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We define and study the independent natural extension of two local uncertainty models for 
the general case of infinite spaces, using the frameworks of sets of desirable gambles and 
conditional lower previsions. In contrast to Miranda and Zaffalon [16], we adopt Williams-
coherence instead of Walley-coherence. We show that our notion of independent natural 
extension always exists—whereas theirs does not—and that it satisfies various convenient 
properties, including factorisation and external additivity. The strength of these properties 
depends on the specific type of epistemic independence that is adopted. In particular, 
epistemic event-independence is shown to outperform epistemic atom-independence. 
Finally, the cases of lower expectations, expectations, lower probabilities and probabilities 
are obtained as special instances of our general definition. By applying our results to these 
instances, we demonstrate that epistemic independence is indeed epistemic, and that it 
includes the conventional notion of independence as a special case.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

When probabilities are imprecise, in the sense that they are only partially specified, it is no longer clear what it means 
for two variables to be independent [1]. One approach is to apply the standard notion of independence to every element 
of some set of probability measures. The alternative, called epistemic independence, is to define independence as mutual 
irrelevance, in the sense that receiving information about one of the variables will not affect our uncertainty model for 
the other. The advantage of this intuitive alternative is that it has a much wider scope: since epistemic independence is 
expressed in terms of uncertainty models instead of probabilities, it can easily be applied to a variety of such models, 
including non-probabilistic ones. We here focus on sets of desirable gambles and conditional lower previsions, the latter of 
which includes lower expectations, expectations, lower probabilities and probabilities as special cases.

When an assessment of epistemic independence is combined with local uncertainty models, it leads to a unique corre-
sponding joint uncertainty model that is called the independent natural extension. If the variables involved can take only a 
finite number of values, this independent natural extension always exists, and it then satisfies various convenient properties 
that allow for the design of efficient algorithms [9,10]. If the variables involved take values in an infinite set, the situation 
becomes more complicated. On the one hand, for the specific case of lower probabilities, Vicig [21] managed to obtain 
results that resemble those of the finite case. On the other hand, for the more general case of lower previsions, Miranda 
and Zaffalon [16] recently found that the independent natural extension may not even exist.

✩ This paper is part of the Virtual special issue on Tenth International Symposium on Imprecise Probability: Theories and Applications (ISIPTA ’17), Edited 
by Alessandro Antonucci, Giorgio Corani, Inés Couso and Sébastien Destercke.
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Our main contribution consists in generalising the results of Vicig [21] to the case of conditional lower previsions, 
using sets of desirable gambles as an intermediate step. The key technical difference with [16] is that we use Williams-
coherence [24,25] instead of Walley-coherence [22]. This difference turns out to be crucial because our notion of indepen-
dent natural extension always exists. Furthermore, as we will see, it satisfies the same convenient properties that are known 
to hold in the finite case, including factorisation and external additivity.

An essential feature of our approach is that we adopt a very general notion of epistemic independence, where the 
choice of conditioning events is initially left open. Important examples such as epistemic atom-independence and epistemic 
event-independence are then obtained as special cases. In this way, we are able to study the effect of different types of 
epistemic independence on the resulting notion of independent natural extension.

The rest of the paper is structured as follows. We start in Section 2 by introducing some basic technical concepts and 
notation that will be needed further on. Next, in Section 3, we explain how uncertainty can be modelled with sets of de-
sirable gambles and conditional lower previsions. For readers that are unfamiliar with these frameworks, this section serves 
as a stand-alone introduction. With all these preliminaries in place, the paper then moves on to its main contributions, 
which we report on in Sections 4–7. Section 4 introduces our general notion of epistemic independence and explains how 
it subsumes epistemic atom- and event-independence as special cases. Next, Section 5 introduces our central object of in-
terest, which is the independent natural extension, and Section 6 discusses the extent to which it depends on the specific 
type of epistemic independence that is adopted. Crucially, we find that in our approach, regardless of the chosen type of 
epistemic independence, the independent natural extension always exists. Our external additivity and factorisation results 
are reported on in Section 7; the strength of these results does depend on the chosen type of epistemic independence. In 
the last part of the paper, which consists of Sections 8 and 9, we reinterpret our results in terms of lower expectations, 
expectations, lower probabilities and probabilities. Section 8 recalls how all of these models are special cases of conditional 
lower previsions, which then enables us to apply our results to them in Section 9. We also use this connection to explain 
why epistemic independence is indeed epistemic, and how it includes the conventional notion of independence as a special 
case. We end the paper in Section 10 with a brief summary of our main results and findings. The proofs of our results are 
gathered in an appendix.

Finally, I would like to add that this paper is an extended version of an earlier conference version [4]. The most substan-
tial additions are the results in Sections 8 and 9 and the proofs in Appendix A. We have also added several examples.

