |F1:✓

�
� 0, which is itself a result of WC684 and the fact that

⌘(1 � 1F1:✓+1 ) � 0. Recall that, for all 7 2 {1, . . . , >}, we have that E ([7 |F1:✓D7) > 0,
and therefore by WC1485 that E

�
[71F1:✓ D7 |F1:✓

�
� 0. Furthermore, we also have that

E (\7 |F1:✓) > 0 for all 7 2 {1, . . . , < �; � >}. Hence, if < �; � > � 1—implying that
{1, . . . , < � ; � >} is non-empty—it follows from Eq. (3.29) that

E
�P

<�;�>
7=1 \71F1:✓+1 |F1:✓

�
> 0,

and therefore, because of WC1585, that Eq. (3.28) indeed holds. As a result, 51B 2
D|F1:✓+1 , which in turn establishes Eq. (3.25)111. But recall that ✓ < 9 was arbitrary,
so we can start from the fact 51B 2 D = D|⇤ and apply Eq. (3.25)111 iteratively to
eventually find that 51B 2 D|F1:9 = D|B. Hence, Eq. (3.24)111 holds.

Next, we use Eq. (3.24)111 to show that ED ( 5 |B) = E ( 5 |B) for all 5 2 I and all
B 2X⇤, where ED is defined by D according to Eq. (3.23)110. That ED ( 5 |B)  E ( 5 |B)
for all 5 2 I and all B 2X⇤, follows from the fact that, for all real U > E ( 5 |B),

E (U � 5 |B) WC784= U + E (� 5 |B) = U � E ( 5 |B) > 0,

where the leftmost term is well-defined because I is a linear space that includes the
constants. Indeed, this implies by the definition of D that (U � 5 )1B 2 D for all real
U > E ( 5 |B), and so by Eq. (3.23)110 that

ED ( 5 |B) = inf{U 2 R : (U � 5 )1B 2 D}  E ( 5 |B).

It remains to prove that ED ( 5 |B) � E ( 5 |B).
Fix any 5 2 I, any B 2 X⇤, and any U 2 R such that (U � 5 )1B 2 D. Then

Eq. (3.24)111 implies that also (U� 5 )1B 2 D|B. By the definition of D|B, we then have
that, for some < 2 N0, 61, . . . , 6< 2 I, A1, . . . , A< 2 X⇤, with E (67 |BA7) > 0 for all
7 2 {1, . . . , <}, and some ⌘ 2 L� (⌦),

(U � 5 )1B =
<X
7=1

671BA
7
+ ⌘. (3.30)

Hence,

E ((U � 5 )1B |B) = E
�P

<

7=1 671BA7 + ⌘|B
� WC282�

<X
7=1

E
�
671BA

7
|B
�
+ E (⌘|B) � 0, (3.31)

where one may again check that each of the considered lower expectations is well-
defined because of Eq. (3.30) and the assumptions about I, and where the last
inequality follows, on the one hand, from the fact that, for all 7 2 {1, . . . , <},
E (67 |BA7) > 0 and therefore by WC1485 that E

�
671BA

7
|B
�
� 0, and on the other hand,

from the fact that ⌘ � 0 and therefore by WC684 that E (⌘|B) � 0. The left-hand side
of Eq. (3.31) can also be seen to be equal to

E ((U � 5 )1B |B)
WC1185= E (U � 5 |B) WC784= U � E ( 5 |B) .

Hence, by Eq. (3.31), we have that U � E ( 5 |B). But this holds for any U 2 R such
that (U � 5 )1B 2 D, so

E ( 5 |B)  inf{U 2 R : (U � 5 )1B 2 D} = ED ( 5 |B),
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which is the inequality that we were after. So E coincides with the upper expectation
ED corresponding to the coherent set of acceptable gambles D, which implies by
Lemma 3.C.1109 that E is coherent. This establishes the su�ciency of WC182–WC482,
and therefore concludes the proof.

3.D Proof of Theorem 3.4.6

The proof of Theorem 3.4.688 is divided into two parts: showing that
Axioms NE188–NE488 (or NE188–NE388) are su�cient for a global upper
expectation to be the natural extension EQ (or Efin

Q ), and showing that there
always is a global upper expectation satisfying Axioms NE188–NE488. We
start with the latter; more specifically, we show that Ef

A,V—or equivalently,
EA—satisfies NE188–NE488 for any acceptable gambles tree A•.

3.D.1 Axioms NE1–NE4 are consistent

The following two results establish respectively NE188 and NE488
for Ef

A,V.

Lemma 3.D.1. For any acceptable gambles tree A• and upper expectations tree
Q• that agree according to Eq. (3.1)50, we have that

Ef
A,V ( 5 (-9+1) |F1:9) = Q

F1:9 ( 5 ) for all 5 2 L(X) and all F1:9 2X⇤.

Proof. Since A• and Q• agree, we have that Q• = Q•,A and so we will make no
particular distinction in notation between Q• and Q•,A in the following reasoning.

Consider any 5 2 L(X) and any F1:9 2 X⇤. Fix any n > 0 and observe that
by Eq. (3.1)50 there is an U 2 R such that U  Q

F1:9 ( 5 ) + n and U � 5 2 AF1:9 .
Let M be the real process that is equal to the constant U for all situations A such
that A b F1:9, and that is equal to 5 (F9+1) for all situations A such that A w F1:9+1 for
some F9+1 2 X. Then for all A < F1:9, we have that �M(A) = 0 and therefore, since
0 2 AA due to coherence [D127], that ��M(A) 2 AA. For the situation F1:9 itself,
we have that �M(F1:9) = 5 � U and thus, because of how we have chosen U, that
��M(F1:9) 2 AF1:9 . So we obtain that M 2 M(A•). Since by the definition of M we
clearly also have that M(-1:9+1) �F1:9 5 (-9+1), the definition of Ef

A,V [Eq. (3.11)63]
implies that

Ef
A,V ( 5 (-9+1) |F1:9) M(F1:9) = U  Q

F1:9 ( 5 ) + n.

This holds for any n > 0, so we find that Ef
A,V ( 5 (-9+1) |F1:9)  Q

F1:9 ( 5 ).
Conversely, consider any M 2 M(A•) such that M(-1:✓) �F1:9 5 (-9+1) for some

✓ � 9. First consider the case that ✓ = 9. Then we have that M(F1:9) �F1:9 5 (-9+1),
and thus that M(F1:9) � sup 5 (-9+1) = sup 5 . By the coherence [C132] of QF1:9 , this
implies that

M(F1:9) � Q
F1:9 ( 5 ).
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We now proceed to prove the same for the case that M(-1:✓) �F1:9 5 (-9+1) with
✓ > 9. Then, for any F9+1 2 X, we also have that M(F1:9+1-9+2:✓) �F1:9+1 5 (F9+1).
By Lemma 3.2.563, we have that M(F1:9+1) � M(F1:✓) for some F9+2:✓ 2 X✓�9�1, so
the previous implies that M(F1:9+1) � 5 (F9+1). Since this holds for any F9+1 2X, we
obtain that M(F1:9·) � 5 and thus that �M(F1:9) � 5 �M(F1:9), or equivalently that
��M(F1:9)  M(F1:9) � 5 . Since ��M(F1:9) 2 AF1:9 by the fact that M 2 M(A•),
the monotonicity property D528 implies that also M(F1:9) � 5 2 AF1:9 . But then it
follows from Eq. (3.1)50 that

M(F1:9) � Q
F1:9 ( 5 ).

Hence, we have that M(F1:9) � Q
F1:9 ( 5 ) for any M 2 M(A•) such that M(-1:✓) �F1:9

5 (-9+1) for some ✓ � 9, which implies by Eq. (3.11)63 that

Q
F1:9 ( 5 )  Ef

A,V ( 5 (-9+1) |F1:9).

Together with the previously obtained inequality that Q
F1:9 ( 5 ) � Ef

A,V ( 5 (-9+1) |F1:9),
we obtain that Q

F1:9 ( 5 ) = Ef
A,V ( 5 (-9+1) |F1:9).

Proposition 3.D.2. For any upper expectations tree A•, any 5 2 V and A 2
X⇤, we have that

Ef
A,V ( 5 |A) = inf

n
Ef

A,V (6 |A) : 6 2 F and 6 �A 5
o
.

Proof. We first prove that Ef
A,V ( 5 |A) � inf

�
Ef

A,V (6 |A) : 6 2 F and 6 �A 5
 
. Consider

any real U > Ef
A,V ( 5 |A). Then there is a supermartingale M 2 M(A•) such that

M(A)  U andM(-1:9) �A 5 for some 9 � |A|. Let 6 BM(-1:9). Thenwe clearly have
that 6 2 F and that 6 �A 5 . Since 6 = M(-1:9), we surely have that M(-1:9) �A 6,
which implies that Ef

A,V (6 |A) M(A)  U. Since we know that 6 2 F and that 6 �A 5 ,
we obtain that

inf{Ef
A,V (6 |A) : 6 2 F and 6 �A 5 }  U.

Since this holds for any real U > Ef
A,V ( 5 |A), we conclude that

inf
n
Ef

A,V (6 |A) : 6 2 F and 6 �A 5
o
 Ef

A,V ( 5 |A).

The remaining inequality follows trivially from the fact that Ef
A,V is monotone

[WC584], which can easily be inferred from the definition of Ef
A,V [Eq. (3.11)63].

Indeed, for any 6 2 F such that 6 �A 5 , we have byWC584 that E
f
A,V (6 |A) � Ef

A,V ( 5 |A),
and so also that

inf
n
Ef

A,V (6 |A) : 6 2 F and 6 �A 5
o
� Ef

A,V ( 5 |A).

The following lemma gathers the two lemmas above, and combines them
with Proposition 3.2.1067 to show that Ef

A,V satisfies NE188–NE488.

Lemma 3.D.3. For any acceptable gambles tree A• and any upper expectations
tree Q• that agree according to Eq. (3.1)50, we have that E

f
A,V satisfies NE188–

NE488.

115



Finitary upper expectations in discrete-time stochastic processes

Proof. Lemma 3.D.1114, Proposition 3.2.1067 and Proposition 3.D.2x guarantee
that Ef

A,V satisfies respectively NE188, NE388 and NE488. That Ef
A,V moreover sat-

isfies NE288 follows straightforwardly from its definition [Eq. (3.11)63].

3.D.2 Proving the existence and uniqueness of EQ and Efin
Q using Ax-

ioms NE1–NE4

We next aim to show that, apart from being internally consistent, Ax-
ioms NE188–NE488 (or NE188–NE388) also su�ce for a global upper expec-
tation to be equal to EQ (or Efin

Q ). The existence—and uniqueness—of EQ
and Efin

Q will then follow automatically. We start with a rather basic but tech-
nical lemma. It uses, for any situation F1:9 2X⇤ and any (9+1)-measurable
gamble 6(-1:9+1), the notation 6(F1:9·) to denote the local gamble onX that
assumes the value 6(F1:9+1) in F9+1 2X.

Lemma 3.D.4. Consider any upper expectations tree Q• and any global upper
expectation E on F ⇥X⇤ that extends Epre

Q and that satisfiesWC1185 on F ⇥X⇤.
Then, for any F1:9 2X⇤ and any (9 + 1)-measurable gamble 5 ,

E ( 5 |F1:9) = Q
F1:9 ( 5 (F1:9·)).

Proof. We have that 5 (F1:9-9+1)1F1:9 = 51F1:9 and hence, because E satisfies WC1185

and coincides with E
pre
Q ,

E ( 5 |F1:9) = E ( 51F1:9 |F1:9) = E ( 5 (F1:9-9+1)1F1:9 |F1:9) = E ( 5 (F1:9-9+1) |F1:9)
= E

pre
Q ( 5 (F1:9-9+1) |F1:9)

= Q
F1:9 ( 5 (F1:9·)),

where the last equality follows from Eq. (3.13)85.

The following lemma shows that Axioms NE188–NE388 fix the values of
a global upper expectation completely on the domain F ⇥X⇤. For any up-
per expectations tree Q•, any 9 2 N0 and any (9 + 1)-measurable gamble
6(-1:9+1), we write Q

-1:9 (6(-1:9+1)) to denote the 9-measurable gamble de-
fined by

Q
-1:9 (6(-1:9+1)) (F1:9) B Q

F1:9 (6(F1:9·)) for all F1:9 2X9

.

Note that Q
-1:9 (6(-1:9+1)) is indeed a (bounded) gamble, because the local

upper expectation Q
F1:9 (6(F1:9·)) for all F1:9 2 X9 is real due to coherence

[C533].

Lemma 3.D.5. Consider any upper expectations tree Q• and any global upper
expectation E on F ⇥X⇤ that satisfies NE188–NE388. Then, for any ( 5 , F1:9) 2
F ⇥X⇤,

E ( 5 |F1:9) = Q
-1:9

�
Q
-1:9+1

�
· · · Q

-1:✓�1

�
Q
-1:✓ ( 5 )

�
· · ·

� �
(F1:9),
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with ✓ � 9 any natural number such that 5 is (✓ + 1)-measurable.

Proof. First note that Lemma 3.D.4 can be applied to E here because E extends
E

pre
Q due to NE188 and the definition of E

pre
Q [Eq. (3.13)85], and because E satisfies

WC1185 on F ⇥X⇤ due to NE288. As a result, the variable E ( 5 |-1:✓) is equal to
Q
-1:✓ ( 5 ) due to Lemma 3.D.4 and because 5 is (✓ + 1)-measurable. Since Q

-1:✓ ( 5 )
is real-valued due to the coherence [C533] of QF1:✓ for all F1:✓ 2 X✓, we obtain that
E ( 5 |-1:✓) = Q

-1:✓ ( 5 ) is real-valued, and more specifically an ✓-measurable gamble.
Next, consider the term E ( 5 |-1:✓�1). Since E ( 5 |-1:✓) is real-valued, NE388 says

that
E ( 5 |-1:✓�1) = E (E ( 5 |-1:✓) |-1:✓�1) = E (Q

-1:✓ ( 5 ) |-1:✓�1).
Then, since Q

-1:✓ ( 5 ) is an ✓-measurable gamble, Lemma 3.D.4 implies that

E ( 5 |-1:✓�1) = E (Q
-1:✓ ( 5 ) |-1:✓�1) = Q

-1:✓�1

�
Q
-1:✓ ( 5 )

�
.

Again, since Q
-1:✓�1 (·) is real-valued due to the coherence of the local upper expec-

tations Q
F1:✓�1 , we obtain that E ( 5 |-1:✓�1) is real-valued, and more specifically an

(✓ � 1)-measurable gamble.
We can then apply the same reasoning to the next term E ( 5 |-1:✓�2). Since

E ( 5 |-1:✓�1) is real-valued, NE388 and the expression for E ( 5 |-1:✓�1) above imply that

E ( 5 |-1:✓�2) = E (E ( 5 |-1:✓�1) |-1:✓�2) = E
�
Q
-1:✓�1

�
Q
-1:✓ ( 5 )

�
|-1:✓�2

�
.

The fact that Q
-1:✓�1

�
Q
-1:✓ ( 5 )

�
is ✓ � 1-measurable then implies by Lemma 3.D.4 

that
E ( 5 |-1:✓�2) = Q

-1:✓�2

�
Q
-1:✓�1

�
Q
-1:✓ ( 5 )

� �
.

Now, we can continue to repeat the above reasoning, and it is clear that this will
eventually yield

E ( 5 |-1:9) = Q
-1:9

�
Q
-1:9+1

�
· · · Q

-1:✓�1

�
Q
-1:✓ ( 5 )

�
· · ·

� �
,

and therefore, in particular, that

E ( 5 |F1:9) = Q
-1:9

�
Q
-1:9+1

�
· · · Q

-1:✓�1

�
Q
-1:✓ ( 5 )

�
· · ·

� �
(F1:9).

Finally, before proving Theorem 3.4.688, we also need to establish that
Ef

A,V satisfies WC182–WC482 for any acceptable gambles tree A•.

Lemma 3.D.6. For any acceptable gambles tree A•, the upper expectation E
f
A,V

satisfies WC182–WC482.

Proof. Recall that EA is deduced from the set of acceptable global gambles E(DA )
according to Eq. (3.10)60, and that the set E(DA ) is coherent by Proposition 3.2.358

[and the definition of the natural extension of a set of acceptable gambles; see
Eq. (3.7)57 and Definition 2.738]. Hence, by Lemma 3.C.1109, we have that EA is
coherent, and thus by Theorem 3.4.384, that EA satisfies WC182–WC482. The de-
sired statement now follows from Theorem 3.2.765.
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Proof of Theorem 3.4.688. We first show that Efin
Q exists, and that it is the unique

global upper expectation on F⇥X⇤ that satisfies NE188–NE388. To this end, it su�ces
to prove that, for any global upper expectation E ⇤ : F ⇥X⇤ ! R that satisfies NE188–
NE388, E ⇤ is equal to Efin

Q . Indeed, the existence of such an upper expectation E ⇤,
and therefore the existence of Efin

Q , then follows from the fact that the restriction of
Ef

A,V to F ⇥X⇤, with A• any acceptable gambles tree that agrees with Q• [such a tree
A• exists; recall the discussion surrounding Eq. (3.2)51], satisfies NE188–NE388 due
to Lemma 3.D.3115. The uniqueness of E ⇤ then moreover follows from the equality
with Efin

Q , and the fact that Efin
Q is unique as a result of its definition.

So fix any global upper expectation E ⇤ : F ⇥X⇤ ! R that satisfies NE188–NE388.
In order to show that E ⇤ is equal to Efin

Q , we need to prove three properties of E ⇤;
that E ⇤ extends E

pre
Q , that E ⇤ satisfies WC182–WC482, and that E ⇤ is larger or equal

than any other global upper expectation on F ⇥X⇤ extending E
pre
Q and satisfying

WC182–WC482. The first property follows from the fact that E ⇤ satisfies NE188. The
second property, that E ⇤ satisfies WC182–WC482, can be deduced as follows. Since
E ⇤ satisfies NE188–NE388 by definition, and since, for any acceptable gambles tree
A• that agrees with Q• [again, there is at least one such a tree A•], E

f
A,V satisfies

NE188–NE388 by Lemma 3.D.3115, it follows from the expression in Lemma 3.D.5116

that E ⇤ and Ef
A,V coincide on the domain F ⇥X⇤. Lemma 3.D.6x says that Ef

A,V
satisfies WC182–WC482 on its entire domain, and thus also on the restricted domain
F ⇥X⇤, which implies that E ⇤ also satisfies WC182–WC482.

So it only remains to prove that E ⇤ is larger or equal than any other global upper
expectation on F ⇥X⇤ extending E

pre
Q and satisfying WC182–WC482. Fix any global

upper expectation E on F ⇥X⇤ extending E
pre
Q and satisfying WC182–WC482, and

fix any ( 5 , F1:9) 2 F ⇥X⇤. Let ✓ � 9 be any natural number such that 5 is (✓ + 1)-
measurable [there surely exists such an ✓ because 5 is finitary]. Since E satisfies
WC182–WC482 by assumption, it follows from Proposition 3.4.484 that E satisfies
WC1385 and WC584, and so we have that

E ( 5 |-1:9)  E (E ( 5 |-1:9+1) |-1:9)
 E (E (E ( 5 |-1:9+2) |-1:9+1) |-1:9)
 E (E (· · · E ( 5 |-1:✓) · · · |-1:9+1) |-1:9). (3.32)

We can then replace each of the global upper expectations on the right-hand side by
local upper expectations. Indeed, E extends E

pre
Q by assumption and moreover sat-

isfies WC1185 due to Proposition 3.4.484 and the fact that it satisfies WC182–WC482

by assumption. So by Lemma 3.D.4116 we infer that, for any F1:7 2 X⇤ and any
(7 + 1)-measurable gamble 6,

E (6 |H1:7) = Q
H1:7 (6(H1:7·)).

Equivalently, we can write that, for any 7 2 N0 and any (7 + 1)-measurable gamble 6,

E (6 |-1:7) = Q
-1:7 (6).
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Applying this equation to each of the (global) upper expectations in the expression
on the right-hand side of Eq. (3.32) ,12 we obtain that

E ( 5 |-1:9)  Q
-1:9

�
Q
-1:9+1

�
· · · Q

-1:✓�1

�
Q
-1:✓ ( 5 )

�
· · ·

� �
. (3.33)

On the other hand, since E ⇤ satisfies NE188–NE388, we have by Lemma 3.D.5116 that

E ⇤ ( 5 |F1:9) = Q
-1:9

�
Q
-1:9+1

�
· · · Q

-1:✓�1

�
Q
-1:✓ ( 5 )

�
· · ·

� �
(F1:9).

Combined with Eq. (3.33), this implies that E ( 5 |F1:9)  E ⇤ ( 5 |F1:9). Since this is
the case for any ( 5 , F1:9) 2 F ⇥X⇤ and any global upper expectation E on F ⇥X⇤

that extends E
pre
Q and satisfies WC182–WC482, we indeed have that E ⇤ is the natural

extension Efin
Q of E

pre
Q to F ⇥X⇤ under WC182–WC482.

The second part of this proof is now concerned with showing that EQ exists, and
that it is the unique global upper expectation on V ⇥X⇤ that satisfies NE188–NE488.
In the same way as before, it su�ces to prove that, for any global upper expectation
E ⇤ : V ⇥X⇤ ! R that satisfies NE188–NE488, E ⇤ is equal to EQ . Indeed, the existence
of E ⇤, and in that case the existence of EQ , then follows from the fact that Ef

A,V, with
A• any acceptable gambles tree that agrees with Q• [where, again, there is at least
one such a tree A•], satisfies NE188–NE488 due to Lemma 3.D.3115. The uniqueness
of E ⇤ then again follows from the equality with EQ , and the fact that EQ is unique
due to its definition.

So fix any global upper expectation E ⇤ : V ⇥X⇤ ! R that satisfies NE188–NE488.
Since, as we have just proved above, Efin

Q exists and is the unique global upper ex-
pectation on F ⇥X⇤ that satisfies NE188–NE388, we have that E ⇤ is equal to Efin

Q on
F ⇥X⇤. So, because E ⇤ satisfies NE488, we find that, for any ( 5 , A) 2 V ⇥X⇤,

E ⇤ ( 5 |A) = inf
n
Efin

Q (6 |A) : 6 2 F and 6 �A 5
o
. (3.34)

In order to show that E ⇤ is equal to EQ , we need to show that E ⇤ extends E
pre
Q ,

that E ⇤ satisfies WC182–WC482, and that E ⇤ is larger or equal than any other global
upper expectation on V ⇥X⇤ extending E

pre
Q and satisfying WC182–WC482. The first

property follows from the fact that E ⇤ satisfies NE188. The second property, that E ⇤

satisfies WC182–WC482, can be deduced in a similar way as before. Since, for any
acceptable gambles tree A• that agrees with Q•, the global upper expectation Ef

A,V
satisfies NE188–NE488 by Lemma 3.D.3115, we have that, similarly as for E ⇤ [which
is simply a general global upper expectation satisfying NE188–NE488],

Ef
A,V ( 5 |A) = inf

n
Efin

Q (6 |A) : 6 2 F and 6 �A 5
o
.

So, by Eq. (3.34), E ⇤ and Ef
A,V coincide. Hence, it follows from Lemma 3.D.6117 that

E ⇤ satisfies WC182–WC482.
It now only remains to prove that E ⇤ is larger or equal than any other global

upper expectation on V ⇥X⇤ extending E
pre
Q and satisfying WC182–WC482. Fix any

12Note that the arguments of the (global) upper expectations in the expression on the right-
hand side of Eq. (3.32) must be (finitary) gambles because E is only defined on F ⇥X⇤, and
so otherwise this expression cannot be valid.
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global upper expectation E on V ⇥X⇤ extending E
pre
Q and satisfying WC182–WC482.

Then note that, since Efin
Q is by definition the pointwise largest extension of E

pre
Q to

F ⇥X⇤ under WC182–WC482, we have that Efin
Q (6 |A) � E (6 |A) for all (6, A) 2 F ⇥X⇤.

Hence, for any ( 5 , A) 2 V ⇥X⇤, due to Eq. (3.34)x,

E ⇤ ( 5 |A) = inf
n
Efin

Q (6 |A) : 6 2 F and 6 �A 5
o

� inf
�
E (6 |A) : 6 2 F and 6 �A 5

 
� E ( 5 |A),

where the last equality follows from the fact that E satisfies WC584, which itself
follows from Proposition 3.4.484 and the fact that E satisfies WC182–WC482.

3.E Proof of Proposition 3.5.5

3.E.1 Topological results for precise probability trees

Recall from Section 2.118 that P(X) denotes the set of all probability
mass functions on X. Let 3(·, ·) be the total variation distance [24, Sec-
tion 7.1] defined, for any two mass functions c1,c2 2 P(X), by

3(c1,c2) B max
�✓X

|c1 (�) � c2 (�) | =
1
2

X
F2X

|c1 (F) � c2 (F) |, (3.35)

where we allowed ourselves a slight abuse of notation by writing c7 (�) to
mean P

F2� c7 (F) for 7 2 {1, 2}. Let P(X) be endowed with the topology
induced by 3, which is equivalent—see [24, Appendix A]—to the topology
of pointwise convergence that we have implicitly adopted in the main text.
So P(X) is metrizable and, by [24, Section 7], compact. Also, note that
any precise probability tree > : A 2 X⇤ 7! >(·|A) 2 P(X) can be regarded
as an element of the product space ⇣

A2X⇤ P(X), and that any imprecise
probability tree P• can be seen as a subset of ⇣

A2X⇤ P(X). Saying that a
precise probability tree > is compatible with an imprecise probability tree
P• is then the same as saying that > 2 P•. We will moreover endow the
space ⇣

A2X⇤ P(X) with the product topology or, equivalently, the topology
of pointwise convergence. A sequence of precise probability trees (>7)72N
then converges if, for each situation A 2X⇤, the mass functions (>7 (·|A))72N
converge pointwise.

Lemma 3.E.1. Any sequence (>7)72N of precise probability trees has a conver-
gent subsequence.

Proof. Since by Tychono� ’s theorem [111, Theorem 17.8] any product of compact
spaces is compact in the product topology, the compactness of P(X) [and the fact
that ⇣

A2X⇤ P(X) is endowed with the product topology] implies the compactness
of ⇣

A2X⇤ P(X). Moreover, [111, Theorem 22.3] says that any countable product
of metrizable spaces [if equipped with the product topology] is itself metrizable,
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3.E Proof of Proposition 3.5.5

so the metrizability of P(X) and the countability of X⇤ imply the metrizability of
⇣

A2X⇤ P(X). [111, 17G.3.] says that for metric spaces—and thus also for metriz-
able spaces—compactness is equivalent to sequential compactness. Since we know
⇣

A2X⇤ P(X) to be compact and metrizable, we infer that it is sequentially compact.
Hence, by definition of sequential compactness, each sequence (>7)72N (of precise
probability trees) in ⇣

A2X⇤ P(X) has a convergent subsequence.

Lemma 3.E.2. Consider any sequence (>7)72N of precise probability trees that
converges to some limit probability tree >. Then we have that

lim
7!+1

E>
7
(6 |A) = E> (6 |A) for all 6 2 F and all A 2X⇤.

Proof. Fix any 6 2 F and any A 2X⇤. Observe that, by Proposition 3.3.879,

E> (6 |A) =
X

H1:✓2X✓

6(H1:✓)P> (H1:✓ |A) (3.36)

and, for all 7 2 N,

E>
7
(6 |A) =

X
H1:✓2X✓

6(H1:✓)P>
7
(H1:✓ |A), (3.37)

where P> and P>
7
on hX⇤i⇥X⇤ are related to respectively > and >7 according to Propo-

sition 3.3.473, and where ✓ > |A| is any natural number such that 6 is ✓-measurable.
Let F1:9 2X⇤ be such that A = F1:9 and fix any H1:✓ 2X✓. Then we have that ✓ > 9.
We next show that P>

7
(H1:✓ |A) converges to P> (H1:✓ |A) as a function of 7 2 N.

If H1:9 < F1:9, then P>
7
(H1:✓ |A) = 0 for all 7 2 N and also P> (H1:✓ |A) = 0, so

P>
7
(H1:✓ |A) surely converges to P> (H1:✓ |A). So it remains to check whether it is true

for the case that H1:9 = F1:9. In that case, P>
7
(H1:✓ |F1:9) =

Q
✓�1
<=9 >7 (H<+1 |H1:<) converges

to P> (H1:✓ |F1:9) =
Q

✓�1
<=9 > (H<+1 |H1:<) if, for all < 2 {9, . . . , ✓ � 1}, >7 (H<+1 |H1:<) con-

verges to > (H<+1 |H1:<). The latter is implied by the convergence of >7 to >. Indeed,
since ⇣

A2X⇤ P(X) is equipped with the product topology, the convergence of >7 to
> implies that, for any < 2 {9, . . . , ✓ � 1}, the mass function >7 (· |H1:<) converges to
> (· |H1:<). Since the set P(X) on its turn is equipped with the topology of pointwise
convergence, this implies that >7 (H<+1 |H1:<) converges to > (H<+1 |H1:<).

Now, to conclude the proof, note that the sums in Equations (3.36) and (3.37)
are over a finite setX✓—becauseX is finite—and the coe�cients 6(H1:✓) are real be-
cause 6 is a gamble. Since we have just shown that, for any H1:✓ 2X✓, the probability
P>

7
(H1:✓ |A) converges to P> (H1:✓ |A), it is therefore clear that the expectation E>

7
(6 |A)

converges to E> (6 |A).

The following lemma uses the supremum norm k·k1 on the set of all
gambles L(Y) on a general non-empty set Y; it is defined by k 5 k1 B
sup

í2Y | 5 (í) | for all 5 2 L(Y).

Lemma 3.E.3. Consider any two probability mass functions >, >̃ 2 P(X), and
let E> and E >̃ be the corresponding linear expectations on L(X) according to
Eq. (2.1)21. Then, for any 5 2 L(X),

|E> ( 5 ) � E >̃ ( 5 ) |  3(>, >̃)2k 5 k1.
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Proof. Since X is finite, [92, Proposition 1] says that

max
62F1

|E> (6) � E >̃ (6) | = 3(>, >̃),

where F1 is the set of all non-negative gambles in L(X) such that k6k1  1. Fix
any 5 2 L(X) and note that 5 �min 5 is non-negative. Moreover, if 5 �min 5 < 0,
we have that 5�min 5

k 5�min 5 k1 2 F1 and therefore that

|E>

�
5�min 5

k 5�min 5 k1
�
� E >̃

�
5�min 5

k 5�min 5 k1
�
|  3(>, >̃).

It then su�ces to use the non-negative homogeneity and the constant additivity of
E> and E >̃ [since they are defined by Eq. (2.1)21] to obtain that indeed

|E> ( 5 ) � E >̃ ( 5 ) |  3(>, >̃)k 5 �min 5 k1  3(>, >̃)2k 5 k1.

If on the other hand 5 � min 5 = 0, then it is clear that 5 = 2 for some 2 2 R, and
therefore that

|E> ( 5 ) � E >̃ ( 5 ) | = |E> (2) � E >̃ (2) | = 2 � 2 = 0  3(>, >̃)2k 5 k1.

Lemma 3.E.4. Consider any imprecise probability treeP• and any convergent
sequence (>7)72N of precise probability trees such that >7 ⇠P• for all 7 2 N. Let
> be the limit of (>7)72N. Then, for any n > 0, there is a precise probability tree
>̃ ⇠P• such that

|E> (6 |A) � E >̃ (6 |A) |  nk6k1 for all 6 2 F and all A 2X⇤.

Proof. Recall that ⇣
A2X⇤ P(X) is equipped with the product topology, so the con-

vergence of >7 to > implies that, for any A 2 X⇤, the mass functions >7 (· |A) con-
verge to > (· |A). Since P(X) was endowed with the topology induced by 3, this
in turn implies that, for any A 2 X⇤ and any b > 0, there is an 7(A, b) 2 N such
that 3(>(·|A), >7 (·|A))  b for all 7 � 7(A, b). Now fix any n > 0 and let (b9)92N0

be defined by b9 B n2�9�1 for all 9 2 N0. Consider the precise probability tree >̃

defined, for all A 2 X⇤, by >̃(·|A) B >8 (·|A) with 8 B 7(A, b|A| ). Then we have that
3(>(·|A), >̃(·|A))  b|A| = n2�|A|�1 for all A 2X⇤. Moreover, since >7 ⇠P• for all 7 2 N,
and therefore, for all A 2 X⇤, >̃(·|A) = >8 (·|A) 2 PA with 8 B 7(A, b|A| ), we also have
that >̃ ⇠P•.

Next, let Q• B Q•,> and Q0• B Q•, >̃ be the (upper) expectations trees associated
with respectively > and >̃ according to Eq. (3.4)52. Fix any 6 2 F and any F1:9 2X⇤.
Since 6 is finitary, it is surely (✓+1)-measurable for some ✓ � 9. Then, by combining
Proposition 3.5.492 and Lemma 3.D.5116, we find that

E> (6 |F1:9) = Q-1:9

�
Q-1:9+1

�
· · · Q-1:✓�1

�
Q-1:✓ (6)

�
· · ·

� �
(F1:9). (3.38)

For all H1:✓ 2X✓, Lemma 3.E.3x implies that

QH1:✓ (6(H1:✓ ·))  Q0
H1:✓

(6(H1:✓ ·)) + 3(>(·|H1:✓), >̃(·|H1:✓))2k6(H1:✓ ·)k1
 Q0

H1:✓
(6(H1:✓ ·)) + 3(>(·|H1:✓), >̃(·|H1:✓))2k6k1

 Q0
H1:✓

(6(H1:✓ ·)) + n2�✓k6k1.
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So we have that
Q-1:✓ (6)  Q0

-1:✓
(6) + n2�✓k6k1.

Plugging this back into Eq. (3.38) , and using the monotonicity [C433] and the
constant additivity [C633] of all local (upper) expectations QA, we get that

E> (6 |F1:9)  Q-1:9

�
Q-1:9+1

�
· · · Q-1:✓�1

�
Q0
-1:✓

(6)
�
· · ·

� �
(F1:9) + n2�✓k6k1. (3.39)

Next, we apply a similar reasoning to the local (upper) expectation Q-1:✓�1 and the
corresponding ✓-measurable gamble Q0

-1:✓
(6). We have by coherence [C533] that

Q0
-1:✓

(6)  k6k1. Hence, in the same way as before, we find that

Q-1:✓�1 (Q0-1:✓ (6))  Q0
-1:✓�1 (Q

0
-1:✓

(6)) + n2�(✓�1) k6k1.

Plugging this back into Eq. (3.39), and using the monotonicity [C433] and the con-
stant additivity [C633] of all local (upper) expectations QA, we get that

E> (6 |F1:9)  Q-1:9

�
Q-1:9+1

�
· · · Q0

-1:✓�1

�
Q0
-1:✓

(6)
�
· · ·

� �
(F1:9) + n2�(✓�1) k6k1 + n2�✓k6k1.

We can continue to repeat this reasoning until we eventually arrive at

E> (6 |F1:9)  Q0
-1:9

�
Q0
-1:9+1

�
· · · Q0

-1:✓�1

�
Q0
-1:✓

(6)
�
· · ·

� �
(F1:9) +

✓X
<=9

n2�<k6k1

 Q0
-1:9

�
Q0
-1:9+1

�
· · · Q0

-1:✓�1

�
Q0
-1:✓

(6)
�
· · ·

� �
(F1:9) + nk6k1.

Since, again by Proposition 3.5.492 and Lemma 3.D.5116, we have that

E >̃ (6 |F1:9) = Q0
-1:9

�
Q0
-1:9+1

�
· · · Q0

-1:✓�1

�
Q0
-1:✓

(6)
�
· · ·

� �
(F1:9),

it follows that
E> (6 |F1:9)  E >̃ (6 |F1:9) + nk6k1. (3.40)

The inequality above holds for any general 6 2 F and any F1:9 2 X⇤. Since �6 is a
finitary gamble if 6 is a finitary gamble, we therefore also have that

E> (�6 |A)  E >̃ (�6 |A) + nk6k1 for all 6 2 F and all A 2X⇤
,

or, by the linearity of E> and E >̃ on F [Proposition 3.3.879], that

E> (6 |A) � E >̃ (6 |A) � nk6k1 for all 6 2 F and all A 2X⇤
.

Together with Eq. (3.40) [taking into account that this holds for any general 6 2 F
and any F1:9 2X⇤], and the fact that E> and E >̃ are real-valued on F ⇥X⇤ [this can
easily be seen from Proposition 3.3.879] we obtain that

|E> (6 |A) � E >̃ (6 |A) |  nk6k1 for all 6 2 F and all A 2X⇤
,

as desired.
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3.E.2 Proof of Proposition 3.5.5

Before we prove NE488 for EP, we first establish that E> satisfies this
property for any precise probability tree >, and show that both E> and EP

are monotone.

Lemma 3.E.5. For any precise probability tree >, the upper expectation E>

satisfies NE488.

Proof. First note that E> satisfies WC584 on F ⇥X⇤; indeed, this can easily be
checked taking into account the last expression in Proposition 3.3.879. We will use
this property two times in this proof.

Fix any ( 5 , A) 2 V ⇥X⇤. Then we have that

E> ( 5 |A) = inf
�
E> (6 |A) : 6 2 span (hX⇤i) and 6 � 5

 
= inf

�
E> (6 |A) : 6 2 F and 6 � 5

 
, (3.41)

where the first equality follows from Definition 3.578, Proposition 3.3.6(ii)76 and
Definition 3.376, and where the second equality follows from Lemma 3.3.575. It thus
follows that

E> ( 5 |A) � inf
�
E> (6 |A) : 6 2 F and 6 �A 5

 
.

To see that the converse inequality holds, consider any 6 2 F such that 6 �A 5 . Let 60
be the gamble that is equal to 6(l) for all l 2 �(A) and that is equal to the constant
sup 5 for all other paths l 2 ⌦ \ �(A). Then it is clear that 60 � 5 and that 60 2 F .
Hence, Eq. (3.41) implies that E> ( 5 |A)  E> (60 |A). But we have that 60 =A 6, and
therefore in particular that 60 A 6, which by WC584 of E> on F ⇥X⇤ implies that

E> ( 5 |A)  E> (60 |A)  E> (6 |A).

Since this holds for any 6 2 F such that 6 �A 5 , we infer that

E> ( 5 |A)  inf
�
E> (6 |A) : 6 2 F and 6 �A 5

 
.

Taken together with the inequality above, we indeed conclude that E> satisfies
NE488.

Lemma 3.E.6. For any precise probability tree > and any imprecise probability
tree P•, the upper expectations E> and EP satisfy WC584 on V ⇥X⇤.

Proof. Since E> satisfies NE488 by Lemma 3.E.5, E> satisfiesWC584 on V⇥X⇤. To see
that WC584 also holds for the upper expectation EP corresponding to any imprecise
probability treeP•, it su�ces to recall Definition 3.679 and use that, as we have just
proved above, for any precise probability tree >, the upper expectation E> satisfies
WC584 on V ⇥X⇤.

Most of the mathematical machinery that enables us to prove Propo-
sition 3.5.593 is tucked away inside the following two lemmas. Though
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3.E Proof of Proposition 3.5.5

fairly technical and abstract, we state them separately—instead of in one
single proof—because they will be used later on in Section 5.4240 to prove
a downward type of continuity for the measure-theoretic upper expectation
of Chapter 5217.

Lemma 3.E.7. For any imprecise probability treeP•, any decreasing sequence
( 5<)<2N in F and any A 2X⇤,

lim
<!+1

E> ( 5< |A) � lim
<!+1

EP( 5< |A),

where the precise probability tree > is the limit of some convergent sequence
(>7)72N of precise probability trees, each of which being compatible with the
imprecise tree P•.

Proof. Since ( 5<)<2N is decreasing and EP is monotone due to Lemma 3.E.6 , we
have that lim<!+1 EP( 5< |A) exists. Furthermore, note that EP( 5< |A) is real for all
< 2 N. Indeed, by Proposition 3.5.492, EP satisfies NE188–NE388, and so EP on
F ⇥X⇤ is given by the expression in Lemma 3.D.5116. Since ( 5<)<2N is a sequence in
F , and since the local upper expectationsQ• are real-valued due to coherence [C533],
this indeed implies that EP( 5< |A) is real for all < 2 N. As a result, for any fixed n > 0,
there is a sequence (><)<2N of precise probability trees such that >< ⇠P• and

E><
( 5< |A) + n/< � sup

>⇠P•

E> ( 5< |A) = EP( 5< |A) for all < 2 N. (3.42)

By Lemma 3.E.1120, the sequence (><)<2N has a convergent subsequence (><(7) )72N.
Let > B lim7!+1 ><(7) be the limit of this sequence, and let ( 5<(7) )72N be the associated
subsequence of ( 5<)<2N. Since ( 5<)<2N is decreasing, ( 5<(7) )72N is also decreasing. So,
since E> is monotone by Lemma 3.E.6 , the limit lim7!+1 E> ( 5<(7) |A) exists. Fix any
real number 2 > lim7!+1 E> ( 5<(7) |A) and any 8 2 N such that 2 > E> ( 5<( 8) |A). Since
(><(7) )72N converges to >, and since 5<( 8) is finitary, Lemma 3.E.2121 guarantees that
lim7!+1 E>

<(7) ( 5<( 8) |A) = E> ( 5<( 8) |A). Taking into account that 2 > E> ( 5<( 8) |A), this
implies that there are arbitrarily large 9 � 8 such that 2 > E>

<(9) ( 5<( 8) |A). For each
such 9, since ( 5<(7) )72N is decreasing and E>

<(9) is monotone by Lemma 3.E.6 , and
since 9 � 8, this in turn implies that 2 > E>

<(9) ( 5<(9) |A). Using Eq. (3.42), we obtain
that 2 > EP( 5<(9) |A) � n/<(9). Since this holds for arbitrarily large 9 � 8 [and thus
also for arbitrarily large <(9)], we have that 2 � lim inf 7!+1 EP( 5<(7) |A). Once more
using the decreasing character of ( 5<(7) )72N and the monotonicity of EP, we infer that
lim7!+1 EP( 5<(7) |A) exists and that 2 � lim7!+1 EP( 5<(7) |A). This inequality holds for
any real number 2 > lim7!+1 E> ( 5<(7) |A), so we have that

lim
7!+1

E> ( 5<(7) |A) � lim
7!+1

EP( 5<(7) |A).

The sequence ( 5<(7) )72N is a subsequence of the decreasing sequence ( 5<)<2N, so by
the monotonicity of E> and EP the above inequality implies that

lim
<!+1

E> ( 5< |A) � lim
<!+1

EP( 5< |A). (3.43)

The desired statement then follows by moreover recalling that each >< (or ><(7) ) is
compatible with P•, and that > B lim7!+1 ><(7) .
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Lemma 3.E.8. For any imprecise probability treeP•, any decreasing sequence
( 5<)<2N in F that converges to a gamble 5 2 V , and any A 2X⇤,

sup
>⇠P•

lim
<!+1

E> ( 5< |A) = lim
<!+1

EP( 5< |A).

Proof. Due to Lemma 3.E.7x, we have that

lim
<!+1

E> ( 5< |A) � lim
<!+1

EP( 5< |A), (3.44)

where > is the limit of a convergent sequence (>7)72N of precise probability trees,
each of which is compatible with the imprecise tree P•. Fix any n > 0. Then by
Lemma 3.E.4122, there is a compatible precise tree >̃ ⇠P• such that

|E> (6 |A) � E >̃ (6 |A) |  nk6k1 for all 6 2 F .

Since ( 5<)<2N is a sequence of finitary gambles, this implies that

|E> ( 5< |A) � E >̃ ( 5< |A) |  nk 5<k1 for all < 2 N.

Moreover, since ( 5<)<2N converges decreasingly to 5 , we have, for all < 2 N, that
inf 5  5<  sup 51 and therefore that k 5<k1  ⌫ B max{k 5 k1, k 51k1}. So the
inequality above implies that

|E> ( 5< |A) � E >̃ ( 5< |A) |  n⌫ for all < 2 N.

In particular, we then have that

E> ( 5< |A)  E >̃ ( 5< |A) + n⌫ for all < 2 N,

and therefore, that
lim
<!+1

E> ( 5< |A)  lim
<!+1

E >̃ ( 5< |A) + n⌫,
where the existence of the limit on the right-hand side follows from ( 5<)<2N being de-
creasing and E >̃ being monotone due to Lemma 3.E.6124. Combining this inequality
with Eq. (3.44), we obtain that

lim
<!+1

EP( 5< |A)  lim
<!+1

E >̃ ( 5< |A) + n⌫,

which by the fact that >̃ ⇠P• implies that

lim
<!+1

EP( 5< |A)  sup
>⇠P•

lim
<!+1

E> ( 5< |A) + n⌫,

where, again, the existence of the limit on the right-hand side follows from ( 5<)<2N
being decreasing and E> for any > ⇠ P• being monotone [Lemma 3.E.6124]. Since
this holds for any n > 0, and since ⌫ = max{k 5 k1, k 51k1} is real because 5 and 51

are gambles, we infer that

lim
<!+1

EP( 5< |A)  sup
>⇠P•

lim
<!+1

E> ( 5< |A).

The converse inequality follows from the fact that EP( 5< |A) = sup
>
0⇠P•

E>
0 ( 5< |A) �

E> ( 5< |A) for all < 2 N and all > ⇠P•.
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Proof of Proposition 3.5.593. Fix any 5 2 V and any A 2 X⇤. Note that, because
EP satisfies WC584 by Lemma 3.E.6124,

EP( 5 |A)  inf{EP(6 |A) : 6 2 F and 6 �A 5 }.

So it su�ces to prove that inf{EP(6 |A) : 6 2 F and 6 �A 5 }  EP( 5 |A).
Consider any > ⇠P•. By Lemma 3.E.5124 and Lemma 3.E.6124, we have that E>

satisfies NE488 and WC584. Hence, if (6<)<2N is the decreasing sequence of finitary
gambles defined by 6< (l) B sup

l̃2�(l< ) 5 (l̃) for all < 2 N and all l 2 ⌦, then by
Lemma 3.5.1197 we have that E> ( 5 |A) = lim<!+1 E> (6< |A). Since this holds for any
> ⇠P• and since EP( 5 |A) = sup

>⇠P•
E> ( 5 |A), we have that

EP( 5 |A) = sup
>⇠P•

lim
<!+1

E> (6< |A). (3.45)

Since (6<)<2N is a decreasing sequence of finitary gambles that is bounded below by
inf 5 , it converges to a gamble. Therefore, it follows from Lemma 3.E.8 that the
right-hand side in the equality above is equal to lim<!+1 EP(6< |A). Hence, we have
that EP( 5 |A) = lim<!+1 EP(6< |A). Hence, since each of the 6< is a finitary gamble for
which it holds that 6< � 5 [this follows straightforwardly from their definition], we
find that

inf{EP(6 |A) : 6 2 F and 6 �A 5 }  lim
<!+1

EP(6< |A) = EP( 5 |A),

as required.
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G���-��������� ����� ������������

The first type of global upper expectation that we consider as an alternative
to the natural extension EQ , is the game-theoretic upper expectation intro-
duced and, for the most part, studied by Shafer and Vovk [85, 86, 109]. The
conceptual ideas that underlie the definition of this operator were essen-
tially already explained in Section 3.2.361, where we introduced the finitary
game-theoretic upper expectation Ef

A,V. Just as for E
f
A,V, the game-theoretic

upper expectation that we will consider here represents an infimum over the
starting capitals that allow a gambler—that is, Skeptic—to play along the
rules—set by Forecaster—and superhedge the gamble at hand. The main
di�erence here, however, is that we will not require Skeptic to superhedge
at a finite time point, but only in the limit. As we will see, this modifica-
tion results in a global upper expectation with completely di�erent—and in
many cases more desirable—properties.

The chapter is structured as follows. In Section 4.1131, we first intro-
duce this game-theoretic upper expectation, and then argue why it qualifies
as a suitable global model for stochastic processes. At first, we limit our-
selves to the domain V ⇥X⇤ of gambles and situations but, as we have dis-
cussed in Section 3.698, we want a global upper expectation to be defined
on V ⇥X⇤. This is why in Section 4.2139 we will extend the definition of
the game-theoretic upper expectation from V ⇥X⇤ to V ⇥X⇤. Two possible
approaches will be suggested here; an extension using continuity with re-
spect to upper and lower cuts, and an extension using extended real-valued
supermartingales. Though we believe the former to bear a more direct in-
terpretation, we continue to work with the latter in the remainder of the
chapter because it turns out to be mathematically more convenient and be-
cause, as we will show later on, it is completely equivalent to the former.
Until that point, we will have parametrized our game-theoretic upper expec-
tations in terms of acceptable gambles trees, yet, Section 4.3152 then shows
how game-theoretic upper expectations can be alternatively defined starting
from upper expectations trees. Similarly to what Corollary 3.5.895 showed,
it will become clear then that the game-theoretic upper expectation corre-
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Figure 4.1 Overview of the global upper expectations treated in this and
previous chapters.

sponding to an acceptable gambles tree can be completely characterised in
terms of the—less expressive—agreeing upper expectations tree.

Sections 4.4162–4.7180 are all devoted to establishingmathematical prop-
erties and/or generalising existing results for the game-theoretic upper ex-
pectation. We start in Section 4.4162 by proving, amongst other properties,
an extended version of coherence, a law of iterated upper expectations, and
equality with the natural extension Efin

Q on F ⇥X⇤. Section 4.5171 presents
generalised versions of Doob’s convergence theorem and Lévy’s zero–one
law, and shows that the definition of the game-theoretic upper expectation
can be modified in several interesting ways without a�ecting the values of
the resulting game-theoretic upper expectation.

Sections 4.6175 and 4.7180 finally are concerned with continuity prop-
erties of the game-theoretic upper expectation: continuity with respect to
increasing bounded below sequences and continuity with respect to decreas-
ing sequences of lower cuts and decreasing sequences of finitary gambles are
established. We also show that the game-theoretic upper expectation does
in general not satisfy continuity with respect to decreasing sequences nor
continuity with respect to pointwise convergence of sequences of finitary
gambles.

In Section 4.8186, we summarize our findings and use them to argue
for the use of the game-theoretic upper expectation as a global upper ex-
pectation. We also return to the question of how game-theoretic upper ex-

130



4.1 Game-theoretic upper expectations on gambles

pectations can be extended from gambles to extended real-valued variables,
and show that the approach that uses continuity with respect to upper and
lower cuts is equivalent to the approach that uses extended real-valued su-
permartingales. In the last section, Section 4.9187, we compare our results
to Shafer and Vovk’s. It seems appropriate to devote an entire section to this
topic, because many of what we do is closey related to—or strongly inspired
by—the work of Shafer and Vovk.

4.1 Game-theoretic upper expectations on gambles

Recall the finitary game-theoretic upper expectation Ef
A,V that we have

introduced in Section 3.2.361. It was obtained from an acceptable gambles
tree A• by using the associated set of supermartingales and then using a
notion of superhedging. Concretely, Eq. (3.11)63 said that, for all ( 5 , A) 2
V ⇥X⇤,

Ef
A,V ( 5 |A) = inf

�
C(A) : C 2 M(A•) and (99 � |A|) C(-1:9) �A 5

 
. (4.1)

Given that we interpret the supermartingales M(A•) as the possible evolu-
tions of Skeptic’s capital as he is betting against Forecaster’s beliefs A•, the
expression above tells us that, for any ( 5 , A) 2 V ⇥X⇤, EA ( 5 |A) is equal
to the infimum starting capital C(A) in A such that Skeptic is able to surely
end up with more money—or utility—than what the gamble 5 would give
him. There is an important sidenote to this formulation though; Skeptic is
required to superhedge 5 at some finite time instant 9 � |A| in the future. In-
deed, Eq. (4.1) involves an infimum that is taken only over the supermartin-
gales C for which there is at least one finite time instant 9 � |A| such that
C(-1:9) �A 5 . One can observe, for instance by recalling Example 3.6.199,
that this superhedging at a finite time point becomes problematic when con-
sidering the upper expectation of gambles that are non-finitary; the result-
ing upper expectation is often too conservative. But what happens when we
now modify the upper expectation Ef

A,V to also include supermartingales
that superhedge at a(n) (idealised) time instant that lies infinitely far into
the future?

We first introduce some notation that allows us to conveniently deal with
the limit values of processes. For any real process C, we write lim inf C to
denote the extended real-valued variable on ⌦ defined by lim inf C(l) B
lim inf9!+1 C(l9) for all l 2 ⌦, and similarly for the variable lim sup C.
Furthermore, for any l 2 ⌦ such that lim inf C(l) = lim sup C(l), we
use lim C(l) to denote the common value lim inf C(l) = lim sup C(l). If
lim C(l) exists for all l 2 ⌦, then we moreover let lim C B lim inf C =
lim sup C.
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Though we have used the terminology di�erently before, henceforth,
we will say that, for any ( 5 , A) 2 V ⇥X⇤, a real process C superhedges
a gamble 5 2 V on �(A) if lim inf C �A 5—and no longer if the stronger
condition holds that C(-1:9) �A 5 for some 9 � |A|. So, a process C super-
hedging a gamble 5 on �(A) means that, for all paths that go through A, the
process C remains larger than or arbitrarily close to 5 as time converges to
infinity. It is clear that this condition of superhedging at infinity is implied
by the condition of superhedging at a finite time point used in Eq. (4.1)x
above (since stopping a supermartingale preserves it supermartingale char-
acter; see the proof of Lemma 3.2.866 or Lemma 4.C.5211 below), but not
the other way around. By replacing the finitary superhedging condition in
the expression of Eq. (4.1)x by this weaker notion of superhedging at infin-
ity, we arrive at a more informative—less conservative—type of global upper
expectation. This type of upper expectation, we call the game-theoretic up-
per expectation. To explicitly define it, for any acceptable gambles tree A•,
we henceforth let Mr (A•) B M(A•)—this notation will be clarified shortly.

Definition 4.1 (The game-theoretic upper expectation on gambles). For
any acceptable gambles tree A•, the game-theoretic upper expectation
Er

A,V : V ⇥X⇤ ! R is defined, for all ( 5 , A) 2 V ⇥X⇤, by

Er
A,V ( 5 |A) = inf

�
M(A) : M 2 Mr (A•) and lim inf M �A 5

 
. }

Readers that are familiar with the work of Shafer and Vovk may observe
that this game-theoretic upper expectation Er

A,V is similar to the global up-
per expectation that they have introduced and strongly advocated for [85,
86, 109]. A thorough discussion of this connection, for Er

A,V, as well as
for other similar definitions further below, will be given in Section 4.9187.
Nonetheless, we already want to point out the following key di�erences.

First of all, most of the work in [85, 86, 109] is not necessarily aimed
at a setting where state spaces are finite; most often Shafer and Vovk con-
sider general (possibly infinite) state spaces. Another di�erence lies in the
description of the local models; they do not necessarily assume that the
local models—the description of which being the ‘moves’ of Forecaster—
are known beforehand, that is, before Skeptic starts playing. In our case,
this is always assumed because we require the acceptable gambles tree A•,
which represents Forecaster’s commitments, to be specified from the start.
So in both respects, we are less general—it will allow us to obtain stronger
results though. On the other hand, in their case, Forecaster’s moves—the
local models—do not take the form of local sets of acceptable gambles, but
rather the form of local upper expectations. We however believe this to be
somewhat circuitous, interpretationally speaking, since these local upper ex-
pectations are then only used to determine which local gambles Forecaster
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4.1 Game-theoretic upper expectations on gambles

wants to commit to, and therefore wants to make available to Skeptic. Fur-
thermore, as we have seen in Section 3.1.248, local sets of acceptable gam-
bles are more expressive than local upper expectations, thus this assumption
could possibly impact generality in the negative—wewill nevertheless prove
in Section 4.3152 that this is not the case.

Though Shafer and Vovk are largely responsible for the theory of game-
theoretic probability and upper expectations as it is currently known, a num-
ber of their original ideas can be traced back in some form to Jean Ville
[107]; see the discussions in [86, Sections 8.5–8.6] and [85, Chapter 9].
The subscript ‘V’ in Er

A,V is intended to refer to him. The reason that we
also accompany the operator Er

A,V by a superscript ‘r’ is because it is defined
through the setMr (A•) = M(A•) of all real-valued (possibly unbounded) su-
permartingales. In the sequel, we will also introduce game-theoretic upper
expectations that additionally use extended real-valued supermartingales,
or that are limited to using (extended) real-valued supermartingales that
are bounded, or bounded below.

4.1.1 The continuity properties of Er
A,V

Of course, since Er
A,V was introduced with the goal of obtaining a global

upper expectation that has stronger continuity properties and therefore re-
turns more informative upper expected values than Ef

A,V, it remains to check
whether Er

A,V indeed succeeds in doing so. Recalling Example 3.6.199 al-
ready hints at a positive answer.

Example 4.1.1. Reconsider the stochastic process from Example 3.6.199,
but where the precise probability tree > is replaced by the acceptable gam-
bles tree A•, defined by AA B L� (X) [ { 5 2 L(X) : 5 (0) > 0} for all
A 2 X⇤. It can be checked easily that AA is coherent for all A 2 X⇤, and
therefore that A• is indeed an acceptable gambles tree. It can furthermore
be easily seen that these two trees > and A• lead to the same agreeing up-
per expectations tree Q•, and thus by Theorem 3.5.190 and Theorem 3.5.291
that their finitary global upper expectations E> and Ef

A,V (and EA) are equal.
We will now show that—in contrast with what we found for E>—the game-
theoretic upper probability P

r
A,V (�1) B Er

A,V (I�1) of the event of ever hit-
ting the state 1 is equal to zero.

Fix any n > 0. Let M be the real process that starts in M(⇤) B n and for
which the process di�erence in any situation 09 with 9 2 N0 takes the value
�M(09) (0) B �n/29+1 in 0 and the value �M(09) (1) B 1�M(09) in 1, and
for which the process di�erence in any other situation A 2X⇤ \{09 : 9 2 N0}
is equal to the constant �M(A) B 0. Then clearly, �M(A) 2 �AA for all
A 2 X⇤, so M 2 Mr (A•). Moreover note that, for any situation 0

9 with
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9 2 N0, the value of M is equal to

M(09) = M(⇤) +
9X
7=1

�M(07�1) (0) = n +
9X
7=1

(� n

27 ) = n

⇣
1 �

9X
7=1

1
27

⌘
� 0.

Hence, for the path l0 B 000 · · · , we have that

lim inf M(l0) = lim inf
9!+1

M(09) � 0 = I�
1
(l0).

On the other hand, for any situation 091 with 9 2 N0, we have that

M(091) = M(09) + �M(09) (1) = M(09) + 1 �M(09) = 1.

Since for any situation A 2 X⇤ such that A w 0
9
1 for some 9 2 N0, we have

that M(A) = M(091) = 1, it follows that lim inf M(l) = 1 � I�
1
(l) for all

l 2 �1 = ⌦\ {l0}. Since we already deduced that lim inf M(l0) � I�
1
(l0),

we conclude that lim inf M(l) � I�
1
(l) for all l 2 ⌦ and therefore that

M superhedges I�
1
on all of ⌦. Then, recalling that M 2 Mr (A•), we have

by Definition 4.1132 that

P
r
A,V (�1) = Er

A,V (I�1) M(⇤) = n.

Since this holds for all n > 0, we infer that P
r
A,V (�1)  0. That P

r
A,V (�1) �

0, and therefore P
r
A,V (�1) = 0, can be deduced from the fact that no su-

permartingale M0 2 Mr (A•) can ever increase along the path l0 = 000 · · · ,
and that any M0 2 Mr (A•) must in particular superhedge I�

1
(l0) = 0 on

the path l0 for it to be included in the infimum of Definition 4.1132.
So the game-theoretic upper probability P

r
A,V—or the corresponding up-

per expectation Er
A,V—indeed returns the desired value 0 for the global

gamble I�
1
. Furthermore, using the same type of supermartingale as the

one above, we can also infer that, for all 9 2 N0, P
r
A,V (�9

1
) B Er

A,V (I�9
1

)
is equal to 0, for �9

1
the event of hitting 1 before time 9 + 1. Recalling—

from Example 3.6.199—that (I
�
9

1

)92N0 is an increasing sequence such that
lim9!+1 I

�
9

1

= I�
1
, we conclude that P

r
A,V is continuous with respect to the

increasing sequence (�9

1
)92N0—or equivalently that Er

A,V is continuous with
respect to the increasing sequence (I

�
9

1

)92N0 . ^

In the example above, the game-theoretic upper expectation Er
A,V ex-

hibits more desirable continuity behaviour than the finitary upper expecta-
tion Ef

A,V—and therefore also than the upper expectations EA , EP and EQ .
Though no formal proof will be given at this point, we can already assert
that the desirable continuity behaviour of Er

A,V is not limited to the exam-
ple above; the upper expectation Er

A,V satisfies continuity with respect to
general increasing sequences of gambles (that converge to a gamble) and
with respect to decreasing sequences of finitary gambles (that converge to a
gamble). Hence, the upper expectation Er

A,V seems to be a suitable option
when aiming for a global model with decent continuity properties.
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4.1.2 Coherence and the relation between Er
A,V and the finitary

global upper expectations

Of course, there is more to choosing a global model than only strong
continuity properties; an additional and very basic criterion is whether the
global model is coherent [Definition 3.782]—or, equivalently, whether it sat-
isfies WC182–WC482. We already announce that Er

A,V is coherent, but post-
pone a proof to Section 4.8186.

Another element that we might want to take into account is the relation
of our global model with the finitary upper expectations Ef

A,V, EA , et cetera.
As we have discussed in Section 3.698, the finitary upper expectations are
too conservative for dealing with general global variables (and situations)
in a satisfactory manner, but there is—or seems to be—no problem with
using them on the restricted domain of finitary gambles (and situations).
In fact, their simple and intuitive construction—and the fact that they are
all equal—makes them more suited to be applied on this restricted domain
than any of the more complex continuity-based variants. Hence, from this
point of view, it would thus be desirable that our global model is at least
as small—or at least as informative—as Ef

A,V (or any other finitary upper
expectation) for general (possibly non-finitary) global variables, but, if pos-
sible, coincides with Ef

A,V on finitary gambles. The game-theoretic upper
expectation Er

A,V also seems to score well on this count. The following re-
sult shows that Er

A,V is always smaller than or equal to Ef
A,V. Afterwards,

with Proposition 4.1.4y, we establish that Er
A,V coincides with Ef

A,V on the
domain F ⇥X⇤.

Proposition 4.1.2. For any acceptable gambles tree A•, we have that

Er
A,V ( 5 |A)  Ef

A,V ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. Fix any ( 5 , A) 2 V ⇥X⇤, and consider any M 2 Mr (A•) such that M(-1:✓) �A
5 for some 9 � |A| and all ✓ � 9. Then, for any l 2 �(A), we clearly have that
lim inf M(l) = lim inf✓!+1M(l✓) � 5 (l), and so lim inf M �A 5 . Hence, by
Definition 4.1132, we have that Er

A,V ( 5 |A)  M(A). Since this holds for any M 2
Mr (A•) such that M(-1:✓) �A 5 for some 9 � |A| and all ✓ � 9, Lemma 3.2.866

implies that indeed Er
A,V ( 5 |A)  Ef

A,V ( 5 |A).

To prove that Er
A,V coincides with Ef

A,V on F ⇥X⇤, we will use the fol-
lowing lemma, which is a simple consequence of Lemma 3.2.563.

Lemma 4.1.3. For any acceptable gambles tree A•, any M 2 Mr (A•) and any
A 2X⇤, we have that

M(A) � inf
l2�(A)

lim supM(l) � inf
l2�(A)

lim inf M(l).

135



Game-theoretic upper expectations

Proof. Since M 2 Mr (A•) [and recalling that we previously used M(A•) to denote
Mr (A•)], Lemma 3.2.563 implies that, for any B 2 X⇤, there is some F 2 X such
that M(B) � M(BF). In particular, this holds for the situation A, and so there is
some F 2 X such that M(A) � M(AF). Then we can apply the same property
to the situation A

0 B AF, therefore implying that there is some F
0 2 X such that

M(A0) �M(A0F0) = M(AFF0). By continuing in this way,1 we obtain the existence of
a path l = AFF

0 · · · for which it holds that M(A) �M(l9) for all 9 � |A|. As a result,
we have that M(A) � infl2�(A) lim supM(l). The rest of the proof is now trivial.

Proposition 4.1.4. For any acceptable gambles tree A•, we have that

Er
A,V ( 5 |A) = Ef

A,V ( 5 |A) for all ( 5 , A) 2 F ⇥X⇤.

Proof. The fact that Er
A,V ( 5 |A)  Ef

A,V ( 5 |A) for all ( 5 , A) 2 F ⇥X⇤ follows imme-
diately from Proposition 4.1.2x. To prove the converse inequality, consider any
M 2 Mr (A•) such that lim inf M �A 5 . Since 5 is finitary, there is some 9 � |A|
and some 6 2 L(X9) such that 5 = 6(-1:9). Since lim inf M �A 5 , we also
have that lim inf M �A 6(-1:9). Then, for any F1:9 2 X9 such that F1:9 w A,
we have that lim inf M(l) � 6(F1:9) for all l 2 �(F1:9), and therefore also that
infl2�(F1:9 ) lim inf M(l) � 6(F1:9). By Lemma 4.1.3x, this implies that M(F1:9) �
6(F1:9). Since this holds for any F1:9 2X9 such that F1:9 w A, and recalling that 9 � |A|,
and therefore that �(A) = S

F1:9wA �(F1:9), it follows that M(-1:9) �A 6(-1:9) = 5 . So
by Eq. (3.11)63, we have Ef

A,V ( 5 |A)  M(A). Since this holds for any M 2 Mr (A•)
such that lim inf M �A 5 , Definition 4.1132 implies that Ef

A,V ( 5 |A)  Er
A,V ( 5 |A).

4.1.3 Game-theoretic upper expectations in terms of bounded below
and bounded supermartingales

What makes the upper expectation Er
A,V particularly attractive com-

pared to, for instance, the measure-theoretic global (upper) expectations
in Chapter 5217, is the fact that it does not rely on abstract mathematical
constructs such as measurability or f-algebras. That the definition of Er

A,V
involves superhedging at an infinite time horizon may be considered some-
what of an abstract and operationally meaningless concept, yet, apart from
that, Er

A,V is entirely built on behavioural arguments. This does not only
grant the upper expectation Er

A,V a relatively clear and direct interpretation,
it also favours generality in the sense that Er

A,V is then naturally defined on
all gambles or variables, instead of only the measurable ones.

On top of this, there are two alternative ways of defining Er
A,V that

allow for an even more direct interpretation: using bounded below real-
valued supermartingales and using bounded (below and above) real-valued
supermartingales. The fact that supermartingales should be bounded below
seems like a realistic assumption; for if a supermartingale really represents

1And by adopting the Axiom of Dependent Choice (DC).
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4.1 Game-theoretic upper expectations on gambles

a subject’s capital—or Skeptic’s capital—as he is gambling on the subse-
quent state values of a stochastic process, then negative supermartingale
values correspond to our subject borrowing money, which he can never do
unboundedly. We therefore think that a version of the game-theoretic upper
expectation with bounded below supermartingales makes more sense from
an interpretational point of view. Such a version was also adopted in the
past by both ourselves [8, 94] and by Shafer and Vovk [86, 109]. We define
this version below in Definition 4.2.

In the same way as we have argued for the use of bounded below super-
martingales, one could also argue for the use bounded (below and above)
supermartingales. Indeed, since our subject—Skeptic—should receive his
money from someone—Forecaster—and since Forecaster can never borrow
an unbounded amount of money himself, Skeptic can never gain an un-
bounded amount of money neither. So in this sense, it seems justified to
restrict ourselves to supermartingales that are not only bounded below, but
also bounded above. Let us next define a version of the game-theoretic up-
per expectation with both bounded below and bounded supermartingales.

We let Mrb (A•) be the set of all supermartingales M 2 Mr (A•) that are
bounded below; i.e. for which there is a 2 2 R such that M(A) � 2 for
all A 2 X⇤. Let MrB (A•) be furthermore the subset of Mr (A•) consisting
of all supermartingales M that are bounded; so for which M and �M are
bounded below.

Definition 4.2. For any acceptable gambles tree A•, the game-theoretic up-
per expectations Erb

A,V and ErB
A,V are defined, for all ( 5 , A) 2 V ⇥X⇤, by

Erb
A,V ( 5 |A) B inf

�
M(A) : M 2 Mrb (A•) and lim inf M �A 5

 
;

ErB
A,V ( 5 |A) B inf

�
M(A) : M 2 MrB (A•) and lim inf M �A 5

 
. }

We next prove that these game-theoretic upper expectations Erb
A,V and

ErB
A,V both coincide with Er

A,V on the entire domain V ⇥X⇤. To do this, we
first establish the following lemma which says that bounding a supermartin-
gale from above does not impact the fact that it is a supermartingale. We
will use, for any real process C and any ⌫ 2 R, the notation C^⌫ to denote
the process defined by C^⌫ (A) B min{ C(A), ⌫} for all A 2X⇤.

Lemma 4.1.5. For any M 2 Mr (A•) and all ⌫ 2 R, we have that M^⌫ 2
Mr (A•).

Proof. Since M^⌫ (A) M(A) for all A 2X⇤, it follows that M^⌫ (A·) M(A·) for all
A 2X⇤. Fix any A 2X⇤. We first show that ��M^⌫ (A) 2 AA.

If M(A)  ⌫, then M^⌫ (A) = M(A) and therefore �M^⌫ (A) = M^⌫ (A·) �M(A) 
�M(A). Since ��M(A) 2 AA, we have by the monotonicity property [D528] that
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��M^⌫ (A) 2 AA. If, on the other hand, M(A) > ⌫, then M^⌫ (A) = ⌫, which by the
fact that M^⌫ (A·)  ⌫ implies that �M^⌫ (A)  0. Then we once more have by D127

that ��M^⌫ (A) 2 AA. So for all situations A 2X⇤ we find that ��M^⌫ (A) 2 AA, and
therefore that M^⌫ 2 Mr (A•).

In order to prove the equality between Er
A,V, E

rb
A,V and ErB

A,V on V ⇥X⇤,
we will need yet another lemma; it says that bounding the limit inferior of
a process from above is the same as first bounding the process from above,
and taking the limit inferior.

Lemma 4.1.6. For any real process C and any path l 2 ⌦, we have that

min
n
⌫, lim inf

<!+1
C(l<)

o
= lim inf

<!+1
C^⌫ (l<) for all ⌫ 2 R.

Proof. This follows as a special case of Lemma 4.2.10151 further below.

Proposition 4.1.7. For any acceptable gambles tree A•, we have that

Er
A,V ( 5 |A) = Erb

A,V ( 5 |A) = ErB
A,V ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. Fix any ( 5 , A) 2 V ⇥X⇤. Since clearly MrB (A•) ⇢ Mrb (A•) ⇢ Mr (A•), we
have that Er

A,V ( 5 |A)  Erb
A,V ( 5 |A)  ErB

A,V ( 5 |A). So it su�ces to prove that Er
A,V ( 5 |A) �

ErB
A,V ( 5 |A). Consider any M 2 Mr (A•) such that lim inf M �A 5 . Let MA be the real

process defined by MA (B) B M(B) for all B A A, and MA (B) B M(A) for all B b A.
Then note that �MA (B) = �M(B) for all B w A, and �MA (B) = 0 for all B A A. Since, for
all B 2 X⇤, ��M(B) 2 AB [because M 2 Mr (A•)] and 0 2 AB [due to the fact that
AB satisfies D127], it follows that MA 2 Mr (A•). Moreover, we clearly also have that
lim inf MA =A lim inf M �A 5 . Let ⌫ B max{sup 5 ,MA (A)+1} [which is real because 5
is a gamble] and note that M^⌫

A
2 Mr (A•) by Lemma 4.1.5x. We moreover have

that M^⌫
A

is bounded. Indeed, M^⌫
A

is bounded above by ⌫ 2 R and bounded below
by

inf
B2X⇤

M^⌫
A
(B) = inf

B2X⇤
min{MA (B), ⌫} � inf

B2X⇤
min{MA (B),MA (A) + 1} = inf

B2X⇤
MA (B)

= inf
BwA

M(B),

where the last equality follows from the definition of MA. To see that this lower
bound is real, observe that, due to Lemma 4.1.3135 and the fact that lim inf M �A 5 ,

inf
BwA

M(B) � inf
BwA

inf
l2�(B)

lim inf M(l) � inf
BwA

inf
l2�(A)

lim inf M(l)

= inf
l2�(A)

lim inf M(l) � inf
l2�(A)

5 (l).

Since 5 is a gamble and thus bounded, we indeed have that infl2�(A) 5 (l) 2 R, and
therefore that M^⌫

A
is bounded below. Recalling that M^⌫

A
2 Mr (A•) and that M^⌫

A
is

bounded above, we conclude that M^⌫
A
2 MrB (A•). Moreover, since lim inf MA �A 5

and since ⌫ � sup 5 , we have by Lemma 4.1.6 that lim inf M^⌫
A
�A 5 . Hence, it follows

from the definition of ErB
A,V that ErB

A,V ( 5 |A)  M^⌫
A
(A)  MA (A) = M(A). Since this

holds for any M 2 Mr (A•) such that lim inf M �A 5 , we obtain from the definition
of Er

A,V that ErB
A,V ( 5 |A)  Er

A,V ( 5 |A).
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4.2 Game-theoretic upper expectations on extended real-valued variables

4.2 Towards an appropriate definition for the game-theoretic up-
per expectation on extended real-valued variables

For all we could tell so far, the game-theoretic upper expectations Er
A,V,

Erb
A,V and—especially—ErB

A,V present themselves as excellent global models.
Yet, there is one issue: the domain of these global upper expectations con-
tains only gambles, and no unbounded or extended real(-valued) variables
in V . This is with good reason though, since extending them to the entire
domain V ⇥X⇤—in a trivial way, by simply applying the same character-
ising expressions—would yield global upper expectations with undesirable
properties.

4.2.1 The problem with Er
A,V, E

rb
A,V and ErB

A,V

Let us start by pointing out the issue with the version Er
A,V based on real-

valued (unbounded) supermartingales. In the sequel, we assume that the
domain of Er

A,V is extended to V⇥X⇤ in a trivial way, by using the expression
in Definition 4.1132. We will also require the corresponding global game-
theoretic lower expectation Er

A,V; similarly as on p.64, it is defined, for all
( 5 , A) 2 V ⇥X⇤, by

Er
A,V ( 5 |A) B sup

�
M(A) : M 2 Mr (A•) and lim supM A 5

 
,

where Mr (A•) is an alternative notation for the set M(A•) of all real sub-
martingales according to A•, which was introduced in Section 3.2.361. Re-
call that Mr (A•) is then the set of all real processes M such that �M 2
Mr (A•), or equivalently, the real processes M for which there is a betting
process G such that M(A) = M(⇤) + C G (A) and G(A) 2 AA for all A 2 X⇤.
Furthermore, one may again check that Er

A,V and Er
A,V are related by con-

jugacy; so Er
A,V ( 5 |A) = �E

r
A,V (� 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

An obvious property that we want general upper and lower expectations
to have is that lower expectations are always lower than or equal to the cor-
responding upper expectations. Yet, it is this very basic requirement that
is not always satisfied by the game-theoretic upper and lower expectations
Er

A,V and Er
A,V. This issue was already raised by De Cooman et al. [8, Ex-

ample 1], and the following example is borrowed from them.

Example 4.2.1. Let X B {0, 1} and let A• be defined by AA B { 5 2
L(X) : 5 (0) + 5 (1) � 0} for all A 2X⇤. Clearly, the tree A• is an acceptable
gambles tree. For any U 2 R>, let GU be the betting process defined by
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GU(⇤) B 2U(I0 � I1) and by

GU(F1:9) B
8>>><
>>>:

U29�1 (I0 � I1) if F1:9 = 0
9;

3U29�1 (I0 � I1) if F1:9 = 1
9;

0 otherwise,
for all F1:9 2X⇤ \ {⇤}.

Then, for all A 2X⇤, since GU(A) (0) + GU(A) (1) = 0, we have that �GU(A) 2
AA. Hence, if we letMU be the real process defined byMU(A) B �U+ C GU (A)
for all A 2X⇤, then MU 2 Mr (A•). Moreover, note that

M(F1:9) =
8>>><
>>>:

U29�1 if F1:9 = 0
9;

�3U29�1 if F1:9 = 1
9;

0 otherwise,
for all F1:9 2X⇤.

Hence, we have that limMU = lim inf MU is equal to—and therefore
superhedges—the variable 5 2 V defined by

5 (l) B
8>>><
>>>:

+1 if l = 000 · · · ;
�1 if l = 111 · · · ;
0 otherwise,

for all l 2 ⌦.

As a consequence, by the expression in Definition 4.1132, we have that
Er

A,V ( 5 )  MU(⇤) = �U. Since this holds for any U > 0, we obtain that
Er

A,V ( 5 ) = �1. However, we also have that Er
A,V ( 5 ) = �Er

A,V (� 5 ) =
�(�1) = +1 because of symmetry considerations: indeed, if we swap the
0’s and 1’s in the reasoning above, then 5 turns into � 5 but the local models
AA remain unaltered. A completely similar derivation therefore yields that
Er

A,V (� 5 ) < U for all U 2 R>, and therefore that Er
A,V (� 5 ) = �1. As a

result, we find that Er
A,V ( 5 ) = �1 < +1 = Er

A,V ( 5 ). ^

As a consequence of this example, the game-theoretic upper expectation
Er

A,V with real-valued (unbounded) supermartingalesMr (A•) is unsuitable.
We are thus left with the versions Erb

A,V and ErB
A,V as possible game-theoretic

upper expectations. One may check that the issue raised in the example
above disappears if, instead of Er

A,V, we were to work with Erb
A,V or ErB

A,V—
hence the reason why the former was used in [8, 94]. We do not tread into
detail here, because, as we will show next, there are other issues with Erb

A,V
and ErB

A,V that make these versions unsuitable as well.
Let us first focus on the more popular version Erb

A,V. The domain of Erb
A,V

is again extended to V ⇥X⇤ in a trivial way, by applying the same expression
as in Definition 4.2137.

Example 4.2.2. Consider a stochastic process with state spaceX B {0, 1}.
Let A• be the acceptable gambles tree defined by A⇤ B L� (X) [ { 5 2
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L(X) : 5 (0) > 0} and, for all A 2X⇤ \ {⇤}, by AA B L� (X). It can easily
be checked that A• is indeed an acceptable gambles tree. In particular, A•

models the case where our subject is willing to commit to any gamble on
-1 as long as the gamble’s pay-o� for the outcome 0 is positive (or non-
negative if the pay-o� for 1 is also non-negative), and where we are not
willing to gamble—in a non-trivial way—on the state value at any other time
instant. This can be interpreted as saying that our subject is (practically)
certain about the fact that -1 will take the value 0, but that he is completely
uncertain or is not willing to take any risks with respect to values of the
variables -2, -3, . . . In terms of upper expectations, one can easily check
that Q⇤ (I1) = 0 for the upper expectations tree Q• B Q•,A that agrees with
A•, and additionally that, due to Proposition 4.1.7138, Proposition 4.1.4136
and Lemma 3.D.1114, E

rb
A,V (11) = 0.

Let g0 2 V be the hitting time of the state 0:

g0 (l) B inf{9 2 N : l9 = 0} for all l 2 ⌦.

