A Theory of Desirable Things

Jasper.De Bock@UGent.be

desirable gambles

What replaces the positive hull operator if gambles are replaced by things?

most things still work!

Do the FLip quiz?

natural extension,

marginalisation, ...

conditioning,

A map cl: $\mathscr{P}(\mathscr{T}) \to \mathscr{P}(\mathscr{T})$ is a closure operator if $cl_1.A \subseteq cl(A)$ $cl_2. \text{ if } A \subseteq B, \text{ then } cl(A) \subseteq cl(B)$ $cl_3. cl(cl(A)) = cl(A)$ $cl_4. cl(\emptyset) = \emptyset$ It is unitary if $cl(A) = \bigcup_{t \in A} cl(\{t\})$ It is finitary if $cl(A) = \bigcup_{B \subseteq A, |B| < \infty} cl(B)$

It is incremental if $t \in cl(A \cup \{a\})$ $\Rightarrow \exists t_A \in cl(A) : t \in cl(\{t_A, a\})$

PIZZAS

abstract feature that things may have or not

a set of things is called desirable if it contains at least one desirable thing arbitrary things (yes, even 🍻 ...) T contains all things

things

Three rules, with A_{not} and A_{des} subsets of \mathscr{T} and cl a closure operator:

R_{not}. The things in A_{not} are not desirable. R_{des}. The things in A_{des} are desirable. R_{cl}. If the things in $A \subseteq \mathscr{T}$ are desirable, then so are the things in cl(A).

GOAL: model a subject's beliefs about which things in *T* are desirable

 $\mathscr{P}(\mathscr{T})$: all subsets of \mathscr{T} $\mathscr{P}_{\mathrm{fin}}(\mathscr{T})$: all finite subsets of \mathscr{T} If c1 is unitary, then it is clearly also finitary and incremental.

SET OF DESIRABLE THINGS (SDT) a set $D \subseteq \mathscr{T}$ of things that are all desirable D is coherent if $D_1.A_{not} \cap D = \emptyset$

 $D_2 \cdot A_{des} \subseteq D$ $D_3 \cdot cl(D) = D$

D is the set of all such coherent sets of desirable things. EXAMPLES:DESIRABLE GAMBLES \mathscr{T} gamblesdesirabilityaccept that gamble A_{not} negative gambles A_{des} positive gamblescl(A)positive hull of A

 $K_D := \{A \in \mathscr{P}(\mathscr{T}) : A \cap D \neq \emptyset\}$ $K_D^{\text{fin}} := \{A \in \mathscr{P}_{\text{fin}}(\mathscr{T}) : A \cap D \neq \emptyset\}$

DECISION MAKING preferences $(a \succ b)$ have that preference

'irrational' preferences

'rational' preferences

transitive closure of A

different types of
like that
Hawaii
Margherita
all
in A, also with added
crust

Want more? We can also do

gambles with nonlinear utility, arbitrary vector spaces, (horse) lotteries, arbitrary convex spaces, choice functions, ...

a set $K \subseteq \mathscr{P}(\mathscr{T})$ of sets of things that are all desirable

SET OF DESIRABLE SETS OF THINGS (SDS)

We have several coherence notions for *K*. In each of them, the purple parts can be included or not. If they are, we obtain notions of coherence for $K \cap \mathscr{P}_{fin}(\mathscr{T})$.