2. Preliminaries and notation

We use N to denote the natural numbers without zero and let N0 := N ∪ {0}. R is the set of real numbers and Q is 
the set of rational numbers. Sign restrictions are imposed with subscripts. For example, we let R>0 be the set of positive 
real numbers and let Q≥0 be the set of non-negative rational numbers. The extended real numbers are denoted by R :=
R ∪ {−∞, +∞}.

For any non-empty set X , the power set of X —the set of all subsets of X —is denoted by P(X ), and we let 
P∅(X ) := P(X ) \ {∅} be the set of all non-empty subsets of X . Elements of P(X ) are called events. A set of events 
B ⊆ P(X ) is called a field if it is non-empty and closed with respect to complements and finite intersections and unions. 
If it is also closed with respect to countable intersections and unions, it is called a sigma field. A partition of X is a set 
B ⊆ P∅(X ) of pairwise disjoint non-empty subsets of X whose union is equal to X . We also adopt the notational trick 
of identifying X with the set of atoms {{x} : x ∈ X }, which allows us to regard X as a partition of X .

A bounded real-valued function on X will be called a gamble on X . The set of all gambles on X is denoted by G (X ), 
the set of all non-negative gambles on X is denoted by G≥0(X ), and we let G>0(X ) := G≥0(X ) \ {0} be the set of all 
non-negative non-zero gambles. For any set of gambles A ⊆ G (X ), we let

posi(A ) :=
{

n∑
i=1

λi f i : n ∈N, λi ∈R>0, f i ∈ A

}
(1)

and

E (A ) := posi (A ∪ G>0(X )) . (2)

Indicators are a particular type of gamble. For any A ∈ P(X ), the corresponding indicator IA of A is a gamble in G≥0(X ), 
defined for all x ∈ X by IA(x) := 1 if x ∈ A and IA(x) := 0 otherwise.

Finally, for any—possibly empty—B ⊆ P∅(X ), we will also require the notion of a non-negative B-measurable gamble, 
which we define as a uniform limit of simple B-measurable gambles.

Definition 2.1. Let B ⊆ P∅(X ). We call g ∈ G≥0(X ) a simple B-measurable gamble if there are c0 ∈ R≥0, n ∈N0 and, for 
all i ∈ {1, . . . , n}, ci ∈ R≥0 and Bi ∈ B, such that g = c0 + ∑n

i=1 ciIBi .

Definition 2.2. Let B ⊆ P∅(X ). A gamble g ∈ G≥0(X ) is B-measurable if it is a uniform limit of non-negative simple 
B-measurable gambles, in the sense that there is a sequence {gn}n∈N of simple B-measurable gambles in G≥0(X ) such 
that limn→+∞ sup |g − gn| = 0.
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Readers that are familiar with the concepts of simple and measurable functions that are common in measure theory 
will observe some similarities. However, there are some important differences as well. On the one hand, our definitions 
are more restrictive: we only consider bounded non-negative functions, Definition 2.1 requires that the coefficients ci are 
non-negative, and Definition 2.2 considers uniform limits instead of pointwise limits. On the other hand, our definitions are 
more general because we allow for B to be any subset of P∅(X ). Nevertheless, if B ∪ {∅} is a sigma field, we have the 
following equivalence.

Proposition 2.1. Consider any B ⊆ P∅(X ) such that B∗ := B∪{∅} is a sigma field. Then for any g ∈ G≥0(X ), g is B∗-measurable 
in the measure-theoretic sense [17, Definition 10.1] if and only if it is B-measurable in the sense of Definition 2.2.

The proof of this result is based on the following sufficient condition for B-measurability, which provides a convenient 
tool for establishing the B-measurability of a given function. In particular, it implies that every non-negative gamble is 
P∅(X )-measurable.

Proposition 2.2. Let B ⊆ P∅(X ) and g ∈ G≥0(X ). If, for all r ∈ Q≥0 , the set {x ∈ X : g(x) ≥ r} is a finite union of pairwise disjoint 
events in B ∪ {X , ∅}, then g is B-measurable.

Corollary 2.3. Every g ∈ G≥0(X ) is P∅(X )-measurable.

The following three examples provide these abstract concepts and results with some intuition, by studying the 
(non-)B-measurability of various functions, for different choices of B. They also demonstrate that B-measurability is 
easier to achieve if B contains more events.