We want to determine the game-theoretic upper expectation Erb
A,V (g0) of g0

with respect to the tree A•. To this end, consider any M 2 Mrb (A•) such
that lim inf M � g0. Since AA = L� (X) for all A 2X⇤ \ {⇤}, we have that
�M(A)  0 for all A 2X⇤ \{⇤}, and therefore clearly that M(F1) �M(F1:9)
for all F1:9 2 X⇤ \ {⇤}. This implies that M(-1) � lim inf M � g0. Since
g0 (111 · · · ) = +1, this implies thatM(1) = +1, which is impossible because
M is assumed to be real-valued. Hence, there are no supermartingales M 2
Mrb (A•) for which it holds that lim inf M � g0, and so Erb

A,V (g0) is equal to
the infimum over an empty set—so it is equal to +1.

The result that Erb
A,V (g0) = +1 is again in conflict with our intuition; we

would expect that Erb
A,V (g0) = 1 because, according to A• or its agreeing up-

per expectations tree Q•, our subject is practically certain about the fact that
-1 = 0. The fact that Erb

A,V (g0) = +1 not only shows that Erb
A,V is sometimes

too conservative; as we will show next, it also implies that Erb
A,V does not

satisfy continuity with respect to general increasing sequences of finitary
gambles—which, in fact, could essentially be seen as the cause of its con-
servative behaviour. Note, by the way, that this is not in contradiction with
our claim from Section 4.1.1133, where we said that Erb

A,V satisfies continuity
with respect to increasing sequences of finitary gambles that converge to a
gamble—the latter part of this statement is crucial.

Consider the sequence (g^9
0
)92N of hitting times of 0 that are stopped at

time 9; so g^9
0
(l) B min{g0 (l), 9} for all 9 2 N and all l 2 ⌦. Each g

^9
0

is a finitary gamble because it only depends on the first 9 states -1:9 and is
bounded above by 9 (and below by 1). The sequence (g^9

0
)92N is moreover

clearly increasing and converges pointwise to g0. However, one can verify
that Erb

A,V (g^90 ) = 1 for all 9 2 N [hint: consider, for any n > 0 and any

141



Game-theoretic upper expectations

9 2 N, the real process M defined by M(⇤) B 1+ n, M(A) B 1 for all A w 0
and M(A) B 9 for all A w 1]. Hence, we conclude that

lim
9!+1

Erb
A,V (g^90 ) = 1 < +1 = Erb

A,V (g0) = Erb
A,V ( lim

9!+1
g
^9
0
).

^

It can easily be seen that exactly the same issues would arise if we were
to replace Erb

A,V with ErB
A,V in the example above (when, again, extending

the domain of ErB
A,V to V ⇥X⇤ in a trivial way). Or, alternatively, as an

immediate consequence of Definition 4.2137 and the definitions of the sets
Mrb (A•) and MrB (A•), one may observe that Erb

A,V is always smaller than or
equal to—at least as informative as—ErB

A,V, and thus that also ErB
A,V (g0) =

+1. The fact that ErB
A,V (g^90 ) = 1 for all 9 2 N can moreover be inferred

from Proposition 4.1.7138.
In summary, the three game-theoretic upper expectations Er

A,V, E
rb
A,V

and ErB
A,V are all unsuitable when considering the domain V ⇥X⇤. We shall

therefore want to further modify the definition(s) of (one of) these global
upper expectations in such away that we obtain a new game-theoretic upper
expectation with more desirable properties. We consider two possible—
and appropriate—ways of doing so: firstly, using extensions based on upper
and lower cuts; secondly, defining extended local models and considering
extended real-valued supermartingales (that are bounded below). As we
will show in Section 4.8186, the two global upper expectations that result
from these approaches always coincide.

4.2.2 An extension using continuity with respect to upper and lower
cuts

A straightforward approach for obtaining a suitable extended game-
theoretic upper expectation is to simply use Er

A,V, Erb
A,V or ErB

A,V on the
smaller domain V ⇥X⇤ where they behave nicely, and then subsequently
extend them to V ⇥X⇤ by imposing continuity with respect to so-called up-
per and lower cuts.2 We continue to work with Erb

A,V from here on, because it
is the version that was used the most often in the past, but one could equally
well use Er

A,V or ErB
A,V—where the latter is, interpretationally speaking, to

be preferred.
We use, for any extended real-valued function 5 2 L(Y) on a non-

empty set Y, and any 2 2 R, the notation 5
^2 to denote the variable in

L(Y) defined by 5
^2 (í) B min{ 5 (í), 2} for all í 2 Y, and, analogously,

5
_2 to denote the pointwise maximum of 5 and 2. For any upper expectation

2This is similar to how Tro�aes & De Cooman [106, Chapter 15] extend the notion of
coherence from gambles to unbounded real-valued variables.
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E : L(Y) ! R, the following properties are then called continuity with
respect to upper and lower cuts, respectively:3

CU1. E ( 5 ) = lim2!+1 E ( 5^2) for all 5 2 Lb (Y);
CU2. E ( 5 ) = lim2!�1 E ( 5_2) for all 5 2 L(Y).

Note that Property CU1 only involves extended real-valued functions
that are bounded below. Our reason for doing so is purely mathematical:
it allows us to use CU1 and CU2 as a tool to extend any monotone upper
expectation on the set of all gamblesL(Y) in an unambiguous way to the set
L(Y). For the sake of completeness; we say that a general (unconditonal)
upper expectation E : K ! R with K ✓ L(Y) is monotone if E ( 5 )  E (6)
for any two 5 , 6 2 K such that 5  6.

Lemma 4.2.3. For any upper expectation E on L(Y) that is monotone, there
is a unique extension E" to L(Y) that satisfies CU1 and CU2.

Proof. Let E0 be the upper expectation on Lb (Y) that is equal to E on L(Y) and
that is defined, for all Lb (Y) \ L(Y), by E0( 5 ) B lim2!+1 E ( 5^2). Note that, since
E is monotone, the limit on the right-hand side indeed exists. Next, let E" be the
upper expectation on L(Y) that is equal to E0 on Lb (Y) and that is defined, for all
L(Y) \ Lb (Y), by E"( 5 ) B lim2!�1 E0( 5_2). Again, since E0 is monotone due to its
definition and the fact that E is monotone, the limit on the right-hand side exists.

Since E" extends E0, and E0 extends E, we also have that E" extends E. Moreover,
E" satisfies CU2 on L(Y) \Lb (Y) by definition. That it also satisfies CU2 on Lb (Y)
is trivial; any 5 2 Lb (Y) is bounded below, so there is a real number 20 such that
5
_2 = 5 for all 2  2

0. Furthermore, since E0 satisfies CU1 on Lb (Y) \ L(Y) by
definition, and since E" extends E0, E" also satisfies CU1 on Lb (Y) \ L(Y). To see
that it also satisfies CU1 onL(Y) is again trivial; any 5 2 L(Y) is bounded, so there
is surely a real number 20 such that 5^2 = 5 for all 2 � 2

0. Hence, in summary, E" is
an extension of E to L(Y) that satisfies CU1 and CU2. To see that E" is moreover
the only upper expectation on L(Y) that extends E and that satisfies CU1 and CU2,
can then again be reasoned in a step-wise manner, first checking that CU1 uniquely
determines the values on Lb (Y) \ L(Y) (in terms of the values of E), and then
checking that CU2 uniquely determines the values on L(Y) \ Lb (Y).

We next apply this extension method to the upper expectation Erb
A,V (·|A)

for all A 2X⇤ to arrive at our definition of the global game-theoretic upper
expectation E

"
A,V.

Definition 4.3. For any acceptable gambles tree A•, we let E
"
A,V be the

unique global upper expectation on V ⇥X⇤ that extends Erb
A,V and is such

that, for all A 2X⇤, E
"
A,V (·|A) satisfies CU1 and CU2. }

3Shafer and Vovk call CU2 ‘bounded-below support’; see [85, Exercise 6.9]
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Proof. Let us show that E
"
A,V exists (and is unique). Consider any A 2 X⇤. It can

easily be inferred from Definition 4.2137 that E
rb
A,V (·|A) on V is monotone, and thus by

Lemma 4.2.3x that there is a unique extension E
"
A,V (·|A) to V that satisfies CU1x

and CU2x. Hence, the upper expectations E
"
A,V (·|A) for all A 2 X⇤ form a global

upper expectation E
"
A,V on V ⇥X⇤ that satisfies the desired properties.

Why do we believe this way of defining an extended game-theoretic up-
per expectation E

"
A,V is appropriate? Our answer is based on our interpre-

tation of unbounded and extended real-valued global variables; a variable
5 2 V that is not bounded is, at least in this game-theoretic chapter, re-
garded as an abstract idealisation of the gamble ( 5^21 )_22—that is bounded
above by 21 and bounded below by 22—for arbitrarily large positive 21 2 R>

and arbitrarily large negative 22 2 R<. This makes sense, to us, because
game-theoretic upper expectations have a behavioural justification and so
variables—bounded, unbounded or extended real-valued—are typically in-
terpreted as uncertain pay-o�s. But what does it mean for a pay-o� to be
infinite? Or even, what does it mean for a bet to be unbounded in its possi-
ble values? In reality, there is always only a finite amount of money, and so
the variables in V \ V can be given only an indirect interpretation.4 The ap-
proach described above then seems one of the most intuitive ways to do so.
Then, given this indirect interpretation, extending Erb

A,V with E
"
A,V seems

like a logical thing to do; CU1x and CU2x guarantee that the values of
E
"
A,V on unbounded, possibly extended real-valued variables are simply ide-

alised, limit values of Erb
A,V on gambles obtained from cutting variables at

su�ciently large values.
Another reason is that Axioms CU1x and CU2x are rather weak. Ax-

iom CU2x can be justified by a conservativity argument; imposing it on
top of CU1x is equivalent to taking the largest—the most conservative—
monotone global upper expectation that coincides with Erb

A,V and satisfies
CU1x. Axiom CU1x on the other hand can be seen as a weakened ver-
sion of the continuity with respect to increasing sequences—or continuity
from below—that is often adopted, either directly, e.g. in [85, Part II], or
indirectly as a consequence of the continuity of the underlying probability
measure or capacity; see e.g. [5, 29, 31].

In spite of all this, extending the upper expectation Erb
A,V (or Er

A,V or
ErB

A,V) through Axioms CU1x and CU2x is not that common. A technique
that is used more often consists in directly applying the expression for the
upper expectation Erb

A,V in Definition 4.2137 to the entire domain V ⇥X⇤,
but with the real-valued supermartingales replaced by extended real-valued
ones [85, 97, 98]. This of course first requires us to extend the local un-

4A similar observation can actually be made about gambles in V that are non-finitary; see
Section 6.1285.
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4.2 Game-theoretic upper expectations on extended real-valued variables

certainty models AA—or Q
A
—to allow for such extended real-valued super-

martingales. Such an approach will be the topic of the next section.
Remarkably enough, as we will see in Section 4.8186, the ex-

tended game-theoretic upper expectation that results from this ‘extended
supermartingale’-approach is identical to the operator E

"
A,V we have in-

troduced here. It therefore does not matter which extension procedure
is chosen. We will state and derive most of our future results in terms
of the game-theoretic upper expectation with extended real supermartin-
gales, because it is mathematically more convenient and because this type
of upper expectation is more widely used [85, 88]. In principle, however,
we favour the use of E

"
A,V, because relying on extended real-valued su-

permartingales undermines what we think is a key strength of the game-
theoretic approach: that supermartingales—and hence the resulting game-
theoretic upper expectations—can be given a clear behavioural meaning in
terms of betting.

4.2.3 An extension using extended local sets of acceptable gambles

In order to allow for extended real-valued supermartingales, we first
need to extend the local sets of acceptable gambles A• such that they can
possibly also contain extended real variables on X. However, our notion of
acceptability hinged on a behavioural interpretation, which we cannot di-
rectly apply to extended real variables—a point that we have already raised
in the previous section. We therefore first need to extend the notion of ac-
ceptability itself. We propose the following approach for finite state spaces.

Definition 4.4 (Acceptability for extended real variables). We say that an
extended real variable 5 2 L(X) \ L(X) is acceptable if there is some
21 2 R> such that the gamble ( 5^21 )_22 is acceptable for all 22 2 R<. }

Definition 4.4 can be seen to make most sense when reasoning in a step-
wise manner as follows. Suppose that for some 5 2 L(X) \ L(X), there
is a 21 2 R> such that ( 5^21 )_22 2 A for all 22 2 R<. Then the gamble
( 5^21 )_22 is acceptable no matter how far we bound 5

^21 from below by
22 < 0. As we have discussed in the previous section, we regard 5

^21 to
be an abstraction of ( 5^21 )_22 for arbitrarily large negative 22 2 R<, so it is
sensible to call 5^21 itself acceptable—note that this is indeed in accordance
with our definition above, because (( 5^21 )^21 )_22 = ( 5^21 )_22 is acceptable
for all 22 2 R<. The fact that we then also call 5 acceptable, follows from a
monotonicity argument: 5 is deemed acceptable because 5

^21 is acceptable
and 5

^21  5 .
Unlike our original notion of acceptability, which was purely interpreta-

tional and had no direct mathematical consequences—coherence did the
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work there—our extended definition of acceptability inevitably imposes
structure on a set of acceptable variables. This structure immediately al-
lows us to associate with a general coherent set of acceptable gambles A on
X a unique extended set of acceptable variables A".

Definition 4.5. For any coherent set of acceptable gambles A ✓ L(X), the
corresponding extended set of acceptable variables A" ✓ L(X) is the set
that includes A and additionally contains any variable 5 2 L(X) \ L(X)
for which there is some 21 2 R> such that ( 5^21 )_22 2 A for all 22 2 R<. }

The following corollary provides a characterisation for the extended sets
A" that is more practical to work with.

Corollary 4.2.4. For any coherent set of acceptable gambles A ✓ L(X), the
corresponding extended set of acceptable variables A" ✓ L(X) is the set of all
variables 5 2 L(X) for which there is some 21 2 R> such that ( 5^21 )_22 2 A
for all 22 2 R<.

Proof. Let A0 be the set of all variables 5 2 L(X) for which there is some 21 2 R>

such that ( 5^21 )_22 2 A for all 22 2 R<. Then it is clear by Definition 4.5 that
the intersection of A0 with L(X) \ L(X) is equal to the intersection of A" with
L(X) \ L(X). Hence, since

A0 =
�
A0 \

�
L(X) \ L(X)

� �
[

�
A0 \L(X)

�
,

and similarly for A", it su�ces to prove that A0 \L(X) is equal to A" \L(X). The
latter is equal to A due to Definition 4.5, so we need to show that A0 \L(X) = A.

Consider any gamble in 5 2 A and let 21 2 R> be any positive real number such
that 21 � sup 5 2 R. Then we have that 5^21 = 5 2 A. Moreover, for any 22 2 R<,
we have that ( 5^21 )_22 � 5

^21 . Then since 5
^21 2 A and since A satisfies D528, we

also find that ( 5^21 )_22 2 A. Hence, we have that ( 5^21 )_22 2 A for all 22 2 R<, and
therefore by the definition of A0 that 5 2 A0. Since this is true for any gamble 5 2 A,
we obtain that A0 ◆ A and therefore that A0 \L(X) ◆ A. To prove the converse
inclusion, consider any gamble 5 2 A0 \L(X). Then, according to the definition
of A0, there is a 21 2 R> such that ( 5^21 )_22 2 A for all 22 2 R<. In particular, for
any 22 2 R< such that 22  inf 5^21 2 R, we have that 5^21 = ( 5^21 )_22 2 A. Since
5 � 5

^21 and since 5 is a gamble, the coherence [D528] of A implies that 5 2 A.
Hence, we have that 5 2 A for all 5 2 A0\L(X), and therefore that A0\L(X) ✓ A
as desired.

The following result moreover shows that an extended version of the
monotonicity property [D528] for coherent sets of acceptable gambles holds
for the extended sets A". We will require it later on, to prove Proposi-
tion 4.3.1153.

146



4.2 Game-theoretic upper expectations on extended real-valued variables

Lemma 4.2.5. Consider any local set of acceptable gambles A and let A" be
its extension according to Definition 4.5 . Then, for any 5 , 6 2 L(X) such
that 5  6, we have that 6 2 A" if 5 2 A".

Proof. First note that, for any two gambles 5 , 6 2 L(X) such that 5  6, the mono-
tonicity property holds because A satisfies D528 due to its coherence, and because
A"\L� (X) = A due to Definition 4.5 . Now consider any two general 5 , 6 2 L(X)
such that 5  6, and assume that 5 2 A". Then Corollary 4.2.4 implies that there
is a 21 2 R> such that ( 5^21 )_22 2 A for all 22 2 R<. Since 5  6, we also have that
( 5^21 )_22  (6^21 )_22 for all 22 2 R<. Moreover, since both ( 5^21 )_22 and (6^21 )_22 are
gambles for all 22 2 R<, and since we already established the monotonicity prop-
erty for gambles in A, we obtain that (6^21 )_22 2 A for all 22 2 R<. Hence, by
Corollary 4.2.4 , we have that 6 2 A".

Extended real supermartingales

The previously introduced definition of an extended set of acceptable gam-
bles can in particular be applied to the individual components of an accept-
able gambles tree A• to form the corresponding extended tree A"

• ; for any
A 2X⇤, A"

A
is then the extended set of acceptable variables that corresponds

to AA as described in Definition 4.5 . Such an extended tree A"
• can then

subsequently be used to define extended real(-valued) supermartingales.
Before we do so, let us reconsider the relation between processes and their
(process) di�erences in case they are extended real-valued.

We adopt similar definitions as in Chapter 345; an extended real(-
valued) process C is an extended real-valued map on X⇤, while an ex-
tended betting process G is a map that associates with each A 2 X⇤ an
extended real variable G(A) 2 L(X). The process di�erence � C can also
be defined similarly as before, as the extended betting process which is, for
any A 2X⇤, equal to

� C(A) B C(A·) � C(A) with C(A·) (F) B C(AF) for all F 2X.

Conversely, with an extended betting process G, we associate an extended
real process C G defined by

C G (F1:9) B
9�1X
✓=0

G(F1:✓) (F✓+1) for all F1:9 2X⇤.

However, note that, since we are summing and subtracting extended real
numbers—recall Section 1.614 for the associated conventions—these rela-
tions between processes and process di�erences are not one-to-one any
more (even if we fixed the initial value of the process). That is, there may
be multiple di�erent extended real processes—with the same initial value—
that have the same process di�erence and, vice versa, there may be multiple
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di�erent extended betting processes that result in the same extended real
process. As a result, given an extended real process C, we do not necessarily
have, for all F1:9 2X⇤, that C(F1:9) is equal to C(⇤) +P

9�1
✓=0 � C(F1:✓) (F✓+1).

In fact, there does not even necessarily exist an extended betting process
G such that C is equal to the extended real process C(⇤) + C G. This is
for instance the case if C is such that C(A) = +1 and C(B) 2 R for some
A, B 2X⇤ and B A A.

Similarly as in Section 3.2.361, we say that an extended real pro-
cess M is a(n) (extended real) supermartingale according to an accept-
able gambles tree A• if there is an extended betting process G such that
M(A) = M(⇤) + C G (A) and �G(A) 2 A"

A
for all A 2 X⇤. Note that, since

the sets A"
A
include the sets AA by definition, we have that any—real—

supermartingale according to our earlier definition from Section 3.2.361 is
still an extended real supermartingale according to our current definition,
hence whywe simply adopted the same terminology. A subtlety worth point-
ing out, though, is that, in contrast with the real supermartingales intro-
duced in Section 3.2.361, the extended real supermartingales defined here
cannot be alternatively characterised by means of process di�erences; that
is, an extended real process C for which �� C(A) 2 A"

A
for all A 2 X⇤ is

not necessarily a supermartingale, and conversely, for an extended real su-
permartingale M, we do not necessarily have that ��M(A) 2 A"

A
for all

A 2 X⇤. This is due to the fact that, as just mentioned, the relations be-
tween extended real processes, process di�erences and betting processes
are more tedious than if they were to take values in the reals. We choose
to define extended real supermartingales as above, with acceptable betting
processes, and not with process di�erences, because the latter would pre-
clude a supermartingale to remain (in all the following situations) in +1
once it has attained +1; indeed, if M(A) = +1 and M(A·) = +1, then we
have that ��M(A) = �(+1) = �1, which can never be an element of A"

A

(whatever the acceptable gambles tree) due to D227. A similar observation
can be made for a process attaining the constant value �1. It can be shown
that forcing a supermartingale to change its value (in at least one of the fol-
lowing situations) after it has reached +1 or �1 would yield some rather
undesirable e�ects; and intuitively too, it would plainly seem unnatural if
we were to preclude a supermartingale from remaining constant on some
values.

Finally, similarly as before andwithout going into the details, we say that
an extended real process M is a(n) (extended real) submartingale accord-
ing to A• if �M is an extended real supermartingale according to A•—it can
be checked that any real submartingale as defined before, in Section 3.2.361,
is an extended real submartingale as defined here.
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A definitive version of the game-theoretic upper expectation

We next apply the previously introduced concepts about extended real-
valued supermartingales and submartingales to define a modified version
of the game-theoretic upper expectation Erb

A,V. We let Meb (A•) be the set of
all extended real bounded below supermartingales according to A•, and we
let Meb (A•) be the set of all extended real bounded above submartingales
according to A•. So M 2 Meb (A•) if and only if �M 2 Meb (A•).

Definition 4.6 (The game-theoretic upper/lower expectation with extended
real supermartingales that are bounded below/above). For any acceptable
gambles tree A•, E

eb
A,V and Eeb

A,V are defined, for all ( 5 , A) 2 V ⇥X⇤, by

Eeb
A,V ( 5 |A) B inf

�
M(A) : M 2 Meb (A•) and lim inf M �A 5

 
;

Eeb
A,V ( 5 |A) B sup

�
M(A) : M 2 Meb (A•) and lim supM A 5

 
. }

Due to the following conjugacy relation, we are again allowed to focus
on upper expectations.

Corollary 4.2.6 (Conjugacy). For any acceptable gambles tree A•, we have
that Eeb

A,V ( 5 |A) = �E
eb
A,V (� 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. This can easily be derived from the definitions of Eeb
A,V and Eeb

A,V, and the fact
that M 2 Meb (A•) if and only if �M 2 Meb (A•).

Similar modifications of the upper expectations Er
A,V and ErB

A,V with ex-
tended real supermartingales can also be proposed, but it is easy to see,
based on our earlier considerations, that these modifications will turn out to
be unsuitable. Indeed, in the case of ErB

A,V, one cannot really speak of a mod-
ification because working with bounded extended real supermartingales is
the same as working with the set MrB (A•) of all bounded real supermartin-
gales, which was already used in Definition 4.2137. Themodification of Er

A,V,
then, would consist in working with all extended real (unbounded) super-
martingales, which, as mentioned before, includes all real (unbounded) su-
permartingales Mr (A). The resulting global upper expectation would thus
surely be smaller than or equal to Er

A,V—and the corresponding global lower
expectation would be larger than or equal to Er

A,V—and so the same issue
as in Example 4.2.1139 would then arise.

To the contrary, the global game-theoretic upper expectation Eeb
A,V fixes

all the issues raised previously. Let us check that it does so for the issue in
Example 4.2.2140.

Example 4.2.7. Let A• be the same acceptable gambles tree as in Exam-
ple 4.2.2140; so A⇤ is equal to L� (X) [ { 5 2 L(X) : 5 (0) > 0}, and
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AA = L� (X) for all A 2 X⇤ \ {⇤}. Then it can be checked using Defini-
tion 4.5146 that

A"
⇤ = L� (X) [ { 5 2 L(X) : 5 (0) > 0},

whereL� (X) is the set of all non-negative variables inL(X). Hence, an ex-
tended real process M that is obtained from an extended betting process G
for which G(⇤) (0) < 0 and, for all A 2X⇤ \ {⇤}, �G(A) = 0 2 AA = L� (X),
is a supermartingale according to A•. In particular, for any n > 0, the ex-
tended real process M defined by

M(A) B
8>>><
>>>:

1 + n if A = ⇤;
1 if A w 0;
+1 if A w 1,

for all A 2X⇤,

is a supermartingale according to A•. Since it is also clearly bounded below,
we have that M 2 Meb (A•). Moreover, M superhedges the variable g0

on all paths; even on l = 111 · · · where g0 (l) = +1. So it follows from
Definition 4.6x that Eeb

A,V (g0) M(⇤) = 1+n. Since this is true for all n > 0,
we find that Eeb

A,V (g0)  1. To see that Eeb
A,V (g0) � 1, note that, for any

A 2X⇤\{⇤}, since AA = L� (X), the extended set of acceptable variables A"
A

is equal to L� (X). Hence, together with the form of A"
⇤, we infer that any

supermartingale M 2 Meb (A•) must always remain equal or decrease on all
paths l 2 �(0). So, for any M 2 Meb (A•) such that lim inf M � g0 � 1,
we have that M(⇤) � 1, and thus by Definition 4.6x that Eeb

A,V (g0) �
1. Hence, we find that Eeb

A,V (g0) = 1, which indeed corresponds to our
intuition. This is contrast with the result in Example 4.2.2140, where we
obtained that Erb

A,V (g0) = +1. ^

We encourage the reader to moreover check that Eeb
A,V does also not

su�er from the same issue as the one raised for Er
A,V in Example 4.2.1139.

Furthermore, as we will show next, Eeb
A,V is an extension of (the restriction

of) ErB
A,V on V ⇥X⇤—or, by Proposition 4.1.7138, E

r
A,V or Erb

A,V on V ⇥X⇤—
and therefore Eeb

A,V on V ⇥X⇤ can be interpreted in the same intuitive way
as ErB

A,V. Hence, due to this equality, Eeb
A,V behaves in the same desirable

way in Example 4.1.1133 as Er
A,V.

Proposition 4.2.8. For any acceptable gambles tree A•, we have that

Eeb
A,V ( 5 |A) = ErB

A,V ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

This equality remains to hold if we replace ErB
A,V by Er

A,V or Erb
A,V.

The proof of this result is based on the following two lemmas, which
are similar to Lemma 4.1.5137 and Lemma 4.1.6138, but deal with extended
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real processes. Just as before, for any extended real process C and any real
number ⌫, C^⌫ denotes the extended real process defined by C^⌫ (A) B
min{ C(A), ⌫} for all A 2X⇤.

Lemma 4.2.9. For any M 2 Meb (A•) and all ⌫ 2 R, we have that M^⌫ 2
MrB (A•).

Proof. Let G be the extended betting process such that M(A) = M(⇤) + CG (A) and
�G(A) 2 A"

A
for all A 2 X⇤. Note that the process M^⌫ is bounded (and thus real-

valued) because M is bounded below. We moreover prove that ��M^⌫ (A) 2 AA for
all A 2X⇤.

Fix any A 2X⇤. First suppose that M(A)  ⌫ and therefore that M(A) = M^⌫ (A).
Since M^⌫ is real-valued, M(A) is real. We moreover have that M(A·) �M^⌫ (A·) by
the definition of M^⌫, so we can infer that

G(A) = G(A) + M(A) �M(A) = M(A·) �M(A) �M^⌫ (A·) �M(A)
= M^⌫ (A·) �M^⌫ (A)
= �M^⌫ (A)

Hence, since �G(A) 2 A"
A
by assumption, we infer by Lemma 4.2.5146 that

��M^⌫ (A) 2 A"
A
. Then also ��M^⌫ (A) 2 AA because �M^⌫ (A) is a gamble [since

M^⌫ is real-valued] and A"
A
\L(X) = AA [due to Definition 4.5146].

On the other hand, suppose that M(A) > ⌫ and therefore that M^⌫ (A) = ⌫.
Then since M^⌫ (A·)  ⌫, we know that �M^⌫ (A)  0. Since �M^⌫ (A) is moreover
a gamble [since M^⌫ is real-valued], we have by D127 that ��M^⌫ (A) 2 AA. So we
conclude that ��M^⌫ (A) 2 AA for all A 2X⇤, and therefore that M^⌫ 2 MrB (A•) as
desired.

Lemma 4.2.10. For any extended real process C and any path l 2 ⌦, we
have that

min
n
⌫, lim inf

<!+1
C(l<)

o
= lim inf

<!+1
C^⌫ (l<) for all ⌫ 2 R.

Proof. Fix any ⌫ 2 R. It is easy to check that

lim inf
<!+1

C^⌫ (l<) = sup
;2N

inf
<�;

C^⌫ (l<) = sup
;2N

inf
<�;

min{ C(l<), ⌫}

= sup
;2N

min{ inf
<�;

C(l<), ⌫}

= min
⇢
sup
;2N

inf
<�;

C(l<), ⌫
�

= min
n
⌫, lim inf

<!+1
C(l<)

o
.

Proof of Proposition 4.2.8 . Fix any ( 5 , A) 2 V ⇥X⇤. That Eeb
A,V ( 5 |A)  ErB

A,V ( 5 |A)
follows immediately from the fact that MrB (A•) ✓ Meb (A•) [because each A"

A
is
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an extension of AA] and the definitions of Eeb
A,V and ErB

A,V [Definition 4.6149 and
Definition 4.2137]. To prove the converse inequality, consider any M 2 Meb (A•) such
that lim inf M �A 5 , and let ⌫ be any real number such that ⌫ > sup( 5 |A)—which
exists because 5 is a gamble, and therefore sup( 5 |A) 2 R. Then, by Lemma 4.2.9x,
we have that M^⌫ 2 MrB (A•). Moreover, it follows from Lemma 4.2.10x that, for
any l 2 �(A),

lim inf M^⌫ (l) = min {⌫, lim inf M(l)} � min {⌫, 5 (l)}
� min {sup( 5 |A), 5 (l)} = 5 (l),

which implies that lim inf M^⌫ �A 5 . Hence, by Definition 4.2137, we find that
ErB

A,V ( 5 |A)  M^⌫ (A)  M(A). Since this holds for any M 2 Meb (A•) such that
lim inf M �A 5 , we conclude that by Definition 4.6149 that ErB

A,V ( 5 |A)  Eeb
A,V ( 5 |A).

The remaining statement for Er
A,V and Erb

A,V follows from Proposition 4.1.7138.

From what we know so far, Eeb
A,V seems to be the best choice among

all the game-theoretic upper expectations Er
A,V, E

rb
A,V, E

rB
A,V (and the hy-

pothetical one Ee
A,V). Furthermore, as we will show in further sections of

this chapter, Eeb
A,V satisfies a broad variety of desirable properties. On top

of this, the upper expectation Eeb
A,V does not only coincide with ErB

A,V on
V ⇥X⇤, but, as we have claimed in Section 4.2.2142, and as we will prove
in Section 4.8186, it also coincides—on all of V ⇥X⇤—with the version E

"
A,V

that results from themore direct, and perhapsmore intuitive approach using
upper and lower cuts. As a result of these considerations, we will adopt the
upper expectation Eeb

A,V as our game-theoretic upper expectation of choice.

4.3 Game-theoretic upper expectations in terms of upper expec-
tations trees

As a first step in our mathematical analysis of Eeb
A,V, we develop an alter-

native expression for Eeb
A,V in terms of upper expectations trees Q• and their

corresponding extensions Q"• . The reason for doing this is that it leads to a
conclusion that is similar to Corollary 3.5.895: as far as the game-theoretic
upper expectation Eeb

A,V is concerned, the boundary structure of the sets AA

is irrelevant—the agreeing upper expectations tree Q• defined according to
Eq. (3.1)50 completely characterises Eeb

A,V. As a consequence, it makes sense
to prove such a property in the beginning, before we derive further math-
ematical properties, because it will then allow us to reduce the degrees of
freedom along which the initial local models can vary, therefore simplify-
ing matters considerably. Moreover, the representation of Eeb

A,V in terms of
upper expectations trees lies closer to Shafer and Vovk’s approach, and will
therefore, in Section 4.9187, allow us to relate our work to theirs in a clearer
fashion.
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In order to establish this result, we first need to know how we extend
an upper expectations tree Q• to a tree Q"• consisting of extended upper ex-
pectations Q"

A
on L(X). These can then be used to define the notion of

an extended real supermartingale corresponding to a tree Q• and to subse-
quently define corresponding game-theoretic upper expectations.

4.3.1 Extended local upper expectations

Just as we did in Section 4.2.2142 for global upper expectations, we can
uniquely extend a local upper expectation’s domain from L(X) to L(X)
by imposing continuity with respect to upper and lower cuts. Indeed, any
local upper expectation Q (corresponding to any general situation) is coher-
ent and therefore monotone [C433], so Lemma 4.2.3143 ensures that there
is a unique extension Q" to L(X) that satisfies CU1143 and CU2143. We
refer to Q" as the extended local upper expectation corresponding to Q.
We will also call any map Q" : L(X) ! R an extended local upper ex-
pectation (without further ado) if Q" satisfies CU1143 and CU2143, and if
Q" is the extension of a (coherent) local upper expectation Q on L(X)—
or, equivalently, if the restriction of Q" to L(X) is coherent. Care should
be taken here, because the unconditional notion of coherence introduced
in Definition 2.632 only applies to (unconditional) upper expectations that
are real-valued. For general (unconditional) upper expectations on L(X),
being real-valued is henceforth implicitly adopted as part of—in addition
to either of the conditions (i)32–(iii)32 in Definition 2.632—the definition of
coherence.

Notably, this extension procedure for local upper expectations can be
additionally motivated by the fact that it is in accordance with how we have
extended local sets of acceptable gambles in Section 4.2.3145. For, consider
any (coherent) local set of acceptable gambles A ✓ L(X), its extension A"

according to Definition 4.5146, and letQ"A : L(X) ! R be defined similarly
as in Eq. (3.1)50, by

Q"A ( 5 ) B inf{U 2 R : U � 5 2 A"}. (4.2)

Then, as we next show,Q"A is an extended local upper expectation according
to our definition above. The converse is also true; for any extended local
upper expectation Q" according to our definition above, there is always a
(coherent) local set of acceptable gambles A ✓ L(X) such that Q" = Q"A .

Proposition 4.3.1. For any local set of acceptable gambles A, Q"A is equal to
the extended local upper expectation Q" corresponding to the local upper ex-
pectation Q B QA that agrees with A according to Eq. (3.1)50. Furthermore,
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for any local upper expectation Q, the extension Q" is equal to Q"A , with A any
local set of acceptable gambles that agrees with Q according to Eq. (3.1)50.

This result essentially states that, for any local set of acceptable gambles
A and any local upper expectation Q that agree in the sense of Eq. (3.1)50,
the corresponding extensions A" and Q" also ‘agree’, in the sense that Q"A =
Q". Then also note that, since Q is equal to QA by Eq. (3.1)50, this equality
between Q"A and Q" = (QA)" makes sure that no possible confusion can
arise about the meaning of Q"A .

Our proof of Proposition 4.3.1x relies on the following lemma, which
says that Q"A for any local set of acceptable gambles A is an extension of the
agreeing upper expectation QA .

Lemma 4.3.2. For any local set of acceptable gambles A,Q"A extends the upper
expectation QA deduced from A according to Eq. (3.1)50.

Proof. Consider any 5 2 L(X) and observe that also U � 5 2 L(X) for all U 2 R.
So, since A" \L(X) = A according to Definition 4.5146, we obtain from Eq. (4.2)x
and Eq. (3.1)50 that

Q"A ( 5 ) = inf{U 2 R : U � 5 2 A"} = inf{U 2 R : U � 5 2 A" \L(X)}
= inf{U 2 R : U � 5 2 A} = QA ( 5 ).

We will also need the following monotonicity property for the extended
models Q"A .

Lemma 4.3.3. For any local set of acceptable gambles A, and any two 5 , 6 2
L(X) such that 5  6, we have that Q"A ( 5 )  Q"A (6).

Proof. Observe from Lemma 4.2.5146 that, for any U 2 R such that (U � 6) 2 A",
(U � 5 ) 2 A". The desired inequality then follows from Eq. (3.1)50.

Proof of Proposition 4.3.1x. Consider any (coherent) local set of acceptable gam-
bles A, let A" be the corresponding extended set [according to Definition 4.5146],
and let Q"A be defined by Eq. (4.2)x. First note that, due to Lemma 4.3.2, the upper
expectation Q"A extends Q = QA . We next show that Q"A satisfies CU1143. Fix any
5 2 Lb (X). Due to Lemma 4.3.3, we have that

Q"A ( 5^21 )  Q"A ( 5^22 )  Q"A ( 5 ) for any two reals 21  22.

On the one hand, this implies that the limit lim2!+1 Q"A ( 5^2) exists, and on the
other hand, this implies that lim2!+1 Q"A ( 5^2)  Q"A ( 5 ). So it remains to prove that
lim2!+1 Q"A ( 5^2) � Q"A ( 5 ). Consider any U 2 R such that U > lim2!+1 Q"A ( 5^2).
Choose any 21 2 R> such that 21 > U� inf 5 = sup(U� 5 ) [which is possible because 5
is bounded below] and any 22 2 R<. Consider also any 20 2 R> such that 20 > U� 22.
Then by Lemma 4.3.3 and since 5

^2 is increasing for increasing 2, we have that
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U > lim2!+1 Q"A ( 5^2) � Q"A ( 5^20). Then it follows from Eq. (4.2)153 that there is
a real U20  U such that U20 � 5

^20 2 A", which by Lemma 4.2.5146 implies that
U � 5

^20 2 A". Some basic manipulations of the latter variable then gives us that

(U � 5 )_U�20 = (U + (� 5 )_�20) = (U � 5
^20) 2 A"

.

Since 20 > U� 22 and thus 22 > U� 20, it follows once again from Lemma 4.2.5146 that
(U � 5 )_22 2 A". We also have that 21 > sup(U � 5 ) and thus that

�
(U � 5 )^21

�_22 =
(U� 5 )_22 2 A". Hence, since

�
(U� 5 )^21

�_22 is a gamble, we have by Definition 4.5146

that
�
(U � 5 )^21

�_22 2 A. Since this holds for any 22 2 R<, and since 21 is a posi-
tive real number, it follows from Corollary 4.2.4146 that (U � 5 ) 2 A". Hence, by
Eq. (4.2)153, we obtain that Q"A ( 5 )  U. Since this holds for any U 2 R such that
U > lim2!+1 Q"A ( 5^2), we indeed have that Q"A ( 5 )  lim2!+1 Q"A ( 5^2).

Next, we prove that Q"A also satisfies CU2143. Consider any 5 2 L(X). That
lim2!�1 Q"A ( 5_2) exists and that Q"A ( 5 )  lim2!�1 Q"A ( 5_2) follows in a similar way
as before from Lemma 4.3.3 . To prove that lim2!�1 Q"A ( 5_2)  Q"A ( 5 ), consider
any U 2 R such that (U � 5 ) 2 A". Then Corollary 4.2.4146 guarantees that there is
a 21 2 R> such that

�
(U � 5 )^21

�_22 2 A for all 22 2 R<. Consider any 2 2 R< such
that 2 < U � 21. We show that U � 5

_2 2 A". To this end, start by noting that

U � 5
_2 = U + (� 5 )^�2 = (U � 5 )^U�2 .

So, for any 22 2 R<, we have that�
(U � 5

_2)^21
�_22 = �

((U � 5 )^U�2)^21
�_22

,

which by the fact that 2 < U � 21, and thus 21 < U � 2, implies that�
(U � 5

_2)^21
�_22 = �

(U � 5 )^21
�_22

.

Since
�
(U � 5 )^21

�_22 2 A, we thus have that
�
(U � 5

_2)^21
�_22 2 A. Since this holds

for any 22 2 R<, we obtain by Corollary 4.2.4146 that U � 5
_2 2 A" and therefore

by Eq. (4.2)153 that Q"A ( 5_2)  U. By Lemma 4.3.3 , this then also implies that
lim2!�1 Q"A ( 5_2)  U. This holds for any U 2 R such that (U � 5 ) 2 A", so by
Eq. (4.2)153 this implies that lim2!�1 Q"A ( 5_2)  Q"A ( 5 ) as desired.

Hence, we have shown that the upper expectation Q"A satisfies CU1143 and
CU2143, and that it extends Q. As a consequence, Q"A is equal to the extended local
upper expectation Q" corresponding to Q.

The remaining implication now follows straightforwardly from the first. Indeed,
consider any local upper expectation Q, let Q" be the corresponding extension, and
let A be any (coherent) local set of acceptable gambles such that Q = QA with QA

defined by Eq. (3.1)50 [it is clear from our considerations in Section 3.1.248 that
there is always such a set; e.g. the one described in Eq. (3.2)51]. It then follows from
the first implication thatQ"A is equal to the extended local upper expectationQ".

4.3.2 Basic properties for extended local upper expectations

We next prove that extended local upper expectations satisfy some basic
properties that are similar to the coherence properties [C132–C633], but ex-
tended to involve extended real variables inLb (X). Moreover, we also show
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that extended local upper expectations satisfy a monotone convergence and
a countable subadditivity property for variables in Lb (X); see LE6 and LE7
below. We focus on Lb (X) instead of L(X), because these properties will
mainly be used later on to say something about the local behaviour of su-
permartingales, which we always consider to be bounded below. Moreover,
because we are only interested in variables in Lb (X), Axiom CU2143 is ir-
relevant and so, to remain as general as possible, we do not require CU2143
to be satisfied for the upper expectations in the following proposition.

Proposition 4.3.4. Consider any upper expectation Q" : L(X) ! R that is
coherent on L(X) and that satisfies CU1143. Then we have that

LE1. �1 < inf 5  Q"( 5 )  sup 5 for all 5 2 Lb (Y);
LE2. Q"( 5 + 6)  Q"( 5 ) + Q"(6) for all 5 , 6 2 Lb (Y);
LE3. Q"(_ 5 ) = _Q"( 5 ) for all _ 2 R� and all 5 2 Lb (Y);
LE4. 5  6 ) Q"( 5 )  Q"(6) for all 5 , 6 2 Lb (Y);
LE5. Q"( 5 + `) = Q"( 5 ) + ` for all ` 2 R [ {+1} and all 5 2 Lb (Y);
LE6. lim<!+1 Q"( 5<) = Q" (lim<!+1 5<) for any increasing sequence ( 5<)<2N

in Lb (Y);
LE7. Q" (P

<2N 5<) 
P

<2N Q"( 5<) for any sequence ( 5<)<2N of non-negative
variables in Lb (X);

LE8. Q"((+1) 5 ) = (+1)Q"( 5 ) for all non-negative 5 2 Lb (X).

Proof. We first prove LE4. Fix any 5 , 6 2 Lb (Y) such that 5  6. Then, for any
2 2 R, we also have that 5^2  6

^2. Both 5
^2 and 6

^2 are gambles because 5 and
6 are bounded below, so it follows from the coherence [C433] of Q" on L(X) that
Q"( 5^2)  Q"(6^2). Since this holds for any 2 2 R, we have by CU1143 that

Q"( 5 ) = lim
2!+1

Q"( 5^2)  lim
2!+1

Q"(6^2) = Q"(6).

LE1. Fix any 5 2 Lb (X). If sup 5 = +1, we trivially have that Q"( 5 )  sup 5 . If
sup 5 is real, it follows immediately from LE4 that Q"( 5 )  Q"(sup 5 ). We have that
Q"(sup 5 ) = sup 5 because sup 5 is real and Q" is coherent [C533] on L(X). Hence,
we then also have that Q"( 5 )  sup 5 . That sup 5 = �1, is impossible because 5 is
bounded below. To see that �1 < inf 5  Q"( 5 ), note that inf 5 is real or equal to
+1 [because 5 is bounded below] and therefore that �1 < inf 5 is automatically
satisfied. Moreover, for any real U < inf 5 we clearly have that U < 5 , implying by
LE4 and the coherence [C533] of Q" on L(X) that U = Q"(U)  Q"( 5 ). Since this
holds for any U < inf 5 we indeed have that inf 5  Q"( 5 ).

LE5. Fix any ` 2 R [ {+1} and any 5 2 Lb (Y). If ` = +1, then 5 + ` = +1
because 5 is bounded below. The fact that 5 is bounded below also implies by LE1
that Q"( 5 ) 2 R [ {+1}, and thus that Q"( 5 ) + ` = +1. So it su�ces to prove
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that Q"(+1) = +1; this holds due to LE1 . So assume that ` 2 R. Consider
any 2 2 R and note that ( 5 + `)^2 = 5

^2�` + `. Since 5
^2�` is a gamble because 5

is bounded below, it then follows from the coherence [C633] of Q" on L(X) that
Q"(( 5 + `)^2) = Q"( 5^2�`) + `. Since this holds for all 2 2 R, it follows from CU1143

that
Q"( 5 + `) = lim

2!+1
Q"(( 5 + `)^2) = lim

2!+1
Q"( 5^2�`) + ` = Q"( 5 ) + `.

LE2 . Fix any 5 , 6 2 Lb (X). Let 0, 1 2 R be such that 0  inf 5 and 1  inf 6
[which is possible because 5 and 6 are bounded below], and let 5 0 B 5 � 0 and
6
0 B 6 � 1; then 5

0 and 6
0 are both non-negative. Consider any positive 2 2 R> and

note that the non-negativity of 5 0 and 6
0 implies that ( 5 0 + 6

0)^2  ( 5 0)^2 + (60)^2.
Indeed, for any F 2 X, we either have that 5 0(F) � 2, that 60(F) � 2 or that both
5
0(F) < 2 and 6

0(F) < 2. If 5 0(F) � 2, then ( 5 0 + 60)^2 (F)  2 = ( 5 0)^2 (F) and so by
the non-negativity of 60 [and thus also (60)^2 because 2 > 0] that ( 5 0 + 6

0)^2 (F) 
( 5 0)^2 (F) + (60)^2 (F). In a completely analogous way, we can establish that the same
is true if 60(F) � 2. Finally, if both 5

0(F) < 2 and 6
0(F) < 2, then we infer that

( 5 0)^2 (F) + (60)^2 (F) = 5
0(F) + 60(F) = ( 5 0 + 60) (F) � ( 5 0 + 60)^2 (F). Since this holds

for all F 2X, we indeed have that ( 5 0 + 60)^2  ( 5 0)^2 + (60)^2. Hence, by LE4 and
since Q" is coherent [C232] on L(X) and ( 5 0)^2 and (60)^2 are gambles, we have
that

Q"(( 5 0 + 60)^2)  Q"(( 5 0)^2 + (60)^2)  Q"(( 5 0)^2) + Q"((60)^2).

Since this holds for any 2 2 R>, and since Q"(( 5 0)^2) and Q"((60)^2) are increasing
in 2 because of LE4 , we then infer that

Q"( 5 0 + 60) CU1143= lim
2!+1

Q"(( 5 0 + 60)^2)  lim
2!+1

[Q"(( 5 0)^2) + Q"((60)^2)]
= lim

2!+1
Q"(( 5 0)^2) + lim

2!+1
Q"((60)^2)

CU1143= Q"( 5 0) + Q"(60).

It now su�ces to apply LE5 to both sides, to arrive at the fact that Q"( 5 + 6) 
Q"( 5 ) + Q"(6).

LE3 . Fix any _ 2 R� and any 5 2 Lb (X). If _ = 0, it su�ces, because of the
convention 0 · (+1) = 0 · (�1) = 0, to prove that Q"(0) = 0. This follows directly
from LE1 . If _ 2 R>, note that for any 2 2 R> we have that (_ 5 )^2 = _ ( 5 )^2/_ .
Hence, we have that

Q"(_ 5 ) CU1143= lim
2!+1

Q"((_ 5 )^2) = lim
2!+1

Q"(_ ( 5 )^2/_) = _ lim
2!+1

Q"(( 5 )^2/_)
CU1143= _Q"( 5 ),

where the penultimate step follows from the coherence [C332] of Q" on L(X) and
the fact that each ( 5 )^2/_ is a gamble.

LE6 . Fix any increasing sequence ( 5<)<2N in Lb (X). Let 5 B lim<!+1 5< 2
Lb (X). Then, for any 2 2 R, ( 5^2

<
)<2N is an increasing sequence in L(X) that

clearly converges pointwise to 5
^2 2 L(X). Moreover, since 5

^2 is a real-valued
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function on a finite setX, the sequence ( 5^2
<
)<2N converges uniformly to 5

^2. Hence,
we have that

Q"( 5 ) CU1143= lim
2!+1

Q"( 5^2) C833= lim
2!+1

lim
<!+1

Q"( 5^2
<
) LE4156= sup

22R
sup
<2N

Q"( 5^2
<
)

= sup
<2N

sup
22R

Q"( 5^2
<
) LE4156= lim

<!+1
sup
22R

Q"( 5^2
<
) LE4156= lim

<!+1
lim
2!+1

Q"( 5^2
<
)

CU1143= lim
<!+1

Q"( 5<).

LE7156. Fix any sequence ( 5<)<2N of non-negative variables in Lb (X). Let (6<)<2N
be the sequence of non-negative variables defined by 6< B

P
<

7=1 57 for all < 2 N. Then,
(6<)<2N is increasing because ( 5<)<2N is non-negative. Moreover, it is clear that (6<)<2N
converges pointwise to P

<2N 5<. Hence, we can apply LE6156 to find that

Q"
✓X
<2N

5<

◆
= lim

<!+1
Q"(6<) = lim

<!+1
Q"

✓
<X
7=1

57

◆
LE2156 lim

<!+1

<X
7=1

Q"( 57) =
X
<2N

Q"( 5<),

where the limit on the right-hand side of the inequality exists because all Q"( 57) are
non-negative as a consequence of LE1156.

LE8156. Fix any non-negative 5 2 Lb (X) and observe that (< 5 )<2N is an in-
creasing sequence in Lb (X) that converges pointwise to (+1) 5 [because of the
convention that (+1) 0 = 0]. Hence,

Q" ((+1) 5 ) = Q"
⇣
lim
<!+1

< 5

⌘
LE6156= lim

<!+1
Q"(< 5 ) LE3156= lim

<!+1
<Q"( 5 ) = (+1)Q"( 5 ),

where we once more used the convention that (+1) 0 = 0 for the last step, together
with the fact that Q"( 5 ) � 0 because of LE1156.

4.3.3 Supermartingales and game-theoretic upper expectations in
terms of extended upper expectations trees

For any upper expectations tree Q•, let Q"• be the corresponding ex-
tended upper expectations tree; it consists, for all A 2X⇤, of the extended
local upper expectation Q"

A
corresponding to Q

A
. All previously stated re-

sults for extended local upper expectations thus apply in particular to the
components of an extended upper expectations tree. Most importantly, it
follows from Proposition 4.3.1153 that, for any upper expectations tree Q•

and acceptable gambles tree A• that agree according to Eq. (3.1)50, the ex-
tended upper expectations tree Q"• corresponding to Q• is equal to the map
Q"•,A : A 2 X⇤ 7! Q"

A,A , where Q"
A,A for all A 2 X⇤ is deduced from A"

A
ac-

cording to Eq. (4.2)153.

Extended real supermartingales based on extended upper
expectations trees

Given this correlation between extended upper expectations trees and ex-
tended acceptable gambles trees, and taking into account the definition of
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the supermartingales in Meb (A•), it is now natural to define an extended
real supermartingale corresponding to an upper expectations tree Q• as any
extended real processM for which there is some extended betting process G
such that

M(A) = M(⇤) + C G (A) and Q"
A
( G(A))  0 for all A 2X⇤.

We useM G
eb (Q•) to denote the set of all extended real supermartingales that

are defined in this way and that are bounded below.
Though the above definition of an extended real supermartingale is in-

tuitive when acquainted with sets of acceptable gambles and/or acceptable
gambles tree, most of the time, we will work with the following slightly
di�erent—and more direct—definition: any extended real process M is
called a(n) (extended) real supermartingale according to Q• if

Q"
A
(M(A·)) M(A) for all A 2X⇤. (4.3)

We let Meb (Q•) be the set of all supermartingales that are defined in this
way and that are bounded below.

Let us first show that the class Meb (Q•) of supermartingales is at least
as large as M

G
eb (Q•), and that, for any tree A• that agrees with Q•, both

Meb (Q•) and M
G
eb (Q•) are supersets of the class Meb (A•) of (extended real)

supermartingales according to A•.

Proposition 4.3.5. Consider any acceptable gambles tree A• and let Q• B
Q•,A be the agreeing upper expectations tree according to Eq. (3.1)50. Then
we have that

Meb (A•) ✓ M
G
eb (Q•) ✓ Meb (Q•).

Proof. Let us first show that Meb (A•) ✓ M
G
eb (Q•). Consider any M 2 Meb (A•).

Then there is an extended betting process G such that M(A) = M(⇤) + CG (A) and
�G(A) 2 A"

A
for all A 2X⇤. Due to Proposition 4.3.1153, we know that Q"• coincides

with Q"•,A , so it su�ces to show that Q"
A,A ( G(A))  0 for all A 2 X⇤. This follows

trivially from Eq. (4.2)153 and the fact that �G(A) 2 A"
A
for all A 2X⇤.

We next prove thatM G
eb (Q•) ✓ Meb (Q•). Consider any M 2 M G

eb (Q•). Then there
is an extended betting process G such that M(A) = M(⇤)+ CG (A) and Q"

A
( G(A))  0

for all A 2X⇤. Fix any F1:9 2X⇤. Then, for any F9+1 2X, we have that

M(F1:9+1) = M(⇤) + CG (F1:9+1) = M(⇤) +
9X
7=0

G(F1:7) (F7+1)

= M(⇤) + CG (F1:9) + G(F1:9) (F9+1)
= M(F1:9) + G(F1:9) (F9+1).

Since this holds for any F9+1 2 X, we obtain that M(F1:9·) = M(F1:9) + G(F1:9).
Recall that M is bounded below, so M(F1:9) 2 R [ {+1}, and therefore, since the
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extended local upper expectation Q"
F1:9

satisfies LE5156 by Proposition 4.3.4156, we
have that

Q"
F1:9

(M(F1:9·)) = Q"
F1:9

(M(F1:9) + G(F1:9)) = M(F1:9) + Q"
F1:9

( G(F1:9)).

Since we know that Q"
F1:9

( G(F1:9))  0, it follows that Q"
F1:9

(M(F1:9·))  M(F1:9).
Since this holds for any any F1:9 2 X⇤ [and since M is bounded below], we obtain
that M 2 Meb (Q•) as desired.

It can actually be shown that the inclusion M
G
eb (Q•) ✓ Meb (Q•) in the

result above is strict; for instance, a supermartingale in Meb (Q•) can attain
the value +1 and afterwards become real-valued; one may observe that this
is not possible for a supermartingale in M

G
eb (Q•). The inclusion Meb (A•) ✓

M
G
eb (Q•) too, can sometimes become strict, depending on the form of the

local sets of acceptable gambles AA.
Finally, before introducing global game-theoretic upper expectations

corresponding to Meb (Q•) and M
G
eb (Q•), note that the definitions of the

supermartingales in Meb (Q•) and M
G
eb (Q•) never relied on process di�er-

ences. The reason is similar to why we did not use process di�erences
in Section 4.2.3145 to define the supermartingales in Meb (A•); if an ex-
tended real supermartingale M were to be characterised by the condition
that Q"

A
(�M(A))  0 for all A 2X⇤, then it can be checked using LE1156 that

a supermartingale cannot remain in +1 (for all following situations) once
it has attained +1, which we consider to be undesirable.

Game-theoretic upper expectations based on extended upper
expectations trees

Using the setsMeb (Q•) andM G
eb (Q•), we can define the corresponding game-

theoretic upper expectations as follows.

Definition 4.7. For any upper expectations tree Q•, the game-theoretic up-
per expectation Eeb

Q,V is defined, for all ( 5 , A) 2 V ⇥X⇤, by

Eeb
Q,V ( 5 |A) B inf

�
M(A) : M 2 Meb (Q•) and lim inf M �A 5

 
;

The upper expectation Eeb, G
Q,V is defined similarly, with Meb (Q•) replaced by

M
G
eb (Q•). }

The following theorem states that these two versions Eeb
Q,V and Eeb, G

Q,V of
the game-theoretic upper expectation based on an upper expectations tree
Q• coincide, and that they moreover (both) coincide with the version Eeb

A,V
based directly on an acceptable gambles tree A•, given that the trees Q•

and A• agree in the sense of Eq. (3.1)50. The proof of it can be found in
Appendix 4.A197.
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Theorem 4.3.6. Consider any acceptable gambles tree A• and let Q• B Q•,A

be the agreeing upper expectations tree according to Eq. (3.1)50. Then we have
that

Eeb
A,V ( 5 |A) = Eeb, G

Q,V ( 5 |A) = Eeb
Q,V ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Theorem 4.3.6 shows that the subtle di�erence between the super-
martingales in Meb (Q•) and M

G
eb (Q•) pointed out earlier, is irrelevant when

concerned with the values of the associated global game-theoretic upper ex-
pectations Eeb

Q,V and Eeb, G
Q,V . This allows us to use the mathematically more

convenient set Meb (Q•) and its corresponding game-theoretic upper expec-
tation Eeb

Q,V, rather than the setM G
eb (Q•) which is—from a behavioural point

of view—actually more natural to adopt.
Theorem 4.3.6 also shows that, as far as the resulting game-theoretic

upper expectations are concerned, acceptable gambles trees again have an
unnecessary rich and complex structure: for any two acceptable gambles
trees A1

• and A2
• for which it holds that Q•,A1 = Q•,A2 , we have that

Eeb
A1

,V = Eeb
A2

,V. This is a similar conclusion to the one we have drawn in
Section 3.5.393 for the finitary global upper expectations Ef

A,V and EA . As
a result, here too, it seems sensible—at least from a mathematical point of
view—to work with upper expectations trees instead of acceptable gambles
trees when parametrizing a stochastic process. We will henceforth do so
and therefore typically write Eeb

Q,V to denote a generic game-theoretic upper
expectation Eeb

A,V.
Moreover, note that, as far as the resulting values of Eeb

Q,V are concerned,
it does not matter whether we do, or do not impose CU2143 onto the lo-
cal upper expectations Q"

A
. Indeed, the supermartingales in Meb (Q•) are re-

quired to be bounded below, so the values of the local models Q"
A
on Lb (X)

are all that matters for the values of Eeb
Q,V. Since CU2143 is obviously always

satisfied on the restricted domain Lb (X) by any local upper expectation,
imposing CU2143 does not impact the values that can be taken by Eeb

Q,V. One
could therefore choose to not adopt CU2143, and therefore remain slightly
more general. We will nevertheless choose to adopt CU2143 because (i) as
pointed out in Section 4.2.2142, it results from a conservativity assumption,
(ii) the extended upper expectations trees satisfying CU2143 can be seen
as to result from extended acceptable gambles tree [Proposition 4.3.1153],
and, most importantly, (iii) because, as we will show in Section 4.6.2178,
Axiom CU2143 is required to guarantee compatibility with the global game-
theoretic upper expectation on the entire domain L(X) of local variables.

Finally, let us establish that the equality in Theorem 4.3.6 also holds
for the lower expectations Eeb

A,V and Eeb
Q,V. The latter is defined as follows.

Similarly as we did in Section 4.2.3145, an (extended real) submartingale
M according to an upper expectations tree Q• is an extended real process
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such that �M is a supermartingale according to Q•. It can be checked that
M is then a submartingale according to Q• if and only if

Q"
A
(M(A·)) �M(A) for all A 2X⇤, (4.4)

where the (extended) lower expectations Q"
A
are obtained from the upper

expectations Q"
A
through conjugacy; Q"

A
( 5 ) B �Q"

A
(� 5 ) for all 5 2 L(X)

and A 2 X⇤. Let us denote the set of all bounded above submartingales
corresponding to a tree Q• by Meb (Q•). The lower expectation Eeb

Q,V is now
defined, for any ( 5 , A) 2 V ⇥X⇤, by

Eeb
Q,V ( 5 |A) B sup

�
M(A) : M 2 Meb (Q•) and lim supM A 5

 
. (4.5)

Once more, one may easily check that Eeb
Q,V is related to Eeb

Q,V by conjugacy.

Corollary 4.3.7 (Conjugacy). For any upper expectations tree Q•, we have
that Eeb

Q,V ( 5 |A) = �E
eb
Q,V (� 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. This follows immediately from the definitions of Eeb
Q ,V and Eeb

Q ,V, and the fact
thatM 2 Meb (Q•) if and only if�M 2 Meb (Q•) for any extended real processM.

Since Eeb
A,V and Eeb

A,V are also related by conjugacy [Corollary 4.2.6149],
it follows that the equality in Theorem 4.3.6x also holds for lower expecta-
tions.

Corollary 4.3.8. Consider any acceptable gambles tree A• and let Q• B Q•,A

be the agreeing upper expectations tree according to Eq. (3.1)50. Then we have
that Eeb

A,V ( 5 |A) = Eeb
Q,V ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

4.4 Basic properties of game-theoretic upper expectations

Our decision to pick Eeb
Q,V—or, equivalently, Eeb

A,V—as our game-theoretic
upper expectation of choice was so far only backed by a series of examples
where Eeb

Q,V behaved nicely, and where the alternatives Er
A,V, E

rb
A,V and ErB

A,V
(and the hypothetical one Ee

A,V) did not. From what is yet to come in this
chapter, however, it will become clear that Eeb

Q,V is also in general a global
upper expectation with desirable properties: e.g. it is coherent on V ⇥X⇤,
it extends Efin

Q , it satisfies continuity with respect to increasing sequences of
bounded below variables, it satisfies continuity with respect to decreasing
sequences of finitary bounded above variables, . . .

In this section, we start by establishing some basic, yet essential proper-
ties for Eeb

Q,V. Most importantly, we establish that Eeb
Q,V is coherent on V ⇥X⇤,

that it satisfies some ‘extended’ coherence properties on V ⇥X⇤, that it sat-
isfies a general law of iterated upper expectations, and that it coincides with

162



4.4 Basic properties of game-theoretic upper expectations

the finitary global upper expectation Efin
Q (or any other type of finitary global

upper expectation) on F ⇥X⇤.

4.4.1 Extended coherence properties, the law of iterated upper ex-
pectations and conditional coherence

We start by proving that Eeb
Q,V satisfies extended versions of the coherence

properties WC182–WC382, WC584–WC784 and WC1185 for extended real-
valued global variables. They are given, for any global upper expectation
E : V ⇥X⇤ ! R and the conjugate lower expectation E, as follows: for all
5 , 6 2 V , all _ 2 R�, all ` 2 R [ {+1} and all situations A 2X⇤,

EC1. inf ( 5 |A)  E ( 5 |A)  E ( 5 |A)  sup( 5 |A) [bounds];

EC2. E ( 5 + 6 |A)  E ( 5 |A) + E (6 |A) [sub-additivity];

EC3. E (_ 5 |A) = _E ( 5 |A) [non-negative homogeneity];

EC4. 5 A 6 ) E ( 5 |A)  E (6 |A) [monotonicity];

EC5. E ( 5 + ` |A) = E ( 5 |A) + ` [constant additivity];

EC6. E ( 5 |A) = E ( 51A |A) [conditioning invariance].

To prove this, we need the following two, rather abstract lemmas about
supermartingales. The first simply says that Lemma 4.1.3135 also holds for
the extended real supermartingales in Meb (Q•). Its proof is similar to that
of [8, Lemma 1], where instead real-valued supermartingales were used.

Lemma 4.4.1. Consider any upper expectations tree Q• , any M 2 Meb (Q•)
and any situation A 2X⇤. Then

M(A) � inf
l2�(A)

lim supM(l) � inf
l2�(A)

lim inf M(l).

Proof. Since M is a supermartingale, we have that Q"
A
(M(A ·))  M(A), which by

LE1156 and the fact that M is bounded below implies that infF2X M(AF)  M(A).
Hence, since X is finite, there is at least one F 2 X such that M(AF)  M(A).
Repeating this argument over and over again, leads us to the conclusion that
there is some l 2 �(A) such that lim sup

<!+1M(l<)  M(A) and therefore also
infl2�(A) lim supM(l) M(A). The remaining inequality follows now trivially.

Lemma 4.4.2. Consider any upper expectations tree Q•, any countable collec-
tion (M<)<2N0 of supermartingales inMeb (Q•), and any countable collection of
non-negative extended real numbers (_<)<2N0 . If all M< are non-negative, then
M B

P
<2N0 _<M< is also a non-negative supermartingale inMeb (Q•). On the

other hand, if the supermartingales (M<)<2N0 have a common lower bound
(but are not necessarily non-negative), and if P

<2N0 _< is a real number _,
then M 2 Meb (Q•).
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Proof. We start by proving the first statement. Since allM< and _< are non-negative,
the extended real process M =

P
<2N0 _<M< exists and is non-negative. To see that

M 2 Meb (Q•), observe that, for any A 2X⇤,

Q"
A
(M(A·)) = Q"

A

⇣ X
<2N0

_<M< (A·)
⌘ LE7156

X
<2N0

Q"
A

⇣
_<M< (A ·)

⌘
LE3156, LE8156=

X
<2N0

_<Q
"
A
(M< (A ·))


X
<2N0

_<M< (A) = M(A),

where we were allowed to apply LE7156, LE3156 and LE8156 because all M< (A·) are
non-negative [and thus bounded below], andwhere the last inequality followed from
the non-negativity of all _< and the fact that all M< are non-negative supermartin-
gales.

So it remains to prove the second statement. Suppose that the supermartingales
(M<)<2N0 have a common lower bound, say ⌫ 2 R, and that the sum P

<2N0 _< is
a real number _, which in particular implies that all _< are real. Since all M< are
bounded below by ⌫, the processes M<� ⌫ will be non-negative. Moreover, it can be
easily checked using Property LE5156 of the local modelsQ"• , that the supermartingale
character of allM< implies the supermartingale character of allM<�⌫. So allM<�⌫
are non-negative supermartingales in Meb (Q•). Hence, by the first part of our proof,
we have that P

<2N0 _< [M< � ⌫] is a non-negative supermartingale inMeb (Q•). Since
⌫ and all _< are real, we furthermore have that, for all A 2X⇤,

X
<2N0

_< [M< (A) � ⌫] =
X
<2N0

[_<M< (A) � _<⌫] = lim
<!+1

⇣ <X
7=1

_7M7 (A) �
<X
7=1

_7⌫

⌘

= lim
<!+1

<X
7=1

_7M7 (A) � _⌫

=
X
<2N

_<M< (A) � _⌫ = M(A) � _⌫,

where the third equality follows from the fact that lim<!+1
P

<

7=1 _7⌫ = _⌫ is real
[because _ and ⌫ are real]. As a result, since P

<2N0 _< [M< � ⌫] is a non-negative su-
permartingale inMeb (Q•), M�_⌫ is also a non-negative supermartingale inMeb (Q•).
Clearly, M is then bounded below [by _⌫], and it can easily be deduced from Prop-
erty LE5156 of the local models Q"• that then moreover M 2 Meb (Q•).

The two lemmas above now allow us to prove that Eeb
Q,V satisfies EC1x–

EC6x. A first result that established similar such properties was stated in
[86, Chapter 8], yet, our proof of the following result bears a closer resem-
blance to that of [8, Proposition 14]; we adapt that proof to our present
setting which involves dealing with extended real-valued supermartingales
instead of real-valued ones.

Proposition 4.4.3. For any upper expectations tree Q•, the global upper ex-
pectation Eeb

Q,V satisfies EC1x–EC6x.
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Proof. Let us first prove the third inequality in EC1163; that E
eb
Q ,V ( 5 |A)  sup( 5 |A). If

sup( 5 |A) = +1, then the inequality is trivially satisfied. If not, consider any real " �
sup( 5 |A) and the real process M that assumes the constant value ". Then clearly
M is a bounded below supermartingale and moreover lim inf M(l) = " � 5 (l)
for all l 2 �(A). Hence, Definition 4.7160 implies that Eeb

Q ,V ( 5 |A) M(A) = ". Since
this is true for all real " � sup( 5 |A), the inequality Eeb

Q ,V ( 5 |A)  sup( 5 |A) follows.
EC2163. If either Eeb

Q ,V ( 5 |A) or Eeb
Q ,V (6 |A) is equal to +1, then the inequality is

trivially true. So suppose that Eeb
Q ,V ( 5 |A) < +1 and Eeb

Q ,V (6 |A) < +1 and consider any
real 21 > Eeb

Q ,V ( 5 |A) and any real 22 > Eeb
Q ,V (6 |A). Then there are two bounded below

supermartingales M1 and M2 such that M1 (A)  21 and M2 (A)  22 and moreover
lim inf M1 �A 5 and lim inf M2 �A 6. Now consider the extended real process M B
M1 +M2. Then M is a bounded below supermartingale because of Lemma 4.4.2163,
which we can apply because M1 and M2 are both bounded below and hence have a
common lower bound [note that the countable sum in Lemma 4.4.2163 can be turned
into a finite sum by setting all remaining supermartingales equal to zero]. Moreover,
for any l 2 ⌦, we have that

lim inf (M1 + M2) (l) = lim inf
<!+1

(M1 (l<) + M2 (l<))
= lim

;!+1
inf
<�;

(M1 (l<) + M2 (l<))
� lim

;!+1
( inf
<�;

M1 (l<) + inf
<�;

M2 (l<))
= lim

;!+1
inf
<�;

M1 (l<) + lim
;!+1

inf
<�;

M2 (l<)
= lim inf

<!+1
M1 (l<) + lim inf

<!+1
M2 (l<),

where the limit in the fourth term (after the inequality) exists because both
inf<�; M1 (l<) and inf<�; M2 (l<) are increasing in ;, and where the third equality
follows from the fact that, again, inf<�; M1 (l<) and inf<�; M2 (l<) are increasing
in ;, and that these terms take values in R [ {+1} for all ;—and thus also con-
verge in R [ {+1} for increasing ;. Since this holds for all l 2 ⌦, we have that
lim inf (M1+M2) � lim inf M1+ lim inf M2 and therefore, since lim inf M1 �A 5 and
lim inf M2 �A 6, that lim inf M �A 5 +6. Combined with the fact thatM is a bounded
below supermartingale, it follows from Definition 4.7160 that E

eb
Q ,V ( 5 + 6 |A) M(A) =

M1 (A) + M2 (A)  21 + 22. Since this holds for any real 21 > Eeb
Q ,V ( 5 |A) and any real

22 > Eeb
Q ,V (6 |A), it follows that Eeb

Q ,V ( 5 + 6 |A)  Eeb
Q ,V ( 5 |A) + Eeb

Q ,V (6 |A).
EC3163. For _ 2 R>, it su�ces to note that M is a bounded below super-

martingale such that lim inf M �A 5 if and only if _M is a bounded below super-
martingale such that lim inf _M �A _ 5 . If _ = 0, then _Eeb

Q ,V ( 5 |A) = 0 because
(+1) · 0 = (�1) · 0 = 0. To see that also Eeb

Q ,V (_ 5 |A) = 0, start by noting that
_ 5 = 0 and hence, because of the third inequality in EC1163, E

eb
Q ,V (_ 5 |A)  0. That

Eeb
Q ,V (_ 5 |A) < 0 is impossible, follows from Lemma 4.4.1163 and Definition 4.7160.

Hence, we indeed have that Eeb
Q ,V (_ 5 |A) = 0.

EC4163. Consider any two 5 , 6 2 V such that 5 A 6. Then for any M 2 Meb (Q•)
such that lim inf M �A 6, we also have that lim inf M �A 5 , and hence, by Defini-
tion 4.7160, E

eb
Q ,V ( 5 |A)  Eeb

Q ,V (6 |A).
EC1163. We have already proved the third inequality. The first inequality then fol-

lows from the fact that Eeb
Q ,V and Eeb

Q ,V are related by conjugacy [Corollary 4.3.7162].
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To prove the second inequality, assume ex absurdo that Eeb
Q ,V ( 5 |A) > Eeb

Q ,V ( 5 |A).
Then 0 > Eeb

Q ,V ( 5 |A) � Eeb
Q ,V ( 5 |A) which by conjugacy and EC2163 implies that 0 >

Eeb
Q ,V ( 5 + (� 5 ) |A). Since, according to our convention, the extended real variable
5 + (� 5 ) only assumes values in {0, +1}, we have that 5 + (� 5 ) � 0 and therefore,
by EC4163 and EC3163, that E

eb
Q ,V ( 5 + (� 5 ) |A) � Eeb

Q ,V (0|A) = 0. This is a contradiction.
EC5163. If ` = +1, then it su�ces to prove that Eeb

Q ,V (+1|A) = +1, which follows
from EC1163. On the other hand, if ` 2 R, then for any M 2 Meb (Q•) such that
lim inf M �A 5 + `, we have by LE5156 that M � ` 2 Meb (Q•), and moreover that
lim inf (M�`) �A 5 . Hence, Eeb

Q ,V ( 5 |A) M(A)�` and therefore also Eeb
Q ,V ( 5 |A) +` 

M(A) � ` + ` = M(A). Since this holds for any M 2 Meb (Q•) such that lim inf M �A
5 + `, we have that Eeb

Q ,V ( 5 |A) + `  Eeb
Q ,V ( 5 + ` |A). By applying this inequality to

5
0 = 5 + ` and `

0 = �`, we also find that Eeb
Q ,V ( 5 + ` |A) � `  Eeb

Q ,V ( 5 |A).
EC6163. This follows immediately from Definition 4.7160.

It follows from Proposition 4.4.3 [EC1163–EC3163] that E
eb
Q,V satisfies the

coherence axioms WC182–WC382. The fact that Eeb
Q,V also satisfies WC482,

and thus by Theorem 3.4.384 that it is coherent on V ⇥X⇤, will follow
straightforwardly from the following general law of iterated upper expec-
tations for Eeb

Q,V. The idea of the proof for this theorem goes back to [86,
Proposition 8.7], yet, our proof is more similar to that of [8, Theorem 16].

Theorem 4.4.4 (Law of iterated upper expectations). For any upper expec-
tations tree Q•, any 5 2 V and any 9 2 N0, we have that

Eeb
Q,V ( 5 |-1:9) = Eeb

Q,V
�
Eeb
Q,V ( 5 |-1:9+1)

��
-1:9

�
.

Proof. We need to show that Eeb
Q ,V ( 5 |F1:9) = Eeb

Q ,V (E
eb
Q ,V ( 5 |-1:9+1) |F1:9) for any

F1:9 2 X9. To this end, due to Proposition 4.4.3 [EC6163], it su�ces to prove that
Eeb

Q ,V ( 5 |F1:9) = Eeb
Q ,V (E

eb
Q ,V ( 5 |F1:9-9+1) |F1:9). Let us first show that

Eeb
Q ,V

�
Eeb

Q ,V ( 5 |F1:9-9+1)
��
F1:9

�
 Eeb

Q ,V ( 5 |F1:9).

If Eeb
Q ,V ( 5 |F1:9) = +1, this is trivially satisfied. If not, then for any fixed real

U > Eeb
Q ,V ( 5 |F1:9) there is a bounded below supermartingaleM such thatM(F1:9)  U

and lim inf M �F1:9 5 . Then it is clear that, for all F9+1 2 X, lim inf M �F1:9+1 5 ,
and hence Eeb

Q ,V ( 5 |F1:9+1)  M(F1:9+1) by Definition 4.7160. Let M0 be the pro-
cess that is equal to M for all situations A such that A b F1:9, and that is equal to
the constant M(F1:9+1) for all situations A such that A w F1:9+1 for some F9+1 2 X.
Clearly, M0 is again a bounded below supermartingale and, because of the reason-
ing above, Eeb

Q ,V ( 5 |F1:9-9+1)  M(F1:9-9+1) =F1:9 lim inf M0. Hence, it follows from
Definition 4.7160 that

Eeb
Q ,V (E

eb
Q ,V ( 5 |F1:9-9+1) |F1:9) M0(F1:9) = M(F1:9)  U.

Since this holds for any real number U > Eeb
Q ,V ( 5 |F1:9), we indeed have that

Eeb
Q ,V (E

eb
Q ,V ( 5 |F1:9-9+1) |F1:9)  Eeb

Q ,V ( 5 |F1:9).
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We now prove the other inequality. Again, if Eeb
Q ,V (E

eb
Q ,V ( 5 |F1:9-9+1) |F1:9) = +1

it trivially holds, so we can assume it to be real or equal to �1. Fix any real
U > Eeb

Q ,V (E
eb
Q ,V ( 5 |F1:9-9+1) |F1:9) and any n 2 R>. Then there must be a bounded be-

low supermartingale M such that M(F1:9)  U and lim inf M �F1:9 E
eb
Q ,V ( 5 |F1:9-9+1).

Consider any such bounded below supermartingale. Then for any F9+1 2 X,
we have that lim inf M �F1:9+1 E eb

Q ,V ( 5 |F1:9+1), which by Lemma 4.4.1163 implies
that M(F1:9+1) � Eeb

Q ,V ( 5 |F1:9+1). Fix any F9+1 2 X. Then M(F1:9+1) is either
real or equal to +1 because M is bounded below. If M(F1:9+1) is real, then
since M(F1:9+1) � Eeb

Q ,V ( 5 |F1:9+1), it follows from Definition 4.7160 that there is a
bounded below supermartingale MF1:9+1 such that MF1:9+1 (F1:9+1)  M(F1:9+1) + n

and lim inf MF1:9+1 �F1:9+1 5 . If M(F1:9+1) is +1, let MF1:9+1 be the constant super-
martingale that is equal to +1 everywhere. So, for all F9+1 2 X, we have found a
bounded below supermartingale MF1:9+1 such that MF1:9+1 (F1:9+1) M(F1:9+1)+n and
lim inf MF1:9+1 �F1:9+1 5 . Let M⇤ be the process that is equal to M+n for all situations
A such that A b F1:9, and that is equal to MF1:9+1 for all situations A such that A w F1:9+1
for some F9+1 2 X. Note that lim inf M⇤ �F1:9 5 because, for each F9+1 2 X, we
have that lim inf M⇤ =F1:9+1 lim inf MF1:9+1 �F1:9+1 5 . We moreover show that M⇤ is a
bounded below supermartingale.

The processM⇤ is clearly bounded below becauseM and allMF1:9+1 are bounded
below and X is finite. Furthermore, for any F9+1 2 X, we have that M⇤ (F1:9+1) =
MF1:9+1 (F1:9+1) M(F1:9+1) +n, implying that M⇤ (F1:9·) M(F1:9·) +n and therefore,
by LE4156 and LE5156, that

Q"
F1:9

(M⇤ (F1:9·))  Q"
F1:9

(M(F1:9·)+n) = Q"
F1:9

(M(F1:9·))+n M(F1:9)+n = M⇤ (F1:9).

Moreover, for all situations A A F1:9, we have by LE5156 that Q"
A
(M⇤ (A ·)) =

Q"
A
(M(A ·) + n) = Q"

A
(M(A ·)) + n  M(A) + n = M⇤ (A), and for all A 2 X⇤ such

that A w F1:9+1 for some F9+1 2 X, we have that Q"
A
(M⇤ (A ·)) = Q"

A
(MF1:9+1 (A ·)) 

MF1:9+1 (A) = M⇤ (A). All together, we have that Q"
A
(M⇤ (A ·))  M⇤ (A) for all A 2X⇤,

implying that M⇤ is a supermartingale.
Since lim inf M⇤ �F1:9 5 and M⇤ (F1:9) = M(F1:9) + n  U + n, Definition 4.7160

now implies that Eeb
Q ,V ( 5 |F1:9)  U + n. This holds for any n 2 R> and any

real U > Eeb
Q ,V (E

eb
Q ,V ( 5 |F1:9-9+1) |F1:9), so we indeed conclude that Eeb

Q ,V ( 5 |F1:9) 
Eeb

Q ,V (E
eb
Q ,V ( 5 |F1:9-9+1) |F1:9).

It now follows in a trivial way from the previous results that the restric-
tion of Eeb

Q,V to V ⇥X⇤ is coherent [Definition 3.782].

