Appendix A. Proofs

Proof of Proposition 3

Sufficiency is trivial, as $\mathscr{J} \subseteq \mathscr{J}_{\mathrm{pr}_{\mathrm{ex}}}$. For necessity, assume that \mathscr{D} is exchangeable, so $\mathscr{D}+\mathscr{F} \subseteq \mathscr{D}$. Consider any $\hat{A} \in \mathscr{D}$ and any $\hat{B} \in \mathscr{J}_{\mathrm{pr}_{\mathrm{e}}}$, then we have to show that $\hat{A}+\hat{B} \in \mathscr{D}$. Since $\hat{B}-\operatorname{pr}_{\mathrm{ex}}(\hat{B})=\hat{B}$, we find that

$$
\begin{equation*}
\hat{B}=\frac{1}{m!} \sum_{\pi \in \mathbb{P}}\left(\hat{B}-\pi^{t} \hat{B}\right) \tag{6}
\end{equation*}
$$

and therefore $\hat{A}+\hat{B}=\frac{1}{m!} \sum_{\pi \in \mathbb{P}}\left(\hat{A}+\hat{B}-\pi^{t} \hat{B}\right)$. Since $\hat{A} \in \mathscr{D}$ and $\hat{B}-\pi^{t} \hat{B} \in \mathscr{F}$, we infer from $\mathscr{D}+\mathscr{F} \subseteq \mathscr{D}$ that $\hat{A}+\hat{B}-\pi^{t} \hat{B} \in \mathscr{D}$, and therefore from D3 and D4 that, indeed, also $\hat{A}+\hat{B} \in \mathscr{D}$.

For the second statement, we infer from Equation (6) that $\mathscr{J}_{\mathrm{pr}_{\mathrm{ex}}} \subseteq \operatorname{span}(\mathscr{F})$. For the converse inequality, observe that for any $\hat{A} \in \mathscr{H}$ and $\sigma \in \mathbb{P}$,

$$
\operatorname{pr}_{\mathrm{ex}}\left(\hat{A}-\sigma^{t} \hat{A}\right)=\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \pi^{t} \hat{A}-\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \pi^{t}\left(\sigma^{t} \hat{A}\right)=\hat{0}
$$

so $\mathscr{I} \subseteq \mathscr{J}_{\mathrm{pr}_{\mathrm{ex}}}$, and therefore also $\operatorname{span}(\mathscr{J}) \subseteq \mathscr{J}_{\mathrm{pr}_{\mathrm{ex}}}$.

Proof of Proposition 4

We give a circular proof.
(i) \Rightarrow (ii). Assume that there's some exchangeable coherent set of measurements \mathscr{D} such that $\underline{\Lambda}=\underline{\Lambda}_{\mathscr{D}}$, and consider any $\hat{B} \in \mathscr{F}$. Then we infer from Proposition 3 and D 2 that $\hat{B}+\alpha \hat{I} \in \mathscr{D}$ for all real $\alpha>0$, so Equation (1) tells us that $\underline{\Lambda}_{\mathscr{D}}(\hat{B}) \geq 0$. Since also $-\hat{B} \in \mathscr{F}$, we can use the same argument to infer that also $\underline{\Lambda}_{\mathscr{D}}(-\hat{B}) \geq 0$. Using LP4, we then find that $0 \geq-\underline{\Lambda}_{\mathscr{D}}(-\hat{B})=\bar{\Lambda}_{\mathscr{D}}(\hat{B}) \geq \underline{\Lambda}_{\mathscr{D}}(\hat{B}) \geq 0$.
(ii) \Rightarrow (iii). Consider any $\hat{A} \in \mathscr{J}_{\mathrm{pr}_{\star}}$, then we infer from $\hat{A}=\hat{A}-\operatorname{pr}_{\mathrm{ex}}(\hat{A})=\frac{1}{m!} \sum_{\pi \in \mathbb{P}}\left(\hat{A}-\pi^{t} \hat{A}\right)$ and from LP1, LP2 and LP4, that

$$
\begin{aligned}
\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \underline{\Lambda}\left(\hat{A}-\pi^{t} \hat{A}\right) & \leq \underline{\Lambda}(\hat{A}) \\
& \leq \bar{\Lambda}(\hat{A}) \leq \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \bar{\Lambda}\left(\hat{A}-\pi^{t} \hat{A}\right),
\end{aligned}
$$

so we infer from (ii) that, indeed, $\underline{\Lambda}(\hat{A})=\bar{\Lambda}(\hat{A})=0$.
(iii) \Rightarrow (iv). Consider any $\hat{A} \in \mathscr{H}$ and infer from $\hat{A}=$ $\operatorname{pr}_{\mathrm{ex}}(\hat{A})+\left(\hat{A}-\mathrm{pr}_{\mathrm{ex}}(\hat{A})\right)$ and LP5 that

$$
\begin{aligned}
& \underline{\Lambda}\left(\operatorname{pr}_{\mathrm{ex}}(\hat{A})\right)+\underline{\Lambda}\left(\hat{A}-\operatorname{pr}_{\mathrm{ex}}(\hat{A})\right) \leq \underline{\Lambda}(\hat{A}) \\
& \quad \leq \underline{\Lambda}\left(\operatorname{pr}_{\mathrm{ex}}(\hat{A})\right)+\bar{\Lambda}\left(\hat{A}-\operatorname{pr}_{\mathrm{ex}}(\hat{A})\right) .
\end{aligned}
$$

