Appendix A. Proofs

Proof of Proposition 3

Sufficiency is trivial, as $\mathscr{I} \subseteq \mathscr{I}_{\mathrm{pr}_{\mathrm{ex}}}$. For necessity, assume that \mathscr{D} is exchangeable, so $\mathscr{D} + \mathscr{I} \subseteq \mathscr{D}$. Consider any $\hat{A} \in \mathscr{D}$ and any $\hat{B} \in \mathscr{I}_{\mathrm{pr}_{\mathrm{ex}}}$, then we have to show that $\hat{A} + \hat{B} \in \mathscr{D}$. Since $\hat{B} - \mathrm{pr}_{\mathrm{ex}}(\hat{B}) = \hat{B}$, we find that

$$\hat{B} = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} (\hat{B} - \pi^t \hat{B})$$
(6)

and therefore $\hat{A} + \hat{B} = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} (\hat{A} + \hat{B} - \pi^t \hat{B})$. Since $\hat{A} \in \mathcal{D}$ and $\hat{B} - \pi^t \hat{B} \in \mathcal{F}$, we infer from $\mathcal{D} + \mathcal{F} \subseteq \mathcal{D}$ that $\hat{A} + \hat{B} - \pi^t \hat{B} \in \mathcal{D}$, and therefore from D3 and D4 that, indeed, also $\hat{A} + \hat{B} \in \mathcal{D}$.

For the second statement, we infer from Equation (6) that $\mathscr{I}_{\mathrm{pr}_{\mathrm{ex}}} \subseteq \mathrm{span}(\mathscr{I})$. For the converse inequality, observe that for any $\hat{A} \in \mathscr{H}$ and $\sigma \in \mathbb{P}$,

$$\mathrm{pr}_{\mathrm{ex}}(\hat{A} - \sigma^t \hat{A}) = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \pi^t \hat{A} - \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \pi^t (\sigma^t \hat{A}) = \hat{0},$$

so $\mathscr{I} \subseteq \mathscr{I}_{\mathrm{pr}_{\mathrm{ex}}}$, and therefore also $\mathrm{span}(\mathscr{I}) \subseteq \mathscr{I}_{\mathrm{pr}_{\mathrm{ex}}}$.

Proof of Proposition 4

We give a circular proof.

(i) \Rightarrow (ii). Assume that there's some exchangeable coherent set of measurements \mathcal{D} such that $\underline{\Lambda} = \underline{\Lambda}_{\mathcal{D}}$, and consider any $\hat{B} \in \mathcal{I}$. Then we infer from Proposition 3 and D2 that $\hat{B} + \alpha \hat{I} \in \mathcal{D}$ for all real $\alpha > 0$, so Equation (1) tells us that $\underline{\Lambda}_{\mathcal{D}}(\hat{B}) \ge 0$. Since also $-\hat{B} \in \mathcal{I}$, we can use the same argument to infer that also $\underline{\Lambda}_{\mathcal{D}}(-\hat{B}) \ge 0$. Using LP4, we then find that $0 \ge -\underline{\Lambda}_{\mathcal{D}}(-\hat{B}) = \overline{\Lambda}_{\mathcal{D}}(\hat{B}) \ge \Delta_{\mathcal{D}}(\hat{B}) \ge 0$.

(ii) \Rightarrow (iii). Consider any $\hat{A} \in \mathscr{I}_{\text{pr}_{\star}}$, then we infer from $\hat{A} = \hat{A} - \text{pr}_{\text{ex}}(\hat{A}) = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} (\hat{A} - \pi^t \hat{A})$ and from LP1, LP2 and LP4, that

$$\frac{1}{m!} \sum_{\pi \in \mathbb{P}} \underline{\Lambda} (\hat{A} - \pi^t \hat{A}) \leq \underline{\Lambda} (\hat{A})$$
$$\leq \overline{\Lambda} (\hat{A}) \leq \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \overline{\Lambda} (\hat{A} - \pi^t \hat{A})$$

so we infer from (ii) that, indeed, $\underline{\Lambda}(\hat{A}) = \overline{\Lambda}(\hat{A}) = 0$.

(iii) \Rightarrow (iv). Consider any $\hat{A} \in \mathcal{H}$ and infer from $\hat{A} = \operatorname{pr}_{ex}(\hat{A}) + (\hat{A} - \operatorname{pr}_{ex}(\hat{A}))$ and LP5 that

$$\underline{\Lambda}(\mathrm{pr}_{\mathrm{ex}}(\hat{A})) + \underline{\Lambda}(\hat{A} - \mathrm{pr}_{\mathrm{ex}}(\hat{A})) \leq \underline{\Lambda}(\hat{A})$$
$$\leq \underline{\Lambda}(\mathrm{pr}_{\mathrm{ex}}(\hat{A})) + \overline{\Lambda}(\hat{A} - \mathrm{pr}_{\mathrm{ex}}(\hat{A})).$$

But, $\hat{A} - \operatorname{pr}_{ex}(\hat{A}) \in \mathscr{I}_{\operatorname{pr}_{ex}}$, because $\operatorname{pr}_{ex}(\hat{A} - \operatorname{pr}_{ex}(\hat{A})) = \operatorname{pr}_{ex}(\hat{A}) - \operatorname{pr}_{ex}(\hat{A}) = \hat{0}$, so by (iii), $\underline{\Lambda}(\hat{A} - \operatorname{pr}_{ex}(\hat{A})) = \overline{\Lambda}(\hat{A} - \operatorname{pr}_{ex}(\hat{A})) = 0$.