Example 2.1. Let X = N and let g ∈ G≥0(X ) be defined by g(x) := 1
x for all x ∈ N. Corollary 2.3 then trivially implies that g

is P∅(N)-measurable. However, g is also B-measurable for some strict subsets B of P∅(N). For example, Proposition 2.2
implies that g is N-measurable, because for every r ∈ Q≥0, the set

{x ∈N : g(x) ≥ r} = {x ∈N : 1

x
≥ r} =

⎧⎪⎨
⎪⎩

∅ if r > 1

{1, . . . , 
 1
r �} if 0 < r ≤ 1

N if r = 0

is clearly a finite union of pairwise disjoint events in B ∪ {X , ∅} = N ∪ {N, ∅}. The set B cannot be too small though. 
For example, in the extreme case where B = ∅, g is no longer B-measurable. The easiest way to see this is to infer 
from Definition 2.1 that simple ∅-measurable gambles are constant. Therefore, since uniform limits of constant gambles 
are constant, Definition 2.2 implies that all ∅-measurable gambles are constant. Hence, since g is not constant, it is not
∅-measurable. ♦

Example 2.2. Let X =N and let Iodd ∈ G≥0(N) be the indicator of the odd numbers, defined for all x ∈ N by Iodd(x) = 1 if x
is odd and Iodd(x) = 0 otherwise. Similarly, let Ieven ∈ G≥0(N) be the indicator of the even numbers, defined by Ieven(x) := 1
if x is even and Ieven(x) := 0 otherwise. Here too, it follows from Corollary 2.3 that Iodd and Ieven are P∅(N)-measurable. 
However, as we are about to prove, and in contrast with the previous example, Iodd and Ieven are not N-measurable. We 
focus on Iodd; the argument for Ieven is completely analogous.

Assume ex absurdo that Iodd is N-measurable. It then follows from Definition 2.2 that there is some simple N-measurable 
function g ∈ G≥0 such that |Iodd(x) − g(x)| < 1

2 for all x ∈ N. Since B = N, Definition 2.1 then implies that there is some 
c0 ∈ R≥0 and some finite set A such that g(x) = c0 for all x ∈ N \ A. Since N contains infinitely many odd and even 
numbers, this in turn implies that there is some (and in fact infinitely many) odd xodd and even xeven in N \ A for which 
g(xodd) = g(xeven) = c0. Hence, we find that

1 = |Iodd(xodd) − Iodd(xeven)| ≤ |Iodd(xodd) − c0| + |c0 − Iodd(xeven)|
= |Iodd(xodd) − g(xodd)| + |g(xeven) − Iodd(xeven)| < 1

2
+ 1

2
= 1,

a contradiction. ♦

Example 2.3. Let X = R and let B := B∗ \ {∅}, with B∗ the σ -algebra of Lebesgue measurable subsets of R. Let 
g ∈ G≥0(R) be the indicator of the non-negative reals, defined for all x ∈ R by g(x) := 1 if x ≥ 0 and g(x) := 0 oth-
erwise, and let h ∈ G (R) be defined by h(x) := x3 for all x ∈ R. Then g is Lebesgue measurable because it is a step 
function and h is Lebesgue measurable because it is continuous. Therefore, it follows from Proposition 2.1 that g and h are
B-measurable. ♦
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3. Modelling uncertainty

A subject’s uncertainty about a variable X that takes values x in some non-empty set X can be mathematically rep-
resented in various ways. The most popular such method is probability theory, but it is by no means the only one, nor is 
it the most general one. We here adopt the more general frameworks of sets of desirable gambles and conditional lower 
previsions.

The main aim of this section is to provide an overview of the basic technical aspects of these frameworks, because 
they will be essential in the rest of the paper. Notably, we do not impose any constraints on the cardinality of X : it may 
be finite, countably infinite or uncountably infinite. Connections with other—perhaps better known—models for uncertainty, 
including probability theory, will be briefly touched upon at the end of this section; detailed connections will be established 
in Section 8.

The basic idea behind sets of desirable gambles is to model a subject’s uncertainty about X by considering her attitude 
towards gambles—bets—on X . In particular, we consider the gambles f ∈ G (X ) that she finds desirable, in the sense that 
she is willing to engage in a transaction where, once the actual value x ∈ X of X is known, she will receive a—possibly 
negative—reward f (x) in some linear utility scale. Even more so, she prefers these desirable gambles over the status quo, 
that is, over not conducting any transaction at all. A set of desirable gambles is called coherent if it satisfies the following 
rationality requirements.

Definition 3.1. A coherent set of desirable gambles D on X is a subset of G (X ) such that, for any two gambles f , g ∈
G (X ) and any positive real number λ ∈ R>0:

D1: if f ≥ 0 and f 
= 0, then f ∈ D ;
D2: if f ∈ D then λ f ∈ D ;
D3: if f , g ∈ D , then f + g ∈ D ;
D4: if f ≤ 0, then f /∈ D .

