A convenient characterisation of convergent upper transition operators

```
Let \mathcal{X} be a finite set. An upper transition operator \overline{T} is a map from \mathbb{R}^{\mathcal{X}} to \mathbb{R}^{\mathcal{X}} such that
T1. \overline{T}f \leq \max f for all f \in \mathbb{R}^{\mathcal{X}};
T2. \overline{T}(f+g) \leq \overline{T}f + \overline{T}g for all f, g \in \mathbb{R}^{\mathcal{X}};
 T3. \overline{T}(\lambda f) = \lambda \overline{T} f for all \lambda \in \mathbb{R}_{>0}, f \in \mathbb{R}^{\mathcal{X}}.
```

It's conjugate lower transition operator is

 $T: \mathbb{R}^{\mathcal{X}} \to \mathbb{R}^{\mathcal{X}}: f \mapsto -\overline{T}(-f).$

An upper transition operator \overline{T} is **convergent** if

 $\lim_{n \to +\infty} \overline{T}^n f \text{ exists for all } f \in \mathbb{R}^{\mathcal{X}},$

and **ergodic** if this limit is constant for all $f \in \mathbb{R}^{\mathcal{X}}$.

Every upper transition operator T is induced by some family $(\mathcal{P}^x)_{x \in \mathcal{X}}$ of *closed* sets of probability mass functions:

```
\overline{T}f(x) = \max\{\mathrm{E}_p(f): p \in \mathcal{P}^x\} \text{ for all } f \in \mathbb{R}^{\mathcal{X}}, x \in \mathcal{X},
```

and hence

 $\underline{T}f(x) = \min\{\mathrm{E}_p(f): p \in \mathcal{P}^x\} \text{ for all } f \in \mathbb{R}^{\mathcal{X}}, x \in \mathcal{X}.$

An upper transition operator \overline{T} induces the graph $\overline{\mathcal{G}}(\overline{T})$, with $\mathcal X$ as set of nodes and a directed edge from x to y if $\overline{T}\mathbb{1}_{v}(x) = \max\{p(y): p \in \mathcal{P}^{x}\} > 0.$

Two states **communicate** if there is a directed path from *x* to y and vice versa. This equivalence relation partitions $\mathcal X$ into (equivalence/communication) classes).

The class C is **maximal** if it doesn't have outgoing edges, and **aperiodic** if its period p_C , the greatest common divisor of the lengths of the directed cycles in C, is 1.

 \mathcal{P}^{x} finite(ly generated) for all $x \in \mathcal{X}_{tv}$

Jasper De Bock Alexander Erreygers Floris Persiau

the sole maximal class $\mathcal{X}_{m,1}^1 = \{a\}$ of $\overline{\mathcal{G}}(\overline{T}_{\mathcal{X}_{tv}^0})$ is aperiodic the sole maximal class $\mathcal{X}_{m,1}^2 = \{b,c\}$ of $\overline{\mathcal{G}}(\overline{T}_{\mathcal{X}_{tv}^1})$ is periodic