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Abstract
Motivated by its connection to the limit behaviour
of impreciseMarkov chains, we introduce and study
the so-called convergence of upper transition oper-
ators: the condition that for any function, the orbit
resulting from iterated application of this operator
converges. In contrast, the existing notion of ‘ergod-
icity’ requires convergence of the orbit to a constant.
We derive a very general (and practically verifiable)
sufficient condition for convergence in terms of ac-
cessibility and lower reachability, and prove that
this sufficient condition is also necessary whenever
(i) all transient states are absorbed or (ii) the upper
transition operator is finitely generated.
Keywords. Imprecise Markov chains, upper tran-
sition operators, convergence, ergodicity, regularity.

1. Introduction
Imprecise Markov chains [3–5, 7, 10, 14] model the

uncertain temporal evolution of the state of finite-state
discrete-time systems, and they do so in a more general
manner than (‘precise’) Markov chains [9, 12] by allow-
ing for partial probability specifications. Let 𝒳 be the
finite set of possible states of the system under study. A
Markov chain models uncertain dynamics using tran-
sition probabilities: for every state 𝑥 ∈ 𝒳, one has to
specify a transition probability mass function (pmf) 𝑝𝑥,
and then 𝑝𝑥(𝑦) is the probability of transitioning from
state 𝑥 in the current time step to state 𝑦 in the next
one. These give rise to a transition operator (or ker-
nel) 𝑇∶ ℝ𝒳 → ℝ𝒳 , which maps every function 𝑓 ∈ ℝ𝒳

to
𝑇𝑓∶ 𝒳 → ℝ∶ 𝑥 ↦ E𝑝𝑥 (𝑓).

This transition operator comes in handy when determin-
ing the expectation of a function𝑓 of the state after𝑛 time
steps, given that the system started in state 𝑥:

E
(
𝑓(𝑋𝑛) ∣ 𝑋0 = 𝑥

)
= 𝑇𝑛𝑓(𝑥).

In contrast, an imprecise Markov chain models un-
certain dynamics using a family (𝒫𝑥)𝑥∈𝒳 of candidate
transition pmfs, with the interpretation that if up to

time step 𝑛 the states were 𝑥0, . . . , 𝑥𝑛, the uncertainty
about the state 𝑋𝑛+1 in the next time step 𝑛 + 1 is ac-
curately modelled by some pmf in 𝒫𝑥𝑛 , which, depend-
ing on the adopted interpretation, may either depend
on 𝑥0, . . . , 𝑥𝑛 or only on 𝑥𝑛. Both interpretations give
rise to the same range of values for the conditional
expectation of a function 𝑓 of the state after 𝑛 time
steps [7, Theorem 11.4], and one is then typically inter-
ested in the supremum E

(
𝑓(𝑋𝑛) ∣ 𝑋0 = 𝑥

)
or infimum

E
(
𝑓(𝑋𝑛) ∣ 𝑋0 = 𝑥

)
of this range, called the upper and

lower expectation, with

E
(
𝑓(𝑋𝑛) ∣ 𝑋0 = 𝑥

)
= 𝑇𝑛𝑓(𝑥),
= −E

(
−𝑓(𝑋𝑛) ∣ 𝑋0 = 𝑥

)
,

where 𝑇 is the chain’s upper transition operator, which
maps every function 𝑓 ∈ ℝ𝒳 to

𝑇𝑓∶ 𝒳 → ℝ∶ 𝑥 ↦ sup{E𝑝(𝑓)∶ 𝑝 ∈ 𝒫𝑥}. (1)

Studying the limit behaviour of impreciseMarkov chains
is therefore a matter of understanding the limit be-
haviour of the orbit (𝑇𝑛𝑓)𝑛∈ℕ. In this contribution, we
focus on the convergence of these orbits and develop
conditions that guarantee convergence for all 𝑓 ∈ ℝ𝒳 .
In order to adhere to the page limit, we’ve omitted the

proof of an intermediary lemma whenever it’s straight-
forward or non-instructive. Furthermore, we also don’t
give a proof for Lemma 3.1 and Proposition 5.2, since
their proofs are quite long and essentially already appear
in [6, Proposition 6] and [2, Theorem 5.28], respectively.
The interested reader will be happy to find these omitted
proofs in the arXiv:2502.04509 preprint of this contribu-
tion.

2. Upper transition operators
Since in Equation (1) the upper transition operator𝑇 is

defined as a pointwise supremum over linear operators,
it has the following properties:

T1. 𝑇(𝑓 + 𝑔) ≤ 𝑇𝑓 + 𝑇𝑔 for all 𝑓, 𝑔 ∈ ℝ𝒳 ;

T2. 𝑇(𝜆𝑓) = 𝜆𝑇𝑓 for all 𝑓 ∈ ℝ𝒳 and 𝜆 ∈ ℝ≥0;

T3. 𝑇𝑓 ≤ max 𝑓 for all 𝑓 ∈ ℝ𝒳 .
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In general, we call any operator 𝑇∶ ℝ𝒳 → ℝ𝒳 that satis-
fies T1–T3 an upper transition operator,1 as it can always
be thought of as being derived from sets of pmfs: T1–T3
guarantee that for all 𝑥 ∈ 𝒳, there is at least one com-
patible set of pmfs 𝒫𝑥, in the sense that it satisfies the
assignment in Equation (1). There is also a largest one,
and this so-called credal set 𝒬𝑥 is the unique closed and
convex set of pmfs that is compatible with 𝑇.
2.1. Convergence and ergodicity. As explained in the
Introduction, we aim to obtain (necessary and/or suffi-
cient) conditions on the upper transition operator 𝑇 for
it to have the following property.

Definition 2.1. An upper transition operator 𝑇 is con-
vergent if for all 𝑓 ∈ ℝ𝒳 , (𝑇𝑛𝑓)𝑛∈ℕ converges.

Although we are not the first to study the limit be-
haviour of orbits (𝑇𝑛𝑓)𝑛∈ℕ, we are not aware of any
work that focuses on (what we call) convergence. Most
work—at least on upper transition operators for impre-
cise Markov chains—focuses on the stronger require-
ment of ergodicity [4, 6, 16]; Škulj [15] does consider
non-ergodic imprecise Markov chains, but focusses on
invariant sets of distributions.

Definition 2.2. An upper transition operator𝑇 is ergodic
if for all 𝑓 ∈ ℝ𝒳 , (𝑇𝑛𝑓)𝑛∈ℕ converges to a constant.

Hermans and De Cooman [6, Proposition 3] study
this notion of ergodicity extensively, and they obtain a
necessary and sufficient condition that is easy to check,
which we’ll introduce in Section 3 further on. We aim
for similar conditions, but for convergence rather than
ergodicity.
Hermans and De Cooman [6] also explain that thanks

to T1–T3, an upper transition operator 𝑇 is a ‘(con-
vex) topical map’ or, more generally, a ‘sup-norm non-
expansive map’ [11, 13]. For these more general types
of maps, the limit behaviour of orbits has been studied
extensively as well [1, 11, 13]. From these references, we
know that for any 𝑓 ∈ ℝ𝒳 , the orbit (𝑇𝑛𝑓)𝑛∈ℕ has a
finite limit set Ω𝑓 = {𝜔1,… , 𝜔𝑝𝑓 },

2 whose period (or car-
dinality) 𝑝𝑓 has a universal upper bound that depends
only on the size of 𝒳 and whose elements form a cycle:
𝜔2 = 𝑇𝜔1, . . . , 𝜔𝑝𝑓 = 𝑇𝜔𝑝𝑓−1 and 𝜔𝑝𝑓+1 ≔ 𝜔1 = 𝑇𝜔𝑝𝑓 .
Convergence requires that 𝑝𝑓 = 1 for all 𝑓 ∈ ℝ𝒳 .

2.2. Convenient properties of upper transition op-
erators. Throughout this contribution, we’ll make use
of several properties of upper transition operators that
are well known [6, 17], but which we repeat here for
the sake of convenience. An upper transition opera-
tor 𝑇 has a corresponding conjugate lower transition

1Also known as a sublinear transition operator or a sublinear kernel
[5, Definition 5.1].