Corollary 4.4.5 (Conditional coherence). For any upper expectations treeQ•,
the restriction of Eeb

Q,V to V ⇥X⇤ satisfies WC182–WC482, and is therefore
coherent.

Proof. Proposition 4.4.3164 guarantees that E
eb
Q ,V satisfies WC182–WC382 on V ⇥X⇤.

So it su�ces to prove that Eeb
Q ,V satisfies WC482 on V ⇥X⇤, because the coherence

will then follow from Theorem 3.4.384. Consider any 5 2 V and any A, B 2X⇤ such
that A v B. Let 9 B |A| and ✓ B |B |; so we have that 9  ✓. By iteratively applying
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Theorem 4.4.4166, we find that

Eeb
Q ,V

�
( 5 � Eeb

Q ,V ( 5 |B))1B |-1:9
�

= Eeb
Q ,V

�
Eeb

Q ,V
�
( 5 � Eeb

Q ,V ( 5 |B))1B |-1:9+1
�
|-1:9

�
.
.
.

= Eeb
Q ,V

�
Eeb

Q ,V
�
· · · Eeb

Q ,V
�
Eeb

Q ,V
�
( 5 � Eeb

Q ,V ( 5 |B))1B |-1:✓
�
|-1:✓�1

�
· · · |-1:9+1

�
|-1:9

�
.

(4.6)

Observe that the inner most upper expectation Eeb
Q ,V

�
( 5 � Eeb

Q ,V ( 5 |B))1B |-1:✓
�
is iden-

tically zero. Indeed, for any F1:✓ 2 X✓ \ {B} [recall that ✓ = |B |] we have that
( 5 � Eeb

Q ,V ( 5 |B))1B =F1:✓ 0 and therefore by Proposition 4.4.3 [EC1163] that E
eb
Q ,V

�
( 5 �

Eeb
Q ,V ( 5 |B))1B |F1:✓

�
= 0. On the other hand, for the situation B itself, since Eeb

Q ,V satisfies
EC5163 and EC6163 by Proposition 4.4.3, we infer that

Eeb
Q ,V

�
( 5 � Eeb

Q ,V ( 5 |B))1B |B
� EC6163= Eeb

Q ,V
�
5 � Eeb

Q ,V ( 5 |B) |B
� EC5163= Eeb

Q ,V ( 5 |B) � E
eb
Q ,V ( 5 |B) = 0,

where we were allowed to use EC5163 because, by Proposition 4.4.3 [EC1163]
and the fact that 5 2 V , we know that Eeb

Q ,V ( 5 |B) 2 R. So we indeed have
that Eeb

Q ,V
�
( 5 � Eeb

Q ,V ( 5 |B))1B |-1:✓
�

= 0. Plugging this back into Eq. (4.6), and
then using the fact that E (0|B0) = 0 for all B0 2 X⇤ [due to EC1163], we ob-
tain that Eeb

Q ,V
�
( 5 � Eeb

Q ,V ( 5 |B))1B |-1:9
�
= 0. Recalling that 9 = |A|, we have that

Eeb
Q ,V

�
( 5 � Eeb

Q ,V ( 5 |B))1B |A
�
= 0 as desired.

Another interesting consequence of Theorem 4.4.4166 is that, for any
fixed 5 2 Lb (⌦), the upper expectations Eeb

Q,V ( 5 |·) : A 2 X⇤ 7! Eeb
Q,V ( 5 |A)

itself form a supermartingale in Meb (Q•). We henceforth use V b as a short-
hand notation for the set Lb (⌦) of all (extended real) global variables that
are bounded below.

Corollary 4.4.6. For any upper expectations tree Q• and any 5 2 V b , the
extended real process C, defined by C(A) B Eeb

Q,V ( 5 |A) for all A 2 X⇤, is a
supermartingale in Meb (Q•).

Proof. The process C is bounded below because 5 is bounded below and Eeb
Q ,V sat-

isfies EC1163. Moreover, if for any A 2X⇤ we let Eeb
Q ,V ( 5 |A ·) be the (bounded below)

local variable that assumes the value Eeb
Q ,V ( 5 |AF) for all F 2 X, then it follows from

Proposition 4.4.7! and Theorem 4.4.4166 that

Q"
F1:9

( C(F1:9·)) = Q"
F1:9

�
Eeb

Q ,V ( 5 |F1:9·)
�
= Eeb

Q ,V
�
Eeb

Q ,V ( 5 |-1:9+1) |F1:9
�

= Eeb
Q ,V ( 5 |F1:9) = C(F1:9) for all F1:9 2X⇤

.

Hence, C is indeed a supermartingale.
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4.4.2 Relation with the local upper expectations and the finitary
global upper expectations

For any upper expectations tree Q•, since Eeb
Q,V is deduced from Q• as a

generalisation, we will want Eeb
Q,V to be ‘compatible’ with Q•, in the sense

that Eeb
Q,V should satisfy NE188. The following proposition shows that Eeb

Q,V
satisfies such a type of compatibility with Q"• on the domain Lb (X). Since
Q"
A
extends Q

A
for all A 2 X⇤, this indeed implies that Eeb

Q,V satisfies NE188.
We will moreover show later on, in Section 4.6.2178, that the compatibility
with Q"• can be extended to the entire domain L(X) of all local extended
real variables.

Proposition 4.4.7 (Partial compatibility with local models). Consider any
upper expectations tree Q•, any F1:9 2 X⇤ (with 9 2 N0) and any (9 + 1)-
measurable extended real variable 5 that is bounded below. Then,

Eeb
Q,V ( 5 |F1:9) = Q"

F1:9
( 5 (F1:9·)).

In specific, the global upper expectation Eeb
Q,V satisfies NE188.

Proof. Our proof is similar to that of [8, Corollary 3]. Consider any M 2 Meb (Q•)
such that lim inf M �F1:9 5 . Then it follows from Lemma 4.4.1163 that, for all F9+1 2
X,

M(F1:9+1) � inf
l2�(F1:9+1 )

lim inf M(l) � inf
l2�(F1:9+1 )

5 (l) = 5 (F1:9+1).

Hence, we have that M(F1:9·) � 5 (F1:9·), which implies by LE4156 and the super-
martingale character of M that

M(F1:9) � Q"
F1:9

(M(F1:9·)) � Q"
F1:9

( 5 (F1:9·)).

Since this holds for any M 2 Meb (Q•) such that lim inf M �F1:9 5 , it follows from
Definition 4.7160 that Eeb

Q ,V ( 5 |F1:9) � Q"
F1:9

( 5 (F1:9·)). To see that the inequality is an
equality, consider the extended real process M defined by M(A) B Q"

F1:9
( 5 (F1:9·))

for all A b F1:9, and by M(A) B 5 (F1:9+1) for any A 2X⇤ such that A w F1:9+1 for some
F9+1 2 X. Then M is bounded below because 5 is bounded below and Q"

F1:9
satis-

fies LE1156. It is also a supermartingale because Q"
F1:9

(M(F1:9·)) = Q"
F1:9

( 5 (F1:9·)) =
M(F1:9) and, for all A < F1:9, Q"A (M(A ·)) = M(A) because of LE1156 and the fact that
M(A·) is constant and equal to M(A). It is moreover easy to see that lim inf M �F1:9 5

is guaranteed because 5 is (9 + 1)-measurable.
The final statement, that Eeb

Q ,V satisfies NE188, follows easily from the first state-
ment that we have just proved, and the fact that Q"

A
extends Q

A
by definition for all

A 2X⇤.

As argued in Section 4.1.2135, we want a global upper expectation—
and thus in specific Eeb

Q,V—to be at least as informative as the finitary global
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upper expectations from Chapter 345 on the domain V ⇥X⇤, and preferably
to coincide with (any of) these finitary global upper expectations on F ⇥X⇤.
These conditions too are satisfied by Eeb

Q,V, and can easily be inferred from
our earlier considerations. We state these results for the finitary global upper
expectations EQ and Efin

Q , but due to Theorem 3.5.190 and Theorem 3.5.291
they can just as well be stated for the other types of finitary global upper
expectations (as long as we consider agreeing trees).

Corollary 4.4.8. For any upper expectations tree Q•, we have that

Eeb
Q,V ( 5 |A)  EQ ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. Note that Proposition 4.4.7x implies that Eeb
Q ,V extends E

pre
Q , where the latter

was defined by Eq. (3.13)85. Indeed, for any 5 2 L(X) and any F1:9 2X⇤, we have
by Proposition 4.4.7x that

Eeb
Q ,V ( 5 (-9+1) |F1:9) = Q"

F1:9
( 5 ) = Q

F1:9 ( 5 )
(3.13)= E

pre
Q ( 5 (-9+1) |F1:9).

where the second equality follows from the fact that Q"
F1:9

coincides by definition
with Q

F1:9 on local gambles. So, Eeb
Q ,V extends E

pre
Q , and since Eeb

Q ,V moreover satisfies
WC182–WC482 according to Corollary 4.4.5167, we obtain from the definition of the
natural extension EQ that

Eeb
Q ,V ( 5 |A)  EQ ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤

.

Corollary 4.4.9. For any upper expectations tree Q•, we have that

Eeb
Q,V ( 5 |A) = EQ ( 5 |A) = Efin

Q ( 5 |A) for all ( 5 , A) 2 F ⇥X⇤.

Proof. According to Theorem 3.4.688, it su�ces to show that Eeb
Q ,V—or its restric-

tion to F ⇥X⇤—satisfies NE188–NE388. To this end, observe that NE188 follows from
Proposition 4.4.7x, NE288 follows from Proposition 4.4.3 [EC6163], and NE388 fol-
lows from Theorem 4.4.4166.

That Eeb
Q,V is sometimes strictly more informative than EQ on V ⇥X⇤

can easily be seen by recalling Examples 3.6.199 and 4.1.1133, where in the
latter Eeb

Q,V will give the same result as Er
A,V due to Theorem 4.3.6161—

for Q the appropriate agreeing upper expectations tree. The fact that Eeb
Q,V

will yield desirable—informative—values in the case of Example 4.1.1133
can alternatively be inferred from the fact that, as we will show later in
Section 4.6175, E

eb
Q,V is continuous with respect to increasing bounded below

sequences.
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4.5 Doob’s convergence theorem and Lévy’s zero–one law

4.5 Doob’s convergence theorem, Lévy’s zero–one law, and their
implications for the definition of the game-theoretic upper
expectation

The current section is devoted to two technical results that have proved
essential in the theory of game-theoretic probabilities and upper expec-
tations: Doob’s convergence theorem and Lévy’s Zero–one law. Both of
these results are also well-known to hold in a—more traditional—measure-
theoretic context [5, 33, 61, 90]; however, the versions that we will state
here do not require any measurability conditions, nor do they require the
local models to be precise. The game-theoretic versions of these two results
will be instrumental for us as well, for instance, in order to establish that
Eeb
Q,V is continuous from below [Theorem 4.6.1175]. Though both results are

entirely due to Shafer, Vovk and Takemura [85, 88, 109], we nonetheless
present independent, yet very similar proofs for them because our frame-
work slightly di�ers from theirs; see Section 4.9187. As some of the involved
arguments are rather lengthy and technical, we have chosen to relegate
these proofs to Appendix 4.B199.

To state the results, we require some new terminology. For any A 2X⇤,
we say that a supermartingale M 2 Meb (Q•) is an A-test supermartingale
(for Q•) if it is non-negative and M(A) = 1. If A = ⇤, we simply say it is a
test supermartingale. For any A 2X⇤, we say that an event � ✓ ⌦ is almost
sure (a.s.) in �(A) if there is an A-test supermartingale that converges to +1
on �(A) \ �. In that case, we call the event �2 null in �(A). If A = ⇤, we drop
the ‘in’ and simply speak of ‘almost sure’ and ‘null’. For any two 5 , 6 2 V ,
note that 5 �A 6 a.s. in �(A) if and only if 5 � 6 a.s. in �(A)—and similarly
for A, >A and <A.

Recall from Section 3.1.352 that the (game-theoretic) upper probability
Peb
Q,V corresponding to Eeb

Q,V is obtained by restricting Eeb
Q,V to the domain of

indicators (and situations), and that the (game-theoretic) lower probability
Peb
Q,V is obtained in a similar way from Eeb

Q,V. Then it can be shown easily that
an event � ✓ ⌦ is almost sure in �(A) if and only Peb

Q,V (�2 |A) = 0 or, equiva-
lently,5 if and only if Peb

Q,V (�|A) = 1; we refer to [85, Proposition 8.4] for an
illustration of how this can be deduced in the case where A = ⇤. This is sim-
ilar to the traditional measure-theoretic definition of an almost sure event;
that is, a measurable event with (measure-theoretic) probability one; see

5This follows from the fact that

Peb
Q ,V (�

2 |A) = Eeb
Q ,V (I�2 |A) = Eeb

Q ,V (1� I� |A) = 1+Eeb
Q ,V (�I� |A) = 1�Eeb

Q ,V (I� |A) = 1�Peb
Q ,V (� |A) ,

where we used Proposition 4.4.3164 [EC5163] for the third equality and conjugacy [Corol-
lary 4.3.7162] for the fourth equality.

171



Game-theoretic upper expectations

Appendix 5.A263. In contrast with the measure-theoretic definition however,
the game-theoretic approach provides a clear behavioural interpretation for
strictly null events � ✓ ⌦: it says that Forecaster allows Skeptic to play in
such a way that he can start with capital equal to one (in the situation A)
and become infinitely rich on all paths l 2 � (that moreover go through A)
without ever borrowing money.

Using this terminology, Theorem 4.5.2 below establishes a version of
Doob’s convergence theorem. It states that a bounded below supermartin-
gale converges to a real number almost surely. This is somewhat intuitive
(yet, not at all trivial): since a supermartingale is expected to decrease,
one would expect a bounded below supermartingale to converge to a real
number. We precede Theorem 4.5.2 with a technical result that is very sim-
ilar to Doob’s convergence theorem—and from which Doob’s convergence
theorem can easily be derived; see Appendix 4.B199. We state it separately
because it will be used later on to prove Proposition 4.5.4!.

Proposition 4.5.1. Consider any upper expectations tree Q• and any super-
martingale M 2 Meb (Q•). If M(A) is real for some A 2 X⇤, then there is
an A-test supermartingale M⇤ that converges to +1 on all paths l 2 �(A)
where M does not converge to an extended real number, and that converges to
an extended real number on all paths l 2 �(A) where M converges to a real
number.

Theorem 4.5.2 (Doob’s convergence theorem). Consider any upper expecta-
tions tree Q• and any supermartingale M 2 Meb (Q•). If M(A) is real for some
A 2X⇤, then M converges to a real number almost surely in �(A).

Lévy’s zero–one law captures yet another intuitive idea: in particular, it
says that the upper probability of an event ⇠ ✓ ⌦ conditional on a situation
l
< should—or, is expected to—converge to 1 as < ! +1 if l 2 ⇠. The

law as stated below is more general though, as it applies to bounded below
variables 5 2 V b instead of merely events ⇠ ✓ ⌦; the version for events
corresponds to choosing 5 = I⇠ .

Theorem 4.5.3 (Lévy’s zero–one law). For any upper expectations tree Q•,
any 5 2 V b and any A 2X⇤, the event

� B
n
l 2 ⌦ : lim inf

<!+1
Eeb
Q,V ( 5 |l

<) � 5 (l)
o
is a.s. in �(A).

One of the major consequences of Doob’s convergence theorem and
Lévy’s zero–one law is that they allow us to draw some interesting con-
clusions about the definition of Eeb

Q,V. In particular, we can use Doob’s con-
vergence theorem—or, rather, the technical Proposition 4.5.1 underlying
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4.5 Doob’s convergence theorem and Lévy’s zero–one law

Doob’s convergence theorem—to show that this operator is not impacted
much by changes in Definition 4.7160 that concern the limit behaviour of su-
permartingales; more specifically, the following result shows that the limit
inferior in Definition 4.7160 can be replaced by a limit, without a�ecting the
values of the resulting operator. As was the case for the earlier results in this
section [Section 4.5171], and as will also be the case for the future results
in this section, the ideas underlying the proof of this result are also due to
Shafer, Vovk and Takemura [85, 88].

Proposition 4.5.4. For any upper expectations tree Q•, any 5 2 V and any
A 2X⇤, we have that

Eeb
Q,V ( 5 |A) = inf

n
M(A) : M 2 Meb (Q•) and limM �A 5

o
,

where the condition limM �A 5 is taken to imply that limM exists within
�(A).

Proof. The inequality ‘’ is trivially satisfied since lim inf M =A limM for any
bounded below supermartingale M whose limit limM exists within �(A). It remains
to prove the converse inequality. If Eeb

Q ,V ( 5 |A) = +1, it is trivially satisfied. If not, fix
any real U > Eeb

Q ,V ( 5 |A). Then, due to Definition 4.7160, there is some supermartin-
gale M 2 Meb (Q•) such that M(A)  U and lim inf M �A 5 . Because M is bounded
below and U is real, M(A) is also real. So, by Proposition 4.5.1 , there is an A-test
supermartingale M⇤ that converges to +1 on all paths l 2 �(A) where M does not
converge in R and converges in R on all paths l 2 �(A) where M converges in R.

Fix any n 2 R> and consider the process M0 defined by M0(B) BM(B) + nM⇤ (B)
for all situations B 2X⇤. ThenM0 is again a bounded below supermartingale because
of Lemma 4.4.2163 [which we can apply because M and M⇤ are both bounded below
and hence have a common lower bound]. We moreover have that lim inf M0 �A 5

because nM⇤ is non-negative and lim inf M �A 5 . We will now show that, on top of
this, for all l 2 �(A), this process M0 converges in R.

For any l 2 �(A), if M does not converge in R, M⇤ converges to +1, and
therefore so does M0 because M is bounded below and n is positive. If M does
converge in R, it converges either to a real number or to +1 (convergence to �1
is impossible because M is bounded below). If M converges to a real number, M⇤

converges in R and therefore M0 also converges in R. If M converges to +1, then
so does M0 because nM⇤ is non-negative. Hence, for all l 2 �(A), M0 converges in
R and the limit limM0(l) therefore exists.

Now, recall that limM0 = lim inf M0 �A 5 and that M 2 Meb (Q•). Hence, we
have that

inf
n
M(A) : M 2 Meb (Q•) and limM �A 5

o
M0(A) = M(A) + nM⇤ (A)  U + n.

This holds for any n 2 R> and any U > Eeb
Q ,V ( 5 |A), which implies that indeed

inf
n
M(A) : M 2 Meb (Q•) and limM �A 5

o
 Eeb

Q ,V ( 5 |A).
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The following result shows that Definition 4.7160 can be modified in yet
another way; it says that the condition lim inf M �A 5 in Definition 4.7160
need in fact only hold almost surely in �(A).

Proposition 4.5.5. Consider any upper expectations tree Q•, any 5 2 V and
any A 2X⇤. Then

Eeb
Q,V ( 5 |A) = inf

n
M(A) : M 2 Meb (Q•) and lim inf M � 5 a.s. in �(A)

o
.

(4.7)

Proof. Since for every supermartingale M that satisfies lim inf M �A 5 it holds that
lim inf M � 5 a.s. in �(A), we clearly have that

Eeb
Q ,V ( 5 |A) � inf

n
M(A) : M 2 Meb (Q•) and lim inf M � 5 a.s. in �(A)

o
.

So it remains to prove the converse inequality. If the right-hand side of Eq. (4.7) is
equal to +1, then this inequality is trivially satisfied. So consider the case where
it is not. Fix any U 2 R such that U > inf

�
M(A) : M 2 Meb (Q•) and lim inf M �

5 a.s. in �(A)
 
and any n 2 R>. Then there is some bounded below supermartingale

MU such that lim inf MU � 5 a.s. in �(A) and

MU (A)  U. (4.8)

Since lim inf MU � 5 a.s. in �(A), there is some A-test supermartingale M⇤
U
that con-

verges to +1 on � B {l 2 �(A) : lim inf MU (l) < 5 (l)}. Consider the extended
real process MU + nM⇤

U
. This process is again a bounded below supermartingale be-

cause of Lemma 4.4.2163 [which we can apply becauseMU andM⇤
U
are both bounded

below and hence have a common lower bound]. Since M⇤
U
converges to +1 on � and

because MU is bounded below, we have that lim inf (MU+nM⇤
U
) (l) = +1 � 5 (l) for

all l 2 �. Moreover, for all l 2 �(A) \ �, we also have that lim inf (MU + nM⇤
U
) (l) �

5 (l), because lim inf MU (l) � 5 (l) and because nM⇤
U
is non-negative. Hence,

lim inf (MU + nM⇤
U
) �A 5 and consequently, also Eeb

Q ,V ( 5 |A)  (MU + nM⇤
U
) (A). It

therefore follows from Eq. (4.8) that

Eeb
Q ,V ( 5 |A)  (MU + nM⇤

U
) (A) = MU (A) + n  U + n.

Since this holds for any n 2 R>, we have that E
eb
Q ,V ( 5 |A)  U, and since this is true for

all U 2 R such that U > inf
�
M(A) : M 2 Meb (Q•) and lim inf M � 5 a.s. in �(A)

 
,

it follows that

Eeb
Q ,V ( 5 |A)  inf

n
M(A) : M 2 Meb (Q•) and lim inf M � 5 a.s. in �(A)

o
.

Clearly, the infimum in Eq. (4.7) is taken over a larger set compared to
the infimum in Definition 4.7160. Though Proposition 4.5.5 shows that the
resulting game-theoretic upper expectation is not impacted by this di�er-
ence, it does make sure that the infimum in Eq. (4.7) is actually attained for
bounded below variables 5 2 V b—this follows from Lévy’s zero–one law.
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Proposition 4.5.6. For any upper expectations tree Q•, any 5 2 V b and any
A 2X⇤, the infimum in Eq. (4.7) is attained.

Proof. Let C be the extended real process defined by C(B) B Eeb
Q ,V ( 5 |B) for all

B 2X⇤. Then C is a bounded below supermartingale because of Corollary 4.4.6168.
Moreover, because of Theorem 4.5.3172, we have that lim inf C � 5 almost surely in
�(A). Since C(A) = Eeb

Q ,V ( 5 |A), this concludes the proof.

4.6 Continuity of the game-theoretic upper expectation with re-
spect to monotone sequences

We now turn to the final part in our analysis of game-theoretic upper
expectations: their continuity properties. As was illustrated for instance
in Sections 3.698 and 4.1131, these properties are crucial when aiming to
develop a mathematical theory that is su�ciently elegant and powerful to
work with.

4.6.1 Continuity from below

Our first continuity result establishes that, similarly to the local mod-
els Q"

A
, the global upper expectation Eeb

Q,V satisfies continuity with respect
to increasing sequences that are bounded below. This type of result, al-
though usually with measurability conditions, is known under the name of
‘the monotone convergence theorem’ [5, 31, 89]. The idea behind our result
goes back to Vovk & Shafer [109, Theorem 6.6], but an updated version can
now also be found in their latest book [85, Proposition 8.3]. Once more, the
setting for which [85, Proposition 8.3] is stated slightly di�ers from ours;
more specifically, the authors do not necessarily consider a finite state space,
and their local models are assumed to satisfy di�erent axioms compared to
ours; see Section 4.9187 for a more elaborate discussion. Moreover, they only
give an explicit proof for the case that there is a single, fixed local model Q
in all situations. For these reasons, we provide an independent proof.

Theorem 4.6.1 (Continuity from below). For any upper expectations tree Q•,
any A 2X⇤ and any increasing sequence ( 5<)<2N0 in V b ,

Eeb
Q,V ( 5 |A) = lim

<!+1
Eeb
Q,V ( 5< |A), with 5 B sup

<2N0

5< = lim
<!+1

5<.

Proof. Throughout the proof, we will use Properties EC1163–EC6163 for Eeb
Q ,V;

these follow from Proposition 4.4.3164, yet we will not explicitly refer to Proposi-
tion 4.4.3164 each time one of them is used. As 50 2 V b is bounded below and the
sequence ( 5<)<2N0 is increasing, there is an " 2 R such that 5< � " for all < 2 N0
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and therefore, 5 is also bounded below by ". Hence, since Eeb
Q ,V is constant additive

[EC5163], we can assumewithout loss of generality that 5 and all 5< are non-negative.
That lim<!+1 Eeb

Q ,V ( 5< |A) exists, follows from the increasing character of ( 5<)<2N0

and EC4163. Moreover, we have that Eeb
Q ,V ( 5 |A) � lim<!+1 Eeb

Q ,V ( 5< |A) because 5 � 5<

[since ( 5<)<2N0 is increasing] and because Eeb
Q ,V satisfies EC4163. It remains to prove

the converse inequality.
For any < 2 N0, consider the extended real process C<, defined by C< (B) B

Eeb
Q ,V ( 5< |B) for all B 2X⇤ and the extended real process C defined by the limit C(B) B

lim<!+1 C< (B) for all B 2 X⇤. This limit exists because ( C< (B))<2N0 is an increasing
sequence for all B 2 X⇤, due to the monotonicity [EC4163] of Eeb

Q ,V. As 5< is non-
negative for all < 2 N0, C< is non-negative for all < 2 N0 because of EC1163 and
therefore C is also non-negative. As a result, C and all C< are non-negative extended
real processes.

It now su�ces to prove that C is a bounded below supermartingale such that
lim inf C � 5 a.s. in �(A), because it will then follow from Proposition 4.5.5174 that

Eeb
Q ,V ( 5 |A) = inf

n
M(A) : M 2 Meb (Q•) and lim inf M � 5 a.s. in �(A)

o
 C(A) = lim

<!+1
Eeb

Q ,V ( 5< |A).

This is what we now set out to do.
We first show that C is a supermartingale; that it is bounded below follows

trivially from its non-negativity. For all situations B 2 X⇤, we already know that
( C< (B ·))<2N0 is an increasing sequence that converges to C(B ·). Since C< and C are
non-negative, we also have that C< (B ·), C(B ·) 2 Lb (X). Then, due to LE6156, we
have that

Q"
B
( C(B ·)) = lim

<!+1
Q"
B
( C< (B ·)) for all B 2X⇤

. (4.9)

C< is a supermartingale for all < 2 N0 because of Corollary 4.4.6168, so it follows
that Q"

B
( C< (B ·))  C< (B) for all < 2 N0 and all B 2 X⇤. This implies, together with

Eq. (4.9), that

Q"
B
( C(B ·))  lim

<!+1
C< (B) = C(B) for all B 2X⇤

.

Hence, C is a supermartingale.
To prove that lim inf C � 5 a.s. in �(A), we will use Lévy’s zero–one law. It

follows from Theorem 4.5.3172 that, for any < 2 N0, there is an A-test supermartingale
M< that converges to +1 on the event

�< B
n
l 2 �(A) : lim inf

;!+1
Eeb

Q ,V ( 5< |l;) < 5< (l)
o
.

Now, consider the extended real process M, defined by

M(B) B
X
<2N0

_<M< (B) for all B 2X⇤
,

where the coe�cients _< > 0 sum to 1. Then it follows from Lemma 4.4.2163 that
M is again a non-negative supermartingale. Moreover, it is clear that M(A) = 1 and
hence, M is an A-test supermartingale.
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4.6 Continuity with respect to monotone sequences

We show that M converges to +1 on all paths l 2 �(A) for which
lim inf;!+1 C(l;) < 5 (l). Clearly, M converges to +1 on [<2N0 �< C �. Con-
sider now any path l 2 �(A) for which lim inf;!+1 C(l;) < 5 (l). As explained
before, C< (B) is increasing in < for all B 2 X⇤, so we have that sup

<2N0
C< (l;) =

lim<!+1 C< (l;) = C(l;) for all ; 2 N0. Since lim inf;!+1 C(l;) < 5 (l), this
implies that

lim inf
;!+1

sup
<2N0

C< (l;) < sup
<2N0

5< (l).

Since sup
<2N0

lim inf;!+1 C< (l;)  lim inf;!+1 sup
<2N0

C< (l;) [because we obvi-
ously have that C< (l;)  sup

<2N0
C< (l;) for all <,; 2 N0], this implies that

sup
<2N0

lim inf
;!+1

Eeb
Q ,V ( 5< |l;) = sup

<2N0

lim inf
;!+1

C< (l;)  lim inf
;!+1

sup
<2N0

C< (l;) < sup
<2N0

5< (l).
(4.10)

Hence, there is some <l 2 N0 such that

sup
<2N0

lim inf
;!+1

Eeb
Q ,V ( 5< |l;) < 5<l

(l),

and therefore, we see that in particular

lim inf
;!+1

Eeb
Q ,V ( 5<l |l;) < 5<l

(l).

So l 2 �<l
✓ � and, as a consequence, M converges to +1 on l. Hence,

the A-test supermartingale M converges to +1 on all paths l 2 �(A) such that
lim inf;!+1 C(l;) < 5 (l), and therefore lim inf C � 5 almost surely in �(A).

A fairly immediate consequence of Theorem 4.6.1175 is that Eeb
Q,V satis-

fies a version of Fatou’s lemma [5, 89]. Here, and also further on in this
dissertation, we will say that a sequence ( 5<)<2N of variables in V is uni-
formly bounded below if there is some 2 2 R such that 2  inf 5< for all
< 2 N.

Corollary 4.6.2 (Fatou’s Lemma). For any upper expectations tree Q• ,
any situation A 2 X⇤ and any sequence ( 5<)<2N0 in V b that is uniformly
bounded below, we have that Eeb

Q,V ( 5 |A)  lim inf<!+1 Eeb
Q,V ( 5< |A) where 5 B

lim inf<!+1 5<.

Proof. Consider any A 2 X⇤ and any sequence ( 5<)<2N0 in V b that is uniformly
bounded below. For all 9 2 N0, let 69 be the global variable defined by 69 (l) B
inf<�9 5< (l) for all l 2 ⌦. Then lim9!+1 69 = lim inf<!+1 5< = 5 . Furthermore,
(69)92N0 is clearly increasing and it is a sequence in V b because ( 5<)<2N0 is uniformly
bounded below. Hence, we can use Theorem 4.6.1175 to find that

Eeb
Q ,V ( 5 |A) = lim

9!+1
Eeb

Q ,V (69 |A) = lim inf
9!+1

Eeb
Q ,V (69 |A)  lim inf

9!+1
Eeb

Q ,V ( 59 |A),

where the inequality holds because, for all 9 2 N0, 69  59 and therefore, because
of Proposition 4.4.3 [EC4163], also Eeb

Q ,V (69 |A)  Eeb
Q ,V ( 59 |A).
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4.6.2 Continuity with respect to lower cuts and compatibility with
the local models

The following result states that Eeb
Q,V is continuous with respect to de-

creasing sequences of lower cuts. In other words, Eeb
Q,V (·|A) satisfies Ax-

iom CU2143, which was used in Section 4.2.2142 as a part of our approach
to extend game-theoretic upper expectations with real-valued supermartin-
gales from V ⇥X⇤ to V ⇥X⇤.

Proposition 4.6.3 (Continuity w.r.t. lower cuts). For any upper expectations
tree Q•, any 5 2 V and any A 2X⇤,

lim
2!�1

Eeb
Q,V ( 5

_2 |A) = Eeb
Q,V ( 5 |A).

Proof. Eeb
Q ,V ( 5_2 |A) is increasing in 2 because 5

_2 is increasing in 2 and because the
upper expectation Eeb

Q ,V is monotone [EC4163 in Proposition 4.4.3164], and there-
fore lim2!�1 Eeb

Q ,V ( 5_2 |A) exists. Moreover, 5_2 � 5 for all 2 2 R, implying, by the
monotonicity [EC4163 in Proposition 4.4.3164] of Eeb

Q ,V, that lim2!�1 Eeb
Q ,V ( 5_2 |A) �

Eeb
Q ,V ( 5 |A). It therefore only remains to prove the converse inequality.

If Eeb
Q ,V ( 5 |A) = +1, then lim2!�1 Eeb

Q ,V ( 5_2 |A)  Eeb
Q ,V ( 5 |A) holds trivially. If

Eeb
Q ,V ( 5 |A) < +1, fix any real U > Eeb

Q ,V ( 5 |A). Then it follows from the definition
of the upper expectation Eeb

Q ,V ( 5 |A) that there is some supermartingale M 2 Meb (Q•)
such that M(A)  U and lim inf M �A 5 . Since M is bounded below, it imme-
diately follows that there is some ⌫ 2 R such that lim inf M � 2 for all 2  ⌫.
For any such 2  ⌫, we have that lim inf M �A 5

_2, which by Definition 4.7160

implies that Eeb
Q ,V ( 5_2 |A)  M(A)  U. This holds for all 2  ⌫, so we infer that

lim2!�1 Eeb
Q ,V ( 5_2 |A)  U, and since this holds for any U > Eeb

Q ,V ( 5 |A), we conclude
that indeed lim2!�1 Eeb

Q ,V ( 5_2 |A)  Eeb
Q ,V ( 5 |A).

Proposition 4.6.3 implies that Eeb
Q,V on V ⇥X⇤ is uniquely determined by

its values on V b ⇥X⇤. Moreover, due to Theorem 4.6.1175, E
eb
Q,V (·|A) for any

A 2X⇤ also satisfies CU1143, so the values of E
eb
Q,V on V b⇥X⇤ are on their turn

uniquely determined by its values on V ⇥X⇤. Together, these observations
imply that Eeb

Q,V is uniquely determined by its values on V ⇥X⇤. We will
moreover show in Section 4.8186 that these values coincide with those of
Er

A,V on V ⇥X⇤—if A• and Q• agree—and therefore, since Eeb
Q,V (·|A) for any

A 2X⇤ satisfies CU1143 and CU2143, that E
eb
Q,V coincides with the extended

upper expectation E
"
A,V on the entire domain V ⇥X⇤.

Proposition 4.6.3 also immediately confirms part of our claim at the end
of Section 4.3.3158, where we said that, although imposing CU2143 onto the
local models does not a�ect the values of the corresponding global game-
theoretic upper expectation, the axiom is crucial when we desire full com-
patibility of local and global upper expectations, rather than only the partial
compatibility that was established by Proposition 4.4.7169. We only show
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4.6 Continuity with respect to monotone sequences

here that CU2143—together with CU1143—is su�cient for full compatibil-
ity; later on, in Section 4.9187, we will show that it is also necessary.

Corollary 4.6.4 (Compatibility with local models). Consider any upper ex-
pectations tree Q• and let Q"• be the corresponding extended upper expectations
tree. Then Eeb

Q,V ( 5 |F1:<) = Q"
F1:<

( 5 (F1:<·)) for all F1:< 2 X⇤ and all (< + 1)-
measurable variables 5 2 V .

Proof. Consider any F1:< 2 X⇤ and any (< + 1)-measurable extended real variable
5 2 V . Clearly, 5_2 is bounded below and remains to be (< + 1)-measurable for any
2 2 R. Due to Proposition 4.4.7169, we have that Eeb

Q ,V ( 5_2 |F1:<) = Q"
F1:<

( 5_2 (F1:<·))
for any 2 2 R. Then, because Eeb

Q ,V (·|F1:<) satisfies CU2143 due to Proposition 4.6.3 ,
and Q"

F1:<
satisfies CU2143 by definition, we clearly also have that Eeb

Q ,V ( 5 |F1:<) =
Q"
F1:<

( 5 (F1:<·)).

4.6.3 Eeb
Q,V may fail continuity from above

Even though the upper expectation Eeb
Q,V is continuous with respect to in-

creasing sequences andwith respect to decreasing sequences of lower cuts, it
is not necessarily continuous with respect to general decreasing sequences—
and therefore certainly not with respect to general pointwise convergence.
This is shown by the following example.

Example 4.6.5. Let X B {0, 1} and consider the upper expectations tree
Q• defined by Q

A
( 5 ) B sup 5 for all A 2X⇤ and all 5 2 L(X). Then it can

be checked easily that each Q
A
is coherent, and that the extended tree Q"•

satisfies Q"
A
( 5 ) = sup 5 for all A 2 X⇤ and all 5 2 L(X). Moreover, since

no supermartingale M 2 Meb (Q•) is ever able to increase, it can be inferred
that

Eeb
Q,V (6 |A) = sup(6 |A) for all (6, A) 2 V ⇥X⇤.

Now consider the decreasing sequence (�<)<2N of events defined by �< B
�(0<) \ {000 · · · } for all < 2 N; so for any < 2 N and l 2 ⌦, we have that
l 2 �< if (and only if) at least the first < components of l are 0, but not all
of them. Then we have that Eeb

Q,V (I�< |⇤) = sup(I�< ) = 1 for all < 2 N. On
the other hand, it can easily be checked that lim<!+1 �< = ú, and therefore
that Eeb

Q,V (lim<!+1 I�< |⇤) = Eeb
Q,V (0|⇤) = sup(0) = 0. Hence, we find that

lim
<!+1

Eeb
Q,V (I�< |⇤) = 1 < 0 = Eeb

Q,V ( lim
<!+1

I�< |⇤),

which shows that Eeb
Q,V does not satisfy continuity with respect to general

decreasing sequences. ^
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4.7 Behaviour of the game-theoretic upper expectation with re-
spect to sequences of finitary variables

In the previous section, we saw that Eeb
Q,V does not necessarily satisfy

continuity with respect to pointwise convergence, not even if the considered
sequence is downward monotone. Luckily enough though, sequences of in-
terest will in many cases be composed of variables that are finitary (note
that this is not the case for Example 4.6.5x); such sequences tend to be
more well-behaved and therefore allow us to establish stronger continuity
properties for Eeb

Q,V. In the present section, we set out to do so; one of the
most important continuity properties is continuity with respect to decreas-
ing sequences of bounded above finitary variables.

Sequences of finitary variables or, more specifically, finitary gambles
are also interesting from a practical point of view, because their associ-
ated global upper expectations can be computed fairly e�ciently; see e.g.
[100]. If these computational methods are combined with the appropriate
continuity properties—which tend to be stronger for sequences of finitary
variables—we also immediately have a method for computing (or approxi-
mating) upper expectations for many non-finitary variables.

4.7.1 Some notes about finitary variables and their pointwise limits

Because of their importance in this section, we first want to establish
some basic, yet convenient properties for sequences of finitary variables.
First is the fact that any sequence of finitary variables can be equivalently
considered as a sequence of <-measurable variables; the latter is a sequence
( 5<)<2N of global variables where, for any < 2 N, the variable 5< 2 V is
<-measurable. It is clear that this is not the case for all sequences of fini-
tary variables, yet we can always modify it, arriving at a sequence of <-
measurable variables, while not a�ecting most of the other sequence char-
acteristics, including its pointwise limit (should it exist). This can be done
using the following construction.

Consider any sequence (6<)<2N0 of finitary variables, and let (6b
<
)<2N0

and b : N ! N0 be defined by the following recursive expressions, where
6
b

0 B 2 2 R is a freely chosen extended real number and b(1) B 0:

6
b

<
B

(
6b(<) if 6b(<) is <-measurable;
6
b

<�1 otherwise,

and, (4.11)

b(< + 1) B
(
b(<) + 1 if 6b(<) is <-measurable;
b(<) otherwise,
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4.7 Behaviour of game-theoretic upper expectations w.r.t. finitary variables

for all < 2 N. The construction above seems more technical than it actu-
ally is; informally speaking, the sequence (6b

<
)<2N0 is simply created from

(6<)<2N0 by keeping the sequence (6<)<2N0 constant for a number of steps,
then switching to the next variable in the sequence (6<)<2N0 at the appro-
priate moment. For instance, consider the sequence (6<)<2N0 such that
60 = 61 = 62 = 100, 63 = 1

0
6 and 6< = 10< for all < � 4, with 0 some

state in the state space X for which it holds that |X | > 1. Then (6b
<
)<2N0 is

given by 2, 2, 60, 61, 62, 62, 63, 64, 65, 66, . . . .
The following lemma establishes our claim that, amongst other things,

the newly created sequence (6b
<
)<2N0 is a sequence of <-measurable variables.

Lemma 4.7.1. Consider any sequence (6<)<2N0 of finitary variables and let
(6b

<
)<2N0 be defined by Eq. (4.11) . Then we have that

(i) (6b
<
)<2N0 is a sequence of <-measurable variables.

(ii) If (6<)<2N0 is increasing and 6
b

0  inf 60, then (6b
<
)<2N0 is increasing too.

(iii) If (6<)<2N0 is decreasing and 6
b

0 � sup 60, then (6b
<
)<2N0 is decreasing

too.

(iv) If (6<)<2N0 is uniformly bounded below, then so is (6b
<
)<2N0 .

(v) If (6<)<2N0 is a sequence of gambles and 2 2 R, then so is (6b
<
)<2N0 .

(vi) lim inf<!+1 6< = lim inf<!+1 6
b

<
and lim sup

<!+1 6< = lim sup
<!+1 6

b

<
.

(vii) lim inf<!+1 Eeb
Q,V (6< |A) = lim inf<!+1 Eeb

Q,V (6
b

<
|A) and

lim sup
<!+1 Eeb

Q,V (6< |A) = lim sup
<!+1 Eeb

Q,V (6
b

<
|A).

Proof. We prove (i) by induction. 6
b

0 = 2 is clearly 0-measurable. To prove the
induction step, suppose that 6b

9�1 is (9 � 1)-measurable for some 9 2 N. Then if 6b(9)
is 9-measurable, so is 6b

9
= 6b(9) . Otherwise, 6b

9
is equal to 6

b

9�1 implying that 6b
9
is

(9 � 1)-measurable and therefore also 9-measurable. This concludes the induction
step.

In order to prove (ii) and (iii), observe that (6<)<2N0 is a subsequence of (6
b

<
)<2N0 ,

and more specifically that there is a function # : N0 ! N such that (6b
<
)<2N0 consists

of # (0) times 2, then # (1) times 60, then # (2) times 61, and so on; indeed, the fact
that each 6< only appears a finite number of times in (6b

<
)<2N0 is due to the fact that 6<

is finitary, and thus ;-measurable for some ; 2 N0. It is then obvious, by a suitable
choice of 2 2 R—that is, any 2  inf 60 if (6<)<2N0 is increasing, or any 2 � sup 60 if
(6<)<2N0 is decreasing—that (6b

<
)<2N0 has the samemonotone character as the original

sequence (6<)<2N0 . Properties (iv)–(vii) follow from similar observations.

Due to Lemma 4.7.1 (vi), the pointwise limits of sequences of <-
measurable variables constitute the same subset of V as the pointwise limits
of sequences of finitary variables. The following result additionally shows
that when such limits are bounded below, we can restrict our attention to
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sequences of <-measurable gambles. We use Lb to denote the set of all
bounded below variables 5 2 V b such that 5 = lim<!+1 5< for some se-
quence ( 5<)<2N0 of finitary variables.

Proposition 4.7.2. Any 5 2 Lb is the pointwise limit of a sequence ( 5<)<2N0 of
<-measurable gambles. Furthermore, we can guarantee that ⌫  5<  sup 5

for all < 2 N0, where ⌫ is any real number if inf 5 = +1, and ⌫ = inf 5
otherwise.

Proof. Fix any 5 2 Lb. Then, according to the definition of Lb, 5 is the pointwise
limit of a sequence (6<)<2N0 of finitary variables. Let (6b

<
)<2N0 be the sequence de-

fined by Eq. (4.11)180, with 2 = 0, which by Lemma 4.7.1(i)x is a sequence of
<-measurable variables. By Lemma 4.7.1(vi)x, the sequences (6<)<2N0 and (6b

<
)<2N0

have the same limit behaviour, so (6b
<
)<2N0 converges pointwise to 5 . Let ⌫ be any real

if inf 5 = +1 and let ⌫ B inf 5 if inf 5 2 R [the case where inf 5 = �1 is impossible
because 5 is bounded below]. Let ( 5<)<2N0 be the sequence defined by bounding each
6
b

<
above bymin{<, sup 5 } and below by ⌫; so 5< (l) B max{min{6b

<
(l), <, sup 5 }, ⌫}

for all l 2 ⌦ and all < 2 N0. Then it is clear that ( 5<)<2N0 is a sequence of <-
measurable gambles because (6b

<
)<2N0 is a sequence of <-measurable (possibly ex-

tended real) variables. It also converges pointwise to 5 because

5 (l) = max
n
min{ 5 (l), sup 5 }, ⌫

o
= max

n
min

�
lim
<!+1

6
b

<
(l), lim

<!+1
<, sup 5

 
, ⌫

o

= lim
<!+1

max
n
min{6b

<
(l), <, sup 5 }, ⌫

o
= lim

<!+1
5< (l),

for all l 2 ⌦, where the first equality follows from the fact that ⌫  inf 5  5 .
Moreover, for all < 2 N0, we clearly have that ⌫  5<, and also 5<  sup 5 because
min{6b

<
(l), <, sup 5 }  sup 5 for all l 2 ⌦ and ⌫  inf 5  sup 5 . Hence, ( 5<)<2N0

satisfies all of the conditions in the proposition.

4.7.2 Continuity with respect to sequences of finitary variables

We now present two important results concerning the behaviour of Eeb
Q,V

with respect to sequences of finitary variables. The first one guarantees that
Eeb
Q,V is continuous with respect to decreasing sequences of finitary bounded

above variables. The second one states that, for any 5 2 Lb, there is al-
ways a sequence of <-measurable gambles—and therefore also a sequence
of finitary gambles—that converges pointwise to 5 and for which Eeb

Q,V is
continuous. The proofs of these results can be found in Appendix 4.C208.

Theorem 4.7.3 (Continuity w.r.t. decreasing finitary variables). For any up-
per expectations tree Q•, any A 2X⇤ and any decreasing sequence ( 5<)<2N0 of
finitary, bounded above variables that converges pointwise to a variable 5 2 V ,
we have that lim<!+1 Eeb

Q,V ( 5< |A) = Eeb
Q,V ( 5 |A).
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4.7 Behaviour of game-theoretic upper expectations w.r.t. finitary variables

Theorem 4.7.4. For any upper expectations tree Q•, any A 2 X⇤ and
5 2 Lb , there is a sequence ( 5<)<2N0 of <-measurable gambles that is
uniformly bounded below and that converges pointwise to 5 such that
lim<!+1 Eeb

Q,V ( 5< |A) = Eeb
Q,V ( 5 |A).

Observe that Theorem 4.7.3 is especially strong if it is combined with
Theorem 4.6.1175: together, they imply that both the game-theoretic up-
per expectation Eeb

Q,V and the game-theoretic lower expectation Eeb
Q,V are

continuous with respect to increasing sequences of bounded below finitary
variables, and continuous with respect to decreasing sequences of bounded
above finitary variables.6 In practice, this comes down to being continuous
with respect to almost all monotone sequences of finitary gambles. This
property has already been used by Krak et al. [58] in order to obtain an
equivalence result about hitting times and hitting probabilities in imprecise
Markov chains. Theorem 4.7.4, on the other hand, further establishes the
importance of finitary variables and their limits when it comes to charac-
terising Eeb

Q,V. In fact, Theorem 4.7.4 will be a key result for obtaining our
alternative axiomatic characterisation of Eeb

Q,V in Section 6.2290.
In light of Theorems 4.7.3 and 4.7.4, one might now wonder how

far the continuity of Eeb
Q,V with respect to sequences of finitary gambles

stretches. We know that Eeb
Q,V is not necessarily continuous with respect

to general pointwise convergence, but perhaps it could still be continuous
if we restrict ourselves to converging sequences of finitary gambles. Unfor-
tunately, as the following example shows, this is not the case, not even for
sequences of indicators of cylinder events.

Example 4.7.5. Let X B {0, 1} and consider the same upper expectations
tree Q• as in Example 4.6.5179; as explained in that example, we then have
that Eeb

Q,V (6 |A) = sup(6 |A) for all (6, A) 2 V ⇥X⇤. Observe that for the se-
quence (0<1)<2N of situations, we have that Eeb

Q,V (10<1 |⇤) = sup(10<1) = 1 for
all < 2 N. Yet, it can also be checked that lim<!+1 10<1 = 0, which implies
that Eeb

Q,V (lim<!+1 10<1 |⇤) = Eeb
Q,V (0|⇤) = 0, where the last equality follows

from Proposition 4.4.3 [EC1163]. So we find that

lim
<!+1

Eeb
Q,V (10<1 |⇤) = 1 < 0 = Eeb

Q,V ( lim
<!+1

10<1 |⇤).

Hence, since (10<1)<2N is a sequence of finitary gambles, Eeb
Q,V does in gen-

eral not satisfy continuity with respect to pointwise convergence of finitary
gambles. ^

6Indeed, by conjugacy [Corollary 4.3.7162], Theorem 4.6.1175 implies that Eeb
Q ,V is con-

tinuous with respect to decreasing sequences that are bounded above, and Theorem 4.7.3 
implies that Eeb

Q ,V is continuous with respect to increasing sequences that are bounded below.
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4.7.3 Expressions for Eeb
Q,V in terms of (limits of) finitary gambles

Our next two results further emphasize the central role of the variables
in F and Lb for the characterisation of Eeb

Q,V. The first one states that the
upper expectation Eeb

Q,V ( 5 |A) of any variable 5 2 V , conditional on any A 2
X⇤, is the lower envelope of the upper expectations Eeb

Q,V (6 |A) of variables
6 2 Lb that are (pointwise) equal to or larger than 5 on �(A). The second
one further parses this expression and fully characterises Eeb

Q,V using only
its values on the finitary gambles. Together with Theorem 4.7.4x, both
of these results will be crucial in Chapter 6283, where Eeb

Q,V will be given
an alternative characterisation in terms of some fairly simple axioms. It is
also interesting to compare these results to Proposition 3.5.1097, which fully
characterises EQ using only its values on F ⇥X⇤, as it sheds some light on
the di�erences between Eeb

Q,V and EQ .

Proposition 4.7.6. Consider any upper expectations tree Q•, any 5 2 V and
any A 2X⇤. Then

Eeb
Q,V ( 5 |A) = inf

n
Eeb
Q,V (6 |A) : 6 2 Lb and 6 �A 5

o

= inf
n
Eeb
Q,V (6 |A) : 6 2 Lb and 6 � 5

o
. (4.12)

Proof. Because Eeb
Q ,V is monotone [EC4163 in Proposition 4.4.3164], we have that

Eeb
Q ,V ( 5 |A)  Eeb

Q ,V (6 |A) for any 6 2 Lb such that 5 A 6. It therefore follows immedi-
ately that

Eeb
Q ,V ( 5 |A)  inf

n
Eeb

Q ,V (6 |A) : 6 2 Lb and 6 �A 5
o
 inf

n
Eeb

Q ,V (6 |A) : 6 2 Lb and 6 � 5

o
,

where the last inequality follows from the fact that 6 � 5 implies 6 �A 5 for any
6 2 V . It remains to prove that inf

n
Eeb

Q ,V (6 |A) : 6 2 Lb and 6 � 5

o
 Eeb

Q ,V ( 5 |A).
Consider any M0 2 Meb (Q•) such that limM0 exists within �(A) and such that

limM0 �A 5 . Let M be the extended real process defined by M(B) B M0(B) for
all B w A, and by M(B) B +1 for all B A A. We show that M is a bounded below
supermartingale such that limM � 5 . The process M is bounded below because M0

is. Moreover, we have, for all B w A, that Q"
B
(M(B·)) = Q"

B
(M0(B·))  M0(B) = M(B)

because M0 is a supermartingale, and, for all B A A, we also have that Q"
B
(M(B·)) 

M(B) because then M(B) = +1. Hence, M is also a supermartingale. Furthermore,
note that limM =A limM0 �A 5 and, for any path l not going through A, that
limM(l) = +1 � 5 (l), which all together implies that limM � 5 .

Now, let (6<)<2N be the sequence defined by 6< (l) B M(l<) for all < 2 N and
all l 2 ⌦. Then it is clear that (6<)<2N is a sequence of <-measurable, and therefore
finitary, extended real variables that is uniformly bounded below. Moreover, since
limM exists everywhere, we have that 6(l) B lim<!+1 6< (l) = lim<!+1M(l<)
exists for all l 2 ⌦. Hence, 6 2 Lb and because limM � 5 also 6 � 5 . It furthermore
follows from Definition 4.7160 that Eeb

Q ,V (6 |A)  M(A) because limM �A 6 (since, in
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fact, limM = 6). This implies that

inf
n
Eeb

Q ,V (6 |A) : 6 2 Lb and 6 � 5

o
M(A) = M0(A).

Since this holds for any M0 2 Meb (Q•) such that limM0 exists within �(A) and
limM0 �A 5 , it follows from Proposition 4.5.4173 that, indeed,

inf
n
Eeb

Q ,V (6 |A) : 6 2 Lb and 6 � 5

o
 Eeb

Q ,V ( 5 |A).

As already mentioned, the following result fully characterises Eeb
Q,V in

terms of its values on F ⇥X⇤.

Proposition 4.7.7. For any upper expectations tree Q• and any ( 5 , A) 2 V ⇥
X⇤, we have that

Eeb
Q,V ( 5 |A)

= inf
n
lim inf
<!+1

Eeb
Q,V (6< |A) : 6< 2 F , (9⌫ 2 R) 6< � ⌫ and lim

<!+1
6< �A 5

o
.

Proof. Fix any ( 5 , A) 2 V ⇥X⇤. We first prove that

Eeb
Q ,V ( 5 |A)  inf

n
lim inf
<!+1

Eeb
Q ,V (6< |A) : 6< 2 F , (9⌫ 2 R) 6< � ⌫ and lim

<!+1
6< �A 5

o
.

(4.13)
Fix any sequence (6<)<2N in F that is uniformly bounded below—so there is a ⌫ 2 R
such that 6< � ⌫ for all < 2 N—and such that lim<!+1 6< �A 5 . Then, by Corol-
lary 4.6.2177,

lim inf
<!+1

Eeb
Q ,V (6< |A) � Eeb

Q ,V ( lim
<!+1

6< |A) � Eeb
Q ,V ( 5 |A),

where the last inequality follows from Proposition 4.4.3164 [EC4163]. Since the in-
equality above holds for all sequences (6<)<2N in F that are uniformly bounded below
and for which lim<!+1 6< �A 5 , we conclude that Eq. (4.13) holds.

To prove the converse inequality, fix any 6 2 Lb such that 6 �A 5 . According to
Theorem 4.7.4183, there is a sequence (6<)<2N in F that is uniformly bounded below
and for which lim<!+1 6< = 6 and

Eeb
Q ,V (6 |A) = lim

<!+1
Eeb

Q ,V (6< |A) = lim inf
<!+1

Eeb
Q ,V (6< |A).

As a result, since (6<)<2N is moreover uniformly bounded below and is such that
lim<!+1 6< = 6 �A 5 , we obtain that

Eeb
Q ,V (6 |A) � inf

n
lim inf
<!+1

Eeb
Q ,V (6< |A) : 6< 2 F , (9⌫ 2 R) 6< � ⌫ and lim

<!+1
6< �A 5

o
.

Since the inequality above holds for all 6 2 Lb such that 6 �A 5 , we infer from
Proposition 4.7.6 that

Eeb
Q ,V ( 5 |A) � inf

n
lim inf
<!+1

Eeb
Q ,V (6< |A) : 6< 2 F , (9⌫ 2 R) 6< � ⌫ and lim

<!+1
6< �A 5

o
,

which together with Eq. (4.13) concludes the proof.
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4.8 Concluding notes on the definition of a game-theoretic upper
expectation

An important contribution of this chapter to the theory of game-theoretic
probability is, besides that it establishes a multitude of fundamental prop-
erties for game-theoretic upper expectations, that it provides an overview of
the possible definitions and an argumentation for why one specific version
stands out. Such an overview and argumentation is particularly relevant
because many slightly di�erent definitions for a global game-theoretic up-
per expectation have appeared in the literature [8, 86, 88, 109], and it is
not always clear what these di�erences entail. Most versions only di�er in
how the supermartingales are allowed to behave. Propositions 4.5.4173 and
4.5.5174, as well as [85, Proposition 7.7], show that the definition of Eeb

Q,V
is fairly robust with respect to changes that concern the limit behaviour of
supermartingales and, more specifically, how this limit behaviour relates to
the variable 5 in consideration. A choice that does have a large impact is
whether to use real-valued or extended real-valued supermartingales, and
whether we require them to be bounded below or not. We have chosen to
adopt a version of the game-theoretic upper expectation with bounded be-
low extended real-valued supermartingalesMeb (A•), mainly because of our
findings in Sections 4.1131–4.3152, but also because of some claims about the
desirable features of Eeb

A,V—recall the end of Section 4.2.3145. Using the re-
sults from Sections 4.4162–Section 4.7180 we can now confirm these claims.
Let us first briefly recall the following considerations from Sections 4.1131–
4.3152.

Given a general acceptable gambles tree A•, the game-theoretic upper
expectation ErB

A,V is the version with the most direct and intuitive interpre-
tation because it solely involves the use of bounded supermartingales; we
regard this to be a practically sensible assumption because we interpret su-
permartingales as capital processes and because, in a realistic, practical con-
text, one can never borrow or gain an unbounded or infinite amount of
money. The version ErB

A,V furthermore coincides with the versions Er
A,V and

Erb
A,V—which are interpretationally less direct because they use real-valued

supermartingales that are not bounded (above)—on the domain V ⇥X⇤.
On the domain V ⇥X⇤, all three the upper expectations ErB

A,V, E
r
A,V and

Erb
A,V turn out to be unsuitable; Er

A,V has the undesirable feature that it
sometimes becomes lower than its corresponding game-theoretic lower ex-
pectation [Example 4.2.1139]; E

rB
A,V and Erb

A,V sometimes return excessively
large—conservative—values [Example 4.2.2140]. An appropriate solution
to these issues was found by adopting the use of extended real supermartin-
gales. This led us to the definition of Eeb

A,V, which on its turn is equivalent
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4.9 Relationship to Shafer and Vovk’s work

to Eeb
Q,V as long as the upper expectations tree Q• agrees with A• through

Eq. (3.1)50; recall Theorem 4.3.6161.7

Now, apart from solving the issues raised in Examples 4.2.1139
and 4.2.2140—and also the one in Example 3.6.199 due to Proposi-
tion 4.2.8150 and Example 4.1.1133—Eeb

A,V was claimed to have numerous
desirable properties; this is now confirmed by the results in Sections 4.4162–
Section 4.7180. Among others, Eeb

A,V satisfies extended coherence proper-
ties, a general law of iterated upper expectations, continuity with respect
to increasing (bounded below) sequences and continuity with respect to
decreasing (bounded above) sequences of finitary variables. These results
were established for Eeb

Q,V—because the parametrisation in terms of upper
expectations trees is more convenient—but, by Theorem 4.3.6161, they also
hold for any acceptable gambles tree A• and the corresponding upper ex-
pectation Eeb

A,V.
Moreover, a final argument for the use of Eeb

Q,V—or Eeb
A,V—is that, as

was claimed at the end of Section 4.2.3145, and as we will show next, Eeb
A,V

coincides with E
"
A,V. Recall from Section 4.2.2142 that E

"
A,V was by definition

equal to Erb
A,V—or, better, ErB

A,V—on V ⇥X⇤, and was further defined on
V⇥X⇤ by imposing continuity with respect to upper and lower cuts [CU1143,
CU2143]. As we have argued there, we believe the definition of E

"
A,V to make

more sense, interpretationally speaking, than the one of Eeb
A,V because the

former still fundamentally relies on bounded real-valued supermartingales
instead of extended real-valued ones. Since the upper expectations E

"
A,V and

Eeb
A,V coincide, E

"
A,V can thus serve as an alternative—and more intuitive—

characterisation for Eeb
A,V.

Proposition 4.8.1. For any acceptable gambles tree A•, we have that

Eeb
A,V ( 5 |A) = E

"
A,V ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. First note that Eeb
A,V extends (the restriction to V ⇥X⇤ of) Erb

A,V due to Propo-
sition 4.2.8150. Since Eeb

A,V (·|A) for any A 2X⇤ moreover satisfies CU1143 and CU2143

by Theorem 4.6.1175, Proposition 4.6.3178 and Theorem 4.3.6161, and since E
"
A,V (·|A)

is by Definition 4.3143 the unique global upper expectation that extends Erb
A,V (on

V ⇥X⇤) and is such that, for all A 2 X⇤, E
"
A,V (·|A) satisfies CU1143 and CU2143, we

obtain that Eeb
A,V coincides with E

"
A,V on the entire domain V ⇥X⇤.

4.9 Relationship to Shafer and Vovk’s work

We conclude this chapter on game-theoretic upper expectations with a
brief study on the relation between our work and that of Shafer and Vovk. Of

7Results similar to Theorem 4.3.6161 could also be deduced for the upper expectations
E r

A,V, E
rb
A,V and E rB

A,V.
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Figure 4.2 Schematic overview of the most important game-theoretic ap-
proaches and their connections.

course, many others have contributed significantly to the field as well [8, 9,
21, 74, 88], yet we regard Shafer and Vovk’s new book [85] to be our main
point of reference because (i) it proposes a full-fledged and self-contained
theory of game-theoretic probability that covers a broad range of results and
topics; (ii) it is recent and therefore takes into account and/or includes most
of the novel contributions to the field—contrary to [86], which is in some
aspects already outdated; and (iii) Part II in [85] concerns material that is
closely related to what we have presented here.

4.9.1 A brief overview

The starting point in Shafer and Vovk’s framework—not only in [85]
but also in [86, 88, 109]—is not necessarily an acceptable gambles tree A•

or an upper expectations tree Q•, but rather a sequential game where
three players—Forecaster, Skeptic and Reality—or sometimes two players—
Skeptic and World—play according to a so-called testing protocol. Testing
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4.9 Relationship to Shafer and Vovk’s work

protocols lay down the rules of the game. One such testing protocol was
already more or less introduced in Section 3.2.361 where we introduced the
finitary game-theoretic upper expectation Ef

A,V. Shafer and Vovk, however,
also consider a broad range of other testing protocols, varying from very
simple ones—see e.g. [85, Protocol 1.1]—to rather abstract and general
ones—see e.g. [85, Protocol 7.12]. Pointing out the di�erences with our
approach, and certainly understanding what these di�erences entail, can
however be a rather challenging task. We now sketch an overview of what
the most important aspects are one should take into account when com-
paring our work with theirs. Our results are mainly related to the results
situated in [85, Part II], so we focus only on the material presented therein.

(i) In [85, Part II], a player called ‘Reality’—or ‘World’ in absence of
Forecaster—decides what the outcome of each round is. This is only a
matter of interpretation; one could just as well regard Reality’s moves
to be the subsequent observations of the state of a stochastic process.

(ii) The local state space—the move space for Reality or World—is in [85,
Part II] not necessarily finite, nor fixed; see e.g. [85, Protocol 7.10].

(iii) The local models in [85, Part II]—which are specified by Forecaster—
always take the form of a particular type of upper expectation; see [85,
Section 6.1] and Definition 4.8191 below. Moreover, note that, though
this turned out to have no e�ect on the resulting game-theoretic upper
expectation, we actually took coherent sets of acceptable gambles to
be starting point rather than local upper expectations.

(iv) The local models Q• or A• are in our case assumed to be known be-
forehand; that is, we assume that Skeptic knows what Forecaster’s
moves—the specification of the models Q"

A
or A"

A
—for each situation

A 2X⇤ are going to be, and thus what options Skeptic is going to have
in each situation, before he starts playing. In [85, Protocol 7.12], for
instance, this is not the case as Forecaster is there only required to
reveal his moves in each round, after he has observed previous moves
by Skeptic and Reality.8 His forecasts or moves are in that case called
‘prequential’ [21]. Mathematically speaking, this comes down to al-
lowing each local upper expectation to depend on the situation and
on the previous moves by Skeptic. Though this seems to always im-
pact the generality of their approach in the positive, it only e�ectively
does so when we are considering finite or countable state spaces. As
Shafer and Vovk argue themselves, for general state spaces, one can

8In contrast to Section 3.2.361 where Skeptic’s moves are the (process) di�erences �M of
the corresponding real supermartingale M, Skeptic’s moves in the ‘extended real’ context are
the local variables M (A ·); see e.g. [85, Protocol 7.1].
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always turn a prequential protocol—e.g. [85, Protocol 7.12]—into an
equivalent non-prequential one—e.g. [85, Protocol 7.1].

It is clear that the di�erences described in point (ii)x and (iv)x impact
the generality of Shafer and Vovk’s approach in the positive. To assess how
the di�erence in (iii)x impacts generality, on the other hand, a little bit
more care is required. We will study the relation between Shafer and Vovk’s
type of upper expectation [85, Section 6.1] and our local upper expecta-
tions in Section 4.9.2! below. As we will see, their type of (local) upper
expectation is more general than ours. Nevertheless, we do not consider
this additional expressive power to be a positive feature, because—as we
will also show below—on the one hand, the resulting global game-theoretic
upper expectations are not a�ected by it, and on the other hand, compat-
ibility of local and global upper expectations cannot be guaranteed if we
were to work with their more general type of (local) upper expectation.

Besides, though our local upper expectations are less general than those
of Shafer and Vovk, we have also set forward a game-theoretic approach
based entirely on local (coherent) sets of acceptable gambles. By Theo-
rem 4.3.6161, we know that this does not a�ect the values of the resulting
global game-theoretic upper expectation, but still, as we have discussed in
Section 2.533 and Section 3.1.248, sets of acceptable gambles are more gen-
eral than upper expectations, and so it was a priori not given, neither trivial,
that these two types of local models would lead to equivalent global upper
expectations. Additionally, our acceptability-based approach sheds light on
the connection between Shafer and Vovk’s theory and the traditional field
of behavioural imprecise probabilities [3, 106, 110, 113]. Shafer and Vovk
have also used a type of local model similar to coherent sets of acceptable
gambles in their first book [86, Section 8.3], but the setting there involves
only gambles and real-valued supermartingales; we refer to De Cooman
& Hermans [9] for an in-depth overview on how the setting in [86, Sec-
tion 8.3] compares to the behavioural coherence approach of Walley [110],
for stochastic processes with a finite time horizon.

Finally, we also want to nuance our earlier statements about the in-
creased generality of Shafer and Vovk’s approach in aspects (ii)x and (iv)x:
by restricting ourselves to finite state spaces, and to non-prequential fore-
casts, we were able to establish some crucial results that are absent or dif-
ferent in Shafer and Vovk’s book [85]. Most notably, Theorem 4.7.3182
is similar to [85, Lemma 9.12] due to Lemma 5.5.5251 below, yet [85,
Lemma 9.12] requires strong topological conditions on how the local mod-
els are allows to vary, only involves non-negative variables, and is only stated
for unconditional global upper expectations. There appears to be no analo-
gon of Proposition 4.7.7185 in [85]; neither does there seem to be ones for
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the more technical results Theorem 4.7.4183 or Proposition 4.7.6184, which
will be crucial in Chapter 6283 to establish an axiomatic characterisation of
Eeb

A,V or Eeb
Q,V.

4.9.2 Upper expectations according to Shafer and Vovk

The following definition specifies what Shafer, Vovk and Takemura call
a ‘superexpectation’ in [88] and what Shafer and Vovk call an ‘upper expec-
tation’ in [85]. In order to di�erentiate with our notion of an upper expec-
tation, we will refer to it as an SV-upper expectation.9 They define this type
of upper expectation for general possibility spaces Y, but we immediately
apply it here to the case where Y is the finite state space X.

Definition 4.8 (SV-upper expectations). An SV-upper expectation E on
L(X) is an extended real-valued map on L(X) that satisfies the follow-
ing axioms:

SV1. E (2) = 2 for all 2 2 R;

SV2. E ( 5 + 6)  E ( 5 ) + E (6) for all 5 , 6 2 L(Y);
SV3. E (_ 5 ) = _E ( 5 ) for all _ 2 R> and all 5 2 L(Y);
SV4. 5  6 ) E ( 5 )  E (6) for all 5 , 6 2 L(Y).
SV5. lim<!+1 E ( 5<) = E (lim<!+1 5<) for any increasing sequence ( 5<)<2N0

of non-negative variables in Lb (Y). }

We immediately have the following constant additivity property for an
SV-upper expectation.

Corollary 4.9.1. For any SV-upper expectation E on L(X), we have that

SV6. E ( 5 + `) = E ( 5 ) + ` for all 5 2 L(X) and all ` 2 R.

Proof. Fix any 5 2 L(X) and any ` 2 R. By SV2 and SV1, we have that

E ( 5 ) = E ( 5 ) + ` � ` = E ( 5 ) + E (`) � ` � E ( 5 + `) � ` = E ( 5 + `) + E (�`) � E ( 5 ).

So we obtain that E ( 5 + `) � ` = E ( 5 ), and thus that E ( 5 + `) = E ( 5 ) + `.

Since Shafer and Vovk use these SV-upper expectations as local models—
or moves by Forecaster—in their testing protocols, we are interested in how
these SV-upper expectations are related to our notion of an extended lo-
cal upper expectation, which is characterised by coherence on L(X), and

9Their definition is, as far as we know, not based on a single specific interpretation. Rather,
they draw inspiration from various subfields in probability theory to obtain these axioms.
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by the continuity properties CU1143 and CU2143 on L(X). We gather our
findings in the following proposition.

Proposition 4.9.2. For any (unconditional) upper expectation E : L(X) !
R, the following statements hold:

(i) if E is coherent on L(X) and satisfies CU1143 and CU2143, then E is an
SV-upper expectation;

(ii) if E is an SV-upper expectation, then E is coherent onL(X) and satisfies
CU1143.

Proof. To prove (i), assume that E is coherent on L(X) and satisfies CU1143 and
CU2143. Then Properties LE1156 and LE6156 in Proposition 4.3.4156 guarantee that
E satisfies SV1x and SV5x. We next prove that E also satisfies SV2x, SV3x and
SV4x, and hence, that it is an SV-upper expectation.

SV2x: Consider any two 5 , 6 2 L(X) and any 2 2 R. Then, since 5
_2 � 2 and

6
_2 � 2, we have that 5_2+6_2 � 22. In a similar way, we deduce that 5_2+6_2 � 5 +6.

Hence, combining both inequalities, we obtain that 5_2 + 6
_2 � max{ 5 + 6, 22} =

( 5 + 6)_22. Moreover note that 5_2, 6_2 and ( 5 + 6)_22 are all variables in Lb (X), so
we can apply LE4156 and subsequently LE2156 to infer that

E
�
( 5 + 6)_22

�
 E ( 5_2 + 6_2)  E ( 5_2) + E (6_2).

The inequality above holds for any 2 2 R, so we have that

E ( 5 + 6) CU2143= lim
2!�1

E
�
( 5 + 6)_2

�
= lim

2!�1
E

�
( 5 + 6)_22

�
 lim

2!�1

⇥
E ( 5_2) + E (6_2)

⇤
= lim

2!�1
E ( 5_2) + lim

2!�1
E (6_2) CU2143= E ( 5 ) + E (6),

where the existence of the limits after the inequality follows from the monotonicity
[LE4156] of E, and where the second to last equality follows from the fact that E ( 5_2)
and E (6_2) are increasing in 2 and our convention that +1�1 = +1.

SV3x: Consider any 5 2 L(X). First note that, since multiplication with a
positive constant _ 2 R> is order preserving on R, we have that

max{_ 5 (í), 2} = max{_ 5 (F), _ 2

_
} = _max{ 5 (F), 2

_
} for all F 2X and all 2 2 R.

Hence, (_ 5 )_2 = _ 5
_ 2

_ for all 2 2 R and all _ 2 R>. Since moreover 5_ 2

_ 2 Lb (X),
we can apply LE3156 to infer that E ((_ 5 )_2) = E

⇣
_ 5
_ 2

_

⌘
= _E

⇣
5
_ 2

_

⌘
for all 2 2 R

and all _ 2 R>. This then implies that, for any _ 2 R>,

E (_ 5 ) CU2143= lim
2!�1

E
�
(_ 5 )_2

�
= lim

2!�1
_E

⇣
5
_ 2

_

⌘
= _ lim

2!�1
E

⇣
5
_ 2

_

⌘

= _ lim
2!�1

E
�
5
_2 � CU2143= _E ( 5 ) .

Finally, that E satisfies SV4x follows trivially from the monotonicity [LE4156]
of E on Lb (X) in combination with CU2143. Hence, E satisfies SV1x–SV5x and is
therefore an SV-upper expectation.
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To prove (ii) , assume that E is an SV-upper expectation. We first show that
E is coherent on L(X). To this end, note that E is real-valued on L(X) due to
SV4191 and SV1191.10 Hence, according to Definition 2.632, it su�ces to prove that E
satisfies C132–C332. This is trivial: C132 follows from SV1191 and SV4191; C232 follows
from SV2191; and C332 follows from SV3191 and SV1191. Now, to see that E satisfies
CU1143, fix any 5 2 Lb (X) and any increasing sequence (2<)<2N of non-negative
reals such that lim<!+1 2< = +1. Then clearly ( 5^2< � inf 5^21 )<2N is an increasing
sequence of non-negative variables in Lb (X) that moreover converges to 5 �inf 5^21 .
Hence, SV5191 implies that

lim
<!+1

E ( 5^2< � inf 5^21 ) = E ( 5 � inf 5^21 ). (4.14)

Since 5 is bounded below and 21 is a non-negative real number, we have that
� inf 5^21 2 R, and therefore by SV6191 that lim<!+1 E ( 5^2< ) = E ( 5 ). Further-
more, for any <,; 2 N such that ; > <, we clearly have that 5^2<  5

^2  5
^2;

for all 2 2 R such that 2<  2  2;. Due to SV4191, this also implies that
E ( 5^2< )  E ( 5^2)  E ( 5^2; ) for all 2 2 R such that 2<  2  2;. Since this
holds for any <,; 2 N such that ; > <, and since lim<!+1 2< = +1, it follows
that lim2!+1 E ( 5^2) = lim<!+1 E ( 5^2< ) = E ( 5 ), where the last equality follows from
our earlier considerations. So we indeed conclude that E is coherent on L(X) and
satisfies CU1143.

So we see that, as a consequence of (i) , each of our local extended up-
per expectationsQ"

A
defined through coherence and CU1143 and CU2143, can

always be seen as an SV-upper expectation. Hence, SV-upper expectations
are at least as general as our extended local upper expectations. The fol-
lowing example shows that this class of local models is in fact strictly more
general.

Example 4.9.3. Consider any finite state space X such that |X | > 1 and
the upper expectation E : L(X) ! R defined by

E ( 5 ) B
(
�1 if 5 < +1 pointwise and 5 (F) = �1 for some F 2X;
sup 5 otherwise,

for all 5 2 L(X). We show that E satisfies SV1191–SV5191, but not CU2143.
SV1191: This follows trivially from the definition of E.
SV2191: Consider any two 5 , 6 2 L(X). If there is some F 2 X such

that 5 (F) = +1, then we have that E ( 5 ) = +1 and therefore also that
E ( 5 ) + E (6) = +1, which implies the desired inequality. Due to symmetry,
the inequality is also satisfied if 6(F) = +1 for some F 2X. Hence, consider
the case where both 5 < +1 and 6 < +1 pointwise. Then we clearly also

10Recall from the beginning of Section 4.3.1153 that being real-valued on L(X) is a neces-
sity for being coherent on L(X).
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have that 5 + 6 < +1 pointwise. If moreover 5 (F) = �1 for some F 2 X,
then also 5 (F) + 6(F) = �1 (because 6(F) < +1) which, together with the
fact that 5 + 6 < +1 pointwise, implies that E ( 5 + 6) = �1 and thus the
desired inequality. Once more, the same can be concluded if 6(F) = �1
for some F 2X because of symmetry. Hence, we are left with the situation
where both 5 and 6—and therefore also 5 +6—are real-valued. Then we can
immediately infer that E ( 5 + 6) = sup( 5 + 6)  sup 5 + sup 6 = E ( 5 ) + E (6).

SV3191: Consider any _ 2 R> and any 5 2 L(X). If 5 < +1 pointwise
and 5 (F) = �1 for some F 2X, then also _ 5 < +1 pointwise and _ 5 (F) =
�1, which implies that _E ( 5 ) = _ (�1) = �1 = E (_ 5 ). Otherwise, if 5 >

�1 pointwise or 5 (F) = +1 for some F 2X, then also _ 5 > �1 pointwise
or _ 5 (F) = +1, which implies that _E ( 5 ) = _ sup 5 = sup _ 5 = E (_ 5 ).

SV4191: Consider any 5 , 6 2 L(X) such that 5  6. If 5 < +1 pointwise
and 5 (F) = �1 for some F 2 X, then E ( 5 ) = �1 and therefore automati-
cally E ( 5 )  E (6). Otherwise, if 5 > �1 pointwise or 5 (F) = +1 for some
F 2X, then also 6 > �1 pointwise or 6(F) = +1 for some F 2X. Then it
follows from the definition of E that E ( 5 ) = sup 5  sup 6 = E (6).

SV5191: Consider any increasing sequence ( 5<)<2N0 of non-negative vari-
ables in Lb (X). Since 5< � 0 > �1 pointwise, we have that E ( 5<) = sup 5<

for all < 2 N0. Clearly, 5 B lim<!+1 5< is non-negative too, so we also have
that E ( 5 ) = sup 5 . Hence, we infer that

lim
<!+1

E ( 5<) = lim
<!+1

sup
F2X

5< (F) = sup
<2N0

sup
F2X

5< (F) = sup
F2X

sup
<2N0

5< (F)

= sup
F2X

5 (F) = E ( 5 ),

where the second and the fourth equality follows from the increasing char-
acter of ( 5<)<2N0 .

As a conclusion, E is an SV-upper expectation on L(X). However, it is
easy to see that it does not satisfy CU2143. Indeed, consider the extended
real variable �1IF , where F 2 X. Then we have that E (�1IF) = �1.
On the other hand, E ((�1IF)_2) = E (2IF) = 0 for all non-positive 2 2 R

(indeed, note that sup 2IF = 0 because |X | > 1). So E (�1IF) = +1 < 0 =
lim2!�1 E ((�1IF)_2), which implies that E does not satisfy CU2143. ^

Though SV-upper expectations are strictly more general than our ex-
tended local upper expectations, it follows from Proposition 4.9.2(ii)192 that
the increased generality solely concerns the domain L(X) \ Lb (X); see
the corollary below. Furthermore, if an extended local upper expectation—
in our sense—and an SV-upper expectation are such that they coincide on
Lb (X), then the former will always provide conservative bounds for the
latter.
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4.9 Relationship to Shafer and Vovk’s work

Corollary 4.9.4. For any SV-upper expectation E on L(X), there is an upper
expectation E0 on L(X) that satisfies CU1143 and CU2143, whose restriction to
L(X) is coherent, and is such that E ( 5 ) = E0( 5 ) for all 5 2 Lb (X). For any
such E0, we additionally have that E ( 5 )  E0( 5 ) for all 5 2 L(X) \ Lb (X).

Proof. Let E0 onLb (X) simply be defined as to be equal to E, and onL(X)\Lb (X)
by CU2143. Then, by Proposition 4.9.2(ii)192, we have that E0 satisfies CU1143 and that
it is coherent on L(X). By definition, E0 coincides with E on Lb (X) and satisfies
CU2143 on L(X) \Lb (X). Since CU2143 is moreover trivially satisfied on Lb (X) (by
any upper expectation), this establishes the first statement. To see that the second
statement holds, fix any 5 2 L(X) \ Lb (X), and note that

E ( 5 )  lim
2!�1

E ( 5_2) = lim
2!�1

E0( 5_2) CU2143= E0( 5 ),

where the first inequality and existence of the first limit follows from the monotonic-
ity [SV4191] of E.

Hence, if we restrict ourselves to the domain Lb (X), our local mod-
els are as general as these of Shafer and Vovk. Since game-theoretic up-
per expectations—in our framework as well as that of Shafer and Vovk—
are defined through supermartingales that are bounded below, and since
the local models characterise supermartingales through Eq. (4.3)159, this
implies that, as far as the resulting game-theoretic upper expectations are
concerned, it does not matter which type of local upper expectation is being
used.

