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Appendix A. Proofs

Proof of Proposition 3

Sufficiency is trivial, as � ✓ �prex . For necessity, assume
that⇤ is exchangeable, so⇤+� ✓ ⇤. Consider any �̂ 2 ⇤
and any ⌫̂ 2 �prex , then we have to show that �̂ + ⌫̂ 2 ⇤.
Since ⌫̂ � prex (⌫̂) = ⌫̂, we find that

⌫̂ =
1
<!

’
c2P

(⌫̂ � cC ⌫̂) (6)

and therefore �̂ + ⌫̂ = 1
<!

Õ
c2P ( �̂ + ⌫̂ � cC ⌫̂). Since

�̂ 2 ⇤ and ⌫̂ � cC ⌫̂ 2 �, we infer from ⇤ + � ✓ ⇤
that �̂ + ⌫̂ � cC ⌫̂ 2 ⇤, and therefore from D3 and D4 that,
indeed, also �̂ + ⌫̂ 2 ⇤.

For the second statement, we infer from Equation (6) that
�prex ✓ span(�). For the converse inequality, observe that
for any �̂ 2 ⌥ and f 2 P,

prex
�
�̂ � fC �̂

�
=

1
<!

’
c2P

cC �̂ � 1
<!

’
c2P

cC (fC �̂) = 0̂,

so � ✓ �prex , and therefore also span(�) ✓ �prex .

Proof of Proposition 4

We give a circular proof.
(i))(ii). Assume that there’s some exchangeable coherent

set of measurements ⇤ such that L = L⇤, and consider
any ⌫̂ 2 �. Then we infer from Proposition 3 and D2 that
⌫̂ + U�̂ 2 ⇤ for all real U > 0, so Equation (1) tells us
that L⇤ (⌫̂) � 0. Since also �⌫̂ 2 �, we can use the same
argument to infer that also L⇤ (�⌫̂) � 0. Using LP4, we
then find that 0 � �L⇤ (�⌫̂) = L⇤ (⌫̂) � L⇤ (⌫̂) � 0.

(ii))(iii). Consider any �̂ 2 �pr¢ , then we infer from
�̂ = �̂� prex ( �̂) = 1

<!
Õ

c2P ( �̂� cC �̂) and from LP1, LP2
and LP4, that

1
<!

’
c2P

L
�
�̂ � cC �̂

�
 L

�
�̂
�

 L
�
�̂
�
 1

<!

’
c2P

L
�
�̂ � cC �̂

�
,

so we infer from (ii) that, indeed, L ( �̂) = L ( �̂) = 0.
(iii))(iv). Consider any �̂ 2 ⌥ and infer from �̂ =

prex ( �̂) + ( �̂ � prex ( �̂)) and LP5 that

L
�
prex ( �̂)

�
+ L

�
�̂ � prex ( �̂)

�
 L ( �̂)

 L
�
prex ( �̂)

�
+ L

�
�̂ � prex ( �̂)

�
.

But, �̂ � prex ( �̂) 2 �prex , because prex ( �̂ � prex ( �̂)) =
prex ( �̂)�prex ( �̂) = 0̂, so by (iii), L ( �̂�prex ( �̂)) = L ( �̂�
prex ( �̂)) = 0.

(iv))(i). Let ⇤>
L B { �̂ 2 ⌥ : L ( �̂) > 0} and also

let ⇤ B ⇤>
L +�prex . The coherence of L readily implies

that ⇤ satisfies D2, D3 and D4. For D1, assume towards
contradiction that there are �̂ 2 ⇤>

L and ⌫̂ 2 �prex such that
�̂+ ⌫̂ = 0̂, so prex ( �̂) = prex ( �̂+ ⌫̂) = 0̂. Then LP4 and (iv)
imply that 0 = L (prex ( �̂)) = L ( �̂), contradicting that �̂ 2
⇤>