But, $\hat{A}-\operatorname{pr}_{\mathrm{ex}}(\hat{A}) \in \mathscr{I}_{\mathrm{pr}}^{\mathrm{ex}}$, because $\mathrm{pr}_{\mathrm{ex}}\left(\hat{A}-\mathrm{pr}_{\mathrm{ex}}(\hat{A})\right)=$ $\operatorname{pr}_{\mathrm{ex}}(\hat{A})-\operatorname{pr}_{\mathrm{ex}}(\hat{A})=\hat{0}$, so by (iii), $\underline{\Lambda}\left(\hat{A}-\mathrm{pr}_{\mathrm{ex}}(\hat{A})\right)=\bar{\Lambda}(\hat{A}-$ $\left.\operatorname{pr}_{\mathrm{ex}}(\hat{A})\right)=0$.
(iv) \Rightarrow (i). Let $\mathscr{D}_{\underline{\Lambda}}^{>}:=\{\hat{A} \in \mathscr{H}: \underline{\Lambda}(\hat{A})>0\}$ and also let $\mathscr{D}:=\mathscr{D}_{\underline{\Lambda}}^{>}+\mathscr{J}_{\mathrm{pr}}^{\mathrm{r}} \mathrm{x}$. The coherence of $\underline{\Lambda}$ readily implies that \mathscr{D} satisfies D2, D3 and D4. For D1, assume towards contradiction that there are $\hat{A} \in \mathscr{D}_{\widehat{\Lambda}}^{>}$and $\hat{B} \in \mathscr{J}_{\mathrm{pr}_{\mathrm{ex}}}$ such that $\hat{A}+\hat{B}=\hat{0}$, so $\operatorname{pr}_{\mathrm{ex}}(\hat{A})=\mathrm{pr}_{\mathrm{ex}}(\hat{A}+\hat{B})=\hat{0}$. Then LP4 and (iv) imply that $0=\underline{\Lambda}\left(\operatorname{pr}_{\mathrm{ex}}(\hat{A})\right)=\underline{\Lambda}(\hat{A})$, contradicting that $\hat{A} \in$ $\mathscr{D}_{\underline{\Lambda}}$. Hence, \mathscr{D} is coherent. The exchangeability of \mathscr{D} follows from the fact that $\mathscr{D}+\mathscr{J}_{\mathrm{pr} \mathrm{ex}}=\mathscr{D}_{\underline{\Lambda}}^{>}+\mathscr{J}_{\mathrm{prex}}+\mathscr{J}_{\mathrm{pr}}^{\mathrm{ex}}, ~=\mathscr{D}_{\underline{\Lambda}}^{>}+$ $\mathcal{J}_{\mathrm{pr} \mathrm{ex}}=\mathscr{D}$. We're done if we can prove that $\underline{\Lambda}=\underline{\hat{\Lambda}} \mathscr{D}$. Fix any $\hat{A} \in \mathscr{H}$, then $\hat{A}-\alpha \hat{I} \in \mathscr{D}$ implies that there are $\hat{B} \in \mathscr{D}_{\underline{\Lambda}}^{>}$and $\hat{C} \in \mathscr{J}_{\mathrm{prex}}$ such that $\hat{A}-\alpha \hat{I}=\hat{B}+\hat{C}$. Observe that (iv) and $\overline{\mathrm{d}} \mathrm{LP} 2$ imply that $\underline{\Lambda}(\hat{C})=\underline{\Lambda}\left(\operatorname{pr}_{\mathrm{ex}}(\hat{C})\right)=\underline{\Lambda}(\hat{0})=0$, and similarly, that $\bar{\Lambda}(\hat{C})=-\underline{\Lambda}(-\hat{C})=-\underline{\Lambda}\left(\operatorname{pr}_{\mathrm{ex}}(-\hat{C})\right)=-\underline{\Lambda}(\hat{0})=0$. LP6 and LP5 therefore imply that $\underline{\Lambda}(\hat{A})=\alpha+\underline{\Lambda}(\hat{B}+\hat{C})=$ $\alpha+\underline{\Lambda}(\hat{B}) \geq \alpha$, so $\underline{\Lambda}_{\mathscr{D}}(\hat{A}) \leq \underline{\Lambda}(\hat{A})$. Conversely, as $\mathscr{D}_{\Lambda} \subseteq \mathscr{D}$, we also find that $\underline{\underline{\Lambda}}_{\mathscr{D}}(\hat{A}) \geq \underline{\underline{\Lambda}}_{\mathscr{D}}(\hat{A})$. Now, by Equation (1),

$$
\begin{aligned}
\underline{\Lambda}_{\mathscr{D}_{\underline{\underline{\widehat{ }}}}}(\hat{A}) & =\sup \left\{\alpha \in \mathbb{R}: \hat{A}-\alpha \hat{I} \in \mathscr{D}_{\underline{\Lambda}}^{>}\right\} \\
& =\sup \{\alpha \in \mathbb{R}: \underline{\Lambda}(\hat{A}-\alpha \hat{I})>0\} \\
& =\sup \{\alpha \in \mathbb{R}: \underline{\Lambda}(\hat{A})>\alpha\}=\underline{\Lambda}(\hat{A}),
\end{aligned}
$$

where the penultimate equality is due to LP6. Then $\underline{\Lambda}_{\mathscr{D}}(\hat{A}) \geq \underline{\Lambda}_{\mathscr{D}_{\underline{\widehat{I}}}}(\hat{A})=\underline{\Lambda}(\hat{A}) \geq \underline{\Lambda}_{\mathscr{D}}(\hat{A})$.