(iv) \Rightarrow (i). Let $\mathscr{D}_{\underline{\Lambda}}^{\perp} := \{\widehat{A} \in \mathscr{H} : \underline{\Lambda}(\widehat{A}) > 0\}$ and also let $\mathscr{D} := \mathscr{D}_{\underline{\Lambda}}^{\perp} + \mathscr{I}_{\text{pr}_{ex}}$. The coherence of $\underline{\Lambda}$ readily implies that \mathscr{D} satisfies D2, D3 and D4. For D1, assume towards contradiction that there are $\widehat{A} \in \mathscr{D}_{\underline{\Lambda}}^{\perp}$ and $\widehat{B} \in \mathscr{I}_{\text{pr}_{ex}}$ such that $\widehat{A} + \widehat{B} = \widehat{0}$, so $\operatorname{pr}_{ex}(\widehat{A}) = \operatorname{pr}_{ex}(\widehat{A} + \widehat{B}) = \widehat{0}$. Then LP4 and (iv) imply that $0 = \underline{\Lambda}(\operatorname{pr}_{ex}(\widehat{A})) = \underline{\Lambda}(\widehat{A})$, contradicting that $\widehat{A} \in$ $\mathscr{D}_{\underline{\Lambda}}^{\perp}$. Hence, \mathscr{D} is coherent. The exchangeability of \mathscr{D} follows from the fact that $\mathscr{D} + \mathscr{I}_{\operatorname{pr}_{ex}} = \mathscr{D}_{\underline{\Lambda}}^{\perp} + \mathscr{I}_{\operatorname{pr}_{ex}} = \mathscr{D}_{\operatorname{pr}_{ex}}^{\perp} + \mathscr{I}_{\operatorname{pr}_{ex}} = \mathscr{D}_{\operatorname{pr}_{ex}}^{\perp} = \mathscr{D}_{\operatorname{pr}_{ex}} + \mathscr{I}_{\operatorname{pr}_{ex}}^{\perp} = \mathscr{D}_{\operatorname{pr}_{ex}}^{\perp} = \mathscr{D}_{\operatorname{pr}_{ex}}$

$$\begin{split} \underline{\Lambda}_{\underline{\mathscr{D}}_{\underline{\hat{\Lambda}}}}(\hat{A}) &= \sup\{\alpha \in \mathbb{R} : \hat{A} - \alpha \hat{I} \in \underline{\mathscr{D}}_{\underline{\Lambda}}^{>}\} \\ &= \sup\{\alpha \in \mathbb{R} : \underline{\Lambda}(\hat{A} - \alpha \hat{I}) > 0\} \\ &= \sup\{\alpha \in \mathbb{R} : \underline{\Lambda}(\hat{A}) > \alpha\} = \underline{\Lambda}(\hat{A}), \end{split}$$

where the penultimate equality is due to LP6. Then $\underline{\Lambda}_{\mathfrak{D}}(\hat{A}) \geq \underline{\Lambda}_{\mathfrak{D}_{\hat{A}}}(\hat{A}) = \underline{\Lambda}(\hat{A}) \geq \underline{\Lambda}_{\mathfrak{D}}(\hat{A}).$

Proof of Corollary 5

First, assume that $\underline{\Lambda}$ is exchangeable. If we consider any $\hat{\rho} \in \mathscr{R}_{\underline{\Lambda}}$ and any $\pi \in \mathbb{P}$, then we must show that $\overline{\pi}^t \hat{\rho} = \hat{\rho}$. Consider, to this end, any $\hat{A} \in \mathscr{H}$ and let $\hat{B} \coloneqq \hat{A} - \pi^t \hat{A}$, then Proposition 4(ii) implies that $\underline{\Lambda}(\hat{B}) = \overline{\Lambda}(\hat{B}) = 0$. We then infer from Equation (3) applied to \hat{B} and $-\hat{B}$ that $\underline{\Lambda}(\hat{B}) \leq \operatorname{Tr}(\hat{\rho}\hat{B}) \leq \overline{\Lambda}(\hat{B})$, and therefore $\operatorname{Tr}(\hat{\rho}(\hat{A} - \pi^t \hat{A})) = 0$. By the linearity of the trace and Equation (5), we find that

$$\operatorname{Tr}(\hat{\rho}\hat{A}) = \operatorname{Tr}(\hat{\rho}(\pi^t\hat{A})) = \operatorname{Tr}((\overline{\pi}^t\hat{\rho})\hat{A}).$$

Since $\hat{A} \in \mathcal{H}$ is arbitrary, Theorem 2 implies that $\hat{\rho} = \overline{\pi}^t \hat{\rho}$.