L . Hence,⇤ is coherent. The exchangeability of⇤ follows
from the fact that ⇤ +�prex = ⇤>

L +�prex +�prex = ⇤>
L +

�prex = ⇤. We’re done if we can prove that L = L⇤. Fix any
�̂ 2 ⌥, then �̂�U�̂ 2 ⇤ implies that there are ⌫̂ 2 ⇤>

L and
⇠̂ 2 �prex such that �̂�U�̂ = ⌫̂+⇠̂. Observe that (iv) and LP2
imply that L (⇠̂) = L (prex (⇠̂)) = L (0̂) = 0, and similarly,
that L (⇠̂) = �L (�⇠̂) = �L (prex (�⇠̂)) = �L (0̂) = 0.
LP6 and LP5 therefore imply that L ( �̂) = U + L (⌫̂ + ⇠̂) =
U+L (⌫̂) � U, so L⇤ ( �̂)  L ( �̂). Conversely, as⇤>

L ✓ ⇤,
we also find that L⇤ ( �̂) � L⇤>

L
( �̂). Now, by Equation (1),

L⇤>
L
( �̂) = sup{U 2 R : �̂ � U�̂ 2 ⇤>

L }
= sup{U 2 R : L ( �̂ � U�̂) > 0}
= sup{U 2 R : L ( �̂) > U} = L ( �̂),

where the penultimate equality is due to LP6. Then
L⇤ ( �̂) � L⇤>

L
( �̂) = L ( �̂) � L⇤ ( �̂).

Proof of Corollary 5

First, assume that L is exchangeable. If we consider any
d̂ 2 ⌘L and any c 2 P, then we must show that cC d̂ = d̂.
Consider, to this end, any �̂ 2 ⌥ and let ⌫̂ B �̂�cC �̂, then
Proposition 4(ii) implies that L (⌫̂) = L (⌫̂) = 0. We then
infer from Equation (3) applied to ⌫̂ and �⌫̂ that L (⌫̂) 
Tr( d̂ ⌫̂)  L (⌫̂), and therefore Tr( d̂ ( �̂ � cC �̂)) = 0. By
the linearity of the trace and Equation (5), we find that

Tr
�
d̂ �̂

�
= Tr

�
d̂ (cC �̂)

�
= Tr

�
(cC d̂) �̂

�
.

Since �̂ 2 ⌥ is arbitrary, Theorem 2 implies that d̂ = cC d̂.
Conversely, assume that all density operators d̂ in ⌘L

are permutation invariant. Consider any �̂ 2 �prex , then
prex ( �̂) = 0̂ and therefore, by the linearity of the trace,

0 = Tr
�
d̂ prex ( �̂)

�
=

1
<!

’
c2P

Tr
�
d̂ (cC �̂)

�

=
1
<!

’
c2P

Tr
�
(cC d̂) �̂

�
=

1
<!

’
c2P

Tr
�
d̂ �̂

�
= Tr

�
d̂ �̂

�
,

where the third equality follows from Equation (5), and
the last equality from the permutation invariance of d̂. But
then L ( �̂) = min{Tr( d̂ �̂) : d̂ 2 ⌘L } = 0, and similarly,
L ( �̂) = 0, since also ��̂ 2 �prex . Proposition 4(iii) now
guarantees that L is indeed exchangeable.

Proof of Proposition 6

We give the proof for antisymmetric densities; the proof for
symmetric densities is similar, but somewhat simpler.
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For the first statement, sufficiency is proved in the main
text, so we prove necessity. Assume that d̂ is antisym-
metric. Since d̂ is Hermitian, it has a decomposition
d̂ =

Õ=
:=1 _: |0:ih0: |, where the |0:i are its mutually

orthonormal eigenstates and the _: its real eigenvalues
[26, Box 2.2]. It then follows from Proposition 1 that
_1, . . . , _= constitute a probability mass function over
the eigenstates. We may assume without loss of gener-
ality that all _: > 0. Fix any |0:i and any c 2 P,
then on the one hand it follows from the assumption
that d̂ |0:i = sgn(c)N̂c d̂ |0:i = _: sgn(c)N̂c |0:i, and
on the other hand we find that d̂ |0:i = _: |0:i. So
|0:i = sgn(c)N̂c |0:i, and therefore |0:i is indeed an-
tisymmetric.