The first axiom states that the possibility of a positive reward without risking a negative reward should always be 
desirable, whereas the fourth axiom states that gambles that offer no positive rewards should never be desirable. The 
other two axioms are immediate consequences of the linearity of the utility scale. Despite their simplicity, sets of desirable 
gambles offer a surprisingly powerful framework for modelling uncertainty; see for example References [20,23]. For our 
present purposes though, all we need for now is Definition 3.1.

Conditional lower previsions also model a subject’s uncertainty about X by considering her attitude towards gambles 
on X . However, in this case, instead of considering sets of gambles, we consider the prices at which a subject is willing to 
buy these gambles. Let

C (X ) := G (X ) × P∅(X )

be the set of all pairs ( f , B), where f is a gamble on X and B is a non-empty subset of X —an event. A conditional lower 
prevision is then defined as follows.

Definition 3.2. A conditional lower prevision P on C ⊆ C (X ) is a map

P : C → R : ( f , B) → P ( f |B).

For any ( f , B) in the domain C , the lower prevision P ( f |B) of f conditional on B is interpreted as a subject’s supremum 
price μ for buying f , under the condition that the transaction is called off when B does not happen—if x /∈ B . In other 
words, P ( f |B) is the supremum value of μ for which she is willing to engage in a transaction where she receives f (x) − μ
if x ∈ B and zero otherwise, and furthermore prefers this transaction to the status quo. If B = X , we adopt the shorthand 
notation P ( f ) := P ( f |X ) and then call P ( f ) the lower prevision of f . If B = X for all ( f , B) ∈ C , meaning that there is 
some G ⊆ G (X ) such that C = {( f , X ) : f ∈ G }, this convention allows us to regard P as an operator on G , and we then 
say that P is a lower prevision. In this sense, lower previsions are a special case of conditional lower previsions.

It is also possible to consider conditional upper previsions P ( f |B), which are interpreted as infimum selling prices. How-
ever, since selling f for μ is equivalent to buying − f for −μ, we have that P ( f |B) = −P (− f |B). For that reason, we will 
mainly focus on conditional lower previsions. A similar remark applies to (unconditional) upper previsions.

Because of their interpretation in terms of buying prices for gambles, a particularly intuitive way to obtain a conditional 
lower prevision P is to derive it from a set of gambles D . Specifically, for every D ⊆ G (X ), we let

PD ( f |B) := sup{μ ∈R : [ f − μ]IB ∈ D} for all ( f , B) ∈ C (X ). (3)

A conditional lower prevision is then called coherent if can be derived from a coherent set of desirable gambles in this way.
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Definition 3.3. A conditional lower prevision P on a domain C ⊆ C (X ) is coherent if there is a coherent set of desirable 
gambles D on X such that P coincides with PD on C .

This definition of coherence is heavily inspired by the work of Williams [24,25]. The only two minor differences are that 
our rationality axioms on D are slightly different from his—for example, he allows for D to include the zero gamble—and 
that we do not impose any structure on the domain C . Nevertheless, when the domain C satisfies the structural constraints 
in [25], Definition 3.3 is equivalent to that of Williams. More generally, as the following result establishes, it is equivalent 
to the structure-free notion of Williams-coherence that was developed by Pelessoni and Vicig [18].

Proposition 3.1. A conditional lower prevision P on C ⊆ C (X ) is coherent if and only if it is real-valued and, for all n ∈N0 and all 
choices of λ0, . . . , λn ∈ R≥0 and ( f0, B0), . . . , ( fn, Bn) ∈ C :

sup
x∈B

( n∑
i=1

λiIBi (x)[ f i(x) − P ( f i |Bi)] − λ0IB0(x)[ f0(x) − P ( f0|B0)]
)

≥ 0, (4)

where we let B := ∪n
i=0 Bi .

The advantage of this alternative characterisation is that it is expressed directly in terms of lower previsions. Neverthe-
less, we consider Equation (4) to be less intuitive than Definition 3.3, which is why we prefer the latter.

From a mathematical point of view, Definition 3.3 also has the advantage that it allows for simple and elegant proofs of 
some well-known results. For example, it follows trivially from our definition of coherence that the domain of a coherent 
conditional lower prevision can be arbitrarily extended while preserving coherence, whereas deriving this result directly 
from Equation (4) is substantially more involved; see for example the proof of [18, Proposition 1]. Furthermore, our defini-
tion also allows for a very natural derivation of the so-called natural extension of P , that is, the most conservative extension 
of P to C (X ). In particular, instead of having to derive this natural extension directly, Definition 3.3 allows us to rephrase 
this problem into a closely related yet simpler question: what is the smallest coherent set of desirable gambles D on X
such that PD coincides with P on C ? The answer turns out to be surprisingly simple.