Proof of Corollary 5

First, assume that $\underline{\Lambda}$ is exchangeable. If we consider any $\hat{\rho} \in \mathscr{R}_{\underline{\Lambda}}$ and any $\pi \in \mathbb{P}$, then we must show that $\bar{\pi}^{t} \hat{\rho}=\hat{\rho}$. Consider, to this end, any $\hat{A} \in \mathscr{H}$ and let $\hat{B}:=\hat{A}-\pi^{t} \hat{A}$, then Proposition 4(ii) implies that $\underline{\Lambda}(\hat{B})=\bar{\Lambda}(\hat{B})=0$. We then infer from Equation (3) applied to \hat{B} and $-\hat{B}$ that $\underline{\Lambda}(\hat{B}) \leq$ $\operatorname{Tr}(\hat{\rho} \hat{B}) \leq \bar{\Lambda}(\hat{B})$, and therefore $\operatorname{Tr}\left(\hat{\rho}\left(\hat{A}-\pi^{t} \hat{A}\right)\right)=0$. By the linearity of the trace and Equation (5), we find that

$$
\operatorname{Tr}(\hat{\rho} \hat{A})=\operatorname{Tr}\left(\hat{\rho}\left(\pi^{t} \hat{A}\right)\right)=\operatorname{Tr}\left(\left(\bar{\pi}^{t} \hat{\rho}\right) \hat{A}\right)
$$

Since $\hat{A} \in \mathscr{H}$ is arbitrary, Theorem 2 implies that $\hat{\rho}=\bar{\pi}^{t} \hat{\rho}$.
Conversely, assume that all density operators $\hat{\rho}$ in $\mathscr{R}_{\underline{\Lambda}}$ are permutation invariant. Consider any $\hat{A} \in \mathscr{J}_{\mathrm{pr}_{\mathrm{ex}}}$, then $\operatorname{pr}_{\mathrm{ex}}(\hat{A})=\hat{0}$ and therefore, by the linearity of the trace,

$$
\begin{aligned}
0 & =\operatorname{Tr}\left(\hat{\rho} \operatorname{pr}_{\mathrm{ex}}(\hat{A})\right)=\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{Tr}\left(\hat{\rho}\left(\pi^{t} \hat{A}\right)\right) \\
& =\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{Tr}\left(\left(\bar{\pi}^{t} \hat{\rho}\right) \hat{A}\right)=\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{Tr}(\hat{\rho} \hat{A})=\operatorname{Tr}(\hat{\rho} \hat{A}),
\end{aligned}
$$

where the third equality follows from Equation (5), and the last equality from the permutation invariance of $\hat{\rho}$. But then $\underline{\Lambda}(\hat{A})=\min \left\{\operatorname{Tr}(\hat{\rho} \hat{A}): \hat{\rho} \in \mathscr{R}_{\underline{\Lambda}}\right\}=0$, and similarly, $\bar{\Lambda}(\hat{A})=0$, since also $-\hat{A} \in \mathscr{J}_{\mathrm{pr}_{\mathrm{ex}}}$. Proposition 4(iii) now guarantees that $\underline{\Lambda}$ is indeed exchangeable.

Proof of Proposition 6

We give the proof for antisymmetric densities; the proof for symmetric densities is similar, but somewhat simpler.

For the first statement, sufficiency is proved in the main text, so we prove necessity. Assume that $\hat{\rho}$ is antisymmetric. Since $\hat{\rho}$ is Hermitian, it has a decomposition $\hat{\rho}=\sum_{k=1}^{n} \lambda_{k}\left|a_{k}\right\rangle\left\langle a_{k}\right|$, where the $\left|a_{k}\right\rangle$ are its mutually orthonormal eigenstates and the λ_{k} its real eigenvalues [26, Box 2.2]. It then follows from Proposition 1 that $\lambda_{1}, \ldots, \lambda_{n}$ constitute a probability mass function over the eigenstates. We may assume without loss of generality that all $\lambda_{k}>0$. Fix any $\left|a_{k}\right\rangle$ and any $\pi \in \mathbb{P}$, then on the one hand it follows from the assumption that $\hat{\rho}\left|a_{k}\right\rangle=\operatorname{sgn}(\pi) \hat{\Pi}_{\pi} \hat{\rho}\left|a_{k}\right\rangle=\lambda_{k} \operatorname{sgn}(\pi) \hat{\Pi}_{\pi}\left|a_{k}\right\rangle$, and on the other hand we find that $\hat{\rho}\left|a_{k}\right\rangle=\lambda_{k}\left|a_{k}\right\rangle$. So $\left|a_{k}\right\rangle=\operatorname{sgn}(\pi) \hat{\Pi}_{\pi}\left|a_{k}\right\rangle$, and therefore $\left|a_{k}\right\rangle$ is indeed antisymmetric.

The second statement follows from Ref. [26, Theorem 2.6] and the fact that, by Proposition $7, X_{a}$ is a subspace of \mathscr{X}. The basic idea behind this argument is that Ref. [26, Theorem 2.6] guarantees that the state $\left|\psi_{k}\right\rangle$ must be a linear combination of the eigenstates $\left|a_{1}\right\rangle, \ldots,\left|a_{n}\right\rangle$ corresponding to positive eigenvalues. The argument above confirms that those eigenstates $\left|a_{1}\right\rangle, \ldots,\left|a_{n}\right\rangle$ are antisymmetric, and since \mathscr{X}_{a} is a subspace of \mathscr{X}, the same holds for any linear combination of them, so indeed $\left|\psi_{k}\right\rangle \in \bar{X}_{\mathrm{a}}$.