In fact, for this reason, if one wishes to remain as general as possi-
ble, one may just as well choose to not impose any conditions on the do-
main L(X) \ Lb (X). In our case, this simply corresponds to excluding
CU2143 from the definition of our local upper expectations. Due to Proposi-
tion 4.9.2(ii)192 and the example below, this defines a set of upper expecta-
tions on L(X) that is strictly larger—and thus more general—than the set
of SV-upper expectations.

Example 4.9.5. Let E : L(X) ! R be defined by E ( 5 ) B sup 5 for all
5 2 Lb (X) and by E ( 5 ) B 0 for all 5 2 L(X) \ Lb (X). Then it can easily
be checked that E is coherent on L(X) and that it satisfies CU1143. Yet, it
clearly does not satisfy SV2191 and SV4191. Indeed, observe that

E (�1 + 1) = E (�1) = 0 ⇤ 1 = E (�1) + E (1),

so E violates SV2191. E also violates SV4191 because E (�1) = 0 ⇥ �1 =
E (�1). ^

One major reason why we nevertheless impose CU2143 onto the local
upper expectations is because, without it, we do not necessarily have com-
patibility with the global upper expectation on the entire domain L(X).
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This can be seen as follows. For any upper expectations tree Q• and any
extended upper expectations tree Q⇠• : A 2X⇤ 7! Q⇠

A
for which the individ-

ual local models Q⇠
A
extend Q

A
and only satisfy CU1143 (and not necessarily

CU2143), the local upper expectations Q⇠
A
will coincide with the local upper

expectationsQ"
A
onLb (X), and so the global game-theoretic upper expecta-

tion E
eb
Q⇠,V corresponding to Q⇠•—defined in an analogous way as Eeb

Q,V—will
coincide with Eeb

Q,V. Hence, by Corollary 4.6.4179 and the fact that Q"
A
satis-

fies CU2143 for all A 2X⇤, we have that, for all ( 5 , F1:9) 2 L(X) ⇥X⇤,

E
eb
Q⇠,V ( 5 (-9+1) |F1:9) = Eeb

Q,V ( 5 (-9+1) |F1:9) = Q"
F1:9

( 5 ) = lim
2!�1

Q"
F1:9

( 5_2)

= lim
2!�1

Q⇠
F1:9

( 5_2)

As a result, Q⇠
F1:9

should indeed satisfy CU2143 if one wishes to have that

E
eb
Q⇠,V ( 5 (-9+1) |F1:9) = Q⇠

F1:9
( 5 ).

Now let us summarize our considerations above; if we are solely inter-
ested in the properties of the global game-theoretic upper expectation, and
care little about compatibility with the local models, then the best—themost
general—thing to do is to impose coherence and CU1143 onto the local up-
per expectations. This approach is strictly more general than using SV-upper
expectations; see Proposition 4.9.2(ii)192 and Example 4.9.5x. If, on the
other hand, we find it desirable to have (full) compatibility with the local
models, then we should additionally impose CU2143 onto the local mod-
els. This approach is strictly less general than using SV-upper expectations;
see Proposition 4.9.2(i)192 and Example 4.9.3193. All things considered, we
do not see what advantage could be gained from using SV-upper expecta-
tions compared to the other two options—that is, adopting coherence and
CU1143–CU2143 (if one desires compatibility) or only adopting coherence
and CU1143 (if one wishes to remain as general as possible).

On top of this, the definition of an SV-upper expectation is, as far as we
can tell, not based on a clear interpretation or argumentation. Our char-
acterisation, on the other hand, starts from the widely encountered notion
of coherence—which can be given a clear interpretation in terms of betting
behaviour or sets of probabilities [recall Definition 2.632]—and uses a basic
and intuitive continuity axiom [CU1143] to go from L(X) to Lb (X). Our
extension from Lb (X) to L(X) using CU2143 subsequently follows from
a conservativity argument. Moreover, recall from Proposition 4.3.1153 that
these extended local upper expectations can also be seen as to result from
extended local sets of acceptable gambles.
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4.A Proof of Theorem 4.3.6

— A��������� —

4.A Proof of Theorem 4.3.6

Proof of Theorem 4.3.6161. Fix any ( 5 , A) 2 V ⇥X⇤. That

Eeb
A,V ( 5 |A) = inf

�
M(A) : M 2 Meb (A•) and lim inf M �A 5

 
� inf

�
M(A) : M 2 M G

eb (Q•) and lim inf M �A 5
 
= Eeb, G

Q ,V ( 5 |A)
� inf

�
M(A) : M 2 Meb (Q•) and lim inf M �A 5

 
= Eeb

Q ,V ( 5 |A),

follows immediately from Proposition 4.3.5159. So it su�ces to prove that
Eeb

A,V ( 5 |A)  Eeb
Q ,V ( 5 |A). Consider any M 2 Meb (Q•) such that lim inf M �A 5 . Let

M0 be the extended real process defined by M0(B) B M(A) for all B b A and, for all
situations that follow A, by the recursive relation

M0(BF) B
(
M(BF) if M0(B) < +1;
+1 if M0(B) = +1,

for all B w A and all F 2X.

Then it is clear that M0(B) � M(B) for all B w A, and therefore that lim inf M0 �A
lim inf M �A 5 . M0 is also bounded below because M is bounded below. Moreover,
to see that M0 2 Meb (Q•), note that M0(B·) = M0(B) for all B A A and thus by LE1156

[which we can apply because M0 is bounded below] that Q"
B
(M0(B·)) = M0(B). On

the other hand, for any B w A, if M0(B) < +1, then by the supermartingale character
of M we infer that

Q"
B
(M0(B·)) = Q"

B
(M(B·)) M(B) M0(B).

If M0(B) = +1, then also M0(B·) = +1 and thus by LE1156 Q"
B
(M0(B·)) = +1 

M0(B). Hence,Q"
B
(M0(B·)) M0(B) for all B 2X⇤, and sinceM0 is moreover bounded

below, we conclude that indeed M0 2 Meb (Q•).
Now fix any n > 0 and let G be the extended betting process defined by

G(F1:9) B
(
�M0(F1:9) � n2�9 if M0(F1:9) < +1;
�n2�9 if M0(F1:9) = +1,

for all F1:9 2X⇤
.

We first prove that

M0(⇤) +
9�1X
7=0

G(F1:7) (F7+1) = M0(F1:9) �
9�1X
7=0

n2�7 for all F1:9 2X⇤
, (4.15)

by using an induction argument on the length 9 2 N0 of the situations F1:9. That this
equality is true for the situation F1:9 = ⇤ is trivial. Then suppose that it holds for all
situations F1:9 2X9 of a certain length 9 2 N0. Consider any situation F1:9+1 2X9+1

197



Game-theoretic upper expectations

of length 9 + 1. Then we have that

M0(⇤) +
9X
7=0

G(F1:7) (F7+1) = M0(⇤) +
9�1X
7=0

G(F1:7) (F7+1) + G(F1:9) (F9+1)

= M0(F1:9) �
9�1X
7=0

n2�7 + G(F1:9) (F9+1), (4.16)

where the last equality follows from the induction hypothesis. If M0(F1:9) < +1,
then we have that G(F1:9) (F9+1) = M0(F1:9+1) �M0(F1:9) � n2�9, and therefore that

M0(⇤) +
9X
7=0

G(F1:7) (F7+1) = M0(F1:9) �
9�1X
7=0

n2�7 + M0(F1:9+1) �M0(F1:9) � n2�9

= M0(F1:9+1) �
9X
7=0

n2�7,

where we used the fact that M0(F1:9) 2 R because M0(F1:9) < +1 and M0 is
bounded below. On the other hand, if M0(F1:9) = +1, then we also have that
M0(F1:9+1) = +1 in the case that F1:9 w A simply due to the definition of M0. The
definition of M0 also implies that M0(F1:9+1) = +1 in the case that F1:9 A A, because
then F1:9+1 b A and so M0(F1:9+1) = M0(A) = M0(F1:9) = +1. So, in all cases, we
have that M0(F1:9+1) = +1 if M0(F1:9) = +1. Since G(F1:9) (F9+1) = �n2�9 by the
definition of G, Eq. (4.16) implies that

M0(⇤) +
9X
7=0

G(F1:7) (F7+1) = M0(F1:9) �
9�1X
7=0

n2�7 + M0(F1:9+1) � n2�9

= M0(F1:9+1) �
9X
7=0

n2�7 .

So, for any F1:9+1 2 X9+1, we have that M0(⇤) + P
9

7=0 G(F1:7) (F7+1) = M0(F1:9+1) �P
9

7=0 n2�7, which proves the induction step and therefore establishes Eq. (4.15)x.
As a result of Eq. (4.15)x and the fact that M0 superhedges 5 on �(A), we find

that, for any l 2 �(A),

lim inf
9!+1

h
M0(⇤) + CG (l9)

i
= lim inf

9!+1

h
M0(⇤) +

9�1X
7=0

G(l1:7) (l7+1)
i

= lim inf
9!+1

h
M0(l1:9) �

9�1X
7=0

n2�7
i

� lim inf M0(l) � 2n � 5 (l) � 2n.

So the extended real process M⇤ defined by M⇤ (B) B M0(⇤) + 2n + CG (B) for all
B 2X⇤ superhedges 5 on �(A).

We furthermore show that �G(F1:9) 2 A"
F1:9 for all F1:9 2X⇤, and therefore that

M⇤ is an extended real supermartingale according to A•. For any F1:9 2 X⇤, we
either have that M0(F1:9) = +1 or that M0(F1:9) < +1. If M0(F1:9) = +1, then
G(F1:9) = �n2�9 by definition. Since L� (X) ✓ AF1:9 ✓ A"

F1:9 due to the coherence
[D127] of AF1:9 = A"

F1:9 \ L(X), this implies that �G(F1:9) 2 A"
F1:9 . On the other
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hand, if M0(F1:9) < +1, then G(F1:9) = �M0(F1:9) � n2�9 by definition. Since M0 is
bounded below, we also have that �M0(F1:9) is real and M0(F1:9·) is bounded below,
and so we infer that

Q"
F1:9

�
G(F1:9)

�
= Q"

F1:9

�
�M0(F1:9) � n2�9

�
= Q"

F1:9

�
M0(F1:9·) �M0(F1:9) � n2�9

�
LE5156= Q"

F1:9
(M0(F1:9·)) �M0(F1:9) � n2�9

M0(F1:9) �M0(F1:9) � n2�9 = �n2�9,

where the inequality follows from the supermartingale character of M0. Since
A• and Q• agree, Proposition 4.3.1153 implies that Q"

F1:9
= Q"

F1:9 ,A
. So, since

Q"
F1:9

( G(F1:9))  �n2�9, the definition of Q"
F1:9 ,A

implies that there is an U 2 R<

such that (U � G(F1:9)) 2 A"
F1:9 . Using Lemma 4.2.5146, we arrive at the fact that

�G(F1:9) 2 A"
F1:9 . Hence, for any F1:9 2 X⇤, we have that �G(F1:9) 2 A"

F1:9 , which
implies that the extended real process M⇤ = M0(⇤) + 2n + CG is an extended real
supermartingale according to A•.

It remains to check that M⇤ is bounded below. This can be easily deduced by
recalling Eq. (4.15)197 which implies that, for any F1:9 2X⇤,

M⇤ (F1:9) = M0(⇤) + 2n + CG (F1:9) = M0(⇤) + 2n +
9�1X
7=0

G(F1:7) (F7+1) (4.17)

= M0(F1:9) + 2n �
9�1X
7=0

n2�7, (4.18)

and therefore M⇤ (F1:9) � M0(F1:9). Then, since M0 is bounded below, we find
that M⇤ is also bounded below. Together with the fact that it is an extended real
supermartingale according to A•, we obtain that M⇤ 2 Meb (A•). Moreover recalling
that lim inf M⇤ �A 5 , we have by the definition of Eeb

A,V and Eq. (4.17) that

Eeb
A,V ( 5 |A) M⇤ (A) = M0(A) + 2n �

|A|�1X
7=0

n2�7 M0(A) + 2n.

Since this holds for any n > 0, we infer that Eeb
A,V ( 5 |A) M0(A). Furthermore, recall

that M0(A) = M(A) by definition of M0, so we arrive at the fact that Eeb
A,V ( 5 |A) 

M(A). Since this holds for any M 2 Meb (Q•) such that lim inf M �A 5 , we infer that

Eeb
A,V ( 5 |A)  inf

�
M(A) : M 2 Meb (Q•) and lim inf M �A 5

 
= Eeb

Q ,V ( 5 |A),

which concludes the proof.

4.B Proofs of the results in Section 4.5

In the following proofs, we will frequently use the notion of a (tree)
cut; a collection * ⇢ X⇤ of pairwise incomparable situations. We call a
cut * complete if for all l 2 ⌦ there is some C 2 * such that l 2 �(C).
Otherwise, we call * partial. For any two cuts * and +, we will write * @ +
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if (8D 2 +) (9C 2 *) C @ D, and similarly for * v +. Furthermore, we write
that * A + and * w + if, respectively, + @ * and + v *. Analogously to
what we did before for situations, we say that a path l 2 ⌦ goes through
a cut * when there is some < 2 N0 such that l< 2 *. We will also use the
following sets:

[*,+] B {A 2X⇤ : (9C 2 *) (9D 2 +)C v A v D},
[*,+) B {A 2X⇤ : (9C 2 *) (9D 2 +)C v A @ D},
(*,+] B {A 2X⇤ : (9C 2 *) (9D 2 +)C @ A v D},
(*,+) B {A 2X⇤ : (9C 2 *) (9D 2 +)C @ A @ D}.

We will also use the simpler notation A to denote the cut {A} that consists
of the single situation A 2 X⇤. In specific, all the previous notations are
meaningful if we replace the cuts * or + by a situation.

Proof of Proposition 4.5.1172. Let A 2 X⇤ be any fixed situation where M(A) is
real. We can assume that M is non-negative and that M(A) = 1 without loss of
generality. Indeed, because the original supermartingale is bounded below and real
in A, we can obtain such a process by translating and scaling—by adding a positive
constant and then multiplying the supermartingale by a positive real—the originally
considered supermartingale in an appropriate way. This process will then again
be a (bounded below) supermartingale because the local models Q"

B
satisfy LE5156

and LE3156. Moreover, the new supermartingale will have the same convergence
character as the original one.

To start, fix any couple of rational numbers 0 < 0 < 1 and consider the following
recursively constructed sequences of cuts (*0,1

9
)92N and (+0,1

9
)92N. Let

+
0,1

1 B {B w A : M(B) < 0 and (8B0 2 [A, B)) M(B0) � 0},

and, for 9 2 N,

1. let *0,1

9
B {B 2X⇤ : +0,1

9
@ B : M(B) > 1 and (8B0 2 (+0,1

9
, B)) M(B0)  1};

2. let +0,1

9+1 B {B 2X⇤ : *0,1

9
@ B, M(B) < 0 and (8B0 2 (*0,1

9
, B)) M(B0) � 0}.

Note that all *0,1

9
and all +0,1

9
are indeed (partial or complete) cuts.

Next, consider the extended real process M0,1 defined by M0,1 (B) B M(A) for
all B b A and by

M0,1 (BF) B
(
M0,1 (B) + [M(BF) �M(B)] if +0,1

9
v B and *0,1

9
@ B for some 9 2 N;

M0,1 (B) otherwise,
(4.19)

for all BF A A with F 2X. We prove that M0,1 is a non-negative supermartingale that
converges to +1 on all paths l 2 �(A) such that

lim inf M(l) < 0 < 1 < lim supM(l). (4.20)
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For any situation B and for any 9 2 N, when*0,1

9
@ B, we denote by CB

9
the (necessarily

unique) situation in *0,1

9
such that CB

9
@ B. Similarly, for any 9 2 N, when +0,1

9
@ B,

we denote by D
B

9
the (necessarily unique) situation in +

0,1

9
such that DB

9
@ B. Note

that +0,1

1 @ *
0,1

1 @ +
0,1

2 @ · · · @ +
0,1

<
@ *

0,1

<
@ · · · . Hence, for any situation B we can

distinguish the following three cases:

• The first case is that +0,1

1 a B. Then we have that

M0,1 (B) = M0,1 (A) = M(A) = 1. (4.21)

• The second case is that +0,1

9
@ B and *0,1

9
a B for some 9 2 N. Then by applying

Eq. (4.19) for each subsequent step, observing that M0,1 (A) is real [because it is
equal to 1], and cancelling out the intermediate terms which is possible because
M is real for any situation B0 2X⇤ such that +0,1

9
0 v B0 and *0,1

9
0 @ B0 for some 90 2 N

[this follows readily from the definition of the cuts +0,1

9
0 and *0,1

9
0 ], we have that

M0,1 (B) �M0,1 (A) =
9�1X
✓=1

⇥
M(CB

✓
) �M(DB

✓
)
⇤
+ M(B) �M(DB

9
). (4.22)

• The third case is that *0,1

9
@ B and +0,1

9+1 a B for some 9 2 N. Then we have that

M0,1 (B) �M0,1 (A) =
9X
✓=1

[M(CB
✓
) �M(DB

✓
)], (4.23)

where, again, we used the fact that M0,1 (A) is real, and that M is real for any
situation B0 2X⇤ such that +0,1

9
0 v B0 and *0,1

9
0 @ B0 for some 90 2 N.

That M0,1 (B) is non-negative, is trivially satisfied in the first case. To see that this
is also true for the third case, observe that 0 < 1 < M(CB

✓
) and 0  M(DB

✓
) < 0 for

all ✓ 2 {1, ..., 9}. This implies that M(CB
✓
) �M(DB

✓
) > 1 � 0 > 0 for all ✓ 2 {1, ..., 9}

and therefore directly that M0,1 (B) is non-negative because of Eq. (4.23) and the fact
that M0,1 (A) = M(A) = 1. In the second case, it follows from Eqs. (4.22) and (4.23)
and the fact that M0,1 (A) = M(A) = 1, that

M0,1 (B) = M0,1 (DB
9
) + M(B) �M(DB

9
). (4.24)

We prove by induction that M0,1 (DB
✓
) � M(DB

✓
) for all ✓ 2 {1, ..., 9}, and therefore,

by Eq. (4.24) and because M is non-negative, that M0,1 (B) is non-negative.
If ✓ = 1, then either DB1 = A or DB1 < A. If DB1 = A, then M0,1 (DB1) = M0,1 (A) =

M(A) = M(DB1). If DB1 < A, we have, by the definition of +0,1

1 , that M(DB1) < 0 and 0 
M(A) = M0,1 (A) = M0,1 (DB1). Hence, in both cases, we have that M0,1 (DB1) �M(DB1).
Now suppose that M0,1 (DB

✓
) � M(DB

✓
) for some ✓ 2 {1, ..., 9 � 1}. Then, again using

the fact that M is real for any situation B0 2X⇤ such that +0,1

9
0 v B0 and *0,1

9
0 @ B

0 for
some 90 2 N, it follows from Eq. (4.19) that

M0,1 (DB
✓+1) = M0,1 (DB

✓
) + [M(CB

✓
) �M(DB

✓
)] �M(CB

✓
) > 1 > 0 > M(DB

✓+1),

which concludes our induction step. So indeed M0,1 (DB
✓
) � M(DB

✓
) for all ✓ 2

{1, ..., 9}.
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Next, we show that Q"
B
(M0,1 (B ·))  M0,1 (B) for all B 2 X⇤, and hence, that M

is a non-negative supermartingale. Consider any B 2X⇤. If +0,1

9
v B and *0,1

9
@ B for

some 9 2 N, it follows from Eq. (4.19)200 that

Q"
B
(M0,1 (B ·)) = Q"

B
(M0,1 (B) + M(B ·) �M(B)) LE5156= Q"

B
(M(B ·)) + M0,1 (B) �M(B)

 M0,1 (B),

where we were allowed to use LE5156 because M(B) < +1 as a consequence of the
fact that +0,1

9
v B and *0,1

9
@ B and the definitions of +0,1

9
and *0,1

9
, and where the last

step follows from M being a supermartingale and 0  M(B) < +1. Otherwise, if,
for all 9 2 N, we have that +0,1

9
@ B or *0,1

9
v B, then Q"

B
(M0,1 (B ·)) = Q"

B
(M0,1 (B)) =

M0,1 (B), where we have used LE1156 for the last inequality. Hence, we have that
Q"
B
(M0,1 (B ·))  M0,1 (B) for all B 2 X⇤, and we can therefore infer that M0,1 is

indeed a non-negative supermartingale in Meb (Q•).
Let us now show that M0,1 converges to +1 on all paths l 2 �(A) for which

Eq. (4.20)200 holds. Consider such a path l. First, it follows from lim inf M(l) < 0

that there exists some <1 2 N0 such that l<1 w A and M(l<1 ) < 0. Take the first
such <1. Then it follows from the definition of +0,1

1 that l<1 2 +0,1

1 . Next, it follows
from lim supM(l) > 1 that there exists some ;1 2 N0 for which ;1 > <1 and
M(l;1 ) > 1. Take the first such ;1. Then it follows from the definition of *0,1

1
that l;1 2 *

0,1

1 . Repeating similar arguments over and over again allows us to
conclude that l goes through all the cuts +0,1

1 @ *
0,1

1 @ +
0,1

2 @ · · · @ +
0,1

9
@ *

0,1

9
@

· · · . For all < > <1, let 9< 2 N be the index such that +0,1

9<

@ l
< and +

0,1

9<+1 a l
<.

Note that 9< ! +1 for < ! +1. Now, if +0,1

9<

@ l
< and *

0,1

9<

a l
< for some

< > <1, then we use Eq. (4.22)x to see that M0,1 (l<) �M0,1 (A) is bounded below
by (9< � 1) (1 � 0) + M(l<) � 0 � (9< � 1) (1 � 0) � 0 [M is non-negative]. If on
the other hand *0,1

9<

@ l< and +0,1

9<+1 a l
< for some < > <1, then Eq. (4.23)x implies

that M0,1 (l<) �M0,1 (A) is bounded below by 9< (1 � 0) � (9< � 1) (1 � 0) � 0. All
together, M0,1 (l<) �M0,1 (A) is bounded below by (9< � 1) (1 � 0) � 0 for all < > <1,
which implies that

lim
<!+1

�
M0,1 (l<) �M0,1 (A)

�
� lim

<!+1
(9< � 1) (1 � 0) � 0 = +1,

because lim<!+1 9< = +1 and (1�0) > 0. This also implies that lim<!+1M0,1 (l<) =
+1 because M0,1 (A) = M(A) = 1.

We now use the countable set of rational couples  B {(0, 1) 2 Q2 : 0 < 0 < 1}
to define the process M⇤:

M⇤ B
X

(0,1)2 
E
0,1M0,1

,

with coe�cients E0,1
> 0 that sum to 1. Hence, M⇤ is a countable convex combi-

nation of the non-negative supermartingales M0,1 2 Meb (Q•). By Lemma 4.4.2163,
M⇤ is then a non-negative supermartingale in Meb (Q•). It is moreover clear that
M⇤ (A) = M(A) = 1, implying, together with its non-negativity, that M⇤ is a A-test
supermartingale. We now show that M⇤ converges in the desired way as described
by the proposition.

If M does not converge to an extended real number on some path l 2 �(A), then
lim inf M(l) < lim supM(l). Since lim inf M(l) � inf

B2X⇤ M(B) � 0, there is at
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least one couple (00, 10) 2  such that lim inf M(l) < 0
0
< 1

0
< lim supM(l), and

as a consequence M0
0
,1
0 converges to +1 on l. Then also limE

0
0
,1
0
M0

0
,1
0 (l) = +1

since E0
0
,1
0
> 0. For all other couples (0, 1) 2  \ {(00, 10)}, we have that E0,1M0,1 is

non-negative, so M⇤ indeed converges to +1 on l.
Finally, we show that M⇤ converges in R on every path l 2 �(A) where M

converges to a real number. Fix any such l 2 �(A). Then for any n 2 R>, there
is an <

⇤ 2 N0 such that, for all ✓ � < � <
⇤, |M(l✓) �M(l<) |  n and therefore

M(l✓) �M(l<) � �n. Now fix any couple of rational numbers 0 < 0 < 1 and, for
any 7 2 N, let Dl

7
and Cl

7
be the situations in respectively +0,1

7
and *0,1

7
where l passes

through [if it passes through these cuts]. We prove that M0,1 (l✓) �M0,1 (l<) � �2n
for any ✓ � < � <⇤. To do so, let us distinguish the following four cases:

• +
0,1

1 a l
< or *0,1

9
@ l

< b +
0,1

9+1 for some 9 2 N and moreover, +0,1

1 a l
✓ or

*
0,1

9
0 @ l

✓ b +0,1

9
0+1 for some 90 2 N. Using Eqs. (4.21) and (4.23) for both l< and

l
✓, we get that

M0,1 (l✓) �M0,1 (l<) = [M0,1 (l✓) �M0,1 (A)] � [M0,1 (l<) �M0,1 (A)]

=
9
0X

7=1
[M(Cl

7
) �M(Dl

7
)] �

9X
7=1

[M(Cl
7
) �M(Dl

7
)],

where we assume 90 = 0 if +0,1

1 a l
✓ and 9 = 0 if +0,1

1 a l
<. Since 90 � 9 [because

<  ✓ and therefore l< v l
✓] and M(Cl

7
) �M(Dl

7
) > 1 � 0 > 0 for all 7 2 N,

we have that M0,1 (l✓) �M0,1 (l<) � 0 > �2n [where we also implicitly use the
convention that +1�1 = +1].

• +
0,1

1 a l
< or *0,1

9
@ l

< b +0,1

9+1 for some 9 2 N and moreover, +0,1

9
0 @ l

✓ b *0,1

9
0 for

some 90 2 N. Using Eqs. (4.21) and (4.23) for l< and Eq. (4.22)201 for l✓, we
find that

M0,1 (l✓) �M0,1 (l<) = [M0,1 (l✓) �M0,1 (A)] � [M0,1 (l<) �M0,1 (A)]

=
h 90�1X
7=1

[M(Cl
7
) �M(Dl

7
)] + M(l✓) �M(Dl

9
0)
i

�
9X
7=1

[M(Cl
7
) �M(Dl

7
)], (4.25)

where we assume 9 = 0 if +0,1

1 a l
<. Note that 90 � 9 + 1, because 9

0 � 9

[since l< v l
✓] and 9

0 = 9 is impossible. Indeed, if 9 = 0, 90 = 9 is impossible
because 90 2 N. Otherwise, if 9 > 0, 90 = 9 would imply that *0,1

9
0 = *

0,1

9
@ l

< v
l
✓, contradicting the assumption that l✓ b *

0,1

9
0 . Hence, taking into account

that M(Cl
7
) �M(Dl

7
) > 1 � 0 > 0 for all 7 2 N, we infer from Eq. (4.25) that

M0,1 (l✓) �M0,1 (l<) � M(l✓) �M(Dl
9
0) [again, also using the convention that

+1 �1 = +1]. Finally, observe that l<
⇤ v l

< v D
l

9+1 v D
l

9
0 @ l

✓—the situation
D
l

9+1 exists because +
0,1

9+1 v +
0,1

9
0 @ l✓—and therefore, recalling how <

⇤ was chosen,

M0,1 (l✓) �M0,1 (l<) �M(l✓) �M(Dl
9
0) � �n � �2n.
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• +
0,1

9
@ l

< b *0,1

9
for some 9 2 N and *0,1

9
0 @ l

✓ b +0,1

9
0+1 for some 90 2 N [we auto-

matically have that +0,1

1 @ l
✓ because +0,1

1 v +
0,1

9
@ l< v l✓]. Using Eq. (4.22)201

for l< and Eq. (4.23)201 for l✓, we get that

M0,1 (l✓) �M0,1 (l<)

=
9
0X

7=1
[M(Cl

7
) �M(Dl

7
)] �

h 9�1X
7=1

[M(Cl
7
) �M(Dl

7
)] + M(l<) �M(Dl

9
)
i

=
9
0X

7=1
[M(Cl

7
) �M(Dl

7
)] �

h 9�1X
7=1

[M(Cl
7
) �M(Dl

7
)] + M(l<)

i
+ M(Dl

9
)

=
9
0X

7=1
[M(Cl

7
) �M(Dl

7
)] �

9�1X
7=1

[M(Cl
7
) �M(Dl

7
)] �M(l<) + M(Dl

9
),

where the second step follows because M(Dl
9
) is real [as a consequence of the

definition of +0,1

9
] and the third step follows because P

9�1
7=1 [M(Cl

7
) �M(Dl

7
)] � 0

[since all M(Cl
7
) �M(Dl

7
) are positive] and M(l<) � 0 [because M is non-

negative]. Using the fact that 90 � 9 and that all M(Cl
7
) �M(Dl

7
) are positive,

the equation above implies that

M0,1 (l✓) �M0,1 (l<) �
9
0X

7=9
[M(Cl

7
) �M(Dl

7
)] �M(l<) + M(Dl

9
)

=
9
0X

7=9+1
[M(Cl

7
) �M(Dl

7
)] + M(Cl

9
) �M(l<)

�M(Cl
9
) �M(l<),

where the equality follows from the fact that M(Dl
9
) is real-valued and the last

inequality follows once more from the positivity of all M(Cl
7
) �M(Dl

7
). Then

since l<
⇤ v l< v Cl

9
—the situation Cl

9
exists because *0,1

9
v *0,1

9
0 @ l

✓—we infer
from our assumptions about <⇤ that

M0,1 (l✓) �M0,1 (l<) �M(Cl
9
) �M(l<) � �n � �2n.

• +
0,1

9
@ l

< b *
0,1

9
for some 9 2 N and +0,1

9
0 @ l

✓ b *
0,1

9
0 for some 90 2 N. Using

Eq. (4.22)201 for both l< and l✓, we find that

M0,1 (l✓) �M0,1 (l<)

=
h 90�1X
7=1

[M(Cl
7
) �M(Dl

7
)] + M(l✓) �M(Dl

9
0)
i

�
h 9�1X
7=1

[M(Cl
7
) �M(Dl

7
)] + M(l<) �M(Dl

9
)
i

=
9
0�1X
7=1

[M(Cl
7
) �M(Dl

7
)] + M(l✓) �M(Dl

9
0)

�
9�1X
7=1

[M(Cl
7
) �M(Dl

7
)] �M(l<) + M(Dl

9
)

�
9
0�1X
7=9

[M(Cl
7
) �M(Dl

7
)] + M(l✓) �M(Dl

9
0) �M(l<) + M(Dl

9
)
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where the two last steps follow in a similar way as before; first using the real-
valuedness of M(Dl

9
) and the non-negativity of both M(l<) and P

9�1
7=1 [M(Cl

7
) �

M(Dl
7
)], and then using the fact that 90 � 9 and that all M(Cl

7
) �M(Dl

7
) are

positive. If 90 = 9, and therefore M(Dl
9
0) = M(Dl

9
) 2 R, it follows from the

expression above that M0,1 (l✓) �M0,1 (l<) � M(l✓) �M(l<) � �n � �2n.
Otherwise, if 90 > 9, then we use the real-valuedness of M(Dl

9
) to deduce from

the expression above that

M0,1 (l✓)�M0,1 (l<)

�
9
0�1X

7=9+1
[M(Cl

7
) �M(Dl

7
)] + M(l✓) �M(Dl

9
0) + M(Cl

9
) �M(l<)

�M(l✓) �M(Dl
9
0) + M(Cl

9
) �M(l<) � �2n,

where the last inequality follows from our assumptions about <⇤ and the fact that
l
<
⇤ v l< v Cl

9
@ D

l

9
0 @ l✓.

Hence, we conclude that for any n 2 R>, there is an <
⇤ 2 N0 such that M0,1 (l✓) �

M0,1 (l<) � �2n for all ✓ � < � <⇤ and any couple of rational numbers 0 < 0 < 1.
To see that this implies that M⇤ converges to an extended real number on

l, assume ex absurdo that it does not. Then there is some n 2 R> such that
lim inf M⇤ (l) < lim supM⇤ (l) � 2n. As proved above, there is an <⇤ such that, for
all ✓ � < � <⇤ and any couple of rational numbers 0 < 0 < 1, M0,1 (l✓)�M0,1 (l<) �
�2n and therefore also M0,1 (l✓) �M0,1 (l<) � 2n. Then it follows directly from the
definition of M⇤ that also M⇤ (l✓) �M⇤ (l<)�2n for all ✓ � < � <⇤. However, this is
in contradiction with lim inf M⇤ (l) < lim supM⇤ (l) �2n, because the latter would
require that there is some couple ✓ � < � <

⇤ such that M⇤ (l✓) < M⇤ (l<) � 2n.
Hence, M⇤ converges to an extended real number on l.

Proof of Theorem 4.5.2172. Due to Proposition 4.5.1172, there is an A-test super-
martingale M⇤ that converges to +1 on every path l 2 �(A) where M does not
converge to an extended real number. Let ⌫ 2 R be a lower bound for M and let
M0 B 1

M(A)�⌫+1 (M � ⌫ + M⇤). Since both M⇤ and M � ⌫ are supermartingales
[because of LE5156], Lemma 4.4.2163 implies that (M � ⌫ + M⇤) is a supermartin-
gale too and therefore, since 1 M(A) � ⌫ + 1 < +1 [M(A) is real], LE3156 implies
that M0 is a supermartingale. Moreover, M0 is non-negative because both M � ⌫
and M⇤ are non-negative and M(A) � ⌫ + 1 � 1 which, together with M0(A) = 1,
allows us to conclude that M0 is an A-test supermartingale. Furthermore, consider
any path l 2 �(A) such that M(l<) does not converge to a real number. Then either
it converges to +1 or it does not converge in R [because M is bounded below]. In
the first case, it follows from the non-negativity of M⇤ and the positivity of 1

M(A)�⌫+1
that M0 also converges to +1 on l. If M(l<) does not converge in R, then M⇤

converges to +1 on l and therefore, because M � ⌫ is non-negative and 1
M(A)�⌫+1

is positive, M0 also converges to +1 on l. All together, we have that M0 is an A-test
supermartingale that converges to +1 on every path l 2 �(A) where M does not
converge to a real number.
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Proof of Theorem 4.5.3172. Since Eeb
Q ,V (·|B) satisfies EC5163 for any B 2 X⇤, we

have, for any 2 2 R and any l 2 ⌦, that lim inf<!+1 Eeb
Q ,V ( 5 |l<) � 5 (l) if and

only if lim inf<!+1 Eeb
Q ,V ( 5 + 2|l<) � 5 (l) + 2. Therefore, and because 5 is bounded

below, we can assume without loss of generality that 5 is a global extended real
variable such that inf 5 > 0.

We now associate with any couple of rational numbers 0 < 0 < 1 the following
recursively constructed sequences of cuts (*0,1

9
)92N0 and (+0,1

9
)92N. Let *0,1

0 B {A}
and, for 9 2 N,

1. let +0,1

9
B {D 2X⇤ : *0,1

9�1 @ D, Eeb
Q ,V ( 5 |D) < 0 and (8B 2 (*0,1

9�1, D)) E
eb
Q ,V ( 5 |B) � 0};

2. if +0,1

9
is non-empty, choose a positive supermartingale M0,1

9
2 Meb (Q•) such that

M0,1

9
(D) < 0 and lim inf M0,1

9
�D 5 for all D 2 +0,1

9
, and let

*
0,1

9
B {C 2X⇤ : +0,1

9
@ C : M0,1

9
(C) > 1 and (8B 2 (+0,1

9
, C)) M0,1

9
(B)  1};

3. if +0,1

9
is empty, let *0,1

9
B ú.

Note that all *0,1

9
and all +0,1

9
are indeed (partial or complete) cuts. We now first

show that, if +0,1

9
is non-empty, there always is a supermartingale M0,1

9
that satisfies

the conditions above. We infer from the definition of the cut +0,1

9
that

inf
⇢
M(D) : M 2 Meb (Q•) and lim inf M �D 5

�
= Eeb

Q ,V ( 5 |D) < 0 for all D 2 +0,1

9
.

So, for all D 2 +
0,1

9
, we can choose a supermartingale M0,1

9,D
2 Meb (Q•) such that

M0,1

9,D
(D) < 0 and lim inf M0,1

9,D
�D 5 . Consider now the extended real process M0,1

9

defined, for all B 2X⇤, by

M0,1

9
(B) B

(
M0,1

9,D
(B) if D v B for some D 2 +0,1

9
;

0 otherwise.

It is clear that M0,1

9
(D) < 0 and lim inf M0,1

9
�D 5 for all D 2 +0,1

9
. We furthermore

show that M0,1

9
is a positive supermartingale in Meb (Q•).

It follows from Lemma 4.4.1163 that, for all D 2 +0,1

9
,

M0,1

9,D
(B) � inf

l2�(B)
lim inf M0,1

9,D
(l) � inf

l2�(B)
5 (l) � inf 5 > 0 for all B w D. (4.26)

Since also 0 > 0, it follows thatM0,1

9
is positive. To show thatQ"

B
(M0,1

9
(B ·)) M0,1

9
(B)

for all B 2 X⇤, fix any B 2 X⇤ and consider two cases. If +0,1

9
v B, then M0,1

9
(B) =

M0,1

9,D
(B) and M0,1

9
(B ·) = M0,1

9,D
(B ·) for some D 2 +0,1

9
, and therefore Q"

B
(M0,1

9
(B ·)) =

Q"
B
(M0,1

9,D
(B ·))  M0,1

9,D
(B) = M0,1

9
(B). If +0,1

9
@ B, then for any F 2 X we either

have that BF 2 +
0,1

9
, which implies that M0,1

9
(BF) < 0, or +0,1

9
@ BF and therefore

M0,1

9
(BF) = 0. Hence, we infer that M0,1

9
(B ·)  0, and therefore, by LE4156 and

LE1156, that Q"B (M0,1

9
(B ·))  0 = M0,1

9
(B). So we can conclude that M0,1

9
is a positive

supermartingale in Meb (Q•).
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Next, consider the extended real processT0,1 defined byT0,1 (B) B 1 for all B b A,
and

T0,1 (BF) B
(
M0,1

9
(BF)T0,1 (B)/M0,1

9
(B) if +0,1

9
v B and *0,1

9
@ B for some 9 2 N;

T0,1 (B) otherwise,
(4.27)

for all B w A and all F 2X. We prove that this process is a positive A-test supermartin-
gale that converges to +1 on all paths l 2 �(A) such that

lim inf
<!+1

Eeb
Q ,V ( 5 |l<) < 0 < 1 < 5 (l). (4.28)

That T0,1 is well-defined follows from the fact that, for any 9 2 N and any situation
B such that +0,1

9
v B and *0,1

9
@ B, M0,1

9
(B) is positive and moreover real because of the

definition of *0,1

9
. The process T0,1 is also positive because, for any 9 2 N and any

situation B such that +0,1

9
v B and *0,1

9
@ B, M0,1

9
(B) is real and positive and M0,1

9
(B ·) is

positive, and therefore M0,1

9
(B ·)/M0,1

9
(B) is positive. Furthermore, if B 2 X⇤ is such

that +0,1

9
v B and *0,1

9
@ B for some 9 2 N, then

Q"
B
(T0,1 (B ·)) = Q"

B
(M0,1

9
(B ·)T0,1 (B)/M0,1

9
(B))

LE3156,LE8156= Q"
B
(M0,1

9
(B ·))T0,1 (B)/M0,1

9
(B)  T0,1 (B),

where the second step also uses the fact that M0,1

9
(B ·) and T0,1 (B)/M0,1

9
(B) are pos-

itive [since, as we have shown above, M0,1

9
(B) is real and positive, and T0,1 (B) is

positive], and where the last step uses the supermartingale character of M0,1

9
to-

gether with the fact that T0,1 (B)/M0,1

9
(B) is positive. Otherwise, if B is such that, for

all 9 2 N, +0,1

9
@ B or *0,1

9
v B, then Q"

B
(T0,1 (B ·)) = Q"

B
(T0,1 (B)) = T0,1 (B) because of

LE1156. Hence, we have that Q"
B
(T0,1 (B ·))  T0,1 (B) for all B 2 X⇤, which together

with the fact that T0,1 (A) = 1, allows us to conclude that T0,1 is indeed a positive
A-test supermartingale in Meb (Q•).

Next, we show that T0,1 converges to +1 on all paths l 2 �(A) for which
Eq. (4.28) holds. Consider such a path l. Then l goes through all the cuts
*
0,1

0 @ +
0,1

1 @ *
0,1

1 @ ... @ +
0,1

9
@ *

0,1

9
@ .... Indeed, it is trivial that l goes

through *
0,1

0 = {A}. Furthermore, it follows from lim inf<!+1 Eeb
Q ,V ( 5 |l<) < 0 that

there is an <1 2 N such that l<1 A A and Eeb
Q ,V ( 5 |l<1 ) < 0. Take the first such

<1 2 N. Then it follows from the definition of +0,1

1 that l<1 2 +
0,1

1 . Next, it
follows from lim inf<!+1M0,1

1 (l<) � 5 (l) > 1 that there exists some ;1 2 N

for which ;1 > <1 and M0,1

1 (l;1 ) > 1. Take the first such ;1. Then it fol-
lows from the definition of *0,1

1 that l;1 2 *
0,1

1 . Repeating similar arguments
over and over again allows us to conclude that l indeed goes through all the cuts
*
0,1

0 @ +
0,1

1 @ *
0,1

1 @ ... @ +0,1

9
@ *0,1

9
@ ....

In what follows, we use the following notation. For any 9 2 N0, let Cl
9
be the

(necessarily unique) situation in*0,1

9
where l goes through. Similarly, for any 9 2 N,

let Dl
9
be the (necessarily unique) situation in +

0,1

9
where l goes through. For all

< 2 N0, let 9< 2 N0 be defined by 9< B 0 if +0,1

1 a l
< and otherwise, let 9< be such

that +0,1

9<

@ l
< and +

0,1

9<+1 a l
<. Note that 9< ! +1 for < ! +1 because l goes

through all the cuts +0,1

1 @ +
0,1

2 @ ... @ +
0,1

9
@ .... For any < 2 N0 such that 9< � 1,

we now have one of the following two cases:
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1. The first case is that l< 2 (+0,1

9<

,*
0,1

9<

]. Then by applying Eq. (4.27)x for each
subsequent step, recalling that T0,1 (A) = 1, and cancelling out the intermediate
terms which is possible because M0,1

✓
(A0) is real for any A0 2 [+0,1

✓
,*

0,1

✓
) and any

✓ 2 N [this follows readily from the definition of the cuts +0,1

✓
and *0,1

✓
], we find

that

T0,1 (l<) =
 
9<�1Y
✓=1

M0,1

✓
(Cl

✓
)

M0,1

✓
(Dl

✓
)

!
M0,1

9<

(l<)
M0,1

9<

(Dl
9<

)
.

Since M0,1

9<

(l<) � inf 5 > 0 [due to Eq. (4.26)206], M0,1

✓
(Cl

✓
) > 1 > 0 for all

✓ 2 {1, ..., 9< � 1} and 0 < M0,1

✓
(Dl

✓
) < 0 for all ✓ 2 {1, ..., 9<}, we get that

T0,1 (l<) �
⇣
1

0

⌘
9<�1 M0,1

9<

(l<)
0

�
⇣
1

0

⌘
9<�1 ⇣ inf 5

0

⌘
.

2. The second case is that l
< 2 (*0,1

9<

,+
0,1

9<+1]. Then, by repeatedly applying
Eq. (4.27)x, and since T0,1 (A) = 1, we have that

T0,1 (l<) =
9<Y
✓=1

M0,1

✓
(Cl

✓
)

M0,1

✓
(Dl

✓
)
.

Since M0,1

✓
(Cl

✓
) > 1 > 0 and 0 < M0,1

✓
(Dl

✓
) < 0 for all ✓ 2 {1, ..., 9<}, we find that

T0,1 (l<) >
⇣
1

0

⌘
9<

.

Since inf 5 > 0, 0 > 0 and 1

0
> 1, and since lim<!+1 9< = +1, it follows from the

two expressions above that indeed lim<!+1T0,1 (l<) = +1.
To finish, we use the countable set of rational couples  B {(0, 1) 2 Q2 : 0 <

0 < 1} to define the process T:

T B
X

(0,1)2 
E
0,1T0,1

,

with coe�cients E0,1
> 0 that sum to 1. Hence, T is a countable convex combina-

tion of the positive A-test supermartingales T0,1 in Meb (Q•). By Lemma 4.4.2163, T
is then also a supermartingale in Meb (Q•). It is also positive, because all E0,1T0,1

are positive. Since it is moreover clear that T (A) = 1, the process T is a positive
A-test supermartingale in Meb (Q•). Furthermore, T converges to +1 on the paths
l 2 �(A) where lim inf<!+1 Eeb

Q ,V ( 5 |l<) < 5 (l). Indeed, consider such a path l.
Then since 5 (l) � inf 5 > 0, there is at least one couple (00, 10) 2  such that
lim inf<!+1 Eeb

Q ,V ( 5 |l<) < 0
0
< 1
0
< 5 (l), and as a consequence lim<!+1T0

0
,1
0 (l<) =

+1. Then also lim<!+1 E
0
0
,1
0
T0

0
,1
0 (l<) = +1, and since E0,1T0,1 is positive for all

other couples (0, 1) 2  \ (00, 10), the positive A-test supermartingale T indeed con-
verges to +1 on l.

4.C Stopping times, and proofs of Theorems 4.7.3 and 4.7.4

To prove Theorems 4.7.3182 and 4.7.4183, we start with some technical
results concerning the nature of stopping times in discrete-time stochastic
processes with a finite state space.
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4.C.1 Stopping times for discrete-time stochastic processes with fi-
nite state space

A stopping time f 2 V is a variable taking values in N0 and is such that,
for any l 2 ⌦ and with < = f(l), we have that f(l̃) = < for all l̃ 2 �(l<).
Or, alternatively, we could say that f is a stopping time if it takes values in
N0 and if, for any < 2 N0 and any l 2 f�1 (<) B {l̃ 2 ⌦ : f(l̃) = <}, we
have that �(l<) ✓ f

�1 (<). The following lemma shows that our definition
of a stopping time agrees with the more traditional one that can for instance
be found in [5].

Lemma 4.C.1. A variable f 2 V taking values in N0 is a stopping time if and
only if the event f�1 (<) for all < 2 N0 is a union S

F1:<2S �(F1:<) of cylinder
events of situations F1:< with length <.

Proof. Let f be a stopping time and consider any < 2 N0. For any l 2 f�1 (<), since
f is a stopping time, we have that �(l<) ✓ f

�1 (<). Hence, we also have that the
unionS

l2f�1 (<) �(l<) of the sets �(l<) over alll 2 f�1 (<) is a subset of f�1 (<). ThatS
l2f�1 (<) �(l<) is also a superset of f�1 (<), is trivial, so we find that S

l2f�1 (<) �(l<)
is equal to f�1 (<).

Conversely, suppose that f is a variable taking values in N0 such that the event
f
�1 (<) for all < 2 N0 is a union

S
F1:<2S �(F1:<) of cylinder events of situations F1:< with

length <. Then consider any l 2 ⌦ and any l̃ 2 �(l<) with < = f(l). Since f�1 (<)
is a union of cylinder events of situations F1:< with length <, and since obviously
l 2 f�1 (<) because < = f(l), we obtain that �(l<) ✓ f

�1 (<) and therefore that
l̃ 2 f�1 (<). As a result, we conclude that f(l̃) = <.

For discrete-time stochastic processes with general—not necessarily
finite—state spaces, stopping times are not necessarily bounded above. If
the state space is assumed finite however, as is the case for our setting here,
then stopping times are automatically bounded above, and therefore always
belong to the space F of finitary gambles. This results from the following
fundamental lemma, which we will also use further on to prove some of our
crucial results.

Lemma 4.C.2. For any decreasing sequence (�<)<2N consisting of sets �< that
are each non-empty and a finite union of cylinder events of situations of the
same length, we have that lim<!+1 �< is non-empty.11

Proof. This follows from the lemma on [5, p. 29]; again, as alreadymentioned in the
proof of Lemma 3.3.372, a ‘cylinder event’ according to [5] is in our language a finite
union of cylinder events of situations of the same length, and that the notion of a ‘thin

11Note that the finiteness (or better, compactness) of the local state spaceX is a necessary
assumption for Lemma 4.C.2 to hold.
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cylinder event’ in [5] corresponds to our notion of a cylinder event. Alternatively,
this result is also a special case of [111, Theorem 17.4 (a)–(b)] sinceX is finite and
therefore ⌦ = XN—if equipped with the product topology—is compact; we refer to
Section 5.5.2250 and Appendix 5.C274 for some basic topological facts about ⌦.

Lemma 4.C.3. Any stopping time f is a finitary gamble that is (sup f)-
measurable, with sup f 2 N0.

Proof. We first show that f is bounded, and therefore a gamble. f is clearly bounded
below because it takes values in N0. To prove that it is bounded above, consider the
sequence of events (�<)<2N defined by �< B {l 2 ⌦ : f(l) � <} for all < 2 N. Then,
for any < 2 N, the event �< is a finite union of cylinder events of situations with
length <. Indeed, for any 9 2 N0 such that 9 < <, we have by Lemma 4.C.1x that
f
�1 (9) = {l 2 ⌦ : f(l) = 9} is a union S

F1:92S0 �(F1:9) of cylinder events of situa-
tions of length 9, and thus because 9 < < also the union S

F1:92S0
S

F
9+1:<2X<�9 �(F1:<)

of cylinder events of situations of length <. The event �2
<
= {l 2 ⌦ : f(l) < <}

is equal to the union S
<�1
9=0 f

�1 (9), so �
2

<
is also a union of cylinder events of situa-

tions of length <. Let us denote this union by S
F1:<2S �(F1:<) with S ✓ X<. Since

⌦ =
S

F1:<2X< �(F1:<), we have that �< = ⌦ \ �2
<
=

S
F1:<2X<\S �(F1:<). Hence, since

X is finite, �< is indeed the finite union of cylinder events of situations of length
<. Furthermore, by its definition, (�<)<2N is clearly decreasing. Hence, if �< is non-
empty for all < 2 N, then Lemma 4.C.2x implies that lim<!+1 �< is also non-empty.
This would mean that there is a path l 2 ⌦ such that l 2 �< for all < 2 N, and
so by definition of �<, that f(l) � < for all < 2 N. But this is in contradiction with
the fact that f takes values in N0, so we must have that �< is empty for some < 2 N
and therefore that f(l) < < for all l 2 ⌦. So f is bounded above, which together
with the fact that f is bounded below, implies that f is a gamble. The fact that f is
bounded above and that it takes values in N0, also clearly implies that sup f 2 N0. To
see that f is (sup f)-measurable, consider any l 2 ⌦ and any l̃ 2 �(lsup f). Then
l̃ 2 �(lf(l) ) because f(l)  sup f and therefore, since f is a stopping time, we
have that f(l) = f(l̃).

With any stopping time f, we can also naturally associate a (tree) cut
*f B {B 2 X⇤ : (9l 2 ⌦) B = l

f(l) } = {lf(l) : l 2 ⌦} (see Ap-
pendix 4.B199 for definitions and notations concerning cuts). The following
lemma shows that*f is indeed a cut, and that this cut is moreover complete.

Lemma 4.C.4. For any stopping time f, the set *f ⇢X⇤ is a complete cut.

Proof. To see that *f is a cut, suppose ex absurdo that there are two (di�erent)
situations lf(l1 )

1 and l
f(l2 )
2 in *f such that lf(l1 )

1 v l
f(l2 )
2 . Then we have that

f(l1)  f(l2) and that l2 2 �(lf(l1 )
1 ). The latter implies, by the fact that f is

a stopping time, that f(l2) = f(l1). So since l
f(l1 )
1 v l

f(l2 )
2 , it must be that

l
f(l1 )
1 = l

f(l2 )
2 . This is in contradiction with our assumption that lf(l1 )

1 and lf(l2 )
2

are di�erent, so we conclude that all situations in *f are pairwise incomparable and
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therefore, that *f is a cut. To see why *f is moreover a complete cut, observe that
since f takes values in N0, it follows that, for any l 2 ⌦, lf(l) is a situation, which
by definition is an element of *f; it is moreover clear that for this situation lf(l) , we
have that l 2 �(lf(l) ). Hence, *f is a complete cut, because for all l 2 ⌦, there is
a situation C 2 * such that l 2 �(C).

4.C.2 Proofs of Theorems 4.7.3 and 4.7.4

For the following lemmas, we will associate with any sequence ( 5<)<2N0
of <-measurable variables and any stopping time f, the global variable 5f 2 V
defined by 5f (l) B 5f(l) (l). For any extended real process C and any
(tree) cut *, we will furthermore use Ca* to denote the extended real pro-
cess stopped at *:

Ca* (A) B
(

C(A) if A A *;
C(C(A)) if A w *,

for all A 2X⇤,

where, for any A w *, C(A) denotes the unique situation in the cut * such
that A w C(A). That C(A) is unique follows from the fact that * is a cut, and
thus the situations in * are incomparable; indeed, for any second C0(A) 2 *
such that A w C

0(A), and for < B |C(A) | and ; B |C0(A) |, we will have that
C(A) = A1:< w A1:; = C

0(A) if <  ;, or C0(A) = A1:; w A1:< = C(A) if ;  <,
which contradicts the incomparability of C(A) and C

0(A). For any stopping
time f, we also use the notation Ca f to denote the extended real process
stopped at the cut *f associated with f.

The following basic lemma shows that stopping a supermartingale does
not impact the fact that it is a supermartingale.

Lemma 4.C.5. For any upper expectations tree Q•, any M 2 Meb (Q•), and
any (complete or partial) cut *, we have that the stopped process Ma* is a
supermartingale in Meb (Q•). In particular, for any stopping time f, we have
that Ma f 2 Meb (Q•).

Proof. The process Ma* is bounded below because M is. To see that Ma* is a
supermartingale, note that

Ma* (B·) B
(
M(C(B)) if B w *;
M(B·) if B A *,

for all B 2X⇤
.

So for any situation B w *, we have that Ma* (B) = M(C(B)) and that Ma* (B·) =
M(C(B)), which implies that Q"

B
(Ma* (B·)) = Ma* (B) because of LE1156. On the other

hand, for any situation B A *, we have that Ma* (B) = M(B) and that Ma* (B·) =
M(B·). So here too, because M is a supermartingale and thus Q"

B
(M(B·))  M(B),

we have that Q"
B
(Ma* (B·)) Ma* (B). As a consequence, Ma* 2 Meb (Q•).
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The last statement, that Ma f 2 Meb (Q•) for any stopping time f, then follows
from the fact that *f is a cut, due to Lemma 4.C.4210, and the fact that Ma f =
Ma*f .

Lemma 4.C.6. Consider any upper expectations tree Q•, any A 2 X⇤ and
any sequence ( 5<)<2N0 of <-measurable gambles that converges pointwise to a
variable 5 2 V that is bounded above. Then, for any ; 2 N0 and any U 2 R

such that Eeb
Q,V ( 5 |A) < U, there is a stopping time f such that ;  f and

Eeb
Q,V ( 5f |A)  U.

Proof. Fix any ; 2 N0, any U 2 R such that Eeb
Q ,V ( 5 |A) < U, and any n 2 R>.

According to the definition of Eeb
Q ,V ( 5 |A), there is a supermartingale M 2 Meb (Q•)

such that M(A)  U and lim inf M �A 5 . We start by showing that, for any l 2 �(A)
and any <⇤ 2 N0, there is some natural number < � <⇤ such that M(l<) + n � 5< (l).

So consider any l 2 �(A). First note that lim inf M(l) + n > 5 (l) because
lim inf M �A 5 , lim inf M(l) > �1 [M is bounded below] and 5 (l) < +1 [ 5 is
bounded above]. This implies that there is a real number V such that lim inf M(l) +
n > V > 5 (l). Then, since ( 5< (l))<2N0 converges to 5 (l) and V is a real such
that V > 5 (l), there is some index # (l) 2 N0 such that V > 5< (l) for all < �
# (l). Furthermore, by the definition of the limit inferior and the fact that V is a
real such that lim inf M(l) + n > V, there is a second index " (l) 2 N0 such that
M(l<) + n > V for all < � " (l). This tells us that M(l<) + n > V > 5< (l) for
all < � max{# (l)," (l)}. This indeed implies that, for any <⇤ 2 N0, there some
< � <⇤ such that M(l<) + n � 5< (l).

Let ✓ be the length of the string A and consider the variable f 2 V defined by

f(l) B
(
inf

�
< � max{✓,;} : M(l<) + n � 5< (l)

 
if l 2 �(A);

max{✓,;} otherwise,
for all l 2 ⌦.

It clearly follows from the argument above that f takes values in N0. We will now
also show that f(l) = f(l̃) for any l 2 ⌦ and any l̃ 2 �(lf(l) ), implying that f
is a stopping time, and therefore, by Lemma 4.C.3210, that sup f 2 N0 and that f is
a (sup f)-measurable gamble. Furthermore, we then trivially have that f � ✓ and
f � ;.

To this end, consider any l 2 ⌦ and any l̃ 2 �(lf(l) ). We distinguish two
cases: l 2 �(A) and l 8 �(A). If l 2 �(A), then it follows from the definition of f that
M(lf(l) )+n � 5f(l) (l). Sincelf(l) = l̃

f(l) [because l̃ 2 �(lf(l) )] and since 5f(l)
is f(l)-measurable by assumption, this implies that M(l̃f(l) ) + n � 5f(l) (l̃). Then,
according to the definition of f and since l̃ 2 �(A) [because f(l) � ✓ and l 2 �(A),
and therefore l̃ 2 �(lf(l) ) ✓ �(A)], we have that f(l̃)  f(l). On the other hand,
since l̃ 2 �(A) and l 2 �(l̃f(l̃) ) [because lf(l) = l̃

f(l) and f(l̃)  f(l)], we
can infer, in exactly the same way as before, that also f(l)  f(l̃). So we conclude
that f(l) = f(l̃) when l 2 �(A). If l 8 �(A), then l̃ 8 �(A) because f(l) � ✓ and
therefore �(lf(l) ) \ �(A) = ú. Then it follows immediately from the definition of f
that f(l) = f(l̃). So f is indeed a stopping time and thus a (sup f)-measurable
gamble for which it moreover holds that f � ✓ and f � ;.
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For any l 2 ⌦, we now let Cf (l) be the unique situation in *f such that l 2
�(Cf (l)). This situation Cf (l) exists and is unique because *f is a complete cut due
to Lemma 4.C.4210. By definition of *f, we also clearly have that Cf (l) = l

f(l) .
Hence, by the definition of Ma f, we obtain that

lim
;!+1

Ma f (l;) = lim
;!+1

M(Cf (l)) = M(Cf (l)) = M(lf(l) ) for all l 2 ⌦.

Therefore, by the definition of f, we have that

lim
;!+1

�
Ma f (l;) + n

�
= M(lf(l) ) + n � 5f(l) (l) = 5f (l) for all l 2 �(A).

Then by Definition 4.7160 and taking into account that Ma f 2 Meb (Q•) by
Lemma 4.C.5211, and therefore that Ma f +n 2 Meb (Q•) [because the local models Q"

A

satisfy LE5156], it follows that Eeb
Q ,V ( 5f |A)  Ma f (A) + n. Moreover, Ma f (A) = M(A)

because f � ✓ and therefore A A *f or A 2 *f, so we also have that Eeb
Q ,V ( 5f |A) 

M(A) + n  U + n. Since this inequality holds for any n 2 R>, we infer that
Eeb

Q ,V ( 5f |A)  U, which together with the fact that f is a stopping time such that
;  f, establishes the lemma.

The idea underlying the proof of Theorem 4.7.3182 is borrowed from
[23, Theorem 3]. However, just as in [8, 94], real supermartingales were
adopted there. Moreover, our result here considers sequences of (extended
real) finitary variables that are bounded above, instead of sequences of <-
measurable gambles.

Proof of Theorem 4.7.3182. Note that, because 5 is the pointwise limit of a de-
creasing sequence ( 5<)<2N0 of bounded above variables, 5 is also bounded above.
Because 5< � 5<+1 � 5 for all < 2 N0 and Eeb

Q ,V is monotone [EC4163], the limit
lim<!+1 Eeb

Q ,V ( 5< |A) exists and we have that lim<!+1 Eeb
Q ,V ( 5< |A) � Eeb

Q ,V ( 5 |A). So we
are left to show that lim<!+1 Eeb

Q ,V ( 5< |A)  Eeb
Q ,V ( 5 |A).

Consider the sequence ( 5_�<
<

)<2N0 and note that it su�ces to show that
lim<!+1 Eeb

Q ,V ( 5_�<<
|A)  Eeb

Q ,V ( 5 |A), where the limit lim<!+1 Eeb
Q ,V ( 5_�<<

|A) exists be-
cause ( 5_�<

<
)<2N0 is clearly decreasing [since ( 5<)<2N0 is decreasing] and Eeb

Q ,V is mono-
tone [EC4163]. Indeed, it will then follow that lim<!+1 Eeb

Q ,V ( 5< |A)  Eeb
Q ,V ( 5 |A) be-

cause 5<  5
_�<
<

for all < 2 N0 and therefore, by EC4163, that lim<!+1 Eeb
Q ,V ( 5< |A) 

lim<!+1 Eeb
Q ,V ( 5_�<<

|A)  Eeb
Q ,V ( 5 |A).

Since ( 5<)<2N0 is a sequence of finitary variables that converges decreasingly to
5 , the same holds for the sequence ( 5_�<

<
)<2N0 . In fact, ( 5_�<

<
)<2N0 is even a sequence

of finitary gambles because each 5< is bounded above. Now let 6< B 5
_�<
<

for all
< 2 N0 and consider the sequence (6b

<
)<2N0 defined by the recursive expression in

Eq. (4.11)180, with 6
b

0 a real constant such that 6b0 � sup 60 [this is possible be-
cause 60 = 5

_0
0 is a gamble]. Due to Lemma 4.7.1(i)181, (6b<)<2N0 is a sequence of

<-measurable variables. Since (6<)<2N0 = ( 5_�<
<

)<2N0 is a sequence of finitary gam-
bles that converges decreasingly to 5 , it follows from Lemma 4.7.1(iii)181, (v)181 and
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(vi)181 that (6b
<
)<2N0 is a sequence of <-measurable gambles that converges decreas-

ingly to 5 . Due to Lemma 4.7.1(vii)181, we moreover have that

lim
<!+1

Eeb
Q ,V ( 5_�<<

|A) = lim
<!+1

Eeb
Q ,V (6< |A) = lim

<!+1
Eeb

Q ,V (6b< |A). (4.29)

Consider any real number U > Eeb
Q ,V ( 5 |A), which is possible because 5 is bounded

above and therefore, by EC1163, E
eb
Q ,V ( 5 |A) < +1. Then since (6b

<
)<2N0 is a sequence

of <-measurable gambles that converges decreasingly to 5 , Lemma 4.C.6212 implies
that there is a stopping time f such that Eeb

Q ,V (6
b

f
|A)  U [we simply let ; = 0 in

the lemma]. Since (6b
<
)<2N0 is decreasing and Eeb

Q ,V is monotone [EC4163], and since
sup f 2 N0 due to Lemma 4.C.3210, we have that

U � Eeb
Q ,V (6bf |A) � Eeb

Q ,V (6
b

(sup f) |A) � lim
<!+1

Eeb
Q ,V (6b< |A),

so we infer that lim<!+1 Eeb
Q ,V (6

b

<
|A)  U. Recalling Eq. (4.29), it follows that

lim<!+1 Eeb
Q ,V ( 5_�<<

|A)  U. Since this holds for any real U > Eeb
Q ,V ( 5 |A), we conclude

that lim<!+1 Eeb
Q ,V ( 5_�<<

|A)  Eeb
Q ,V ( 5 |A) as desired.

For any net {2 (;,<) };,<2N0 in R, we say that 2 B lim(;,<)!+1 2 (;,<) 2 R

is the (Moore-Smith) limit [67] of {2 (;,<) };,<2N0 if, for each neighbour-
hood � of 2, there is a couple (;⇤, <⇤) 2 N2

0 such that 2 (;,<) 2 � for all
; � ;

⇤ and all < � <
⇤. For the definition of a neighbourhood, see [111,

Section 2.4]. In our setting, the neighboorhoods of a real number 2 2 R

are all the sets that include an open n-disk {0 2 R : |0 � 2| < n} around 2

[111, Example 4.4(b)], and the neighbourhoods around +1 are all the sets
that include {0 2 R : 0 > ⌫} for some ⌫ 2 R, and similarly for neighbour-
hoods around �1; see Section 1.614 for the open sets in R. Furthermore,
for any net { 5 (;,<) };,<2N0 in V such that lim(;,<)!+1 5 (;,<) (l) exists for all
l 2 ⌦, we write lim(;,<)!+1 5 (;,<) to denote the variable in V defined by
lim(;,<)!+1 5 (;,<) (l) for all l 2 ⌦.

Lemma 4.C.7. Consider any sequence ( 5<)<2N0 in V that converges pointwise
to some variable 5 2 V b. Then we have that lim(;,<)!+1 5

^;
<

= 5 .

Proof. Consider any l 2 ⌦. First consider the case that 5 (l) 2 R and fix any n 2
R>. Then there is an <⇤ 2 N0 such that | 5< (l)� 5 (l) | < n for all < � <⇤. Consider any
;
⇤ � 5 (l)+n. Then for all < � <⇤ and all; � ;⇤, we have that 5< (l) < 5 (l)+n  ;,

so 5
^;
<

(l) = 5< (l) and therefore | 5^;
<

(l) � 5 (l) | = | 5< (l) � 5 (l) | < n. Since this
holds for any n > 0 [and since any neighboorhood of 5 (l) 2 R includes an open
n-disk] we have that lim(;,<)!+1 5

^;
<

(l) = 5 (l). If 5 (l) = +1, fix any ⌫ > 0. Then
there is an <

⇤ 2 N0 such that 5< (l) > ⌫ for all < � <
⇤. If we now take ;⇤ � ⌫,

then clearly also 5
^;
<

(l) � ⌫ for all < � <
⇤ and all ; � ;

⇤. Hence, we have that
lim(;,<)!+1 5

^;
<

(l) = 5 (l) which, together with our earlier considerations, allows
us to conclude that lim(;,<)!+1 5

^;
<

= 5 .
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4.C Stopping times and proofs of Theorems 4.7.3 and 4.7.4

Proof of Theorem 4.7.4183. Fix any A 2 X⇤ and any 5 2 Lb. According to Propo-
sition 4.7.2182, there is a sequence ( 5<)<2N0 of <-measurable gambles that converges
pointwise to 5 and such that ⌫  5<  sup 5 for all < 2 N0, where ⌫ is any real
number if inf 5 = +1 and ⌫ B inf 5 if inf 5 2 R [inf 5 = �1 is impossible because
5 is bounded below].

Fix any ✓ 2 N and note that the sequence ( 5^✓
<
)<2N0 is a sequence of <-measurable

gambles that converges pointwise to 5
^✓ because ( 5<)<2N0 is a sequence of <-

measurable gambles that converges pointwise to 5 . Moreover, 5^✓ is bounded above
by ✓, so Lemma 4.C.6212 guarantees that, for any ; 2 N0 and any U 2 R such that
Eeb

Q ,V ( 5^✓ |A) < U, there is some stopping time f such that ;  f and Eeb
Q ,V ( 5^✓f |A)  U.

Since 5
^✓ is both bounded below and above and Eeb

Q ,V satisfies EC1163, we have
that Eeb

Q ,V ( 5^✓ |A) 2 R and therefore, that Eeb
Q ,V ( 5^✓ |A) < Eeb

Q ,V ( 5^✓ |A) + 1/✓. So
in particular, for any ; 2 N0, there is a stopping time f such that ;  f and
Eeb

Q ,V ( 5^✓f |A)  Eeb
Q ,V ( 5^✓ |A) + 1/✓. Lemma 4.C.3210 moreover implies that sup f 2 N0

for any such a stopping time.
It follows from the above that there is a sequence {f✓}✓2N0 of stopping times f✓

such that f0 = 0 and, for all ✓ 2 N, f✓ � sup f✓�1 + 1 and Eeb
Q ,V ( 5^✓f✓ |A)  Eeb

Q ,V ( 5^✓ |A) +
1/✓. We now show that { 5^✓

f
✓

}✓2N0 is a sequence of finitary gambles that is uniformly
bounded below and that converges pointwise to 5 such that lim✓!+1 Eeb

Q ,V ( 5^✓f✓ |A) =
Eeb

Q ,V ( 5 |A).
Each 5

^✓
f
✓

is a gamble because it is bounded above by ✓ and because, since each
5< is bounded below by ⌫, 5^✓

f
✓

is bounded below by min{⌫, ✓}. It then also follows
that { 5^✓

f
✓

}✓2N0 is uniformly bounded below by min{⌫, 0}. To see that each 5
^✓
f
✓

is
finitary, recall that each f✓ is (sup f✓)-measurable, by Lemma 4.C.3210. This implies
that f✓ (l) = f✓ (l̃) for any l 2 ⌦ and any l̃ 2 �(l (sup f

✓
) ), and therefore that

5
^✓
f
✓

(l) = 5
^✓
f
✓
(l) (l) = 5

^✓
f
✓
(l̃) (l) = 5

^✓
f
✓
(l̃) (l̃) = 5

^✓
f
✓

(l̃),

where the third equality follows from the fact that 5^✓
f
✓
(l̃) is f✓ (l̃)-measurable [be-

cause ( 5 ✓
<
)<2N0 is a sequence of <-measurable gambles] and that l̃ 2 �(l (sup f

✓
) ) ✓

�(lf
✓
(l̃) ) [because f✓ (l̃)  sup f✓]. As a consequence, each 5

^✓
f
✓

is indeed (sup f✓)-
measurable, and therefore finitary.

To see that { 5^✓
f
✓

}✓2N0 converges pointwise to 5 , recall that ( 5<)<2N0 is a sequence
of gambles that converges pointwise to 5 2 Lb. So Lemma 4.C.7 implies that
lim(✓,<)!+1 5

^✓
<

= 5 , meaning that, for any l 2 ⌦ and any neighbourhood � of 5 (l),
there is a couple (✓⇤, <⇤) 2 N2

0 such that 5^✓
<
(l) 2 � for all ✓ � ✓

⇤ and all < � <
⇤.

Then, since {f✓}✓2N0 is strictly increasing in ✓ [because f✓ � sup f✓�1 + 1 for all
✓ 2 N], there is an ✓

0 2 N0 such that ✓ � ✓
⇤ and f✓ (l) � <

⇤ for all ✓ � ✓
0. Together

with the above, this implies that 5^✓
f
✓

(l) = 5
^✓
f
✓
(l) (l) 2 � for all ✓ � ✓

0. Since there
is such an ✓

0 2 N0 for any l 2 ⌦ and any neighbourhood � of 5 (l), we have that
lim✓!+1 5

^✓
f
✓

= 5 .
Finally, to see that lim✓!+1 Eeb

Q ,V ( 5^✓f✓ |A) = Eeb
Q ,V ( 5 |A), recall that {f✓}✓2N0 is such

that Eeb
Q ,V ( 5^✓f✓ |A)  Eeb

Q ,V ( 5^✓ |A) + 1/✓ for all ✓ 2 N. So we have that

lim sup
✓!+1

Eeb
Q ,V ( 5^✓f✓ |A)  lim sup

✓!+1

⇣
Eeb

Q ,V ( 5^✓ |A) + 1/✓
⌘
= lim sup

✓!+1
Eeb

Q ,V ( 5^✓ |A) = Eeb
Q ,V ( 5 |A),
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Game-theoretic upper expectations

where the last equality follows from Theorem 4.6.1175 which we can apply be-
cause { 5^✓}✓2N0 is an increasing sequence in V b [because 5 is bounded be-
low] that converges pointwise to 5 2 V b. On the other hand, we have that
lim inf✓!+1 Eeb

Q ,V ( 5^✓f✓ |A) � Eeb
Q ,V ( 5 |A) because of Corollary 4.6.2177 and the fact that

{ 5^✓
f
✓

}✓2N0 is uniformly bounded below by min{⌫, 0} and converges pointwise to 5 .
Hence, we conclude that lim✓!+1 Eeb

Q ,V ( 5^✓f✓ |A) = Eeb
Q ,V ( 5 |A).

As a final step, we consider the sequence ( 5 0
✓
)✓2N0 B

�
( 5^✓

f
✓

) b
�
✓2N0

defined
through Eq. (4.11)180, with 2 = 0. Then, by Lemma 4.7.1(i)181, (iv)181–(vi)181,
we have that ( 5 0

✓
)✓2N0 is a sequence of <-measurable gambles that is uniformly

bounded below and converges pointwise to 5 . Lemma 4.7.1(vii)181 and the fact that
lim✓!+1 Eeb

Q ,V ( 5^✓f✓ |A) = Eeb
Q ,V ( 5 |A) moreover imply that lim✓!+1 Eeb

Q ,V ( 5 0✓ |A) = Eeb
Q ,V ( 5 |A).

So we conclude that ( 5 0
✓
)✓2N0 is a sequence of <-measurable gambles that is uniformly

bounded below and that converges pointwise to 5 such that lim✓!+1 Eeb
Q ,V ( 5 0✓ |A) =

Eeb
Q ,V ( 5 |A).
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—Chapter V—
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Ever since the release of Kolmogorov’s landmark contribution [56]1 in the
1930’s, probability theory has become predominately measure-theoretic in
nature. This branch of probability theory aims to quantify uncertainty in
terms of probability measures: probability charges that, apart from satisfy-
ing finite additivity, are assumed to satisfy the axiom of countable additiv-
ity [55, Section II.1].2 So similarly as in Section 2.222 and Section 3.369,
probabilities—in the form of charges or measures—are thus considered to
be the primary objects, and linear expectations and upper expectations are
only regarded to be the derived secondary objects. The fact, however, that
probability measures are assumed to additionally satisfy the axiom of count-
able additivity changes matters dramatically: it ensures that probability
measures and the corresponding measure-theoretic expectations—obtained
by Lebesgue integration—possess powerful limit properties, which in turn
can be seen as one of the major reasons for the success of the measure-
theoretic framework. A second crucial factor for this success, which was
largely due to the work of Kolmogorov [56] and, in the context of stochas-
tic processes, due to that of Doob [33], is that the framework can be based
entirely on a small number of simple and clean axioms. This axiomatic ap-
proach was, at the time, considered to be uniquely elegant, and it provided
a much required unified approach to probability theory.

Yet, apart from these undeniable advantages, the measure-theoretic ap-
proach also has some serious drawbacks. The most important, to us, being
that it is strongly ‘precise’ in spirit; one posits a single probability measure
and all inferences are being deduced from this single probability measure. It
therefore hides the inferential nature of probabilistic reasoning. Of course,

1Though the work of Kolmogorov is often cited as what gave birth to today’s measure-
theoretic probability theory, it was itself preceded by a series of impactful advances by Borel,
Fréchet, Lévy and many others [87].

2The axiom of countable additivity is equivalent to the axiom of continuity [87, Sec-
tion 5.2.1].
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Measure-theoretic upper expectations

to remain more general, we can instead consider sets of probability mea-
sures. However, the properties and especially the continuity properties of
the resulting imprecise (upper and lower) expectation operators remain
relatively unexplored thus far—yet we know that they will inevitably be
weaker than their classical precise counterparts.3 Another issue is that clas-
sical measure-theoretic probability is typically only concerned with events
of positive probability, making conditioning on events of probability zero a
bit of a nuisance—which is typically circumvented by using a mathematical
trick involving equivalence classes. Lastly, the variables for which measure-
theoretic expectations are defined are always required to be measurable: an
abstract assumption that, though mostly justified in practice, complicates
the mathematical analysis considerably.

In this chapter, we try to do away with these issues, and consider a suit-
ably adapted type of measure-theoretic global upper (and lower) expecta-
tion whose continuity properties, though less powerful than their precise
measure-theoretic counterparts, are still considerably stronger than those
of the finitary probability-based upper expectations from Section 3.369.

We start by considering the precise case, where local dynamics are de-
scribed by a single precise probability tree, and deal with the latter two is-
sues. Instead of turning the precise probability tree into a single probability
measure on ⌦—or a f-algebra on ⌦—, as is done classically, we turn the pre-
cise probability tree into a global (conditional) probability measure. Such
a global probability measure is close in spirit to the notion of a full condi-
tional probability measure [4]; it essentially specifies a probability measure
on (an algebra on) ⌦ for each situation A 2X⇤, which describes the global
dynamics of the stochastic process if we are sure that the pathl taken by the
process will pass through this situation A; see Section 5.1220. This course of
reasoning is similar to—and inspired by—the one presented by Lopatatzidis
[62, Chapter 3], and it enables us to meaningfully define measure-theoretic
expectations conditional on situations that have probability zero. Subse-
quently, to extend the domain of these conditional measure-theoretic ex-
pectations from measurable variables to all global variables V , we propose
two possible upper expectation operators, which can be seen as variations
of the standard upper Lebesgue integral. We argue why they are suitable
as extensions, and show that they are equivalent; this will be the topic of
Section 5.2227.

After an intermediate section (Section 5.3235) on the properties of this
common precise measure-theoretic upper (respectively lower) expectation,
we generalise in Section 5.4240 towards an imprecise context. We do this in

3The continuity properties of measure-theoretic upper and lower probabilities, defined as
upper and lower envelopes over sets of probability measures, were however already thoroughly
studied by Krätschmer [59].
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a straightforward and intuitive manner, similar as before in Section 3.369, by
applying the foregoing ‘precise’ course of reasoning to each compatible pre-
cise probability tree, and then taking an upper (lower) envelope of all the
measure-theoretic upper (lower) expectations obtained from these compat-
ible precise probability trees. In that way, we obtain our desired ‘imprecise’
measure-theoretic upper (lower) expectation.

Apart from suggesting a suitable generalisation away from the classical
measure-theoretic setting, the current chapter also aims to examine, on the
one hand, the characteristic properties of the generalised measure-theoretic
upper expectations thus obtained, and, on the other hand, the relation be-
tween these operators and the game-theoretic upper expectations discussed
in the previous chapter. First, in Section 5.3235, we consider the case where
local models are precise; we prove that measure-theoretic upper expecta-
tions and game-theoretic upper expectations are then equal on their entire
domain, thereby generalising—for finite state spaces—an earlier result [85,
Theorem 9.3] by Shafer and Vovk. The most important properties of the
‘precise’ measure-theoretic upper expectation then follow immediately from
this equality and the fact that they are already known to be satisfied by the
game-theoretic upper expectation.

Section 5.4240 then, considers the imprecise case and, apart from intro-
ducing general measure-theoretic upper expectations as discussed above,
presents a number of important properties for these measure-theoretic op-
erators; e.g. extended coherence, a relation with EQ , continuity from below,
and two specific types of continuity from above. Finally, in Section 5.5249,
we use these properties to establish an equality with the game-theoretic
upper expectation on two complementary types of domains: the set of all
bounded below measurable variables, and—if the local sets of probability
mass functions are closed—the set of all monotone limits of finitary gam-
bles. We argue that, together, these domains cover almost all practically
relevant inferences, and therefore that, in practice, the two types of upper
expectations—the measure-theoretic and the game-theoretic—can often be
regarded as equivalent. We also discuss their relation in case they are not
equivalent, and conclude the chapter with an overview on how, and in which
aspects, our result generalises the results of Shafer and Vovk in [85, Chap-
ter 9].