2Defined as the set of accumulation points of the orbit (𝑇𝑛𝑓)𝑛∈ℕ,
or equivalently, the limits of the convergent subsequences.

operator 𝑇∶ ℝ𝒳 → ℝ𝒳 defined by 𝑇𝑓 ≔ −𝑇(−𝑓) for
all 𝑓 ∈ ℝ𝒳 ; these names make sense because 𝑇𝑓 ≤ 𝑇𝑓
for all 𝑓 ∈ ℝ𝒳 . We’ll often implicitly use that if 𝑇 is an
upper transition operator, then so is its 𝑛-fold compo-
sition 𝑇𝑛—which has 𝑇𝑛 as conjugate lower transition
operator. Other important properties of 𝑆 ∈ {𝑇, 𝑇} are:
T4. min𝑓 ≤ 𝑆𝑓 ≤ max 𝑓 for all 𝑓 ∈ ℝ𝒳 ;
T5. if 𝑓 ≤ 𝑔 then 𝑆𝑓 ≤ 𝑆𝑔 for all 𝑓, 𝑔 ∈ ℝ𝒳 ;
T6. 𝑆(𝜇 + 𝑓) = 𝜇 + 𝑆𝑓 for all 𝑓 ∈ ℝ𝒳 and 𝜇 ∈ ℝ;
T7. (max 𝑓 −min𝑓)𝑆𝟙𝑥 +min𝑓 ≤ 𝑆𝑓 for all 𝑓 ∈ ℝ𝒳

and 𝑥 ∈ argmax𝑓.
One particular type of functions we’ll use are indicators:
the indicator 𝟙𝐴 of the set 𝐴 ⊆ 𝒳 maps 𝑥 ∈ 𝒳 to 1
if 𝑥 ∈ 𝐴 and to 0 otherwise; to ease our notation, we
write 𝟙𝑥 ≔ 𝟙{𝑥} for all 𝑥 ∈ 𝒳. The final property we list
revolves around indicators:
T8. 𝑇𝟙𝐶 = 1 − 𝑇𝟙𝒳⧵𝐶 for all 𝐶 ⊆ 𝒳.

3. Characterising ergodicity
The necessary and sufficient condition for ergodicity

given by Hermans and De Cooman [6, Proposition 3] is
stated in terms of accessibility and reachability relations.
Since these relations will also be important in our quest
for conditions for convergence, we’ll briefly recall them
before repeating their result. Throughout this contribu-
tion, we’ll illustrate most relations and notions with the
following running example.
Running example 1. Let𝒳 ≔ {𝖺, 𝖻, 𝖼, 𝖽, 𝖾} and consider
the upper transition operator 𝑇 induced by the sets

𝒫𝖺 ≔ {𝟙𝖺}, 𝒫𝖻 ≔ {𝟙𝖻}, 𝒫𝖼 ≔ {14(𝟙𝖺 + 𝟙𝖻 + 𝟙𝖽 + 𝟙𝖾)}

and 𝒫𝖽 ≔ {𝟙𝖼, 𝟙𝖽, 𝟙𝖾} ≕ 𝒫𝖾. ⋄

3.1. The upper accessibility graph. An upper transi-
tion operator 𝑇 gives rise to a corresponding upper acces-
sibility graph 𝒢(𝑇), with𝒳 as nodes and a directed edge
between states 𝑥, 𝑦 ∈ 𝒳 if and only if 𝑇𝟙𝑦(𝑥) > 0 [6,
Definition 5]. A state 𝑦 ∈ 𝒳 is now said to be accessible
from a state 𝑥 ∈ 𝒳 if either 𝑦 = 𝑥 or there is a directed
path from 𝑥 to 𝑦 in 𝒢(𝑇), or equivalently, if 𝑇𝑛𝟙𝑦(𝑥) > 0
for some 𝑛 ∈ ℤ≥0 [6, Definition 4 and Proposition 4].
Running example 2. The reader will have no difficulty
in verifying that Figure 1 depicts the upper accessibility
graph 𝒢(𝑇). ⋄
Two states 𝑥, 𝑦 ∈ 𝒳 communicate if 𝑦 is accessible

from 𝑥 (in 𝒢(𝑇)) and vice versa; this equivalence relation
partitions the state space𝒳 into equivalence classes 𝐶1,
. . . , 𝐶𝑛, aptly called communication classes—or strongly
connected components in the theory of directed graphs.
For two communication classes 𝐶𝑘 and 𝐶𝓁, 𝑦 ∈ 𝐶𝓁 is
accessible from 𝑥 ∈ 𝐶𝑘 if and only if the same is true
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𝖼

𝖺 𝖻

𝖽 𝖾

Figure 1. 𝒢(𝑇) for Running example 1.

for any 𝑦′ ∈ 𝐶𝓁 and 𝑥′ ∈ 𝐶𝑘; whenever this is the case,
we therefore simply say that 𝐶𝓁 is accessible from 𝐶𝑘.
This accessibility relation induces a partial order on the
communication classes: we say that 𝐶𝓁 dominates 𝐶𝑘 if
𝐶𝓁 ≠ 𝐶𝑘 and 𝐶𝓁 is accessible from 𝐶𝑘. A communica-
tion class 𝐶 is called maximal (or final) if it’s undomi-
nated with respect to this partial order. Since there are
only finitely many communication classes, every non-
maximal communication class is dominated by at least
one maximal communication class. A state is calledmax-
imal if it belongs to a maximal communication class and
non-maximal or transient otherwise. We enumerate the
maximal communication classes by𝒳m,1, . . . ,𝒳m,𝑀 , and
we collect their union in 𝒳m ≔ 𝒳m,1 ∪⋯ ∪𝒳m,𝑀 .
The cyclicity or period of a maximal communication

class 𝒳m,𝑘 is the greatest common divisor of the lengths
of the closed directed paths that remain in this class, and
the class 𝒳m,𝑘 is said to be regular if it has cyclicity 1, or
equivalently, if there is some𝑁 ∈ ℕ such that for all 𝑛 ≥
𝑁 and 𝑥, 𝑦 ∈ 𝒳m,𝑘, 𝑇𝑛𝟙𝑦(𝑥) > 0 [4, Proposition 4.2].
Running example 3. The graph 𝒢(𝑇) has three com-
munication classes: {𝖺}, {𝖻} and {𝖼, 𝖽, 𝖾}. The first two are
the maximal ones, and these are regular because they
obviously have cyclicity 1. ⋄
For small state spaces, it’s easy to determine the maxi-

mal communication classes and their cyclicity on sight.
In general, however, there’s several of algorithms that do
this (in linear time)—see for example [8, Sections 13.2.3
and 13.3.2].
To make our lives a bit easier, we’ll call any non-empty

subset 𝐶 of 𝒳 a class. Such a class 𝐶 is closed—after
T’Joens and De Bock [17, Section 5]—if 𝑇𝟙𝑦(𝑥) = 0 for
all 𝑥 ∈ 𝐶 and 𝑦 ∈ 𝒳 ⧵ 𝐶; it follows from T1 and T4 that
this is the case if and only if 𝑇𝟙𝒳⧵𝐶(𝑥) = 0 for all 𝑥 ∈ 𝒳.
Clearly, a communication class 𝐶 is maximal if and only
if it’s closed; we leave it to the reader to verify that any
closed class must be a union of communication classes,
but that not all such unions need be closed.
Running example 4. The closed classes in our running
example are {𝖺}, {𝖻}, {𝖺, 𝖻} and 𝒳. ⋄
3.2. Lower reachability and absorption. Unfortu-
nately, the upper accessibility graph𝒢(𝑇) does not suffice
to characterise ergodicity; for this, we also need the no-
tions of ‘lower reachability’ and ‘absorption’. A class 𝐶

𝒳m,1 ⋯ 𝒳m,𝑀 𝒳m

𝒳t▾ 𝒳t▿

Figure 2. Venn diagram of the state space𝒳

is lower reachable from a state 𝑥 ∈ 𝒳 if there is some
𝑛 ∈ ℕ such that 𝑇𝑛𝟙𝐶(𝑥) > 0, and we call 𝐶 absorbing
if it is lower reachable from any state 𝑥 ∈ 𝒳 ⧵ 𝐶 [17,
Section 5]. The following result—a slight generalisation
of [6, Proposition 6]—provides a convenient recursive
method to determine the states fromwhich a closed class
is lower reachable.

Lemma 3.1. Consider an upper transition operator 𝑇
with closed class 𝐶. Let (𝐶𝑛)𝑛∈ℤ≥0 be the non-decreasing
sequence given by 𝐶0 ≔ 𝐶 and, for all 𝑛 ∈ ℤ≥0, by

𝐶𝑛+1 ≔ 𝐶𝑛 ∪ {𝑥 ∈ 𝒳 ⧵ 𝐶𝑛 ∶ 𝑇𝟙𝐶𝑛 (𝑥) > 0}
= {𝑥 ∈ 𝒳 ∶ 𝑇𝑛+1𝟙𝐶(𝑥) > 0}.

Then after 𝑘 ≤ |𝒳 ⧵𝐶| steps, we reach 𝐶𝑘 = 𝐶𝑘+1, and 𝐶𝑘
is the set of states from which 𝐶 is lower reachable.