Conversely, assume that all density operators $\hat{\rho}$ in $\mathscr{R}_{\underline{A}}$ are permutation invariant. Consider any $\hat{A} \in \mathscr{I}_{\text{pr}_{ex}}$, then $\text{pr}_{ex}(\hat{A}) = \hat{0}$ and therefore, by the linearity of the trace,

$$0 = \operatorname{Tr}(\hat{\rho} \operatorname{pr}_{ex}(\hat{A})) = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{Tr}(\hat{\rho}(\pi^{t} \hat{A}))$$
$$= \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{Tr}((\overline{\pi}^{t} \hat{\rho}) \hat{A}) = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{Tr}(\hat{\rho} \hat{A}) = \operatorname{Tr}(\hat{\rho} \hat{A}),$$

where the third equality follows from Equation (5), and the last equality from the permutation invariance of $\hat{\rho}$. But then $\underline{\Lambda}(\hat{A}) = \min\{\operatorname{Tr}(\hat{\rho}\hat{A}): \hat{\rho} \in \mathcal{R}_{\underline{\Lambda}}\} = 0$, and similarly, $\overline{\Lambda}(\hat{A}) = 0$, since also $-\hat{A} \in \mathcal{I}_{\operatorname{pr}_{ex}}$. Proposition 4(iii) now guarantees that $\underline{\Lambda}$ is indeed exchangeable.

Proof of Proposition 6

We give the proof for antisymmetric densities; the proof for symmetric densities is similar, but somewhat simpler.

For the first statement, sufficiency is proved in the main text, so we prove necessity. Assume that $\hat{\rho}$ is antisymmetric. Since $\hat{\rho}$ is Hermitian, it has a decomposition $\hat{\rho} = \sum_{k=1}^{n} \lambda_k |a_k\rangle \langle a_k|$, where the $|a_k\rangle$ are its mutually orthonormal eigenstates and the λ_k its real eigenvalues [26, Box 2.2]. It then follows from Proposition 1 that $\lambda_1, \ldots, \lambda_n$ constitute a probability mass function over the eigenstates. We may assume without loss of generality that all $\lambda_k > 0$. Fix any $|a_k\rangle$ and any $\pi \in \mathbb{P}$, then on the one hand it follows from the assumption that $\hat{\rho}|a_k\rangle = \text{sgn}(\pi)\hat{\Pi}_{\pi}\hat{\rho}|a_k\rangle = \lambda_k \text{sgn}(\pi)\hat{\Pi}_{\pi}|a_k\rangle$, and on the other hand we find that $\hat{\rho}|a_k\rangle = \lambda_k |a_k\rangle$. So $|a_k\rangle = \text{sgn}(\pi)\hat{\Pi}_{\pi}|a_k\rangle$, and therefore $|a_k\rangle$ is indeed antisymmetric.

The second statement follows from Ref. [26, Theorem 2.6] and the fact that, by Proposition 7, \mathscr{X}_a is a subspace of \mathscr{X} . The basic idea behind this argument is that Ref. [26, Theorem 2.6] guarantees that the state $|\psi_k\rangle$ must be a linear combination of the eigenstates $|a_1\rangle, \ldots, |a_n\rangle$ corresponding to positive eigenvalues. The argument above confirms that those eigenstates $|a_1\rangle, \ldots, |a_n\rangle$ are antisymmetric, and since \mathscr{X}_a is a subspace of \mathscr{X} , the same holds for any linear combination of them, so indeed $|\psi_k\rangle \in \overline{\mathscr{X}}_a$.

Proof of Proposition 7

We begin by proving the first statement. Observe that, for any $\pi \in \mathbb{P}$, $\hat{\Pi}_{\pi} \hat{P}_{a} = \hat{\Pi}_{\pi} \frac{1}{m!} \sum_{\sigma \in \mathbb{P}} \operatorname{sgn}(\sigma) \hat{\Pi}_{\sigma} = \frac{1}{m!} \sum_{\sigma \in \mathbb{P}} \operatorname{sgn}(\sigma) \hat{\Pi}_{\sigma \circ \pi} = \operatorname{sgn}(\pi) \hat{P}_{a}$. Therefore $\hat{P}_{a} \hat{P}_{a} = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi) \hat{\Pi}_{\pi} \hat{P}_{a} = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi)^{2} \hat{P}_{a} = \hat{P}_{a}$, and $\hat{P}_{s} \hat{P}_{a} = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \hat{\Pi}_{\pi} \hat{P}_{a} = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi) \hat{P}_{a} = \hat{0}$. The proofs for $\hat{P}_{s} \hat{P}_{s} = \hat{P}_{s}$ and $\hat{P}_{a} \hat{P}_{s} = \hat{0}$ are very similar. It now follows at once that $\hat{P}_{0} \hat{P}_{0} = (\hat{I} - \hat{P}_{a} - \hat{P}_{s})(\hat{I} - \hat{P}_{a} - \hat{P}_{s}) = \hat{I} - \hat{P}_{a} - \hat{P}_{s} = \hat{P}_{o}$, and that $\hat{P}_{0} \hat{P}_{s} = (\hat{I} - \hat{P}_{a} - \hat{P}_{s}) \hat{P}_{s} = \hat{P}_{s} - \hat{P}_{s} = \hat{0}$. The proofs for the remaining identities $\hat{P}_{s} \hat{P}_{0} = \hat{P}_{0} \hat{P}_{a} = \hat{P}_{a} \hat{P}_{0} = \hat{0}$ are again very similar.