Proof of Proposition 7

We begin by proving the first statement. Observe that, for any $\pi \in \mathbb{P}, \hat{\Pi}_{\pi} \hat{P}_{\mathrm{a}}=\hat{\Pi}_{\pi} \frac{1}{m!} \sum_{\sigma \in \mathbb{P}} \operatorname{sgn}(\sigma) \hat{\Pi}_{\sigma}=$ $\frac{1}{m!} \sum_{\sigma \in \mathbb{P}} \operatorname{sgn}(\sigma) \hat{\Pi}_{\sigma \circ \pi}=\operatorname{sgn}(\pi) \hat{P}_{\mathrm{a}}$. Therefore $\hat{P}_{\mathrm{a}} \hat{P}_{\mathrm{a}}=$ $\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi) \hat{\Pi}_{\pi} \hat{P}_{\mathrm{a}}=\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi)^{2} \hat{P}_{\mathrm{a}}=\hat{P}_{\mathrm{a}}$, and $\hat{P}_{\mathrm{s}} \hat{P}_{\mathrm{a}}=\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \hat{I}_{\pi} \hat{P}_{\mathrm{a}}=\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi) \hat{P}_{\mathrm{a}}=\hat{0}$. The proofs for $\hat{P}_{\mathrm{s}} \hat{P}_{\mathrm{s}}=\hat{P}_{\mathrm{s}}$ and $\hat{P}_{\mathrm{a}} \hat{P}_{\mathrm{S}}=\hat{0}$ are very similar. It now follows at once that $\hat{P}_{\mathrm{o}} \hat{P}_{\mathrm{o}}=\left(\hat{I}-\hat{P}_{\mathrm{a}}-\hat{P}_{\mathrm{s}}\right)\left(\hat{I}-\hat{P}_{\mathrm{a}}-\hat{P}_{\mathrm{s}}\right)=$ $\hat{I}-\hat{P}_{\mathrm{a}}-\hat{P}_{\mathrm{s}}=\hat{P}_{\mathrm{o}}$, and that $\hat{P}_{\mathrm{o}} \hat{P}_{\mathrm{s}}=\left(\hat{I}-\hat{P}_{\mathrm{a}}-\hat{P}_{\mathrm{s}}\right) \hat{P}_{\mathrm{s}}=$ $\hat{P}_{\mathrm{s}}-\hat{P}_{\mathrm{s}}=\hat{0}$. The proofs for the remaining identities $\hat{P}_{\mathrm{s}} \hat{P}_{\mathrm{o}}=\hat{P}_{\mathrm{o}} \hat{P}_{\mathrm{a}}=\hat{P}_{\mathrm{a}} \hat{P}_{\mathrm{o}}=\hat{0}$ are again very similar.

We now turn to the proof of the remaining statements. The identities in the first statement already allow us to conclude that $\hat{P}_{\mathrm{s}}, \hat{P}_{\mathrm{a}}$ and \hat{P}_{o} are projection operators that project onto mutually orthogonal spaces whose direct sum is the state space. We now prove that \hat{P}_{a} projects onto X_{a}. For any $|\psi\rangle \in X_{\mathrm{a}}, \hat{P}_{\mathrm{a}}|\psi\rangle=\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi) \hat{\Pi}_{\pi}|\psi\rangle=$ $\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi)^{2}|\psi\rangle=|\psi\rangle$, so $\mathscr{X}_{\mathrm{a}} \subseteq \hat{P}_{\mathrm{a}} \mathscr{X}$. For the converse inclusion, we have that $\hat{P}_{\mathrm{a}}|\psi\rangle \in X_{\mathrm{a}}$ for any $|\psi\rangle \in \mathscr{X}$, since, as proved above, $\hat{\Pi}_{\pi} \hat{P}_{\mathrm{a}}=\operatorname{sgn}(\pi) \hat{P}_{\mathrm{a}}$ and thus $\operatorname{sgn}(\pi) \hat{\Pi}_{\pi} \hat{P}_{\mathrm{a}}|\psi\rangle=\hat{P}_{\mathrm{a}}|\psi\rangle$ for all $\pi \in \mathbb{P}$. Hence, $\hat{P}_{\mathrm{a}} \mathscr{X} \subseteq \mathscr{X}_{\mathrm{a}}$. We conclude that \hat{P}_{a} indeed projects onto \mathscr{X}_{a}. The proof that \hat{P}_{s} projects onto \mathscr{X}_{s} is very similar, and the rest of the proof is then immediate.

Proof of Proposition 8

For all $\pi \in \mathbb{P}, \hat{\Pi}_{\pi}$ is unitary, so $\hat{\rho} \hat{\Pi}_{\pi}=\left(\hat{\Pi}_{\pi} \hat{\rho} \hat{\Pi}_{\pi}^{\dagger}\right) \hat{\Pi}_{\pi}=$ $\hat{\Pi}_{\pi} \hat{\rho} \hat{\Pi}_{\pi}^{\dagger} \hat{\Pi}_{\pi}=\hat{\Pi}_{\pi} \hat{\rho}$. Therefore, $\hat{P}_{\mathrm{s}} \hat{\rho}=\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \hat{\Pi}_{\pi} \hat{\rho}=$ $\hat{\rho} \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \hat{\Pi}_{\pi}=\hat{\rho} \hat{P}_{\mathrm{s}}$. Similarly, $\hat{P}_{\mathrm{a}} \hat{\rho}=\hat{\rho} \hat{P}_{\mathrm{a}}$ and therefore
$\hat{P}_{\mathrm{o}} \hat{\rho}=\left(\hat{I}-\hat{P}_{\mathrm{a}}-\hat{P}_{\mathrm{s}}\right) \hat{\rho}=\hat{\rho}\left(\hat{I}-\hat{P}_{\mathrm{a}}-\hat{P}_{\mathrm{s}}\right)=\hat{\rho} \hat{P}_{\mathrm{o}}$. Now use Proposition 7 to find that, indeed,