As 𝒳m is the union of the maximal (and therefore
closed) communication classes, it is closed as well and
we can determine the set 𝐶𝑘 of states from which it is
lower reachable with the iterative method in Lemma 3.1
for 𝐶 = 𝒳m. We collect all transient states of this kind
in𝒳t▾ = 𝐶𝑘 ⧵𝒳m; finally,𝒳t▿ ≔ 𝒳 ⧵ (𝒳m∪𝒳t▾) collects
the transient states from which 𝒳m is not lower reach-
able. Note that, as depicted in Figure 2,𝒳t▾ and𝒳t▿ need
not be communication classes, and that (𝒳m,𝒳t▾,𝒳t▿)
partitions 𝒳.
Running example 5. To determine which transient
states𝒳m is lower reachable from, we apply the recursive
method in Lemma 3.1 for 𝐶 = 𝒳m = {𝖺, 𝖻}:

𝐶1 = {𝖺, 𝖻} ∪ {𝑥 ∈ {𝖼, 𝖽, 𝖾}∶ 𝑇𝟙{𝖺,𝖻}(𝑥) > 0} = {𝖺, 𝖻, 𝖼}
and

𝐶2 = {𝖺, 𝖻, 𝖼} ∪ {𝑥 ∈ {𝖽, 𝖾}∶ 𝑇𝟙{𝖺,𝖻,𝖼}(𝑥) > 0} = 𝐶1.

Consequently,𝒳m is lower reachable from 𝖼 but not from
𝖽 and 𝖾. This illustrates nicely that 𝒳t▾ = {𝖼} and 𝒳t▿ =
{𝖽, 𝖾} need not be communication classes. ⋄
Crucially, the class 𝒳t▿ of transient states from which

𝒳m is not lower reachable is always empty for a (linear)
transition operator 𝑇.

Lemma 3.2. For any linear transition operator 𝑇,𝒳m is
absorbing, so𝒳t▾ = 𝒳 ⧵𝒳m and𝒳t▿ = ∅.
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Proof. The statement is trivial if 𝒳m = 𝒳, so assume
that𝒳 ⧵𝒳m ≠ ∅. Any non-maximal 𝑥 ∈ 𝒳 ⧵𝒳m belongs
to a non-maximal communication class 𝐶, for which
we know that it is dominated by some maximal com-
munication class 𝒳m,𝑘. For any 𝑦 ∈ 𝒳m,𝑘 ⊆ 𝒳m, this
implies that 𝑦 is accessible from 𝑥, meaning that there
is some 𝑛 ∈ ℕ such that 𝑇𝑛𝟙𝑦(𝑥) > 0 and therefore also
𝑇𝑛𝟙𝒳m(𝑥) ≥ 𝑇𝑛𝟙𝑦(𝑥) > 0. Since 𝑇 is linear, this shows
that𝒳m is lower reachable from any 𝑥 ∈ 𝒳⧵𝒳m, whence
𝒳m is absorbing.

3.3. A necessary and sufficient condition for ergod-
icity. And with that, we are ready to state the necessary
and sufficient condition for ergodicity given by Hermans
and De Cooman [6, Proposition 3]:

Proposition 3.1. An upper transition operator 𝑇 is er-
godic if and only if it has a single maximal communication
class (so𝒳m = 𝒳m,1) that is absorbing (so𝒳t▿ = ∅) and
regular.

Since ergodicity clearly implies convergence, this re-
sult provides a sufficient condition for convergence that
can be checked easily. However, whenever there’s more
than one maximal communication class, as in our run-
ning example, we’re already out of luck.
Running example 6. Since the upper transition opera-
tor 𝑇 has two maximal communication classes, Propo-
sition 3.1 tells us it cannot be ergodic. However, it is
convergent! The reader may set out to verify this explic-
itly, but it is much more convenient to use the sufficient
condition for convergence that we’ll establish in Theo-
rem 4.1 further on—see Running example 8. ⋄

4. Conditions for convergence
Our path forward is clear: we set out to establish a

sufficient condition for convergence that is more general
than the (necessary and sufficient) one for ergodicity in
Proposition 3.1. We’ll do so in several stages: we first
obtain a necessary and sufficient condition in the case
of a single communication class, then a necessary and
sufficient condition when there’s multiple maximal com-
munication classes whose union is absorbing, and finally
a sufficient condition in the general case.

4.1.A single communication class. Let us start gently
with upper transition operators that have a single com-
munication class—a linear transition operator of this
type is called irreducible [8, Section 13.2.1]. We know
from Proposition 3.1 that in this case regularity is suffi-
cient for ergodicity and therefore convergence, and the
following result establishes that it is also necessary for
convergence.

Proposition 4.1. Consider an upper transition operator 𝑇
with a single communication class. Then the following
three statements are equivalent: (i) 𝑇 is convergent; (ii) 𝑇
is ergodic; (iii)𝒳 is regular.

Besides Proposition 3.1, our proof for this result re-
lies on the following lemma, which will come in handy
further on as well.

Lemma 4.1. Consider an upper transition operator 𝑇
with a single communication class. Then for any 𝑓 ∈
ℝ𝒳 , (𝑇𝑛𝑓)𝑛∈ℕ converges if and only if it converges to a
constant.

Proof. It suffices to show that if 𝜙 ≔ lim𝑛→+∞ 𝑇𝑛𝑓 ex-
ists, it must be constant. So let us assume ex absurdo
that 𝜙 exists but is not constant. Then there are 𝑥, 𝑦 ∈ 𝒳
such that 𝜙(𝑥) = max 𝜙 > min𝜙 = 𝜙(𝑦). Since 𝒳 is
a communication class, there is some 𝑘 ∈ ℕ such that
𝑇𝑘𝟙𝑥(𝑦) > 0. It therefore follows that

𝑇𝑘𝜙(𝑦)
T7
≥ (max 𝜙 −min𝜙)𝑇𝑘𝟙𝑥(𝑦) + min𝜙 > min𝜙.

Meanwhile,𝑇𝜙 = 𝜙, and hence,𝜙(𝑦) = 𝑇𝑘𝜙(𝑦) > min𝜙,
which contradicts the fact that 𝜙(𝑦) = min𝜙.

Proving Proposition 4.1 is now a piece of cake.

Proof of Proposition 4.1. The equivalence of conver-
gence and ergodicity is an immediate consequence of
Lemma 4.1. That ergodicity is equivalent to regularity, on
the other hand, follows directly from Proposition 3.1

Whenever one of the three equivalent conditions in
Proposition 4.1 holds, we can also say something about
the (constant) limit of (𝑇𝑛𝑓)𝑛∈ℕ in relation to 𝑓.

Proposition 4.2. Consider an upper transition operator 𝑇
such that 𝒳 is a regular communication class. Then for
any 𝑓 ∈ ℝ𝒳 , (𝑇𝑛𝑓)𝑛∈ℕ converges to a constant func-
tion 𝜙 ≥ min𝑓 and, unless 𝑓 is constant, 𝜙 > min𝑓.

Proof. Since 𝒳 is a regular communication class, we
know from Proposition 4.1 that 𝑇 is ergodic, which im-
plies that (𝑇𝑛𝑓)𝑛∈ℕ converges to a constant function 𝜙.
Consider any 𝑥 ∈ argmax𝑓. Since 𝒳 is regular, there

is some 𝑘 ∈ ℕ such that min𝑇𝑘𝟙𝑥 > 0. Consequently,
with 𝛼 ≔ max 𝑓 −min𝑓 ≥ 0,

𝜙 = lim
𝑛→+∞

𝑇𝑛𝑇𝑘𝑓
T4
≥ min𝑇𝑘𝑓

T7
≥ 𝛼min𝑇𝑘𝟙𝑥 +min𝑓.

Hence, indeed, 𝜙 ≥ min𝑓; if 𝑓 is not constant, then
𝛼 > 0 and therefore 𝜙 > min𝑓.

4.2. Restriction. In the remainder of this section we
move beyond upper transition operators with a single
communication class. As a first step, instead of study-
ing the convergence of 𝑇 for all 𝑥 ∈ 𝒳, we zoom in on
particular subsets of states.
To do so, we introduce the notion of restriction of

functions, sets of pmfs and upper transition operators.

4
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𝖽 𝖾

Figure 3. 𝒢(𝑇𝒳t▿) for Running example 7.

For 𝐴, 𝐵 ⊆ 𝒳 with 𝐴 ⊇ 𝐵 and 𝑓 ∈ ℝ𝐴, 𝑓↓𝐵 denotes the
restriction of 𝑓 to 𝐵:

𝑓↓𝐵 ∶ 𝐵 → ℝ∶ 𝑥 ↦ 𝑓(𝑥).

For any family (𝒫𝑥)𝑥∈𝒳 of sets of pmfs, class 𝐶 ⊆ 𝒳 and
𝑥 ∈ 𝒳, we let

𝒫𝑥𝐶 ≔ {𝑝↓𝐶 ∶ 𝑝 ∈ 𝒫𝑥, (∀𝑦 ∈ 𝒳 ⧵ 𝐶) 𝑝(𝑦) = 0} (2)

be the set that collects the restriction to the class 𝐶 of
those pmfs 𝑝 ∈ 𝒫𝑥 whose support {𝑦 ∈ 𝒳 ∶ 𝑝(𝑦) > 0}
is contained in 𝐶. Consider now an upper transition
operator 𝑇 with corresponding family (𝒬𝑥)𝑥∈𝒳 of credal
sets. For any class 𝐶 ⊆ 𝒳 such that 𝒬𝑥𝐶 ≠ ∅ for all 𝑥 ∈ 𝐶,
we let 𝑇𝐶 be the upper transition operator corresponding
to the family (𝒬𝑥𝐶)𝑥∈𝐶 :

𝑇𝐶𝑔(𝑥) = max{E𝑝(𝑔)∶ 𝑝 ∈ 𝒬𝑥𝐶} for all 𝑔 ∈ ℝ𝐶 , 𝑥 ∈ 𝐶.