We now turn to the proof of the remaining statements. The identities in the first statement already allow us to conclude that \hat{P}_s , \hat{P}_a and \hat{P}_o are projection operators that project onto mutually orthogonal spaces whose direct sum is the state space. We now prove that \hat{P}_a projects onto \mathscr{X}_a . For any $|\psi\rangle \in \mathscr{X}_a$, $\hat{P}_a|\psi\rangle = \frac{1}{m!}\sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi)\hat{\Pi}_{\pi}|\psi\rangle = \frac{1}{m!}\sum_{\pi \in \mathbb{P}} \operatorname{sgn}(\pi)\hat{\Pi}_{\pi}|\psi\rangle = |\psi\rangle$, so $\mathscr{X}_a \subseteq \hat{P}_a\mathscr{X}$. For the converse inclusion, we have that $\hat{P}_a|\psi\rangle \in \mathscr{X}_a$ for any $|\psi\rangle \in \mathscr{X}$, since, as proved above, $\hat{\Pi}_{\pi}\hat{P}_a = \operatorname{sgn}(\pi)\hat{P}_a$ and thus $\operatorname{sgn}(\pi)\hat{\Pi}_{\pi}\hat{P}_a|\psi\rangle = \hat{P}_a|\psi\rangle$ for all $\pi \in \mathbb{P}$. Hence, $\hat{P}_a\mathscr{X} \subseteq \mathscr{X}_a$. We conclude that \hat{P}_a indeed projects onto \mathscr{X}_a . The proof that \hat{P}_s projects onto \mathscr{X}_s is very similar, and the rest of the proof is then immediate.

Proof of Proposition 8

For all $\pi \in \mathbb{P}$, $\hat{\Pi}_{\pi}$ is unitary, so $\hat{\rho}\hat{\Pi}_{\pi} = (\hat{\Pi}_{\pi}\hat{\rho}\hat{\Pi}_{\pi}^{\dagger})\hat{\Pi}_{\pi} = \hat{\Pi}_{\pi}\hat{\rho}\hat{\Pi}_{\pi}^{\dagger}\hat{\Pi}_{\pi} = \hat{\Pi}_{\pi}\hat{\rho}$. Therefore, $\hat{P}_{s}\hat{\rho} = \frac{1}{m!}\sum_{\pi \in \mathbb{P}}\hat{\Pi}_{\pi}\hat{\rho} = \hat{\rho}\frac{1}{m!}\sum_{\pi \in \mathbb{P}}\hat{\Pi}_{\pi} = \hat{\rho}\hat{P}_{s}$. Similarly, $\hat{P}_{a}\hat{\rho} = \hat{\rho}\hat{P}_{a}$ and therefore

 $\hat{P}_{o}\hat{\rho} = (\hat{I} - \hat{P}_{a} - \hat{P}_{s})\hat{\rho} = \hat{\rho}(\hat{I} - \hat{P}_{a} - \hat{P}_{s}) = \hat{\rho}\hat{P}_{o}$. Now use Proposition 7 to find that, indeed,

$$\hat{\rho} = \hat{\rho}(\hat{P}_{o} + \hat{P}_{a} + \hat{P}_{s}) = \hat{\rho}\hat{P}_{o}^{2} + \hat{\rho}\hat{P}_{a}^{2} + \hat{\rho}\hat{P}_{s}^{2}$$
$$= \hat{P}_{o}\hat{\rho}\hat{P}_{o} + \hat{P}_{a}\hat{\rho}\hat{P}_{a} + \hat{P}_{s}\hat{\rho}\hat{P}_{s} = \hat{\omega}_{o} + \hat{\omega}_{a} + \hat{\omega}_{s}.$$

