

Modelling uncertainty in quantum mechanics using imprecise probabilities

Keano De Vos, Gert de Cooman, Jasper De Bock, Alexander Erreygers, Natan T'Joens

Foundations Lab for imprecise probabilities, Ghent University, Belgium

We describe uncertainty in quantum mechanics using coherent partial orderings based on utility functions.

Quantum mechanics		Probability	Probability		Problems		
$\langle \Psi \rangle$	System : A state $ \psi\rangle$ in a finite dimensional Hilbert space \mathcal{H} .	1 Density open with set of pos and probabilit	1 Density operator : $\hat{\rho} := \sum_{i=1}^{k} p(\psi_i\rangle) \psi_i\rangle \langle \psi_i $ with set of possible states $\mathcal{S} = \{ \psi_1\rangle, \dots, \psi_p\rangle\}$. and probability mass function $p : \mathcal{S} \to [0, 1]$.			Different probability distributions result in the same density operator.	
$\hat{A} \ \lambda$	Measurement : A Hermitian operator \hat{A} . The <i>possible outcomes</i> are its real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$.	2 Born's rule: with $\hat{P}_{\mathcal{E}}$ the p corresponding	2 Born's rule: $p(\lambda) = \langle \psi \hat{P}_{\mathcal{E}} \psi \rangle$ with $\hat{P}_{\mathcal{E}}$ the projector on the eigenspace \mathcal{E} of \hat{A} corresponding to the eigenvalue λ .		Born's rule is assumed in a postu- late. Where do these probabilities come from and how can they be in- terpreted?		
Decision-t What Preference ord $\widehat{A \triangleright \widehat{B}}$?	heoretic frameworkHowAxiomsering \triangleright $\hat{A} \triangleright \hat{B}$ Rationality crite $\hat{A} \triangleright \hat{B}$ (O1) $\hat{A} \not \rhd \hat{A}$ $(O2)$ $\hat{A} \triangleright \hat{B}$ and $\hat{B} \triangleright \hat{C} \Longrightarrow \hat{A} \triangleright \hat{B}$ $(O3)$ $\hat{A} \ge \hat{B} \Longrightarrow \hat{A} \triangleright \hat{B}$ $u_{\hat{A}}(\Psi\rangle) \triangleright u_{\hat{B}}(\Psi\rangle)$ (O4) $\hat{A} \triangleright \hat{B} \Longrightarrow \hat{B} + \hat{C} \triangleright \hat{B} + \hat{C}$ $(O5)$ $\hat{A} \triangleright \hat{B}$ and $c > 0 \Longrightarrow c \hat{A}$	eria on \triangleright [Irreflexivity] \hat{C} [Transitivity] [Monotonicity] \hat{C} [Additivity] $> c\hat{B}$ [Positive scaling]	<u>Result</u> Coherent partial preference ordering ⊳	D Polar \mathcal{M} Set of dens $\mathcal{M} = \left\{ \hat{A} : \right.$ $\underline{P}(\hat{A}) = $ $\inf_{\hat{\rho} \in \mathcal{M}} \operatorname{Tr}(\hat{\rho} \hat{A})$	uality sity operators $(\forall \hat{B})(\underline{P}(\hat{B}) \leq \operatorname{Tr}(\hat{A}\hat{B}))$ $\mathcal{M} = \{\hat{\rho} : (\forall \hat{A} \triangleright 0)$ $\operatorname{Tr}(\hat{\rho}(\hat{A})) \geq 0\}$	Precise case Polar is singleton $\mathcal{M} = {\hat{\rho}}$	
What Hermitian ope	AxiomsDecision-theoreticrator \hat{A} (DT1) If $ a\rangle$ is an eigenket $u_{\hat{A}}(a\rangle) = \lambda$.(DT2) If \hat{B} and $ \psi_{\hat{B}}\rangle$ are the base of \hat{A} and $ \psi_{\hat{A}}\rangle$, then $u_{\hat{A}}(a\rangle)$	c postulates with eigenvalue λ , then asis permuted equivalents $\psi_{\hat{A}}\rangle) = u_{\hat{B}}(\psi_{\hat{B}}\rangle).$	${ m \underline{Result}}$ $u_{\hat{A}}(\psi angle)=\langle\psi \hat{A} \psi angle$	Lower ex Normalised linear real $\underline{P}(\hat{A}) := s$	pectation $\underline{P}(\hat{A})$ d bounded super- functional up{ $\alpha \in \mathbb{R} : \hat{A} \triangleright \alpha \hat{I}$ }	Lower expectation is linear $\underline{P}(\hat{A}) = P(\hat{A})$ $= \operatorname{Tr}(\hat{\rho}\hat{A})$	
Utility function $u_{\hat{A}}$ $u_{\hat{A}}$ $(DT3)$ If \hat{B} corresponds to \hat{A} measurement \hat{I} , then u $(DT4)$ If \hat{A}, \hat{B} are simultane commutating) operator $u_{\hat{A}}(\psi\rangle) + u_{\hat{B}}(\psi\rangle).$ (DT5) The utility function is $\lim_{i \to +\infty} \psi_i\rangle = \psi\rangle \Longrightarrow_i$		nded with the identical $\psi = u_{\hat{B}}(\psi\rangle \otimes \phi\rangle).$ y measurable (or thus then $u_{\hat{A}+\hat{B}}(\psi\rangle) =$ inuous: $u_{\hat{A}}(\psi_i\rangle) = u_{\hat{A}}(\psi\rangle).$		Reference (Benavoli et al., 2019) also implemented desirable gambles in quantum mechanics. Differences: Assumptions, Interpretation. Similarities: Polar, Lower expectation.			