Proposition 3.2. Consider a coherent conditional lower prevision P on C ⊆ C (X ) and let

AP := {[ f − μ]IB : ( f , B) ∈ C ,μ < P ( f |B)
}

and E (P ) := E (AP ). (5)

Then E (P ) is a coherent set of desirable gambles on X and PE (P ) coincides with P on C . Furthermore, for any other coherent set of 
desirable gambles D on X such that PD coincides with P on C , we have that E (P ) ⊆ D .

Abstracting away some technical details, the reason why this result holds should be intuitively clear. First, since con-
ditional lower previsions are interpreted as called-off supremum buying prices, we see that the gambles in AP should be 
desirable. Combined with D1–D3, the desirability of the gambles in E (P ) then follows.

Since smaller sets of desirable gambles lead to more conservative—pointwise smaller—lower previsions, we conclude that 
the natural extension of P is given by

E( f |B) := PE (P )( f |B) for all ( f , B) ∈ C (X ). (6)

The following proposition provides a formal statement of this result.

Proposition 3.3. Let P be a coherent conditional lower prevision on C ⊆ C (X ). Then E, as defined by Equation (6), is the pointwise 
smallest coherent conditional lower prevision on C (X ) that coincides with P on C .

All in all, we conclude that Definition 3.3 provides an intuitive as well as mathematically convenient characterisation of 
Williams-coherence that is furthermore equivalent to the structure-free version of Pelessoni and Vicig [18]. From a technical 
point of view, this equivalence will not be essential further on, because most of our arguments will be based on the 
connection with sets of desirable gambles. From a practical point of view though, this equivalence is highly important, 
because the Williams-coherent conditional lower previsions that are considered in [18] are well-known to include as special 
cases a variety of other uncertainty models, including expectations, lower expectations, probabilities and lower probabilities. 
For that reason, our results can be applied to—and interpreted in terms of—these special cases as well. A detailed discussion 
of this point is deferred to Sections 8 and 9; for now, we focus on sets of desirable gambles and conditional lower previsions. 
We end this section by listing some well-known properties of the latter; see for example References [18,22,25].

Proposition 3.4. Let P be a coherent conditional lower prevision on C ⊆ C (X ). Then for any two gambles f , g ∈ G (X ), any two 
events A, B ∈ P∅(X ), any real number λ ∈ R and any sequence of gambles { fn}n∈N ⊆ G (X ), whenever the involved conditional 
lower and upper previsions are well-defined—that is, if the arguments belong to their domain—we have that
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LP1: P ( f |B) ≥ infx∈B f (x) [boundedness]
LP2: P (λ f |B) = λP ( f |B) if λ ≥ 0 [non-negative homogeneity]
LP3: P ( f + g|B) ≥ P ( f |B) + P (g|B) [superadditivity]
LP4: P (IB [ f − P ( f |A ∩ B)]| A) = 0 if A ∩ B 
= ∅ [generalised Bayes rule]
LP5: limn→+∞ sup | f − fn| = 0 ⇒ limn→+∞ P ( fn|B) = P ( f |B) [uniform continuity]
LP6: P ( f +λ|B) = P ( f |B) +λ [constant additivity]
LP7: f (x) ≥ g(x) for all x ∈ B ⇒ P ( f |B) ≥ P (g|B) [monotonicity]
LP8: P ( f |B) ≤ −P (− f |B) = P ( f |B)

Proposition 3.5. Consider a set of events B ⊆ P∅(X ) that is closed under finite unions and let F ⊆ G (X ) be a linear space of 
gambles such that IB f ∈ F and IB ∈ F for every f ∈ F and B ∈ B. Now let C := {( f , B) : f ∈ F , B ∈ B}. Then a conditional 
lower prevision P on C is coherent if and only if it is real-valued and satisfies LP1–LP4.

Corollary 3.6. A conditional lower prevision P on C (X ) is coherent if and only if it is real-valued and satisfies LP1–LP4.

Corollary 3.7. Consider a linear space of gambles G ⊆ G (X ) that includes the constant gamble 1. A lower prevision P on G is then 
coherent if and only if it is real-valued and satisfies LP1–LP3.

4. Epistemic independence

Having introduced our main tools for modelling uncertainty, the next step towards developing a notion of independent 
natural extension is to agree on what we mean by independence.

The approach that we adopt here is to define it as an assessment of mutual irrelevance. In particular, we say that X1
and X2 are independent if our uncertainty model for X1 is not affected by conditioning on information about X2, and vice 
versa. As we will see in Section 9, this definition can be applied to a probability measure, and then yields the usual notion 
of independence. However, and that is what makes this approach powerful and intuitive, it can just as easily be applied to 
lower previsions, sets of desirable gambles, or any other type of uncertainty model. This type of independence is usually 
referred to as epistemic independence. The aim of this section is to formalize this concept for the case of two variables, in 
terms of sets of desirable gambles and conditional lower previsions.