For the second statement, we'll only give a proof for antisymmetric densities. The proof for symmetric densities is similar, if somewhat simpler. For necessity, assume that $\hat{\rho}$ is antisymmetric, so $\hat{\rho} = \operatorname{sgn}(\pi)\hat{\Pi}_{\pi}\hat{\rho}$ for all $\pi \in \mathbb{P}$. Then

$$\hat{P}_{a}\hat{\rho} = \frac{1}{m!}\sum_{\pi\in\mathbb{P}}\operatorname{sgn}(\pi)\hat{\Pi}_{\pi}\hat{\rho} = \frac{1}{m!}\sum_{\pi\in\mathbb{P}}\hat{\rho} = \hat{\rho},$$

and similarly, $\hat{\rho}\hat{P}_{a} = \hat{\rho}$, and therefore, indeed, $\hat{P}_{a}\hat{\rho}\hat{P}_{a} = \hat{\rho}\hat{P}_{a} = \hat{\rho}$. For sufficiency, assume that $\hat{P}_{a}\hat{\rho}\hat{P}_{a} = \hat{\rho}$, and fix any $\sigma \in \mathbb{P}$. Observe that

$$sgn(\sigma)\hat{\Pi}_{\sigma}\hat{P}_{a} = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} sgn(\sigma) sgn(\pi)\hat{\Pi}_{\sigma}\hat{\Pi}_{\pi}$$
$$= \frac{1}{m!} \sum_{\pi \in \mathbb{P}} sgn(\pi)\hat{\Pi}_{\pi} = \hat{P}_{a},$$

and therefore also

$$gn(\sigma)\hat{\Pi}_{\sigma}\hat{\rho} = sgn(\sigma)\hat{\Pi}_{\sigma}\hat{P}_{a}\hat{\rho}\hat{P}_{a} = \hat{P}_{a}\hat{\rho}\hat{P}_{a} = \hat{\rho},$$

so we're done.

S

Proof of Proposition 9

The first statement is an immediate consequence of the second, which itself follows readily from

$$\hat{\Pi}_{\pi}^{\dagger}\hat{P}_{\star} = \frac{1}{m!} \sum_{\sigma \in \mathbb{P}} \operatorname{sgn}^{\star}(\sigma) \hat{\Pi}_{\pi}^{\dagger} \hat{\Pi}_{\sigma}$$
$$= \operatorname{sgn}^{\star}(\pi) \frac{1}{m!} \sum_{\sigma \in \mathbb{P}} \operatorname{sgn}^{\star}(\sigma \circ \pi^{-1}) \hat{\Pi}_{\sigma \circ \pi^{-1}}$$
$$= \operatorname{sgn}^{\star}(\pi) \hat{P}_{\star}, \qquad (7)$$

and similarly, $\hat{P}_{\star}\hat{\Pi}_{\pi} = \operatorname{sgn}^{\star}(\pi)\hat{P}_{\star}$. For the last statement, consider any $\hat{A} \in \mathscr{I}_{\operatorname{pr}_{\star}}$, then $\hat{A} - \operatorname{pr}_{\star}(\hat{A}) = \hat{A}$. Now we use the definition of $\operatorname{pr}_{\star}$ to find that

$$\begin{split} &\hat{A} - \mathrm{pr}_{\star}(\hat{A}) \\ &= \frac{1}{m!^{2}} \sum_{\pi, \sigma \in \mathbb{P}} \left[\hat{A} - \mathrm{sgn}^{\star}(\pi \circ \sigma) \hat{\Pi}_{\pi}^{\dagger} \hat{A} \hat{\Pi}_{\sigma} \right] \\ &= \frac{1}{m!^{2}} \sum_{\pi, \sigma \in \mathbb{P}} \left[\hat{A} - \frac{\mathrm{sgn}^{\star}(\pi \circ \sigma)}{2} \left(\hat{\Pi}_{\pi}^{\dagger} \hat{A} \hat{\Pi}_{\sigma} + \hat{\Pi}_{\sigma}^{\dagger} \hat{A} \hat{\Pi}_{\pi} \right) \right], \end{split}$$

where we reshuffled some terms to get the second equality. Consider that

$$\begin{split} & 2S^{\star}_{\sigma}\big(S^{\star}_{\pi}(\hat{A})\big) \\ &= \frac{\mathrm{sgn}^{\star}(\sigma \circ \pi)}{2}\big(\hat{\Pi}^{\dagger}_{\sigma \circ \pi}\hat{A} + \hat{A}\hat{\Pi}_{\sigma \circ \pi} + \hat{\Pi}^{\dagger}_{\sigma}\hat{A}\hat{\Pi}_{\pi} + \hat{\Pi}^{\dagger}_{\pi}\hat{A}\hat{\Pi}_{\sigma}\big), \end{split}$$

and therefore

$$\frac{\operatorname{sgn}^{\star}(\pi \circ \sigma)}{2} \left(\hat{\Pi}_{\pi}^{\dagger} \hat{A} \hat{\Pi}_{\sigma} + \hat{\Pi}_{\sigma}^{\dagger} \hat{A} \hat{\Pi}_{\pi} \right) \\ = 2S_{\sigma}^{\star} \left(S_{\pi}^{\star}(\hat{A}) \right) - S_{\sigma \circ \pi}^{\star}(\hat{A}),$$

so a generic term in the sum above can be rewritten as

$$\hat{A} - \frac{\operatorname{sgn}^{\star}(\pi \circ \sigma)}{2} (\hat{\Pi}_{\pi}^{\dagger} \hat{A} \hat{\Pi}_{\sigma} + \hat{\Pi}_{\sigma}^{\dagger} \hat{A} \hat{\Pi}_{\pi})$$

= 2[$\hat{A} - S_{\pi}^{\star}(A)$] - [$\hat{A} - S_{\sigma \circ \pi}^{\star}(\hat{A})$] + 2[$S_{\pi}^{\star}(\hat{A}) - S_{\sigma}^{\star} S_{\pi}^{\star}(\hat{A})$].