Concluding this introductory section, we want to mention that there is
also an alternative route one may take in generalising classical measure-
theoretic probability in order to deal with the need for imprecision; by using
sub- or super-additive probability measures as a starting point instead of
global probability measures, as in the classical case, or sets of them, as in
our case. This approach was largely initiated by Choquet’s work [6] on
capacities and non-additive measures, and the study of these objects has
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Figure 5.1 Overview of the global upper expectations treated in this and
previous chapters.

grown to be a major topic of interest; see e.g. [28, 31, 42, 43, 59]. However,
the setback with using a single non-additive measure instead of a set of
probability measures is that it penalizes generality considerably; see [106,
Chapter 6] and [31, p.viii] for an elaborate treatment of the topic. Though
we do not adopt this approach in the context of the current dissertation,
some of our results in Section 5.5249 nevertheless rely crucially on results
from the theory of non-additive measures.

5.1 From charges to measures

In the current section, we aim to come to grips with the notions of count-
able additivity and probability measures, and show how they lead us to de-
fine global probability charges on domains considerably larger than those
considered in Section 3.369.

5.1.1 The requirement of countable additivity

Recall Section 3.369, where we proposed a possible and straightforward
method for extending a given imprecise probability treeP• to a global upper
expectation EP. The upper expectation EP was constructed in three steps;
first, for all > ⇠P•, we considered a global—finitely additive—probability
charge on hX⇤i ⇥X⇤ [Definition 3.270] connected to > by Eq. (3.12)72;
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5.1 From charges to measures

then, for each such global probability charge P>, we defined a correspond-
ing global upper expectation E> on V ⇥X⇤ using the (upper) Lebesgue inte-
gral (or upper S-integral) [Definition 3.578]; and finally, we took an upper
envelope of these global upper expectations over all > ⇠ P• to obtain our
global upper expectation EP corresponding toP•. Though elegant as it may
seem, this way of defining a global upper expectation—even only on global
gambles—was not satisfactory. This became apparent when we considered
Example 3.6.199; it was shown that E> may lack elementary continuity prop-
erties, and that it therefore sometimes returns overly conservative values.

A possible way to perhaps remedy this issue, is to rely on the notion of
countable additivity [4, 5, 56, 89] for (global) probability charges; this
property strengthens the finite additivity condition [GP370] to also apply to
countable (disjoint) unions of events.

Definition 5.1 (Countable additivity). A(n) (unconditional) probability
charge Pu on an algebra A ✓ ¶(⌦) is called countably additive—or, f-
additive—if, for any sequence (�7)72N in A such that [72N�7 2 A,

�7 \ �8 = ú for any 7 < 8) Pu ([72N�7) =
P

72N Pu (�7).

Analogously, a global probability charge P on A ⇥X⇤, with A an algebra
such that hX⇤i ✓ A ✓ ¶(⌦), is called countably additive if, for all A 2X⇤,
the (unconditional) probability charge P (·|A) onA is countably additive. }

Imposing countable additivity typically allows us to—uniquely—extend
(global) probability charges to a larger domain, while still preserving fairly
strong limit properties. Before we get into the details, let us first gather some
intuition and see how the condition of countable additivity can be used to
resolve the issue from Example 3.6.199.

Example 5.1.1. Reconsider the precise probability tree > from Exam-
ple 3.6.199; then we have that >(0|A) = 1 and >(1|A) = 0 for all A 2 X⇤.
Let us consider two di�erent global probability charges on ¶(⌦) ⇥X⇤ that
are related to > by Eq. (3.12)72; a countably additive one and a finitely addi-
tive one. The first global probability charge P1 is defined, for all � ✓ ⌦ and
A 2 X⇤, by P1 (�|A) B 1 if A00 · · · 2 �, and P1 (�|A) B 0 otherwise. To see
that P1 is a global probability charge, it su�ces to check that GP170–GP470
are satisfied.

We only prove GP470 and leave GP170–GP370 to the reader, as they are
fairly straightforward. Fix any � ✓ ⌦ and any A, B 2X⇤ such that A v B. We
need to show that P1 (� \ �(B) |A) = P1 (�|B)P1 (B |A). Let ✓ B |B | � |A| � 0 be
the di�erence in length between the situations B and A. Then we either have
that B = A0

✓ and then �(B) = �(A0✓) or otherwise, that �(B) \ �(A0✓) = ú.
Suppose the former is true. Then A00 · · · 2 �(B) and so it follows from the
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definition of P1 that P1 (B |A) = 1. For any � ✓ ⌦, we then also have that
B00 · · · = A00 · · · 2 � if and only if A00 · · · 2 � \ �(B), and therefore that
P1 (�|B) = P1 (� \ �(B) |A), which together with P1 (B |A) = 1 establishes GP470
for the case that B = A0

✓. Now suppose on the other hand that �(B)\�(A0✓) =
ú. Then we clearly have that A00 · · · 8 �(B) and therefore that P1 (B |A) = 0
and that P1 (� \ �(B) |A) = 0, which immediately establishes GP470.

So, in summary, P1 always satisfies GP470 (and GP170–GP370) and is
therefore a global probability charge on ¶(⌦) ⇥X⇤. It can moreover be
checked easily that P1 satisfies Eq. (3.12)72. The (unconditional) probability
of the event ⌦ \ {000 · · · } according to P1 is equal to 0, and the (uncondi-
tional) probability of the singleton {000 · · · } according to P1 is furthermore
equal to 1; these values are in line with our intuition.

Moreover, observe that P1 is countably additive, and actually the unique
countably additive global probability charge on ¶(⌦) ⇥X⇤ that satisfies
Eq. (3.12)72. That P1 is countably additive is easy to check. To show that
it is unique, consider any global probability charge P on ¶(⌦) ⇥X⇤ that
satisfies Eq. (3.12)72, and observe that the values of P on hX⇤i ⇥X⇤ are
uniquely determined by Proposition 3.3.473 [since the restriction of P to
hX⇤i ⇥X⇤ is by Definition 3.270 again a global probability charge]. In par-
ticular, for any A 2 X⇤, we have that P (A0<1|A) = 0 for all < 2 N0. Note
that �(A) \ {A00 · · · } = [<2N0�(A0<1), and therefore by countable additivity
that P (�(A) \ {A00 · · · }|A) = P

<2N0 P (A0<1|A) = 0. Hence, it now follows in a
straightforward way from GP170–GP370 that P (�|A) = 1 if A00 · · · 2 � and
P (�|A) = 0 otherwise, and thus indeed that P = P1.

We next consider a second global probability charge P2 on ¶(⌦) ⇥X⇤

that is not countably additive. We start by defining the map P⇤ on K B
(hX⇤i ⇥ X⇤) [ {({A00 · · · }, A) : A 2 X⇤} by P⇤ (�|A) B P1 (�|A) for any
(�, A) 2 hX⇤i⇥X⇤ and P⇤ (A00 · · · |A) B 0 for any A 2X⇤. Note that this defi-
nition is internally consistent because {A00 · · · } 8 hX⇤i for all A 2X⇤ due to
Lemma 3.3.372. We aim to show that P⇤ can be extended to a global prob-
ability charge P2 on the entire domain ¶(⌦) ⇥X⇤. To this end, we will use
the extension result [62, Theorem 8], which requires us to first show that P⇤

is a ‘coherent conditional probability’ according to [62, Definition 5]. This
means checking a condition similar to Proposition 3.3.1(iii)71: we need to
check that, for all < 2 N, all _1, . . . , _< 2 R and all (�1, A1), . . . , (�<, A<) 2 K,

sup
⇣ <X
7=1

_71A
7

�
I�

7
� P⇤ (�7 |A7)

� ��� [<
7=1 �(A7)

⌘
� 0.

By definition, the map P⇤ coincides with P1 on hX⇤i ⇥X⇤. As a result,
because we know that the global probability charge P1 satisfies the con-
dition above on its entire domain [since it is a global probability charge
and due to Proposition 3.3.1], we have that P⇤ satisfies the inequality
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5.1 From charges to measures

above if (�1, A1), . . . , (�<, A<) 2 hX⇤i ⇥X⇤ ⇢ K. So it remains to check
that, for any < 2 N0, any ; 2 N, _1, . . . , _< 2 R, _̃1, . . . , _̃; 2 R,
(�1, A1), . . . , (�<, A<) 2 hX⇤i ⇥X⇤ and B1, . . . , B; 2X⇤,

sup
⇣ <X
7=1

_71A
7

�
I�

7
� P⇤ (�7 |A7)

�

+
;X
8=1

_̃81B
8

⇣
IB
8
00· · · � P⇤ (B800 · · · |B8)

⌘ ��� [<
7=1 �(A7)

[
[;
8=1�(B8)

⌘
� 0.

By definition, we have that P⇤ (B800 · · · |B8) = 0 for all 8 = {1, . . . ,;}, and
therefore that

;X
8=1

_̃81B
8

⇣
IB
8
00· · · � P⇤ (B800 · · · |B8)

⌘
=

;X
8=1

_̃81B
8
IB
8
00· · · =

;X
8=1

_̃8IB
8
00· · ·. (5.1)

So, if < = 0, we indeed obtain that

sup
⇣ <X
7=1

_71A
7

�
I�

7
� P⇤ (�7 |A7)

�

+
;X
8=1

_̃81B
8

⇣
IB
8
00· · · � P⇤ (B800 · · · |B8)

⌘ ��� [<
7=1 �(A7)

[
[;
8=1�(B8)

⌘

= sup
⇣ ;X
8=1

_̃8IB
8
00· · ·

��� [;
8=1 �(B8)

⌘
� 0.

If < � 1, it su�ces to show that

sup
⇣ <X
7=1

_71A
7

�
I�

7
� P⇤ (�7 |A7)

�

+
;X
8=1

_̃81B
8

⇣
IB
8
00· · · � P⇤ (B800 · · · |B8)

⌘ ���� [<
7=1 �(A7)

� ⌘
� 0,

or, even stronger, to show that

sup
⇣ <X
7=1

_71A
7

�
I�

7
� P⇤ (�7 |A7)

�

+
;X
8=1

_̃81B
8

⇣
IB
8
00· · · � P⇤ (B800 · · · |B8)

⌘ ���� [<
7=1 �(A7)

�
\
�
[;
8=1 {B800 · · · }

� ⌘
� 0.

Using Eq. (5.1) and taking into account that the supremum above is taken
over a set that does not contain any of the paths B800 · · · , the desired in-
equality follows if we manage to show that

sup
⇣ <X
7=1

_71A
7

�
I�

7
� P⇤ (�7 |A7)

� ��� � [<
7=1 �(A7)

�
\
�
[;
8=1 {B800 · · · }

� ⌘
� 0. (5.2)
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To this end, observe by Lemma 3.3.372 that the variable I�
7
for all 7 =

{1, . . . , <}, and thus also the variable P
<

7=1 _71A7
�
I�

7
� P⇤ (�7 |A7)

�
is finitary.

So it is ✓-measurable for some ✓ 2 N0. By our earlier considerations, we
already know that

sup
⇣ <X
7=1

_71A
7

�
I�

7
� P⇤ (�7 |A7)

� ��� [<
7=1 �(A7)

⌘
� 0.

So since P
<

7=1 _71A7
�
I�

7
� P⇤ (�7 |A7)

�
is ✓-measurable—and thus only takes

a finite number of di�erent values—there is an F1:✓ 2 X✓ such thatP
<

7=1 _71A7
�
I�

7
� P⇤ (�7 |A7)

�
is larger than or equal to 0 on all paths l 2

�(F1:✓). Hence, since there are (infinitely many) paths in �(F1:✓) di�erent
from the paths B800 · · · for 8 = {1, . . . ,;}, it is clear that Eq. (5.2)x in-
deed holds. So P⇤ is a ‘coherent conditional probability’ according to [62,
Definition 5].

Now, [62, Theorem 8] says that P⇤ can be extended to a ‘coherent con-
ditional probability’ P2 on the entire domain ¶(⌦) ⇥X⇤. It then follows
from [62, Definition 5] that P2 satisfies Proposition 3.3.1(iii)71, and thus by
Proposition 3.3.1(i)71 that P2 is a global probability charge on ¶(⌦)⇥X⇤. It
is also obvious that P2 satisfies Eq. (3.12)72. Since P1 is the unique countably
additive global probability charge on ¶(⌦) ⇥X⇤ that satisfies Eq. (3.12)72,
and since P2 cannot be equal to P1, we infer that P2 is not countably additive.

So, in summary, there exists a global probability charge P2 on ¶(⌦)⇥X⇤
that satisfies Eq. (3.12)72 and that is not countably additive, but this global
probability charge returns values that contradict our intuition; it assigns
(unconditional) probability zero to the path 000 · · · , and [by GP170–GP370]
assigns (unconditional) probability one to ⌦\ {000 · · · }. On the other hand,
the unique countably additive global probability charge P1 returns values
that are in line with our intuition. ^

In light of our findings above, it seems that a global upper expecta-
tion based on countably additive global probability charges will prove to
be a more informative and adequate global model compared to the finite-
additivity-based upper expectations E> or EP. In order to define such a
global model, we need to delve into the somewhat abstract world that is
called measure theory.

5.1.2 Probability measures and Carathéodory’s extension theorem

In Example 5.1.1221, we considered a countably additive global prob-
ability charge P1 on the domain ¶(⌦) ⇥X⇤ that is compatible with the
(im)precise probability tree > according to Eq. (3.12)72. For general pre-
cise probability trees, however, such a compatible countably additive global
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probability charge on ¶(⌦) ⇥X⇤ does not necessarily exist. This essen-
tially follows from the work of Vitali [108] and others on the nature of
non-measurable sets. For instance, consider the precise probability tree >,
defined by >(F |A) B 1/|X | for all F 2 X and all A 2 X⇤, and the cor-
responding unique probability charge P> (·|⇤) on hX⇤i that is described by
Proposition 3.3.473. This finitely additive probability charge P> (·|⇤) on hX⇤i
is automatically countably additive [5, Theorem 2.3], but it cannot be ex-
tended to a countably additive probability charge on ¶(⌦).4,5 We refer the
reader to [70, Chapter 5] and [5, Section 3] for a didactic treatment on this
topic.

Though a countably additive global probability charge on hX⇤i ⇥X⇤

cannot always be extended to the entire domain ¶(⌦) ⇥X⇤, we can always
extend it to a smaller domain that is still considerably larger than hX⇤i ⇥
X⇤: the domain of all events in the f-algebra generated by hX⇤i (and all
situations). In general, a f-algebra A on a non-empty set Y is an algebra
on Y that is closed under countable unions:

(87 2 N) �7 2 A) ([72N�7) 2 A.

Since any algebra is closed under taking complements, a f-algebra is also
closed under countable intersections. For any algebra B, we use f(B) to
denote the smallest f-algebra that includes B and call f(B) the f-algebra
generated by B; the algebra f(B) always exists because any arbitrary inter-
section of f-algebras is itself a f-algebra [5, Section 2].6 In particular, we
use f(X⇤) to denote the f-algebra generated by hX⇤i. Any element � of
a f-algebra A will be called A-measurable. The following definition of a
probability measure is standard; see [4, 5, 56, 89].

Definition 5.2 (Probability measures & global probability measures). A
countably additive (unconditional) probability charge Pu on a f-algebra
A ✓ ¶(⌦) is called a probability measure. Analogously, a countably ad-
ditive global probability charge P on A ⇥X⇤, with A a f-algebra such that
hX⇤i ✓ A ✓ ¶(⌦), is called a global probability measure.7 }

4At least, if we adopt the continuum hypothesis and the axiom of choice (AC).
5For if P> ( · |⇤) would be endowed with a countably additive extension to the entire power-

set ¶(⌦), then it can be derived that each singleton in ⌦ must have probability zero, and thus
by [70, Theorem 5.6] that all sets in ¶(⌦) must have probability zero. But this is in contradic-
tion with the fact that P> ( · |⇤) is a probability charge, because this demands that P> (⌦ |⇤) = 1;
see also [5, p. 45–46].

6And, of course, because there is at least one f-algebra including B, namely the power-
set ¶(⌦).

7A general measure, the main object of interest in measure theory, is not necessarily
normed and need not take values in [0, 1]. Instead, it takes values in R� and is only re-
quired to satisfy countable additivity. Measures can be seen as generalised notions of ‘length’
or ‘volume’ for abstract spaces.
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Measure-theoretic upper expectations

Now, as claimed earlier, given any countably additive global probability
charge P on hX⇤i ⇥X⇤, we can extend P to the domain f(X⇤) ⇥X⇤ and
preserve countable additivity—in fact, such an extension will even always
be unique. This follows immediately from the famous extension theorem
by Constantin Carathéodory [5, 89, 112].

Theorem 5.1.2 (Carathéodory’s extension theorem). For any countably ad-
ditive probability charge P 0 on an algebraA ✓ ¶(⌦), there is a unique proba-
bility measure P on f(A) such that P 0(�) = P (�) for all � 2 A. In particular,
this probability measure P is given, for all � 2 f(A), by

P (�) = inf
nX
72N

P0(�7) : �7 2 A and � ✓ [72N�7
o
.

Proof. The existence and uniqueness of P follow from [5, Theorem 3.1]. The ex-
pression for P follows from the discussion in [5, p.37–41].

Combined with Proposition 3.3.473, this extension theorem leads us to the
following central conclusion.

Proposition 5.1.3. For any precise probability tree >, there is a unique global
probability measure P> on f(X⇤) ⇥X⇤ that satisfies Eq. (3.12)72.

Proof. Due to Proposition 3.3.473, there is a unique global probability charge P0
>
on

hX⇤i ⇥X⇤ satisfying Eq. (3.12)72. It moreover follows from [5, Theorem 2.3] that,
for any A 2 X⇤, the unconditional probability charge P0

>
(·|A) on hX⇤i is countably

additive. Hence, we can apply Theorem 5.1.2 to each P0
>
(·|A) individually, to obtain

a unique global probability measure P> on f(X⇤) ⇥X⇤ that extends the global prob-
ability charge P0

>
. The global measure P> then clearly also satisfies Eq. (3.12)72. To

see that P> is moreover the only global probability measure P> on f(X⇤) ⇥X⇤ that
satisfies Eq. (3.12)72, assume that there is a second global probability measure P2

on f(X⇤) ⇥X⇤ satisfying Eq. (3.12)72. Then it follows from Proposition 3.3.1(i)71
[by applying it twice] that the restriction of P2 to hX⇤i ⇥X⇤ is a global probability
charge. This restriction also clearly needs to satisfy Eq. (3.12)72. Due to the unique-
ness of P0

>
, it follows that this restriction is equal to P0

>
, and hence by the construction

of P> and Theorem 5.1.2 we have that P2 = P>.

Observe that the restriction of this unique global probability measure P>
to hX⇤i ⇥ X⇤ then still takes the intuitive form as described by Propo-
sition 3.3.473. Additionally, one may also note that the probability mea-
sure P> (·|⇤) corresponding to the initial situation ⇤ could have just as well
be obtained from applying Ionescu-Tulcea’s extension theorem [89, Theo-
rem 2.9.2] to the local probability mass functions >(·|A).
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5.2 Measure-theoretic upper expectations for precise probability trees

5.2 Measure-theoretic upper expectations for precise probability
trees

To obtain global linear expectations and upper expectations from global
probability measures, we will use the well-known Lebesgue integral. It is
probably the type of integral used most commonly in the modern measure-
theoretic probability theory, and largely owes this status to the fact that
it has considerably stronger continuity properties compared to other well-
known integrals, e.g. the Riemann/Darboux integral. Moreover, our use of
the Lebesgue integral here is in line with our approach in Section 3.3.374,
where our choice of integral—the S-integral—was completely equivalent to
the Lebesgue integral. As was already mentioned there, the Lebesgue in-
tegral introduced here for global probability measures and measurable (ex-
tended real) variables will—perhaps counter-intuitively—be closer in ap-
pearance to the S-integral from Definition 3.376 than to the Lebesgue in-
tegral presented in Tro�aes & De Cooman [106, Definition 8.27] (see also
Proposition 3.3.676).

The measure-theoretic concepts that will be used in the following
sections—including the definition of the Lebesgue integral—are immedi-
ately adapted to our specific stochastic processes setting; we refer to Ap-
pendix 5.A263 for a more general, and perhaps more familiar introduction
of some of these concepts.

5.2.1 Measurable variables

Central to the definition of the Lebesgue integral is the concept of mea-
surability for extended real variables; for any f-algebra A ✓ ¶(⌦), a vari-
able 5 2 V is called A-measurable if {l 2 ⌦ : 5 (l)  2} 2 A for all
2 2 R.8 If it is clear from the context which algebra we are considering, we
will simply call 5 measurable. The notion of measurability for extended
real variables with respect to f-algebras that we have just introduced is
in accordance—in the sense that it extends—the earlier notion from Sec-
tion 3.3.374, where measurability of a gamble was introduced as the re-
quirement that it should be the uniform limit of a sequence of simple gam-
bles; this can be deduced from [106, Proposition 1.19] and [106, Defini-
tion 1.17] (and the considerations in Appendix 5.A263). We also extend the
notion of being A-simple to non-negative extended real variables: for any
algebra A ✓ ¶(⌦), a non-negative variable 5 2 V is called A-simple if it

8As is shown in Appendix 5.A263, this notion of measurability for extended real variables
is equivalent to the standard notion where one uses the inverse image of sets in the Borel
f-algebra on R.
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is a finite sum P
<

7=1 07I�7 with 01, . . . , 0< 2 R� and �1, . . . , �< 2 A [102,
Definition 1.3.2].

We gather all f(X⇤)-measurable global variables in the set V f, and we
let V f and V f,b be the respective subsets of all bounded and bounded be-
low ones. The following result shows that the set V f is closed under point-
wise countable infima and suprema, and that it is closed under pointwise
convergence. To state the result, for any sequence ( 5<)<2N in V , we letW

<2N 5< (l) B sup{ 5< (l) : < 2 N} and V
<2N 5< (l) B inf{ 5< (l) : < 2 N}

for all < 2 N.

Proposition 5.2.1. For any sequence ( 5<)<2N in V f, we have that

MV1. W
<2N 5< 2 V f and

V
<2N 5< 2 V f.

MV2. lim inf<!+1 5< 2 V f, lim sup
<!+1 5< 2 V f, and if lim<!+1 5< exists

then lim<!+1 5< 2 V f.

Proof. Since {l 2 ⌦ : W
<2N 5< (l)  2} =

T
<2N{l 2 ⌦ : 5< (l)  2} and

{l 2 ⌦ : V
<2N 5< (l)  2} = [<2N{l 2 ⌦ : 5< (l)  2}, MV1 follows immedi-

ately from the fact that the class of all f(X⇤)-measurable sets is closed under count-
able unions and intersections; see also [89, p. 209]. MV2 also follows from MV1
since lim inf<!+1 5< =

W
<2N

V
;�< 5; and lim sup

<!+1 5< =
V

<2N
W

;�< 5;, and since
lim<!+1 5< is simply a special case of lim inf<!+1 5< or lim sup

<!+1 5<.

5.2.2 Measure-theoretic expectations

For the definition of the Lebesgue integral, we follow Billingsley [5,
Chapter 3],9,10 yet immediately limit ourselves to integrals over ⌦ and with
respect to probability measures on f(X⇤):

Definition 5.3 (The Lebesgue integral). Consider any probability measure
P on f(X⇤), and any non-negative 5 2 V f. Then the Lebesgue integral of 5
with respect to P is defined as

π
5dP B sup

(
<X
7=1

inf ( 5 |�7)P (�7) : �7 2 f(X⇤) and (�7)<7=1 partitions ⌦

)
.

(5.3)

9Many slightly di�erent, yet equivalent versions of the definition of the Lebesgue integral
can be found in the literature; e.g. compare [5, Chapter 3] with [89, Section 2.6]. That these
versions are indeed equivalent is illustrated by Proposition 5.2.2!, and also clarified at the end
of [5, Chapter 3, Section 15] and, for bounded non-negative variables, in [89, Remark 2.6.6].

10This version of the Lebesgue integral bases itself (for non-negative variables) solely on
the lower (Lebesgue) integral, and does not demand equivalence with the upper (Lebesgue)
integral. This is in contrast to the procedures from Definition 3.376 and Proposition 3.3.676. A
clarification for this is given in Footnote 12232.
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5.2 Measure-theoretic upper expectations for precise probability trees

For a general 5 2 V f, we let 5 + B 5
_0 and 5

� B �( 5^0), and the Lebesgue
integral is then defined by

π
5dP B

π
5
+dP �

π
5
�dP,

unless
Ø
5
+dP =

Ø
5
�dP = +1, in which case the Lebesgue integral of 5

with respect to P is not defined. }

We say that the Lebesgue integral
Ø
5dP of a variable 5 2 V f exists,

simply if it is defined. If both
Ø
5
+dP and

Ø
5
�dP are real, then 5 is called

P-integrable. Confusingly enough, the integral
Ø
5dP may still exist if 5 is

not P-integrable; it su�ces that either
Ø
5
+dP < +1 or

Ø
5
�dP < +1; note

that
Ø
5
+dP = �1 or

Ø
5
�dP = �1 is impossible because the Lebesgue

integral is clearly non-negative for non-negative variables. Alternatively, we
could have also defined the Lebesgue integral (for non-negative variables)
as a supremum over all the non-negative f(X⇤)-simple variables smaller or
equal than 5—an expression that is similar to the one in Proposition 3.3.676
and to the one of the Lebesgue integral in [81, 89, 102]. The following result
is well-known to hold, yet because we did not find a suitable reference for
it, we provide an explicit proof for it here.

Proposition 5.2.2. For any probability measure P on f(X⇤), the following
statements hold.

(i) For any non-negative f(X⇤)-simple variable 5 , and P
<

7=1 07I�7 any repre-
sentation of 5 , π

5dP =
<X
7=1

07P (�7)

(ii) For any general non-negative 5 2 V f,

π
5dP = sup

⇢π
6dP : 6 is f(X⇤)-simple and 0  6  5

�
.

Proof. To prove (i), suppose that 5 is non-negative and f(X⇤)-simple and thatP
<

7=1 07I�7 is a representation for 5 . Then by [5, Theorem 15.1.(iv)] we have that
E ( 5 ) =

P
<

7=1 07E (I�7 ), which by [5, Theorem 15.1.(i)] in turn implies that E ( 5 ) =P
<

7=1 07P (�7) as desired.
To see that (ii) holds, fix any general non-negative 5 2 V f and start by observing

that, for any partition (�7)<
7=1 of ⌦ such that �7 2 f(X⇤) for all 7 2 {1, . . . , <}, we

trivially have that P
<

7=1 inf ( 5 |�7)I�7 is a non-negative f(X⇤)-simple variable smaller
or equal than 5 . Due to property (i), we thus have that P

<

7=1 inf ( 5 |�7)P (�7) =
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Ø P
<

7=1 inf ( 5 |�7)I�7dP. As a consequence, it follows that

π
5dP = sup

⇢
<X
7=1

inf ( 5 |�7)P (�7) : �7 2 f(X⇤) and (�7)<7=1 partitions ⌦
�

 sup
⇢π

6dP : 6 is f(X⇤)-simple and 0  6  5

�
.

The converse inequality now trivially follows from the fact that, as can be ob-
served from Definition 5.3228, the Lebesgue integral is monotone with respect to
non-negative variables in V f.

We next use the Lebesgue integral to define the global linear expectation
corresponding to a precise probability tree.

Definition 5.4 (Global measure-theoretic expectations). Consider any pre-
cise probability tree >, let P> be the unique global probability measure from
Proposition 5.1.3226, and let P |A

>
B P> (·|A) for any A 2 X⇤. Then the global

measure-theoretic expectation E>,M is defined by E>,M ( 5 |A) B
Ø
5dP |A

>
for all

( 5 , A) 2 V f ⇥X⇤ such that
Ø
5dP |A

>
exists. }

Note that, in defining the expectation E>,M (·|A), we integrate with respect
to the unconditional probability measure P> (·|A), which was obtained from
a forward construction only involving the probabilities >(·| B) for which B

followed A; recall Eq. (3.12)72 and Proposition 3.3.473. This should be con-
trasted with the more traditional measure-theoretic approach, where condi-
tional probabilities and expectations are derived from a single unconditional
probability measure using Bayes’ rule and/or the Radon-Nikodym deriva-
tive; also see Appendix 5.A263. As mentioned below Proposition 3.3.473, our
alternative approach allows us to condition in a meaningful way on situa-
tions of probability zero. Remark, however, that the unconditional expecta-
tion E>,M (·) B E>,M (·|⇤) is completely equivalent to the usual unconditional
expectation used in standard measure-theoretic probability theory.

As mentioned earlier, the prominent role of the Lebesgue integral in
modern probability theory is mainly due to its mathematically convenient
properties—in particular, to its strong continuity properties. Since E>,M is
defined in terms of this Lebesgue integral, it inherits these properties. We
next list some of the properties that will be used in the main text; we refer
to Appendix 5.A263 for a more complete overview. Note in particular that
ME3 below confirms that E>,M is linear (in its first argument).

Proposition 5.2.3. For any precise probability tree > and any A 2 X⇤, the
following statements hold:

ME2. if 5  6 then E>,M ( 5 |A)  E>,M (6 |A) for all 5 , 6 2 V f such that
E>,M ( 5 |A) and E>,M (6 |A) exist.
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5.2 Measure-theoretic upper expectations for precise probability trees

ME3. E>,M (0 5 + 16 |A) = 0E>,M ( 5 |A) + 1E>,M (6 |A) for all 0, 1 2 R and all
5 , 6 2 V f that are P |A

>
-integrable.

ME4. E>,M ( 5 |A) exists for all 5 2 V f that are bounded below or above.

ME5. E>,M ( 5 |A) is real and 5 is P |A
>
-integrable for all (bounded) 5 2 V f.

ME6. �E>,M ( 5 |A) = E>,M (� 5 |A) for all 5 2 V f such that E>,M ( 5 |A), or equiv-
alently E>,M (� 5 |A), exists.

ME7. Consider any sequence ( 5<)<2N in V f that converges pointwise to a
variable 5 2 V f. If there is a P |A

>
-integrable variable 5

⇤ 2 V f such
that | 5< |  5

⇤ for all < 2 N, then 5 and all 5< are P |A
>
-integrable and

lim
<!+1

E>,M ( 5< |A) = E>,M ( 5 |A).

ME8. Consider any increasing sequence ( 5<)<2N in V f. If there is an 5
⇤ 2 V f

such that E>,M ( 5 ⇤ |A) > �1 and 51 � 5
⇤, then

lim
<!+1

E>,M ( 5< |A) = E>,M ( 5 |A) where lim
<!+1

5< = 5 .

ME9. Consider any decreasing sequence ( 5<)<2N in V f. If there is an 5
⇤ 2 V f

such that E>,M ( 5 ⇤ |A) < +1 and 51  5
⇤, then

lim
<!+1

E>,M ( 5< |A) = E>,M ( 5 |A) where lim
<!+1

5< = 5 .

ME10. E( 5 + `) = E( 5 ) + ` for all ` 2 R and all 5 2 V f that are bounded
below.

Proof. See Lemma 5.A.1264 in Appendix 5.A263.

5.2.3 Beyond measurable variables

Next, we want to drop the constraint of f(X⇤)-measurability and extend
our global measure-theoretic expectation E>,M to a global operator that is de-
fined on all global variables (and conditional situations). It is unconventional
to do so in standard measure-theoretic probability because this means giv-
ing up linearity of the resulting global (upper/lower) expectation operator.
However, as already mentioned in the paragraph above Definition 3.578, this
does not concern us, since we will work with imprecise local models—and
thus also imprecise global models—in the end anyway.

As far as we know, there is however no real consensus on how measure-
theoretic expectations should be extended from measurable variables to
non-measurable variables. One possible approach would be—if for the mo-
ment, we limit ourselves to non-negative variables and upper expectations—
to simply use the formula from Eq. (5.3)228 and apply it to the entire domain

231



Measure-theoretic upper expectations

of all non-negative variables. The problem with this approach is that the re-
sulting operator—which is typically called the lower Lebesgue integral—
would take the form of a lower expectation rather than that of an upper
expectation; e.g. it can easily be deduced from the expressions in Propo-
sition 5.2.2229 (and the fact that the supremum in Proposition 5.2.2(ii)229
remains equal to the supremum in Eq. (5.3)228 for non-measurable 5 ) that
the lower Lebesgue integral would be super-additive instead of sub-additive.
Hence, a possible alternative would then be to use the conjugate upper
Lebesgue integral, described by

π
5dP = inf

(
<X
7=1

sup( 5 |�7)P (�7) : �7 2 f(X⇤) and (�7)<7=1 partitions ⌦

)

= inf
⇢π

6dP : 6 is f(X⇤)-simple and 6 � 5

�
,

for any non-negative 5 2 V and any general probability measure P on
f(X⇤).11 The problem here is that

Ø
5dP does not necessarily coincide

with the standard (lower) Lebesgue integral from Definition 5.3228 on
non-negative f(X⇤)-measurable variables; see [5, Problem 15.1] or [89,
p.244].12 Since the (lower) Lebesgue integral, and thus E>,M, always exists
on this domain, the upper Lebesgue integral too cannot be used as a device
for extending the expectation E>,M.

Because none of the options above are satisfactory, we propose an ex-
tension of our own. It is strongly inspired by the upper Lebesgue integral
but adapted to not only approximate from above by f(X⇤)-simple variables,
but also by more general variables from the domain of the Lebesgue inte-
gral. Our extension is moreover introduced in two slightly di�erent, yet
equivalent ways.

Definition 5.5 (Global measure-theoretic upper expectations for precise
probability trees). Consider any precise probability tree >. Let E1

>,M and
E2
>,M be defined, for all ( 5 , A) 2 V ⇥X⇤, by

(i) E1
>,M ( 5 |A) B inf

n
E>,M (6 |A) : 6 2 V f,b and 6 � 5

o
;

(ii) E2
>,M ( 5 |A) B inf

n
E>,M (6 |A) : 6 2 V f, E>,M (6 |A) exists and 6 � 5

o
.

11That these two expressions are equivalent can be deduced in an analogous way as how
we proved Proposition 5.2.2229.

12This is also the reason why, in contrast to Definition 3.376, the Lebesgue integral for un-
bounded or extended real-valued functions is usually not defined as the common upper/lower
Lebesgue integral (if both the upper and lower Lebesgue integral exist and are equal). The
latter is sometimes called the Darboux-Young approach [89, p.244].
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5.2 Measure-theoretic upper expectations for precise probability trees

Then E1
>,M and E2

>,M are equal and the common operator is what we refer to
as the global measure-theoretic upper expectation E>,M. }

Note that it is valid to write E>,M (6 |A) for all 6 2 V f,b in the definition
of E1

>,M because E>,M (6 |A) always exists for such a bounded below variable 6
[ME4231].

Our proof of the equality between E1
>,M and E2

>,M uses the following
lemma, which guarantees that E1

>,M is an extension of E>,M.

Lemma 5.2.4. For any precise probability tree >, we have that E1
>,M ( 5 |A) =

E>,M ( 5 |A) for all ( 5 , A) 2 V f ⇥X⇤ such that E>,M ( 5 |A) exists.

Proof. Fix any ( 5 , A) 2 V f ⇥X⇤ such that E>,M ( 5 |A) exists. By the monotonicity
[ME2230] of E>,M, we have that

E1
>,M ( 5 |A) = inf

n
E>,M (6 |A) : 6 2 V f,b and 6 � 5

o
� E>,M ( 5 |A). (5.4)

To see that the converse inequality holds, observe that, since E>,M ( 5 |A)—and thusØ
5dP |A

>
—exists, we have that E>,M ( 5 + |A) or E>,M ( 5� |A) is real. Hence, if E>,M ( 5 + |A) =

+1 then E>,M ( 5� |A) 2 R and therefore E>,M ( 5 |A) = +1, and the converse inequality
then follows trivially. We proceed to show that the desired converse inequality also
holds if E>,M ( 5 + |A) < +1.

Consider the decreasing sequence ( 5_�<)<2N of lower cuts of 5 . Then, for any
< 2 N, the global variable 5

_�< is bounded below and f(X⇤)-measurable [MV1228].
Hence, indeed,

E1
>,M ( 5 |A) = inf

n
E>,M (6 |A) : 6 2 V f,b and 6 � 5

o
 inf

<2N
E>,M ( 5_�< |A) = lim

<!+1
E>,M ( 5_�< |A) = E>,M ( 5 |A),

where the second equality follows from the decreasing character of the sequence
( 5_�<)<2N and the monotonicity [ME2230] of E>,M, and the final equality follows from
ME9231, which we can use because 5_�<  5

_0 = 5
+ for all < 2 N and E>,M ( 5 + |A) < +1

by assumption.

Proof of Definition 5.5 . Fix any ( 5 , A) 2 V ⇥X⇤. That E1
>,M ( 5 |A) � E2

>,M ( 5 |A) fol-
lows immediately from the fact that E>,M (6 |A) exists for each 6 2 V f,b and therefore,
that the infimum in E2

>,M ( 5 |A) is taken over a set that is at least as large as the set
over which the infimum is taken in E1

>,M ( 5 |A). On the other hand, we have that

E2
>,M ( 5 |A) = inf

(
E>,M (6 |A) : 6 2 V f, E>,M (6 |A) exists and 6 � 5

)

= inf

(
E1
>,M (6 |A) : 6 2 V f, E>,M (6 |A) exists and 6 � 5

)
� E1

>,M ( 5 |A),

where the second equality follows from Lemma 5.2.4 and the inequality follows from
the monotonicity of E1

>,M—which is itself a consequence of the definition of E1
>,M.
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It follows that Definition 5.5232 is valid and that, due to Lemma 5.2.4x,
the global measure-theoretic upper expectation E>,M is an extension of E>,M.
In fact, it can easily be verified that E>,M is the most conservative exten-
sion that satisfies monotonicity [EC4163]; in other words, it is the natural
extension of E>,M under monotonicity.

Corollary 5.2.5. For any precise probability tree >, the global upper expec-
tation E>,M is the most conservative global upper expectation on V ⇥X⇤ that
extends E>,M and that is monotone [EC4163].

Proof. Fix any ( 5 , A) 2 V ⇥X⇤ and any global upper expectation E0 that is monotone
[EC4163] and that coincides with E>,M on its domain. Then,

E>,M ( 5 |A) = E1
>,M ( 5 |A) = inf

n
E>,M (6 |A) : 6 2 V f,b and 6 � 5

o

= inf
n
E0(6 |A) : 6 2 V f,b and 6 � 5

o
� E0( 5 |A),

where the second equality is simply the definition of E1
>,M, the third equality follows

from the fact that E0 coincides with E>,M on the domain of the latter, and the in-
equality follows from the fact that E0 is monotone [EC4163]. The result now follows
immediately from the fact that, due to Lemma 5.2.4x, the global upper expectation
E>,M is itself an extension of E>,M and the fact that E>,M is monotone [EC4163]—due
to the definition of E1

>,M.

We can also extend the measure-theoretic expectation E>,M to a ‘precise’
measure-theoretic lower expectation by using expressions analogous to
(i)–(ii) in Definition 5.5232, but where the infima are replaced by suprema
that range over all variables 6 that are smaller or equal than 5 . We imme-
diately see that the resulting common lower expectation is then related to
E>,M by conjugacy, which is why we will continue to only work with the up-
per expectation E>,M. We use V f,a in the following definition to denote the
set of all bounded above variables in V f.

Definition 5.6 (Global measure-theoretic lower expectations for precise
probability trees). Consider any precise probability tree >. Let E1

>,M and
E2
>,M be defined, for all ( 5 , A) 2 V ⇥X⇤, by

(i) E1
>,M ( 5 |A) B sup

n
E>,M (6 |A) : 6 2 V f,a and 6  5

o
;

(ii) E2
>,M ( 5 |A) B sup

n
E>,M (6 |A) : 6 2 V f, E>,M (6 |A) exists and 6  5

o
.

Then E1
>,M and E2

>,M are equal and the common operator is what we refer to
as the global measure-theoretic lower expectation E

>,M. Moreover, we have
that E

>,M ( 5 |A) = �E>,M (� 5 |A) for all ( 5 , A) 2 V ⇥X⇤. }
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5.3 Relation to game-theoretic upper expectations in a precise context

Proof. To see that E1
>,M is related to E1

>,M by conjugacy, it su�ces to observe that for
any ( 5 , A) 2 V ⇥X⇤,

�E1
>,M ( 5 |A) = � inf

n
E>,M (6 |A) : 6 2 V f,b and 6 � 5

o

= sup
n
�E>,M (6 |A) : 6 2 V f,b and 6 � 5

o

= sup
n
E>,M (�6 |A) : 6 2 V f,b and 6 � 5

o

= sup
n
E>,M (�6 |A) : � 6 2 V f,a and � 6  � 5

o

= sup
n
E>,M (6 |A) : 6 2 V f,a and 6  � 5

o
= E1

>,M (� 5 |A),

where the third step follows from ME6231 and ME4231. In a similar way, once again
using ME6231, we can show that E2

>,M is related to E2
>,M by conjugacy. The equality

between E1
>,M and E2

>,M then subsequently follows from the equality between E1
>,M

and E2
>,M [Definition 5.5232] and these conjugacy relations.

A multitude of properties can now be established for the upper expecta-
tion E>,M—for instance, extended coherence [EC1163–EC6163] and a mono-
tone convergence theorem—but, we prefer not to do so just yet. For we
will show in the next section that E>,M is equal to Eeb

Q,V if Q• is the (upper)
expectations tree that agrees with >, and so E>,M will then inherit all the
properties that we have in Chapter 4129 established for Eeb

Q,V.

5.3 Relation to game-theoretic upper expectations in a precise
context

In the current context where the local dynamics are described by a pre-
cise probability tree >, we look at how E>,M is related to the game-theoretic
upper expectation Eeb

Q,V with Q• B Q•,> the (upper) expectations tree that
agrees with > according to Eq. (3.4)52; so

QA,> ( 5 ) =
X
F2X

5 (F)>(F |A) for all 5 2 L(X) and all A 2X⇤.

We immediately state the main result of this section:

Theorem 5.3.1. Consider any precise probability tree > and the expectations
tree Q• B Q•,> that agrees with > according to Eq. (3.4)52. Then

E>,M ( 5 |A) = Eeb
Q,V ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Recall furthermore that, due to Theorem 4.3.6161, the theorem above
will also hold if we were to replace Eeb

Q,V by the game-theoretic upper expec-
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Measure-theoretic upper expectations

tation Eeb
A,V deduced from any acceptable gambles tree A• that agrees with

Q• according to Eq. (3.1)50.13

The proof of Theorem 5.3.1x is centrally based on a measure-theoretic
version of Lévy’s zero-one law [Theorem 5.A.3267] and an adapted game-
theoretic version of Ville’s theorem [Lemma 5.B.3272]. Ville’s (original)
theorem [107] characterises a null (or P-null) event in terms of measure-
theoretic martingales that converge to infinity. This characterisation is con-
ceptually very close to how null events are defined in the game-theoretic
framework [see Section 4.5171], and this is why it becomes a crucial tool
when relating both frameworks. Shafer and Vovk were the first to make this
relation concrete; we refer to [85, Theorem 9.3] for their most recent ver-
sion of a result that connects both frameworks. Apart from the fact that we
only consider finite state spaces, our Theorem 5.3.1x generalises [85, Theo-
rem 9.3] in a number of ways: it applies to conditional expectations whereas
[85, Theorem 9.3] only considers unconditional expectations; it establishes
equality on the entire domain of all extended real variables, whereas [85,
Theorem 9.3] only does so for f(X⇤)-measurable (bounded) gambles; and,
as mentioned above, it also holds if one were to consider game-theoretic
upper expectations corresponding to acceptable gambles trees.

Stating Ville’s theorem and (a measure-theoretic version of) Lévy’s zero-
one law, and showing how it leads to Theorem 5.3.1x, would require
us to introduce various measure-theoretic notions such as filtrations and
Radon-Nikod˝m derivatives. Hence, in order not to overload the main text
with these abstract concepts, we have relegated part of the proof of Theo-
rem 5.3.1x to Appendix 5.B267. More precisely, we start here from the fol-
lowing partial result—whose proof is the topic of Appendix 5.B267—which
states that E>,M and Eeb

Q,V are equal on V f⇥X⇤. So this result is very similar to
[85, Theorem 9.3], but we nevertheless give a self-contained proof for it (in
Appendix 5.B267) because [85, Theorem 9.3] di�ers in context and style;
and because our result involves conditioning. Moreover, observe that, in
contrast with the proof of [85, Theorem 9.3], our proof of Proposition 5.3.2
does not rely on the notion of a measure-theoretic (super)martingale. This,
we believe, makes the proof easier to grasp.

Proposition 5.3.2. Consider any precise probability tree > and the expecta-
tions tree Q• B Q•,> that agrees with > according to Eq. (3.4)52. Then

E>,M ( 5 |A) = Eeb
Q,V ( 5 |A) for all ( 5 , A) 2 V f ⇥X⇤.

Theorem 5.3.1x can now be established by combining Proposition 5.3.2

13Note that, unlike the relation between precise probability trees > and (upper) expecta-
tions trees Q•, the relation between Q• and A• in this precise case is not one-to-one.
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5.3 Relation to game-theoretic upper expectations in a precise context

with the continuity properties of E>,M and Eeb
Q,V, and the representation of

Eeb
Q,V in terms of limits of finitary variables [Proposition 4.7.6184].

Proof of Theorem 5.3.1235. We start by showing that the equality is true for all
( 5 , A) 2 V f,b ⇥ X⇤. So fix any ( 5 , A) 2 V f,b ⇥ X⇤. Because 5 is bounded be-
low and f(X⇤)-measurable, the expectation E>,M ( 5 |A) exists [ME4231] and therefore
E>,M ( 5 |A) = E>,M ( 5 |A) due to Corollary 5.2.5234. We can moreover assume that 5
is non-negative without loss of generality because it is bounded below and both
E>,M (·|A)—and thus E>,M (·|A)—and Eeb

Q ,V are constant additive with respect to real
constants; see ME10231 and EC5163. Consider now the increasing sequence ( 5^<)<2N0

of upper cuts and note that each 5
^< is bounded and f(X⇤)-measurable [MV1228].

Using ME8231—which we are allowed to use because 5^0 is P |A
>
-integrable [by ME5231

and the fact that 5^0 is bounded] and because ( 5^<)<2N0 is increasing—we have that
E>,M ( 5 |A) = lim<!+1 E>,M ( 5^< |A). As a consequence, we infer that

E>,M ( 5 |A) = lim
<!+1

E>,M ( 5^< |A) = lim
<!+1

E>,M ( 5^< |A) = lim
<!+1

Eeb
Q ,V ( 5^< |A) = Eeb

Q ,V ( 5 |A),

where the second equality follows from the fact that E>,M extends E>,M [Corol-
lary 5.2.5234], the third equality follows from Proposition 5.3.2 , and the last equal-
ity follows from Theorem 4.6.1175. Hence, we conclude that E>,M—and thus E>,M—
and Eeb

Q ,V coincide on the domain V f,b ⇥X⇤.
To see that the equality also holds on the general domain V ⇥X⇤, we fix any

( 5 , A) 2 V ⇥X⇤, and note that

E>,M ( 5 |A)
Def. 5.5232= E1

>,M ( 5 |A) = inf
n
E>,M (6 |A) : 6 2 V f,b and 6 � 5

o

= inf
n
Eeb

Q ,V (6 |A) : 6 2 V f,b and 6 � 5

o
� Eeb

Q ,V ( 5 |A),

where the third equality follows from the already established equality between
E>,M and Eeb

Q ,V on V f,b ⇥ X⇤, and where the inequality follows from Proposi-
tion 4.4.3164 [EC4]. To show that the converse inequality holds, we will use Propo-
sition 4.7.6184.

Consider any 6 2 Lb that is the pointwise limit of a sequence (6<)<2N0 of finitary
gambles 6< 2 F . Since any finitary gamble is clearly f(X⇤)-measurable, 6 is the
pointwise limit of a sequence of f(X⇤)-measurable gambles. Then it follows from
MV2228 that 6 itself is also f(X⇤)-measurable. Furthermore, by the definition of Lb,
6 is also bounded below. Hence, by the equality of E>,M and Eeb

Q ,V on V f,b ⇥X⇤,
we have that Eeb

Q ,V (6 |A) = E>,M (6 |A). Since this holds for any 6 2 Lb, we infer by
Proposition 4.7.6184 that

Eeb
Q ,V ( 5 |A) = inf

n
Eeb

Q ,V (6 |A) : 6 2 Lb and 6 � 5

o

= inf
n
E>,M (6 |A) : 6 2 Lb and 6 � 5

o
� E>,M ( 5 |A),

where the inequality follows from the monotonicity [EC4163] of E>,M as established
by Corollary 5.2.5234.

237



Measure-theoretic upper expectations

That the measure-theoretic upper expectation E>,M and the game-
theoretic upper expectation Eeb

Q,V coincide for precise probability trees, is a
powerful result. On the one hand, it allows us to infer that all properties of
the game-theoretic upper expectation Eeb

Q,V proved in Sections 4.4162–4.8186
carry over to the measure-theoretic upper expectation E>,M; indeed, since
these properties were all proven to hold in a context with general upper
expectations trees, they surely hold in the special case where the (upper)
expectations trees correspond to precise probability trees. Many of these
properties are already known to hold—even in a stronger form—for the
standard measure-theoretic (linear) expectation E>,M on V f ⇥X⇤, but as
this operator is usually not extended beyond the domain V f ⇥X⇤, little is
typically said about the properties of the upper expectation E>,M. We give
an overview of the most significant ones.

Corollary 5.3.3. Consider any precise probability tree > and the expectations
tree Q• B Q•,> that agrees with > according to Eq. (3.4)52. Then the following
statements hold:

(i) The restriction of E>,M to V ⇥X⇤ is coherent.

(ii) E>,M satisfies the extended coherence properties EC1163–EC6163.

(iii) For any 5 2 V and any 9 2 N0,

E>,M ( 5 |-1:9) = E>,M

⇣
E>,M ( 5 |-1:9+1)

���-1:9⌘ .
(iv) For any ( 5 , A) 2 V ⇥X⇤ and any (6, B) 2 F ⇥X⇤,

E>,M ( 5 |A)  E> ( 5 |A) = EQ ( 5 |A) and E>,M (6 |B) = E> (6 |B) = Efin
Q (6 |B).

(v) For any A 2 X⇤ and any increasing sequence ( 5<)<2N0 in V b,
lim<!+1 E>,M ( 5< |A) = E>,M (lim<!+1 5< |A). [Continuity from below]

(vi) For any A 2X⇤ and any decreasing sequence ( 5<)<2N0 of finitary bounded
above variables, lim<!+1 E>,M ( 5< |A) = E>,M (lim<!+1 5< |A).

[Continuity w.r.t. decreasing finitary variables]

(vii) For any A 2 X⇤ and any 5 2 Lb, there is a sequence ( 5<)<2N0 of <-
measurable gambles that is uniformly bounded below and that converges
pointwise to 5 such that lim<!+1 E>,M ( 5< |A) = E>,M ( 5 |A).

Proof. The properties above follow from combining Theorem 5.3.1235 with, respec-
tively,

(i). Corollary 4.4.5167;

(ii). Proposition 4.4.3164;

(iii). Theorem 4.4.4166;
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5.3 Relation to game-theoretic upper expectations in a precise context

(iv). Corollary 4.4.8170, Corollary 4.4.9170 and Theorem 3.5.291;

(v). Theorem 4.6.1175;

(vi). Theorem 4.7.3182;

(vii). Theorem 4.7.4183.

On the other hand, we can also reason in the reverse direction, and use
Theorem 5.3.1235 and the information about E>,M to draw conclusions about
Eeb
Q,V. Indeed, E>,M is defined using the Lebesgue integral with respect to

(countably additive) probability measures, so the extensions E>,M and Eeb
Q,V

inherit all its strong and desirable properties on the subset of V f⇥X⇤ where
E>,M exists. We again limit ourselves to formulating the most eminent ones.

Corollary 5.3.4. Consider any (upper) expectations treeQ• for which there is a
precise probability tree > such that the agreeing treeQ•,> defined by Eq. (3.4)52
coincides with Q•. Then the following statements hold:

(i) Eeb
Q,V ( 5 |A) = �Eeb

Q,V (� 5 |A) = Eeb
Q,V ( 5 |A) for all bounded below or above

5 2 V f and all A 2X⇤. [precision/self-conjugacy]

(ii) Eeb
Q,V (0 5 + 16 |A) = 0Eeb

Q,V ( 5 |A) + 1E
eb
Q,V (6 |A) for all 5 2 V f,b, all 6 2 V f,

A 2X⇤ and 0, 1 2 R. [linearity]

(iii) Consider any A 2 X⇤ and any ( 5<)<2N in V f that converges pointwise
to a variable 5 2 V f. If there is an 5

⇤ 2 V f such that | 5< |  5
⇤ for all

< 2 N and Eeb
Q,V ( 5 ⇤ |A) < +1, then lim<!+1 Eeb

Q,V ( 5<) = Eeb
Q,V ( 5 ).

[dominated convergence]

(iv) Consider any A 2 X⇤ and any decreasing sequence ( 5<)<2N in V f. If
there is an 5

⇤ 2 V f such that Eeb
Q,V ( 5 ⇤ |A) < +1 and 51  5

⇤, then
lim<!+1 Eeb

Q,V ( 5< |A) = Eeb
Q,V (lim<!+1 5< |A). [continuity from above]

Proof. (i) follows from Theorem 5.3.1235, Corollary 5.2.5234, properties ME6231

and ME4231, and conjugacy [Corollary 4.3.7162].
To see that Property (ii) holds, note that by (i) and Proposition 4.4.3164 [EC3]

that 0Eeb
Q ,V ( 5 |A) = Eeb

Q ,V (0 5 |A) and 1Eeb
Q ,V (6 |A) = Eeb

Q ,V (16 |A). So it su�ces to prove
that Eeb

Q ,V ( 5 0 + 60 |A) = Eeb
Q ,V ( 5 0 |A) + Eeb

Q ,V (60 |A) where 5
0 B 0 5 is a bounded below or

above variable in V f and 60 B 16 is a gamble in V f. To this end, we already have by
Proposition 4.4.3164 [EC2] that

Eeb
Q ,V ( 5 0 + 60 |A)  Eeb

Q ,V ( 5 0 |A) + Eeb
Q ,V (60 |A).

To prove the converse inequality, we can use the self-conjugacy [(i)] of Eeb
Q ,V on

bounded below and above variables. Indeed, 5 0 + 6
0 is bounded below or above

because 5
0 is bounded below or above and 60 is bounded. Since �( 5 0 + 60) = � 5 0 � 60

because 6
0 is a gamble and thus real-valued, (i) and Proposition 4.4.3164[EC2163]
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thus imply that

Eeb
Q ,V ( 5 0 + 60 |A) = �E

eb
Q ,V (� 5 0 � 60 |A) � �

�
Eeb

Q ,V (� 5 0 |A) + Eeb
Q ,V (�60 |A)

�
= �Eeb

Q ,V (� 5 0 |A) + (�Eeb
Q ,V (�60 |A))

= Eeb
Q ,V ( 5 0 |A) + Eeb

Q ,V (60 |A),

where in the second equality we used the fact that Eeb
Q ,V (�60 |A) 2 R, which follows

from Proposition 4.4.3164[EC1163] and the fact that 60 is bounded.
To see that Property (iii)x holds, suppose that there is an 5

⇤ 2 V f such
that | 5< |  5

⇤ for all < 2 N and Eeb
Q ,V ( 5 ⇤ |A) < +1. Since | 5< |  5

⇤ for all
< 2 N, 5 ⇤ is non-negative, and so by Proposition 4.4.3164 [EC1] and the fact that
Eeb

Q ,V ( 5 ⇤ |A) < +1, we find that Eeb
Q ,V ( 5 ⇤ |A) 2 R�. Theorem 5.3.1235 therefore guaran-

tees that E>,M ( 5 ⇤ |A) 2 R�. Since 5
⇤ 2 V f is non-negative, its expectation E>,M ( 5 ⇤ |A)

exists [ME4231] and so it follows from Corollary 5.2.5234 that also E>,M ( 5 ⇤ |A) 2 R�.
Hence, 5 ⇤ is P |A

>
-integrable. The desired statement now follows from ME7231, Corol-

lary 5.2.5234 and Theorem 5.3.1235.
Finally, to prove Property (iv)x, suppose that ( 5<)<2N is decreasing and that there

is an 5
⇤ 2 V f such that Eeb

Q ,V ( 5 ⇤ |A) < +1 and 51  5
⇤. Then by Theorem 5.3.1235 we

also have that E>,M ( 5 ⇤ |A) < +1, which by Definition 5.5(ii)232 implies that there is
a 6 2 V f such that 6 � 5

⇤ and E>,M (6 |A) < +1. Since 51  5
⇤, we then also have

that 51  6. Hence, combining ME9231, Corollary 5.2.5234 and Theorem 5.3.1235, we
indeed find that lim<!+1 Eeb

Q ,V ( 5< |A) = Eeb
Q ,V (lim<!+1 5< |A) as desired.

5.4 Measure-theoretic upper expectations for imprecise proba-
bility trees

Similarly to what we did in Section 3.369, we will generalise measure-
theoretic upper (and lower) expectations from a precise to an imprecise
context by taking upper (resp. lower) envelopes of the upper (lower) ex-
pectations corresponding to the individual compatible precise probability
trees. Concretely, consider the general case where the local dynamics are
described by an imprecise probability tree P•. Recall that a precise prob-
ability tree > is called compatible with P•, and that we write > ⇠ P•, if
>(·|A) 2 PA for all A 2 X⇤. For each compatible precise tree > ⇠ P•, we
can proceed as in Sections 5.1220–5.2227, constructing a global probability
measure P> on f(X⇤) ⇥X⇤ and subsequently using the Lebesgue integral
to define the corresponding global expectation E>,M and global upper and
lower expectations E>,M and E

>,M. The upper (resp. lower) envelope of the
global upper (lower) expectations E>,M (E

>,M) over all the compatible pre-
cise trees > ⇠P• is what defines our global measure-theoretic upper (lower)
expectation corresponding to P•.
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5.4 Measure-theoretic upper expectations for imprecise probability trees

Definition 5.7 (Global measure-theoretic upper and lower expectations
for imprecise probability trees). For any imprecise probability tree P•, the
global measure-theoretic upper and lower expectation are defined, for all
( 5 , A) 2 V ⇥X⇤, by

EP,M ( 5 |A) B sup
>⇠P•

E>,M ( 5 |A) and EP,M ( 5 |A) B inf
>⇠P•

E
>,M ( 5 |A),

with E>,M and E
>,M for any > ⇠P• described by Definition 5.5232 and Defi-

nition 5.6234 respectively. }

In particular, if we consider measurable variables that are bounded below
or above, then these measure-theoretic upper and lower expectations sim-
ply reduce to upper and lower envelopes of standard Lebesgue integrals
[Definition 5.4230]—as is confirmed by Corollary 5.4.1 below. The exten-
sion beyond measurable (bounded below or above) variables set out in
Section 5.2.3231—which may appear unconventional to a more traditional
measure-theoretic practitioner—thus becomes irrelevant in that case. For
any imprecise probability tree P•, let us denote this simplified measure-
theoretic upper and lower global expectation by E#P,M and E#P,M; so, for any
( 5 , A) 2 V f ⇥X⇤ such that 5 is bounded below or above, let

E#P,M ( 5 |A) B sup
>⇠P•

E>,M ( 5 |A) and E#P,M ( 5 |A) B inf
>⇠P•

E>,M ( 5 |A),

with E>,M for any > ⇠P• described by Definition 5.4230. Recall from ME4231
that E>,M ( 5 |A) indeed exists for all ( 5 , A) 2 V f ⇥X⇤ such that 5 is either
bounded below or above.

Corollary 5.4.1. For any imprecise probability tree P• and any ( 5 , A) 2 V f ⇥
X⇤ such that 5 is bounded below or above, we have that

EP,M ( 5 |A) = E#P,M ( 5 |A) and EP,M ( 5 |A) = E#P,M ( 5 |A).

Proof. This follows from Corollary 5.2.5234, and the definitions of EP,M, EP,M, E
#
P,M

and E #P,M.

All properties that will be proved for the more general—but also more
complex—upper and lower expectation EP,M and EP,M thus also hold for
the simplified upper and lower expectation E#P,M and E#P,M, as long as these
properties are—if possible—restricted to apply only to f(X⇤)-measurable
variables that are bounded below or above.

Global measure-theoretic upper and lower expectations are again re-
lated by conjugacy, and so it su�ces to focus mainly on upper expectations.

Corollary 5.4.2 (Conjugacy). For any imprecise probability tree P• and any
( 5 , A) 2 V ⇥X⇤, we have that EP,M ( 5 |A) = �EP,M (� 5 |A).
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Proof. Consider any ( 5 , A) 2 V ⇥X⇤ and note that

�EP,M ( 5 |A) = � inf
>⇠P•

E
>,M ( 5 |A) = sup

>⇠P•

�E
>,M ( 5 |A) = sup

>⇠P•

E>,M (� 5 |A) = EP,M (� 5 |A),

where the penultimate step follows from the conjugacy between E>,M and E
>,M for

any precise probability tree > [Definition 5.6234].

Contrary to the precise case, where the properties of the (linear) ex-
pectations corresponding to probability measures have been thoroughly
studied—at least, on the domain of measurable functions—the properties
of the (imprecise) measure-theoretic upper expectation EP,M as introduced
in Definition 5.7240 are relatively unknown—even for measurable functions.
We now aim to address this imbalance. In particular, we will first focus on
establishing basic properties such as coherence, extended coherence axioms,
and a relation with the finitary global upper expectation EP presented in
Chapter 345. We will then go on to prove that EP,M is continuous from be-
low, continuous with respect to decreasing finitary gambles converging in V ,
and, under a compactness condition on the local models, continuous with
respect to decreasing finitary gambles converging in V—these will consti-
tute the measure-theoretic counterparts of Theorems 4.6.1175 and 4.7.3182.
These properties will then subsequently allow us to establish an equality
between Eeb

Q,V and EP,M on a fairly large domain—that will be the topic of
the next section.

5.4.1 Extended coherence and relation to the natural extension Efin
Q

That EP,M is coherent and satisfies the extended coherence axioms
EC1163–EC6163 can be straightforwardly deduced from the fact that this is
true for the upper expectation E>,M corresponding to any precise probability
tree > ⇠P•.

Proposition 5.4.3. For any imprecise probability tree P•,

(i) the restriction of EP,M to V ⇥X⇤ is coherent;

(ii) EP,M satisfies the extended coherence properties EC1163–EC6163.

Proof. (i). By Corollary 5.3.3(i)238, we know that, for any > ⇠ P•, the restriction
of E>,M to V ⇥X⇤ is coherent. So for all > ⇠ P•, < 2 N0, _0, _1, . . . , _< 2 R� and
( 50, A0), ( 51, A1), . . . , ( 5<, A<) 2 V ⇥X⇤, we have by Definition 3.782 that

sup
✓
_01A0

⇣
50 � E>,M ( 50 |A0)

⌘
�

<X
7=1

_71A
7

⇣
57 � E>,M ( 57 |A7)

⌘ ��� [<
7=0 �(A7)

◆
� 0.
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5.4 Measure-theoretic upper expectations for imprecise probability trees

Since all _7 are non-negative, and since E>,M ( 57 |A7)  sup
>
0⇠P•

E>
0
,M ( 57 |A7) =

EP,M ( 57 |A7) for all ( 57, A7), we then surely also have that

sup
✓
_01A0

⇣
50 � E>,M ( 50 |A0)

⌘
�

<X
7=1

_71A
7

⇣
57 � EP,M ( 57 |A7)

⌘ ��� [<
7=0 �(A7)

◆
� 0.

This holds for all > ⇠P•, so we find that sup(6> |[<
7=0 �(A7)) � 0 for all > ⇠P•, where

each 6> is defined by

6> B _01A0

⇣
50 � E>,M ( 50 |A0)

⌘
�

<X
7=1

_71A
7

⇣
57 � EP,M ( 57 |A7)

⌘
.

Since, for any > ⇠P•,

0  sup(6> | [<7=0 �(A7)) = max
�
sup(6> |�(A0)), sup(6> | [<7=0 �(A7) \ �(A0))

 
,

we surely either have that sup(6> |[<
7=0�(A7)\�(A0)) � 0 for at least one > ⇠P•, or that

sup(6> |�(A0)) � 0 for all > ⇠P•. Suppose the former is true. Note from the definition
above that 6>I[<

7=0�(A7 )\�(A0 ) = 6>0I[<
7=0�(A7 )\�(A0 ) for all >

0 ⇠ P•, and therefore also that
6>I[<

7=0�(A7 )\�(A0 ) = inf >0⇠P• 6>0I[<
7=0�(A7 )\�(A0 ) . So since sup(6> | [<

7=0 �(A7) \ �(A0)) � 0, we
have that

0  sup( inf
>
0⇠P•

6>0 | [<7=0 �(A7) \ �(A0))  sup( inf
>
0⇠P•

6>0 | [<7=0 �(A7)),

which by the definition of all 6>0 and the fact that inf >0⇠P• �E>
0
,M ( 50 |A0) =

� sup
>
0⇠P•

E>
0
,M ( 50 |A0) = �EP,M ( 50 |A0), implies that

0  sup
✓
_01A0

⇣
50 � EP,M ( 50 |A0)

⌘
�

<X
7=1

_71A
7

⇣
57 � EP,M ( 57 |A7)

⌘ ��� [<
7=0 �(A7)

◆
.

So by Definition 3.782 we have that EP,M is coherent on V ⇥X⇤ if the above also
holds for the case that sup(6> |�(A0)) � 0 for all > ⇠ P•. To show that this is true,
note that, for any > ⇠P•, since the supremum is taken over �(A0),

0  sup
✓
_01A0

⇣
50 � E>,M ( 50 |A0)

⌘
�

<X
7=1

_71A
7

⇣
57 � EP,M ( 57 |A7)

⌘ ����(A0)
◆

= �_0E>,M ( 50 |A0) + sup
✓
_0 50 �

<X
7=1

_71A
7

⇣
57 � EP,M ( 57 |A7)

⌘ ����(A0)
◆
.

Since this holds for any tree > ⇠ P•, and since inf >⇠P• �_0E>,M ( 50 |A0) =
�_0 sup>⇠P•

E>,M ( 50 |A0) = �_0EP,M ( 50 |A0) [because _0 is non-negative] we have that

0  �_0EP,M ( 50 |A0) + sup
✓
_0 50 �

<X
7=1

_71A
7

⇣
57 � EP,M ( 57 |A7)

⌘ ����(A0)
◆

= sup
✓
_01A0

⇣
50 � EP,M ( 50 |A0)

⌘
�

<X
7=1

_71A
7

⇣
57 � EP,M ( 57 |A7)

⌘ ����(A0)
◆

 sup
✓
_01A0

⇣
50 � EP,M ( 50 |A0)

⌘
�

<X
7=1

_71A
7

⇣
57 � EP,M ( 57 |A7)

⌘ ��� [<
7=0 �(A7)

◆
,
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Measure-theoretic upper expectations

where the equality uses once more the fact that the supremum is taken over �(A0).
(ii)242. Corollary 5.3.3(ii)238 states that E>,M satisfies EC1163–EC6163 for each

> ⇠P•. Using this fact together with the definition of EP,M, it can then readily be
inferred that Properties EC1163–EC6163 also hold for EP,M.

As far as the relation with the finitary upper expectation EP is con-
cerned, it is easy to see that EP,M is always at least as informative as EP

on its domain V ⇥X⇤.

Proposition 5.4.4. For any imprecise probability tree P•, we have that

EP,M ( 5 |A)  EP( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. Fix any ( 5 , A) 2 V ⇥X⇤. For any > ⇠ P• and the agreeing (upper) expec-
tations tree Q• B Q•,> defined by Eq. (3.4)52 [or Eq. (3.3)51], we have by Theo-
rem 5.3.1235 that14

E>,M ( 5 |A) = Eeb
Q ,V ( 5 |A)  EQ ( 5 |A) = E> ( 5 |A),

where the second equality follows from Corollary 4.4.8170, and the third from The-
orem 3.5.291 and the fact that Q• could alternatively be obtained from Eq. (3.3)51
if we were to consider an imprecise probability tree that consists for each situation
A 2 X⇤ of the singleton >(·|A). Since the equality above holds for any > ⇠ P•, we
infer from the definition of EP,M and the definition [Definition 3.679] of EP that

EP,M ( 5 |A) = sup
>⇠P•

E>,M ( 5 |A)  sup
>⇠P•

E> ( 5 |A) = EP( 5 |A).

The following proposition shows that EP,M and EP actually coincide on the
finitary domain F ⇥X⇤.

Proposition 5.4.5. For any imprecise probability tree P•, we have that

EP,M ( 5 |A) = EP( 5 |A) for all ( 5 , A) 2 F ⇥X⇤.

Proof. Fix any ( 5 , A) 2 F ⇥X⇤. Then, for any > ⇠ P• and the agreeing (upper)
expectations tree Q• B Q•,> defined by Eq. (3.4)52, we have by Theorem 5.3.1235

that
E>,M ( 5 |A) = Eeb

Q ,V ( 5 |A) = EQ ( 5 |A) = E> ( 5 |A) = E> ( 5 |A)
where the second equality follows from Corollary 4.4.9170 and the fact that 5 2 F ,
the third from Corollary 3.5.392, and the last from Proposition 3.3.879. Since the
equality above holds for any > ⇠ P•, we infer from the definition of EP,M and the
definition of EP [Definition 3.679] that

EP,M ( 5 |A) = sup
>⇠P•

E>,M ( 5 |A) = sup
>⇠P•

E> ( 5 |A) = EP( 5 |A).

14The fact that E>,M ( 5 |A)  E> ( 5 |A) could also be deduced from the definitions of E>,M
and E> .
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5.4 Measure-theoretic upper expectations for imprecise probability trees

Proposition 5.4.4 says that EP,M is always at least as informative as
EP, yet since EP,M satisfies continuity from below [see Theorem 5.4.7 fur-
ther on] and EP sometimes fails to satisfy this type of continuity [Exam-
ple 3.6.199], and since by Proposition 5.4.5 both global upper expecta-
tions coincide on F ⇥X⇤, it can be seen that EP,M will sometimes be strictly
smaller—more informative—than EP.

Example 5.4.6. Reconsider the precise probability tree > from Exam-
ple 3.6.199. Recall that for the corresponding finitary upper expectation
E>—or equivalently, EP for P• the imprecise tree consisting out of the sin-
gle mass function >(·|A) for each A 2X⇤—we had that

lim
9!+1

E> (I�9
1

) = lim
9!+1

P> (�9

1
) = 0 < 1 = P> ( lim

9!+1
�
9

1
) = E> ( lim

9!+1
I
�
9

1

)

= E> (I�
1
).

In contrast, since E>,M coincides with E> by Proposition 5.4.5 —remember
that > is simply a particular type of imprecise probability treeP•—and since
E>,M is continuous from below [see Theorem 5.4.7] we have that

0 = lim
9!+1

E>,M (I�9
1

) = E>,M (I�
1
).

So, indeed, E>,M (or more generally EP,M) is sometimes strictly smaller than
E> (or EP). ^

5.4.2 Continuity with respect to two types of monotone sequences

We will now show that EP,M is continuous with respect to increasing se-
quences in V b, that it is continuous with respect to decreasing sequences in
F that are uniformly bounded below, and that it is continuous with respect
to general decreasing sequences in F if the local sets of mass functions PA

are closed (or compact). The proof of the first result is relatively straightfor-
ward since EP,M is an upper envelope of operators that are monotone and
continuous with respect to increasing sequences in V b.

Theorem 5.4.7 (Continuity from below). For any imprecise probability tree
P•, any A 2X⇤ and any increasing sequence ( 5<)<2N in V b, we have that

lim
<!+1

EP,M ( 5< |A) = EP,M ( 5 |A), with 5 B sup
<2N

5< = lim
<!+1

5<.

Proof. For any > ⇠P•, Theorem 5.3.1235 and Theorem 4.6.1175 together imply that

lim
<!+1

E>,M ( 5< |A) = E>,M ( 5 |A). (5.5)
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This holds for any > ⇠P•, so we have that

lim
<!+1

EP,M ( 5< |A) = sup
<2N

EP,M ( 5< |A) = sup
<2N

sup
>⇠P•

E>,M ( 5< |A) = sup
>⇠P•

sup
<2N

E>,M ( 5< |A)

= sup
>⇠P•

lim
<!+1

E>,M ( 5< |A)

= sup
>⇠P•

E>,M ( 5 |A)

= EP,M ( 5 |A),

where the first equality follows from the fact that ( 5<)<2N is increasing and the mono-
tonicity [EC4163] of EP,M [due to Proposition 5.4.3242], where the fourth equality
also follows from the fact that ( 5<)<2N is increasing and the monotonicity [EC4163]
of E>,M for each > ⇠P• [due to Corollary 5.3.3(ii)238], and where the penultimate
equality follows from Eq. (5.5)x above.

Next, we show that EP,M is also continuous with respect to decreasing se-
quences in F that are uniformly bounded below—in other words, sequences
in F that converge decreasingly to a gamble in V . The proof is less straight-
forward than that of Theorem 5.4.7x, as it essentially relies on the technical
topological results from Appendix 3.E.1120. Nonetheless, it su�ces to only
explicitly use Lemma 3.E.8126; a result that by Proposition 5.4.5244 contin-
ues to hold if we replace the finitary global upper expectations E> and EP

by the measure-theoretic upper expectations E>,M and EP,M.

Lemma 5.4.8. For any imprecise probability tree P•, any A 2 X⇤, and any
decreasing sequence ( 5<)<2N in F that converges to a gamble 5 2 V ,

sup
>⇠P•

lim
<!+1

E>,M ( 5< |A) = lim
<!+1

EP,M ( 5< |A).

Proof. This follows from Lemma 3.E.8126 and the fact that EP and EP,M [and thus
also E> and E>,M for all > ⇠P•] coincide on F ⇥X⇤ [Proposition 5.4.5244].

The desired downward continuity of EP,M now follows immediately.

Proposition 5.4.9. For any imprecise probability tree P•, any A 2 X⇤ and
any decreasing sequence ( 5<)<2N in F that is uniformly bounded below,

lim
<!+1

EP,M ( 5< |A) = EP,M ( 5 |A) with 5 B inf
<2N

5< = lim
<!+1

5<.

Proof. Since 5 = inf<2N 5< is bounded below [because the sequence ( 5<)<2N is uni-
formly bounded below] and bounded above by sup 51 [which is real because 51 is a
gamble], we have that 5 is a gamble. Hence, due to Lemma 5.4.8, we have that

lim
<!+1

EP,M ( 5< |A) = sup
>⇠P•

lim
<!+1

E>,M ( 5< |A).

But by Corollary 5.3.3(vi)238 and the definition of EP,M, the right-hand side is equal
to EP,M ( 5 |A), so we indeed find that lim<!+1 EP,M ( 5< |A) = EP,M ( 5 |A).
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5.4 Measure-theoretic upper expectations for imprecise probability trees

The following example shows that if the sequence in Proposition 5.4.9 
is not uniformly bounded below, the continuity may no longer hold.

Example 5.4.10. Consider the state space X = {0, 1}, any imprecise prob-
ability tree P• such that P⇤ = {` 2 P(X) : 0 < `(0) < 1}, and any non-
positive 1-measurable variable 6. Then, for any > ⇠P,

E>,M (6) = E>,M (6) =
π

6dP |⇤
>
= 6(0)P |⇤

>
(0) + 6(1)P |⇤

>
(1)

= 6(0)P> (0|⇤) + 6(1)P> (1|⇤)
= 6(0)>(0|⇤) + 6(1)>(1|⇤),

where the first follows from the fact that E>,M is an extension of E>,M [Corol-
lary 5.2.5234] together with the fact that E>,M (6) exists because 6 is 1-
measurable and non-positive [ME4231], where the third follows from Propo-
sition 5.2.2(i)229, the fact that �6 = �6(0)10 � 6(1)11 is a non-negative
f(X⇤)-simple variable and ME6231, and where the last equality follows
from the fact that P> satisfies Eq. (3.12)72 by assumption [see Proposi-
tion 5.1.3226]. Hence,

EP,M (6) = sup
>⇠P•

⇥
6(0)>(0|⇤) + 6(1)>(1|⇤)

⇤
= sup

`2P⇤

⇥
6(0)`(0) + 6(1)`(1)

⇤
= sup
0<` (0)<1

⇥
6(0)`(0) + 6(1) (1 � `(0))

⇤
, (5.6)

where the last equality follows from the construction of P⇤. Now con-
sider the sequence of non-positive 1-measurable gambles ( 5<)<2N defined
by 5< (0) = �< and 5< (1) = 0 for all < 2 N. Then by Eq. (5.6) we have that
EP,M ( 5<) = sup0<` (0)<1 [(�<)`(0)] = 0 for all < 2 N. On the other hand,
the limit 5 B lim<!+1 5< is also a non-positive 1-measurable variable, with
5 (0) = �1 and 5 (1) = 0. Hence, Eq. (5.6) also applies here, and so we
get that EP,M ( 5 ) = sup0<` (0)<1 [(�1)`(0)] = sup0<` (0)<1 (�1) = �1. As a
result, we have that

lim
<!+1

EP,M ( 5<) = 0 < �1 = EP,M ( 5 ) = EP,M ( lim
<!+1

5<).

Note that in contrast the conjugate lower expectation EP,M is continuous
with respect to the decreasing sequence ( 5<)<2N. Indeed, in a similar way,
we can infer that EP,M ( 5<) = inf0<` (0)<1 [(�<)`(0)] = �< for all < 2 N, and
that EP,M ( 5 ) = inf0<` (0)<1 [(�1)`(0)] = �1, which implies that

lim
<!+1

EP,M ( 5<) = �1 = EP,M ( 5 ) = EP,M ( lim
<!+1

5<).
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Note that this continuity for EP,M could also been deduced from conjugacy
[Corollary 5.4.2241] and the fact that EP,M is continuous with respect to
increasing sequences in V b [Theorem 5.4.7245]. ^

The downward continuity can still be preserved, though, if we restrict
ourselves to imprecise probability trees P• whose local sets of mass func-
tions PA are closed. In accordance with our earlier conventions, we here
mean closed with respect to the topology of pointwise convergence [Ap-
pendix 3.E.1120] on P(X); also see [24] for more details. Note that, since
P(X) is metrizable and compact [Appendix 3.E.1120], the closedness—and
thus the compactness [111, Theorem 17.5 (a)]—of a subsetPA of P(X) im-
plies its sequential compactness [111, Section 17G.3]. This implies that the
limit point of any convergent sequence in PA itself also belongs to PA. This
property can be used in conjunction with the following lemma—which is
similar to Lemma 3.E.7125 but for measure-theoretic upper expectations—
to obtain the desired continuity. This lemma uses a notion of convergence
for precise probability trees; we consider a sequence (>7)72N of precise prob-
ability trees to converge if there is some limit tree > such that, for each
A 2 X⇤, the mass functions (>7 (·|A))72N converge (pointwise) to the mass
function >(·|A); see Appendix 3.E.1120.

Lemma 5.4.11. For any imprecise probability tree P•, any decreasing se-
quence ( 5<)<2N in F and any A 2X⇤,

lim
<!+1

E>,M ( 5< |A) = lim
<!+1

EP,M ( 5< |A),

where the precise probability tree > is the limit of some convergent sequence
(>7)72N of precise probability trees, each of which are compatible with the im-
precise tree P•.

Proof. This follows from Lemma 3.E.7125 and the fact that EP and EP,M [and thus
also E> and E>,M] coincide on F ⇥X⇤ [Proposition 5.4.5244].