$$
\begin{aligned}
\hat{\rho} & =\hat{\rho}\left(\hat{P}_{\mathrm{o}}+\hat{P}_{\mathrm{a}}+\hat{P}_{\mathrm{s}}\right)=\hat{\rho} \hat{P}_{\mathrm{o}}^{2}+\hat{\rho} \hat{P}_{\mathrm{a}}^{2}+\hat{\rho} \hat{P}_{\mathrm{s}}^{2} \\
& =\hat{P}_{\mathrm{o}} \hat{\rho} \hat{P}_{\mathrm{o}}+\hat{P}_{\mathrm{a}} \hat{\rho} \hat{P}_{\mathrm{a}}+\hat{P}_{\mathrm{s}} \hat{\rho} \hat{P}_{\mathrm{s}}=\hat{\omega}_{\mathrm{o}}+\hat{\omega}_{\mathrm{a}}+\hat{\omega}_{\mathrm{s}} .
\end{aligned}
$$

For the second statement, we'll only give a proof for antisymmetric densities. The proof for symmetric densities is similar, if somewhat simpler. For necessity, assume that $\hat{\rho}$ is antisymmetric, so $\hat{\rho}=\operatorname{sgn}(\pi) \hat{\Pi}_{\pi} \hat{\rho}$ for all $\pi \in \mathbb{P}$. Then

$$
\hat{P}_{\mathrm{a}} \hat{\rho}=\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi) \hat{\Pi}_{\pi} \hat{\rho}=\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \hat{\rho}=\hat{\rho},
$$

and similarly, $\hat{\rho} \hat{P}_{\mathrm{a}}=\hat{\rho}$, and therefore, indeed, $\hat{P}_{\mathrm{a}} \hat{\rho} \hat{P}_{\mathrm{a}}=$ $\hat{\rho} \hat{P}_{\mathrm{a}}=\hat{\rho}$. For sufficiency, assume that $\hat{P_{\mathrm{a}}} \hat{\rho} \hat{P}_{\mathrm{a}}=\hat{\rho}$, and fix any $\sigma \in \mathbb{P}$. Observe that

$$
\begin{aligned}
\operatorname{sgn}(\sigma) \hat{\Pi}_{\sigma} \hat{P}_{\mathrm{a}} & =\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\sigma) \operatorname{sgn}(\pi) \hat{\Pi}_{\sigma} \hat{\Pi}_{\pi} \\
& =\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi) \hat{\Pi}_{\pi}=\hat{P}_{\mathrm{a}}
\end{aligned}
$$

and therefore also

$$
\operatorname{sgn}(\sigma) \hat{\Pi}_{\sigma} \hat{\rho}=\operatorname{sgn}(\sigma) \hat{\Pi}_{\sigma} \hat{P}_{\mathrm{a}} \hat{\rho} \hat{P}_{\mathrm{a}}=\hat{P}_{\mathrm{a}} \hat{\rho} \hat{P}_{\mathrm{a}}=\hat{\rho},
$$

so we're done.

Proof of Proposition 9

The first statement is an immediate consequence of the second, which itself follows readily from

$$
\begin{align*}
\hat{\Pi}_{\pi}^{\dagger} \hat{P}_{\star} & =\frac{1}{m!} \sum_{\sigma \in \mathbb{P}} \operatorname{sgn}^{\star}(\sigma) \hat{\Pi}_{\pi}^{\dagger} \hat{\Pi}_{\sigma} \\
& =\operatorname{sgn}^{\star}(\pi) \frac{1}{m!} \sum_{\sigma \in \mathbb{P}} \operatorname{sgn}^{\star}\left(\sigma \circ \pi^{-1}\right) \hat{\Pi}_{\sigma \circ \pi^{-1}} \\
& =\operatorname{sgn}^{\star}(\pi) \hat{P}_{\star}, \tag{7}
\end{align*}
$$

and similarly, $\hat{P}_{\star} \hat{\Pi}_{\pi}=\operatorname{sgn}^{\star}(\pi) \hat{P}_{\star}$. For the last statement, consider any $\hat{A} \in \mathscr{J}_{\mathrm{pr}_{\star}}$, then $\hat{A}-\mathrm{pr}_{\star}(\hat{A})=\hat{A}$. Now we use the definition of pr_{\star} to find that

$$
\begin{aligned}
& \hat{A}-\operatorname{pr}_{\star}(\hat{A}) \\
= & \frac{1}{m!^{2}} \sum_{\pi, \sigma \in \mathbb{P}}\left[\hat{A}-\operatorname{sgn}^{\star}(\pi \circ \sigma) \hat{\Pi}_{\pi}^{\dagger} \hat{A} \hat{\Pi}_{\sigma}\right] \\
= & \frac{1}{m!^{2}} \sum_{\pi, \sigma \in \mathbb{P}}\left[\hat{A}-\frac{\operatorname{sgn}^{\star}(\pi \circ \sigma)}{2}\left(\hat{\Pi} \hat{\Pi}_{\pi}^{\dagger} \hat{A} \hat{\Pi}_{\sigma}+\hat{\Pi}_{\sigma}^{\dagger} \hat{A} \hat{\Pi}_{\pi}\right)\right]
\end{aligned}
$$

