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Learning a model We consider the problem of eliciting an imprecise probability
model from a domain expert. We will do this by asking specific questions about
his beliefs. Answers to these questions will impose inequality constraints on the
elements of the credal set M (set of probability mass functions) that models his
beliefs, e.g. P(A) < P(B) for all P ∈M .

The goal One can distinguish between two different, yet related goals. The first
is to construct an imprecise probability model that captures the expert’s beliefs as
completely as possible. The second is to gather information that is aimed specifically
at answering a given question or solving a given decision problem. We consider the
latter, where we have to determine an optimal action among a set of possible actions.

Criteria We consider two important criteria that have to be satisfied.
1. We have to limit ourselves to intuitive questions

p(A) < p(B)?
intuitive

2p(A)+ 5p(B)−7p(C) < 0?
less intuitive

2. We want to minimise the number of questions we have to ask. This is the optimisa-
tion criterion.

Introduction
Sets of desirable gambles allow for more elegant modelling of the elicitation process com-
pared to credal sets or lower/upper previsions. Furthermore, the use of this framework does not
induce any limitations on the practical feasibility of the problems.
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Elicitation in sets of desirable gambles

We assume the expert can only find a gamble f desirable or leave it unresolved .
When f is stated to be desirable, we extend D with f and consider the natural
extension of this set: Dnew = E (Dold ∪ f ). When f is left unresolved, D is left
unchanged. We now search for the minimal sets of questions such that, when these
questions are positively answered, we are able to determine a unique optimal action.

F = { f1, f2, ..., fp} ⊂L (Ω) the set of actions
V = {v1,v2, ...,vm} ⊂L (Ω) the set of questions
D = {d1,d2, ...,da} ⊂L (Ω) the initial assessment

find: the minimal elements Vi ⊆V
such that: Di = posi (L +(Ω)∪D∪Vi) is coherent and

(∃ f ∗ ∈ F)(∀ f ∈ F \{ f ∗}) f ∗− f ∈Di.

Simplified framework
In a first approach we consider the case where we can choose between two actions, so
F = { f1, f2}. The algorithm that solves this problem consists of three similar steps explained
below, where in each step we use the following linear feasibility problem for a different A:

find: λ ∈RA

subject to: ∑g∈A λgg = 0 and λ ≥ 0 and ∑g∈A λg ≥ 1

1. Checking whether Di is coherent . This is done by A = Di = {Iω : ω ∈Ω}∪D∪Vi.
When the problem is feasible, Vi leads to an incoherent situation, so Vi and all its supersets are
removed from the search space. When the problem is not feasible, go to step 2.

2. Checking whether f is included in Di. This is done by A = Di∪{− f}.
When the problem is feasible, Vi is a solution. Remove all supersets of Vi from the search space
as these will not be minimal. When the problem is not feasible, go to step 3.

3. Checking whether − f is included in Di. This is done by A = Di∪{ f}.
When the problem is feasible, Vi is a solution. Remove all supersets of Vi from the search space
as these will not be minimal. When the problem is not feasible, remove this Vi from the search
space and go on.

We start with the Vi ∈V with |Vi|= 1, then |Vi|= 2, and so on.

The initial search space is the power set of V . We use Carathéodory’s Theorem to reduce it
to a search space that is polynomial in the cardinality of V .

Carathéodory’s Theorem For all x ∈Rn \{0} and S⊂Rn:

x ∈ posi (S)⇔ (∃S′ ⊆ S)
(
|S′| ≤ n and x ∈ posi (S′)

)
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Example in 3 dimensions
y2 belongs to the cones generated by {x1,x2,x3} and
{x1,x2,x4} so it lies within the general cone. y1 does not
lie within the general cone, as it does not belong to the
cones generated by {x1,x2,x3}, {x1,x2,x4}, {x1,x3,x4} or
{x2,x3,x4}.

|F |= 2

Optimisation

Algorithm The approach is the same as for the problem where |F | = 2. For all
f ,g ∈ F such that f 6= g and ( f −g) 6∈D j for all D j ⊂Di, we check if ( f −g) ∈Di. We
use the same working principle as for the basic problem where |F |= 2.

Complexity In the worst case, we would have to check p(p− 1) gambles for
inclusion in Di, where p := |F |. We cannot use the Carathéodory Theorem in the
same way as before. The computational complexity will remain exponential in |V |

|F |> 2

We have tested the performance of these algorithms using simulations. A simula-
tion consists in a large number of runs. In each run the process is modelled of
asking and answering questions until a decision can be made. The questions are
chosen by the mentioned algorithms from a given set of possible questions. This
set is changed after each run. The answers are delivered by a fixed belief model
that is hidden from the algorithm. We present the most significant results. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
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% max(∆)-heuristic (µ = 5,07, σ = 7,71)
Benchmark (random) (µ = 9.01, σ = 5.13)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

2

4

6

8

10

12

14

16

18

20

22

24

# questions

fre
qu

en
cy

% Semi-heuristic (µ = 5,94, σ = 11,35)
Benchmark (random) (µ = 9.01, σ = 5.13)

Simulations

Here we assume the expert can also find a gamble f undesirable, meaning he
considers the opposite gamble − f to be desirable. This is a simplified version of
the ‘accept & reject statement-based framework’ (Quaeghebeur et al., 2015). Every
question can now lead to two new situations — depending on the answer — whereas
in the simplified framework we only had to consider one new situation. As we do not
know the expert’s answers in advance, determining a general optimal question is
difficult and computionally heavy. To limit the complexity of the solving algorithms,
we used the following two approaches. We consider |F |= 2.

Heuristic decision rules e.g. minimising the uncertainty towards the decision
gamble f = f1− f2 for the worst case answer on the considered question.

v∗max(∆) ∈ argmin
v∈V

[
max

i∈{ν ,−ν}
(PD ′i

( f )−PD ′i
( f ))

]
with D ′i := posi (D ∪{i}),

and D the current set of desirable gambles.

Semi-heuristic a hybrid algorithm that combines a heuristic decision rule with the
determinative aspect of the algorithm used to solve the problem in the simplified
framework. The computational complexity of the algorithm is polynomial in the
size of V .

Broader framework