Proposition 5.4.12 (Continuity w.r.t. decreasing finitary gambles). For any
imprecise probability tree P• such that PB is closed for all B 2X⇤, any A 2X⇤

and any decreasing sequence ( 5<)<2N in F ,

lim
<!+1

EP,M ( 5< |A) = EP,M ( 5 |A) with 5 B inf
<2N

5< = lim
<!+1

5<.

Proof. Since ( 5<)<2N is decreasing and EP,M is monotone [EC4163] due to Proposi-
tion 5.4.3242, we immediately have that lim<!+1 EP,M ( 5< |A) � EP,M ( 5 |A). To prove
the converse inequality, note that by Lemma 5.4.11,

lim
<!+1

E>,M ( 5< |A) = lim
<!+1

EP,M ( 5< |A),
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where the precise probability tree > is the limit of some convergent sequence (>7)72N
of precise probability trees, each of which being compatible with the imprecise tree
P•. By Corollary 5.3.3(vi)238, this yields

E>,M ( 5 |A) = lim
<!+1

EP,M ( 5< |A). (5.7)

Now note that > ⇠ P•. Indeed, for any B 2 X⇤, since the trees >7 converge
to >, the mass functions >7 (·|B) converge to >(·|B). For all 7 2 N, we have that
>7 (·|B) 2PB because >7 ⇠P•, and so the sequential compactness of PB implies that
lim7!+1 >7 (·|B) = >(·|B) 2PB. Since this holds for any B 2X⇤, we infer that > ⇠P•.
As a result, we infer from Eq. (5.7) and the definition of EP,M that

EP,M ( 5 |A) � lim
<!+1

EP,M ( 5< |A).

as desired.

5.5 Relation to game-theoretic upper expectations in an impre-
cise context

We now turn to one of the main subjects of this chapter and, in fact,
of the entire dissertation; the relation between the game-theoretic global
upper expectation Eeb

Q,V and the measure-theoretic upper expectation EP,M
in a general imprecise context. We already know from Section 5.3235 that
Eeb
Q,V and EP,M are equal on all of V ⇥X⇤ as soon as we limit ourselves to

precise probability trees and (linear) expectations trees. It will turn out that,
to a large extent, the equality still holds in the imprecise case. Concretely,
we will show that Eeb

Q,V and EP,M coincide for all variables (and situations)
that are (i) f(X⇤)-measurable and bounded below or (ii) if the local sets of
mass functionsPA are closed, decreasing limits of finitary gambles. Observe
that variables of type (ii) are not necessarily of type (i) because the former
may not be bounded below. As we will discuss later on in Section 5.5.4257,
an equality on these two types of domains su�ces to regard Eeb

Q,V and EP,M
as two interchangeable, equivalent models for almost all practical purposes.
Moreover, bear in mind that, in all of this, we can always simply replace Eeb

Q,V
by the game-theoretic upper expectation Eeb

A,V obtained from an agreeing
acceptable gambles tree A• due to Theorem 4.3.6161.

5.5.1 A general inequality

Before we prove any equality between Eeb
Q,V and EP,M, let us first estab-

lish an inequality that holds on the entire domain V ⇥X⇤; namely, that Eeb
Q,V

is always larger than or equal to—at least as conservative as—EP,M.
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Measure-theoretic upper expectations

Proposition 5.5.1. Consider any imprecise probability tree P• such that PB

is closed for all B 2X⇤, and let Q• B Q•,P be the upper expectations tree that
agrees with P• according to Eq. (3.3)51. Then

Eeb
Q,V ( 5 |A) � EP,M ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. Fix any ( 5 , A) 2 V ⇥X⇤ and any > ⇠P•. Let Q• be the (upper) expectations
tree that agrees with the precise probability tree > according to Eq. (3.4)52. Then
note that QB (6)  Q

B
(6) for all 6 2 L(X) and all B 2 X⇤ due to how Q• and Q•

are related to the trees P• and > [resp. Eq. (3.3)51 and Eq. (3.4)52]. Hence, it then
follows from the definition of a supermartingale that Meb (Q•) ✓ Meb (Q•), and so by
Definition 4.7160 that E

eb
Q ,V ( 5 |A) � Eeb

Q ,V ( 5 |A). By Theorem 5.3.1235 and since Q• is the
expectations tree that agrees with >, this implies that Eeb

Q ,V ( 5 |A) � E>,M ( 5 |A). Since
this holds for any > ⇠P•, we obtain that

Eeb
Q ,V ( 5 |A) � sup

>⇠P•

E>,M ( 5 |A) = EP,M ( 5 |A).

It can be observed that the inequality above sometimes becomes strict;
see Example 5.5.16259 below, where we will also further discuss the rele-
vance of Proposition 5.5.1x.

5.5.2 An equality for bounded below f(X⇤)-measurable variables

To prove that EP,M and Eeb
Q,V coincide on bounded below f(X⇤)-

measurable variables, we require the notions of continuity and upper semi-
continuity.

Let ⌦ be endowed with the topology generated by the cylinder events
�(X⇤) = {�(A) : A 2 X⇤}—the smallest topology including �(X⇤) [111,
Problem 5.D]. As we show in Appendix 5.C274, a set in this topology is
open if and only it is a countable union of cylinder events. This topology is
moreover metrizable and compact, and coincides with the product topology
on ⌦ = XN (where X is endowed with the discrete topology). For any
two topological spaces Y,Z—and hence, in particular, for ⌦ and R (or R)
respectively—amap 5 : Y ! Z is continuous if the inverse image 5�1 (⌫) =
{í 2 Y : 5 (í) 2 ⌫} is an open subset of Y for each open ⌫ ✓ Z [37, 53,
111]. A real-valued function 5 : Y ! R is called upper semicontinuous
(u.s.c.) if {í 2 Y : 5 (í) < 0} is an open subset (or if {í 2 Y : 5 (í) � 0}
is a closed subset) of Y for each 0 2 R; see [53, p.71 & p.186], [111,
Problem 7.K] and [37, p.61]. The function 5 is called lower semicontinuous
(l.s.c.) if � 5 is u.s.c. A function 5 : Y ! R is continuous if and only if it is
u.s.c. and l.s.c. [37, p.61]; so if {í 2 Y : 5 (í) < 0} and {í 2 Y : 5 (í) > 0}
are open for all 0 2 R. Furthermore, the pointwise limit of any decreasing
sequence ( 5<)<2N of continuous real-valued functions 5< on Y is u.s.c. (if this
limit is itself real-valued) [111, Problem 7.K (2)].
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We will henceforth use V u to denote the set of all real-valued (possi-
bly unbounded) functions on ⌦—this in contrast with V which denotes all
bounded real-valued functions (or gambles) on ⌦. Note that, since f(X⇤)
contains all countable unions of cylinder events, and thus all open subsets
of ⌦, any u.s.c. global variable in V u is f(X⇤)-measurable. Moreover, one
may check using the topology on ⌦ that any finitary real-valued variable (or
gamble) is a continuous real-valued variable (resp. gamble) on ⌦, but not
necessarily the other way around. We next show that u.s.c. variables in V u

can always be obtained as limits of decreasing sequences of finitary variables
(or gambles). The proof of this result can be found in Appendix 5.C274.

Lemma 5.5.2. For any 5 2 V u, we have that 5 is u.s.c. if and only if it is
the pointwise limit of a decreasing sequence ( 5<)<2N of extended real variables,
each of which is finitary and bounded below. Moreover, 5 is both u.s.c. and
bounded above if and only if it is the pointwise limit of a decreasing sequence
( 5<)<2N of finitary gambles.

Lemma 5.5.2 leads us to two interesting intermediate results; the first
is that, since EP,M and Eeb

Q,V coincide on all finitary gambles, EP,M and Eeb
Q,V

coincide on all u.s.c. gambles. We first state that EP,M and Eeb
Q,V coincide on

all finitary gambles.

Corollary 5.5.3. For any imprecise probability treeP• and the agreeing upper
expectations tree Q• B Q•,P defined by Eq. (3.3)51,

EP,M ( 5 |A) = Eeb
Q,V ( 5 |A) for all ( 5 , A) 2 F ⇥X⇤.

Proof. This follows readily from Proposition 5.4.5244 and Corollary 4.4.9170.

Corollary 5.5.4. Consider any imprecise probability tree P• and let Q• B
Q•,P be the upper expectations tree that agrees according to Eq. (3.3)51. Then
EP,M ( 5 |A) = Eeb

Q,V ( 5 |A) for any A 2X⇤ and any 5 2 V that is u.s.c.

Proof. Corollary 5.5.3 says that EP,M and Eeb
Q ,V coincide on F ⇥X⇤. By Proposi-

tion 5.4.9246 and Theorem 4.7.3182, EP,M and Eeb
Q ,V are both continuous with respect

to decreasing sequences of finitary gambles that converge in V . Hence, since any
u.s.c. gamble is a decreasing limit of finitary gambles due to Lemma 5.5.2, we infer
that EP,M and Eeb

Q ,V coincide on all ( 5 , A) 2 V ⇥X⇤ for which 5 is u.s.c.

On the other hand, Lemma 5.5.2 also implies that continuity with re-
spect to decreasing (uniformly bounded below) sequences of u.s.c. gam-
bles is actually not stronger than continuity with respect to decreasing (uni-
formly bounded below) sequences of finitary gambles:
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Lemma 5.5.5. Any operator F: V ! R that is monotone and that is continu-
ous with respect to decreasing sequences of finitary gambles that are uniformly
bounded below, is also continuous with respect to decreasing sequences ( 5<)<2N
of u.s.c. gambles that are uniformly bounded below; i.e.

lim
<!+1

F( 5<) = F( 5 ), with 5 B inf
<2N

5< = lim
<!+1

5<.

Proof. Consider any decreasing sequence ( 5<)<2N of u.s.c. gambles that is uniformly
bounded below and let 5 B inf<2N 5< = lim<!+1 5<. Then, for all < 2 N, it follows
from Lemma 5.5.2x and the fact that 5< is a gamble [and thus bounded above] that
there is a decreasing sequence (6<,;);2N of finitary gambles such that lim;!+1 6<,; =
5<. Now let (⌘;);2N be the sequence of variables defined by

⌘; (l) B min{6<,; (l) : 0  <  ;} for all l 2 ⌦.

Because each (6<,;);2N is decreasing, (⌘;);2N is also decreasing. The variables ⌘;
for all ; 2 N are clearly bounded—and hence, they are gambles—and they are also
finitary because, on the one hand, 6<,; is finitary for all < 2 N, and on the other
hand, the minimum over a finite number of finitary variables is trivially also finitary.
So (⌘;);2N is a decreasing sequence of finitary gambles. Furthermore, note that
⌘; � 5 because 6<,; � 5< � 5 for all <,; 2 N, and therefore lim;!+1 ⌘; � 5 . To
see that also lim;!+1 ⌘;  5 , fix any l 2 ⌦ and any 0 2 R such that 0 > 5 (l).
Since lim<!+1 5< = 5 , there is some <

0 2 N such that 0 > 5<0 (l) and since also
lim;!+1 6<0,; = 5<0 , there is some ;0 � <

0 such that 0 > 6<0,;0 (l). Then certainly
0 > ⌘;0 (l), and since (⌘;);2N is decreasing, we have that 0 > lim;!+1 ⌘; (l). This
holds for any 0 2 R such that 0 > 5 (l), so we have that lim;!+1 ⌘; (l)  5 (l),
which in turn implies that lim;!+1 ⌘;  5 because l 2 ⌦ was chosen arbitrarily.
So we have that, indeed, inf;2N ⌘; = lim;!+1 ⌘; = 5 . Since 5 is bounded below
because ( 5<)<2N is uniformly bounded below, (⌘;);2N is moreover uniformly bounded
below. Then recalling that (⌘;);2N is a decreasing sequence of finitary gambles, it
follows from the assumptions about F that lim;!+1 F(⌘;) = F( 5 ). Furthermore, note
that, due to the decreasing character of (6<,;);2N and ( 5<)<2N,

⌘; (l) = min{6<,; (l) : 0  <  ;}
� min{ 5< (l) : 0  <  ;} = 5; (l)

for all ; 2 N and all l 2 ⌦. So, 5;  ⌘; for all ; 2 N, which by the monotonicity
of F implies that

lim
;!+1

F( 5;)  lim
;!+1

F(⌘;) = F( 5 ),
where the first limit exists because ( 5<)<2N is decreasing and F is monotone. The
converse inequality—that lim;!+1 F( 5;) � F( 5 )—follows from the decreasing char-
acter of ( 5<)<2N and the monotonicity of F.

Since both EP,M and Eeb
Q,V satisfy the type of continuity described in

Lemma 5.5.5x, we immediately obtain the following result.
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Proposition 5.5.6. Consider any imprecise probability treeP• and any upper
expectations tree Q•, any A 2X⇤ and any decreasing sequence ( 5<)<2N of u.s.c.
gambles that is uniformly bounded below. Then

lim
<!+1

EP,M ( 5< |A) = EP,M ( 5 |A) with 5 B inf
<2N

5< = lim
<!+1

5<,

and similarly for Eeb
Q,V.

Proof. Since any decreasing sequence of finitary gambles that is uniformly bounded
below trivially converges to a gamble, we have by Proposition 5.4.9246 that EP,M is
continuous with respect to decreasing sequences of finitary gambles that are uni-
formly bounded below. This is also true for Eeb

Q ,V because of Theorem 4.7.3182. Hence,
since both operators are also monotone [EC4163] due to Proposition 4.4.3164 and
Proposition 5.4.3242, the desired statement thus follows from Lemma 5.5.5251.

As a final step towards establishing our desired result, we will use a
result called Choquet’s capacitability theorem. This theorem can be found
in many di�erent textbooks, but we will make use of the specific version of
Dellacherie [28]. We do this because Dellacherie’s notion of a capacity can
directly be applied to an extended real-valued functional—such as EP,M and
Eeb
Q,V—whereas most other sources restrict capacities to take the form of set-

functions. Let us start by introducing some key concepts and terminology
regarding capacitability.

Let V � be the set of all variables taking values in R� and V u
� the set

of all (possibly unbounded) variables taking values in R�. The following
definition is borrowed from [28, Section II.1.1].15

Definition 5.8 (Capacities). A functional F: V � ! R� is called a capacity
on ⌦ if it satisfies the following three properties:

CA1. 5  6 ) F( 5 )  F(6) for all 5 , 6 2 V �;
CA2. lim<!+1 F( 5<) = F (lim<!+1 5<) for any increasing sequence ( 5<)<2N in

V �;

CA3. lim<!+1 F( 5<) = F (lim<!+1 5<) for any decreasing sequence ( 5<)<2N
of u.s.c. variables in V u

�. }

15Dellacherie [28] does not explicitly state a definition for a u.s.c. function, yet we suppose
that he is using the standard definitions that we also adopt here; for instance, it is mentioned
at the bottom of [28, p.4] that the level sets  ;

<
are compact (or closed) for 5 ;

<
being u.s.c.,

and that the converse is true for 5 ;
<

being l.s.c. In any way, from [28, p.3], it is sure that his
notion of u.s.c. implies being a decreasing limit of continuous real-valued functions, which, as
already mentioned in the beginning of Section 5.5.2250, implies being u.s.c. according to our
definition. Any capacity according to us is thus surely a capacity according to Dellacherie [28],
which is su�cient for all our further results to hold.
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Recall from the beginning of this section—Section 5.5.2250—that ⌦ is
compact and metrizable, which is in line with Dellacherie’s assumption
about the set ‘⇢ ’ in [28, Section II.1.1]; see [28, Introduction, Paragraph 2].
Furthermore, observe that CA3x only applies to sequences in V u

� instead of
sequences in V �; this too corresponds to the definition given in [28, Sec-
tion II.1.1] because Dellacherie always considers u.s.c. functions to be real-
valued [28, Introduction, Paragraph 2]. In fact, one could restate CA3x
so as to only apply to sequences that are uniformly bounded above (and
below); this follows immediately from the decreasing character and the fol-
lowing lemma.

Lemma 5.5.7. Any u.s.c. variable 5 2 V u
� is bounded and therefore a gamble.

Proof. 5 is clearly bounded below, so it su�ces to prove that 5 is bounded above.
Recall from Lemma 5.5.2251 that 5 is the pointwise limit of a decreasing sequence
( 5<)<2N of finitary bounded below variables. Assume ex absurdo that 5 is not
bounded above. Then, for each < 2 N, since 5< � inf;2N 5; = 5 , it follows that
5< is also not bounded above. Since each 5< can only take a finite number of di�er-
ent values—because it is finitary and X is finite—we must have that 5< (l) = +1
for at least one l 2 ⌦. So, for each < 2 N, the set �< B {l 2 ⌦ : 5< (l) = +1}
is non-empty. Since 5< is finitary, �< is a finite union of cylinder events, and since
( 5<)<2N is decreasing, the sequence (�<)<2N is clearly also decreasing. Hence, by
Lemma 4.C.2209, there exists a path l 2 ⌦ such that l 2 �< for all < 2 N. This
means, by the definition of the sets �<, that 5< (l) = +1 for all < 2 N, and therefore
also that 5 (l) = lim<!+1 5< (l) = +1. But this is in contradiction with the fact that
5 is real-valued.

It therefore follows—almost immediately—from the earlier deduced
continuity properties for EP,M and Eeb

Q,V, that the restrictions of EP,M (·|A)
and Eeb

Q,V (·|A) to V � are both capacities on ⌦.

Proposition 5.5.8. For any imprecise probability tree P•, any upper expecta-
tions tree Q•, and any A 2 X⇤, the restrictions of EP,M (·|A) and Eeb

Q,V (·|A) to
V � are capacities on ⌦.

Proof. Property CA1x follows for EP,M (·|A) from Proposition 5.4.3242 and for
Eeb

Q ,V (·|A) from Proposition 4.4.3164. That EP,M (·|A) and Eeb
Q ,V (·|A) satisfy Prop-

erty CA2x follows from Theorem 4.6.1175 and Theorem 5.4.7245, respectively, and
the fact that V � ✓ V b. Finally, that they satisfy Property CA3x follows from Propo-
sition 5.5.6x, together with the fact that, as a consequence of Lemma 5.5.7, u.s.c.
variables in V u

� are gambles [and uniformly bounded below by 0].

Now, for any capacity F on ⌦, we say that a variable 5 2 V � is F-
capacitable if

F( 5 ) = sup
�
F(6) : 6 2 V u

�, 6 is u.s.c. and 5 � 6
 
. (5.8)
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5.5 Relation to game-theoretic upper expectations in an imprecise context

A variable 5 2 V � is called universally capacitable if it is F-capacitable for
all capacities F on ⌦. Now, Choquet’s capacitability theorem [28, Theorem
II.2.5] states that any analytic (non-negative) variable is universally capac-
itable. The definition of an analytic (non-negative) variable can be found
in [28, 53]; we do not explicitly give it here, because it is a rather abstract
concept that, in practice, can often be replaced by the simpler and better-
known notion of a Borel-measurable (non-negative) variable, which is in our
case in turn equivalent to the notion of a f(X⇤)-measurable (non-negative)
variable; see Corollary 5.C.2278 and Proposition 5.C.3278. Taking this into
account, [28, Theorem II.2.5] allows us to state the following weaker ver-
sion of Choquet’s capacitability theorem:

Theorem 5.5.9 (Choquet’s capacitability light). Any f(X⇤)-measurable vari-
able 5 2 V � is universally capacitable.

It now su�ces to combine this theorem with what we already know to
obtain the desired type of equality.

Theorem 5.5.10. Consider any imprecise probability tree P• and let Q• B
Q•,P be the upper expectations tree that agrees according to Eq. (3.3)51. Then,
for any A 2 X⇤ and any f(X⇤)-measurable bounded below variable 5 2 V b,
we have that EP,M ( 5 |A) = Eeb

Q,V ( 5 |A).

Proof. Let 5 2 V b be bounded below and f(X⇤)-measurable. Since 5 is bounded
below, and both EP,M and Eeb

Q ,V are constant additive [Proposition 4.4.3164 EC5], we
may assume without loss of generality that 5 is non-negative—and therefore, that
5 2 V �. Then, according to Theorem 5.5.9, the variable 5 is universally capacitable.
Since EP,M (·|A) and Eeb

Q ,V (·|A) are both capacities on ⌦ by Proposition 5.5.8 , this
implies that

EP,M ( 5 |A) = sup
n
EP,M (6 |A) : 6 2 V u

� , 6 is u.s.c. and 5 � 6
o

and

Eeb
Q ,V ( 5 |A) = sup

n
Eeb

Q ,V (6 |A) : 6 2 V u
� , 6 is u.s.c. and 5 � 6

o
.

Now recall Corollary 5.5.4251, which says that EP,M (⌘|A) = Eeb
Q ,V (⌘|A) for all u.s.c.

gambles ⌘ 2 V . Since all u.s.c. variables 6 2 V u
� are gambles due to Lemma 5.5.7 ,

we obtain that EP,M ( 5 |A) = Eeb
Q ,V ( 5 |A).

Note that, since this equality is valid for bounded below f(X⇤)-measurable
variables, the measure-theoretic upper expectation EP,M in the result above
can be replaced by its simplified version E#P,M, which was defined as an
upper envelope of standard ‘precise’ Lebesgue integrals.
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Corollary 5.5.11. Consider any imprecise probability tree P• and let Q• B
Q•,P be the upper expectations tree that agrees according to Eq. (3.3)51. Then,
for any A 2 X⇤ and any f(X⇤)-measurable variable 5 2 V b that is bounded
below, we have that E#P,M ( 5 |A) = Eeb

Q,V ( 5 |A).

Proof. This follows from Corollary 5.4.1241 and Theorem 5.5.10x.

Also note that the theorem above in particular also implies that EP,M
and Eeb

Q,V coincide on all limits of increasing sequences of finitary gambles;
e.g. hitting times [Example 4.2.2140].

Corollary 5.5.12. Consider any imprecise probability tree P• and let Q• B
Q•,P be the upper expectations tree that agrees according to Eq. (3.3)51. Then
EP,M ( 5 |A) = Eeb

Q,V ( 5 |A) for any A 2 X⇤ and any 5 2 V that is the pointwise
limit of an increasing sequence of finitary gambles.

Proof. Consider any A 2 X⇤ and any increasing sequence ( 5<)<2N in F , and let
5 B lim<!+1 5< = sup

<2N 5< be its pointwise limit. Since ( 5<)<2N is increasing and 51

is a (bounded) gamble, we have that 5 is bounded below. To see that 5 is more-
over f(X⇤)-measurable, it su�ces to observe that any finitary gamble is f(X⇤)-
measurable [because the level sets will be finite unions of cylinder events] and then
use MV2228. So we have that 5 2 V f,b, and therefore the desired equality follows
from Theorem 5.5.10x.

5.5.3 An equality for decreasing limits of finitary gambles

The equality in Theorem 5.5.10x already covers a great deal of vari-
ables, yet if local sets of mass functions are closed, we can extend this
equality even further to also involve decreasing—not necessarily bounded
below—limits of finitary gambles.

Theorem 5.5.13. Consider any imprecise probability tree P• such that PB is
closed for all B 2 X⇤ and let Q• B Q•,P be the upper expectations tree that
agrees according to Eq. (3.3)51. Then EP,M ( 5 |A) = Eeb

Q,V ( 5 |A) for any A 2 X⇤

and any 5 2 V that is the pointwise limit of a decreasing sequence of finitary
gambles.

Proof. Corollary 5.5.3251 says that EP,M and Eeb
Q ,V coincide on F ⇥X⇤. By Proposi-

tion 5.4.12248 and Theorem 4.7.3182, EP,M and Eeb
Q ,V are both continuous with respect

to decreasing sequences of finitary gambles, so EP,M and Eeb
Q ,V also coincide on all

( 5 , A) 2 V ⇥X⇤ for which 5 is the pointwise limit of a decreasing sequence of finitary
gambles.

Again, the equality above can equally well be stated for the simplified
upper expectation E#P,M.
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Figure 5.2 Schematic overview of themeasure-theoretic approach, and how
it relates to the game-theoretic approach.

Corollary 5.5.14. Consider any imprecise probability tree P• such that PB is
closed for all B 2 X⇤ and let Q• B Q•,P be the upper expectations tree that
agrees according to Eq. (3.3)51. Then E#P,M ( 5 |A) = Eeb

Q,V ( 5 |A) for any A 2 X⇤

and any 5 2 V that is the pointwise limit of a decreasing sequence of finitary
gambles.

Proof. Any finitary gamble 6 is clearly f(X⇤)-measurable because the level sets
{l 2 ⌦ : 6(l)  2} are finite unions of cylinder events. So MV2228 implies that any
pointwise limit of a decreasing sequence of finitary gambles is a f(X⇤)-measurable
variable. Such a limit is clearly also bounded above, so the desired statement follows
from Corollary 5.4.1241 and Theorem 5.5.13 .

5.5.4 Concluding notes on the relation between EP,M and Eeb
Q,V

If the local sets of mass functions PA are closed, Theorem 5.5.10255 can
be combinedwith Theorem 5.5.13 , and together they establish an equality
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between EP,M and Eeb
Q,V for nearly all practically relevant variables. This be-

comes clear if, apart from upper expectations, we also take a look at the con-
jugate lower expectations. Indeed, in a practical situation with a fixed vari-
able of interest, we usually want to assess both the corresponding upper and
lower expectation at the same time; see e.g. [58, 62]. Theorem 5.5.10255
and Theorem 5.5.13256 can be extended to this two-sided setting, and what
we get can be summarized as follows.

Corollary 5.5.15. Consider any imprecise probability tree P• and let Q• B
Q•,P be the upper expectations tree that agrees with it according to Eq. (3.3)51.
Then, for any A 2X⇤ and any f(X⇤)-measurable gamble 5 2 V , we have that

EP,M ( 5 |A) = Eeb
Q,V ( 5 |A) and EP,M ( 5 |A) = Eeb

Q,V ( 5 |A).

If the sets PB are moreover closed for all B 2X⇤, then the above equalities also
hold for any (extended real-valued) variable 5 2 V that is the pointwise limit
of a monotone (decreasing or increasing) sequence of finitary gambles.

Proof. The equality between EP,M and Eeb
Q ,V for f(X⇤)-measurable gambles follows

from Theorem 5.5.10255. The equality for the lower expectations follows from con-
jugacy and Theorem 5.5.10255. Indeed, if 5 is an f(X⇤)-measurable gamble, then so
is � 5 , and therefore, by Theorem 5.5.10255, we have that EP,M (� 5 |A) = Eeb

Q ,V (� 5 |A).
This implies by Corollary 5.4.2241 and Corollary 4.3.7162 that EP,M ( 5 |A) = Eeb

Q ,V ( 5 |A).
Now suppose that the setsPB are moreover closed for all B 2X⇤. Then the equal-

ity between EP,M and Eeb
Q ,V for decreasing limits of finitary gambles follows from The-

orem 5.5.13256. On the other hand, the equality (between the upper expectations)
for increasing limits of finitary gambles follows from the equality on finitary gambles
[Corollary 5.5.3251] and the continuity of both operators with respect to increasing
bounded below sequences [Theorem 4.6.1175 and Theorem 5.4.7245].16 So we have
that EP,M and Eeb

Q ,V coincide for all monotone (decreasing or increasing) limits of
finitary gambles. So it remains to prove that this also holds for the lower expecta-
tions EP,M and Eeb

Q ,V. To that end, note that if 5 is the pointwise limit of a monotone
sequence of finitary gambles, then so is � 5 , and hence, by what we have just proved,
EP,M (� 5 |A) = Eeb

Q ,V (� 5 |A). This implies by Corollary 5.4.2241 and Corollary 4.3.7162

that �EP,M ( 5 |A) = �E
eb
Q ,V ( 5 |A) and therefore that EP,M ( 5 |A) = Eeb

Q ,V ( 5 |A).

Note that the equality for f(X⇤)-measurable gambles already covers
many practically relevant inferences; limit upper and lower expected time
averages [26, 93], hitting probabilities [58] and (bounded) stopping times
[see Lemma 4.C.3210] to name but a few. Another example is the upper and
lower probability of the event that the pathwise time average of a function

16It can also be deduced from Theorem 5.5.10255 though, since any increasing limit of
finitary gambles is clearly bounded below and also f(X⇤)-measurable because finitary gambles
are f(X⇤)-measurable and because the set V f of f(X⇤)-measurable variables is closed under
taking pointwise limits [MV2228].
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5 2 L(X) eventually remains within some given interval; so the event �
consisting of all paths l 2 ⌦ such that

0  lim inf
<!+1

1
<

<X
7=1

5 (l7)  lim sup
<!+1

1
<

<X
7=1

5 (l7)  1,

with 0 and 1 two reals such that 0  1. Such events are typically of interest
when studying ergodic behaviour; see [26].

The fact that boundedness of the considered variable (or gamble) is re-
quired is a serious issue though, since, as we have mentioned before in Sec-
tion 3.698 and Section 4.2139, unbounded and extended real-valued vari-
ables often also belong to our field of interest. Most of these unbounded
and/or extended real variables can be written as monotone limits of finitary
gambles—e.g. hitting times [58]—and as such this clarifies the importance
of the second part of Corollary 5.5.15 . Caution should be taken here, how-
ever, because we can only ensure that this equality for monotone limits of
finitary gambles holds when the local sets of mass functions are closed.

If local sets of mass functions are not closed, then, as was shown in
Example 5.4.10247, the measure-theoretic upper expectation EP,M may fail
to be continuous with respect to decreasing sequences of finitary gambles.
Since Eeb

Q,V on the other hand always satisfies this type of continuity [The-
orem 4.7.3182], and since the two types of upper expectations coincide
on finitary gambles [Corollary 5.5.3251], then the inequality in Proposi-
tion 5.5.1249 must sometimes become strict.

Example 5.5.16. Recall the situation from Example 5.4.10247. We had that

lim
<!+1

EP,M ( 5<) = 0 < �1 = EP,M ( 5 ),

with 5 B lim<!+1 5< the pointwise limit of the decreasing sequence ( 5<)<2N.
Due to Corollary 5.5.3251 and Theorem 4.7.3182, it then follows that

0 = lim
<!+1

EP,M ( 5<) = lim
<!+1

Eeb
Q,V ( 5<) = Eeb

Q,V ( 5 ).

Hence, we have that Eeb
Q,V ( 5 ) > EP,M ( 5 ). ^

It follows from Proposition 5.5.1249 that, even if game-theoretic upper
expectations and measure-theoretic upper expectations do not coincide, the
game-theoretic upper expectation Eeb

Q,V still always provides a conservative
upper bound for the measure-theoretic upper expectation EP,M. Analo-
gously, by using conjugacy, one can then also easily see that Eeb

Q,V provides
a conservative lower bound for EP,M.

Now, if we take a step back and look at the overall features of Eeb
Q,V and

EP,M as global uncertainty models, it seems a done deal that the game-
theoretic upper expectation Eeb

Q,V comes out as the better of the two. Our
statement is supported by the following four arguments:
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(i) The definition of Eeb
Q,V is obtained from direct behavioural principles

and therefore has an interpretation that is clear, and perhaps even in-
tuitive. The definition of EP,M in contrast, is rather implicit—since
probability charges and measures are then primary objects—and re-
lies crucially on the abstract notion of measurability.

(ii) The previous issue is not only relevant from a philosophical point of
view, but also from a mathematical one, because it makes the analysis
of Eeb

Q,V easier compared to that of EP,M. We do not have to care about
troublesome issues such as checking measurability. Instead, we can
simply focus on building supermartingales; a job that is often more
intuitive to perform than finding a suitable choice for a (compatible)
precise probability tree and determining its corresponding Lebesgue
integral (and checking measurability).

(iii) As mentioned above and shown in Proposition 5.5.1249, E
eb
Q,V provides

a conservative upper bound for EP,M, and Eeb
Q,V provides a conservative

lower bound for EP,M. Hence, if there is no good reason to use either
game-theoretic upper and lower expectations or measure-theoretic up-
per and lower expectations, then it is safest—or more robust—to work
with game-theoretic upper and lower expectations.

(iv) As shown in Example 5.4.10247, EP,M sometimes lacks continuity with
respect to decreasing sequences of finitary gambles, and thus EP,M
sometimes lacks continuity with respect to increasing sequences of fini-
tary gambles. We consider this to be a deficiency; the limit variables—
e.g. hitting times—of such sequences ( 5<)<2N are simply considered to
be abstract idealisations of the individual finitary gambles 5< for ar-
bitrarily large <, and so we typically also want the upper and lower
expectations of such limit variables to assess the upper and lower ex-
pectations of the finitary gambles 5< for large <. This is only guaranteed
if the adopted global upper and lower expectations are continuous.

A possible argument that might be advanced to mitigate the somewhat
negative image of EP,M given above is that, in a precise context, the vast
amount of standard measure-theoretic literature provides a broad variety of
powerful results for EP,M—or, better, E>,M—on the domain of measurable
variables. Yet, by Theorem 5.3.1235, these properties also all hold for the
game-theoretic upper expectation Eeb

Q,V obtained from the agreeing (upper)
expectations tree Q•, so there is nothing to be gained in this respect.

Another argument for the defence could be that, compared to the game-
theoretic upper expectation, the measure-theoretic upper expectation EP,M
allows us to model uncertainty in a more flexible manner. Indeed, recall
from Theorem 4.3.6161 that E

eb
A,V could be replaced by Eeb

Q,V with Q• B Q•,A
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the agreeing upper expectations tree—that never takes into account the
boundary structure of the sets AA. A similar thing cannot be done for the
measure-theoretic upper expectation EP,M however. Consider, for instance,
the setting from Example 5.4.10247 and replace the open set P⇤ by its clo-
sure P0

⇤ = {` 2 P(X) : 0  `(0)  1} = P(X); then we obtain the same
agreeing upper expectations tree—its initial upper expectation is simply the
vacuous upper expectation—but the resulting measure-theoretic upper ex-
pectation clearly di�ers on the variable 5 B �110. The measure-theoretic
upper expectation EP,M can thus distinguish between di�erences in the lo-
cal models in ways that Eeb

Q,V is unable to. The reason, however, why we do
not find this argument convincing is that, as was raised in point (iv) above,
EP,M lacks certain basic continuity properties if local sets of mass functions
are not closed. We are therefore inclined to only consider EP,M as a possible
option if local sets of mass functions are closed, and in that case there is no
longer a di�erence in generality compared to Eeb

Q,V.
This being said, it should not be forgotten that the comparison we draw

here between the game-theoretic and measure-theoretic approaches is fo-
cussed on our current setting; that is, a setting where we start from the
local models Q• orP• (or A•), and where the specific global upper expecta-
tions Eeb

Q,V or EP,M are the eventual objects of interest. These considerations
should by no means be extrapolated to other settings; on the contrary, there
are cases where the measure-theoretic approach would definitely be more
suited. A great advantage of it, for instance, is its capability to extend gen-
eral initial—yet precise—assessments, which may come in the form of gen-
eral global probabilities rather than only local ‘one-step’ probabilities—as
was the case in our treatment. Moreover, the domain of conditioning events
can in the measure-theoretic framework easily be extended beyond the set
of all situations. The game-theoretic framework lacks such features.

5.5.5 Relation to Shafer and Vovk’s work

Before we conclude this chapter, it seems appropriate to spend a few
words on how our work here compares to that of Shafer and Vovk in [85,
Chapter 9]. As readers that are familiar with their work may have noticed,
the idea to use Choquet’s capacitability theorem to extend the domain of the
equality between Eeb

Q,V and EP,M from u.s.c. variables to f(X⇤)-measurable
(or analytic) variables already appears in [85, Chapter 9]. Apart from that,
it can also be observed that Lemma 3.E.7125—which underlies the proof of
Proposition 5.4.9246 and Proposition 5.4.12248—is also strongly inspired by
the proof of [85, Lemma 9.10]. So it is fair to say that [85, Chapter 9] served
as an important inspiration for our work in Sections 5.4240–5.5249. Nonethe-
less, there are several aspects which make our work here stand apart from

261



Measure-theoretic upper expectations

that in [85, Chapter 9], and we next aim to highlight the most important of
these aspects.

The first and most important di�erence is that Shafer and Vovk con-
sider supermartingales and game-theoretic upper expectations under the
prequential principle. Recall from point (iv)189 of the discussion in Sec-
tion 4.9.1188 that, in that case, Forecaster’s moves—the specification of the
local models AA or QA

—are not required to be known beforehand for each
situation A 2X⇤, but instead are allowed to also depend on previous moves
by Skeptic. While this assumption allows them to remain more general—
note that, in contrast with (ii)189, local state spaces are now assumed finite
for both us and them (in [85, Section 9.2])—the benefit that we gain from
dropping it is remarkable; it allows us to replace [85, Lemma 9.10] and [85,
Theorem 9.7], which require strong topological conditions on how the local
models can be chosen (by Forecaster),17 with respectively Corollary 5.5.4251
and Theorem 5.5.10255, which are similar, but do not need any topological
conditions at all.

A second notable di�erence is that our results involve larger domains;
Theorem 5.5.10255 applies to bounded below (f(X⇤)-measurable) variables,
and Theorem 5.5.13256—which holds if local models are closed—applies to
any decreasing (extended real-valued) limit of finitary gambles. The equal-
ities established in [85, Lemma 9.10] and [85, Theorem 9.7], however,
only apply to bounded variables.18 The fact that this extension in domain
is relevant can be deduced by looking at Corollary 5.5.15258; as already
mentioned, the second type of equality—for monotone limits of finitary
gambles—is of considerable importance, yet it is exactly this class of vari-
ables that is missing in Shafer and Vovk’s results. Moreover, our results also
allow conditioning on situations, whereas the ones in [85, Chapter 9] only
apply to unconditional upper expectations.

Finally, though we have stated all of our results for the upper expecta-
tion Eeb

Q,V, we know by Theorem 4.3.6161 that they all remain to hold if Eeb
Q,V

is replaced by the game-theoretic upper expectation Eeb
A,V obtained from an

acceptable gambles tree A•. Recall that the latter are more general than
upper expectations trees, so a priori—without Theorem 4.3.6161—it is not
guaranteed, nor trivial that this can be done. Shafer and Vovk [85, Chap-
ter 9], on the other hand, always limit themselves to the case where local
models come in the form of upper expectations.

17More specifically, Forecaster is required to choose elements \ from a compact metrizable
parameter space ⇥, which are then mapped to a corresponding local upper expectation by a
upper semicontinuous mapping E; see [85, Protocol 9.5].

18[85, Theorem 9.7] applies to (bounded) analytic variables, but recall from the discussion
above Theorem 5.5.9255 that we could have just as well stated Theorem 5.5.10255 for analytic
variables instead of f(X⇤)-measurable variables.
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5.A Basic measure-theoretic concepts

The purpose of this appendix section is, on the one hand, to establish
some of the basic properties of measure-theoretic expectations that we have
used throughout this chapter, and on the other hand, to set some concepts
in place as a preparation for proving Proposition 5.3.2236—which will be the
topic of the next section. We limit ourselves to the bare essentials; for more
contextual information we refer to a multitude of textbooks on the topic of
measure-theoretic probability [5, 32, 80, 89, 90, 102].

Ameasurable space (Y,A) is a couple where Y is a non-empty set and
A is a f-algebra on Y. We say that � ✓ Y is A-measurable if � 2 A, and
we say that an extended real-valued function 5 : Y ! R is A-measurable
if the set 5

�1 (⌫) B {í 2 Y : 5 (í) 2 ⌫} is A-measurable for every ⌫ 2
B(R). Here, B(R) denotes the Borel f-algebra on R, being the f-algebra
generated by all open—or, by complementation, closed—sets in R; recall
Section 1.614 for the topology onR. A subset ⌫ ofR is in B(R) if and only if
⌫ is the union of a Borel subset ofR and one of the four subsets of {+1,�1}
[40, Section 1.4, Problem 17]. This leads to a notion of measurability that
is equivalent to the one used by Billingsley [5, p. 184]. The Borel f-algebra
B(R) can also be generated alternatively from the sets {F 2 R : FC2} or the
sets {F 2 R : FB 2} where 2 2 R and C takes the form < or  and B takes the
form of > or �; see for instance [81, Lemma 8.3]. So, as we have done in the
main text, we can alternatively characterise the A-measurable functions as
those functions 5 : Y ! R such that {í 2 Y : 5 (í)  2} 2 A for all 2 2 R [5,
Theorem 13.1. (i)]. Typically, in measure-theoretic probability literature,
an A-measurable real-valued function 5 is called a random variable. We
gather all (possibly unbounded) random variables in the set Lu

A (Y), and all
A-measurable extended real-valued functions 5 in LA (Y). A non-negative
extended real-valued function 5 : Y ! R� is A-simple if it is a finite sumP

<

7=1 07I�7 with 01, . . . , 0< 2 R� and �1, . . . , �< 2 A. It is therefore trivially
an element of LA (Y).

A probability space (Y,A, P) is a measurable space (Y,A) equipped
with a probability measure P on A [5, p.23]. We say that an event � 2 A
is P-null if P (�) = 0, and we say that � is P-almost sure if P (�) = 1.
We will also say that a property about the elements in Y holds P-almost
surely (P-a.s.) if the event consisting of all elements for which the property
holds is P-almost sure [5, p.60].19 Note that, since a probability measure

19Recall from Section 4.5171 that the game-theoretic notion of almost surely (a.s.) is defined
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is (countably) additive [Definition 5.1221] and since it always takes values
between zero and one [5, p.22], the intersection �\ ⌫ 2 A of two P-almost
sure events �, ⌫ 2 A, is itself also P-almost sure.

For any probability space (Y,A, P), the corresponding (measure-
theoretic) expectation E is defined by E ( 5 ) B

Ø
Y
5dP for all 5 2 LA such

that
Ø

Y
5dP is defined (or exists), where the latter is the Lebesgue integral

of 5 over Y with respect to P. The Lebesgue integral for a general probabil-
ity space is defined similarly as in Definition 5.3228; we nevertheless state it
for the sake of completeness.

Definition 5.9 (The Lebesgue integral). Consider any probability space
(Y,A, P), and any non-negative 5 2 LA. Then the Lebesgue integral of
5 with respect to P is defined as

π
5dP B sup

(
<X
7=1

inf ( 5 |�7)P (�7) : �7 2 A and (�7)<7=1 partitions Y

)
.

For a general 5 2 LA, we let 5 + B 5
_0 and 5

� B �( 5^0), and the Lebesgue
integral is then defined byπ

5dP B
π

5
+dP �

π
5
�dP,

unless
Ø
5
+dP =

Ø
5
�dP = +1, in which case the Lebesgue integral of 5

with respect to P is not defined (does not exist). }

If both
Ø
5
+dP < +1 and

Ø
5
�dP < +1, and thus E ( 5 +) =

Ø
5
+dP and

E ( 5�) =
Ø
5
�dP are real—neither of them can be equal to �1 because the

Lebesgue integral is clearly non-negative for non-negative variables—then
we say that 5 is P-integrable. The following is a list of convenient properties
for measure-theoretic expectations/Lebesgue integrals that we have used in
the main text; recall Proposition 5.2.3230.

Lemma 5.A.1. For any probability space (Y,A, P) and any two 5 , 6 2
LA (Y), 2 2 R and 0, 1 2 R, the following properties hold:

ME1. E(2) = 2;

ME2. 5  6) E ( 5 )  E (6) if E ( 5 ) and E (6) exist;
ME3. E(0 5 + 16) = 0E ( 5 ) + 1E (6) if 5 , 6 are P-integrable;
ME4. E( 5 ) exists if 5 is bounded below or above;

ME5. If 5 is bounded, then E ( 5 ) is real and 5 is P-integrable;

bymeans of supermartingales that converge to +1. It is equivalent to demanding that the lower
probability Peb

Q ,V (�) of the event � of interest is 1, yet does not require � to be measurable.
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ME6. �E( 5 ) = E(� 5 ) if E( 5 ) (or equivalently E(� 5 )) exists.

The following statements hold for any sequence ( 5<)<2N in LA (Y):

ME7. If ( 5<)<2N converges pointwise to a variable 5 2 LA (Y), and | 5< |  5
⇤

for all < 2 N, with 5
⇤ 2 LA (Y) a P-integrable variable, then 5 and all

5< are P-integrable and

lim
<!+1

E( 5<) = E ( 5 ).

ME8. If ( 5<)<2N is increasing and there is an 5
⇤ 2 LA (Y) such that E( 5 ⇤) >

�1 and 51 � 5
⇤, then

lim
<!+1

E( 5<) = E ( 5 ) where lim
<!+1

5< = 5 .

ME9. If ( 5<)<2N is decreasing and there is an 5
⇤ 2 LA (Y) such that E( 5 ⇤) <

+1 and 51  5
⇤, then

lim
<!+1

E( 5<) = E ( 5 ) where lim
<!+1

5< = 5 .

The following statements hold for any two bounded below 5 , 6 2 LA (Y) and
` 2 R:

ME10. E( 5 + `) = E( 5 ) + `;
ME11. 5 = 6 P-almost surely ) E ( 5 ) = E (6).

Proof. PropertyME1 follows straightforwardly from the definition of the Lebesgue
integral [Definition 5.9 ].

Property ME2 for non-negative 5 and 6 also follows trivially from the definition
of the Lebesgue integral. That it holds for general 5 and 6, can be inferred from the
observation that, if 5  6, then 5

+  6
+ and 5

� � 6
�, and thus [by ME2 for non-

negative functions] that E ( 5 +)  E (6+) and E ( 5�) � E (6�). It then indeed follows
from the definition of the Lebesgue integral that E ( 5 )  E (6).

Property ME3 is taken directly from [5, Theorem 16.1 (ii)].
Property ME4 for bounded below 5 follows from the fact that E ( 5�) is finite,

which is on itself a consequence of 5� being bounded above (and trivially bounded
below by 0) and properties ME1 and ME2 . In a similar way, property ME4 
holds for bounded above 5 .

To establish ME5 , suppose that 5 is bounded (above and below). Then by
ME4 the expectation E ( 5 ) exists, and due to ME1 and ME2 we moreover have
that inf 5  E ( 5 )  sup 5 . Since 5 is bounded, it follows that E ( 5 ) is real. In a
similar way, one can establish that E ( 5 +) and E ( 5�) are real, and therefore that 5 is
P-integrable. This establishes ME5 .

To prove ME6, assume that E ( 5 ) exists. By the definition of the Lebesgue inte-
gral, we then have that

�E ( 5 ) = �E ( 5 +) + E ( 5�) = �E ((� 5 )�) + E ((� 5 )+) = E (� 5 ),
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and as a consequence, that E (� 5 ) moreover exists. Furthermore, that the existence
of E (� 5 ) implies the existence of E ( 5 ) = E (�(� 5 )), follows in the same way.

Property ME7x follows from [5, Theorem 16.4].
To prove ME8x, fix any increasing ( 5<)<2N for which there is an 5

⇤ 2 LA (Y)
such that E ( 5 ⇤) > �1 and 51 � 5

⇤. Let 5 B lim<!+1 5<. Then ( 5 +
<
)<2N is a sequence

of non-negative extended real-valued functions that converges increasingly to 5
+.

Hence, by [5, Theorem 15.1 (iii)], we have that lim<!+1 E ( 5 +
<
) = E ( 5 +). On the

other hand, since 5
⇤  51  5<  5 for all < 2 N [because ( 5<)<2N is increasing], we

have that ( 5 ⇤)� � 5
�
<
� 5

� � 0 for all < 2 N. Moreover, since E ( 5 ⇤) = E (( 5 ⇤)+) �
E (( 5 ⇤)�) > �1 by assumption, we have that E (( 5 ⇤)�) < +1 [recall that E (( 5 ⇤)+) =
E (( 5 ⇤)�) = +1 is not allowed in the definition of the Lebesgue integral]. Since ( 5 ⇤)�
is non-negative, E (( 5 ⇤)�) is non-negative too [clearly by Definition 5.9264], and so by
the fact that E (( 5 ⇤)�) < +1 we obtain that ( 5 ⇤)� is P-integrable. Hence, by ME7x
[and taking into account that | 5�

<
| = 5

�
<
 ( 5 ⇤)� and that lim<!+1 5

�
<
= 5

�], we have
that lim<!+1 E ( 5�

<
) = E ( 5�). Combining this with the fact that lim<!+1 E ( 5 +

<
) =

E ( 5 +), we obtain that

lim
<!+1

⇣
E ( 5 +

<
) � E ( 5�

<
)
⌘
= lim

<!+1
E ( 5 +

<
) � lim

<!+1
E ( 5�

<
) = E ( 5 +) � E ( 5�),

where in the first step we were allowed to bring the limits inside because 0 
lim<!+1 E ( 5�

<
)  E ( 5�

<
) < +1 due to the monotonicity [ME2264] of E, and the fact

that 0  5
�
<
 ( 5 ⇤)� and E (( 5 ⇤)�) < +1. Since thus E ( 5�) = lim<!+1 E ( 5�

<
) 

E ( 5�
<
) < +1, the expectations E ( 5<) = E ( 5 +

<
)�E ( 5�

<
) and E ( 5 ) = E ( 5 +)�E ( 5�) surely

exist, and thus by the equality above we indeed find that lim<!+1 E ( 5<) = E ( 5 ).
Property ME9x follows from ME8x by using the fact that �E (6) = E (6�) �

E (6+) = E ((�6)+) � E ((�6)�) = E (�6) for any 6 2 LA (Y) such that E (6) exists.
To prove ME10x, we also make use of ME8x. Fix any ` 2 R. Note that the

sequences ( 5^<)<2N and ( 5^< +`)<2N are both sequences of real-valued functions that
converge increasingly to 5 and 5 + `, respectively. Moreover, since 5 is bounded
below, we have that all 5^< and 5

^< + ` are bounded below by a single real constant
2 2 R. By ME1264, we have that E (2) = 2 2 R. Note moreover that it follows
from the A-measurability of 5 that all 5^< and 5

^< + ` are A-measurable—e.g. if
{í 2 Y : 5 (í)  0} 2 A for all 0 2 R, then clearly also {í 2 Y : 5^< (í)  0} 2 A
for all 0 2 R. Hence, we can apply ME8x [with 5

⇤ = 2], to find that

E ( 5 + `) = lim
<!+1

E ( 5^< + `) = lim
<!+1

E ( 5^<) + ` = E ( 5 ) + `,

where the second equality follows from ME1264 and the linearity [ME3264] of E,
which we can apply because each 5

^< is bounded below and bounded above, and
therefore by ME5264 P-integrable.

To prove ME11x, we can assume without loss of generality that 5 and 6 are
both non-negative; indeed, this follows from the fact that they are both bounded
below and from ME10x. Property ME11x then follows immediately from [5, The-
orem 15.2 (v)].

Conditional measure-theoretic expectations are typically defined us-
ing the so-called Radon-Nikod˝m derivative [5, Section 34]. Concretely,
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the conditional expectation ERN ( 5 |B) of a P-integrable random variable
5 2 Lu

A (Y) with respect to a f-algebra B ✓ A, is any P-integrable random
variable that isB-measurable and that satisfies

Ø
Y
5 I�dP =

Ø
Y
ERN ( 5 |B)I�dP

for all � 2 B or, using a di�erent notation,
Ø
�

5dP =
Ø
�

ERN ( 5 |B)dP for all
� 2 B. It is shown in [5, Section 34] that such a conditional expectation
ERN ( 5 |B) always exists, and that it is unique up to a P-null set—so any two
versions of the conditional expectation ERN ( 5 |B) coincide P-almost surely.
The value of ERN ( 5 |B) on a P-null set can be chosen arbitrarily—provided
it remains B-measurable—since it will not change the value of the integralØ
�

ERN ( 5 |B)dP =
Ø

Y
ERN ( 5 |B)I�dP ; also see Property ME11265 above. Re-

call from ME5264 above that, if 5 is bounded, then 5 is P-integrable and thus
the conditional expectation ERN ( 5 |B) always exists. We moreover have the
following convenient property.

Lemma 5.A.2 ([5, p.445]). For any probability space (Y,A, P) and any
bounded random variable 5 2 Lu

A (Y), we have that ERN ( 5 |A) = 5 P-almost
surely.

A (discrete) filtration (A<)<2N0 on a measurable space (Y,A) is a se-
quence of (strictly) increasing f-algebras inA; soA0 ⇢ A1 ⇢ · · · ⇢ A. We
will use A1 to denote the smallest f-algebra that includes the f-algebras
A< for all < 2 N0. We say that (Y,A, (A<)<2N0 ) is a filtered measurable
space if (Y,A) is equipped with a filtration (A<)<2N0 , and moreover say
that (Y,A, (A<)<2N0 , P) is a filtered probability space if it additionally
has a f-additive measure P on A. The following result will be key in es-
tablishing a relation between the measure-theoretic and the game-theoretic
framework.

Theorem 5.A.3 (Lévy’s zero-one law [5, Theorem 35.6]). For any filtered
probability space (Y,A, (A<)<2N0 , P) and any P-integrable 5 2 Lu

A (Y), we
have that lim<!+1 ERN ( 5 |A<) = ERN ( 5 |A1) P-almost surely.

5.B Proof of Proposition 5.3.2

We start with establishing a property similar to Bayes’ rule [WC482] for
the global expectation E>,M.

Lemma 5.B.1. For any precise probability tree >, any non-negative 5 2 V f,
and any A, B 2X⇤ such that B v A,

E>,M ( 51A |B) = E>,M ( 5 |A)P> (A|B).

Proof. Recall from Definition 5.4230 and Definition 5.3228, that for any non-negative
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6 2 V f and any C 2X⇤,

E>,M (6 |C) = sup
⇢

<X
7=1

inf (6 |�7)P> (�7 |C) : �7 2 f(X⇤) and (�7)<7=1 partitions ⌦
�
.

(5.9)
Since, for any �7 2 f(X⇤), we have that

inf (6 |�7)P> (�7 |C)
GP370= inf (6 |�7)P> (�7 \ �(A) |C) + inf (6 |�7)P> (�7 \ �(A) |C)

 inf (6 |�7 \ �(A))P> (�7 \ �(A) |C) + inf (6 |�7 \ �(A))P> (�7 \ �(A) |C),

Eq. (5.9) above implies that

E>,M (6 |C)  sup
n <X

7=1
inf (6 |�7\�(A))P> (�7\�(A) |C)+inf (6 |�7\�(A))P> (�7\�(A) |C) :

�7 2 f(X⇤) and (�7)<7=1 partitions ⌦
o
.

On the other hand, if (�7)<
7=1 partitions ⌦ and is such that �7 2 f(X⇤) for all 7 =

{1, . . . , <}, then since the algebra f(X⇤) is closed under (countable) intersections
and taking complements, and since clearly �(A) 2 f(X⇤), we also have that the
events (�7\�(A))<

7=1 and (�7\�(A))<
7=1 together form a partition20 of⌦where �7\�(A) 2

f(X⇤) and �7 \ �(A) 2 f(X⇤) for all 7 = {1, . . . , <}. As a result, we have that the
supremum on the right-hand side of the inequality above cannot be larger than the
one in Eq. (5.9), which thus implies that

E>,M (6 |C) = sup
n <X

7=1
inf (6 |�7\�(A))P> (�7\�(A) |C)+inf (6 |�7\�(A))P> (�7\�(A) |C) :

�7 2 f(X⇤) and (�7)<7=1 partitions ⌦
o
.

Since the equality above holds for any non-negative 6 2 V f and any C 2 X⇤, and
since 5 is a non-negative f(X⇤)-measurable gamble, we have in particular that

E>,M ( 51A |B)

= sup
n <X

7=1
inf ( 51A |�7 \ �(A))P> (�7 \ �(A) |B)

+ inf ( 51A |�7 \ �(A))P> (�7 \ �(A) |B) : �7 2 f(X⇤) and (�7)<7=1 partitions ⌦
o

= sup
n <X

7=1
inf ( 5 |�7 \ �(A))P> (�7 \ �(A) |B) : �7 2 f(X⇤) and (�7)<7=1 partitions ⌦

o
,

(5.10)

where in the last equality we used the fact that inf ( 51A |�7 \ �(A))P> (�7 \ �(A) |B) = 0
for all 7 = {1, . . . , <}, which follows from the fact that 51A (l) = 0 for all l 2 �7 \�(A)
if �7 \ �(A) is non-empty, and which follows from P> (ú|B) = 0 [GP671] if �7 \ �(A) is

20We permit ourselves a slight abuse of terminology by allowing a partition to also contain
empty sets.
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empty. In a similar way, we obtain that

E>,M ( 5 |A)

= sup
n <X

7=1
inf ( 5 |�7 \ �(A))P> (�7 \ �(A) |A)

+ inf ( 5 |�7 \ �(A))P> (�7 \ �(A) |A) : �7 2 f(X⇤) and (�7)<7=1 partitions ⌦
o

= sup
n <X

7=1
inf ( 5 |�7 \ �(A))P> (�7 \ �(A) |A) : �7 2 f(X⇤) and (�7)<7=1 partitions ⌦

o

= sup
n <X

7=1
inf ( 5 |�7 \ �(A))P> (�7 |A) : �7 2 f(X⇤) and (�7)<7=1 partitions ⌦

o
, (5.11)

where the penultimate equality follows from GP370 and the fact that, due to GP370

and GP270, we have that P> (�7 \ �(A) |A) = P> (�7 [ �(A) |A) � P> (�(A) |A) = 0 for any
�7 2 f(X⇤); and where the last equality follows from GP871. But since P> is a global
probability charge, we have by GP470 and Eq. (5.10) that

E>,M ( 51A |B)

= sup
n <X

7=1
inf ( 5 |�7 \ �(A))P> (�7 |A)P> (A|B) : �7 2 f(X⇤) and (�7)<7=1 partitions ⌦

o

= P> (A|B) sup
n <X

7=1
inf ( 5 |�7 \ �(A))P> (�7 |A) : �7 2 f(X⇤) and (�7)<7=1 partitions ⌦

o
.

Hence, by Eq. (5.11), the latter term is equal to P> (A|B)E>,M ( 5 |A), and thus we have
arrived at the desired equality.

Recall that, for any precise probability tree > and A 2 X⇤, since P> de-
notes the unique global probability measure on f(X⇤) ⇥X⇤ according to
Proposition 5.1.3226, the map P> (·|A) = P |A

>
is a(n) (unconditional) proba-

bility measure on f(X⇤). This allows us to apply the concepts and results
from Appendix 5.A263 here, for each individual situation A 2 X⇤ and the
corresponding probability space (⌦, f(X⇤), P |A

>
). Note in particular that,

for any A 2 X⇤, our global measure-theoretic expectation E>,M (·|A) from
the main text is the same as the standard measure-theoretic expectation
E |A corresponding to (⌦, f(X⇤), P |A

>
). The reason that we use E |A as an al-

ternative notation for E>,M (·|A) is because it reminds one of the fact that we
are actually considering an unconditional expectation in the usual measure-
theoretic sense. We furthermore use E |A

RN to denote any version of the condi-
tional expectation corresponding to (⌦, f(X⇤), P |A

>
) according to the Radon-

Nikod˝m derivative [Appendix 5.A263].
We moreover equip the measurable space (⌦, f(X⇤)) with the filtration

(A<)<2N0 where, for any < 2 N0,A< is the f-algebra generated by the cylin-
der events �(F1:<) with F1:< 2X<. Note that, for any < 2 N0, since the cylin-
der events �(F1:<) form the atoms of A<, and since there are only finitely
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many of these atoms (because X is finite), any element of A< can be writ-
ten as a finite union of such cylinder events �(F1:<). It is then clear that any
A<-measurable function is an <-measurable variable.

The following rather technical lemma is vital in proving Proposi-
tion 5.3.2236.

Lemma 5.B.2. Consider any precise probability tree >, any non-negative
5 2 V f and any A 2 X⇤, let E |A = E>,M (·|A) be the corresponding measure-
theoretic expectation, and let Q• B Q•,> be the expectations tree that agrees
with > according to Eq. (3.4)52. Then we have that

(i) for all < � |A|, the <-measurable variable E>,M ( 5 |-1:<) is a version of the
conditional expectation E |A

RN ( 5 |A<).
(ii) the (extended) real process E>,M ( 5 |·) : B 2 X⇤ 7! E>,M ( 5 |B) is a game-

theoretic supermartingale in Meb (Q•).

Proof. Fix any < � |A|. By definition, a version of E |A
RN ( 5 |A<) is any P |A

>
-integrable ran-

dom variable that isA<-measurable and that satisfies
Ø
5 I�dP |A

>
=

Ø
E |A
RN ( 5 |A<)I�dP |A

>

for all � 2 A<. Let us prove that these conditions are met for the variable
E>,M ( 5 |-1:<), Due to ME5264 and the fact that 5 is a (bounded) f(X⇤)-measurable
gamble, E>,M ( 5 |-1:<) exists and is real-valued. It is clearly also <-measurable, and
therefore, as we have already discussed above, it isA<-measurable. Obviously, since
A< ⇢ f(X⇤), E>,M ( 5 |-1:<) is f(X⇤)-measurable and thus, by its real-valuedness, a
random variable. Moreover, E>,M ( 5 |-1:<) can only take a finite number of values [be-
causeX is finite], and it must therefore be bounded, which in turn byME5264 implies
that it is P |A

>
-integrable. So it remains to prove that

Ø
5 I�dP |A

>
=

Ø
E>,M ( 5 |-1:<)I�dP |A

>

for all � 2 A<.
To this end, we start by proving that

Ø
51F1:<dP

|A
>
=

Ø
E>,M ( 5 |-1:<)1F1:<dP |A

>
for all

F1:< 2 X<. First consider any F1:< 2 X< such that F1:< A A. By the fact that < � |A|,
this implies that F1:< k A and thus that �(F1:<) \ �(A) = ú. So then, by ME2264 and
Proposition 5.2.2(i)229,

π
51F1:<dP

|A
>


π
(sup 5 )1F1:<dP |A

>
= (sup 5 )P |A

>
(F1:<) = (sup 5 )P> (F1:< |A)

= (sup 5 )P> (ú|A) = 0,

where the penultimate step follows from GP871 and the fact that �(F1:<) \ �(A) = ú,
and where the last step follows from GP671. On the other hand, we can use the
lower bound inf 5 instead of the upper bound sup 5 , and repeat a similar reasoning
to infer that

Ø
51F1:<dP

|A
>
� 0, and so we have that

Ø
51F1:<dP

|A
>
= 0. In a completely

similar way, we can also deduce that
Ø
E>,M ( 5 |-1:<)1F1:<dP |A

>
= 0. So we conclude

that
Ø
51F1:<dP

|A
>
=

Ø
E>,M ( 5 |-1:<)1F1:<dP |A

>
for any F1:< 2X< such that F1:< A A.

Next, consider any F1:< 2 X< such that F1:< w A. Then, by Lemma 5.B.1267, we

270



5.B Proof of Proposition 5.3.2

have thatπ
51F1:<dP

|A
>
= E>,M ( 51F1:< |A) = E>,M ( 5 |F1:<)P> (F1:< |A)

= E>,M ( 5 |F1:<)P |A
>
(F1:<) = E>,M ( 5 |F1:<)

π
1F1:<dP

|A
>

=
π

E>,M ( 5 |F1:<)1F1:<dP |A
>
=

π
E>,M ( 5 |-1:<)1F1:<dP |A

>
,

where the fourth equality follows from Proposition 5.2.2(i)229, and the penultimate
equality follows from ME3264 [which can be applied because 1F1:< is P |A

>
-integrable

due to ME5264].
Now, to prove that

Ø
5 I�dP |A

>
=

Ø
E>,M ( 5 |-1:<)I�dP |A

>
for any general � 2 A<, note

that the situations F1:< 2X< form the atoms of A<, which by the fact that there are
only finitely many of them, implies that � can be written as a finite union [;

7=1�(B7) of
cylinder sets �(B7) of such situations B7 2X<. Since we can clearly assume (without
loss of generality) that these cylinder sets �(B7) are mutually disjoint, we obtain that
I� =

P
;

7=1 1B7 . Hence, by ME3264 [which we can apply in the chain below because
all the involved terms are bounded and thus, by ME5264, P |A

>
-integrable] and the fact

that
Ø
51B

7
dP |A

>
=

Ø
E>,M ( 5 |-1:<)1B

7
dP |A

>
for all B7 due to the considerations above,

π
5 I�dP |A

>
=

π
5

P
;

7=11B7dP
|A
>
=

;X
7=1

Ø
51B

7
dP |A

>
=

;X
7=1

Ø
E>,M ( 5 |-1:<)1B

7
dP |A

>

=
π

E>,M ( 5 |-1:<)
P

;

7=1 1B7dP
|A
>

=
π

E>,M ( 5 |-1:<)I�dP |A
>
.

This establishes (i) .
To prove (ii) , we need to show that E>,M ( 5 |·) : B 2 X⇤ 7! E>,M ( 5 |B) is an el-

ement of Meb (Q•). That E>,M ( 5 |·) is bounded below follows from the fact that 5 is
bounded and Properties ME2264 and ME1264. Furthermore, for any F1:< 2 X⇤, note
that E>,M ( 5 |F1:<) = E>,M ( 51F1:< |F1:<) due to ME11265 and the fact that, by GP871 and
GP671, P |F1:<

>
(�(F1:<)2) = P> (�(F1:<)2 |F1:<) = 0. Hence, by ME3264 and ME5264,

E>,M ( 5 |F1:<) = E>,M ( 51F1:< |F1:<) = E>,M ( 5
P

F
<+12X 1F1:<+1 |F1:<)

=
X

F
<+12X

E>,M ( 51F1:<+1 |F1:<).

By Lemma 5.B.1267, the fact that P> satisfies Eq. (3.12)72 due to Proposition 5.1.3226,
and the definition of QF1:< , the latter is equal to

X
F
<+12X

E>,M ( 5 |F1:<+1)P> (F1:<+1 |F1:<) =
X

F
<+12X

E>,M ( 5 |F1:<+1)>(F<+1 |F1:<)

= QF1:<

�
E>,M ( 5 |F1:<·)

�
= Q"

F1:<

�
E>,M ( 5 |F1:<·)

�
,

where Q"
F1:<

is the extension of QF1:< defined through CU1143 and CU2143 as described
in Section 4.3152. So we obtain that E>,M ( 5 |F1:<) = Q"

F1:<

�
E>,M ( 5 |F1:<·)

�
for all F1:< 2

X⇤ and thus, together with its bounded belowness, this implies that the process
E>,M ( 5 |·) is in Meb (Q•).
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The last intermediate result that we need in order to prove Proposi-
tion 5.3.2236 is a result similar to Ville’s theorem [86, Proposition 8.14(2)].
The main di�erences are that our statement is specifically adapted to
the context of discrete-time stochastic processes, and that it involves
game-theoretic supermartingales rather than measure-theoretic martin-
gales. Nonetheless, many of the ideas that we use to prove the result below
are borrowed from [86, Proposition 8.14].

Lemma 5.B.3. Consider any precise probability tree > and the agreeing ex-
pectations tree Q• defined according to Eq. (3.4)52. Then, for any � 2 f(X⇤)
and A 2X⇤ such that P> (�|A) = 0, there is a non-negative game-theoretic su-
permartingale M 2 Meb (Q•) such that M(A) 2 R and such that M converges
to +1 on �.

Proof. Recall from Proposition 5.1.3226 that P> is the unique global probability mea-
sure on f(X⇤) ⇥X⇤ that satisfies Eq. (3.12)72. Let P ⇤

>
be the restriction of P> to

hX⇤i ⇥X⇤—this is clearly a global probability charge on hX⇤i ⇥X⇤ that also satis-
fies Eq. (3.12)72. Then it follows from the proof of Proposition 5.1.3226 that, for any
A 2X⇤, the (unconditional) probability measure P> (·|A) on f(X⇤) is arrived at by ap-
plying Theorem 5.1.2226 to the (unconditional) probability charge P ⇤

>
(·|A) on hX⇤i.

Hence, by the expression in Theorem 5.1.2226, we have that, for all � 2 f(X⇤),

P> (�|A) = inf
nX
72N

P ⇤
>
(�7 |A) : �7 2 hX⇤i and � ✓ [72N�7

o

= inf
nX
72N

P> (�7 |A) : �7 2 hX⇤i and � ✓ [72N�7
o
.

Now consider any � 2 f(X⇤) such that P> (�|A) = 0. Then, for any n > 0 and any
✓ 2 N, due to the expression above, there is a collection (�✓,7)72N of events in hX⇤i
such that P

72N P> (�✓,7 |A)  2�✓n and � ✓ [72N�✓,7.
For any 7 2 N, let M✓,7 be the (extended) real process defined by M✓,7 (B) B

P> (�✓,7 |B) for all B 2 X⇤. By Proposition 5.2.2(i)229 [and since �✓,7 2 hX⇤i ✓
f(X⇤)], we have that P> (�✓,7 |B) = E>,M (I�

✓,7
|B) for all B 2 X⇤, and therefore by

Lemma 5.B.2(ii)270 [and since �✓,7 2 f(X⇤) and thus I�
✓,7
2 V f] that M✓,7 2 Meb (Q•).

Since �✓,7 2 hX⇤i, we have by Lemma 3.3.372 that �✓,7 is 9-measurable for some
9 2 N0, in the sense that �✓,7 = [H1:92⇠�(H1:9) for some ⇠ ✓ X9. Then, for all ; � 9

and í1:; 2X;, due to GP270 we have that P> (�✓,7 |í1:;) = P> ([H1:92⇠�(H1:9) |í1:;) = 1
if í1:9 2 ⇠. Or, since �✓,7 = [H1:92⇠�(H1:9) [and thus since the indicator I�

✓,7
is 9-

measurable], for all l 2 ⌦ and ; � 9, we have that P> (�✓,7 |l1:;) = 1 if I�
✓,7
(l1:9) =

I�
✓,7
(l) = 1. Hence, by the definition of M✓,7, we have that lim inf M✓,7 � I�

✓,7
.

For all 7 2 N, by the definition of M✓,7 and GP170, we know that M✓,7 [and thus
also lim inf M✓,7] is non-negative. Hence, the process P

72N M✓,7 and the variable
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P
72N lim inf M✓,7 exist, and thus by the considerations above, for all l 2 ⌦,

X
72N

I�
✓,7
(l) 

X
72N

lim inf M✓,7 (l) = sup
<2N

<X
7=1

lim inf M✓,7 (l)

= sup
<2N

<X
7=1

lim
;!+1

inf
8�;

M✓,7 (l8) = sup
<2N

lim
;!+1

<X
7=1

inf
8�;

M✓,7 (l8)  sup
<2N

lim inf
8!+1

<X
7=1

M✓,7 (l8)

 lim inf
8!+1

sup
<2N

<X
7=1

M✓,7 (l8) = lim inf
X
72N

M✓,7 (l), (5.12)

where we used the non-negativity of M✓,7 in the third equality. Since � ✓ [72N�✓,7,
we have that I� 

P
72N I�

✓,7
, and therefore the inequality above implies that I� 

lim inf P
72N M✓,7. So if we let M✓ B

P
72N M✓,7, then I�  lim inf M✓. Moreover,

since M✓,7 2 Meb (Q•) for all 7 2 N and since M✓,7 is non-negative for all 7 2 N, we
have by Lemma 4.4.2163 that M✓ is a non-negative supermartingale in Meb (Q•). On
top of this, since P

72N P> (�✓,7 |A)  2�✓n by assumption, and since M✓,7 (A) = P> (�✓,7 |A)
by definition, we also have that M✓ (A) =

P
72N M✓,7 (A)  2�✓n.

The above holds for any ✓ 2 N, so if we let M B
P

✓2N M✓ [which is possible
because each M✓ is non-negative], then again by Lemma 4.4.2163 we infer that M
is a non-negative supermartingale in Meb (Q•). Moreover, since M✓ (A)  2�✓n for all
✓ 2 N, we have that M(A)  n and therefore, together with its non-negativity, we
obtain that M(A) 2 R. Finally, since I�  lim inf M✓ for all ✓ 2 N, we can infer in a
similar way as we have done in Eq. (5.12) thatX

✓2N
I� 

X
✓2N

lim inf M✓  lim inf
X
✓2N

M✓ = lim inf M.

Since the variable P
✓2N I� is equal to +1 for all l 2 �, we conclude that M indeed

converges to +1 on the event �.

Proof of Proposition 5.3.2236. Fix any 5
0 2 V f and any F1:< 2 X⇤. First ob-

serve that, because 5
0 2 V f is bounded, E>,M ( 5 0 |F1:<) = E |F1:< ( 5 0) exists [ME4264]

and so E>,M ( 5 0 |F1:<) = E>,M ( 5 0 |F1:<) because E>,M extends E>,M according to Corol-
lary 5.2.5234. Hence, it su�ces to show that E>,M ( 5 0 |F1:<) = Eeb

Q ,V ( 5 0 |F1:<). We will
prove that E>,M ( 5 |F1:<) = Eeb

Q ,V ( 5 |F1:<) for the non-negative f(X⇤)-measurable gam-
ble 5 B 5

0 � inf 5 0 (the variable 5 is indeed a gamble because 5
0 is a gamble and

therefore inf 5 0 2 R), which then implies that E>,M ( 5 0 |F1:<) = Eeb
Q ,V ( 5 0 |F1:<) because

E>,M (·|F1:<) and Eeb
Q ,V both satisfy the constant additivity property; see ME10265 and

Proposition 4.4.3164 [EC5].
We first show that Eeb

Q ,V ( 5 |F1:<)  E>,M ( 5 |F1:<). To do so, we will prove that there
is some 2 2 R such that, for all n > 0, there is a game-theoretic supermartingale
Mn 2 Meb (Q•) such that Mn (F1:<) = E>,M ( 5 |F1:<) + n2 and lim inf Mn � 5 . Indeed,
the desired inequality then follows immediately from the definition of Eeb

Q ,V.
Consider the filtered probability space (⌦, f(X⇤), (A;);2N0 , P

|F1:<
>

) and the cor-
responding measure-theoretic expectation E |F1:< = E>,M (·|F1:<). Since 5 is bounded
and f(X⇤)-measurable, it is surely P |F1:<

>
-integrable [ME5264], and therefore, by The-

orem 5.A.3267, we have that

lim
;!+1

E |F1:<
RN ( 5 |A;) = E |F1:<

RN ( 5 |A1) P |F1:<
>

-almost surely.
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Note that A1 = f([;2N0A;) is the smallest f-algebra f(X⇤) generated by all
cylinder events, which, by Lemma 5.A.2267 [and the boundedness of 5 ], implies
that E |F1:<

RN ( 5 |A1) = 5 , P |F1:<
>

-almost surely. Hence, since the intersection of two
P |F1:<
>

-almost sure events is itself also P |F1:<
>

-almost sure [p.264], we have that
lim;!+1 E |F1:<

RN ( 5 |A;) = 5 P |F1:<
>

-almost surely.
Due to Lemma 5.B.2(i)270 and since 5 is non-negative, we know that E>,M ( 5 |-1:;)

is a version of E |F1:<
RN ( 5 |A;) for all ; � <, so we obtain that lim;!+1 E>,M ( 5 |-1:;) = 5

P |F1:<
>

-almost surely. So, if we let M be the extended real process defined by
M(B) B E>,M ( 5 |B) for all B 2 X⇤, then lim inf M = lim;!+1M(-1:;) = 5 P |F1:<

>
-

almost surely. Moreover, since 5 is non-negative, it follows from Lemma 5.B.2(ii)270
and the definition of M, that M 2 Meb (Q•). Furthermore, consider Lemma 5.B.3272

and note that it ensures that there is a non-negative supermartingale M0 2 Meb (Q•)
such that 2 B M0(F1:<) 2 R and that converges to +1 on all paths l 2 ⌦ such
that lim inf M(l) < 5 (l). Indeed, the set of all such paths l has probability zero
because lim inf M = 5 P |F1:<

>
-almost surely.

Consider now any n > 0 and let Mn be the process defined by Mn (A) BM(A) +
nM0(A) for all A 2 X⇤. Then Mn 2 Meb (Q•) because of Lemma 4.4.2163. Further-
more, note that lim inf Mn (l) � 5 (l) for all l 2 ⌦. Indeed, if lim inf M(l) = 5 (l)
for some l 2 ⌦, then also lim inf Mn (l) � 5 (l) because n and M0 are non-
negative. If lim inf M(l) < 5 (l) for some l 2 ⌦, then M0, and therefore also
nM0, converges to +1, which, together with the fact that M is bounded below [due
to M 2 Meb (Q•)], implies that Mn converges to +1 on l. Hence, also in this case,
we have that lim inf Mn (l) � 5 (l), so we can conclude that lim inf Mn � 5 . More-
over, recall that 2 = M0(F1:<) 2 R and that M(F1:<) = E>,M ( 5 |F1:<), so we have that
Mn (F1:<) = M(F1:<) + nM0(F1:<) = E>,M ( 5 |F1:<) + n2. Hence, Mn satisfies all the de-
sired conditions and we conclude that indeed Eeb

Q ,V ( 5 |F1:<)  E>,M ( 5 |F1:<), and thus
Eeb

Q ,V ( 5 0 |F1:<)  E>,M ( 5 0 |F1:<).
Then we are left to show that Eeb

Q ,V ( 5 |A) � E>,M ( 5 |A) for any 5 2 V f and
any A 2 X⇤. However, this can be easily deduced from the already obtained
inequality and the self-conjugacy of E>,M. Indeed, � 5 is f(X⇤)-measurable and
bounded, and therefore P |F1:<

>
-integrable [ME5264], so we can apply ME3264 to

find that E>,M ( 5 |A) = E |A ( 5 ) = �E |A (� 5 ) = �E>,M (� 5 |A). Since we have al-
ready shown that Eeb

Q ,V (6 |A)  E>,M (6 |A) for all 6 2 V f, we have in particu-
lar that Eeb

Q ,V (� 5 |A)  E>,M (� 5 |A), which implies that E>,M ( 5 |A) = �E>,M (� 5 |A) 
�Eeb

Q ,V (� 5 |A) = Eeb
Q ,V ( 5 |A)  Eeb

Q ,V ( 5 |A), where the last inequality follows from Propo-
sition 4.4.3164 [EC1].

5.C Topological results for the sample space ⌦

Consider the distance function X on ⌦ defined by

X(l,l
0) B 2�< with < B inf {9 2 N : l9 < l

0
9
}, (5.13)

for all l,l
0 2 ⌦. Then it can easily be checked that X is a metric on ⌦. Fur-

thermore, as is shown by the lemma below, the topology on ⌦ corresponding
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to this metric X is the same as the topology that we have adopted through-
out the main text; that is, the smallest topology containing (generated by)
the set of all cylinder events �(X⇤) = {�(A) : A 2X⇤} or, equivalently [111,
Problem 5.D], the (unique) topology for which �(X⇤) is a subbase.21 Recall
that a base for a topology is a collectionB of sets (in this topology) such that
any open set can be written as an arbitrary union of sets in B [111, Defini-
tion 5.1], and that a subbase is a collection S of sets (in this topology) such
that all finite intersections of elements in S form a base for this topology
[111, Definition 5.5]. The above confirms our claim that ⌦ is metrizable.

Furthermore, the lemma below also shows that this metric topology co-
incides with the product topology on ⌦ = XN, with X (being finite) given
the topology consisting of all its subsets; that is, the discrete topology [111,
Example 3.2 C]. Since this discrete topology on X is finite, it is clear by
the definition of compactness [111, Definition 17.1] that X is compact.
Hence, since the product of compact spaces is itself compact in the prod-
uct topology—Tychono� ’s theorem [111, Theorem 17.8]—we have that
⌦ = XN is compact.