Each of the terms in brackets is an element of \mathscr{I}^{\star} , so $\hat{A} = \hat{A} - \operatorname{pr}_{\star}(\hat{A})$ is a linear combination of elements of \mathscr{I}^{\star} . Hence, $\mathscr{I}_{\operatorname{pr}_{\star}} \subseteq \operatorname{span}(\mathscr{I}^{\star})$.

For the converse inclusion, consider any $\hat{A} \in \mathscr{I}^{\star}$, so there are $\hat{B} \in \mathscr{H}$ and $\pi \in \mathbb{P}$ such that $\hat{A} = \hat{B} - S_{\pi}^{\star}(\hat{B})$. Then

$$\operatorname{pr}_{\star}(\hat{A}) = \operatorname{pr}_{\star}(\hat{B} - S_{\pi}^{\star}(\hat{B})) = \operatorname{pr}_{\star}(\hat{B}) - \operatorname{pr}_{\star}(S_{\pi}^{\star}(\hat{B})) = \hat{0},$$

where the last equality holds because

$$pr_{\star}(S_{\pi}^{\star}(\hat{B})) = \hat{P}_{\star} \frac{\operatorname{sgn}^{\star}(\pi)}{2} \Big(\hat{\Pi}_{\pi}^{\dagger} \hat{B} + \hat{B} \hat{\Pi}_{\pi} \Big) \hat{P}_{\star}$$
$$= \frac{\operatorname{sgn}^{\star}(\pi)}{2} \Big(\hat{P}_{\star} \hat{\Pi}_{\pi}^{\dagger} \hat{B} \hat{P}_{\star} + \hat{P}_{\star} \hat{B} \hat{\Pi}_{\pi} \hat{P}_{\star} \Big)$$
$$= \frac{\operatorname{sgn}^{\star}(\pi)^{2}}{2} \Big(\hat{P}_{\star} \hat{B} \hat{P}_{\star} + \hat{P}_{\star} \hat{B} \hat{P}_{\star} \Big) = \hat{P}_{\star} \hat{B} \hat{P}_{\star},$$

due to the Equation (7) and its right-sided counterpart, proved above. Hence, $\hat{A} \in \mathcal{I}_{\text{pr}_{\star}}$, which implies that $\mathcal{I}^{\star} \subseteq \mathcal{I}_{\text{pr}_{\star}}$ and therefore indeed also $\text{span}(\mathcal{I}^{\star}) \subseteq \mathcal{I}_{\text{pr}_{\star}}$.

The argumentation for proving of Propositions 10 and 11 is analogous to that in the proofs of Propositions 3 and 4, respectively, so we won't include them here.

Proof of Corollary 12

Using a similar argument as in the proof of Corollary 5, we find that by Proposition 11, the strong \star -symmetry requirement is equivalent to the requirement that $\text{Tr}(\hat{\rho}\hat{A}) = 0$ for all $\hat{\rho} \in \mathcal{R}_{\underline{\Lambda}}$ and all $\hat{A} \in \mathcal{I}_{\text{pr}_{\star}}$, or equivalently, that

$$\operatorname{Tr}\left(\hat{\rho}\left(\hat{A} - \operatorname{pr}_{\star}(\hat{A})\right)\right) = 0 \text{ for all } \hat{A} \in \mathcal{H}.$$

By the linearity and cyclic property of the trace, we can rewrite this condition, as

$$\operatorname{Tr}(\hat{\rho}\hat{A}) = \operatorname{Tr}(\hat{\rho}\hat{P}_{\star}\hat{A}\hat{P}_{\star}) = \operatorname{Tr}(\hat{P}_{\star}\hat{\rho}\hat{P}_{\star}\hat{A}) \text{ for all } \hat{A} \in \mathcal{H},$$

and therefore, by Theorem 2, the strong \star -symmetry requirement is equivalent to

$$\hat{\rho} = \hat{P}_{\star} \hat{\rho} \hat{P}_{\star} = \operatorname{pr}_{\star}(\hat{\rho}) \text{ for all } \hat{\rho} \in \mathscr{R}_{\underline{\Lambda}}.$$
(8)

To prove necessity for the first statement, observe that this condition, together with Proposition 9(ii), implies that $\hat{\rho} = \operatorname{sgn}^{\star}(\pi)\hat{\Pi}_{\pi}\hat{\rho}$ for all $\pi \in \mathbb{P}$, which is the stated condition. For sufficiency, if the stated condition holds, then

$$\hat{P}_{\star}\hat{\rho} = \frac{1}{m!} \sum_{\pi \in \mathbb{P}} \operatorname{sgn}^{\star}(\pi)\hat{\Pi}_{\pi}\hat{\rho} = \operatorname{sgn}^{\star}(\pi)^{2}\hat{\rho} = \hat{\rho},$$

and therefore, $\hat{\rho} = \hat{\rho}^{\dagger} = (\hat{P}_{\star}\hat{\rho})^{\dagger} = \hat{\rho}^{\dagger}\hat{P}_{\star}^{\dagger} = \hat{\rho}\hat{P}_{\star}$, whence, indeed, $\hat{\rho} = \hat{P}_{\star}\hat{\rho}\hat{P}_{\star}$.