The second statement follows from Ref. [26, Theorem
2.6] and the fact that, by Proposition 7, ⌫a is a subspace
of ⌫ . The basic idea behind this argument is that Ref. [26,
Theorem 2.6] guarantees that the state |k:i must be a linear
combination of the eigenstates |01i, . . . , |0=i corresponding
to positive eigenvalues. The argument above confirms that
those eigenstates |01i, . . . , |0=i are antisymmetric, and
since ⌫a is a subspace of ⌫ , the same holds for any linear
combination of them, so indeed |k:i 2 ⌫̄a.

Proof of Proposition 7

We begin by proving the first statement. Observe that,
for any c 2 P, N̂c %̂a = N̂c

1
<!

Õ
f2P sgn(f)N̂f =

1
<!

Õ
f2P sgn(f)N̂f�c = sgn(c)%̂a. Therefore %̂a%̂a =

1
<!

Õ
c2P sgn(c)N̂c %̂a = 1

<!
Õ

c2P sgn(c)2%̂a = %̂a, and
%̂s%̂a = 1

<!
Õ

c2P N̂c %̂a = 1
<!

Õ
c2P sgn(c)%̂a = 0̂. The

proofs for %̂s%̂s = %̂s and %̂a%̂s = 0̂ are very similar. It now
follows at once that %̂o%̂o = ( �̂ � %̂a � %̂s) ( �̂ � %̂a � %̂s) =
�̂ � %̂a � %̂s = %̂o, and that %̂o%̂s = ( �̂ � %̂a � %̂s)%̂s =
%̂s � %̂s = 0̂. The proofs for the remaining identities
%̂s%̂o = %̂o%̂a = %̂a%̂o = 0̂ are again very similar.

We now turn to the proof of the remaining statements.
The identities in the first statement already allow us to
conclude that %̂s, %̂a and %̂o are projection operators that
project onto mutually orthogonal spaces whose direct sum
is the state space. We now prove that %̂a projects onto
⌫a. For any |ki 2 ⌫a, %̂a |ki = 1

<!
Õ

c2P sgn(c)N̂c |ki =
1
<!

Õ
c2P sgn(c)2 |ki = |ki, so ⌫a ✓ %̂a⌫ . For the con-

verse inclusion, we have that %̂a |ki 2 ⌫a for any |ki 2 ⌫ ,
since, as proved above, N̂c %̂a = sgn(c)%̂a and thus
sgn(c)N̂c %̂a |ki = %̂a |ki for all c 2 P. Hence, %̂a⌫ ✓ ⌫a.
We conclude that %̂a indeed projects onto ⌫a. The proof
that %̂s projects onto ⌫s is very similar, and the rest of the
proof is then immediate.

Proof of Proposition 8

For all c 2 P, N̂c is unitary, so d̂ N̂c = (N̂c d̂ N̂
†
c)N̂c =

N̂c d̂ N̂
†
c N̂c = N̂c d̂. Therefore, %̂s d̂ = 1

<!
Õ

c2P N̂c d̂ =
d̂ 1
<!

Õ
c2P N̂c = d̂ %̂s. Similarly, %̂a d̂ = d̂ %̂a and therefore

%̂o d̂ = ( �̂ � %̂a � %̂s) d̂ = d̂ ( �̂ � %̂a � %̂s) = d̂ %̂o. Now use
Proposition 7 to find that, indeed,

d̂ = d̂ (%̂o + %̂a + %̂s) = d̂ %̂2
o + d̂ %̂2

a + d̂ %̂2
s

= %̂o d̂ %̂o + %̂a d̂ %̂a + %̂s d̂ %̂s = l̂o + l̂a + l̂s.