where we reshuffled some terms to get the second equality. Consider that

$$
\begin{aligned}
& 2 S_{\sigma}^{\star}\left(S_{\pi}^{\star}(\hat{A})\right) \\
= & \frac{\operatorname{sgn}^{\star}(\sigma \circ \pi)}{2}\left(\hat{\Pi}_{\sigma \circ \pi}^{\dagger} \hat{A}+\hat{A} \hat{\Pi}_{\sigma \circ \pi}+\hat{\Pi}_{\sigma}^{\dagger} \hat{A} \hat{\Pi}_{\pi}+\hat{\Pi}_{\pi}^{\dagger} \hat{A} \hat{\Pi}_{\sigma}\right),
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\frac{\operatorname{sgn}^{\star}(\pi \circ \sigma)}{2}\left(\hat{\Pi}_{\pi}^{\dagger} \hat{A} \hat{\Pi}_{\sigma}+\right. & \left.\hat{\Pi}_{\sigma}^{\dagger} \hat{A} \hat{\Pi}_{\pi}\right) \\
& =2 S_{\sigma}^{\star}\left(S_{\pi}^{\star}(\hat{A})\right)-S_{\sigma \circ \pi}^{\star}(\hat{A})
\end{aligned}
$$

so a generic term in the sum above can be rewritten as

$$
\begin{aligned}
& \hat{A}-\frac{\operatorname{sgn}^{\star}(\pi \circ \sigma)}{2}\left(\hat{\Pi}_{\pi}^{\dagger} \hat{A} \hat{\Pi}_{\sigma}+\hat{\Pi}_{\sigma}^{\dagger} \hat{A} \hat{\Pi}_{\pi}\right) \\
= & 2\left[\hat{A}-S_{\pi}^{\star}(A)\right]-\left[\hat{A}-S_{\sigma \circ \pi}^{\star}(\hat{A})\right]+2\left[S_{\pi}^{\star}(\hat{A})-S_{\sigma}^{\star} S_{\pi}^{\star}(\hat{A})\right] .
\end{aligned}
$$

Each of the terms in brackets is an element of \mathscr{F}^{\star}, so $\hat{A}=\hat{A}-\operatorname{pr}_{\star}(\hat{A})$ is a linear combination of elements of \mathscr{F}^{\star}. Hence, $\mathscr{J}_{\mathrm{pr}_{\star}} \subseteq \operatorname{span}\left(\mathscr{J}^{\star}\right)$.

For the converse inclusion, consider any $\hat{A} \in \mathscr{F}^{\star}$, so there are $\hat{B} \in \mathscr{H}$ and $\pi \in \mathbb{P}$ such that $\hat{A}=\hat{B}-S_{\pi}^{\star}(\hat{B})$. Then

$$
\operatorname{pr}_{\star}(\hat{A})=\operatorname{pr}_{\star}\left(\hat{B}-S_{\pi}^{\star}(\hat{B})\right)=\operatorname{pr}_{\star}(\hat{B})-\operatorname{pr}_{\star}\left(S_{\pi}^{\star}(\hat{B})\right)=\hat{0},
$$

where the last equality holds because

$$
\begin{aligned}
\operatorname{pr}_{\star}\left(S_{\pi}^{\star}(\hat{B})\right) & =\hat{P}_{\star} \frac{\operatorname{sgn}^{\star}(\pi)}{2}\left(\hat{\Pi}_{\pi}^{\dagger} \hat{B}+\hat{B} \hat{\Pi}_{\pi}\right) \hat{P}_{\star} \\
& =\frac{\operatorname{sgn}^{\star}(\pi)}{2}\left(\hat{P}_{\star} \hat{\Pi}_{\pi}^{\dagger} \hat{B} \hat{P}_{\star}+\hat{P}_{\star} \hat{B} \hat{\Pi}_{\pi} \hat{P}_{\star}\right) \\
& =\frac{\operatorname{sgn}^{\star}(\pi)^{2}}{2}\left(\hat{P}_{\star} \hat{B} \hat{P}_{\star}+\hat{P}_{\star} \hat{B} \hat{P}_{\star}\right)=\hat{P}_{\star} \hat{B} \hat{P}_{\star},
\end{aligned}
$$

due to the Equation (7) and its right-sided counterpart, proved above. Hence, $\hat{A} \in \mathscr{J}_{\mathrm{pr}_{\star}}$, which implies that $\mathscr{J}^{\star} \subseteq$ $\mathscr{J}_{\mathrm{pr}_{\star}}$ and therefore indeed also $\operatorname{span}\left(\mathscr{J}^{\star}\right) \subseteq \mathscr{J}_{\mathrm{pr}_{\star}}$.

The argumentation for proving of Propositions 10 and 11 is analogous to that in the proofs of Propositions 3 and 4, respectively, so we won't include them here.