Proof of Proposition 13

Assume that $\hat{A} \in \mathcal{D}$. Since

$$\mathrm{pr}_{\star}(\mathrm{pr}_{\star}(\hat{A}) - \hat{A}) = \mathrm{pr}_{\star}(\mathrm{pr}_{\star}(\hat{A})) - \mathrm{pr}_{\star}(\hat{A}) = \hat{0},$$

we see that $\operatorname{pr}_{\star}(\hat{A}) - \hat{A} \in \mathscr{F}_{\operatorname{pr}_{\star}}$, so the strong \star -symmetry of \mathscr{D} implies that $\operatorname{pr}_{\star}(\hat{A}) = \hat{A} + (\operatorname{pr}_{\star}(\hat{A}) - \hat{A}) \in \mathscr{D}$.

Conversely, assume that $\operatorname{pr}_{\star}(\hat{A}) \in \mathcal{D}$. Since, similarly as before, $\hat{A} - \operatorname{pr}_{\star}(\hat{A}) \in \mathcal{I}_{\operatorname{pr}_{\star}}$, the strong \star -symmetry of \mathcal{D} yields $\hat{A} = \operatorname{pr}_{\star}(\hat{A}) + (\hat{A} - \operatorname{pr}_{\star}(\hat{A})) \in \mathcal{D}$.

Proof of Theorem 14

For sufficiency, assume that there's some coherent \mathcal{D}_o for $\bar{\mathcal{X}}_{\star}$ such that $\mathcal{D} = \{\hat{A} \in \mathcal{H} : \operatorname{Hy}_{\star}(\hat{A}) \in \mathcal{D}_o\}$. First, we prove that \mathcal{D} is then coherent. For D1, assume that $\hat{A} = \hat{0}$, then also $\operatorname{Hy}_{\star}(\hat{A}) = \hat{0}$ and therefore $\operatorname{Hy}_{\star}(\hat{A}) \notin \mathcal{D}_o$, so $\hat{A} \notin \mathcal{D}$. For D2, assume that $\hat{A} > \hat{0}$, then also $\operatorname{Hy}_{\star}(\hat{A}) = \hat{0}$ and therefore $\operatorname{Hy}_{\star}(\hat{A}) \notin \mathcal{D}_o$, so $\hat{A} \notin \mathcal{D}$. For D2, assume that $\hat{A} > \hat{0}$, then also $\operatorname{Hy}_{\star}(\hat{A}) > \hat{0}^{15}$ and therefore $\operatorname{Hy}_{\star}(\hat{A}) \in \mathcal{D}_o$, so $\hat{A} \notin \mathcal{D}$. D3 and D4 follow from the linearity of $\operatorname{Hy}_{\star}$. Next, we show that \mathcal{D} is strongly \star -symmetric, using Proposition 10. Consider any $\hat{A} \in \mathcal{D}$ and $\hat{B} \in \mathcal{I}_{\mathrm{pr}_{\star}}$, then we have to show that $\hat{A} + \hat{B} \in \mathcal{D}$. Since for all $|\psi\rangle \in \bar{\mathcal{X}}_{\star}, |\psi\rangle = \hat{P}_{\star}|\psi\rangle$ and therefore also $\langle \psi | \hat{B} | \psi \rangle = \langle \psi | \hat{P}_{\star} \hat{B} \hat{P}_{\star} | \psi \rangle = \langle \psi | \hat{0} | \psi \rangle = 0$, we find that $\operatorname{Hy}_{\star}(\hat{B}) = \hat{0}$. Therefore $\operatorname{Hy}_{\star}(\hat{A} + \hat{B}) = \operatorname{Hy}_{\star}(\hat{A}) \in \mathcal{D}_o$, whence, indeed, $\hat{A} + \hat{B} \in \mathcal{D}$. Finally, consider any $\hat{C} \in \mathcal{H}(\mathcal{X}_{\star})$ and observe that for all $|\psi\rangle \in \mathcal{X}_{\star}, \langle \psi | \operatorname{ext}_{\star}(\hat{C}) | \psi \rangle = \langle \psi | \hat{C} \hat{P}_{\star} | \psi \rangle = \langle \psi | \hat{C} | \psi \rangle$, so $\operatorname{Hy}_{\star}(\operatorname{ext}_{\star}(\hat{C})) = \hat{C}$, and therefore indeed,

$$\operatorname{ext}_{\star}(\hat{C}) \in \mathcal{D} \Leftrightarrow \operatorname{Hy}_{\star}(\operatorname{ext}_{\star}(\hat{C})) \in \mathcal{D}_{o} \Leftrightarrow \hat{C} \in \mathcal{D}_{o}.$$