For the second statement, we’ll only give a proof for
antisymmetric densities. The proof for symmetric densities
is similar, if somewhat simpler. For necessity, assume that
d̂ is antisymmetric, so d̂ = sgn(c)N̂c d̂ for all c 2 P. Then

%̂a d̂ =
1
<!

’
c2P

sgn(c)N̂c d̂ =
1
<!

’
c2P

d̂ = d̂,

and similarly, d̂ %̂a = d̂, and therefore, indeed, %̂a d̂ %̂a =
d̂ %̂a = d̂. For sufficiency, assume that %̂a d̂ %̂a = d̂, and fix
any f 2 P. Observe that

sgn(f)N̂f %̂a =
1
<!

’
c2P

sgn(f) sgn(c)N̂f N̂c

=
1
<!

’
c2P

sgn(c)N̂c = %̂a,

and therefore also

sgn(f)N̂f d̂ = sgn(f)N̂f %̂a d̂ %̂a = %̂a d̂ %̂a = d̂,

so we’re done.

Proof of Proposition 9

The first statement is an immediate consequence of the
second, which itself follows readily from

N̂ †
c %̂¢ =

1
<!

’
f2P

sgn¢(f)N̂ †
c N̂f

= sgn¢(c) 1
<!

’
f2P

sgn¢(f � c�1)N̂f�c�1

= sgn¢(c)%̂¢, (7)

and similarly, %̂¢N̂c = sgn¢(c)%̂¢. For the last statement,
consider any �̂ 2 �pr¢ , then �̂ � pr¢( �̂) = �̂. Now we use
the definition of pr¢ to find that

�̂ � pr¢( �̂)

=
1

<!2

’
c,f2P

h
�̂ � sgn¢(c � f)N̂ †

c �̂N̂f

i

=
1

<!2

’
c,f2P

h
�̂ � sgn¢(c � f)

2
�
N̂ †

c �̂N̂f + N̂ †
f �̂N̂c

� i
,

where we reshuffled some terms to get the second equality.
Consider that

13
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2(¢f
�
(¢c ( �̂)

�
=

sgn¢(f � c)
2

�
N̂ †

f�c �̂+�̂N̂f�c+N̂ †
f �̂N̂c+N̂ †

c �̂N̂f
�
,

and therefore

sgn¢(c � f)
2

�
N̂ †

c �̂N̂f + N̂ †
f �̂N̂c

�
= 2(¢f

�
(¢c ( �̂)

�
� (¢f�c ( �̂),

so a generic term in the sum above can be rewritten as

�̂ � sgn¢(c � f)
2

�
N̂ †

c �̂N̂f + N̂ †
f �̂N̂c

�
= 2

⇥
�̂�(¢c (�)

⇤
�
⇥
�̂�(¢f�c

�
�̂
� ⇤
+2

⇥
(¢c

�
�̂
�
�(¢f(¢c

�
�̂
� ⇤
.

Each of the terms in brackets is an element of �¢, so
�̂ = �̂ � pr¢( �̂) is a linear combination of elements of �¢.
Hence, �pr¢ ✓ span(�¢).

For the converse inclusion, consider any �̂ 2 �¢, so
there are ⌫̂ 2 ⌥ and c 2 P such that �̂ = ⌫̂� (¢c (⌫̂). Then

pr¢
�
�̂
�
= pr¢

�
⌫̂ � (¢c

�
⌫̂
� �

= pr¢
�
⌫̂
�
� pr¢

�
(¢c

�
⌫̂
� �

= 0̂,

where the last equality holds because

pr¢
�
(¢c

�
⌫̂
� �

= %̂¢
sgn¢(c)

2

⇣
N̂ †

c ⌫̂ + ⌫̂N̂c

⌘
%̂¢

=
sgn¢(c)

2
�
%̂¢N̂

†
c ⌫̂%̂¢ + %̂¢⌫̂N̂c %̂¢

�

=
sgn¢(c)2

2
�
%̂¢⌫̂%̂¢ + %̂¢⌫̂%̂¢

�
= %̂¢⌫̂%̂¢,

due to the Equation (7) and its right-sided counterpart,
proved above. Hence, �̂ 2 �pr¢ , which implies that �¢ ✓
�pr¢ and therefore indeed also span(�¢) ✓ �pr¢ .