Proof of Corollary 12

Using a similar argument as in the proof of Corollary 5, we find that by Proposition 11, the strong \star-symmetry requirement is equivalent to the requirement that $\operatorname{Tr}(\hat{\rho} \hat{A})=$ 0 for all $\hat{\rho} \in \mathscr{R}_{\underline{\Lambda}}$ and all $\hat{A} \in \mathscr{J}_{\mathrm{pr}_{\star}}$, or equivalently, that

$$
\operatorname{Tr}\left(\hat{\rho}\left(\hat{A}-\operatorname{pr}_{\star}(\hat{A})\right)\right)=0 \text { for all } \hat{A} \in \mathscr{H} .
$$

By the linearity and cyclic property of the trace, we can rewrite this condition, as

$$
\operatorname{Tr}(\hat{\rho} \hat{A})=\operatorname{Tr}\left(\hat{\rho} \hat{P}_{\star} \hat{A} \hat{P}_{\star}\right)=\operatorname{Tr}\left(\hat{P}_{\star} \hat{\rho} \hat{P}_{\star} \hat{A}\right) \text { for all } \hat{A} \in \mathscr{H}
$$

and therefore, by Theorem 2, the strong \star-symmetry requirement is equivalent to

$$
\begin{equation*}
\hat{\rho}=\hat{P}_{\star} \hat{\rho} \hat{P}_{\star}=\operatorname{pr}_{\star}(\hat{\rho}) \text { for all } \hat{\rho} \in \mathscr{R}_{\underline{\Lambda}} . \tag{8}
\end{equation*}
$$

To prove necessity for the first statement, observe that this condition, together with Proposition 9(ii), implies that $\hat{\rho}=$ $\operatorname{sgn}^{\star}(\pi) \hat{\Pi}_{\pi} \hat{\rho}$ for all $\pi \in \mathbb{P}$, which is the stated condition.

For sufficiency, if the stated condition holds, then

$$
\hat{P}_{\star} \hat{\rho}=\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}^{\star}(\pi) \hat{\Pi}_{\pi} \hat{\rho}=\operatorname{sgn}^{\star}(\pi)^{2} \hat{\rho}=\hat{\rho}
$$

and therefore, $\hat{\rho}=\hat{\rho}^{\dagger}=\left(\hat{P}_{\star} \hat{\rho}\right)^{\dagger}=\hat{\rho}^{\dagger} \hat{P}_{\star}^{\dagger}=\hat{\rho} \hat{P}_{\star}$, whence, indeed, $\hat{\rho}=\hat{P}_{\star} \hat{\rho} \hat{P}_{\star}$.

Proof of Proposition 13

Assume that $\hat{A} \in \mathscr{D}$. Since

$$
\operatorname{pr}_{\star}\left(\operatorname{pr}_{\star}(\hat{A})-\hat{A}\right)=\operatorname{pr}_{\star}\left(\operatorname{pr}_{\star}(\hat{A})\right)-\operatorname{pr}_{\star}(\hat{A})=\hat{0}
$$

we see that $\operatorname{pr}_{\star}(\hat{A})-\hat{A} \in \mathscr{J}_{\mathrm{pr}_{\star}}$, so the strong \star-symmetry of \mathscr{D} implies that $\mathrm{pr}_{\star}(\hat{A})=\hat{A}+\left(\operatorname{pr}_{\star}(\hat{A})-\hat{A}\right) \in \mathscr{D}$.

Conversely, assume that $\mathrm{pr}_{\star}(\hat{A}) \in \mathscr{D}$. Since, similarly as before, $\hat{A}-\operatorname{pr}_{\star}(\hat{A}) \in \mathcal{I}_{\text {pr }_{\star}}$, the strong \star-symmetry of \mathscr{D} yields $\hat{A}=\operatorname{pr}_{\star}(\hat{A})+\left(\hat{A}-\operatorname{pr}_{\star}(\hat{A})\right) \in \mathscr{D}$.

Proof of Theorem 14

For sufficiency, assume that there's some coherent \mathscr{D}_{o} for \bar{X}_{\star} such that $\mathscr{D}=\left\{\hat{A} \in \mathscr{H}: \mathrm{Hy}_{\star}(\hat{A}) \in \mathscr{D}_{o}\right\}$. First, we prove that \mathscr{D} is then coherent. For D1, assume that $\hat{A}=\hat{0}$, then also $\mathrm{Hy}_{\star}(\hat{A})=\hat{0}$ and therefore $\mathrm{Hy}_{\star}(\hat{A}) \notin \mathscr{D}_{o}$, so $\hat{A} \notin \mathscr{D}$. For D2, assume that $\hat{A}>\hat{0}$, then also $\mathrm{Hy}_{\star}(\hat{A})>\hat{0}^{15}$ and therefore $\mathrm{Hy}_{\star}(\hat{A}) \in \mathscr{D}_{o}$, so $\hat{A} \in \mathscr{D}$. D3 and D4 follow from the linearity of Hy_{\star}. Next, we show that \mathscr{D} is strongly \star-symmetric, using Proposition 10. Consider any $\hat{A} \in \mathscr{D}$ and $\hat{B} \in \mathscr{J}_{\mathrm{pr}_{\star}}$, then we have to show that $\hat{A}+\hat{B} \in \mathscr{D}$. Since for all $|\psi\rangle \in \bar{X}_{\star},|\psi\rangle=\hat{P}_{\star}|\psi\rangle$ and therefore also $\langle\psi| \hat{B}|\psi\rangle=$ $\langle\psi| \hat{P}_{\star} \hat{B} \hat{P}_{\star}|\psi\rangle=\langle\psi| \hat{0}|\psi\rangle=0$, we find that $\operatorname{Hy}_{\star}(\hat{B})=\hat{0}$. Therefore $\mathrm{Hy}_{\star}(\hat{A}+\hat{B})=\mathrm{Hy}_{\star}(\hat{A}) \in \mathscr{D}_{o}$, whence, indeed, $\hat{A}+\hat{B} \in \mathscr{D}$. Finally, consider any $\hat{C} \in \mathscr{H}\left(\mathscr{X}_{\star}\right)$ and observe that for all $|\psi\rangle \in X_{\star},\langle\psi| \operatorname{ext}_{\star}(\hat{C})|\psi\rangle=\langle\psi| \hat{C} \hat{P}_{\star}|\psi\rangle=$ $\langle\psi| \hat{C}|\psi\rangle$, so $\operatorname{Hy}_{\star}\left(\operatorname{ext}_{\star}(\hat{C})\right)=\hat{C}$, and therefore indeed,

$$
\operatorname{ext}_{\star}(\hat{C}) \in \mathscr{D} \Leftrightarrow \operatorname{Hy}_{\star}\left(\operatorname{ext}_{\star}(\hat{C})\right) \in \mathscr{D}_{0} \Leftrightarrow \hat{C} \in \mathscr{D}_{o}
$$