For necessity, assume that \mathcal{D} is a strongly \star -symmetric coherent set of desirable measurements for $\bar{\mathcal{X}}$, then we first prove that \mathcal{D}_{\star} is a coherent set of desirable measurements for $\bar{\mathcal{X}}_{\star}$. For D1, since $\operatorname{ext}_{\star}(\hat{0}) = \hat{0}$ and $\hat{0} \notin \mathcal{D}$, we find that $\hat{0} \notin \mathcal{D}_{\star}$. For D2, consider any $\hat{C} \in \mathcal{H}(\mathcal{X}_{\star})_{>\hat{0}}$ and let

¹⁵A Hermitian operator \hat{A} on a Hilbert space \mathscr{X} is positive definite if and only if $\langle \psi | \hat{A} | \psi \rangle > 0$ for all $| \psi \rangle \in \tilde{\mathscr{X}}$.

 $\hat{A} := \operatorname{ext}_{\star}(\hat{C}) + \hat{I} - \hat{P}_{\star}$. As the codomain of $\mathscr{C}(\hat{C}) = \hat{C}\hat{P}_{\star}$ is \mathscr{X}_{\star} , we find that $\hat{C}\hat{P}_{\star} = \hat{P}_{\star}\hat{C}\hat{P}_{\star}$. Then for all $|\psi\rangle \in \bar{\mathscr{X}}$,

.

$$\begin{aligned} \langle \psi | \hat{A} | \psi \rangle &= \langle \psi | (\hat{P}_{\star} \hat{C} \hat{P}_{\star} + \hat{I} - \hat{P}_{\star}) | \psi \rangle \\ &= \langle \psi | \hat{P}_{\star} \hat{C} \hat{P}_{\star} | \psi \rangle + 1 - \langle \psi | \hat{P}_{\star} | \psi \rangle. \end{aligned}$$

Now, there are two possibilities, for any $|\psi\rangle \in \bar{\mathcal{X}}$. If $\hat{P}_{\star}|\psi\rangle \neq 0$, then the positivity of \hat{C} implies that $\langle \psi | \hat{P}_{\star} \hat{C} \hat{P}_{\star} | \psi \rangle > 0$ and $1 - \langle \psi | \hat{P}_{\star} | \psi \rangle \ge 0$, because the eigenvalues of the projector \hat{P}_{\star} are 0 and 1. If $\hat{P}_{\star}|\psi\rangle = 0$, then $\langle \psi | \hat{P}_{\star} \hat{C} \hat{P}_{\star} | \psi \rangle = 0$ and $1 - \langle \psi | \hat{P}_{\star} | \psi \rangle = 1 > 0$. This tells us that $\hat{A} > \hat{0}$, and therefore $\hat{A} \in \mathcal{D}$. But, as \hat{P}_{\star} is a projection operator,

$$pr_{\star}(\hat{A}) = \hat{P}_{\star} \left(ext_{\star}(\hat{C}) + \hat{I} - \hat{P}_{\star} \right) \hat{P}_{\star}$$
$$= \hat{P}_{\star} ext_{\star}(\hat{C}) \hat{P}_{\star} + \hat{P}_{\star} \hat{P}_{\star} - \hat{P}_{\star} \hat{P}_{\star} \hat{P}_{\star}$$
$$= \hat{P}_{\star} \hat{C} \hat{P}_{\star} \hat{P}_{\star} = \hat{P}_{\star} \hat{C} \hat{P}_{\star} = \hat{C} \hat{P}_{\star} = ext_{\star}(\hat{C}),$$

where the penultimate equality follows from the fact that the codomain of \hat{C} is \mathscr{X}_{\star} . But then Proposition 13 guarantees that $\operatorname{pr}_{\star}(\hat{A}) = \operatorname{ext}_{\star}(\hat{C})$ also belongs to \mathscr{D} , so indeed $\hat{C} \in \mathscr{D}_{\star}$. D3 and D4, follow from the linearity of ext_{\star} . To conclude, we prove that $\mathcal{D} = \{\hat{A} \in \mathcal{H} : \operatorname{Hy}_{\star}(\hat{A}) \in \mathcal{D}_{\star}\}$. Consider any $\hat{A} \in \mathcal{H}$ and observe that $\text{ext}_{\star}(\text{Hy}_{\star}(\hat{A})) = \text{pr}_{\star}(\hat{A})$, so

$$\begin{split} \hat{A} \in \mathscr{D} &\Leftrightarrow \mathrm{pr}_{\star}(\hat{A}) \in \mathscr{D} \Leftrightarrow \mathrm{ext}_{\star}(\mathrm{Hy}_{\star}(\hat{A})) \in \mathscr{D} \\ &\Leftrightarrow \mathrm{Hy}_{\star}(\hat{A}) \in \mathscr{D}_{\star}, \end{split}$$

where the first equivalence follows from Proposition 13. \blacksquare