Consider two variables X1 and X2 where, for every i ∈ {1, 2}, Xi takes values xi in a non-empty set Xi that may be 
uncountably infinite. We assume that X1 and X2 are logically independent, meaning that X1 = x1 and X2 = x2 are jointly 
possible, for all x1 ∈ X1 and x2 ∈ X2. The corresponding joint variable X := (X1, X2) therefore takes values x := (x1, x2)

in X1 × X2. In this context, whenever convenient, we will identify B1 ∈ P∅(X1) with B1 × X2 and B2 ∈ P∅(X2) with 
X1 × B2. For any two events B1 ∈ P∅(X1) and B2 ∈ P∅(X2), this allows us to use B1 ∩ B2 as an intuitive alternative 
notation for B1 × B2. Similarly, for any i ∈ {1, 2}, we identify f ∈ G (Xi) with its cylindrical extension to G (X1 × X2), 
defined by

f (x1, x2) := f (xi) for all x = (x1, x2) ∈ X1 × X2.

In order to make this explicit, we will then often denote this cylindrical extension by f (Xi). In this way, for example, for 
any f ∈ G (X2) and B ∈ P(X1), we can write f (X2)IB(X1) to denote a gamble in G (X1 × X2) whose value in (x1, x2) is 
equal to f (x2) if x1 ∈ B and equal to zero otherwise. Using these conventions, for any set of gambles D on X1 × X2, we 
define the marginal models

marg1(D) := { f ∈ G (X1) : f (X1) ∈ D} and marg2(D) := { f ∈ G (X2) : f (X2) ∈ D}
and, for any events B1 ∈ P∅(X1) and B2 ∈ P∅(X2), the conditional models

marg1(D |B2) := { f ∈ G (X1) : f (X1)IB2(X2) ∈ D} and marg2(D |B1) := { f ∈ G (X2) : f (X2)IB1(X1) ∈ D}.
Conditioning and marginalisation both preserve coherence: if D is a coherent set of desirable gambles on X1 × X2, then 
marg1(D) and marg1(D |B2) are coherent sets of desirable gambles on X1, and marg2(D) and marg2(D |B1) are coherent 
sets of desirable gambles on X2.

That said, let us now recall our informal definition of epistemic independence, which was that the uncertainty model for 
X1 is not affected by conditioning on information about X2, and vice versa. In the context of sets of desirable gambles, this 
can now be formalized as follows:

marg1(D |B2) = marg1(D) and marg2(D |B1) = marg2(D).

The only thing that is left to specify are the conditioning events B1 and B2 for which we want this condition to hold. 
We think that the most intuitive approach is to impose this for every B1 ∈ P∅(X1) and B2 ∈ P∅(X2), and will call this 
epistemic event-independence. However, this is not what is usually done. The conventional approach, which we will refer 
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to as epistemic atom-independence, is to focus on singleton events of the type B1 = {x1} and B2 = {x2}; see for example 
References [9,22].1

The main reason why epistemic atom-independence is the conventional go-to definition for epistemic independence is 
that Walley adopted it in his seminal book [22, Section 9.2]. Walley seems to take this choice for granted; we assume 
that this is a consequence of his focus on conditional lower previsions whose conditioning events belong to a (finite num-
ber of) partition(s). The advantage of using such a partition—and a set of atoms in particular—is that it can be regarded 
as representing the possible outcomes of an experiment, allowing for a quite natural study of statistical inference and 
updating. Partitions are also essential if one wich to impose the controversial property of conglomerability [15]. Never-
theless, we consider this focus on partitions—which is inherent in Walley’s approach—to be overly restrictive; we prefer 
having the option to condition on any possible event, especially since one can always zoom in on a particular partition 
whenever needed or convenient. This serves as a first reason why we prefer epistemic event-independence over epistemic 
atom-independence.

Other than that, as we will see further on, epistemic event-independence also has several technical advantages; in fact, 
this will be one of the main conclusions of this contribution. For now, however, we postpone this debate between event- and 
atom-independence by adopting a very general approach that subsumes the former two as special cases. In particular, for 
every i ∈ {1, 2}, we simply fix a generic set of conditioning events Bi ⊆ P∅(Xi). Epistemic atom-independence corresponds 
to choosing Bi = Xi , whereas epistemic event-independence corresponds to choosing Bi = P∅(Xi).

For sets of desirable gambles, this leads us to the following definition.

Definition 4.1. Let D be a coherent set of desirable gambles on X1 × X2. Then D is epistemically independent if, for any i
and j such that {i, j} = {1, 2}:

margi(D |B j) = margi(D) for all B j ∈ B j.

