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Modelling uncertainty in quantum mechanics using imprecise probabilities
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We describe uncertainty in quantum mechanics using coherent partial orderings based on utility functions.

System: A stete |¢) in a finite dimensional Hilbert

- Probability

@ Density operator: p:=

i POl (Wi
with set of possible states & = {|¢), ..., ¢}
and probability mass function p : & — [0, 1].

Problems

Different

result in the same density operator.

probability  distributions

Measurement: A Hermitian operator A

space H.
A
The possible outcomes are its real eigenvalues

@ Born’s rule: p(\) = (‘w|155|‘!f))

with P¢ the projector on the eigenspace & of A

Born’s rule is assumed in a postu-
late.  Where do these probabilities

come from and how can they be in-
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Utility function w
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Axioms Result
Preference ordering & o Rationality criteria on >
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o (01) A [Irreflexivity|
‘ (02) K}D Aa‘nd I;:C' A=-"> AvC [Transitivity] Coherent partial
(03 AzB = Ae B [Monotonicity]| preference ordering >
w;(|0)) b upg(|l)) (04) AvB — B+CoB+C [Additivity]
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What Axioms Result
Decision-theoretic postulates
H i ¢ A (DT1) If |a) is an eigenket with eigenvalue X, then
ermitian operator Uﬁ,(|a)) =3
(DT2) If B and [t;3) are the basis permuted equivalents
of Aand [4), then u;(|v24)) = wz(|v3))- w;i(|¥)) = (W] Aly)

(DT3) If B corresponds to A extended with the identical
measurement I, then ui(le) = ug(l) @ |¢)).
(DT4) If A, B are simultancously measurable (or thus
commutating) operators, then wg g(|¢)) =
wi(9)) + up(|¢)).-

(DT5) The utility funetion is continuous:
: ) — 4 i b)Y = s ().
Jim [y =) = lim u;(|vs)) = ui(l¥)

Polar .#

Set of density operators

4 = {A: (VB)(P(B) < TH(AB)))

P(4) =

N #=1{p: (VAr0)
inf Tr(pA)
et

Tr(p(A)) = 0}

<

Lower expectation P(A)
Normalised bounded super-
linear real functional
P(A):=sup{a € R: Aval}

Precise case

Polar is singleton

M =7} 0

Lower expectation

is linear

P(A) = P(4)
=Tr(pA) @

quantum mechanics.
Differences: Assumptions, Interpretation.
Similarities: Polar, Lower expectation.

(Benavoli et al., 2019) also implemented desirable gambles in