Lemma 5.C.1. The topology on ⌦ generated by �(X⇤), the metric topology on
⌦ corresponding to X, and the product topology on ⌦ are all equal. Moreover,
a set in this common topology is open if and only if it is a (possibly empty)
countable union of cylinder events.

Proof. First recall that the set of all open n-disks form a subbase for the metric
topology. Indeed, [111, Definition 2.5] says that a set � ✓ ⌦ is open if and only
if, for each l 2 �, there is an open n-disk about l contained in �, which by the
second part of [111, Definition 5.1] implies that the open n-disks form a base for the
metric topology on ⌦. Any topology—and thus in particular the metric topology—
is closed under taking finite intersections, so the metric topology contains all finite
intersections of open n-disks [and also all possible unions of these intersections, since
any topology is closed under taking unions]. Furthermore, since the n-disks form a
base, any open set can be written as an arbitrary union of n-disks, and thus surely
as an arbitrary union of finite intersections of n-disks. Hence, the set of all finite
intersections of n-disks forms a base for the metric topology, and thus the set of all
n-disks forms a subbase for this topology.

Next, consider any open n-disk; that is, for any n > 0 and anyl 2 ⌦, consider the
set {l0 2 ⌦ : X(l,l

0) < n}. If n > 1, let ✓ B 0; otherwise, let ✓ 2 N0 be the unique
natural number such that 2�✓�1 < n  2�✓. Then, for all l0 2 �(l✓), since inf{9 2
N : l0

9
< l9} � ✓ + 1, we have by Equation (5.13) that X(l,l

0)  2�✓�1 < n. On the
other hand, for any l0 8 �(l✓), we infer in a similar way that X(l,l

0) � 2�✓ � n.
Hence, both facts taken together, we obtain that �(l✓) = {l0 2 ⌦ : X(l,l

0) < n}

21The experienced reader may also understand that this topological space ⌦ is homeomor-
phic to the Cantor space; see [53, Theorem 7.4] and Lemma 5.C.4278.
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is the open n-disk around l. Conversely, one can see that any cylinder event �(F1:✓)
with F1:✓ 2 X⇤, is an open n-disk around any l 2 �(F1:✓) if n > 0 is such that
2�✓�1 < n  2�✓. As a consequence, the family of open n-disks in ⌦ is the same as the
set �(X⇤) of all cylinder events and therefore, since the former is a subbase of the
metric topology, the set �(X⇤) is a subbase of the metric topology. As a result, due
to [111, Problem 5.D], this establishes the equivalence between the metric topology
and the smallest topology containing �(X⇤) (or the topology generated by �(X⇤)).

Let us show that the same holds for the product topology on ⌦ = XN. Since
the set {{F} : F 2 X} forms a (sub)base for the discrete topology on X [111, Ex-
ample 5.2 (b)], it follows from the discussion below [111, Definition 8.3] that the
sets *<,í B {l 2 ⌦ : l< = í} with < 2 N and í 2 X form a subbase for the prod-
uct topology on ⌦. Clearly, any such set *<,í is the union of the cylinder events
�(F1:<�1í) with F1:<�1 2 X<�1, so the topology generated by the cylinder events
{�(A) : A 2 X⇤} is finer than (includes) the product topology. On the other hand,
any cylinder event �(F1:<) with F1:< 2 X⇤ is the finite intersection of the sets *7,F

7

with 7 2 {1, . . . , <}, so we also have that the product topology is finer than the one
generated by {�(A) : A 2X⇤}. All together, we conclude that the topology generated
by the cylinder events {�(A) : A 2X⇤} coincides with the product topology.

It remains to prove the second statement, which says that a set in this common
topology is open if and only if it is empty or a countable union of cylinder events.
In other words, we have to prove that g B {[72N�(A7) : (87 2 N) A7 2X⇤} [ ú is the
topology generated by the subbase �(X⇤). That g is closed under arbitrary unions
follows from the fact that the setX⇤ of all situations is countable (sinceX is finite).
Indeed, any union of elements of g is a (possibly empty) union of cylinder events,
and since X⇤—and therefore also {�(A) : A 2 X⇤}—is countable, this union can al-
ways be written as a (possibly empty) countable union, therefore implying that it is
an element of g. Now, consider any finite intersection T

82{1,...,<} �8 of elements of g
and let us check that this too is an element of g. If at least one �8 is equal to the empty
set ú, then the intersection T

82{1,...,<} �8 is also equal to ú and thus in g. If not, then
by the definition of g each �8 is equal to some union S

72N �(A7, 8) of cylinder events.
So we have that T

82{1,...,<} �8 =
T

82{1,...,<}
S

72N �(A7, 8). Using distributivity, this finite
intersection can be rewritten as S

712N
S

722N · · ·
S

7<2N
T

82{1,...,<} �(A78 , 8); a countable
union of finite intersections of cylinder events. So we have that this countable union
is an element of g if we manage to show that any finite intersection of cylinder events
is itself a cylinder event or empty. In order to do so, consider the intersection of any
two cylinder events �(F1:<) and �(í1:;) with F1:< 2X⇤ and í1:; 2X⇤. Note that this
intersection is non-empty if and only if, either, <  ; and F1:< = í1:<, or, if < > ;

and F1:; = í1:;. In the first case, we have that �(F1:<) \ �(í1:;) = �(í1:;) and, in
the second case, we have that �(F1:<) \ �(í1:;) = �(F1:<). Hence, the intersection of
any two cylinder events is either empty or itself a cylinder event and therefore, any
finite intersection of cylinder events is empty or a cylinder event. By our previous
considerations, this implies that g is indeed closed under finite intersections. To-
gether with the fact that g is closed under arbitrary unions—and trivially includes ⌦
and the empty subsetú ⇢ ⌦—wemay conclude that g is a topology on ⌦. It is more-
over clear from the definition of g, that g is contained in the topology generated by
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�(X⇤) and, conversely, since g is a topology containing all cylinder events, that the
(smallest) topology generated by �(X⇤) is contained in g. Hence, both topologies
are equal.

Proof of Lemma 5.5.2251. We start by proving the two direct implications. Let
5 2 V u be u.s.c. and let ( 5<)<2N be defined by

5< (l) B sup({�<} [ { 5 (l0) : l0 2 �(l<)}),

for all l 2 ⌦ and all < 2 N. Then ( 5<)<2N is clearly a decreasing sequence of <-
measurable—and thus finitary—bounded below variables (since 5< � �<). If 5 is
bounded above, then each 5< is clearly also bounded above, so in that case ( 5<)<2N
is a sequence of gambles. So it only remains to show that lim<!+1 5< (l) = 5 (l)
for any l 2 ⌦. That lim<!+1 5< (l) � 5 (l) holds, follows from the fact that, due
to the definition of the variables 5<, 5< (l) � 5 (l) for all < 2 N. To prove the
converse inequality, fix any real 0 > 5 (l) [remember that 5 is real-valued]. Since
5 is u.s.c., the set {l0 2 ⌦ : 5 (l0) < 0} is an open set, which moreover contains
l. According to Lemma 5.C.1275, any open set in ⌦ is a countable union of cylinder
events. Since l belongs to {l0 2 ⌦ : 5 (l0) < 0}, one of these cylinder events
contains l. This implies that there is some < 2 N0 such that 5 (l0) < 0 for all
l
0 2 �(l<). Then, for any 9 � <, since �(l9) ✓ �(l<), we obviously also have

that 5 (l0) < 0 for all l0 2 �(l9). Hence, 59 (l)  0 for all 9 � max{|0|, <}, which
implies that lim9!+1 59 (l)  0. This holds for any real 0 > 5 (l), so we find that
lim9!+1 59 (l)  5 (l), as desired.

To prove the two converse implications, consider any 5 2 V u that is the pointwise
limit of a decreasing sequence ( 5<)<2N of finitary bounded below variables. We show
that, for any 0 2 R, the set � B {l 2 ⌦ : 5 (l) < 0} is open, and therefore that 5 is
a u.s.c. variable. It will then be clear that 5 is moreover bounded above if ( 5<)<2N is a
sequence of gambles, because in that case 5  51  sup 51 2 R. So fix any 0 2 R and
note that the sequence (�<)<2N of events defined by �< B {l 2 ⌦ : 5< (l) < 0} for
all < 2 N, is increasing and converges to � because ( 5<)<2N converges decreasingly
to 5 . So we have that � =

S
<2N �<. Moreover, for any < 2 N, because 5< is finitary,

there is a 9 2 N such that 5< only depends on the first 9 states, and so the set �< is a
(possibly empty) finite union of cylinder events of the form �(F1:9) with F1:9 2 X9.
So, by Lemma 5.C.1275, each set �< is open. Since any union of open sets is open
again, we obtain that � =

S
<2N �< is indeed open.

The last part of this section is devoted to proving that the f(X⇤)-
measurable (non-negative) variables are the same as the Borel-measurable
(non-negative) variables, and that these are in turn a subset of the analytic
(non-negative) variables; a result that we have used in the main text to re-
state Choquet’s capacitability theorem [28, Theorem II.2.5] in the form of
Theorem 5.5.9255.

Let B(⌦) be the (smallest) f-algebra generated by all open sets in ⌦;
that is, the Borel f-algebra on ⌦ [53, Section 11.A]. A global variable 5 2 V
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is called Borel-measurable if it is measurable with respect to the f-algebra
B(⌦) (or simply B(⌦)-measurable); that is, if the inverse image 5

�1 (⌫) B
{l 2 ⌦ : 5 (l) 2 ⌫} is in B(⌦) for every ⌫ 2 B(R); recall Appendix 5.A263.
It is clear that this notion of Borel-measurability is in accordance with the
general one in [53, Section 11.C]. Moreover, also infer fromAppendix 5.A263
that the Borel-measurable variables can alternatively be characterised as
those variables 5 2 V for which {l 2 ⌦ : 5 (l)  2} 2 B(⌦) for all 2 2 R.

The following result follows almost immediately from Lemma 5.C.1275.

Corollary 5.C.2. The Borel f-algebra B(⌦) coincides with the f-algebra
f(X⇤) generated by the cylinder events. A variable 5 2 V is thus Borel-
measurable if and only if it is f(X⇤)-measurable.

Proof. By Lemma 5.C.1275, any open set in ⌦ is a (possibly empty) countable union
of cylinder events. So, by definition of f(X⇤), all open sets are included in the f-
algebra f(X⇤) and therefore, f(X⇤) includes the Borel f-algebra B(⌦). Conversely,
it is clear that f(X⇤) is not larger than the Borel f-algebra B(⌦) because each cylin-
der event is itself open. The last statement then simply follows from the definition
of measurability (Borel-measurability or f(X⇤)-measurability).

Without explicitly stating the definition of an analytic function [28, Def-
inition I.1.4], we next show that any f(X⇤)-measurable non-negative vari-
able 5 2 V � is analytic. The fact that any Borel-measurable non-negative
function (on ⌦) is analytic, and thus by Corollary 5.C.2 that any f(X⇤)-
measurable non-negative global variable is analytic, is already stated in
[28, Corollary I.6], but we nevertheless give an independent proof because
Dellacherie [28] characterises Borel-measurable functions in a somewhat
di�erent—presumably equivalent—way.

Proposition 5.C.3. Any f(X⇤)-measurable non-negative variable 5 2 V � is
analytic according to [28, Definition I.1.4].

The proof relies on the following topological fact about ⌦—the defini-
tions of a separable space and a zero-dimensional space can be found in [53,
p.3] and [53, p.35], respectively.

Lemma 5.C.4. The space ⌦ is metrizable, separable and zero-dimensional.

Proof. The metrizability follows from Lemma 5.C.1275. To prove that ⌦ is separable,
we need to show that there is a countable subset of ⌦ that is dense in ⌦. Let $ ✓ ⌦
be any set of paths obtained by including, for each situation A 2 X⇤, a single path
l from the cylinder event �(A); such a set $ exists and is countable because X⇤ is
countable.22 To see that $ is dense in ⌦, recall from Lemma 5.C.1275 that any open

22And by evoking the Axiom of Dependent Choice.
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set in ⌦ is a countable union of cylinder events. Since, for any cylinder event �(A),
the set $ contains by definition at least one path from �(A), it is clear that $ also
contains at least one path from each open set in ⌦, and thus that $ is dense in ⌦.

Furthermore, ⌦ is zero-dimensional if it is Hausdor� and has a base of sets that
are both open and closed (that is, clopen sets). That this is true is mentioned on [53,
p.35], but we can also easily derive it ourselves. Indeed, since ⌦ is metrizable, and
since any metrizable space is Hausdor� [53, p.18], ⌦ is Hausdor�. The cylinder
events �(X⇤) moreover form a base of ⌦ [by Lemma 5.C.1275], and any cylinder
event �(F1:9) is both open [Lemma 5.C.1275] and, because �(F1:9) is the complement
of the finite union [

H1:92X9\{F1:9}�(H1:9), closed.

Proof of Proposition 5.C.3 . We prove that any Borel-measurable non-negative
variable 5 2 V � is analytic; the desired statement then follows from Corol-
lary 5.C.2 . To this end, we start by using [53, Theorem 24.3] which guaran-
tees that, if ⌦ and R are metrizable and R is separable, then the set VB of Borel-
measurable variables is the union [bBb of all sets Bb of variables of Baire class b.
Without going into detail, b here is any ordinal number such that 1  b < l1

where l1 is the first uncountable ordinal, and Baire classes are recursively defined
by starting with variables of Baire class 1 and then iteratively defining new larger
Baire classes by including pointwise limits of sequences of variables in the preceding
Baire classes; see [53, Definition 24.1]. Let us first check that⌦ andR aremetrizable
and thatR is separable. The metrizability of ⌦ is guaranteed by Lemma 5.C.4 , and
the metrizability of R follows from [40, Problem C.11]—recall from Section 1.614

that our topology on R corresponds to the one in [40, Example C.2.1]. Taking into
account this topology, it is also clear that the rational numbers Q are dense in R

and thus that R is separable [53, p.3]. So by [53, Theorem 24.3] the set VB of
Borel-measurable variables is equal to the union [bBb.

Next, let us show that the union [bBb is the smallest subset of V that contains all
continuous variables and that is closed under taking pointwise limits. Let + be any
subset of V that contains all continuous variables and that is closed under taking
pointwise limits. To see that [bBb ✓ +, we will apply the principle of transfinite
induction [44, p.66] on the ordinal numbers b (see [44, p.56] for the definition of
an ‘initial segment’). We are allowed to use this principle because the set of all ordinal
numbers b such that 1 < b < l1 is well-ordered by [44, p.79]. To start the induction,
we prove that B1 is in +. This follows from [53, Theorem 24.10], which implies that
any variable inB1 is the pointwise limit of continuous variables, and thus an element
of +. Note that we can indeed use [53, Theorem 24.10] because, as shown earlier,
R is metrizable and separable, and ⌦ is metrizable, separable and zero-dimensional
by Lemma 5.C.4 . To prove the induction step, consider any ordinal number b
such that 1 < b < l1, and assume that [b0<bBb

0 ✓ +. Any variable 5 in Bb is by [53,
Definition 24.1] the pointwise limit of a sequence { 5<}<2N of variables in[b0<bBb

0 , and
thus also the pointwise limit of a sequence { 5<}<2N of variables in +. Since + is closed
under taking pointwise limits, we have that 5 2 +, and since 5 is any variable in Bb,
we obtain that Bb ✓ + and therefore that [b0bBb

0 ✓ +. This proves the induction
step, and so by the principle of transfinite induction, we infer that [bBb ✓ + [where
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b ranges over all ordinal numbers such that 1 < b < l1]. It now su�ces to observe
that [bBb itself contains all continuous variables [53, p.190] and that it is closed
under taking pointwise because, as discussed above, [53, Theorem 24.3] implies
that it is equal to the set VB of Borel-measurable variables, which is itself closed
under taking pointwise limits; see [53, Example 11.2 (i)] and take into account
that R is metrizable. So [bBb is the smallest set of variables in V that contains all
continuous variables and that is closed under taking pointwise limits. Hence, by
[53, Theorem 24.3], the same is thus true for the set VB of all Borel-measurable
variables.

We continue to show that the set VB,� of all Borel-measurable non-negative vari-
ables is the smallest subset of V � that contains all continuous non-negative variables
and that is closed under taking pointwise limits. It is clear that, since VB con-
tains all continuous variables and is closed under taking pointwise limits, that the
subset of VB of all non-negative variables—the set VB,� of all Borel-measurable
non-negative variables—contains all non-negative continuous variables and is also
closed under taking pointwise limits. To see that VB,� is also the smallest such set,
consider any second set K ✓ V � that contains all non-negative continuous vari-
ables and that is closed under taking pointwise limits. Then it is clear that the set
{ 5 2 V : 5 +, 5� 2 K} contains all continuous variables in V and is also closed under
taking pointwise limits; the former follows from the fact that, for any continuous
variable 5 in V , the variables 5 + and 5

� are also continuous (and non-negative), and
the latter follows from the fact that lim<!+1 5< = lim<!+1 5

+
<
� lim<!+1 5

�
<
for any

converging sequence ( 5<)<2N in V (and the fact that K is closed under taking point-
wise limits). Since VB is the smallest set that contains all continuous variables and
is closed under taking pointwise limits, it follows that VB ✓ { 5 2 V : 5 +, 5� 2 K}.
This implies that for any 5 2 VB,�, since 5 = 5

+ and 5 2 VB, we have that 5 2 K,
and thus that VB,� ✓ K. So VB,� is indeed the smallest subset of V � that contains
all continuous non-negative variables and is closed under taking pointwise limits.

It now only su�ces to establish that the set V A,� of all analytic (non-negative)
variables in V � [28, Definition I.1.4] contains all continuous non-negative variables
and is closed under taking pointwise limits, because we can then combine this with
our observation that VB,� is the smallest subset of V � that contains all continuous
non-negative variables and is closed under taking pointwise limits, to infer the de-
sired statement that the set VB,� of Borel-measurable non-negative variables is a
subset of the analytic non-negative variables. That V A,� is closed under taking point-
wise limits follows from [28, Theorem I.2.5]. To see that V A,� contains all continuous
non-negative variables, observe from the text below [28, Definition I.1.4] that all ‘el-
ementary Borel functions’ are analytic. The notion of an elementary Borel function
is defined in [28, Definition I.1.3]; in particular, it follows from this definition that
any continuous non-negative real-valued variable in V � is an elementary Borel func-
tion,23 and is therefore analytic—for recall from [28, Introduction, Paragraph 2] that
continuous functions according to Dellacherie [28] take values in the non-negative
realsR�. So V A,� contains all continuous non-negative real-valued variables. Finally,

23This is also explicitly mentioned by Dellacherie [28] himself, in the proof of [28, Corol-
lary I.2.6].
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let us check that any continuous non-negative (not necessarily real-valued) variable
5 is the pointwise limit of a sequence of continuous non-negative real-valued vari-
ables, and therefore, since we have already shown that V A,� is closed under tak-
ing pointwise limits, that V A,� contains all continuous non-negative (not necessarily
real-valued) variables. Since 5 is continuous, we also have that 5^< for any < 2 N is
continuous; indeed, 5^< is u.s.c. because 5 is u.s.c. (since it is continous) and the sub-
level sets {l 2 ⌦ : 5^< (l) < 0} for all 0 2 R are either equal to {l 2 ⌦ : 5 (l) < 0}
(if 0  <) or equal to ⌦ (if < < 0), and similarly we can infer that 5^< is l.s.c. So 5

^<

is continuous for all < 2 N, and it is clearly also real-valued and non-negative (be-
cause 5 is non-negative). Hence, since ( 5^<)<2N converges pointwise to 5 , we obtain
that 5 is the pointwise limit of a sequence of continuous non-negative real-valued
variables.
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—Chapter VI—

A�������� ����� ������������

The previous two chapters each introduced and studied a particular type
of global upper expectation. Each of these operators turned out to have
fairly nice continuity properties, yet their construction also relied on a very
specific language and interpretation. Game-theoretic upper expectations
take local sets of acceptable gambles as a starting point, and then use notions
such as supermartingales and superhedging to construct a global model.
Measure-theoretic upper expectations on the other hand take local sets of
mass functions as a starting point, and then use probability measures and
upper integrals to extend beyond the local level.

In the current chapter, we take a more direct route. Starting from an up-
per expectations tree, we will construct a global model solely by imposing
some basic requirements—axioms—and by using conservativity arguments.
In that respect, the approach is similar to the one that leads to the natural
extensions Efin

Q and EQ under coherence; recall Section 3.480. However, a
crucial di�erence is that we will now only impose coherence on the domain
F ⇥X⇤, and use some type of continuity axiom to extend beyond this fini-
tary domain. Doing so seems to be necessary in order to obtain desirable
continuity behaviour of the resulting global upper expectation—recall from
Section 3.698 that the natural extension EQ under coherence alone lacked
a rather basic type of continuity from below. Choosing the type of conti-
nuity axiom is a delicate matter however; preferably, we want it to be as
weak and intuitive as possible, yet it should also be su�ciently strong in or-
der to result in a global upper expectation with satisfactory properties. The
specific continuity axiom that we will suggest is fairly weak, and will follow
intuitively from an approximation argument that regards global non-finitary
variables as representing idealised finitary gambles (see Co2286 further be-
low). However, the global upper expectation that—through conservativ-
ity arguments—will result from imposing this weaker type of continuity,
will exhibit strong continuity behaviour nonetheless. In fact, the axiomatic
model thus obtained will turn out to be equal to the game-theoretic upper
expectation Eeb

A,V and hence, for a large part, also to the measure-theoretic
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Figure 6.1 Overview of all the global upper expectations treated in this dis-
sertation.

upper expectation EP,M.
Though comparable to game-theoretic or measure-theoretic upper ex-

pectations in terms of continuity behaviour, it is the simple and universal
character of its definition that really sets our axiomatic model apart from
these other two global models. In that respect, it is very similar to our defi-
nition of EQ , which solely relied on upper expectations trees, coherence and
conservativity arguments; none of these notions require any particular in-
terpretation; they can instead be motivated or given meaning starting from
multiple points of view. The only notable di�erence with EQ is that our new
axiomatic model hinges on an additional continuity axiom, but, here too, no
particular interpretation for an upper expectation is required. Moreover, we
will also provide a wide variety of alternative but equivalent characterisa-
tions for our axiomatic model, including a full axiomatisation that does not
rely on any additional conservativity arguments. Apart from their obvious
mathematical benefits, these alternative characterisations allow readers to
interpret and motivate our axiomatic model in an even more flexible way.

The structure of this chapter is rather straightforward: in Section 6.1!,
we introduce and argue for the use of some specific axioms, and then subse-
quently use these axioms to define a global upper expectation. We then con-
tinue to study the properties—and the existence—of this axiomatic global
upper expectation in Sections 6.2290 and 6.3294. More precisely, in Sec-
tion 6.2290, we prove the existence of our axiomatic upper expectation, and
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6.1 Natural extension under continuity and monotonicity

show that it is equal to the game-theoretic upper expectation, and hence,
for a large part, also to the measure-theoretic upper expectation. In Sec-
tion 6.3294 then, we establish several alternative characterisations for our
axiomatic model, including a full axiomatisation—not based on additional
conservativity arguments—and a constructive characterisation. The latter
is of considerable importance on a practical level, since it explicitly tells us
how to calculate the value of our axiomatic upper expectation for any kind
of variable.

Finally, in Section 6.4302, we study whether the continuity axiom that
characterises our global model can be relaxed even further. We consider
one specific weakening of the continuity axiom and show that the newly
obtained global upper expectation is essentially a trivial adaptation of the
upper integral proposed by Daniell [19]. In general contexts however, the
properties of this Daniell-like global upper expectation are not quite satisfac-
tory, and so we are—in general—inclined to stick with the original stronger
continuity axiom. Nevertheless, there are three particular instances where
it does perform well; if we restrict ourselves to monotone limits of finitary
gambles, if we restrict ourselves to the domain of all indicators, and—for all
possible variables and situations—if the local models are precise.

6.1 Natural extension under a continuity axiom and a mono-
tonicity axiom

In order to propose a global model that is, in its interpretation, as uni-
versal as possible, we start from an upper expectations tree Q• to describe
the local dynamics of our stochastic process; recall that upper expectations
trees can always be seen as to directly result from acceptable gambles trees
or imprecise probability trees through Eqs. 3.150 and 3.351, respectively.
One of the simplest and most intuitive ways to then extend Q•—or better
Epre
Q —is by using the natural extension under coherence, or equivalently un-

der WC182–WC482; recall Definition 3.886. The downside of this approach,
however, is that the resulting model EQ lacks some basic but desirable con-
tinuity properties, which is why we dismissed it at the end of Chapter 345
and went on to study more involved types of global upper expectations in
the subsequent chapters.

Yet, as we also remarked at the end of Section 3.698, no such continu-
ity issues arise if we restrict our attention to the finitary domain F ⇥X⇤.
Moreover, the restriction of EQ to this finitary domain—or simply the natu-
ral extension Efin

Q under coherence to F ⇥X⇤ [Corollary 3.4.789]—coincides
not only with all the other finitary global upper expectations EA , Ef

A,V and
EP on F ⇥X⇤ [Theorems 3.5.190 and 3.5.291], but also with the continuity-
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based upper expectations Eeb
Q,V and EP,M on F ⇥X⇤ [Corollary 4.4.9170 and

Proposition 5.4.5244]. Hence, it seems that the extension from the prelimi-
nary upper expectation Epre

Q to Efin
Q is a done deal, and so we will henceforth

take Efin
Q on F ⇥X⇤ as a starting point for defining our axiomatic global

upper expectation. Nevertheless, our axiomatic model will later on also be
given alternative characterisations that are based on directly extending—
for instance, using coherence and continuity—the initial upper expectation
Epre
Q ; see Section 6.3294.

The continuity axioms and monotonicity

Given a global upper expectation E : V ⇥X⇤ ! R that extends Efin
Q , one of

the weakest types of continuity axioms that we can and will want to impose
on E is the following:

Co1. For any increasing sequence ( 5<)<2N in F , and any A 2X⇤,

lim sup
<!+1

E ( 5< |A) � E ( 5 |A) with 5 B sup
<2N

5< = lim
<!+1

5<.

Note that Co1 is weak because it only applies to sequences that are increas-
ing and that consist of finitary gambles—a motivation for this axiom will
be given shortly. Apart from this continuity axiom, we will moreover always
impose that E should be monotone on V ⇥X⇤:

EC4⌦. 5  6 ) E ( 5 |A)  E (6 |A) for any 5 , 6 2 V and A 2X⇤.

This monotonicity property is weaker than EC4163 because it requires an
inequality between two variables 5 and 6 on their entire domain ⌦, rather
than only on the cylinder set �(A). Note that, if we assume a global upper
expectation to satisfy EC4⌦, imposing Axiom Co1 becomes equivalent to im-
posing continuity with respect to increasing sequences in F—which is, for
readers who are familiar with Choquet integration, perhaps more comfort-
able or natural to impose as an axiom:

Co1=. For any increasing sequence ( 5<)<2N in F , and any A 2X⇤,

lim
<!+1

E ( 5< |A) = E ( 5 |A) with 5 B sup
<2N

5< = lim
<!+1

5<.

Though Axiom Co1 is elegant and weak, we also consider an alternative
but stronger version of the axiom, which applies to all converging sequences
in F that are uniformly bounded below:

Co2. For any sequence ( 5<)<2N in F that converges pointwise and that is
uniformly bounded below, and any A 2X⇤,

lim sup
<!+1

E ( 5< |A) � E ( 5 |A) with 5 B lim
<!+1

5<.
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6.1 Natural extension under continuity and monotonicity

Clearly, Co2 implies Co1 , and therefore also implies Co1= if combined
with monotonicity [EC4⌦ ]. The converse—that Co1 or Co1= implies
Co2 —is not true though; see Section 6.4.3310 later on.

A motivation for the axioms

First and foremost, our motivation for the axioms above, and thus also for
the global axiomatic upper expectations introduced below, is based—as we
will clarify in the next paragraph—on the interpretational convention that
we regard higher upper expectations to be more conservative (or less in-
formative). We feel this convention is appropriate because it is true for all
global upper expectations that we have encountered so far, whether they
are of the probability-based type, or the behavioural/game-theoretic type.
Indeed, if an upper expectation denotes an upper bound on the linear ex-
pectations corresponding to a set of probability charges/measures, then a
higher upper bound is obviously more conservative (or less informative).
On the other hand, if an upper expectation denotes the infimum selling (or
hedging) prices corresponding to a set of acceptable gambles (resp. super-
martingales) then, again, higher selling (hedging) prices are more conser-
vative (or less informative). Note also that this convention is in line with
what we have already said in Section 2.6.338 and Section 3.4.285, where
we argued for the use of the natural extension—the most conservative or
largest extension—under coherence.

Now, apart from the convention above, our motivation for Co1 and
Co2 additionally stems from our di�erence in interpretation between fini-
tary gambles and non-finitary (extended real) variables. For we consider
finitary gambles to be the only global variables that have direct practical
significance; they depend on the states of the stochastic process up until
some finite time horizon, and they can only take real values. Global vari-
ables that depend on the entire infinite path taken by the process, or take
the values +1 or �1, are only given an implicit interpretation in the sense
that they are considered to be abstract idealisations of finitary gambles that
lie arbitrarily close.1 In particular, if 5 is the pointwise limit of a sequence
( 5<)<2N of finitary gambles—and if 5 is itself not a finitary gamble—, then 5

is considered to be an idealisation of 5< for large <; think of e.g. hitting times
[Example 4.2.2140], hitting probabilities [Example 3.6.199], stopping times,
infinite time averages [26], . . . As a result, we typically desire the upper
expectation E ( 5 |A) of such a global limit variable to give information about
the upper expectation E ( 5< |A) for a generically large value of <. Given this
point of view, Co2 is then only a minimal requirement; it simply demands

1Recall that a similar point was raised in the paragraph below Definition 4.3143, where we
said that extended real variables are being regarded as idealised—bounded—gambles.
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that, for any converging (uniformly bounded below) sequence ( 5<)<2N of
finitary gambles, and the corresponding sequence

�
E ( 5< |A)

�
<2N of upper ex-

pectations, the upper expectation E ( 5 |A) of the limit variable 5 should not
exceed the ‘maximum’ value that

�
E ( 5< |A)

�
<2N attains at large <. If this con-

dition were not satisfied2 then, since we regard higher upper expectations
to be less informative, E ( 5 |A) would not take into account information given
by the limit values of

�
E ( 5< |A)

�
<2N, which we consider to be unwarranted.

Furthermore, since Co1286 is simply a weakened version of Co2286, it can be
argued for on similar grounds.

Though the reasoning above essentially applies to any converging se-
quence in F , Co2286 (and in particular Co1286) nonetheless only applies to
sequences that are uniformly bounded below. Mathematically speaking, this
is no problem since we ideally want to impose axioms that are as weak as
possible anyway—as long as we obtain a global model with desirable fea-
tures. From an interpretational point of view, however, the condition of
being uniformly bounded below seems rather arbitrary and, based on mere
intuition, we would be inclined to drop it. This is not a good idea though, be-
cause it would make global upper expectations sometimes attain extremely
low values; we will come back to this issue in Chapter 7323.

Lastly, it remains to motivate monotonicity [EC4⌦
286]. In general, this

property is satisfied by almost all upper expectations; for one, all the global
upper expectations that we have studied so far satisfy it. It therefore does
not appear to be very controversial. On the domain F ⇥X⇤, monotonic-
ity will automatically be satisfied because Efin

Q satisfies WC584 and we re-
quire our desired global upper expectation to extend Efin

Q . That monotonic-
ity [EC4⌦

286] should also hold on the more general domain V ⇥X⇤ can
then be argued in a somewhat similar way as before, using approximation
arguments; since we have that larger finitary gambles lead to higher up-
per expectations, we also assume that larger—abstract and idealised—(not
necessarily finitary) extended real-valued variables return higher upper ex-
pectations.

Axiomatic global upper expectations

Given that we choose to accept Co1286 and EC4⌦
286, we can take the nat-

ural extension of Efin
Q under these two axioms, which if it exists, delivers

us with a first candidate for a possible axiomatic global upper expectation.
The natural extension here is defined similarly as in Section 3.4.285, but
extended to apply to general operators on V ⇥X⇤; so it is once more the

2This is for instance the case in Example 3.6.199 for the upper expectations
�
E> (I

�
9

í

)
�
<2N

and E> (I�í ). In fact, it can be seen that the sequence (I
�
9

í

)92N0 there is increasing, and thus
that the corresponding upper expectation E> does not even satisfy Co1286.
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pointwise largest or—since we consider higher upper expectations to be
more conservative—the most conservative extension satisfying a specific
set of axioms.

Definition 6.1. For any upper expectations tree Q•, we let E
%

Q,A be, if it ex-
ists, the natural extension of Efin

Q to V ⇥X⇤ under Co1286 and EC4⌦
286. }

We will see later on—in Section 6.4302—that this natural extension E
%

Q,A
always exists, and that it moreover can be identified as an imprecise ver-
sion of Daniell’s upper integral. Furthermore, we will also show there that
it can be elegantly characterised as an extension of the preliminary upper
expectation Epre

Q .
If we moreover choose to accept the stronger axiom Co2286 instead of

Co1286, then we obtain the following axiomatic global upper expectation.

Definition 6.2. For any upper expectations tree Q•, we let EQ,A be, if it
exists, the natural extension of Efin

Q to V ⇥X⇤ under Co2286 and EC4⌦
286. }

Once more, as we will show in Sections 6.2y and 6.3294, this global upper
expectation EQ,A exists and can be given various alternative characterisa-
tions.

The reason that we let E
%

Q,A and EQ,A be defined as the natural
extensions—the most conservative extensions—under their respective ax-
ioms, is the same as in Section 3.4.285. Taking any smaller global upper
expectation would mean adding information on top of the already accepted
axioms (and what Efin

Q says), which we do not consider to be necessary.
Moreover, if one nevertheless desires to impose further axioms or add more
information, then the natural extension still provides conservative (upper)
bounds.

The axiomatic lower expectations EQ,A and E%

Q,A
are obtained from the

upper expectations EQ,A and E
%

Q,A by conjugacy; so, for all ( 5 , A) 2 V ⇥X⇤,

EQ,A ( 5 |A) B �EQ,A (� 5 |A) and E%

Q,A
( 5 |A) B �E%

Q,A (� 5 |A). (6.1)

Using conjugacy to define axiomatic lower expectations is justified—and
perhaps even intuitive—because all other types of upper and lower expecta-
tions satisfy it. Nonetheless, if one desires so, one could equivalently define
these axiomatic lower expectations independently, starting from a (conju-
gate) lower expectations tree, and then following a similar reasoning to how
we defined EQ,A and E

%

Q,A, but where all steps are ‘conjugate’; e.g. we do not
take the pointwise largest extension, but the pointwise smallest extension
(of some initial lower expectation).

When it comes to choosing between E
%

Q,A and EQ,A, the former appears
to be more appealing—at least, at first sight—simply because its definition is
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based on the weaker and simpler axiomCo1286. Of course, much depends on
whether this operator E

%

Q,A exhibits satisfactory continuity behaviour, and
in particular we would want it to satisfy Co2286—since we have just argued
it to be desirable. Unfortunately however, as we will show in Section 6.4302,
this is not necessarily the case: E

%

Q,A may fail to satisfy Co2286. We are
therefore inclined to work with EQ,A instead of E

%

Q,A.
Besides it satisfying a stronger continuity axiom—and actually more

than one—another major reason why we prefer to use EQ,A instead of E
%

Q,A
is that EQ,A will turn out to coincide with Eeb

Q,V—or Eeb
A,V for an agreeing

tree A•—on the entire domain V ⇥X⇤. Hence, by Theorems 5.5.13256
and 5.5.10255, it will also coincide with EP,M—for an agreeing tree P•—
on a rather large domain. It is clear that this considerably increases the
relevance of EQ,A compared to that of E

%

Q,A. We will therefore mainly study
the properties of EQ,A in the coming sections, and only come back to those
of E

%

Q,A at the end.
Furthermore, all this being said, we want to stress that the definitions of

EQ,A and E
%

Q,A, or rather, the justification of these definitions, do not hinge
on any particular interpretation for a global upper expectation. Indeed, we
started from an upper expectations tree to parametrise the local dynamics of
a stochastic process; this parametrisation can on itself already be regarded
as resulting from either a behavioural approach involving sets of acceptable
gambles, or from a probability-based approach involving sets of probability
mass functions. We then continued to consider Efin

Q as a first extension of
the local models; this extension was simply obtained from—only—adopting
WC182–WC482 or, equivalently, coherence; properties that can once more
be motivated from a behavioural point of view and from a probability-based
point of view. The two axioms that we then additionally impose, Co2286
and EC4⌦

286 for EQ,A, or Co1286 and EC4⌦
286 for E

%

Q,A, follow only from
an approximation argument; no particular interpretation is required here
either.

6.2 Relation to game-theoretic and measure-theoretic upper ex-
pectations

Let us start by proving that, for any upper expectations tree Q•, the
game-theoretic upper expectation Eeb

Q,V satisfies all the defining properties
of the axiomatic upper expectation EQ,A, which will therefore imply that the
latter exists and coincides with Eeb

Q,V on all of V ⇥X⇤. Afterwards, in Sec-
tion 6.3294, we will establish various alternative characterisations for EQ,A,
one of which will be a full axiomatisation, without a conservativity argu-
ment.

290



6.2 Relation to game-theoretic and measure-theoretic upper expectations

The game-theoretic upper expectation Eeb
Q,V is surely smaller than or

equal to EQ,A—if it exists. This follows immediately from the definition of
EQ,A and the fact that Eeb

Q,V extends Efin
Q , and satisfies EC4⌦

286 and Co2286,
due to Corollary 4.4.9170, Proposition 4.4.3164 and Corollary 4.6.2177.
To prove that they are in fact equal, we will crucially rely on Proposi-
tion 4.7.6184 and Theorem 4.7.4183; the former expresses Eeb

Q,V in terms of
its values on the domain Lb ⇥X⇤ of all bounded below limits of finitary
variables (and situations), whereas the latter provides a crucial continuity
property for Eeb

Q,V on this domain. We start with the following lemma.

Lemma 6.2.1. For any upper expectations tree Q•, the upper expectation Eeb
Q,V

extends Efin
Q and satisfies Co2286 and EC4⌦

286. Moreover, for any other upper
expectation E0 on V ⇥X⇤ that satisfies these conditions, we have that

E0( 5 |A)  Eeb
Q,V ( 5 |A) for all ( 5 , A) 2 Lb ⇥X⇤.

Proof. Observe that Eeb
Q ,V extends Efin

Q by Corollary 4.4.9170, and that it satisfies
Co2286 by Corollary 4.6.2177 and EC4⌦

286 by Proposition 4.4.3164. So it remains to
prove that, for any second global upper expectation E0 on V ⇥X⇤ that extends Efin

Q
and satisfies Co2286 and EC4⌦

286, that E0( 5 |A)  Eeb
Q ,V ( 5 |A) for all ( 5 , A) 2 Lb ⇥X⇤.

Fix any ( 5 , A) 2 Lb ⇥X⇤. By Theorem 4.7.4183, there is a sequence ( 5<)<2N of fini-
tary gambles that is uniformly bounded below and that converges pointwise to 5

such that lim<!+1 Eeb
Q ,V ( 5< |A) = Eeb

Q ,V ( 5 |A). Since both Eeb
Q ,V and E0 extend Efin

Q , Eeb
Q ,V

coincides with E0 on F ⇥X⇤, and so we have that

lim
<!+1

E0( 5< |A) = lim
<!+1

Eeb
Q ,V ( 5< |A) = Eeb

Q ,V ( 5 |A).

Applying Co2286 to the left-hand side, we obtain that E0( 5 |A)  Eeb
Q ,V ( 5 |A), as desired.

The remaining step, which is showing that Eeb
Q,V is also the most con-

servative global upper expectation on the entire domain V ⇥X⇤ among all
those that extend Efin

Q and satisfy Co2286 and EC4⌦
286, now follows trivially

from Proposition 4.7.6184.

Theorem 6.2.2. For any upper expectations tree Q•, the natural extension
EQ,A exists and is equal to the upper expectation Eeb

Q,V.

Proof. We simply show that Eeb
Q ,V is the pointwise largest global upper expectation

on V ⇥X⇤ that extends Efin
Q and satisfies Co2286 and EC4⌦

286. Since Eeb
Q ,V exists

by its very definition, and since the natural extension EQ ,A is defined as the largest
extension under these conditions, this immediately implies the desired statement.
We know by Lemma 6.2.1 that Eeb

Q ,V extends Efin
Q and satisfies Co2286 and EC4⌦

286,
so it su�ces to prove that Eeb

Q ,V is the (pointwise) largest global upper expectation
satisfying these properties.
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To this end, consider any global upper expectation E0 on V ⇥X⇤ that extends
Efin

Q and satisfies Co2286 and EC4⌦
286, and fix any ( 5 , A) 2 V ⇥X⇤. Then, by Propo-

sition 4.7.6184, we have that

Eeb
Q ,V ( 5 |A) = inf

n
Eeb

Q ,V (6 |A) : 6 2 Lb and 6 � 5

o

� inf
n
E0(6 |A) : 6 2 Lb and 6 � 5

o
� E0( 5 |A),

where the first inequality follows from Lemma 6.2.1x and our assumptions about
E0, and where the second inequality follows from the fact that E0 satisfies EC4⌦

286

by assumption.

An immediate consequence of this main theorem is that EQ,A also coin-
cides with EP,M on a fairly large domain, given that Q• and P• agree.

Theorem 6.2.3. For any imprecise probability tree P• and upper expecta-
tions tree Q• that agree according to Eq. (3.3)51, we have that EQ,A ( 5 |A) =
EP,M ( 5 |A) for all ( 5 , A) 2 V f,b ⇥X⇤. If PB is moreover closed for all B 2 X⇤,
then also EQ,A ( 5 |A) = EP,M ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤ such that 5 is the
pointwise limit of a decreasing sequence of finitary gambles.

Proof. The first statement follows immediately from Theorem 6.2.2x and
Theorem 5.5.10255. The second follows from Theorem 6.2.2x and Theo-
rem 5.5.13256.

Theorems 6.2.2x and 6.2.3 can be seen as two of the most important re-
sults of this dissertation—if not the most important. They have considerable
merit both at a philosophical level and at a mathematical level. Philosophi-
cally speaking, it is most interesting that game-theoretic upper expectations,
which are based on behavioural notions such as supermartingales and su-
perhedging, coincide with the upper expectations EQ,A resulting from a di-
rect and interpretation-free axiomatic approach. Due to Theorem 6.2.3, the
same can be said, to a large extent, for measure-theoretic upper expecta-
tions. The axiomatic model EQ,A serves as an alternative characterisation
that is neutral in interpretation and conceptually much more direct than
either of the two other types of global upper expectations. From a mathe-
matical point of view, Theorems 6.2.2x and 6.2.3 provide—and hopefully
will continue to provide—a large number of additional insights about the in-
volved global upper expectations. In particular, these theorems ensure that
all the considered global upper expectations share the same properties and
features. So properties that were previously only known to hold for only
one or two types of global models, suddenly are seen to hold for all three of
them, and similarly for any additional properties that might be discovered
in future work. We have already extensively used a similar mechanism in
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Figure 6.2 Schematic overview of the possible continuity-based approaches
and their connections.

Chapter 5217, where we deduced a large number of properties for measure-
theoretic upper expectations (especially in the precise case) from the fact
that they are known to hold for game-theoretic upper expectations. We can
now do the same for EQ,A, establishing properties for it by exploiting its
equality with Eeb

Q,V.

Corollary 6.2.4. For any upper expectations tree Q•, the following statements
hold:

(i) The restriction of EQ,A to V ⇥X⇤ is coherent.

(ii) EQ,A satisfies the extended coherence properties EC1163–EC6163.

(iii) For any 5 2 V and any 9 2 N0,

EQ,A ( 5 |-1:9) = EQ,A

⇣
EQ,A ( 5 |-1:9+1)

��
-1:9

⌘
.
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(iv) For any ( 5 , A) 2 V ⇥X⇤,

EQ,A ( 5 |A) = inf
n
EQ,A (6 |A) : 6 2 Lb and 6 � 5

o
;

(v) For any A 2 X⇤ and any increasing sequence ( 5<)<2N in V b,
lim<!+1 EQ,A ( 5< |A) = EQ,A (lim<!+1 5< |A). [Continuity from below]

(vi) For any A 2X⇤ and any decreasing sequence ( 5<)<2N of finitary bounded
above variables, lim<!+1 EQ,A ( 5< |A) = EQ,A (lim<!+1 5< |A).

[Continuity w.r.t. decreasing finitary variables]

(vii) For any A 2 X⇤ and any 5 2 Lb, there is a sequence ( 5<)<2N of <-
measurable gambles that is uniformly bounded below and that converges
pointwise to 5 such that lim<!+1 EQ,A ( 5< |A) = EQ,A ( 5 |A).

(viii) For any A 2 X⇤ and any sequence ( 5<)<2N in V b that is uni-
formly bounded below, Eeb

Q,V ( 5 |A)  lim inf<!+1 Eeb
Q,V ( 5< |A) with 5 B

lim inf<!+1 5<. [Fatou’s lemma]

Proof. The properties above follow from combining Theorem 6.2.2291 with, in order,

(i). Corollary 4.4.5167;

(ii). Proposition 4.4.3164;

(iii). Theorem 4.4.4166;

(iv). Proposition 4.7.6184;

(v). Theorem 4.6.1175;

(vi). Theorem 4.7.3182;

(vii). Theorem 4.7.4183.

(viii). Corollary 4.6.2177.

6.3 Alternative characterisations for EQ,A

Our starting point for the definition of EQ,A was the finitary upper ex-
pectation Efin

Q , a global upper expectation that itself results from accepting
WC182–WC482 (or coherence)—and these properties alone—on the finitary
domain F ⇥X⇤. We considered this to be the simplest and most convinc-
ing way of introducing our axiomatic model, since there seems to be no
disagreement on how a global upper expectation should be defined on the
domain F ⇥X⇤—all the global upper expectations we have considered so far
coincide with Efin

Q on F ⇥X⇤. Yet, on the other hand, this approach is some-
what indirect in the sense that we consider two extensions: one from the
local models Q•—or, equivalently, from Epre

Q —to Efin
Q , and then subsequently

from Efin
Q to EQ,A. One may therefore be inclined to desire a definition of
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EQ,A as a one-step extension of the local models Q•; this is what we set out
to explore next.

We will moreover give a full axiomatisation of EQ,A—and thus also Eeb
A,V

and, for a large part, EP,M—without any conservativity arguments, similar
to what we did for Efin

Q and EQ in Section 3.4.387. Lastly, we will mold
these characterising axioms together into a single formula; this provides us
with a more constructive characterisation of EQ,A that does not rely on any
existence arguments.

Let us already give an overview of the possible properties for global up-
per expectations that, on top of Co2286 and EC4⌦

286, will be used in the
results about to come. They are stated for a general global upper expecta-
tion E : V ⇥X⇤ ! R and a general upper expectations tree Q•:

NE1. E ( 5 (-9+1) |F1:9) = Q
F1:9 ( 5 ) for all 5 2 L(X) and F1:9 2X⇤;

NE2. E ( 5 |A) = E ( 51A |A) for all ( 5 , A) 2 F ⇥X⇤;

NE3. E ( 5 |-1:9) = E (E ( 5 |-1:9+1) |-1:9) for all 5 2 F and 9 2 N0 such that
E ( 5 |-1:9+1) is real-valued.

NE3. E ( 5 |-1:9)  E (E ( 5 |-1:9+1) |-1:9) for all 5 2 F and 9 2 N0;

NE4L. E ( 5 |A) = inf
n
E (6 |A) : 6 2 Lb and 6 � 5

o
for all ( 5 , A) 2 V ⇥X⇤;

Co3. For any A 2X⇤ and any sequence ( 5<)<2N in F that converges point-
wise and that is uniformly bounded below,

lim
;!+1

E ( inf
<�;

5< |A) = E ( 5 |A) with 5 B lim
<!+1

5<;

Co4. For any A 2X⇤ and any increasing sequence ( 5<)<2N in Lb,

lim
<!+1

E ( 5< |A) = E ( 5 |A), with 5 B sup
<2N

5< = lim
<!+1

5<.

Co5. For any A 2 X⇤ and any decreasing sequence ( 5<)<2N in F that is
uniformly bounded below,

lim
<!+1

E ( 5< |A) = E ( 5 |A), with 5 B inf
<2N

5< = lim
<!+1

5<;

Properties NE188–NE388 were already introduced in Section 3.4.387, and
they fully characterise Efin

Q [Theorem 3.4.688]. Property NE3 is a weak-
ened version of the law of iterated upper expectations [NE388],3 and NE4L

3Strictly speaking, NE3 is not weaker than NE388 because the latter only applies if
E ( 5 |-1:9+1) is real-valued. Nonetheless, since all the global upper expectations on which we
will impose NE3 and/or NE388 will always be real-valued anyway, we will always pretend,
for the sake of simplicity, as if NE3 is weaker than NE388.
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is similar to NE488 but where the approximation is with respect to variables
that are in Lb—instead of F—and that moreover lie above the considered
variable 5 on their entire domain—rather than only on �(A) as is the case for
NE488. Finally, Co3x–Co5x are three specific continuity properties; note
in particular that Co3x is a type of continuity with respect to increasing se-
quences. Properties Co2286–Co4x can be ordered depending on how strong
they are; Co4x is the strongest, Co2286 the weakest (under monotonicity
[EC4⌦

286]).

Lemma 6.3.1. For any global upper expectation E on V ⇥X⇤, we have that
Co4x implies Co3x. If E is moreover monotone [EC4⌦

286], then Co3x im-
plies Co2286.

Proof. Fix any global upper expectation E on V ⇥X⇤. First suppose that E satisfies
Co4x. To show that E satisfies Co3x, consider any A 2 X⇤ and any converging
sequence ( 5<)<2N in F that is uniformly bounded below. Let 5 B lim<!+1 5< and,
for all 9 2 N, let 69 be the global variable defined by 69 B inf9< 5<. Since ( 5<)<2N
is uniformly bounded below, each 69 is bounded below, and since each 69 is clearly
also the pointwise limit of the finitary gambles inf9<; 5< for ; ! +1, we have
that 69 2 Lb for all 9 2 N. The sequence (69)92N is moreover increasing [due to its
definition], so we have by Co4x that

lim
9!+1

E
�
inf
9<

5<

��
A

�
= lim

9!+1
E (69 | A) = E

�
lim
9!+1

69

��
A

�
= E

�
lim
9!+1

inf
9<

5<

��
A

�
= E

�
lim inf
<!+1

5<

��
A

�
= E

�
lim
<!+1

5<

��
A

�
= E ( 5 |A),

establishing that Co3x also holds.
To establish the second claim, suppose that E satisfies EC4⌦

286 and Co3x. Again,
fix any A 2X⇤ and any converging sequence ( 5<)<2N in F that is uniformly bounded
below, and let 5 B lim<!+1 5<. By Co3x, we have that

lim
9!+1

E
�
inf
9<

5<

��
A

�
= E ( 5 |A).

Due to the monotonicity [EC4⌦
286] of E, we have that lim sup

9!+1 E ( 59 |A) �
lim9!+1 E (inf9< 5< |A), and therefore that

lim sup
9!+1

E ( 59 |A) � E ( 5 |A).

This establishes Co2286 for E.

6.3.1 Alternative natural extensions of Epre
Q or Efin

Q

We start by expressing EQ,A as a natural extension of Epre
Q [Eq. (3.13)85]

under a series of axioms that are as weak as possible. The alternative char-
acterisations of EQ,A that we will then give afterwards, will all be natural
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extensions of Epre
Q (or Efin) under some stronger—but also fairly intuitive—

axioms.

Proposition 6.3.2. For any upper expectations tree Q•, the upper expecta-
tion EQ,A is the natural extension of Epre

Q under NE288, NE3295, Co2286 and
EC4⌦

286.

Proof. It follows from Definition 6.2289 that EQ ,A satisfies EC4⌦
286 and Co2286. Def-

inition 6.2289 also says that EQ ,A extends Efin
Q , which is itself an extension of the

preliminary upper expectation E
pre
Q [Definition 3.886], so EQ ,A extends E

pre
Q . That

EQ ,A moreover satisfies the properties NE288 and NE3295 follows from the fact that
EQ ,A extends Efin

Q , from Theorem 3.4.688[NE288] and from Corollary 3.5.794. So,
according to the definition of the natural extension, it su�ces to prove that EQ ,A is
larger or equal than any other global upper expectation E on V ⇥X⇤ that extends
E

pre
Q and that satisfies NE288, NE3295, EC4⌦

286 and Co2286. To this end, let us first
show that Efin

Q —and thus EQ ,A—is always larger or equal than E on F ⇥X⇤.
Start by noting that, for any F1:7 2 X⇤ and any (7 + 1)-measurable gamble

6(-1:7+1),

E (6(-1:7+1) |F1:7) NE2= E (6(F1:7-7+1) |F1:7) = E
pre
Q (6(F1:7-7+1) |F1:7)

= Efin
Q (6(F1:7-7+1) |F1:7)

NE2= Efin
Q (6(-1:7+1) |F1:7), (6.2)

where the second equality follows from the fact that E extends E
pre
Q , and where the

third equality follows from the fact that, by definition, Efin
Q extends E

pre
Q . Now fix any

( 5 , A) 2 F ⇥X⇤ and let 9 B |A| be the length of A. Since 5 is finitary, there surely is
some ✓ � 9 such that 5 is (✓+1)-measurable. Since E satisfies NE3295 and EC4⌦

286,
we have that

E ( 5 |-1:9)  E (E ( 5 |-1:9+1) |-1:9)  E (E (E ( 5 |-1:9+2) |-1:9+1) |-1:9)
 E (E (· · · E ( 5 |-1:✓) · · · |-1:9+1) |-1:9).

Applying Eq. (6.2) to the inner upper expectation of the rightmost term, we obtain
that

E ( 5 |-1:9)  E (E (· · · E (Efin
Q ( 5 |-1:✓) |-1:✓�1) · · · |-1:9+1) |-1:9).

Since Efin
Q ( 5 |-1:✓) is real-valued [by Corollary 3.4.283 and Corollary 3.4.587] and

clearly ✓-measurable, it is automatically bounded and thus an ✓-measurable gamble.
Hence, by once more applying Eq. (6.2), we obtain that

E ( 5 |-1:9)  E (E (· · · Efin
Q (Efin

Q ( 5 |-1:✓) |-1:✓�1) · · · |-1:9+1) |-1:9).

We can do the same with the other upper expectations, working our way outwards
to find that

E ( 5 |-1:9)  Efin
Q (Efin

Q (· · · Efin
Q ( 5 |-1:✓) · · · |-1:9+1) |-1:9).
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It now su�ces to recall that Corollary 3.5.794 holds for Efin
Q , and therefore that the

above inequality implies that E ( 5 |-1:9)  Efin
Q ( 5 |-1:9). Since A is a situation of length

9, we have in particular that E ( 5 |A)  Efin
Q ( 5 |A), and since this holds for any ( 5 , A) 2

F ⇥X⇤, we have that Efin
Q is always larger or equal than E on F ⇥X⇤. The upper

expectation EQ ,A extends Efin
Q , so we consequently have that E ( 5 |A)  EQ ,A ( 5 |A) for

all ( 5 , A) 2 F ⇥X⇤.
We next show that this inequality also holds on the domain Lb ⇥X⇤. Fix any

couple ( 5 , A) 2 Lb ⇥X⇤. By Corollary 6.2.4(vii)294, there is a sequence ( 5<)<2N of
finitary gambles that is uniformly bounded below and that converges pointwise to
5 such that lim<!+1 EQ ,A ( 5< |A) = EQ ,A ( 5 |A). Since E (6 |A)  EQ ,A (6 |A) for all 6 2 F as
we have just proved above, and since E satisfies Co2286, we have that

E ( 5 |A)  lim sup
<!+1

E ( 5< |A)  lim sup
<!+1

EQ ,A ( 5< |A) = lim
<!+1

EQ ,A ( 5< |A) = EQ ,A ( 5 |A).

Hence, we indeed have that E ( 5 |A)  EQ ,A ( 5 |A) for all ( 5 , A) 2 Lb ⇥X⇤. Finally,
to see that this inequality also holds on the entire domain V ⇥X⇤, consider any
( 5 , A) 2 V ⇥X⇤ and note that by Corollary 6.2.4(iv)293,

EQ ,A ( 5 |A) = inf
n
EQ ,A (6 |A) : 6 2 Lb and 6 � 5

o

� inf
n
E (6 |A) : 6 2 Lb and 6 � 5

o
� E ( 5 |A),

where the second step follows from the fact that, as we have just proved above,
E (6 |A)  EQ ,A (6 |A) for all 6 2 Lb, and where the final step follows the fact that E
satisfies EC4⌦

286 by assumption.

The following result establishes a characterisation of EQ,A as being a
natural extension of Epre

Q under coherence on F ⇥X⇤ and Axioms Co2286
and EC4⌦

286. One may check that coherence on F ⇥X⇤ is a—strictly—
stronger condition than NE288 and NE3295,4 and so the result can easily
be seen to follow from Proposition 6.3.2x above. The characterisation may
nonetheless be convenient for those who consider coherence to be a basic
requirement for upper expectations.

Corollary 6.3.3. For any upper expectations tree Q•, EQ,A is the natural ex-
tension of Epre

Q under coherence on F ⇥X⇤, Co2286 and EC4⌦
286.

Proof. Proposition 6.3.2x says that EQ ,A extends E
pre
Q and satisfies EC4⌦

286 and
Co2286. EQ ,A is also coherent on F ⇥X⇤ because it extends Efin

Q [by definition],
and because Efin

Q is coherent by Corollary 3.4.587. Any other global upper expec-
tation E on V ⇥X⇤ that extends E

pre
Q , that is coherent on F ⇥X⇤, and that satis-

fies EC4⌦
286 and Co2286, also satisfies NE288 and NE3295 due to Theorem 3.4.384

4Even when a global upper expectation extends Epre
Q and satisfies NE288 and NE3295,

there is nothing that bounds its values from below on couples ( 5 , F1:<) 2 F ⇥X⇤ with 5 not
(< + 1)-measurable. We leave it as an exercise for the reader to check that this permits such
a global upper expectation to violate coherence. On the other hand, due to Theorem 3.4.384
and Proposition 3.4.484, coherence implies NE288 and NE3295.

298



6.3 Alternative characterisations for EQ,A

and Proposition 3.4.484. Hence, by Proposition 6.3.2297, E ( 5 |A)  EQ ,A ( 5 |A) for all
( 5 , A) 2 V ⇥X⇤.

The next characterisation of EQ,A is based on continuity with respect to
increasing sequences [Co4295]; a property that is satisfied by upper inte-
grals/expectations of all sorts—also upper integrals/expectations that we
have not discussed in this dissertation; e.g. Choquet integrals [6, 28, 29].
We express it as a natural extension of Efin

Q , because we want to emphasize
the extension from F ⇥X⇤ to V ⇥X⇤ through Co4295 (and EC4⌦

286), but one
may also express it as a natural extension of Epre

Q as we did in the previous
two results.

Corollary 6.3.4. For any upper expectations tree Q•, the upper expectation
EQ,A is the natural extension of Efin

Q under Co4295 and EC4⌦
286.

Proof. By definition, EQ ,A extends Efin
Q and satisfies EC4⌦

286. Due to Corol-
lary 6.2.4(v)294, EQ ,A also satisfies Co4295. Any other global upper expectation E on
V ⇥X⇤ that extends Efin

Q and that satisfies EC4⌦
286 and Co4295, also satisfies Co2286

due to Lemma 6.3.1296. Hence, since EQ ,A is by definition the largest extension of
Efin

Q satisfying EC4⌦
286 and Co2286, we indeed obtain that E ( 5 |A)  EQ ,A ( 5 |A) for all

( 5 , A) 2 V ⇥X⇤.

6.3.2 Full axiomatisation

What properties or axioms su�ce in order for a global upper expectation
to be equal to EQ,A? Or, equivalently, what properties su�ce in order for a
global upper expectation to be equal to Eeb

Q,V and, for a large part, EP,M?
So far, our characterisations for EQ,A always established that it is the most
conservative upper expectation under some given set of properties. A full
axiomatisation of EQ,A without any conservativity arguments is still lack-
ing at this point; we now provide such an axiomatisation, with the goal of
proposing a series of axioms that is as weak and simple as possible—though
the latter is admittedly sometimes somewhat of a subjective matter.

We start by axiomatising EQ,A on the domain Lb⇥X⇤. Recall that Co3295,
though it may look abstract at first sight, simply imposes continuity with
respect to some very specific increasing sequences [see e.g. Lemma 6.3.1296].

Lemma 6.3.5. For any upper expectations tree Q•, a global upper expectation
E on V ⇥X⇤ is equal to EQ,A on Lb⇥X⇤ if and only if it satisfies NE188–NE388,
Co3295 and Co5295.

Proof. First note that EQ ,A itself satisfies the axioms above. Indeed, Theorem 3.4.688

and the definition of EQ ,A imply that EQ ,A satisfies NE188–NE388. Axiom Co5295

follows from Corollary 6.2.4(vi)294, and Axiom Co3295 follows from the fact that
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EQ ,A satisfies Co4295 by Corollary 6.3.4x, and since Co4295 implies Co3295 by
Lemma 6.3.1296. Since EQ ,A satisfies the axioms above, a global upper expectation
E on V ⇥X⇤ that is equal to EQ ,A on Lb ⇥X⇤ will also satisfy these axioms, be-
cause these axioms solely involve variables in Lb. It is clear that this is the case for
NE188–NE388 and Co5295. It is also the case for Co3295 because, for any converg-
ing sequence ( 5<)<2N in F that is uniformly bounded below, inf<�; 5< for any ; 2 N
and 5 B lim<!+1 5< are both bounded below and limits of finitary gambles. This
establishes necessity of NE188–NE388, Co3295 and Co5295.

To prove su�ciency, suppose that E is any global upper expectation on V ⇥X⇤

satisfying NE188–NE388, Co5295 and Co3295. Then E coincides with Efin
Q on F ⇥X⇤

by Theorem 3.4.688, which by the fact that EQ ,A extends Efin
Q [by definition] implies

that E coincides with EQ ,A on F ⇥X⇤. Now fix any ( 5 , A) 2 Lb ⇥X⇤. According to
Proposition 4.7.2182, the variable 5 is the pointwise limit of a sequence ( 5<)<2N in F

that is uniformly bounded below.
Let us first show that E (inf<�; 5< |A) = EQ ,A (inf<�; 5< |A) for any ; 2 N. For

any ; 2 N, let (6;
<
)<2N be the sequence in V defined by 6

;

<
B inf<�✓�; 5✓ for all

< � ;, and 6
;

<
B 5; for all < < ;. Then it can easily be checked that, since

( 5<)<2N is a sequence of finitary gambles, (6;
<
)<2N is a sequence of finitary gambles.

Moreover, (6;
<
)<2N clearly converges decreasingly to inf<�; 5<, and (6;

<
)<2N is uni-

formly bounded below because ( 5<)<2N is uniformly bounded below. Hence, since E
and EQ ,A both satisfy Co5295, and since we already know E and EQ ,A to coincide on
F ⇥X⇤, we obtain that

E
�
inf
<�;

5<

��
A

�
= lim

<!+1
E (6;

<
|A) = lim

<!+1
EQ ,A (6;< |A) = EQ ,A

�
inf
<�;

5<

��
A

�
.

Since the equality above holds for all; 2 N, and since E and EQ ,A satisfy Co3295,
it follows that

E ( 5 |A) = lim
;!+1

E
�
inf
<�;

5<

��
A

�
= lim

;!+1
EQ ,A

�
inf
<�;

5<

��
A

�
= EQ ,A ( 5 |A).

To axiomatise EQ,A on the entire domain V ⇥X⇤, we only need to add
Axiom NE4L295 to the list in Lemma 6.3.5x; it simply says that the values
of EQ,A on V ⇥X⇤ are obtained by approximating from above using the
variables in the domain Lb ⇥X⇤.

Proposition 6.3.6. For any upper expectations tree Q•, the upper expectation
EQ,A is the unique global upper expectation satisfying NE188–NE388, Co5295,
Co3295 and NE4L295.

Proof. By Lemma 6.3.5x, we know that EQ ,A satisfies NE188–NE388, Co5295 and
Co3295. That it satisfies NE4L

295 follows from Proposition 4.7.6184 and Theo-
rem 6.2.2291. To prove the uniqueness of EQ ,A, consider a second global upper ex-
pectation E on V ⇥X⇤ satisfying the axioms above. Then Lemma 6.3.5x says that
E and EQ ,A coincide on Lb ⇥X⇤. The fact that they coincide on all of V ⇥X⇤ then
follows immediately from the fact that they both satisfy NE4L

295.
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6.3.3 A direct formula

Though the axiomatic characterisations presented previously are at-
tractive from a theoretical point of view, pragmatically oriented readers
will still be on the lookout for some formula that allows them to derive
the values of the upper expectation EQ,A more directly. The expression
for the game-theoretic upper expectation Eeb

Q,V in Definition 4.6149 is in
that sense convenient to work with, because it directly expresses Eeb

Q,V ( 5 |A)
for any—general—couple ( 5 , A) 2 V ⇥X⇤ in terms of the allowable su-
permartingales Meb (Q•). Similarly, Proposition 3.5.1097—or, even better,
Corollary 3.5.1298—shows that EQ ( 5 |A) for any ( 5 , A) 2 V ⇥X⇤ can simply
be obtained by looking at the values of Efin

Q on all finitary gambles that are
larger or equal than 5 on �(A).

The result below provides a similar practical formula for EQ,A. It deliber-
ately takes the values of Efin

Q as a starting point, because these can easily be
obtained from the local models; one method to do so is to use the formula
in Lemma 3.D.5116. For particular types of finitary gambles, and particu-
lar types of trees, more e�cient methods can be found in [58, 63, 100].
Furthermore, as we have already mentioned a few times [e.g. Section 4.7180
and Section 5.5.4257], we are often interested in limits of finitary gambles, or
even more specifically, monotone limits of finitary gambles. In those cases,
instead of using the formula below, it is more convenient to use the continu-
ity properties Corollary 6.2.4(v)294 and (vi)294 in conjunction with the fact
that EQ,A coincides with Efin

Q on F ⇥X⇤.

Proposition 6.3.7. For any upper expectations tree Q• and any ( 5 , A) 2 V ⇥
X⇤, we have that

EQ,A ( 5 |A)
= inf

n
lim inf
<!+1

Efin
Q (6< |A) : 6< 2 F , (9⌫ 2 R) 6< � ⌫ and lim

<!+1
6< �A 5

o

= inf
⌫2R

inf
n
lim inf
<!+1

Efin
Q (6< |A) : 6< 2 F , 6< � ⌫ and lim

<!+1
6< �A 5

o
.

Proof. It follows from Theorem 6.2.2291 and Proposition 4.7.7185, that, for any
( 5 , A) 2 V ⇥X⇤,

EQ ,A ( 5 |A) = inf
n
lim inf
<!+1

EQ ,A (6< |A) : 6< 2 F , (9⌫ 2 R) 6< � ⌫ and lim
<!+1

6< �A 5
o
.

Recalling that EQ ,A extends Efin
Q [by definition], we immediately obtain the first de-

sired equality. The second equality follows trivially from the first, because
n
lim inf
<!+1

Efin
Q (6< |A) : 6< 2 F , (9⌫ 2 R) 6< � ⌫ and lim

<!+1
6< �A 5

o

=
[
⌫2R

n
lim inf
<!+1

Efin
Q (6< |A) : 6< 2 F , 6< � ⌫ and lim

<!+1
6< �A 5

o
.
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6.4 The natural extension under a weaker continuity axiom

In this final section, we examine whether the definition of EQ,A as the
most conservative extension of Efin

Q under EC4⌦
286 and Co2286 can be fur-

ther relaxed by replacing Co2286 with Co1286. In other words, we study
whether E

%

Q,A—if it exists—is equal to EQ,A and, more generally, what the
main characteristics of E

%

Q,A are. The upper expectation E
%

Q,A is particularly
interesting because, as we will discuss in Section 6.4.2304, it can be seen as
a imprecise-probabilistic generalisation of Daniell’s upper integral.

6.4.1 Existence of E
%

Q,A and a direct formula

We start by establishing the existence of E
%

Q,A, and by giving a formula
that is similar to—but more elegant than—the one given for EQ,A in Propo-
sition 6.3.7x.

Proposition 6.4.1. For any upper expectations tree Q•, the natural extension
E
%

Q,A exists and, for any ( 5 , A) 2 V ⇥X⇤,

E
%

Q,A ( 5 |A) = inf
n
lim
<!+1

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< �A 5

o

= inf
n
lim
<!+1

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< � 5

o

= inf
n
sup
<2N

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, sup

<2N
6< � 5

o
.

Proof. We start by proving the first equality. Let E on V ⇥X⇤ be defined, for all
( 5 , A) 2 V ⇥X⇤, by

E ( 5 |A) B inf
n
lim
<!+1

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< �A 5

o
,

where the limit lim<!+1 Efin
Q (6< |A) indeed exists for any increasing sequence (6<)<2N

in F because Efin
Q is monotone by Proposition 3.4.484 [WC584]. We show that E

is the most conservative—pointwise largest—global upper expectation on V ⇥X⇤

that extends Efin
Q and satisfies EC4⌦

286 and Co1286. By the definition of the natural
extension, this will then automatically imply the existence of E

%

Q ,A and the equality
of E and E

%

Q ,A.
Let us first check that E coincides with Efin

Q on F ⇥X⇤, or in other words that
E extends Efin

Q . That E ( 5 |A)  Efin
Q ( 5 |A) for any ( 5 , A) 2 F ⇥X⇤ follows immediately

from the definition of E; we can simply consider the (increasing) sequence in F that
is equal to 5 for all indices. To prove the converse inequality, observe that, for any
( 5 , A) 2 F ⇥X⇤,

E ( 5 |A) = inf
n
lim
<!+1

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< �A 5

o

� inf
n
lim inf
<!+1

Efin
Q (6< |A) : 6< 2 F , (9⌫ 2 R) 6< � ⌫ and lim

<!+1
6< �A 5

o
,
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because any increasing sequence (6<)<2N in F is bounded below (by inf 61), and the
corresponding limit lim<!+1 Efin

Q (6< |A) = lim inf<!+1 Efin
Q (6< |A) always exists due to

the monotonicity [WC584 in Proposition 3.4.484] of Efin
Q . Proposition 6.3.7301 says

that the right-hand side in the inequality above is equal to EQ ,A ( 5 |A), so we obtain
that E ( 5 |A) � EQ ,A ( 5 |A). Since EQ ,A moreover extends Efin

Q , we infer that E ( 5 |A) �
Efin

Q ( 5 |A) for all ( 5 , A) 2 F ⇥X⇤.
Furthermore, that E satisfies EC4⌦

286 follows straightforwardly from its defini-
tion. To see that it also satisfies Co1286, consider any A 2 X⇤ and any increasing
sequence (6<)<2N in F . Let 6 B sup

<2N 6< = lim<!+1 6<. Then we have that

E (6 |A)  lim
<!+1

Efin
Q (6< |A) = lim

<!+1
E (6< |A) = lim sup

<!+1
E (6< |A),

where the inequality follows from the definition of E, and the first equality follows
from the fact that E extends Efin

Q . Hence, E is a global upper expectation that extends
Efin

Q and satisfies EC4⌦
286 and Co1286.

To prove that E is the largest such global upper expectation, consider any global
upper expectation E0 that extends Efin

Q and satisfies EC4⌦
286 and Co1286. Fix any

( 5 , A) 2 V ⇥ X⇤, and consider any increasing sequence (6<)<2N in F such that
lim<!+1 6< �A 5 . Let (6̃<)<2N be the sequence defined by 6̃< B 6<I�(A) + <I�(A) 2 for
all < 2 N. Then we clearly have that (6̃<)<2N is an increasing sequence in F such that
lim<!+1 6̃< = lim<!+1 6<I�(A) + (+1)I�(A) 2 � 5 . Moreover,

lim
<!+1

Efin
Q (6< |A) = lim

<!+1
Efin

Q (6̃< |A) = lim
<!+1

E0(6̃< |A) � E0( lim
<!+1

6̃< |A) � E0( 5 |A),

where the first equality follows from NE288 in Theorem 3.4.688 and the fact that
6̃<I�(A) = 6<I�(A) for all < 2 N, the first inequality from the fact that E0 satisfies Co1286,
and the last inequality from the monotonicity [EC4⌦

286] of E0. Since the inequality
above holds for any increasing sequence (6<)<2N in F such that lim<!+1 6< �A 5 , we
obtain from the definition of E that E ( 5 |A) � E0( 5 |A). Hence, E is indeed the largest
global upper expectation on V ⇥X⇤ that coincides with Efin

Q and that satisfies EC4⌦
286

and Co1286. This establishes the first equality in the statement above.
To prove the second equality, note that obviously, for any ( 5 , A) 2 V ⇥X⇤,

E
%

Q ,A ( 5 |A) = inf
n
lim
<!+1

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< �A 5

o

 inf
n
lim
<!+1

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< � 5

o
.

To establish the converse inequality, consider any increasing sequence (⌘<)<2N in F

such that lim<!+1 ⌘< �A 5 . Let (⌘̃<)<2N be defined by ⌘̃< B ⌘<I�(A) +<I�(A) 2 for all < 2 N.
Then, since lim<!+1 ⌘< �A 5 , we have that lim<!+1 ⌘̃< = lim<!+1 ⌘<I�(A) +(+1)I�(A) 2 �
5 . Moreover, the sequence (⌘̃<)<2N still is an increasing sequence of finitary gambles,
so we get that

inf
n
lim
<!+1

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< � 5

o
 lim

<!+1
Efin

Q (⌘̃< |A)
= lim

<!+1
Efin

Q (⌘< |A),
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where the last step follows from the fact that ⌘̃<I�(A) = ⌘<I�(A) for all < 2 N, and
the fact that Efin

Q satisfies NE288. Since the above holds for any increasing sequence
(⌘<)<2N in F such that lim<!+1 ⌘< �A 5 , we infer that

inf
n
lim
<!+1

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< � 5

o

 inf
n
lim
<!+1

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< �A 5

o
= E

%

Q ,A ( 5 |A).

The final equality in the statement above now follows trivially from the increas-
ing character of the sequences (6<)<2N, and the fact that Efin

Q is monotone by Propo-
sition 3.4.484 [WC584].

The following result shows that E
%

Q,A is additive with respect to real con-
stants; a property that we will need later on.

Proposition 6.4.2. For any upper expectations tree Q•, we have that E
%

Q,A ( 5 +
` |A) = E

%

Q,A ( 5 |A) + ` for all ( 5 , A) 2 V ⇥X⇤ and ` 2 R.

Proof. Consider any ( 5 , A) 2 V ⇥X⇤ and ` 2 R. According to Proposition 6.4.1302,
we have that

E
%

Q ,A ( 5 + ` |A) = inf
n
lim
<!+1

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< � 5 + `

o
.

Note that a sequence of global variables (6<)<2N is an increasing sequence of finitary
gambles such that lim<!+1 6< � 5 + `, if and only if (6< � `)<2N is an increasing
sequence of finitary gambles such that lim<!+1 (6< � `) � 5 . Moreover, by Propo-
sition 3.4.4 [WC784], we have that Efin

Q (6< |A) = Efin
Q (6< � ` |A) + ` for any such a

sequence (6<)<2N and all < 2 N. Hence,

E
%

Q ,A ( 5 + ` |A)

= inf
n
lim
<!+1

Efin
Q (6< � ` |A) + ` : (6< � `) 2 F ,

(6< � `)  (6<+1 � `), lim
<!+1

(6< � `) � 5

o
= E

%

Q ,A ( 5 |A) + `.

6.4.2 Daniell-like upper expectations

One of the reasons why we find the extension E
%

Q,A of Efin
Q interesting is

that it can be seen as an imprecise adaptation of Daniell’s [19] method for
extending a linear expectation. This method uses similar ideas as those that
are used in standard measure theory to extend the domain of a measure,
with the di�erence that linear expectations are now immediately considered
to be the initial objects and that continuity arguments are directly applied
to linear expectations rather than probability measures.
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6.4 The natural extension under a weaker continuity axiom

The classical Daniell extension

Concretely, Daniell’s [19] method for extending a linear expectation consists
of the following three steps, of which we will only sketch the essentials; we
refer to [103, Chapter 6] and [38, Section 5.1] for more details.

(i) The initial object that we aim to extend ought to be an elementary
integral � on a vector lattice K. A vector lattice is a non-empty set
of real-valued functions 5 : Y ! R closed under pointwise addition,
(finite) minima, (finite) maxima, and scaling with a real number; e.g.
F is a vector lattice. An elementary integral � : K ! R on a vector
lattice K is a functional that is linear [103, (a), (b) on p.283], that
takes non-negative values on (pointwise) non-negative functions [103,
(c) on p.283], and that additionally satisfies [103, (d) on p.283]:

lim
<!+1

�( 5<) = 0 if ( 5<)<2N is decreasing in K and lim
<!+1

5< = 0. (6.3)

(ii) The integral � is extended to the domain of all over- and under-
functions by imposing continuity. An over-function 5 2 Ko is the (ex-
tended real-valued) pointwise limit of an increasing sequence of func-
tions in K; an under-function 5 2 Ku is the (extended real-valued)
pointwise limit of a decreasing sequence of functions in K. The inte-
gral � is then defined, for any 5 2 Ko, by

�( 5 ) B lim
<!+1

�( 5<) if ( 5<)<2N is increasing in K and lim
<!+1

5< = 5 ,

and similarly for any under-function 5 2 Ku. It can be shown that, due
to the assumptions about � and K, this definition does not su�er from
ambiguity.

(iii) The upper integral �( 5 ) of any extended real-valued function 5 : Y !
R for which there is a 6 2 Ko such that 6 � 5 , is now defined by the
following upper approximation:

�( 5 ) B inf
�
�(6) : 6 2 Ko and 6 � 5

 
.

Analogously, the lower integral �( 5 ) of any extended real-valued func-
tion 5 for which there is a 6 2 Ku such that 6  5 , is defined by

�( 5 ) B sup
�
�(6) : 6 2 Ku and 6  5

 
.

If �( 5 ) and �( 5 ) are both defined, real-valued and coincide, then the
common value �( 5 ) B �( 5 ) = �( 5 ) is called the integral of 5 . It can
again be proved that this definition of � is consistent with its earlier
definition on Ko [Ku, and therefore that this new integral � extends
the earlier one.
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The measure-theoretic enthousiast may indeed spot great similarities
between the reasoning above and how probability measures—sometimes
called pre-measures—are usually extended; see e.g. [102, Section 1.7].
Daniell’s [19] method can therefore be seen as the functional analysis analo-
gon of the classical measure-theoretic approach. In our context, where (up-
per) expectations are the main objects of interest, this method is therefore
much more natural and direct than any of the measure-theoretic procedures
described in Chapter 5217. Of course, since it only involves linear function-
als, the applicability of this method is restricted to a precise context. The
adaptation5 to our imprecise setting, however, seems rather straightforward.
As we will see, this adaptation furthermore results in the same operator as
the axiomatic upper expectation E

%

Q,A defined earlier. Let us attempt tomake
this clear.