It follows almost immediately from the definition of 𝑇𝐶
and (𝒬𝑥𝐶)𝑥∈𝒳 that

(𝑇𝐶)𝑛(𝑓↓𝐶) ≤ (𝑇𝑛𝑓)↓𝐶 for all 𝑛 ∈ ℕ, 𝑓 ∈ ℝ𝒳 . (3)

Proof. The base case 𝑛 = 1 follows immediately from
the definition of 𝑇𝐶 and 𝒫𝑥𝐶 . The inductive step follows
from this base case and T5.

One thing that is particularly useful in practice, is that
one can obtain 𝑇𝐶 with any compatible family of sets of
pmfs, as long as these sets are closed.

Lemma 4.2. Consider an upper transition operator 𝑇,
let (𝒫𝑥)𝑥∈𝒳 be any compatible family of closed sets of pmfs
and fix some class 𝐶 ⊆ 𝒳. Then 𝑇𝐶 is well defined if and
only if for all 𝑥 ∈ 𝐶, 𝑇𝟙𝐶(𝑥) = 1, or equivalently, 𝒫𝑥𝐶 ≠ ∅;
whenever this is the case, (𝒫𝑥𝐶)𝑥∈𝐶 is compatible with 𝑇𝐶 .

Running example 7. Recall that 𝒳m = 𝒳m,1 ∪𝒳m,2 =
{𝖺, 𝖻},𝒳t▾ = {𝖼} and𝒳t▿ = {𝖽, 𝖾}. Applying Equation (2)
for 𝑥 ∈ 𝐶 = 𝒳t▿ we find that

𝒫𝖽𝒳t▿
= 𝒫𝖾𝒳t▿

= {𝟙𝖽, 𝟙𝖾}.

Lemma 4.2 therefore implies that 𝑇𝒳t▿ is well defined—
which is no coincidence, as we’ll see in Lemma 4.6—and,
in particular, that 𝑇𝒳t▿𝑓 = max 𝑓 for all 𝑓 ∈ ℝ𝒳t▿ ; its
upper accessibility graph is depicted in Figure 3. ⋄
With these notions of restriction in place, we can now

formalize what we mean by zooming in on 𝐶.

Definition 4.1. An upper transition operator 𝑇 is conver-
gent (ergodic) on 𝐶 ⊆ 𝒳 if, for all 𝑓 ∈ ℝ𝒳 , ((𝑇𝑛𝑓)↓𝐶)𝑛∈ℕ
converges (to a constant).

Whenever 𝐶 is a maximal communication class, these
restricted notions of convergence and/or ergodicity can
be conveniently characterised in terms of 𝑇𝐶 .
Lemma 4.3. Let 𝐶 be one of the maximal communication
classes of an upper transition operator 𝑇. Then 𝑇𝐶 is well
defined and

(𝑇𝐶)𝑛(𝑓↓𝐶) = (𝑇𝑛𝑓)↓𝐶 for all 𝑛 ∈ ℕ, 𝑓 ∈ ℝ𝒳 .

Consequently,

(i) 𝐶 is the sole communication class for 𝑇𝐶 ;
(ii) 𝐶 is regular for 𝑇𝐶 if and only if it’s regular for 𝑇;
(iii) 𝑇𝐶 is ergodic if and only if 𝑇 is ergodic on 𝐶;
(iv) 𝑇𝐶 is convergent if and only if 𝑇 is convergent on 𝐶.
Combined with Proposition 4.1, Lemma 4.3 yields a

convenient necessary and sufficient condition for con-
vergence on 𝒳m.

Proposition 4.3. An upper transition operator 𝑇 is con-
vergent on𝒳m if and only if 𝒳m,1, . . . ,𝒳m,𝑀 are regular.

Proof. 𝑇 is clearly convergent on 𝒳m if and only if it is
convergent on all𝒳m,1, . . . ,𝒳m,𝑀 . The result now follows
because, for all 𝑘 ∈ {1,… ,𝑀},𝒳m,𝑘 is a closed communi-
cation class, so it follows from Lemma 4.3 (for 𝐶 = 𝒳m,𝑘)
and Proposition 4.1 (applied to 𝑇𝒳m,𝑘 ) that 𝑇 is conver-
gent on 𝒳m,𝑘 if and only if 𝒳m,𝑘 is regular (for 𝑇).

4.3. Maximal classes are absorbing. With conver-
gence on𝒳m completely covered, we nowmove to upper
transition operators for which the closed class 𝒳m is ab-
sorbing. Recall from Lemma 3.2 that this is always the
case for linear transition operators.
More generally, we first look at convergence on an

arbitrary closed class 𝐶 that is absorbing.

Lemma 4.4. Let 𝐶 be an absorbing closed class for the
upper transition operator 𝑇. Then for any 𝑓 ∈ ℝ𝒳 ,
if (𝑇𝑛𝑓)𝑛∈ℕ converges on 𝐶, it converges (on𝒳) as well.
In our proof for this result, we’ll also rely on [17,

Lemma 39], which we repeat here for the sake of clarity.

Lemma 4.5. Consider an upper transition operator 𝑇
with an absorbing closed class 𝐶. Then, for all 𝜖 ∈ ℝ>0,
there is some 𝑛𝜖 ∈ ℕ such that for all 𝑛 ≥ 𝑛𝜖 and
all 𝑓 ∈ ℝ𝒳 , |𝑇𝑛𝑓 − 𝑇𝑛(𝑓𝟙𝐶)| ≤ max|𝑓|𝜖.

Proof of Lemma 4.4. It suffices to show that the limit
set Ω𝑓 = {𝜔1,… , 𝜔𝑝𝑓 } has period 𝑝𝑓 = 1.
For all 𝑘 ∈ {1,… , 𝑝𝑓}, since 𝜔𝑘 = lim𝑛→+∞ 𝑇𝑝𝑓𝑛𝜔𝑘

by definition, it follows from Lemma 4.5 that 𝜔𝑘 =

5
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lim𝑛→+∞ 𝑇𝑝𝑓𝑛(𝜔𝑘𝟙𝐶). Since 𝜔1↓𝐶 = ⋯ = 𝜔𝑝𝑓↓𝐶 by as-
sumption, and therefore also 𝜔1𝟙𝐶 =⋯ = 𝜔𝑝𝑓𝟙𝐶 , this
implies that 𝜔1 =⋯ = 𝜔𝑝𝑓 , proving that 𝑝𝑓 = 1.

One immediate and interesting consequence of
Lemma 4.4 is that for an absorbing closed class 𝐶, con-
vergence on 𝐶 is equivalent to convergence (on 𝒳).

Corollary 4.1. Let 𝐶 be a closed class that is absorbing.
Then 𝑇 is convergent on 𝐶 if and only if it is convergent.

Of course, the prime example of such an absorbing
closed class is the union of all maximal communication
classes 𝒳m whenever 𝒳t▿ = ∅. Combined with Proposi-
tion 4.3, this yields a necessary and sufficient condition
for convergence for the case 𝒳t▿ = ∅.

Corollary 4.2. Consider any upper transition operator 𝑇
such that𝒳t▿ = ∅. Then𝑇 is convergent if and only if 𝒳m,1,
. . . ,𝒳m,𝑀 are regular.

For linear transition operators, for which we know
from Lemma 3.2 that 𝒳t▿ = ∅, this result specialises
to the following necessary and sufficient condition for
convergence.

Corollary 4.3. A linear transition operator 𝑇 is convergent
if and only if 𝒳m,1, . . . ,𝒳m,𝑀 are regular.

4.4.Maximal classes are not absorbing. We have one
more step to take: to allow for transient states fromwhich
𝒳m is not lower reachable, meaning that 𝒳t▿ ≠ ∅; as
we’ve indicated before, this can only happen for non-
linear transition operators. As a first step, we establish
that whenever𝒳t▿ ≠ ∅, we can always restrict the upper
transition operator 𝑇 to 𝒳t▿.

Lemma 4.6. For any upper transition operator 𝑇
with𝒳t▿ ≠ ∅, 𝑇𝒳t▿ is well defined.