For coherent lower previsions, as a prerequisite for defining epistemic independence, we require that the domain C ⊆
C (X1 × X2) is independent, by which we mean that for any i and j such that {i, j} = {1, 2}, any pair ( f i, Bi) ∈ C (Xi) and 
any event B j ∈ B j :

( f i, Bi) ∈ C ⇔ ( f i, Bi ∩ B j) ∈ C . (7)

Other than that, we impose no restrictions on C ; its elements ( f , B) ∈ C are for example not restricted to the types that 
appear in Equation (7). As a result, the following definition of epistemic independence is applicable beyond the context of 
lower previsions. For example, by restricting the domain to indicators, we obtain a notion of epistemic independence that 
applies to conditional lower probabilities. A detailed discussion of these special cases, however, is deferred to Section 8.

Definition 4.2. Let C ⊆ C (X1 × X2) be an independent domain. A coherent conditional lower prevision P on C is then 
epistemically independent if, for any i and j such that {i, j} = {1, 2}:

P ( f i|Bi) = P ( f i|Bi ∩ B j) for all ( f i, Bi) ∈ C (Xi) ∩ C and B j ∈ B j .

Another important feature of this definition is that B j is not only irrelevant to the unconditional lower previsions of 
local gambles f i —in the sense that P ( f i) = P ( f i |B j)—but also to their conditional local lower previsions—in the sense that 
P ( f i |Bi) = P ( f i |Bi ∩ B j). This type of irrelevance is called h-irrelevance; see References [2,3]. Note however that this feature 
is optional within our framework; it only appears when C is sufficiently large. If instead Bi = Xi for all ( f i, Bi) ∈ C (Xi) ∩C , 
then our definition reduces to the more simple requirement that P ( f i) = P ( f i |B j). The following example illustrates this 
subtle feature and also demonstrates the difference between epistemic atom- and event-independence.

Example 4.1. Let X1 = R and X2 = N and consider any coherent conditional lower prevision P on C ⊆ C (X1 × X2) that 
is epistemically independent, with C an independent domain. For any ( f1, B1) ∈ C (X1) ∩ C and B2 ∈ B2, it then follows 
from Definition 4.2 that P ( f1|B1) = P ( f1|B1 ∩ B2). To make this more concrete, we now consider several examples.

We first consider the most powerful case, where the domain C is equal to C (X1 × X2)—the largest possible domain—
and where the type of independence that is considered is event-independence. Now let f1 := sin(X1) and let B2 := {2n : n ∈
N} be the event that X2 is even. For B1 = X1, we then find that P (sin(X1)) = P (sin(X1)|X2 even), meaning that condition-
ing on the event that X2 is even has no effect on the lower prevision of sin(X1). In much the same way, for B1 = R≥0, we 
find that P (sin(X1)|X1 ≥ 0) = P (sin(X1)|X1 ≥ 0 and X2 even), which means that the conditional lower prevision of sin(X1)

1 Readers that are familiar with some of my previous work [3,4] may notice that I have changed terminology: what I now call epistemic event- and 
atom-independence, I previously referred to as epistemic subset- and value-independence. This new terminology was suggested to me by an anonymous 
reviewer, and I could not but agree that it indeed better reflects the meaning of the respective concepts.
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given X1 ≥ 0 does not change if we additionally condition on the event that X2 is even. This second example provides a nice 
illustration of the fact that our definition of independence imposes mutual h-irrelevance rather than mutual irrelevance.

If we shrink the domain C sufficiently, to the extent that every ( f1, B1) ∈ C (X1) ∩ C is of the form ( f1, X1), then the 
added value of h-irrelevance disappears because our definition then only imposes assessments of the type P ( f1) = P ( f1|B2), 
such as, for example, the assessement P (sin(X1)) = P (sin(X1)|X2 even) that we have seen before.

The effect of replacing event-independence with atom-independence is also quite substantial. In particular, since B2
then changes from P∅(N) to N, we can then no longer condition on the event B2 := {2n : n ∈ N} that X2 is even, because 
that event is not a singleton. Instead, for atom-indepence, we can only condition on events B2 of the form {x2}, such as, for 
example, the assessement P (sin(X1)) = P (sin(X1)|X2 = 5). ♦

5. The independent natural extension

All of that said, we are now finally ready to introduce our central object of interest, which is the independent natural 
extension. Basically, the question to which this concept provides an answer is: given two local uncertainty models and an 
assessment of epistemic independence, what then should be the corresponding joint model? The answer depends on the 
specific framework that is being considered.