An imprecise Daniell-like extension

In our context, we use F as our initial vector lattice, and, for any fixed
A 2 X⇤, we let Efin

Q (·|A) : F ! R be our ‘elementary’ upper expectation.
We put ‘elementary’ between quotation marks because Efin

Q (·|A) satisfies all
the characteristic properties of an elementary integral, apart from the fact
that it is sublinear instead of linear [103, (a), (b) on p.283]; sublinearity
follows from the fact that Efin

Q satisfies WC282 and WC382 by definition; the
fact that Efin

Q is non-negative on non-negative gambles [103, (c) on p.283]
follows from Proposition 3.4.4[WC684]; Eq. (6.3)x, finally, follows from
Corollary 6.2.4(vi)294, the fact that EQ,A extends Efin

Q , and the fact that
Efin
Q (0|A) = 0 due to Proposition 3.4.4[WC684].
Next, similar to step (ii)x, we extend Efin

Q (·|A) to all over-functions F o

and under-functions Fu by imposing continuity; that is, we let the extension
EQ,D (·|A) on F o [ Fu be defined by EQ,D ( 5 |A) B lim<!+1 Efin

Q ( 5< |A) for any
5 2 F o and any increasing sequence ( 5<)<2N in F such that lim<!+1 5< = 5 ,
and similarly for any 5 2 Fu and any decreasing sequence ( 5<)<2N in F such
that lim<!+1 5< = 5 . It can easily be checked, using Corollary 6.2.4(v)294
and (vi)294 and the fact that EQ,A extends Efin

Q , that this definition of EQ,D
does not su�er from ambiguity and that EQ,D indeed extends Efin

Q . In fact, it
follows from the same arguments that EQ,D coincides with EQ,A on (F o[Fu)⇥
X⇤, and therefore by Corollary 6.2.4(ii)293 that EQ,D is monotone—we will
use this property shortly. Furthermore, observe that the set of all real-valued
over-functions is exactly the class of bounded below lower semicontinuous
(l.s.c.) variables in V u, and that the set of all real-valued under-functions is

5We do not call it a generalisation because we restrict our attention to the setting of
discrete-time finite-state processes; in that respect, Daniell’s [19] approach is much more gen-
eral since it considers abstract possibility spaces, vector lattices and elementary integrals.
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6.4 The natural extension under a weaker continuity axiom

the class of bounded above upper semicontinuous (u.s.c.) variables in V u;
this follows from Lemma 5.5.2251 (and the definition of an l.s.c. variable).

Finally, similar as in step (iii)305, we extend EQ,D (·|A) one step further to
the entire domain V , by using an outer approximation:

E
o
Q,D ( 5 |A) B inf

�
EQ,D (6 |A) : 6 2 F o and 6 � 5

 
for all 5 2 V .

6

The obtained upper expectation E
o
Q,D is then an extension of the previous

Daniell-like expectation EQ,D.

Corollary 6.4.3. For any upper expectations tree Q•, the upper expectation
E
o
Q,D extends EQ,D.

Proof. Consider any ( 5 , A) 2 (F o [ Fu) ⇥X⇤. If 5 2 F o, then clearly E
o
Q ,D ( 5 |A) =

EQ ,D ( 5 |A) because EQ ,D (·|A) is monotone as mentioned above. If 5 2 Fu, then the
inequality that E

o
Q ,D ( 5 |A) � EQ ,D ( 5 |A) follows once more from the monotonicity of

EQ ,D (·|A). To prove the converse inequality, note that 5 = lim<!+1 5< = inf<2N 5<

for some decreasing sequence ( 5<)<2N in F ✓ F o [because 5 is an under-function].
Hence, by the definition of E

o
Q ,D and since 5< � 5 for all < 2 N,

E
o
Q ,D ( 5 |A)  lim

<!+1
EQ ,D ( 5< |A) = EQ ,D ( 5 |A),

where the equality (and also the existence of the limit) follows from the definition
of EQ ,D.

The Daniell-like upper expectation E
o
Q,D that we have defined above can

now easily be seen to coincide with our axiomatic upper expectation E
%

Q,A
on the entire domain V ⇥X⇤; indeed, it follows from the continuity of EQ,D
with respect to increasing sequences in F—which itself follows immediately
from how EQ,D was defined on F o—and the fact that EQ,D extends Efin

Q , that,
for any ( 5 , A) 2 V ⇥X⇤,

E
o
Q,D ( 5 |A) = inf

�
EQ,D (6 |A) : 6 2 F o and 6 � 5

 
= inf

�
EQ,D ( lim

<!+1
6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< � 5

 
= inf

�
lim
<!+1

EQ,D (6< |A) : 6< 2 F , 6<  6<+1, lim
<!+1

6< � 5

 
= inf

�
lim
<!+1

Efin
Q (6< |A) : 6< 2 F , 6<  6<+1, lim

<!+1
6< � 5

 
= E

%

Q,A ( 5 |A),

where the last step follows from Proposition 6.4.1302.

6In accordance with step (iii)305, the infimum in this definition is always taken over a
non-empty set; e.g. it is easy to see that the constant 6 B +1 is in F o and always satisfies
6 � 5 .
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That E
%

Q,A and E
o
Q,D coincide ought not to surprise us as they are essen-

tially built on the same principles: first adopting continuity with respect
to increasing sequences in F (this corresponds to Co1286 or Co1=286 in the
case of E

%

Q,A) and then approximating from above (this corresponds to tak-
ing the most conservative extension or natural extension under EC4⌦

286).
This makes this way of extending Efin

Q very elegant. Nevertheless, it re-
mains to be seen how well the resulting common operator E

%

Q,A performs
in terms of continuity properties. The Daniell (outer/inner) integral is well-
understood and known to satisfy many strong continuity properties in a
precise context—similar to those of the Lebesgue integral with respect to a
probability measure—but we are unaware of any existent results about an
imprecise variant such as E

%

Q,A. In Sections 6.4.3310 and 6.4.4314, we will
investigate the properties of E

%

Q,A and how it relates to EQ,A.

A note about the Daniell lower extension

Before we continue to study the properties of E
%

Q,A, we want to point out
an interesting fact about the final step in our construction of E

o
Q,D. We took

the upper integral E
o
Q,D as our object of interest, but said nothing about the

lower integral E
u
Q,D which approximates from the inside:

E
u
Q,D ( 5 |A) B sup

�
EQ,D (6 |A) : 6 2 Fu and 6  5

 
for all ( 5 , A) 2 V ⇥X⇤.

The reason is that, as we will clarify shortly, E
o
Q,D and E

u
Q,D do not coincide in

many cases, and then E
o
Q,D clearly is the more intuitive choice when it comes

to defining a global upper expectation operator. Yet, though its definition
may be somewhat counter-intuitive, it actually turns out that on a large
part of its domain, E

u
Q,D coincides with EQ,A, and therefore also with Eeb

Q,V
[Theorem 6.2.2291] and, actually, if PB is closed for all B 2 X⇤, then when
E
u
Q,D and EQ,A coincide, E

u
Q,D and EP,M coincide as well [Theorem 6.2.3292].

Proposition 6.4.4. For any upper expectations tree Q• and any ( 5 , A) 2 V ⇥
X⇤ such that 5 is bounded below and f(X⇤)-measurable, or the limit of a
decreasing sequence in F , we have that E

u
Q,D ( 5 |A) = EQ,A ( 5 |A).

Proof. First recall from the discussion above that EQ ,D coincides with EQ ,A on (F o [
Fu) ⇥X⇤; this followed from, on the one hand, the definition of EQ ,D which starts
from Efin

Q and assumes continuity with respect to monotone sequences of finitary
gambles, and on the other hand, Corollary 6.2.4(v)294 and (vi)294 and the fact that
EQ ,A extends Efin

Q . Hence, we have that

E
u
Q ,D ( 5 |A) = sup

�
EQ ,A (6 |A) : 6 2 Fu and 6  5

 
for all ( 5 , A) 2 V ⇥X⇤

. (6.4)

Next, note from the above equality and the monotonicity [EC4⌦
286] of EQ ,A that E

u
Q ,D

coincides with EQ ,A on the under functions (and situations) Fu ⇥X⇤. Hence, since
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6.4 The natural extension under a weaker continuity axiom

any limit 5 2 V of a decreasing sequence in F is—by definition—in Fu, we have that
E
u
Q ,D ( 5 |A) = EQ ,A ( 5 |A) for any such 5 and any A 2X⇤.

So it remains to prove that E
u
Q ,D ( 5 |A) = EQ ,A ( 5 |A) for any 5 2 V f,b and any

A 2X⇤. To this end, we will once more use Choquet’s capacitability theorem [Theo-
rem 5.5.9255]. First observe that, since EQ ,A coincides with Eeb

Q ,V [Theorem 6.2.2291],
we have by Proposition 5.5.8254 that the restriction of EQ ,A (·|A) to V � is a capacity
on ⌦. Since 5 is bounded below and f(X⇤)-measurable, the variable 5

0 B 5 � inf 5 is
non-negative and clearly still f(X⇤)-measurable. Hence, Theorem 5.5.9255 says that

EQ ,A ( 5 0 |A) = sup
�
EQ ,A (6 |A) : 6 2 V u

� , 6 is u.s.c. and 6  5
0 
.

We next show that, for any fixed 6 2 V , we have that 6 2 V u
� and 6 is u.s.c. if and

only if 6 � 0 and 6 2 Fu. Suppose that 6 2 V u
� and 6 is u.s.c. Then by Lemma 5.5.7254

6 is bounded above (and clearly below) and thus by Lemma 5.5.2251 the pointwise
limit of a decreasing sequence (6<)<2N of finitary gambles. So then we indeed have
that 6 � 0 and 6 2 Fu. Conversely, suppose that 6 � 0 and 6 2 Fu. Then by
Lemma 5.5.2251 6 is u.s.c. and bounded above, and thus also real-valued because 6
is non-negative. Hence, 6 2 V u

� and 6 is u.s.c. as desired.
So, by the equality above, we have that

EQ ,A ( 5 0 |A) = sup
�
EQ ,A (6 |A) : 6 2 Fu, 6 � 0 and 6  5

0  E
u
Q ,D ( 5 0 |A),

where the inequality follows from Eq. (6.4) . To prove the converse inequality,
consider any 6 2 Fu such that 6  5

0. Since 5
0 is non-negative, we also have that

6
+  5

0 with 6
+ = 6

_0. Moreover, since 6 2 Fu, we also have that 6+ 2 Fu; indeed, if
(6<)<2N is a decreasing sequence in F such that lim<!+1 6< = 6, then we also have that
((6<)+)<2N is a decreasing sequence in F such that lim<!+1 (6<)+ = 6

+. Moreover, it
follows from 6  6+ and the monotonicity of EQ ,A, that EQ ,A (6 |A)  EQ ,A (6+ |A). Since
this holds for any 6 2 Fu such that 6  5

0, we indeed find that

E
u
Q ,D ( 5 0 |A) = sup

�
EQ ,A (6 |A) : 6 2 Fu and 6  5

0 
 sup

�
EQ ,A (6 |A) : 6 2 Fu, 6 � 0 and 6  5

0 = EQ ,A ( 5 0 |A).

So we conclude that E
u
Q ,D ( 5 0 |A) = EQ ,A ( 5 0 |A). It remains to show that this implies that

E
u
Q ,D ( 5 |A) = EQ ,A ( 5 |A). Since 5 0 = 5 �inf 5 with inf 5 2 R [because 5 is assumed to be

bounded below], it su�ces to check that E
u
Q ,D and EQ ,A are additive with respect to

real constants. For EQ ,A, this follows from Corollary 6.2.4(ii)293[EC5163]; for E
u
Q ,D,

this then follows from Eq. (6.4) , the fact that EQ ,A is constant additive and the
fact that, for any 6 2 V and any ` 2 R, we clearly have that 6 2 Fu if and only if
6 + ` 2 Fu.

Since E
u
Q,D coincides with EQ,A on the domain of couples ( 5 , A) 2 V ⇥

X⇤ such that 5 2 V f,b or 5 is the limit of a decreasing sequence in F , it
has the same desirable properties as EQ,A on this domain. Most practically
relevant inferences are included in this domain (recall Section 5.5.4257),
and so, technically speaking, E

u
Q,D is a suitable global upper expectation.

However, since its definition is rather unconventional and not very intuitive,
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we are inclined to regard E
u
Q,D mainly as a technical construct, which may

operate as an alternative characterisation for EQ,A or Eeb
Q,V—or perhaps even

EP,M—in many cases, but not necessarily convincing as a definition of a
global model for discrete-time stochastic processes.

Furthermore, our claim that E
o
Q,D and E

u
Q,D do not coincide in many

cases is illustrated by two examples further on [Example 6.4.5 and Exam-
ple 6.4.6314]. They show that E

%

Q,A—which is equal to E
o
Q,D—may already

di�er from EQ,A for bounded pointwise limits of finitary gambles, which
since EQ,A and E

u
Q,D coincide on such limits (because, as clarified near the

end of Example 6.4.6314, such a limit is always in V f,b), implies that E
o
Q,D

and E
u
Q,D di�er on such limits. Hence, the domain where the Daniell-like

upper integral E
o
Q,D and Daniell-like lower integral E

u
Q,D coincide, and thus

where a common Daniell-like integral as in (iii)305 can be defined, is in some
cases too small to be practically relevant. Moreover, such a common—upper
and lower—integral is in the classical ‘precise’ setting important because it
is a linear operator, yet, in our case, even on the domain where E

o
Q,D and

E
u
Q,D coincide, neither of these operators need to be linear (since the upper

expectation Efin
Q itself already isn’t linear). Hence, there is no good reason

to restrict our attention to such a common operator, instead of working with
E
o
Q,D (or E

u
Q,D).

6.4.3 E
%

Q,A fails to satisfy a crucial continuity axiom

A first obvious question that one may pose about the nature of E
%

Q,A is
whether it satisfies the continuity property Co2286; for if it did, then it would
follow from the definitions of E

%

Q,A and EQ,A that both upper expectations are
equal, and therefore that E

%

Q,A has the same—and desirable—characteristics
as EQ,A. We would then preferably adopt E

%

Q,A as the main characterisa-
tion of this common global upper expectation, simply because it relies on
a weaker continuity argument; one that is moreover the same as Daniell’s
continuity argument in the precise case.

Unfortunately, and somewhat remarkably, this is not the case. This is
shown by the following example.

Example 6.4.5. Consider the state space X B {0, 1, 2}, and let P• be
the imprecise probability tree where, for each A 2 X⇤, PA is the set of all
probability mass functions > such that >(1) = U and >(0) = >(2) = (1�U)/2
for some 0  U  1. The agreeing upper expectations tree Q• is then
described by Eq. (3.3)51; for all A 2X⇤ and all 5 2 L(X), it is given by

Q
A
( 5 ) B sup

0U1

⇥
U 5 (1) + (1 � U) ( 5 (0) + 5 (2))/2

⇤
.

The trees P• and Q• model the case where a subject has vacuous beliefs
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6.4 The natural extension under a weaker continuity axiom

about whether the next state value will be 1 or an element of {0, 2}, but
where if she knows the latter is true she deems it equally likely that either
0 or 2 will be the next state value.

Now let us look at the values of E
%

Q,A for the sequence ( 5<)<2N of finitary
gambles defined, for all < 2 N, by

5< (l) B
8>>><
>>>:

1 if l9 = 1
9�1

0 for some 1  9  <;
0 if l< = 1

<;
�1 if l9 = 1

9�1
2 for some 1  9  <,

for all l 2 ⌦.

So 5< for any < 2 N depends on the first < states of the process; it is equal
to 1 if the first state di�erent from 1 in this (finite) sequence is 0; it is equal
to �1 if the first state di�erent from 1 in this (finite) sequence is 2; and it
is equal to 0 if all states in this sequence are 1. So it is clear that ( 5<)<2N is
a sequence of finitary gambles—in fact, each 5< is <-measurable. Moreover,
( 5<)<2N converges pointwise to the global gamble 5 defined by

5 (l) B
8>>><
>>>:

1 if l9 = 1
9�1

0 for some 9 2 N;
0 if l = 111 · · · ;
�1 if l9 = 1

9�1
2 for some 9 2 N,

for all l 2 ⌦.

So 5 (l) for any l 2 ⌦ is equal to 1 if the first state di�erent from 1 in l is
0; it is equal to �1 if the first state di�erent from 1 in l is 2; and it is equal
to 0 if all states in l are 1. We will show that lim<!+1 E

%

Q,A ( 5<) = 0 and
E
%

Q,A ( 5 ) � 1/2, thus establishing that Co2286 does not hold for E
%

Q,A.
We first prove that E

%

Q,A ( 5<) = 0 for all < 2 N—and therefore that
lim<!+1 E

%

Q,A ( 5<) = 0. Fix any < 2 N and note that E
%

Q,A ( 5<) = Efin
Q ( 5<)

due to the definition of E
%

Q,A and the fact that 5< is a finitary gamble. So it
su�ces to show that Efin

Q ( 5<) = 0.
Start by observing that, due to Proposition 3.5.996 and because 5< is

<-measurable,

Efin
Q ( 5< |1<�1) = Q

1
<�1 ( 5< (1<�1·)) = Q

1
<�1 (I0 � I2)

= sup
0U1

⇥
U 0 + (1 � U) (1 � 1)/2

⇤
= 0.

Furthermore, since 5< is constant and equal to 1 on the cylinder set �(1<�20),
we have by Theorem 3.4.6 [NE288] and Proposition 3.4.484 [WC684] that

Efin
Q ( 5< |1<�20) = Efin

Q ( 5<11<�20 |1<�20) = Efin
Q (11

1
<�2

0
|1<�20) = 1.

In an analogous way, we can deduce that Efin
Q ( 5< |1<�22) = �1. Hence,

Efin
Q ( 5< |1<�2·) is equal to the local gamble I0 � I2 2 L(X), and so it follows
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in a similar way as before—note that Efin
Q ( 5< |-1:<�1) is (< � 1)-measurable

and a gamble because of Proposition 3.4.484 [WC684]—that

Efin
Q (Efin

Q ( 5< |-1:<�1) |1<�2) = Q
1
<�2 (Efin

Q ( 5< |1<�2·)) = Q
1
<�2 (I0 � I2) = 0.

Using the law of iterated upper expectations for Efin
Q [Corollary 3.5.794], we

obtain that

Efin
Q ( 5< |1<�2) = Efin

Q (Efin
Q ( 5< |-1:<�1) |1<�2) = 0.

We can now simply repeat this entire reasoning; we have that
Efin
Q ( 5< |1<�30) = 1 and Efin

Q ( 5< |1<�32) = �1 because of Theo-
rem 3.4.6 [NE288] and Proposition 3.4.484 [WC684], and therefore that
Efin
Q ( 5< |1<�3·) = I0 � I2. This again implies that

Efin
Q ( 5< |1<�3) = Efin

Q (Efin
Q ( 5< |-1:<�2) |1<�3) = Q

1
<�3 (Efin

Q ( 5< |1<�3·))
= Q

1
<�3 (I0 � I2) = 0.

Applying this reasoning over and over again, eventually yields that indeed

Efin
Q ( 5<) = Efin

Q ( 5< |10) = 0.

To show that E
%

Q,A ( 5 ) � 1/2, we use the formula in Proposition 6.4.1302.
Fix any increasing sequence (6<)<2N in F such that lim<!+1 6< � 5 , and any
n > 0. Since lim<!+1 6< (111 · · · ) � 5 (111 · · · ) = 0, there is an <̃ 2 N such
that 6<̃ (111 · · · ) � �n. The gamble 6<̃ is finitary and therefore;-measurable
for some ; 2 N, so this implies that 6<̃ (l) � �n for all l 2 �(1;). Since
(6<)<2N is increasing, we also have that 6< (l) � �n for all < � <̃ and all
l 2 �(1;).

Let us now focus on the values that the gambles (6<)<><̃ take on the
cylinder event �(1;0). Since 5 is equal to the constant 1 on this entire
cylinder event, we know that (6< (l))<><̃ for any l 2 �(1;0) converges to
a value larger than or equal to 1. Let �< B {l 2 �(1;0) : 6< (l) < 1 � n}
for all < 2 N such that < > <̃. Then, by what we have previously said,
lim<!+1 �< = ú. We now show that in fact �<⇤ = ú for some finite <⇤ > <̃.

Observe that (�<)<><̃ is a decreasing sequence of events because (6<)<><̃
is increasing. Moreover, each �< is a finite union of cylinder events; indeed,
this follows from the fact that each 6< is finitary and the finiteness ofX. As
a result, since lim<!+1 �< is empty, we infer by Lemma 4.C.2209 that �<⇤
must be empty for at least one <⇤ > <̃ [and consequently also for all < larger
than <⇤].

Since �<⇤ is empty, we have that 6<⇤ (l) � 1 � n for all l 2 �(1;0), and
therefore that 6<⇤11;0 � (1 � n)11;0. On the other hand, since <⇤ > <̃, we

312



6.4 The natural extension under a weaker continuity axiom

also know from before that 6<⇤ (l) � �n for all l 2 �(1;). In particular, we
have that 6<⇤ (11;1 + 11;2) � �n(11;1 + 11;2). So we find by adding these
two inequalities that

6<⇤11; � (1 � n)11;0 � n(11;1 + 11;2). (6.5)

The variable on the right-hand side is an (; + 1)-measurable gamble, and
therefore Proposition 3.5.996 guarantees that

Efin
Q

�
(1 � n)11;0 � n(11;1 + 11;2)

��
1
;
�
= Q

1
;

�
(1 � n)I0 � n(I1 + I2)

�
= sup
0U1

⇥
U (�n) + (1 � U) (1 � n � n)/2

⇤
= sup
0U1

⇥
� U/2 + 1/2 � n

⇤
= 1/2 � n.

Hence, by Eq. (6.5), Proposition 3.4.484 [WC584] and Theo-
rem 3.4.6 [NE288], we have that

1/2 � n  Efin
Q

�
6<⇤11; |1;

�
= Efin

Q (6<⇤ |1;). (6.6)

Next, note that Efin
Q (6<⇤ |1;)  Efin

Q (6<⇤ ). Indeed, using the law of iterated
upper expectations [Corollary 3.5.794] and Lemma 3.D.4116—which we can
apply due to Proposition 3.4.484 [WC1185] and the fact that Efin

Q extends Epre
Q

by definition—we have for any 0  7  ; � 1 that

Efin
Q (6<⇤ |17) = Efin

Q (Efin
Q (6<⇤ |-1:7+1) |17) = Q

1
7

�
Efin
Q (6<⇤ |17·)

�
� Efin

Q (6<⇤ |17+1),

where the last inequality follows from the definition of Q
1
7 [simply consider

the case where U = 1]. Since this holds for all 0  7  ; � 1, we obtain
that Efin

Q (6<⇤ |1;)  Efin
Q (6<⇤ |10) = Efin

Q (6<⇤ ). Combining this with Eq. (6.6),
we infer that 1/2 � n  Efin

Q (6<⇤ ).
The rest of the proof is now straightforward: Since (6<)<2N is increas-

ing, and since Efin
Q is monotone by Proposition 3.4.484 [WC584], the previ-

ous inequality implies that 1/2 � n  lim<!+1 Efin
Q (6<). This holds for any

n > 0, so we get that 1/2  lim<!+1 Efin
Q (6<). This holds for any increas-

ing sequence (6<)<2N in F such that lim<!+1 6< � 5 , so by the formula in
Proposition 6.4.1302 we obtain that 1/2  E

%

Q,A ( 5 ).
So we conclude that lim<!+1 E

%

Q,A ( 5<) = 0 but that E
%

Q,A ( 5 ) � 1/2, and
therefore that E

%

Q,A does not satisfy Co2286. ^

As already argued in Section 6.1285, we believe Axiom Co2286 to be a
desirable property for global upper expectations to have. Since E

%

Q,A does
not satisfy this axiom, we regard this global upper expectation as somewhat
inadequate. Our belief grows even stronger if we compare the behaviour of
E
%

Q,A to that of the three other main upper expectations EQ,A, E
eb
Q,V (or Eeb

A,V
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for any agreeing tree A•) and EP,M in the example above; these three global
models all return the value 0 for the gamble 5 .

Example 6.4.6. Reconsider the upper expectations treeQ• and the variables
( 5<)<2N and 5 from Example 6.4.5310. Recall that E

fin
Q ( 5<) = 0 for all < 2 N.

Since EQ,A extends Efin
Q , this implies that also EQ,A ( 5<) = 0 for all < 2 N, and

therefore that lim<!+1 EQ,A ( 5<) = 0. Since ( 5<)<2N is a sequence in F that is
clearly uniformly bounded below (by �1), Co2286 implies that

0 = lim
<!+1

EQ,A ( 5<) � EQ,A ( 5 ). (6.7)

By conjugacy [Eq. (6.1)289], this yields 0  EQ,A (� 5 ), which by EC1163 in
Corollary 6.2.4(ii)293 in turn implies that 0  EQ,A (� 5 ). It follows from
symmetry considerations of the tree Q• and the variable 5 , that EQ,A (� 5 ) =
EQ,A ( 5 ). As a result, we obtain that 0  EQ,A ( 5 ), which together with
Eq. (6.7) allows us to infer that EQ,A ( 5 ) = 0. So we conclude that

lim
<!+1

EQ,A ( 5<) = 0 = EQ,A ( 5 ),

and therefore that EQ,A is continuous with respect to the sequence ( 5<)<2N
of finitary gambles.

To see that the same is true for the upper expectations Eeb
Q,V and Eeb

A,V—
for any agreeing acceptable gambles tree A•—it su�ces to use Theo-
rem 6.2.2291 and Theorem 4.3.6161. Finally, that it holds for EP,M for
any agreeing imprecise probability tree P• can be deduced from Theo-
rem 6.2.3292, and the fact that 5 is in V f,b. Indeed, 5 is clearly bounded
below, and it is moreover f(X⇤)-measurable because each finitary gamble
5< is f(X⇤)-measurable [since the level sets {l 2 ⌦ : 5 (l)  2} for all 2 2 R
are finite unions of cylinder events] and because of MV2228. ^

Another reason why one may not want to use E
%

Q,A as a global model,
is the fact that E

%

Q,A does not satisfy Co4295 or any other stronger form of
continuity from below (with respect to increasing sequences). Indeed, for
if it did, then, since E

%

Q,A is monotone [EC4⌦
286] by definition, E

%

Q,A would
satisfy Co2286 due to Lemma 6.3.1296. But this is impossible as we just shown
above. Though we consider Co4295 or any other stronger form of continuity
from below to be less intuitive and compelling than Co2286, one might still
want to impose it simply because it is a property common to all sorts of
(upper) expectations.

6.4.4 E
%

Q,A as a suitable alternative for EQ,A in three special cases

Though E
%

Q,A does not really qualify as a suitable global model in general
contexts, there are still three particular instances where E

%

Q,A has all the nice
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6.4 The natural extension under a weaker continuity axiom

features that we would like it to have; (i) if the global variable of interest
is the limit of a monotone sequence of finitary gambles, (ii) in a precise
context where the local dynamics are described by linear expectations trees
and/or precise probability trees, (iii) and in a context where we are solely
interested in global upper (and lower) probabilities rather than global upper
(and lower) expectations. It turns out that E

%

Q,A is equivalent to EQ,A in these
three special cases, and therefore that it is then also equivalent to Eeb

Q,V and,
for a large part, to EP,M. Moreover, it follows trivially from the definitions
of E

%

Q,A and EQ,A that, even when E
%

Q,A does not coincide with EQ,A, it still
provides a conservative bound for the latter.

Corollary 6.4.7. For any upper expectations treeQ•, we have that E
%

Q,A ( 5 |A) �
EQ,A ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. This follows immediately from the fact that Co2286 is stronger than Co1286,
and Definition 6.1289 and Definition 6.2289.

An equality for monotone limits of finitary gambles

Let us start by establishing that E
%

Q,A and EQ,A coincide on all pointwise lim-
its of monotone (increasing or decreasing) sequences of finitary gambles. As
already mentioned in Section 4.7180 and 5.5.4257, these limits already make
up a fair deal of all the variables that are relevant for practical purposes.
Any hitting time, for instance, can be written as the limit of an increasing
sequence of ‘stopped’ hitting times; see Example 4.2.2140 for a case where
we consider the hitting time g0 of a single state 0 2X.

Corollary 6.4.8. For any upper expectations tree Q•, any A 2 X⇤ and any
monotone sequence ( 5<)<2N of finitary gambles that converges to some 5 2 V ,

EQ,A ( 5 |A) = E
%

Q,A ( 5 |A) and EQ,A ( 5 |A) = E%

Q,A
( 5 |A)

Proof. EQ ,A and E
%

Q ,A coincide on F ⇥X⇤ because they are both equal to Efin
Q by

definition. Then, if the sequence of finitary gambles ( 5<)<2N is increasing, the desired
equality follows from Corollary 6.2.4(v)294 and the continuity of E

%

Q ,A with respect
to ( 5<)<2N due to Co1=286 [because it satisfies Co1286 and EC4⌦

286 by definition].
On the other hand, if ( 5<)<2N is decreasing, then EQ ,A is continuous with respect
to ( 5<)<2N due to Corollary 6.2.4(vi)294 [since gambles are always bounded above].
Then, because E

%

Q ,A is always equal to or larger than EQ ,A due to Corollary 6.4.7,

EQ ,A ( 5 |A)  E
%

Q ,A ( 5 |A)  lim
<!+1

E
%

Q ,A ( 5< |A) = lim
<!+1

EQ ,A ( 5< |A) = EQ ,A ( 5 |A),

where the second inequality follows from EC4⌦
286 and the decreasing character of

( 5<)<2N, and where the first equality follows from the fact that E
%

Q ,A and EQ ,A are both
by definition equal to Efin

Q on F ⇥X⇤. The equality between the lower expectations
then follows from conjugacy [Eq. (6.1)289].
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Note in particular that E
%

Q,A satisfies, apart from continuity with respect to
increasing sequences of finitary gambles [Co1=286], also continuity with re-
spect to decreasing sequences of finitary gambles; this is due to the proof
above, or by Corollary 6.4.8x and Corollary 6.2.4(vi)294.

An equality for the precise setting

To show that E
%

Q,A coincides with EQ,A for precise local models, it su�ces to
simply check that E

%

Q,A is equal to the traditional ‘precise’ Daniell integral as
described in Section 6.4.2(i)305–(iii)305, with Efin

Q (·|A) now fulfilling the role
of an actual—linear—elementary integral (and not merely a sublinear one
as in the discussion below Section 6.4.2(i)305–(iii)305). The desired equality
then follows immediately from the fact that the standard Daniell integral
satisfies continuity properties similar to those of EQ,A. We concretize this
reasoning in the proof of the following lemma.

Lemma 6.4.9. For any precise probability tree > and the agreeing (upper)
expectations tree Q• according to Eq. (3.4)52, E

%

Q,A satisfies Co4295.

Proof. Let us check that our upper expectation E
%

Q ,A (·|A) for any A 2X⇤ is equal to
the ‘outer Daniell extension’ Eo

P from [38, Section 5.1.3], with P a specific count-
ably additive probability charge [Definition 5.1221]. As we will see, the desired re-
sult for E

%

Q ,A will then follow from the ‘monotone convergence theorem’ [38, Theo-
rem 5.10]. Though the monotone convergence theorem for the Daniell integral is
well-established, and can also be found in earlier textbooks—e.g. [103, Chapter 6]—
we choose to base ourselves on the work in [38, Section 5.1] because it is adapted
to also allow extended real-valued expectations rather than only real-valued ones.

The construction of Eo
P in [38, Section 5.1] relies on a countably additive (un-

conditional) probability charge P on an algebra (or field) of events F. It follows
from [38, Lemma C.3] and Definition 5.1221 that the—somewhat unconventional—
definition of countable additivity in [38, Section 5.1] is equivalent to countable ad-
ditivity in our—traditional—sense. The elementary integral in [38, Section 5.1] is
denoted by EP , and is defined by [38, Eq. (2.19)]; that is, for all F-simple gambles,

EP ( 5 ) B
<X
7=1

07P (�7), (6.8)

with P
<

7=1 07I�7 any representation of 5 [recall Section 3.3.374]. A reasoning entirely
the same as in Section 6.4.2(i)305–(iii)305 is then further followed to define the upper
Daniell integral—or outer Daniell extension—Eo

P in [38, Section 5.1].
For any arbitrary but fixed A 2X⇤, consider the global probability charge P> on

hX⇤i ⇥X⇤ that satisfies Eq. (3.12)72—according to Proposition 3.3.473 this global
probability charge exists and is unique. The unconditional probability charge P> (·|A)
on hX⇤i is then countably additive according to [5, Theorem 2.3]. So we can apply
the procedure above to define the corresponding elementary integral EP> (·|A) [ac-
cording to Eq. (6.8)] on all hX⇤i-simple gambles, and subsequently the outer Daniell
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extension Eo
P> (·|A) [according to Section 6.4.2(i)305–(iii)305] on all global variables

5 2 V . Then Eo
P> (·|A) satisfies the continuity described in [38, Theorem 5.10], be-

cause this continuity solely concerns ‘D-integrable’ variables and the ‘Daniell expec-
tation ED

P ’ in [38, Theorem 5.10] is simply a restriction of the outer Daniell extension
to ‘D-integrable’ variables.

We next show that E
%

Q ,A (·|A) is equal to Eo
P> (·|A), and therefore that E

%

Q ,A (·|A)
also satisfies the continuity in [38, Theorem 5.10]. Let E> (·|A) be defined from P>
according to Definition 3.477. Then its restriction to F coincides with the elemen-
tary integral EP> (·|A) (on F ): indeed, the hX⇤i-simple gambles are equal to the fini-
tary gambles F [Lemma 3.3.575], and it is clear from Definition 3.477 and Proposi-
tion 3.3.6(i)76 that E> (·|A) on F is deduced from P> (·|A) in agreement with Eq. (6.8) ,
and thus in the same way as how EP> (·|A) was deduced from P> (·|A). By Corol-
lary 3.5.392, and since Q• agrees with > according to Eq. (3.4)52 (or Eq. (3.3)51),
E> (·|A) is also equal to EQ (·|A), and thus by Corollary 3.4.789 equal to Efin

Q (·|A) on F ,
so we infer that Efin

Q (·|A) is equal to EP> (·|A). Since Eo
P> (·|A) is the outer Daniell exten-

sion of EP> (·|A) [according to Section 6.4.2(i)305–(iii)305] and since, as we have al-
ready shown, E

%

Q ,A (·|A) coincides with the outer Daniell extension—or upper Daniell
integral—E

o
Q ,D (·|A) deduced from Efin

Q according to Section 6.4.2(i)305–(iii)305, we
obtain that Eo

P> (·|A) and E
%

Q ,A (·|A) are equal.
Hence, for any A 2 X⇤, since Eo

P> (·|A) satisfies the continuity in [38, Theo-
rem 5.10], we have that E

%

Q ,A (·|A) satisfies the continuity in [38, Theorem 5.10]. Ax-
iom Co4295 then follows as a special case, because all variables inLb are ‘D-integrable’
according to Proposition 4.7.2182 and [38, Theorem 5.12], and because Eo

P> (·|A) [and
hence, E

%

Q ,A (·|A)] can never take the value �1 for a D-integrable variable that is
bounded below due to [38, Theorem 5.9 (DE3)].

Theorem 6.4.10. Consider any (upper) expectations tree Q• for which there
is a precise probability tree > such that Q• is equal to the agreeing tree Q•,>

defined by Eq. (3.4)52. Then we have that

E
%

Q,A ( 5 |A) = EQ,A ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

Proof. Since E
%

Q ,A satisfies Co4295 by Lemma 6.4.9 , and moreover extends Efin
Q and

satisfies EC4⌦
286 by definition, it follows from Corollary 6.3.4 that E

%

Q ,A is always
smaller than or equal to EQ ,A. Hence, combined with Corollary 6.4.7315, we obtain
that EQ ,A and E

%

Q ,A are equal.

The fact that E
%

Q,A coincides with EQ,A (in the precise case) guarantees
that it possesses all the same features as EQ,A, and thus also that it coincides
with Eeb

Q,V and E>,M (for an agreeing precise tree >); see (i)y below. So in
particular E

%

Q,A satisfies the properties from Corollary 6.2.4293—which we
will not present separately for the sake of brevity—and, as a result of its
equality with E>,M, it satisfies some additional strong continuity properties
which we list next.
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Corollary 6.4.11. For any precise probability tree > and the agreeing (upper)
expectations tree Q• according to Eq. (3.4)52, the following statements hold:

(i) E
%

Q,A ( 5 |A) = Eeb
Q,V ( 5 |A) = E>,M ( 5 |A) for all ( 5 , A) 2 V ⇥X⇤.

(ii) E
%

Q,A ( 5 |A) = E%

Q,A ( 5 |A) for all bounded below or above 5 2 V f and all
A 2X⇤. [being precise]

(iii) E
%

Q,A (0 5 + 16 |A) = 0E
%

Q,A ( 5 |A) + 1E
%

Q,A (6 |A) for all 5 2 V f,b, all 6 2 V f,
A 2X⇤ and 0, 1 2 R. [linearity]

(iv) Consider any A 2X⇤ and any ( 5<)<2N in V f that converges pointwise to
a variable 5 2 V f. If there is a 5

⇤ 2 V f such that | 5< |  5
⇤ for all < 2 N

and E
%

Q,A ( 5 ⇤ |A)  +1, then lim<!+1 E
%

Q,A ( 5<) = E
%

Q,A ( 5 ).
[dominated convergence]

(v) Consider any A 2 X⇤ and any decreasing sequence ( 5<)<2N in V f. If
there is a 5

⇤ 2 V f such that E
%

Q,A ( 5 ⇤ |A) < +1 and 51  5
⇤, then

lim<!+1 E
%

Q,A ( 5< |A) = E
%

Q,A (lim<!+1 5< |A). [monotone convergence]

Proof. Property (i) follows from Theorem 6.4.10x, Theorem 6.2.2291 and Theo-
rem 5.3.1235. Properties (ii)–(v) follow from (i) and Corollary 5.3.4239.

An equality for upper and lower probabilities

Another, perhaps surprising instance where E
%

Q,A is equal to EQ,A occurs
when we consider general imprecise local models but restrict our atten-
tion to global indicators. Or in other words, if we only look at the upper
and lower probabilities associated with E

%

Q,A and EQ,A. Recall from Sec-
tion 3.1.352 that, for any upper expectations tree Q•, the (global) upper
probability PQ,A and (global) lower probability PQ,A associated with EQ,A
and EQ,A are defined by

PQ,A (�|A) B EQ,A (I� |A) and PQ,A (�|A) B EQ,A (I� |A),

for all � ✓ ⌦ and A 2X⇤. The upper and lower probabilities P
%

Q,A and P%

Q,A
are defined similarly.

Theorem 6.4.12. For any upper expectations tree Q•, any � ✓ ⌦ and any
A 2X⇤, we have that

PQ,A (�|A) = P
%

Q,A (�|A) and PQ,A (�|A) = P%

Q,A
(�|A)

The theorem above can be deduced straightforwardly from the following
lemma, which is expressed in terms of game-theoretic upper expectations.
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Lemma 6.4.13. For any upper expectations tree Q•, any � ✓ ⌦, any B 2X⇤,
and any n > 0, there is a countable collection ( of pairwise incomparable
situations—a tree cut—such that

� \ �(B) ✓
[
A2(

�(A) and Eeb
Q,V (

P
A2( 1A |B)  Eeb

Q,V (I� |B) + n.

Proof. Since Eeb
Q ,V (I� |B) is real by Proposition 4.4.3 (EC1163), it follows the definition

of Eeb
Q ,V that there is a bounded below supermartingale M 2 Meb (Q•) such that

M(B)  Eeb
Q ,V (I� |B) + n/2 and lim inf M �B I�. So, for all l 2 � \ �(B), there is a

9l � |B | such that M(l9) � 1 � n/2 for all 9 � 9l. Let (0 be the set of situations
A
0 w B such that A0 = l

9l for some l 2 � \ �(B), and let ( be defined by

( B {A 2 (0 : (ö A0 2 (0) A0 @ A}.

Then note that S
A
02(0 �(A) =

S
A2( �(A). Indeed, for any A0 2 (0 \ (, there is at least

one Ã 2 (0 such that Ã @ A0. Let Ã1 2 (0 be such a situation with minimal length; then
there are no situations Ã 2 (0 such that Ã @ Ã1. Hence, we must have that Ã1 2 (.
Moreover, �( Ã1) � �(A0) because Ã1 @ A0. Since this holds for any A0 2 (0 \( [and since
clearly (0 ◆ (] we thus have that[

A
02(0

�(A) =
[
A2(

�(A). (6.9)

Furthermore, note that the situations in ( are pairwise incomparable: for any two
situations A1, A2 2 (, A1 @ A2 is impossible, because if this would hold then A1, A2 2 (0
and A1 @ A2, implying that A2 cannot be in (. Moreover, recall that the situations
X⇤ = [72NX7 are countable because the state space is finite.7 Hence, ( ⇢ X⇤ is a
countable collection of pairwise incomparable situations.

Since ( is made up out of pairwise incomparable situations, it is a (possibly par-
tial) cut, and so we can let Ma ( be the supermartingale M stopped at the cut (.
Since M 2 Meb (Q•), we have by Lemma 4.C.5211 that also Ma ( 2 Meb (Q•). Fur-
thermore, for any A 2 (, since A 2 (

0 and by the definition of (0, we know that
M(A) � 1 � n/2. Hence, since Ma ( remains constant for all situations that follow A,
we have that lim inf Ma ( (l) � 1� n/2 for all l 2 �(A). Since this holds for all A 2 (,

lim inf Ma ( (l) + n/2 � 1 for all l 2
[
A2(

�(A).

Recall that lim inf M �B I�, which by Lemma 4.4.1163 implies thatM, and thus—
because every A 2 ( ✓ (0 follows B—also Ma (, is non-negative for all situations that
follow B. Hence, by the inequality above,

lim inf Ma ( + n/2 �B ISA2( �(A) .

Since the situations in ( are pairwise incomparable, we have that IS
A2( �(A) =

P
A2( 1A.

Plugging this back into the inequality above, gives us

lim inf (Ma ( + n/2) = lim inf Ma ( + n/2 �B
P

A2( 1A .

7This continues to hold for countable state spaces.
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Axiomatic upper expectations

Taking into account that Ma ( 2 Meb (Q), and thus by LE5156 in Proposition 4.3.4156,
that (Ma ( + n/2) 2 Meb (Q), we obtain by the definition of Eeb

Q ,V that

Eeb
Q ,V (

P
A2( 1A |B)  (Ma ( + n/2) (B) = Ma ( (B) + n/2.

Furthermore observe that Ma ( (B) = M(B) because all situations in ( follow B [by the
definition of (0 and (]. The inequality above and our assumptions about M then
imply that

Eeb
Q ,V (

P
A2( 1A |B) M(B) + n/2  Eeb

Q ,V (I� |B) + n.

It remains to check that � \ �(B) ✓ S
A2( �(A). Since for any l 2 � \ �(B), there

is a 9l � |B | such that l9l 2 (0, it is clear that � \ �(B) ✓ S
A
02(0 �(A0). Hence, the

desired inclusion follows from Eq. (6.9)x.

Proof of Theorem 6.4.12318. We first prove the equality for the upper probabili-
ties. We trivially have that

PQ ,A (�|A) = EQ ,A (I� |A)  E
%

Q ,A (I� |A) = P
%

Q ,A (�|A),

where the inequality follows from Corollary 6.4.7315. To prove the converse inequal-
ity, recall from Theorem 6.2.2291 that EQ ,A is equal to Eeb

Q ,V. Hence, for any n, there
is by Lemma 6.4.13318 a countable collection ( of pairwise incomparable situations
such that

� \ �(A) ✓ [B2(�(B) and EQ ,A (
P

B2( 1B |A)  EQ ,A (I� |A) + n.

The countable sum P
B2( 1B can be written as the limit lim<!+1

P
B2(,|B |< 1B of the

increasing sequence (P
B2(,|B |< 1B)<2N. Note, moreover, that (P

B2(,|B |< 1B)<2N is a
sequence of finitary gambles. Since � \ �(A) ✓ [B2(�(B), we also have that
lim<!+1

P
B2(,|B |< 1B �A I�. Moreover, due to Corollary 6.2.4(v)294 and the fact that

EQ ,A extends Efin
Q , we have that

EQ ,A (
P

B2( 1B |A) = lim<!+1 EQ ,A (
P

B2(,|B |< 1B |A) = lim<!+1 Efin
Q (P

B2(,|B |< 1B |A).

Combined with EQ ,A (
P

B2( 1B |A)  EQ ,A (I� |A) + n, we get that

lim
<!+1

Efin
Q (P

B2(,|B |< 1B |A)  EQ ,A (I� |A) + n.

Hence, taking into account the fact that (P
B2(,|B |< 1B)<2N is an increasing sequence of

finitary gambles such that lim<!+1
P

B2(,|B |< 1B �A I�, we have by Proposition 6.4.1302

that
E
%

Q ,A (I� |A)  EQ ,A (I� |A) + n.

This holds for any n > 0, so E
%

Q ,A (I� |A)  EQ ,A (I� |A). Together with the ear-
lier deduced inequality, we obtain that EQ ,A (I� |A) = E

%

Q ,A (I� |A) and therefore that
PQ ,A (�|A) = P

%

Q ,A (�|A).
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6.4 The natural extension under a weaker continuity axiom

The equality for the lower probabilities can then be deduced from conjugacy
[Eq. (6.1)289] and the equality between the upper probabilities; indeed, for any
⌫ ✓ ⌦,

1 � PQ ,A (⌫|A) = 1 � EQ ,A (I⌫ |A) = 1 + EQ ,A (�I⌫ |A) = EQ ,A (1 � I⌫ |A) = EQ ,A (I⌫2 |A)
= PQ ,A (⌫2 |A),

where the third step follows from EC5163 in Corollary 6.2.4(ii)293. A similar
equality can then be deduced for the lower probability P%

Q ,A
(⌫|A) using conjugacy

[Eq. (6.1)289] and Proposition 6.4.2304. Hence, since the upper probabilities PQ ,A
and P

%

Q ,A are equal, the lower probabilities PQ ,A and P%

Q ,A
are also equal.

Since P
%

Q,A is equal to PQ,A, it follows from Theorem 6.2.2291 and 6.2.3292
that P

%

Q,A is also equal to the game-theoretic upper probability Peb
Q,V and, for

all f(X⇤)-measurable events, equal to the measure-theoretic upper prob-
ability PP,M or its simplified variant P#P,M (for an agreeing tree P•), and
similarly, due to conjugacy, for the lower probabilities.

Corollary 6.4.14. Let Q• andP• be any upper expectations tree and imprecise
probability tree that agree according to Eq. (3.3)51. Then, for any � ✓ ⌦ and
any A 2X⇤, we have that

P
%

Q,A (�|A) = Peb
Q,V (�|A) and P%

Q,A
(�|A) = Peb

Q,V (�|A).

If � is moreover f(X⇤)-measurable, then

P
%

Q,A (�|A) = PP,M (�|A) = P#P,M (�|A);
P%

Q,A
(�|A) = PP,M (�|A) = P#P,M (�|A).

Proof. The first statement follows from Theorems 6.4.12318 and 6.2.2291, the conju-
gacy of Eeb

Q ,V [Corollary 4.3.7162], and the fact that upper and lower probabilities are
specific instances of upper and lower expectations. The equality between P

%

Q ,A and
PP,M, and between P%

Q ,A
and PP,M, follows from Theorems 6.4.12318 and 6.2.3292, the

conjugacy of EP,M [Corollary 5.4.2241], and the fact that I� is a f(X⇤)-measurable
gamble if the event � is f(X⇤)-measurable. The remaining two equalities, between
PP,M and P #P,M, and between PP,M and P #P,M, follow from the fact that P #P,M and P #P,M
are restrictions of respectively PP,M and PP,M to f(X⇤)-measurable events; this fol-
lows from Corollary 5.4.1241.

We furthermore obviously have that all the properties of EQ,A in Corol-
lary 6.2.4293 also hold for E

%

Q,A, if we restrict ourselves to the domain of
indicators. In order not to overload this text with excessively many similar
results, we will not state this as a separate result.
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—Chapter VII—

C����������

Our work has focused on global upper expectations for discrete-time
stochastic processes with a finite state space. We have considered a wide va-
riety of them; some were entirely new, some already existed or were based
on methods frequently used in di�erent contexts. We examined the charac-
teristic features of all these global upper expectations in considerable depth,
and laid great emphasis on the problem of how these global models are re-
lated to each other. This was done not only to present a technical overview
of the matter; above all else, we hope this manuscript provides a unifying
guideline on how and why we should use certain types of global upper ex-
pectations. Let us give a brief summary of our findings, and highlight some
of them a bit more.

We distinguished amongst six di�erent classes of global upper expec-
tation, and within each of these classes we often further distinguished be-
tween several possible definitions for a global upper expectation. The first
three classes that we studied were the finitary ones [Chapter 345]; they
consisted of the finitary behavioural or betting-based upper expectations
EA and Ef

A,V, the finitary probability-based upper expectation EP, and the
finitary axiomatic or coherence-based upper expectations EQ and Efin

Q . Each
of these three classes are based on di�erent types of local models—A•, P•

and Q•, respectively—and subsequently use extension procedures that are
unique to the framework that is associated with the corresponding type of
local models—sets of acceptable gambles/martingales, sets of probabilities
and upper expectations, respectively. Since none of these extension proce-
dures rely on a continuity assumption, the finitary upper expectations can
be interpreted in a direct and intuitive way, and their mathematical analysis
is, compared to the continuity-based global upper expectations, relatively
straightforward. Moreover, as we have shown in Section 3.590, all these dif-
ferent types of finitary global upper expectations coincide if the local mod-
els are chosen in accordance with each other, which can perhaps be seen as
the most profound advantage of (any of) these finitary upper expectations.
Unfortunately however, these finitary upper expectations are only defined
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on the domain V ⇥X⇤ and, as was discussed in Section 3.698, are—in our
opinion—only suited for use on the even smaller domain F ⇥X⇤ because
they lack basic but important continuity properties.

The subsequent chapters were then concerned with three types of global
upper expectations that can be seen as the continuity-based counterparts
of the three finitary global upper expectations. These upper expectations
are defined on the entire space V ⇥ X⇤ and are marked by relatively
strong (continuity) properties, therefore allowing us to deal with extended
real-valued—not necessarily finitary—global variables in a meaningful way.
However, their more complex and involved design implies that introducing,
interpreting and studying these global models becomes harder.

Chapter 4129 studied game-theoretic upper expectations; global opera-
tors that express a gambler’s infimum starting capital such that he is able to
hedge the global variable of interest—possibly by playing for an infinitely
long time. These operators were first introduced by Shafer and Vovk [85,
86] but have since then appeared in many di�erent forms, and within many
di�erent contexts [8, 26, 60, 88, 101, 109]. We discussed a multitude of
possible definitions, and argued why the versions Eeb

A,V and E
"
A,V—which

coincide—are to be preferred over the other ones. Moreover, we also showed
in Section 4.3152 that E

eb
A,V can be alternatively characterised in terms of up-

per expectations trees Q•, and that the resulting operator Eeb
Q,V is then often

equivalent to the one used by Shafer and Vovk in their latest book [85]; see
Section 4.9187. The remaining part of Chapter 4129 was devoted to estab-
lishing a host of properties for these global operators, with a heavy focus on
proving or disproving continuity properties.

Chapter 5217 then treated global upper expectations deduced from the
framework of measure-theoretic probability. We started with the precise
case; yet the construction of our global measure-theoretic (upper) expecta-
tion in this traditional context already di�ered from the classical approach
in two notable ways: we use (conditional) global probability measures in-
stead of a single (unconditional) probability measure in order to meaning-
fully condition on events of probability zero; and we extended the global
expectation beyond the domain of measurable variables, due to which it be-
came an upper expectation instead of an expectation. We showed that in
this precise case, the measure-theoretic upper expectation coincides with
the game-theoretic upper expectation on the entire domain V ⇥X⇤ [Theo-
rem 5.3.1235], and therefore that properties of either one can be borrowed
and applied to the other one. Subsequently, in the general imprecise set-
ting, we defined the measure-theoretic upper expectation as the upper en-
velope of the ‘precise’ measure-theoretic upper expectations corresponding
to the compatible precise probability trees. Several strong continuity prop-
erties were established, and this in turn lead us to conclude that these global

324



measure-theoretic upper expectations are for many practically relevant vari-
ables equal to global game-theoretic upper expectations, especially if the
local sets of probability mass functions are closed; see Corollary 5.5.15258.

Finally, it is the material presented in Chapter 6283 that I believe to be
the most compelling of all, and certainly the material that I am most proud
of. The axiomatic approach described there is simple and straightforward,
yet, has to our knowledge never been attempted before—or at least not in
this imprecise discrete-time stochastic processes setting. We took the fini-
tary upper expectation Efin

Q on F ⇥X⇤ as our starting point, because its
definition is based on the simple and weak Axioms WC182–WC482 (which
are equivalent to conditional coherence) and because all the global upper
expectations that we have discussed in this dissertation turn out to coincide
with Efin

Q on the restricted domain F ⇥X⇤. Our subsequent extension then
simply relied on imposing monotonicity [EC4⌦

286] in addition to continuity
with respect to specific sequences of finitary gambles. Two versions of the
latter were considered; Co1286, which solely concerns increasing sequences,
and Co2286, which concerns not necessarily increasing but still bounded be-
low sequences. We then argued to take as global upper expectation E

%

Q,A or
EQ,A, which are the most conservative ones among all those that extend Efin

Q
and that satisfy EC4⌦

286 and Co1286, or EC4⌦
286 and Co2286, respectively. It

quickly turned out that EQ,A is equal to Eeb
Q,V [Theorem 6.2.2291] and there-

fore that it also inherits all the powerful properties of Eeb
Q,V—one of the most

important being that it is for a large part equal to EP,M [Theorem 6.2.3292].
On the other hand, though the definition of E

%

Q,A is conceptually even more
attractive than that of EQ,A, and though it can moreover be seen as an impre-
cise generalisation of Daniell’s integration approach [19], it may for some
limits of finitary gambles return overly conservative values. This is why, in a
general context and considering general global variables, we prefer the use
of EQ,A over E

%

Q,A.
Nonetheless, we do want to stress that the three instances considered in

Section 6.4.4314 where E
%

Q,A and EQ,A coincide, are encountered frequently.
Indeed, the first is where the considered variable of interest is a finitary
gamble or the limit of a monotone sequence of finitary gambles. Most of the
practically relevant variables that we know of, such as hitting times, stop-
ping times or averages over a finite time interval [58, 100], are of this type.
A second situation where E

%

Q,A and EQ,A coincide is where local models are
assumed to be precise; an assumption that is still often made—rightly or
not. Finally, both these operators are also equivalent on the domain of all
indicators, which means that they give rise to the same upper and lower
probabilities. It requires little explanation that we are sometimes only in-
terested in such upper and lower probabilities rather than general upper
and lower expectations; an important and commonly encountered inference
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is for instance the hitting (upper and lower) probability of a certain subset
� ✓X; see Example 3.6.199 and [58]. Interestingly enough, the equality on
the domain of all indicators can also be seen to imply that, if the restrictions
of the (unconditional) upper expectations EQ,A (·|A) and E

%

Q,A (·|A) to V are
2-monotone [6, 13, 106] for all A 2X⇤, then the global upper expectations
EQ,A and E

%

Q,A coincide on the domain V ⇥X⇤ of all gambles and situations.
This can be deduced from the representation result [106, Theorem 6.22],
which implies that 2-monotonicity of an unconditional coherent upper ex-
pectation, together with the domain of this upper expectation being a set of
gambles with a structure that is rich enough, is su�cient for this upper ex-
pectation to be fully determined by its restriction to the indicators. Such an
upper expectation can then be written as a Choquet integral with respect
to its corresponding upper probabilities. It remains to be seen, however,
whether the 2-monotonicity of EQ,A (·|A) and E

%

Q,A (·|A) (or their restrictions
to V ) can be characterised in an elegant and useful way, for instance using
the form of the local models Q•.

All things considered, the axiomatic upper expectation EQ,A can in prac-
tice often be replaced by E

%

Q,A. It is then preferable to do so because, as
already mentioned, the definition of E

%

Q,A is more direct, it requires a user
to accept weaker axioms, and it agrees with Daniell’s traditional approach
to extending integrals.

Now, if we take a step back and think about the simple but central ques-
tion posed in the beginning of Chapter 345 about how to extend imprecise
local models to a single global uncertainty model, we have now made up
our minds; the axiomatic upper expectation EQ,A—often to be replaced by
E
%

Q,A—is what we will go with. This because of its simple and direct defini-
tion, and because of its strong continuity properties; but the most important
reason, we feel, is its universal character. Indeed, as pointed out at the end
of Section 6.1285, the definitions of EQ,A and E

%

Q,A do not hinge on any par-
ticular interpretation, nor do they require a user to quantify uncertainty in
one specific way, or within one specific framework. The finitary upper ex-
pectation Efin

Q —the starting point for these global operators—is defined in
terms of Axioms WC182–WC482, or equivalently coherence, which can be
motivated from both a behavioural point of view, and a probability-based
point of view; the subsequent extension of Efin

Q then relies on a monotonic-
ity axiom and a continuity axiom, which can both be argued for on the
basis of a neutral approximation argument. This is in sheer contrast with
the (continuity-based) global upper expectations Eeb

A,V and EP,M which are
each constructed from a single and distinct point of view; game-theoretic
upper expectations start from local sets of acceptable gambles, and use the
language of gambling to extend beyond this point; measure-theoretic up-
per expectations start from local sets of probability mass functions, and use
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probability charges and measures to extend towards a global level. This dis-
tinction between probability-free (behavioural) approaches and probability-
based approaches has a long-standing history and is also present on a more
general scale, not only in our specific context of discrete-time stochastic pro-
cesses. Our axiomatic approach reconciles both worlds, at least in our con-
text of discrete-time stochastic processes, and therefore frees the pragmatic
user from the controversial debate about how uncertainty ought to be inter-
preted and quantified.

Lastly, to finish this plea in favour of the axiomatic approach, we want
the reader to think of the success of Kolmogorov’s work [56] in the field
of measure theory; his approach was purely axiomatic and provided the
mathematical foundations for a theory of probability in a clear and elegant
fashion—which was apparently much needed at the time it was published
[87]. By no means, we compare the value, relevance or scale of our work to
that of Kolmogorov’s, but we do hope that, for the field of imprecise discrete-
time stochastic processes, our work may serve a similar purpose.

Future outlook

As tradition will have it, we conclude this chapter with a discussion of some
topics that may be worthwhile investigating further. A first one concerns the
definition of EQ,A, and more specifically the form of Axiom Co2286. Recall
that it applies only to converging sequences in F that are uniformly bounded
below. The condition of being uniformly bounded below makes the axiom
weaker, which is desirable from an abstract mathematical perspective. But
our motivation for Axiom Co2286 just as well applies to general converging
sequences in F as it applies to uniformly bounded below ones, so why can’t
we modify Co2286 to apply to general sequences? Well, Efin

Q itself does not
necessarily satisfy such a generalised type of continuity, and so there need
not exist an extension of Efin

Q that satisfies such a continuity property.1

Example 7.0.1. Let X B {0, 1} and consider the expectations tree Q• de-
fined by QA ( 5 ) B ( 5 (0) + 5 (1))/2 for all 5 2 L(X) and A 2X⇤. Then it can
easily be derived from the law of iterated (upper) expectations [Proposi-
tion 3.5.996] that, for any 5 2 F and any 9 2 N for which 5 is 9-measurable,
the upper expectation Efin

Q ( 5 ) is the average of 5 ’s values over all situations
of length 9:

Efin
Q ( 5 ) = 1

|X |9
X

F1:92X9

5 (F1:9) = 1
29

X
F1:92X9

5 (F1:9). (7.1)

1Of course, one could overthrow this argument by simply suggesting that a global upper
expectation should not always extend Efin

Q , but we honestly do not see any good reasons to do
so.
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Now let ( 5<)<2N be the sequence defined by 5< B �22<10<1 for all < 2 N.
It is clear that 5< 2 F for all < 2 N, and it can also be checked that
lim<!+1 �(0<1) = ú and therefore that lim<!+1 5< = 0. But by Eq. (7.1)x
and the fact that each 5< is clearly (< + 1)-measurable, we have that

Efin
Q ( 5<) = 1

2<+1
X

F1:<+12X<+1
5< (F1:<+1) = 1

2<+1
X

F1:<+12X<+1
�22<10<1(F1:<+1)

= � 1
2<+1 2

2< = �2<�1.

As a result, lim<!+1 Efin
Q ( 5< |A) = �1. But ( 5<)<2N converges to the finitary

gamble 0, so we have that

lim
<!+1

Efin
Q ( 5< |A) = �1 ⇤ 0 = Efin

Q (0) = Efin
Q

�
lim
<!+1

5<

�
,

where the second equality follows from the fact that Efin
Q satisfies WC382

by definition. Hence, Efin
Q cannot satisfy a generalised type of Co2286 that

applies to general sequences in F . ^

It is clear from the example above that modifying Co2286 to apply to not
necessarily bounded below sequences is not a good idea—probably not even
if an extension were to exist. Still, the bounded below requirement in Co2286
seems somewhat arbitrary from a philosophical point of view, and it begs
the question whether Co2286 cannot be modified in one way or another in
order to arrive at an axiom that is more natural altogether. Perhaps it should
apply to sequences that converge in a stronger way than simply pointwise,
and perhaps the bounded below requirement can then be dropped? Food
for thought.

Two other possible routes for future research concern generalising the
present theory in two ways. The first is to generalise to a setting where the
state space X is (countably or uncountably) infinite. The ideas and prin-
ciples that give rise to the definitions of the game-theoretic and measure-
theoretic global upper expectations would in such a context remain essen-
tially the same. For instance, Shafer and Vovk [85] allow for general state
spaces, and the definition of their global game-theoretic upper expectation
relies on entirely the same concepts as ours. In the measure-theoretic case,
Ionescu-Tulcea’s extension theorem [89, Theorem 2.9.2] would allow us to
extend local probability measures similar to how Proposition 5.1.3226 allows
us to extend local probability mass functions.

As far as the properties of these hypothetical game-theoretic and
measure-theoretic global upper expectations are concerned, much shall de-
pend on the additional conditions that we impose on the local models. For
instance, in order to obtain continuity of the game-theoretic upper expec-
tation with respect to increasing sequences, we shall at least need to im-
pose this upward continuity on the local upper expectations. This becomes
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clear if we look at the proof of Theorem 4.6.1175, which explicitly relies on
the continuity property LE6156 of the local upper expectations. We did not
need to impose it in our treatment here—or at least not on the set L(X)
of gambles—because our state space X was assumed finite. The measure-
theoretic upper expectation, on the other hand, shall probably remain con-
tinuous with respect to increasing sequences, simply because it will be an
upper envelope of Lebesgue integrals with respect to f-additive probabil-
ity measures—here too, there is a continuity assumption at the local level,
because we would start from sets of local probability measures (which are
each f-additive).

The question under which conditions the game-theoretic and measure-
theoretic upper expectations will remain to be continuous with respect to de-
creasing finitary gambles [the counterparts of Theorem 4.7.3182 and Propo-
sition 5.4.9246] is more tricky, though. A first issue would of course be what
we understand under ‘finitary’ gambles or variables if the state space is
infinite—the continuity would surely not hold if we allow a finitary gam-
ble to simply be any bounded variable that depends on the process state at
a finite number of time instances. An alternative could be to define them as
bounded variables that are both continuous and only depend on the process
state at a finite number of time instances—note that, due to Lemma 5.5.2251
and the paragraph above it, this is in line with our treatment here. Yet, even
then, we are convinced that some additional conditions will need to be sat-
isfied before one can guarantee the downward continuity of these global up-
per expectations. For instance, Lemma 4.C.2209, which is crucial for proving
Theorem 4.7.3182, can be extended to infinite state spaces, but only if the
considered state space remains to be compact. Apart from that, we suspect
that, for game-theoretic upper expectations, either supermartingales should
be restricted in how they are allowed to behave or some more continuity
conditions should be imposed on the local upper expectations, and that for
measure-theoretic upper expectations, the sets of local probability measures
will need to be compact or satisfy some other topological condition. All this
is no more than a calculated guess, though, and we certainly did not look
into the details. Yet, if game-theoretic and measure-theoretic global upper
expectations would satisfy comparable continuity properties in the case of
infinite state spaces as they do here in the case of finite state spaces, then
Choquet’s capacitability theorem [Theorem 5.5.9255] could again be used
to establish an equality between the two operators.

Lastly, we did not talk about how our axiomatic global upper expecta-
tions should be adapted in order to appropriately deal with infinite state
spaces. This is di�cult to predict, though, since many of its characteris-
ing concepts and properties are specifically adapted to the finitary setting;
e.g. what are the sequences of finitary gambles/variables in this new con-
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text? Can we guarantee existence and uniqueness in this new context? Here
too, additional assumptions for the local upper expectations shall need to
be made in order to arrive at satisfactory results.

Another interesting way in which this work can perhaps be generalised,
is to consider or develop global upper expectations that allow us to condition
on more general events than only (cylinder events of) situations. We have
little knowledge of existing work done on this part, especially in the game-
theoretic case—all the more compelling to look into it.

Of course, though our work was mainly aimed at examining the the-
oretical aspects of imprecise stochastic processes, we hope that it can also
play its part in more practically oriented research. Continuity properties, for
instance, can be combined with backwards recursive algorithms [62, 100]
to obtain methods for computing the upper expectations of (finitary and)
non-finitary variables; in [58], such a reasoning is used to obtain upper and
lower expected hitting times and probabilities. On the other hand, one may
also evoke our results on the connections between the di�erent types of
global models to borrow algorithms and techniques specifically developed
for one type of global model and apply them to any other type.

Finally, it would also be worthwhile to further investigate how our work
compares to the material in some neighbouring research fields. In partic-
ular, the work of Denk et al. [30] on Daniell-Stone type of (global) upper
expectations seems interesting; comparing the form of our lower Daniell
extension E

u
Q,D—which due to Proposition 6.4.4308 is for a large part equal

to our axiomatic (and thus also the game-theoretic and measure-theoretic)
upper expectation—to the extension described in [30, Theorem 3.10], it
seems that a close connection must exist, at least for bounded measurable
variables. Equally compelling seems to be the relation with the sublinear
expectations proposed by Cohen et al. [7]; as [7, Theorem 2.1] and [7,
Definition 2.4] show, the expectation operators treated there must in some
sense be similar to our measure-theoretic global upper expectations.
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The present is in every age merely the shifting point at which
past and future meet, and we can have no quarrel with ei-
ther. There can be no world without traditions; neither can
there be any life without movement. We cannot bathe twice
in the same stream, though, as we know to-day, the stream
still flows in an unending circle. There is never a moment
when the new dawn is not breaking over the earth, and never
a moment when the sunset ceases to die. It is well to greet
serenely even the first glimmer of the dawn when we see it,
not hastening towards it with undue speed, nor leaving the
sunset without gratitude for the dying light that once was
dawn.

Havelock Ellis.
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Number sets

ú the empty set • Chapter 217

N the set of natural numbers without zero • Section 1.614

N0 the set of natural numbers with zero • Section 1.614

R the set of real numbers • Section 1.614

R�,R>,R< the set of non-negative/positive/negative real numbers • Sec-
tion 1.614

R the set of extended real numbers • Section 1.614

R�,R> the set of non-negative/positive extended real numbers • Sec-
tion 1.614

Modelling uncertainty

. uncertain outcome of an experiment • Introduction of Chap-
ter 217

Y possibility space • Introduction of Chapter 217

F, í, H outcomes in Y • Introduction of Chapter 217

¶(Y) the powerset of Y; that is, the set of all subsets of Y • Sec-
tion 2.118

�, ⌫ events in ¶(Y) • Section 2.118

�
2 complement of the event � in ¶(Y) • Section 3.3.169W
<2N 2< supremum of the sequence (2<)<2N of extended real numbers •

Section 5.2.1227V
<2N 2< infimum of the sequence (2<)<2N of extended real numbers • Sec-

tion 5.2.1227

Stochastic processes

-9 uncertain state of a stochastic process at time 9 � 1 • Introduc-
tion of Chapter 345
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List of symbols

X finite state space • Section 3.1.147

F, í, H states in X • Section 3.1.147

-1:9 first 9 (uncertain) state values of a stochastic process • Sec-
tion 3.1.248

F1:0,⇤ the initial situation; an empty string • Section 3.1.147

X⇤ the set of all situations • Section 3.1.147

A, B, C, D situations in X⇤ • Section 3.1.147

F1:9 a situation of length 9 • Section 3.1.147

|A| length of a situation A • Section 3.1.147

C v A C precedes A; A follows C • Section 3.1.147

C @ A C v A and C < A • Section 3.1.147

C k A C and A are incomparable • Section 3.1.147

⌦ set of all infinite state sequences • Section 3.1.147

l a path in ⌦ • Section 3.1.147

l9 9-th component of l • Section 3.1.147

l
9
,l1:9 situation consisting of l’s first 9 components • Section 3.1.147

l9:✓ situation consisting of l’s 9-th to ✓-th components • Sec-
tion 3.1.147

�(A) cylinder event of a situation A • Section 3.1.147

�(X⇤) the set of all cylinder events • Section 3.3.272

*,+ tree cuts • p. 199

A @ *, A v * A @ C for all C 2 *; A v C for all C 2 * • p. 199

* @ A C @ A for some C 2 * • p. 199

Gambles and variables

Variables on a general space

5 , 6, ⌘ extended real-valued variables on Y • Section 1.614

L(Y) the set of gambles on Y • Section 1.614

L(Y) the set of extended real(-valued) variables on Y • Section 1.614

and Section 3.1.352

Lb (Y) the set of bounded below extended real(-valued) variables on Y
• Section 1.614

L� (Y) the set of all non-negative gambles on Y • Section 1.616

L (Y) L� (Y) without the zero gamble 0 • Section 1.616

L> (Y) the set of all positive gambles on Y • Section 1.616

L (Y) the set of all non-positive gambles on Y • Section 1.616
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L� (Y) L (Y) without the zero gamble 0 • Section 1.616

L< (Y) the set of all negative gambles on Y • Section 1.616

I� indicator of an event � in ¶(Y) • Section 1.614

A a subset of L(Y) • Section 2.6.237

K a subset of L(Y); typically the domain of an upper expectation
• Section 2.6.338

Global variables

V , V the set of global gambles/variables • Section 3.1.352

V b the set of bounded below global variables • Section 4.2.2142

V � the set of non-negative global variables • p. 253

V u
� the set of non-negative real-valued global variables • p. 253

F , F the set of finitary gambles/variables • Section 3.1.352

Lb the set of bounded below pointwise limits of sequences of finitary
gambles • Section 4.7.1182

V f, V f, V f,b the set of all (bounded below) f(X⇤)-measurable gam-
bles/variables • Section 5.2.1227

K a subset of V ⇥X⇤; typically the domain of a global upper expec-
tation • Section 3.1.352

I a subset of V • Section 3.4.181

1A the indicator of the cylinder event �(A) of a situation A • Sec-
tion 3.1.352

g� the hitting time of � ✓X • Section 3.1.352 and Section 3.698

f a stopping time • Appendix 4.C.1209

Relations and operations for extended real-valued variables

5 = 6 5 (í) = 6(í) for all í in Y • Section 1.614

5  6 5 (í)  6(í) for all í in Y • Section 1.614

5 < 6 5 (í) < 6(í) for all í in Y • Section 1.614

5 A 6 5 (l)  6(l) for all l 2 �(A) • Section 3.1.352

sup 5 , inf 5 pointwise supremum/infimum of 5 • Section 1.614

sup( 5 |A) pointwise supremum of 5 over �(A) • Section 3.1.352

lim
<!+1

5< pointwise limit of a sequence ( 5<)<2N • Section 1.614

lim sup
<!+1

5< pointwise limit superior of a sequence ( 5<)<2N • Section 1.614

lim inf
<!+1

5< pointwise limit inferior of a sequence ( 5<)<2N • Section 1.614

k·k1 supremum norm on L(Y) • p. 121

335
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cl (A) uniform closure of a set A of gambles • Section 1.614

posi (A) positive linear span of a set A of gambles • Section 1.614

span (A) linear span of a set A of gambles • Section 3.3.374

5
^2
, 5
_2 pointwise minimum/maximum of 5 and 2 • Section 4.2.2142

5
+
, 5
� positive/negative part of 5 • Definition 5.3228

General and axiomatic upper and lower expectations

E , E (un)conditional upper/lower expectation • Sections 2.431 and
3.1.352

E ( 5 |F1:9-9+1:9+✓) finitary variable assuming the value E ( 5 |F1:9l9+1:9+✓) in l •

Proposition 3.4.484

E (E ( 5 |-1:9+1) |-1:9)) finitary variable assuming the value E (E ( 5 |-1:9+1) |l1:9) in l •

Proposition 3.4.484

Q• upper expectations tree • Section 3.1.248

Q
A

local upper expectation corresponding to the tree Q• and the sit-
uation A • Section 3.1.248

Q"• ,Q
"
A
,Q" extended upper expectations tree/extended local upper expecta-

tion • Section 4.3.1153

Q•,A ,Q
A,A upper expectations tree/local upper expectation corresponding to

the acceptable gambles tree A • Eq. (3.1)50
Q•,P,Q

A,P upper expectations tree/local upper expectation corresponding to
the imprecise probability tree P • Eq. (3.3)51

Q•,>,QA,> linear expectations tree/local linear expectation corresponding to
the precise probability tree > • Eq. (3.4)52

E
pre
Q preliminary global upper expectation corresponding to Q• •

Eq. (3.13)85
Efin

Q , EQ natural extension under coherence of E
pre
Q to F ⇥X⇤ or V ⇥X⇤ •

Definition 3.886

EQ ,A natural extension of Efin
Q to V ⇥X⇤ under a continuity and a mono-

tonicity axiom • Definition 6.2289

E
%

Q ,A natural extension of Efin
Q to V ⇥X⇤ under a monotone continuity

and a monotonicity axiom • Definition 6.1289

EQ ,D Daniell-like upper expectation on (F o [ Fu) ⇥X⇤ corresponding
to the tree Q• • p. 306

E
o
Q ,D, E

u
Q ,D outer/inner Daniell-like upper expectation on V ⇥X⇤ correspond-

ing to the tree Q• • p. 307 and p. 308
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Acceptability, martingales and game-theoretic upper expecta-
tions

Sets of acceptable gambles

A, D set of acceptable gambles • Section 2.3.126 and Section 2.636

E(A), E(D) natural extension of A or D • Section 2.6.237

D(E) smallest coherent set of acceptable gambles associated with E •

Eq. (2.4)35
A(E) set of acceptable gambles associated with E • Eq. (2.6)41
A• acceptable gambles tree • Section 3.1.248

AA local set of acceptable gambles corresponding to the tree A• and
the situation A • Section 3.1.248

A"
• , A

"
A
, A" extended acceptable gambles tree/extended local set of accept-

able gambles • Section 4.2.3145

DA global set of acceptable gambles associated with A• • Eq. (3.6)56

Extended real processes, super- and submartingales

C, G (extended) real process/betting process • Section 3.2.361 and
Section 4.2.3145

CG cumulative process corresponding to G • Section 3.2.361 and
Section 4.2.3145

� C process di�erence of C • Section 3.2.361 and Section 4.2.3145

lim sup C pathwise limit superior of C • Section 4.1131

lim inf C pathwise limit inferior of C • Section 4.1131

C^⌫ pointwise minimum of C and ⌫ • Section 4.1.3136

Ca* process C stopped at the cut * • Section 4.C.2211

M (extended real) sub- or supermartingale • Section 3.2.361, Sec-
tion 4.2.3145 and Section 4.3.3158

M(A•),M(A•) the set of real super-/submartingales corresponding to A• • Sec-
tion 3.2.361

Mr (A•) alternative notation for M(A•) • Section 4.1131

Mrb (A•) the set of real bounded below supermartingales corresponding to
A• • Section 4.1.3136

MrB (A•) the set of (real) bounded supermartingales corresponding to A•

• Section 4.1.3136

Meb (A•) the set of bounded below extended real supermartingales corre-
sponding to A• • Section 4.2.3145
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Meb (Q•) the set of bounded below extended real supermartingales corre-
sponding to Q• • Section 4.3.3158

M
G
eb (Q•) alternative set of bounded below extended real supermartingales

corresponding to Q• • Section 4.3.3158

Acceptability-based and game-theoretic upper expectations

EA upper expectation as infimum selling prices corresponding to the
set E(DA ) • Eq. (3.10)60

Ef
A,V finitary game-theoretic upper expectation corresponding to the

tree A• • Eq. (3.11)63
Er

A,V game-theoretic upper expectation corresponding to Mr (A•) •

Definition 4.1132

Erb
A,V, E

rB
A,V game-theoretic upper expectation corresponding to Mrb (A•) or

MrB (A•) • Definition 4.2137

E
"
A,V game-theoretic upper expectation obtained from extending Erb

A,V
through continuity w.r.t. upper and lower cuts • Definition 4.3143

Eeb
A,V game-theoretic upper expectation corresponding to Meb (A•) •

Definition 4.6149

Eeb
Q ,V, E

eb, G
Q ,V game-theoretic upper expectation corresponding to Meb (Q•) or

M
G
eb (Q•) • Definition 4.7160

Algebras, probabilities and linear expectations

Algebras and measurability

A,B algebras/fields of events • Section 3.3.169

B� algebra B without the empty set ú • Section 3.3.169

hX⇤i the (smallest) algebra generated by the cylinder events �(X⇤) •

Section 3.3.272

f(X⇤) the (smallest) f-algebra generated by the cylinder events �(X⇤)
• Section 5.1.2224

f(A) the (smallest) f-algebra generated by the subset A of ¶(⌦). •

Section 5.1.2224

B(R) Borel f-algebra on R • Appendix 5.A263

span (A) the set of A-simple gambles • Section 3.3.374

Probability charges and measures

> probability mass function or precise probability tree • Defini-
tion 2.219 and Section 3.1.248
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>(·|A) local probability mass function corresponding to the tree > and
the situation A • Section 3.1.248

P• imprecise probability tree • Section 3.1.248

PA local set of mass functions corresponding to the tree P• and the
situation A • Section 3.1.248

> ⇠P• > is compatible with P• • Section 3.3.479

P(Y) set of all probability mass functions on a finite space Y • Sec-
tion 2.118

P(E) largest set of probability mass functions corresponding to the up-
per expectation E • Eq. (2.5)40

P (conditional/global) probability charge • Definition 2.119, Defi-
nition 3.170 and Definition 3.270

P> global probability charge/measure corresponding to the tree > •

Section 3.3.272 and Proposition 5.1.3226

P |A
>

unconditional probability measure corresponding to P> and the
situation A • Definition 5.4230

Integrals and linear/upper expectationsØ
5dP S-integral or Lebesgue integral of 5 with respect to P • Defini-

tion 3.376 and Definition 5.3228Ø
5dP,

Ø
5dP upper/lower S-integral or Lebesgue integral of 5 with respect to

P • Definition 3.376 and Section 5.2.3231

E> linear expectation corresponding to a probability mass function >

• Section 2.118

E>, E> finitary (upper) expectation corresponding to a precise probabil-
ity tree > • Definition 3.477 and Definition 3.578

EP finitary upper expectation corresponding to an imprecise proba-
bility tree P• • Definition 3.679

E>,M, E>,M measure-theoretic (upper) expectation corresponding to the pre-
cise probability tree > • Definition 5.4230 and Definition 5.5232

EP,M measure-theoretic upper expectation corresponding to the impre-
cise probability tree P• • Definition 5.7240

ERN ( 5 |B) Radon-Nikod˝m derivative of 5 conditional on the f-algebra B •

Appendix 5.A263
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