Proof. Let (𝒬𝑥)𝑥∈𝒳 be the family of credal sets corre-
sponding to 𝑇. We need to show that 𝒬𝑥𝒳t▿

≠ ∅ for all
𝑥 ∈ 𝒳t▿. So fix any 𝑥 ∈ 𝒳t▿. Let (𝐶𝑛)𝑛∈ℤ≥0 be as defined
in Lemma 3.1 with 𝐶0 = 𝒳m, and recall from there that
𝒳t▿ = 𝒳 ⧵ 𝐶𝑛 for all 𝑛 ≥ 𝑘. Recall furthermore that

𝐶𝑘 = 𝐶𝑘+1 = 𝐶𝑘 ∪ {𝑦 ∈ 𝒳 ⧵ 𝐶𝑘 ∶ 𝑇𝟙𝐶𝑘 (𝑦) > 0},

which, due to T4, implies that 𝑇𝟙𝐶𝑘 (𝑥) = 0 because 𝑥 ∈
𝒳t▿ = 𝒳 ⧵𝐶𝑘 . Consider any 𝑝 ∈ 𝒬𝑥 such that E𝑝(𝟙𝐶𝑘 ) =
min𝑞∈𝒬𝑥 E𝑞(𝟙𝐶𝑘 ) = 𝑇𝟙𝐶𝑘 (𝑥) = 0. Then clearly 𝑝(𝑦) =
0 for all 𝑦 ∈ 𝐶𝑘 = 𝒳 ⧵ 𝒳t▿, so 𝑝↓𝒳t▿ ∈ 𝒬𝑥𝒳t▿

by the
definition in Equation (2), implying that 𝒬𝑥𝒳t▿

≠ ∅.

Our next step is to use 𝑇𝒳t▿ to decompose 𝒳t▿ into
its own maximal and transient states, similarly to how
we used 𝑇 to decompose 𝒳 into 𝒳m,1, . . . , 𝒳m,𝑀 , 𝒳t▾
and𝒳t▿. During this process, to avoid confusion, we will
adopt 𝒳1

m,1, . . . , 𝒳1
m,𝑀1 , 𝒳

1
t▾ and 𝒳1

t▿ as an alternative

𝒳1
m,1 𝒳1

m,2 𝒳1
m,3 ⋯ 𝒳1

m,𝑀1

𝒳1
t▾ 𝒳1

t▿

𝒳2
m,1 𝒳2

m,2 𝒳2
m,𝑀2

⋯

𝒳2
t▾ 𝒳2

t▿

⋮

⋯𝒳𝑑
m,1 𝒳𝑑

m,𝑀𝑑

𝒳𝑑
t▾

Figure 4.Modified Venn diagram of the state space𝒳

notation for 𝒳m,1, . . . , 𝒳m,𝑀 , 𝒳t▾ and 𝒳t▿, respectively.
We now repeat the subdivision from before, but for 𝑇𝒳1

t▿
and 𝒳1

t▿ rather than 𝑇 and 𝒳: we let 𝒳2
m,1, . . . , 𝒳2

m,𝑀2
denote the maximal classes of 𝑇𝒳1

t▿
, let 𝒳2

m denote the
union of these maximal classes, let 𝒳2

t▾ collect all states
in 𝒳1

t▿ ⧵𝒳2
m from which 𝒳2

m is lower reachable by 𝑇𝒳1
t▿
,

and let 𝒳2
t▿ collect all states in 𝒳1

t▿ ⧵ 𝒳2
m from which

𝒳2
m isn’t lower reachable by 𝑇𝒳1

t▿
. If𝒳2

t▿ ≠ ∅, we repeat
this process with (𝑇𝒳1

t▿
)𝒳2

t▿
—so the restriction of 𝑇𝒳1

t▿
to 𝒳2

t▿—to similarly decompose 𝒳2
t▿. This notation is

a bit unwieldy though. Luckily, the following lemma
implies that we can use the simpler notation𝑇𝒳2

t▿
instead

because 𝑇𝒳2
t▿
= (𝑇𝒳1

t▿
)𝒳2

t▿
.

Lemma 4.7. Consider any upper transition operator 𝑇
and any two classes 𝐶,𝐷 ⊆ 𝒳 such that 𝐶 ⊇ 𝐷. If 𝑇𝐶
and

(
𝑇𝐶

)
𝐷 are well defined, then

(
𝑇𝐶

)
𝐷 = 𝑇𝐷 .

We continue the process of repeated subdivisions un-
til we reach a depth 𝑑 ∈ ℕ such that 𝒳𝑑

t▿ = ∅—this
is always the case, as 𝒳 is finite. Then by construction,
𝒳1
m,1,𝒳1

m,2,… ,𝒳𝑑
m,𝑀𝑑 ,𝒳

1
t▾,… ,𝒳𝑑

t▾ partitions 𝒳, as de-
picted in Figure 4. Finally, we let𝒳∗

m ≔ ∪𝑑𝓁=1 ∪
𝑀𝓁
𝑘=1 𝒳

𝓁
m,𝑘

and𝒳∗
t▾ ≔ ∪𝑑𝓁=1𝒳

𝓁
t▾ and, for the sake of convenience, let

𝒳0
t▿ ≔ 𝒳.
This partitioning of the state space 𝒳 allows us to

present the following (general) sufficient condition for
convergence of an upper transition operator.

Theorem 4.1. Consider any upper transition operator 𝑇.
If 𝒳𝓁

m,1, . . . ,𝒳𝓁
m,𝑀𝓁 are 𝑇𝒳𝓁−1

t▿
-regular for all 𝓁 ∈ {1,… , 𝑑},

then 𝑇 is convergent.

6
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Before heading to its proof, let’s apply this result to
our running example.
Running example 8. It’s clear from Figure 3 that 𝑇𝒳1

t▿has a single maximal communication class that is given
by {𝖽, 𝖾}, so𝒳2

m = 𝒳2
m,1 = {𝖽, 𝖾} and𝒳2

t▾ = 𝒳2
t▿ = ∅. This

finishes our decomposition of the state space. To con-
clude that 𝑇 is convergent, let’s check whether𝒳1

m,1 and
𝒳1
m,2 are both 𝑇-regular, and whether𝒳2

m is 𝑇𝒳1
t▿
-regular.

Since 𝒳1
m,1 and 𝒳1

m,2 both consist of a single element, it
is immediate that they are 𝑇-regular. Furthermore, since
the upper accessibility graph 𝒢(𝑇𝒳1

t▿
) in Figure 3 has

cyclicity 1, 𝒳2
m is 𝑇𝒳1

t▿
-regular. ⋄

As a first step towards proving Theorem 4.1, we
present a result that enables us to use the 𝑇𝒳𝓁−1

t▿
-

regularity of𝒳𝓁
m,𝑘 to establish the convergence (and even

ergodicity) of 𝑇 on 𝒳𝓁
m,𝑘.

Lemma 4.8. Consider an upper transition operator 𝑇 and
a non-empty class 𝐶 such that 𝑇𝐶 is defined. If a maximal
class of 𝑇𝐶 is 𝑇𝐶-regular, then 𝑇 is ergodic on this class.

Proof. Consider a maximal class 𝐷 ⊆ 𝐶 of 𝑇𝐶 that
is 𝑇𝐶-regular, fix any 𝑓 ∈ ℝ𝒳 and consider its limit
set Ω𝑓 = {𝜔1,… , 𝜔𝑝𝑓 }. It suffices to show that there is a
constant 𝜙 ∈ ℝ𝐷 such that 𝜙 = 𝜔1↓𝐷 =⋯ = 𝜔𝑝𝑓↓𝐷 .
Fix any 𝑘 ∈ {1,… , 𝑝𝑓}. It’s immediate from Proposi-

tion 4.2 and Lemmas 4.3 and 4.7 that ((𝑇𝐷)𝑛(𝜔𝑘↓𝐷))𝑛∈ℕ
converges to some constant function, say 𝜙𝑘 ∈ ℝ𝐷 , such
that 𝜙𝑘 ≥ min𝜔𝑘↓𝐷 and, unless 𝜔𝑘↓𝐷 is a constant,
𝜙𝑘 > min𝜔𝑘↓𝐷 . Furthermore, due to Equation (3),

𝜙𝑘 = lim
𝑛→+∞

(𝑇𝐷)𝑝𝑓𝑛𝜔𝑘↓𝐷 ≤ lim
𝑛→+∞

(𝑇𝑝𝑓𝑛𝜔𝑘)↓𝐷 = 𝜔𝑘↓𝐷 .

It must therefore be that 𝜔𝑘↓𝐷 is a constant, because
otherwise min𝜔𝑘↓𝐷 < 𝜙𝑘 ≤ 𝜔𝑘↓𝐷 . Since min𝜔𝑘↓𝐷 ≤
𝜙𝑘 ≤ 𝜔𝑘↓𝐷 and 𝜔𝑘↓𝐷 and 𝜙𝑘 are constants, it follows
that 𝜙𝑘 = 𝜔𝑘↓𝐷 is a constant function.
It therefore suffices to show that 𝜙1 = ⋯ = 𝜙𝑝𝑓 . To

this end, observe that for every 𝑘 ∈ {1,… , 𝑝𝑓}, it follows
from Equation (3) that, with 𝜙𝑝𝑓+1 ≔ 𝜙1,

𝜙𝑘 = lim
𝑛→+∞

(𝑇𝐷)𝑛+1𝜔𝑘↓𝐷

= lim
𝑛→+∞

(𝑇𝐷)𝑛𝑇𝐷𝜔𝑘↓𝐷

≤ lim sup
𝑛→+∞

(𝑇𝐷)𝑛(𝑇𝜔𝑘)↓𝐷

= lim
𝑛→+∞

(𝑇𝐷)𝑛𝜔𝑘+1↓𝐷 = 𝜙𝑘+1,

whence 𝜙1 ≤ 𝜙2 ≤⋯ ≤ 𝜙𝑝𝑓 ≤ 𝜙1, as required.