The argumentation for proving of Propositions 10 and 11
is analogous to that in the proofs of Propositions 3 and 4,
respectively, so we won’t include them here.

Proof of Corollary 12

Using a similar argument as in the proof of Corollary 5,
we find that by Proposition 11, the strong ¢-symmetry
requirement is equivalent to the requirement that Tr( d̂ �̂) =
0 for all d̂ 2 ⌘L and all �̂ 2 �pr¢ , or equivalently, that

Tr
⇣
d̂
�
�̂ � pr¢( �̂)

� ⌘
= 0 for all �̂ 2 ⌥.

By the linearity and cyclic property of the trace, we can
rewrite this condition, as

Tr( d̂ �̂) = Tr
�
d̂ %̂¢ �̂%̂¢

�
= Tr

�
%̂¢d̂ %̂¢ �̂

�
for all �̂ 2 ⌥,

and therefore, by Theorem 2, the strong ¢-symmetry re-
quirement is equivalent to

d̂ = %̂¢d̂ %̂¢ = pr¢( d̂) for all d̂ 2 ⌘L . (8)

To prove necessity for the first statement, observe that this
condition, together with Proposition 9(ii), implies that d̂ =
sgn¢(c)N̂c d̂ for all c 2 P, which is the stated condition.

For sufficiency, if the stated condition holds, then

%̂¢d̂ =
1
<!

’
c2P

sgn¢(c)N̂c d̂ = sgn¢(c)2 d̂ = d̂,

and therefore, d̂ = d̂† = (%̂¢d̂)
†
= d̂†%̂†

¢ = d̂ %̂¢, whence,
indeed, d̂ = %̂¢d̂ %̂¢.

Proof of Proposition 13

Assume that �̂ 2 ⇤. Since

pr¢
�
pr¢( �̂) � �̂

�
= pr¢

�
pr¢( �̂)

�
� pr¢( �̂) = 0̂,

we see that pr¢( �̂) � �̂ 2 �pr¢ , so the strong ¢-symmetry
of ⇤ implies that pr¢( �̂) = �̂ + (pr¢( �̂) � �̂) 2 ⇤.

Conversely, assume that pr¢( �̂) 2 ⇤. Since, similarly as
before, �̂ � pr¢( �̂) 2 �pr¢ , the strong ¢-symmetry of ⇤
yields �̂ = pr¢( �̂) + ( �̂ � pr¢( �̂)) 2 ⇤.

Proof of Theorem 14

For sufficiency, assume that there’s some coherent ⇤> for
⌫̄¢ such that ⇤ = { �̂ 2 ⌥ : Hy¢( �̂) 2 ⇤>}. First, we
prove that ⇤ is then coherent. For D1, assume that �̂ = 0̂,
then also Hy¢( �̂) = 0̂ and therefore Hy¢( �̂) 8 ⇤>, so
�̂ 8 ⇤. For D2, assume that �̂ > 0̂, then also Hy¢( �̂) > 0̂15