For necessity, assume that \mathscr{D} is a strongly \star-symmetric coherent set of desirable measurements for $\overline{\mathscr{X}}$, then we first prove that \mathscr{D}_{\star} is a coherent set of desirable measurements for \bar{X}_{\star}. For D1, since ext ${ }_{\star}(\hat{0})=\hat{0}$ and $\hat{0} \notin \mathscr{D}$, we find that $\hat{0} \notin \mathscr{D}_{\star}$. For D2, consider any $\hat{C} \in \mathscr{H}\left(\mathscr{X}_{\star}\right)_{>\hat{0}}$ and let

[^0]$\hat{A}:=\operatorname{ext}_{\star}(\hat{C})+\hat{I}-\hat{P}_{\star}$. As the codomain of $\mathscr{E}(\hat{C})=\hat{C} \hat{P}_{\star}$ is X_{\star}, we find that $\hat{C} \hat{P}_{\star}=\hat{P}_{\star} \hat{C} \hat{P}_{\star}$. Then for all $|\psi\rangle \in \bar{X}$,
\[

$$
\begin{aligned}
\langle\psi| \hat{A}|\psi\rangle & =\langle\psi|\left(\hat{P}_{\star} \hat{C} \hat{P}_{\star}+\hat{I}-\hat{P}_{\star}\right)|\psi\rangle \\
& =\langle\psi| \hat{P}_{\star} \hat{C} \hat{P}_{\star}|\psi\rangle+1-\langle\psi| \hat{P}_{\star}|\psi\rangle .
\end{aligned}
$$
\]

Now, there are two possibilities, for any $|\psi\rangle \in \bar{X}$. If $\hat{P}_{\star}|\psi\rangle \neq 0$, then the positivity of \hat{C} implies that $\langle\psi| \hat{P}_{\star} \hat{C} \hat{P}_{\star}|\psi\rangle>0$ and $1-\langle\psi| \hat{P}_{\star}|\psi\rangle \geq 0$, because the eigenvalues of the projector \hat{P}_{\star} are 0 and 1. If $\hat{P}_{\star}|\psi\rangle=0$, then $\langle\psi| \hat{P}_{\star} \hat{C} \hat{P}_{\star}|\psi\rangle=0$ and $1-\langle\psi| \hat{P}_{\star}|\psi\rangle=1>0$. This tells us that $\hat{A}>\hat{0}$, and therefore $\hat{A} \in \mathscr{D}$. But, as \hat{P}_{\star} is a projection operator,

$$
\begin{aligned}
\operatorname{pr}_{\star}(\hat{A}) & =\hat{P}_{\star}\left(\operatorname{ext}_{\star}(\hat{C})+\hat{I}-\hat{P}_{\star}\right) \hat{P}_{\star} \\
& =\hat{P}_{\star} \operatorname{ext}_{\star}(\hat{C}) \hat{P}_{\star}+\hat{P}_{\star} \hat{P}_{\star}-\hat{P}_{\star} \hat{P}_{\star} \hat{P}_{\star} \\
& =\hat{P}_{\star} \hat{C} \hat{P}_{\star} \hat{P}_{\star}=\hat{P}_{\star} \hat{C} \hat{P}_{\star}=\hat{C} \hat{P}_{\star}=\operatorname{ext}_{\star}(\hat{C}),
\end{aligned}
$$

where the penultimate equality follows from the fact that the codomain of \hat{C} is X_{\star}. But then Proposition 13 guarantees that $\operatorname{pr}_{\star}(\hat{A})=\operatorname{ext}_{\star}(\hat{C})$ also belongs to \mathscr{D}, so indeed $\hat{C} \in \mathscr{D}_{\star}$. D 3 and D4, follow from the linearity of ext ${ }_{\star}$. To conclude, we prove that $\mathscr{D}=\left\{\hat{A} \in \mathscr{H}: \mathrm{Hy}_{\star}(\hat{A}) \in \mathscr{D}_{\star}\right\}$. Consider any $\hat{A} \in \mathscr{H}$ and observe that $\operatorname{ext}_{\star}\left(\mathrm{Hy}_{\star}(\hat{A})\right)=\operatorname{pr}_{\star}(\hat{A})$, so

$$
\begin{aligned}
\hat{A} \in \mathscr{D} & \Leftrightarrow \operatorname{pr}_{\star}(\hat{A}) \in \mathscr{D} \Leftrightarrow \operatorname{ext}_{\star}\left(\operatorname{Hy}_{\star}(\hat{A})\right) \in \mathscr{D} \\
& \Leftrightarrow \operatorname{Hy}_{\star}(\hat{A}) \in \mathscr{D}_{\star}
\end{aligned}
$$

where the first equivalence follows from Proposition 13.

[^0]: ${ }^{15}$ A Hermitian operator \hat{A} on a Hilbert space \mathscr{X} is positive definite if and only if $\langle\psi| \hat{A}|\psi\rangle>0$ for all $|\psi\rangle \in \bar{X}$.