If 𝒳∗
m were an absorbing closed class for 𝑇, we could

combine this result with Lemma 4.4 to prove Theo-
rem 4.1; it is however not. We therefore derive another

upper transition operator 𝑇∗ from 𝑇 as follows: for all
𝑓 ∈ ℝ𝒳 , let 𝑇∗𝑓(𝑥) ≔ 𝑇𝑓(𝑥) for all 𝑥 ∈ 𝒳∗

t▾ and
let 𝑇∗𝑓(𝑥) ≔ 𝑇𝒳𝓁

m,𝑘
(𝑓↓𝒳𝓁

m,𝑘
)(𝑥) for all 𝑥 ∈ 𝒳𝓁

m,𝑘, with
𝓁 ∈ {1,… , 𝑑} and 𝑘 ∈ {1,… ,𝑀𝓁}; it’s immediate from
Lemmas 4.3, 4.6 and 4.7 that 𝑇∗ is well defined and it’s
easy to verify that it’s an upper transition operator. By
Equation (3), this definition ensures that

𝑇∗𝑓 ≤ 𝑇𝑓 for all 𝑓 ∈ ℝ𝒳 , (4)

with equality on𝒳∗
t▾. That 𝑇∗ does satisfy the conditions

in Lemma 4.4 is our next result.

Lemma 4.9. Consider an upper transition operator 𝑇.
Then𝒳∗

m is an absorbing closed class for 𝑇∗.

Proof. For all 𝓁 ∈ {1,… , 𝑑} and 𝑘 ∈ {1,… ,𝑀𝓁}, 𝒳𝓁
m,𝑘

is a closed class for 𝑇∗ because, for all 𝑥 ∈ 𝒳𝓁
m,𝑘 and

𝑦 ∈ 𝒳 ⧵𝒳𝓁
m,𝑘, 𝑇∗𝟙𝑦(𝑥) = 𝑇𝒳𝓁

m,𝑘
(0)(𝑥) T4= 0. Since 𝒳∗

m is
a union of such closed classes, it is itself closed as well.
To show that 𝒳∗

m is absorbing for 𝑇∗, we’ll prove by
induction that, for all 𝓁 ∈ {1,… , 𝑑}, 𝒳∗

m is lower reach-
able by 𝑇∗ from all states in𝒳1∶𝓁

t▾ ≔ ∪𝓁𝑖=1𝒳
𝑖
t▾. For 𝓁 = 𝑑,

we then find that 𝒳∗
m is lower reachable by 𝑇∗ from all

states in ∪𝑑𝑖=1𝒳
𝑖
t▾ = 𝒳∗

t▾ = 𝒳 ⧵𝒳∗
m, or equivalently, that

𝒳∗
m is indeed absorbing for 𝑇∗.
For the base case 𝓁 = 1, we need to show that 𝒳∗

m is
lower reachable by 𝑇∗ from all states in 𝒳1

t▾. Consider
any 𝑥 ∈ 𝒳1

t▾ = 𝒳t▾. Since 𝒳m is lower reachable by 𝑇
from all states in 𝒳t▾, there is some 𝑛 ∈ ℕ such that
𝑇𝑛𝟙𝒳m(𝑥) > 0. Since 𝒳m ⊆ 𝒳∗

m and 𝑇∗ ≥ 𝑇 [Equa-
tion (4) and conjugacy], it follows that

(𝑇∗)𝑛𝟙𝒳∗
m(𝑥) ≥ 𝑇𝑛𝟙𝒳∗

m(𝑥)
T5
≥ 𝑇𝑛𝟙𝒳m(𝑥) > 0,

whence 𝒳∗
m is indeed lower reachable by 𝑇∗ from 𝑥.

For the induction step, we assume that 𝒳∗
m is lower

reachable by 𝑇∗ from all states in 𝒳1∶𝓁
t▾ for some 1 ≤

𝓁 < 𝑑, and set out to prove that the same is then true for
𝒳1∶𝓁+1
t▾ = 𝒳1∶𝓁

t▾ ∪𝒳𝓁+1
t▾ .

By definition, 𝒳𝓁+1
t▾ contains the states in 𝒳𝓁

t▿ ⧵𝒳𝓁+1
m

from which 𝒳𝓁+1
m is lower reachable by 𝑇𝒳𝓁

t▿
. Hence, if

we let 𝐶0 ≔ 𝒳𝓁+1
m and, for all 𝑛 ∈ ℤ≥0,

𝐶𝑛+1 ≔ 𝐶𝑛 ∪ {𝑥 ∈ 𝒳𝓁
t▿ ⧵ 𝐶𝑛 ∶ 𝑇𝒳𝓁

t▿
𝟙𝐶𝑛 (𝑥) > 0},

then since𝒳𝓁+1
m is closed for 𝑇𝒳𝓁

t▿
, Lemma 3.1 says that

𝒳𝓁+1
t▾ = 𝐶𝑘 ⧵𝒳𝓁+1

m for some 𝑘 ∈ ℤ≥0.
We’ll prove by induction over 𝑛 that 𝐶𝑛 ⧵𝒳𝓁+1

m is a set
of states from which 𝒳∗

m is lower reachable by 𝑇∗. For
𝑛 = 𝑘, we then find that 𝒳∗

m is lower reachable by 𝑇∗
from all states in 𝒳𝓁+1

t▾ = 𝐶𝑘 ⧵𝒳𝓁+1
m .

The base case 𝑛 = 0 is trivially true because 𝐶0 ⧵
𝒳𝓁+1
m = ∅. For the induction step, we assume that, for

7
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some 𝑛 ∈ {0,… , 𝑘 − 1}, 𝒳∗
m is lower reachable from

𝐶𝑛 ⧵ 𝒳𝓁+1
m by 𝑇∗, and set out to prove that 𝒳∗

m is then
lower reachable from 𝐶𝑛+1 ⧵ 𝐶𝑛 by 𝑇∗ as well.
To that end, consider any 𝑥 ∈ 𝐶𝑛+1 ⧵𝐶𝑛. Since𝒳∗

m is a
closed class for 𝑇∗, we know from Lemma 3.1 that there
is some𝐾 ∈ ℕ such that (𝑇∗)𝐾𝟙𝒳∗

m(𝑦) > 0 for all 𝑦 ∈ 𝒳∗
m

and all 𝑦 ∈ 𝒳 ⧵𝒳∗
m from which 𝒳∗

m is lower reachable
by 𝑇∗. We now set out to prove that (𝑇∗)𝐾+1𝟙𝒳∗

m(𝑥) > 0,
thereby indeed establishing that𝒳∗

m is lower reachable
from 𝑥 by 𝑇∗, as required.
Since it follows from our induction hypothesises that

𝒳1∶𝓁
t▾ and 𝐶𝑛 ⧵ 𝒳𝓁+1

m are sets from which 𝒳∗
m is lower

reachable by 𝑇∗, we know that (𝑇∗)𝐾𝟙𝒳∗
m(𝑦) > 0 for all

𝑦 ∈ (𝒳 ⧵ 𝒳𝓁
t▿) ∪ 𝐶𝑛. Since (𝑇∗)𝐾𝟙𝒳∗

m ≥ 0 by T4, this
implies that there is some 𝛼 > 0 such that (𝑇∗)𝐾𝟙𝒳∗

m ≥
𝛼𝟙(𝒳⧵𝒳𝓁

t▿)∪𝐶𝑛
. Hence,

(𝑇∗)𝐾+1𝟙𝒳∗
m(𝑥) = 𝑇∗

(
(𝑇∗)𝐾𝟙𝒳∗

m

)
(𝑥)

T5
≥ 𝑇∗

(
𝛼𝟙(𝒳⧵𝒳𝓁

t▿)∪𝐶𝑛
)
(𝑥)

T2= 𝛼𝑇∗
(
𝟙(𝒳⧵𝒳𝓁

t▿)∪𝐶𝑛
)
(𝑥)

= 𝛼𝑇
(
𝟙(𝒳⧵𝒳𝓁

t▿)∪𝐶𝑛
)
(𝑥), (5)

where the last equality follows from the definition of 𝑇∗
because 𝑥 ∈ 𝐶𝑛+1 ⧵ 𝐶𝑛 ⊆ 𝐶𝑘 ⧵𝒳𝓁+1

m = 𝒳𝓁+1
t▾ ⊆ 𝒳∗

t▾.
Let (𝒬𝑦)𝑦∈𝒳 be the family of credal sets that corre-

spond with 𝑇. Since 𝒬𝑥 is closed by definition, there is
some 𝑝 ∈ 𝒬𝑥 such that

𝑇
(
𝟙(𝒳⧵𝒳𝓁

t▿)∪𝐶𝑛
)
(𝑥) = E𝑝(𝟙(𝒳⧵𝒳𝓁

t▿)∪𝐶𝑛
)