K is coherent in $\mathscr{P}_{fin}(\mathscr{T})$ if

 $\begin{array}{l} \mathrm{K}_{1}^{\mathrm{fin}} \, \, \emptyset \notin K \\ \mathrm{K}_{2}^{\mathrm{fin}} \, \, \mathrm{if} \, A \subseteq B \in \mathscr{P}_{\mathrm{fin}}(\mathscr{T}) \, \mathrm{and} \, A \in K, \, \mathrm{then} \, \mathrm{also} \, B \in K \\ \mathrm{K}_{2}^{\mathrm{fin}} \, \, \mathrm{if} \, A \subseteq B \in \mathscr{P}_{\mathrm{fin}}(\mathscr{T}) \, \mathrm{and} \, A \in K, \, \mathrm{then} \, \mathrm{also} \, B \in K \\ \mathrm{K}_{2}^{\mathrm{fin}} \, \, \mathrm{if} \, A \subseteq K \, \mathrm{then} \, \mathrm{also} \, A \setminus A_{\mathrm{not}} \in K \\ \mathrm{K}_{3}^{\mathrm{fin}} \, \, \mathrm{if} \, A \in K \, \mathrm{then} \, \mathrm{also} \, A \setminus A_{\mathrm{not}} \in K \\ \mathrm{K}_{4}^{\mathrm{fin}} \, \, \mathrm{f} \, A \in K \, \mathrm{for} \, \mathrm{all} \, t \in A_{\mathrm{des}} \\ \mathrm{K}_{4}^{\mathrm{fin}} \, \, \mathrm{f} \, \mathrm{f} \, \mathrm{for} \, \mathrm{all} \, t \in A_{\mathrm{des}} \\ \mathrm{K}_{5}^{\mathrm{fin}} \, \, \mathrm{if} \, \emptyset \neq \mathscr{A} \subseteq K \cap \mathscr{P}_{\mathrm{fin}}(\mathscr{T}) \, \mathrm{and} \, t_{S} \in \mathrm{cl}(S) \, \mathrm{for} \, \mathrm{all} \, S \in \mathscr{S}_{\mathscr{A}}, \\ \mathrm{then} \, \, \mathrm{f} \, t_{S} \colon S \in \mathscr{S}_{\mathscr{A}} \, \mathrm{for} \, \mathrm{fo$

 $\overline{\mathbf{C}}$

K is finitely coherent in $\mathscr{P}_{fin}(\mathscr{T})$ if K_{1-4} and K_{5fin}^{fin} . if $\emptyset \neq \mathscr{A} \subseteq K \cap \mathscr{P}_{fin}(\mathscr{T})$ is finite and $t_S \in cl(S)$ for all $S \in \mathscr{S}_{\mathscr{A}}$, ? then $\{t_S : S \in \mathscr{S}_{\mathscr{A}}\} \in K$. K is 2-coherent in $\mathscr{P}_{fin}(\mathscr{T})$ if K_{1-4} and K_{5bin}^{fin} . if $A, B \in K \cap \mathscr{P}_{fin}(\mathscr{T})$ and $t_{a,b} \in cl(\{a,b\})$ for all $a \in A$ and $b \in B$, then $\{t_{a,b} : a \in A, b \in B\} \in K$. K is 1-coherent in $\mathscr{P}_{fin}(\mathscr{T})$ if K_{1-4} and

K^{fin}_{5un}. if $A \in K \cap \mathscr{P}_{fin}(\mathscr{T})$ and $t_a \in cl(\{a\})$ for all $a \in A$, then $\{t_a : a \in A\} \in K$

 $D \in \mathscr{D}$

 $(\exists \mathscr{D} \subseteq \mathbf{D}) \ K \cap \mathscr{P}_{\mathrm{fin}}(\mathscr{T}) \stackrel{\mathsf{F}}{=} \bigcap \ K_D^{\mathrm{fin}} \ \Leftarrow \ (\exists \mathscr{D} \subseteq \mathbf{D}) \ \mathrm{fin}(K) = \bigcap \ K_D$

? = all selections from \mathscr{A} :

 $\mathscr{S}_{\mathscr{A}} := \left\{ \{ t_A : A \in \mathscr{A} \} : \\ t_A \in A \text{ for all } A \in \mathscr{A} \right\}$

 $\mathcal{A} = \left\{ \{ \&, \& \}, \{ \&, \& \} \right\}$ $\mathcal{S}_{\mathcal{A}} = \left\{ \{ \& \}, \{ \&, \& \}, \{ \&, \& \}, \{ \&, \& \}, \{ \&, \& \} \right\}$

all supersets of the sets in $K \cap \mathscr{P}_{fin}(\mathscr{T})$

