Sum-Product Laws and Efficient Algorithms for Imprecise Markov Chains

Abstract

We propose two sum-product laws for imprecise Markov chains, and use these laws to derive two algorithms to efficiently compute lower (and upper) expectations of inferences that have a corresponding sum-product decomposition.

GHENT UNIVERSITY

Markov chain P

stochastic process P

consistent stochastic process P

set of consistent stochastic processes \mathscr{P}

transition matrix T_{n}

$$
T_{n}\left(X_{n}, X_{n+1}\right)=P\left(X_{n+1} \mid X_{n}, X_{1: n-1}\right)
$$

transition matrix $T_{n, X_{1 n-1}}$ $T_{n, X_{1: n-1}}\left(X_{n}, X_{n+1}\right)=P\left(X_{n+1} \mid X_{n}, X_{1: n-1}\right)$

set of initial mass functions \mathscr{M}_{\square}
$\underline{E}_{\square}: \mathbb{R}^{\mathscr{X}} \rightarrow \mathbb{R}$ defined for all $f \in \mathbb{R}^{\mathscr{X}}$ by

$$
\underline{E}_{\square}(f):=\inf _{p_{\square} \in \mathscr{M}_{\square}} \sum_{x \in \mathscr{X}} p_{\square}(x) f(x)
$$

set of transition matrices \mathscr{T}_{n}
$\underline{T}_{n}: \mathbb{R}^{\mathscr{X}} \rightarrow \mathbb{R}^{\mathscr{X}}$ defined for all $f \in \mathbb{R}^{\mathscr{X}}$ by $\underline{T}_{n} f(x):=\inf _{T_{n} \in \mathscr{T}_{n}} \sum_{x \in \mathscr{X}}\left[T_{n} f\right](x)$ for all $x \in \mathscr{X}$

Imprecise Markov chains

\mathscr{P}^{M} is the set of all consistent Markov chains
$\mathscr{P}^{\mathrm{EI}}$ is the set of all consistent stochastic processes

First algorithm

Consider a variable $f\left(X_{1: n}\right)$ with a \star first order sum-product decomposition \star

$$
f\left(X_{1: n}\right)=\sum_{k=1}^{n} g_{k}\left(X_{k}\right) \prod_{\ell=1}^{k-1} h_{\ell}\left(X_{\ell}\right)
$$

with $h_{1}, \ldots, h_{n-1} \geq 0$.
Let $\underline{\pi}_{n}:=g_{n}$ and, for all $1 \leq k \leq n-1$,

$$
\underline{\pi}_{k}:=g_{k}+h_{k} \underline{T}_{k+1} \underline{\pi}_{k+1} .
$$

Then in general,

$$
\underline{E}_{\mathscr{P}}\left(f\left(X_{1: n}\right)\right) \geq \underline{E}_{\square}\left(\underline{\pi}_{1}\right) .
$$

If \mathscr{P} is compatible with \mathscr{M}_{\square} and satisfies the (first-order) sum-product law, then

$$
\underline{E}_{\mathscr{P}}\left(f\left(X_{1: n}\right)\right)=\underline{E}_{\square}\left(\underline{\pi}_{1}\right) .
$$

A set \mathscr{P} satisfies the (first-order) sumproduct law if for all $n \in \mathbb{N}, f \in \mathbb{R}^{\mathscr{C}}$ and $g, h \in \mathbb{R}^{\mathscr{X}^{n}}$ with $h \geq 0$,

$$
\begin{aligned}
& \underline{E}\left(g\left(X_{1: n}\right)+h\left(X_{1: n}\right) f\left(X_{n+1}\right)\right) \\
&=\underline{E}\left(g\left(X_{1: n}\right)+h\left(X_{1: n}\right) \underline{T}_{n} f\left(X_{n}\right)\right) .
\end{aligned}
$$

This is the case for \mathscr{P}^{M} and $\mathscr{P}^{\mathrm{El}}$ if for all $n \in \mathbb{N}, f \in \mathbb{R}^{\mathscr{X}}$ and $\varepsilon>0$,
$\left(\exists T_{n} \in \mathscr{T}_{n}\right)(\forall x \in \mathscr{X}) T_{n} f(x) \leq \underline{T}_{n} f(x)+\varepsilon$.

Second algorithm

Consider a variable $f\left(X_{1: n}\right)$ with a second order sum-product decomposition \mathcal{E}

$$
f\left(X_{1: n}\right)=\sum_{k=2}^{n} g_{k}\left(X_{k-1}, X_{k}\right) \prod_{\ell=1}^{k-1} h_{\ell}\left(X_{\ell}\right),
$$

with $h_{1}, \ldots, h_{n-1} \geq 0$.
Let $\underline{\pi}_{n}:=0$ and, for all $1 \leq k \leq n-1$ and $x \in \mathscr{X}$,

$$
\underline{\pi}_{k}(x):=h_{k}(x)\left[\underline{T}_{k}\left(g_{k+1}(x, \cdot)\right)+\underline{\pi}_{k+1}\right] .
$$

Then in general

$$
\underline{E}_{\mathscr{P}}\left(f\left(X_{1: n}\right)\right) \geq \underline{E}_{\square}\left(\underline{\pi}_{1}\right) .
$$

If \mathscr{P} is compatible with \mathscr{M}_{\square} and satisfies the second-order sum-product law, then

$$
\underline{E}_{\mathscr{P}}\left(f\left(X_{1: n}\right)\right)=\underline{E}_{\square}\left(\underline{\pi}_{1}\right) .
$$

A set \mathscr{P} satisfies the second-order sumproduct law if for all $n \in \mathbb{N}, f \in \mathbb{R}^{\mathscr{W}^{2}}$ and $g, h \in \mathbb{R}^{\mathscr{X}^{n}}$ with $h \geq 0$,

$$
\begin{aligned}
& \underline{E}\left(g\left(X_{1: n}\right)+h\left(X_{1: n}\right) f\left(X_{n}, X_{n+1}\right)\right) \\
&=\underline{E}\left(g\left(X_{1: n}\right)+h\left(X_{1: n}\right) \underline{T}_{n} f\left(X_{n}\right)\right),
\end{aligned}
$$

with $\underline{T}_{n} f(x):=\left[\underline{T}_{n}(f(x, \cdot))\right](x)$ for all $x \in \mathscr{X}$.
This is the case for \mathscr{P}^{M} and $\mathscr{P}^{\mathrm{El}}$ if for all $n \in \mathbb{N},\left(f_{x}\right)_{x \in \mathscr{X}} \in\left(\mathbb{R}^{\mathscr{X}}\right)^{|\mathscr{X}|}$ and $\varepsilon>0$,
$\left(\exists T_{n} \in \mathscr{T}_{n}\right)(\forall x \in \mathscr{X}) T_{n} f_{x}(x) \leq \underline{T}_{n} f_{x}(x)+\varepsilon$.