= E𝑝(𝟙𝒳⧵𝒳𝓁
t▿
) + E𝑝(𝟙𝐶𝑛 ),

where for the second equality we used that
(𝒳 ⧵𝒳𝓁

t▿) ∩ 𝐶𝑛 = ∅, which holds because 𝐶𝑛 ⊆ 𝒳𝓁
t▿ by

definition. Since both terms in the sum are clearly non-
negative, it suffices to establish that at least one of them
is positive to show that 𝑇∗

(
𝟙(𝒳⧵𝒳𝓁

t▿)∪𝐶𝑛
)
(𝑥) > 0, which

then implies (𝑇∗)𝐾+1𝟙𝒳∗
m(𝑥) > 0 due to Equation (5). To

that end, we’ll assume that 𝑝(𝑦) = 0 for all 𝑦 ∈ 𝒳 ⧵𝒳𝓁
t▿,

or equivalently, that E𝑝(𝟙𝒳⧵𝒳𝓁
t▿
) = 0 and show that this

implies that E𝑝(𝟙𝐶𝑛 ) > 0.
Since 𝑝(𝑦) = 0 for all 𝑦 ∈ 𝒳 ⧵𝒳𝓁

t▿, Equation (2) tells
us that 𝑝↓𝒳𝓁

t▿
∈ 𝒫𝑥𝒳𝓁

t▿
. This implies that

E𝑝(𝟙𝐶𝑛 ) = E𝑝↓𝒳𝓁t▿
(𝟙𝐶𝑛 ) ≥ 𝑇𝒳𝓁

t▿
𝟙𝐶𝑛 (𝑥) > 0,

where for the final inequality we use the fact that 𝑥 ∈
𝐶𝑛+1 ⧵ 𝐶𝑛.

Finally, then, we can lay out our proof for Theorem 4.1.

Proof of Theorem 4.1. Fix 𝑓 ∈ ℝ𝒳 and consider its limit
set Ω𝑓 = {𝜔1,… , 𝜔𝑝𝑓 }. It suffices to show that 𝑝𝑓 = 1.

For any𝓁 ∈ {1,… , 𝑑} and 𝑘 ∈ {1,… ,𝑀𝓁}, since𝒳𝓁
m,𝑘 is

a maximal class of 𝑇𝒳𝓁−1
t▿

that is 𝑇𝒳𝓁−1
t▿

-regular, it’s imme-
diate from Lemma 4.8 that 𝑇 is ergodic on 𝒳𝓁

m,𝑘, which
implies that (𝑇𝑛𝜔1)𝑛∈ℕ converges to a constant on𝒳𝓁

m,𝑘,
and hence, 𝜔1↓𝒳𝓁

m,𝑘
=⋯ = 𝜔𝑝𝑓↓𝒳𝓁

m,𝑘
is constant. Conse-

quently, for all 𝑖 ∈ {1,… , 𝑝𝑓},

𝜔𝑖+1(𝑥) = 𝜔𝑖(𝑥)
T4= 𝑇𝒳𝓁

m,𝑘
(𝜔𝑖↓𝒳𝓁

m,𝑘
)(𝑥) = 𝑇∗𝜔𝑖(𝑥)

for all 𝑥 ∈ 𝒳𝓁
m,𝑘 . Since also 𝜔𝑖+1(𝑥) = 𝑇𝜔𝑖(𝑥) = 𝑇∗𝜔𝑖(𝑥)

for all 𝑖 ∈ {1,… , 𝑝𝑓} and 𝑥 ∈ 𝒳∗
t▿, we conclude that

𝜔𝑖+1 = 𝑇∗𝜔𝑖 for all 𝑖 ∈ {1,… , 𝑝𝑓}. Consequently, the
limit set of ((𝑇∗)𝑛𝜔1)𝑛∈ℕ is {𝜔1,… , 𝜔𝑝𝑓 }.
Since 𝜔1↓𝒳𝓁

m,𝑘
= ⋯ = 𝜔𝑝𝑓↓𝒳𝓁

m,𝑘
for all 𝓁 ∈ {1,… , 𝑑}

and 𝑘 ∈ {1,… ,𝑀𝓁}, this implies that ((𝑇∗)𝑛𝜔1)𝑛∈ℕ con-
verges on 𝒳∗

m. Now recall from Lemma 4.9 that for 𝑇∗,
𝒳∗
m is an absorbing closed class. Consequently, it fol-

lows from Lemma 4.4 that ((𝑇∗)𝑛𝜔1)𝑛∈ℕ converges, so
𝜔1 =⋯ = 𝜔𝑝𝑓 and therefore 𝑝𝑓 = 1.

5. The finitely generated case
A natural follow-up question is whether the sufficient

condition in Theorem 4.1 is also a necessary one. This
is the case, at least if the upper transition operator 𝑇 is
finitely generated, meaning that it is compatible with a
family (𝒫𝑥)𝑥∈𝒳 of finite sets of pmfs.3

Proposition 5.1. Consider a finitely generated upper tran-
sition operator 𝑇. If 𝑇 is convergent, then for all 𝓁 ∈
{1,… , 𝑑},𝒳𝓁

m,1, . . . ,𝒳𝓁
m,𝑀𝓁 are 𝑇𝒳𝓁−1

t▿
-regular.

Our proof follows relatively straightforward from
some intermediary results. Since it is rather instructive,
we run through it in the main text. First, recall from
Proposition 4.3 that as 𝑇 is convergent, the maximal
communication classes 𝒳1

m,𝑘 are regular for 𝑇𝒳0
t▿
= 𝑇.

So if 𝑑 = 1, we’re already done. If on the other hand
𝑑 > 1—and therefore 𝒳t▿ ≠ ∅—we turn our attention
to the behaviour on 𝒳t▿.

Proposition 5.2. Consider a finitely generated upper
transition operator 𝑇. If 𝑇 is convergent and 𝒳t▿ ≠ ∅,
then 𝑇𝒳t▿ is convergent.

Since 𝑇𝒳1
t▿
= 𝑇𝒳t▿ is convergent, we may again use

Proposition 4.3 to infer that 𝒳2
m,1, . . . , 𝒳2

m,𝑀2 are regular
for 𝑇𝒳1

t▿
. Now if 𝑑 = 2, we’re done. If on the other hand

𝑑 > 2, we want to repeat the argument, and for this
we need that 𝑇𝒳1

t▿
is finitely generated. This is however

clearly the case. Indeed, as 𝑇 is finitely generated, it is
3In fact, the reader may want to verify that it suffices for 𝑇 to

be sufficiently finitely generated, meaning that it is compatible with a
family (𝒫𝑥)𝑥∈𝒳 of sets of pmfs such that for all 𝑥 ∈ 𝒳t▿, 𝒫𝑥 is a finite
set.

8
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compatible with a family (𝒫𝑥)𝑥∈𝒳 of sets of pmfs that
are all finite (and therefore closed). Since restrictions
of finite credal sets are finite themselves, Lemma 4.2
therefore implies that 𝑇𝒳1

t▿
is finitely generated as well.

Since 𝑇𝒳1
t▿
is also convergent, Proposition 5.2 tells us

that 𝑇𝒳2
t▿
is convergent, and then Proposition 4.3 estab-

lishes that 𝒳3
m,1, . . . , 𝒳3

m,𝑀3 are 𝑇𝒳2
t▿
-regular.

Repeated application of the same argument until
depth 𝑑—with 𝒳𝑑

t▿ = ∅—eventually results in (a proof
for) Proposition 5.1.
To conclude our treatment for finitely generated upper

transition operators, we combineTheorem4.1 andPropo-
sitions 5.1 and 5.2 into the following strong result.

Theorem 5.1. For a finitely generated upper transition
operator 𝑇, the following are equivalent:
(i) 𝑇 is convergent;
(ii) the maximal communication classes𝒳m,1, . . . ,𝒳m,𝑀

are regular and 𝑇𝒳t▿ is convergent;
(iii) for all 𝓁 ∈ {1,… , 𝑑}, the maximal communication

classes𝒳𝓁
m,1, . . . ,𝒳𝓁

m,𝑀𝓁 are 𝑇𝒳𝓁−1
t▿

-regular.

Theorem 5.1 immediately leads to an algorithm to de-
termine whether a finitely generated upper transition op-
erator is convergent. It consists in recursively taking the
following steps, starting from 𝓁 = 1: (i) construct the up-
per accessibility graph 𝒢(𝑇𝒳𝓁−1

t▿
), (ii) determine the max-

imal communication classes 𝒳𝓁
m,1, . . . , 𝒳𝓁

m,𝑀𝓁 and their
cyclicity using one of the standard algorithms; (iii) de-
termine𝒳𝓁

t▿ with the recursive procedure in Lemma 3.1;
and (iv) if𝒳𝓁

t▿ ≠ ∅ determine 𝑇𝒳𝓁
t▿
[via finite sets of pmfs

thanks to Lemmas 4.2 and 4.7], increment 𝓁 and repeat,
otherwise stop.