and therefore Hy¢( �̂) 2 ⇤>, so �̂ 2 ⇤. D3 and D4 follow
from the linearity of Hy¢. Next, we show that ⇤ is strongly
¢-symmetric, using Proposition 10. Consider any �̂ 2 ⇤
and ⌫̂ 2 �pr¢ , then we have to show that �̂ + ⌫̂ 2 ⇤. Since
for all |ki 2 ⌫̄¢, |ki = %̂¢ |ki and therefore also hk |⌫̂ |ki =
hk |%̂¢⌫̂%̂¢ |ki = hk |0̂|ki = 0, we find that Hy¢(⌫̂) = 0̂.
Therefore Hy¢( �̂ + ⌫̂) = Hy¢( �̂) 2 ⇤>, whence, indeed,
�̂ + ⌫̂ 2 ⇤. Finally, consider any ⇠̂ 2 ⌥(⌫¢) and observe
that for all |ki 2 ⌫¢, hk | ext¢(⇠̂) |ki = hk |⇠̂%̂¢ |ki =
hk |⇠̂ |ki, so Hy¢(ext¢(⇠̂)) = ⇠̂, and therefore indeed,

ext¢(⇠̂) 2 ⇤ , Hy¢(ext¢(⇠̂)) 2 ⇤> , ⇠̂ 2 ⇤> .

For necessity, assume that ⇤ is a strongly ¢-symmetric
coherent set of desirable measurements for ⌫̄ , then we first
prove that ⇤¢ is a coherent set of desirable measurements
for ⌫̄¢. For D1, since ext¢(0̂) = 0̂ and 0̂ 8 ⇤, we find
that 0̂ 8 ⇤¢. For D2, consider any ⇠̂ 2 ⌥(⌫¢)>0̂ and let

15A Hermitian operator �̂ on a Hilbert space ⌫ is positive definite if
and only if hk | �̂|ki > 0 for all |ki 2 ⌫̄ .
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�̂ B ext¢(⇠̂) + �̂ � %̂¢. As the codomain of⌅(⇠̂) = ⇠̂%̂¢

is ⌫¢, we find that ⇠̂%̂¢ = %̂¢⇠̂%̂¢. Then for all |ki 2 ⌫̄ ,

hk | �̂|ki = hk | (%̂¢⇠̂%̂¢ + �̂ � %̂¢) |ki
= hk |%̂¢⇠̂%̂¢ |ki + 1 � hk |%̂¢ |ki.

Now, there are two possibilities, for any |ki 2 ⌫̄ .
If %̂¢ |ki < 0, then the positivity of ⇠̂ implies that
hk |%̂¢⇠̂%̂¢ |ki > 0 and 1 � hk |%̂¢ |ki � 0, because the
eigenvalues of the projector %̂¢ are 0 and 1. If %̂¢ |ki = 0,
then hk |%̂¢⇠̂%̂¢ |ki = 0 and 1 � hk |%̂¢ |ki = 1 > 0. This
tells us that �̂ > 0̂, and therefore �̂ 2 ⇤. But, as %̂¢ is a
projection operator,

pr¢( �̂) = %̂¢
�
ext¢(⇠̂) + �̂ � %̂¢

�
%̂¢

= %̂¢ ext¢(⇠̂)%̂¢ + %̂¢%̂¢ � %̂¢%̂¢%̂¢

= %̂¢⇠̂%̂¢%̂¢ = %̂¢⇠̂%̂¢ = ⇠̂%̂¢ = ext¢(⇠̂),

where the penultimate equality follows from the fact that the
codomain of ⇠̂ is ⌫¢. But then Proposition 13 guarantees
that pr¢( �̂) = ext¢(⇠̂) also belongs to⇤, so indeed ⇠̂ 2 ⇤¢.
D3 and D4, follow from the linearity of ext¢. To conclude,
we prove that ⇤ = { �̂ 2 ⌥ : Hy¢( �̂) 2 ⇤¢}. Consider
any �̂ 2 ⌥ and observe that ext¢(Hy¢( �̂)) = pr¢( �̂), so

�̂ 2 ⇤ , pr¢( �̂) 2 ⇤ , ext¢(Hy¢( �̂)) 2 ⇤

, Hy¢( �̂) 2 ⇤¢,

where the first equivalence follows from Proposition 13.
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