6. Wrapping things up
The results above give rise to another follow-up ques-

tion: can we generalise Proposition 5.2 (and then also
Proposition 5.1 and Theorem 5.1) to the general case
of upper transition operators that need not be finitely
generated? As is clear from Proposition 4.3, it’s always
necessary that the maximal communication classes are
regular. Unfortunately, though, for an upper transition
operator that is not finitely generated, it’s no longer nec-
essary for convergence that 𝑇𝒳t▿ is convergent, making
it impossible to generalise Proposition 5.2 to this case.
What follows is a straightforward example of a conver-
gent upper transition operator 𝑇 that is not finitely gen-
erated such that 𝑇𝒳t▿ is not convergent—because its sole
communication class is not regular.

6.1. Counterexample. Let 𝒳 ≔ {𝖺, 𝖻, 𝖼} and 𝑝𝜖 ∶=
𝜖2𝟙𝖺 + 𝜖𝟙𝖻 + (1 − 𝜖 − 𝜖2)𝟙𝖼 for all 𝜖 ∈ [0, 1]. Then the
sets of transition pmfs

𝒫𝖺 ≔ {𝟙𝖺},𝒫𝖻 ≔ {𝟙𝖺} ∪ {𝑝𝜖 ∶ 𝜖 ∈ [0, 1∕2]},𝒫𝖼 ≔ {𝟙𝖺, 𝟙𝖻}

𝖺

𝖻 𝖼

(a) 𝒢(𝑇)

𝖻 𝖼

(b) 𝒢(𝑇𝒳1
t▿
)

Figure 5

induce the upper transition operator 𝑇 given for all 𝑓 ∈
ℝ𝒳 and 𝑥 ∈ 𝒳 by

𝑇𝑓(𝑥) =
⎧

⎨
⎩

𝑓(𝖺) if 𝑥 = 𝖺,
max{𝑓(𝖺)} ∪ {E𝑝𝜖 (𝑓)∶ 𝜖 ∈ [0, 1∕2]} if 𝑥 = 𝖻,
max{𝑓(𝖺), 𝑓(𝖻)} if 𝑥 = 𝖼.

From the upper accessibility graph 𝒢(𝑇) depicted in Fig-
ure 5a, it’s clear that the upper transition operator 𝑇 has
one maximal class: 𝒳1

m = 𝒳1
m,1 = {𝖺}. Since T8 implies

that 𝑇𝟙𝖺 = 1 − 𝑇𝟙{𝖻,𝖼} = 1 − 𝟙{𝖻,𝖼} = 𝟙𝖺, it follows that

𝒳1
t▾ = {𝑥 ∈ {𝖻, 𝖼}∶ (∃𝑛 ∈ ℕ) 𝑇𝑛𝟙𝖺(𝑥) > 0} = ∅,

so 𝒳1
t▿ = {𝖻, 𝖼}.

Since 𝒫𝖻 and 𝒫𝖼 are closed, Lemma 4.2 implies that
𝑇𝒳1

t▿
is compatible with the restricted sets of pmfs

𝒫𝖻𝒳1
t▿
= {𝟙𝖼} and 𝒫𝖼𝒳1

t▿
= {𝟙𝖻};

it is therefore easy to see that for all 𝑔 ∈ ℝ𝒳1
t▿ ,

𝑇𝒳1
t▿
𝑔(𝖻) = 𝑔(𝖼) and 𝑇𝒳1

t▿
𝑔(𝖼) = 𝑔(𝖻).

Its upper accessibility graph 𝒢(𝑇𝒳1
t▿
) is depicted in Fig-

ure 5b. It has only one (and therefore maximal) com-
munication class 𝒳2

m = {𝖻, 𝖼} = 𝒳1
t▿, so 𝒳

2
t▾ = ∅ = 𝒳2

t▿.
Since it’s clear that𝒳2

m has cyclicity 2, it is not regular and
therefore, due to Proposition 4.1, 𝑇𝒳1

t▿
is not convergent.

Consequently, the sufficient condition for convergence
in Theorem 4.1 is notmet, nor is the necessary condition
in Proposition 5.2.
Nonetheless, as we will now show, 𝑇 is convergent. In

particular, for all 𝑓 ∈ ℝ𝒳 and 𝑥 ∈ 𝒳,

lim
𝑛→+∞

𝑇𝑛𝑓(𝑥) = {𝑓(𝖺) if 𝑥 = 𝖺
max 𝑓 if 𝑥 ≠ 𝖺.

Since 𝑇𝑓(𝖺) = 𝑓(𝖺) = min𝑇𝑓 andmax 𝑇𝑓 = max 𝑓, we
can assume without loss of generality thatmin𝑓 = 𝑓(𝖺).
It follows immediately from the expression for 𝑇 that
𝑇𝑛𝑓(𝖺) = 𝑓(𝖺) for all 𝑛 ∈ ℕ, so we can focus on the
value in 𝖻 and 𝖼.
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If 𝑓(𝖺) ≤ 𝑓(𝖻) = 𝑓(𝖼) = max 𝑓, then it follows from
the expression for 𝑇 that 𝑇𝑛𝑓 = 𝑓 for all 𝑛 ∈ ℕ. Hence,
it remains for us to look at the limiting behaviour on 𝖻
and 𝖼 in case 𝑓(𝖺) < max 𝑓 with 𝑓(𝖻) ≠ 𝑓(𝖼).
For all 𝑛 ∈ ℕ, let 𝑓−𝑛 ≔ min{𝑇𝑛𝑓(𝖻), 𝑇𝑛𝑓(𝖼)} and

𝑓+𝑛 ≔ max{𝑇𝑛𝑓(𝖻), 𝑇𝑛𝑓(𝖼)}. We continue with a gen-
eral observation: for any ℎ ∈ ℝ𝒳 , we write ℎ =
(ℎ(𝖺), ℎ(𝖻), ℎ(𝖼)) and observe that

ℎ(𝖺) ≤ ℎ(𝖻) < ℎ(𝖼) ⇒ 𝑇ℎ = (ℎ(𝖺), ℎ(𝖼), ℎ(𝖻)); (6)

ℎ(𝖺) ≤ ℎ(𝖼) < ℎ(𝖻) ⇒
⎧

⎨
⎩

𝑇ℎ(𝖺) = ℎ(𝖺),
ℎ(𝖼) < 𝑇ℎ(𝖻) ≤ ℎ(𝖻),
𝑇ℎ(𝖼) = ℎ(𝖻).

(7)

From Equations (6) and (7) and the definition of 𝑇, it
follows that (i) 𝑓+𝑛 = max 𝑓 for all 𝑛 ∈ ℕ; and (ii) the se-
quence (𝑓−𝑛 )𝑛∈ℕ is non-decreasing in [𝑓(𝖺),max 𝑓], and
therefore converges to a limit 𝜆− with 𝑓(𝖺) ≤ 𝜆− ≤
max 𝑓. We now need to show that 𝜆− = max 𝑓, so
we assume towards contradiction that 𝑓(𝖺) ≤ 𝜆− <
max 𝑓. On the one hand, the orbit (𝑇𝑛𝑓)𝑛∈ℕ then has
a limit set Ω𝑓 = {𝜔1, 𝜔2} of period 𝑝𝑓 = 2, which al-
ternates between 𝜔1 = ℎ𝖼 ≔ (𝑓(𝖺),max 𝑓, 𝜆−) and
𝜔2 = ℎ𝖻 ≔ (𝑓(𝖺), 𝜆−,max 𝑓). This implies in particu-
lar that ℎ𝖻 = 𝜔2 = 𝑇𝜔1 = 𝑇ℎ𝖼. On the other hand, it
follows from Equation (7) that 𝑇ℎ𝖼(𝖻) > ℎ𝖼(𝖼) = ℎ𝖻(𝖻);
the contradiction we were after!

6.2. Outlook. In future work, we’d like to find out
whether for the general, not necessarily finitely gener-
ated case, there is some—necessarily other—equivalent
characterisation of convergence that can also be easily
checked. Our preliminary research has already revealed
that it is indeed possible to come up with an interest-
ing equivalent condition, but we’ve not yet succeeded
at translating this condition into one that can be easily
verified in practice.
We also plan to scrutinise the relation between our

Theorem 4.1 and Akian and Gaubert’s [1] Theorem 5.5,
which says that 𝑇 is convergent if all of the strongly con-
nected components of their ‘critical graph’ 𝒢c(𝑇) have
cyclicity 1, where 𝒢c(𝑇) is defined in terms of the ac-
cessibility graphs of all the linear transition operators 𝑇
that are dominated by 𝑇. While we strongly believe our
condition is more convenient to verify than theirs, there
seems to be a strong connection between our condition
and theirs, and we wouldn’t be surprised if they turn out
to be equivalent.
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