Within the framework of sets of desirable gambles, the local uncertainty models are coherent sets of desirable gambles. 
In particular, for each i ∈ {1, 2}, we are given a coherent set of desirable gambles Di on Xi . The aim is to combine these 
local models with an assessment of epistemic independence to obtain a coherent set of desirable gambles D on X1 × X2. 
The first requirement on D , therefore, is that it should have D1 and D2 as its marginals, in the sense that margi(D) = Di
for all i ∈ {1, 2}. The second is that D should be epistemically independent. If both requirements are met, D is called an 
independent product of D1 and D2. The most conservative among these independent products is called the independent 
natural extension.

Definition 5.1. An independent product of D1 and D2 is an epistemically independent coherent set of desirable gambles D
on X1 × X2 that has D1 and D2 as its marginals.

Definition 5.2. The independent natural extension of D1 and D2 is the smallest independent product of D1 and D2.

If all we know is that D is epistemically independent and has D1 and D2 as its marginal models, then the safest choice 
for D—the only choice that does not require any additional assessments—is their independent natural extension, provided 
of course that it exists. In order to show that it always does, we let

D1 ⊗ D2 := E (A1→2 ∪ A2→1) , (8)

with

A1→2 := {
f2(X2)IB1(X1) : f2 ∈ D2, B1 ∈ B1 ∪ {X1}

}
(9)

and

A2→1 := {
f1(X1)IB2(X2) : f1 ∈ D1, B2 ∈ B2 ∪ {X2}

}
. (10)

The following result establishes that D1 ⊗ D2 is the independent natural extension of D1 and D2.

Theorem 5.1. D1 ⊗ D2 is the independent natural extension of D1 and D2 .

Similar concepts can be defined for conditional lower previsions as well. In that case, the local uncertainty models are 
coherent conditional lower previsions. In particular, for every i ∈ {1, 2}, we are given a coherent conditional lower prevision 
P i on some freely chosen local domain Ci ⊆ C (Xi). Note that this freedom implies that P i can also be an unconditional; 
this corresponds to choosing Ci := {( f i, Xi) : f i ∈ Gi} for some Gi ⊆ G (Xi). In any case, the aim is now to construct an 
epistemically independent coherent conditional lower prevision P on C ⊆ C (X1 ×X2) that has P 1 and P 2 as its marginals, 
in the sense that P coincides with P 1 and P 2 on their local domain: P ( f i |Bi) = P i( f i |Bi) for all i ∈ {1, 2} and ( f i, Bi) ∈ Ci . 
As before, a model that meets these criteria is then called an independent product, and the most conservative among them 
is called the independent natural extension. Clearly, in order for these notions to make sense, the global domain C must 
at least include the local domains C1 and C2 and must furthermore be independent in the sense of Equation (7). The 
definitions and results below take this for granted.

Definition 5.3. An independent product of P 1 and P 2 is an epistemically independent coherent conditional lower prevision 
on C that has P 1 and P 2 as its marginals.
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Definition 5.4. The independent natural extension of P 1 and P 2 is the point-wise smallest independent product of P 1
and P 2.

Here too, if all we know is that P is epistemically independent and has P 1 and P 2 as its marginal models, then the 
safest choice for P —the only choice that does not require any additional assessments—is the independent natural extension, 
provided that it exists. The following result establishes that it does, by showing that it is a restriction of the operator 
P 1 ⊗ P 2, defined by

(P 1 ⊗ P 2)( f |B) := PD ( f |B) for all ( f , B) ∈ C (X1 × X2), with D = E (P 1) ⊗ E (P 2). (11)

Theorem 5.2. The independent natural extension of P 1 and P 2 is the restriction of P 1 ⊗ P 2 to C .

Interestingly, as can be seen from this result, the choice of the joint domain C does not affect the resulting independent 
natural extension, in the sense that any C that includes ( f , B) will lead to the same value of (P 1 ⊗ P 2)( f |B). For that 
reason, we will henceforth assume without loss of generality that C = C (X1 × X2).

6. On the choice of conditioning events

The fact that the existence results in the previous section are valid regardless of the choice of B1 and B2 should not 
be taken to mean that this choice does not affect the model. In some cases, it most definitely does. In the remainder of 
this contribution, we will study the extent to which it does, and how it affects the properties of the resulting notion of 
independent natural extension.

As a first observation, we note that larger sets of conditioning events correspond to stronger assessments of epistemic 
independence, and therefore lead to more informative joint models. For example, as can be seen from Equations (8)–(10), 
adding events to B1 and B2 leads to a larger—more informative—set of desirable gambles D1 ⊗ D2. Similarly, as can be 
seen from Equation (11), it leads to a joint lower prevision that is higher—and therefore again more informative. There is 
one important exception to this observation though, which occurs when we add conditioning events that are a finite disjoint 
union of other conditioning events. In that case, the resulting notion of independent natural extension does not change.

Proposition 6.1. For each i ∈ {1, 2}, let B′
i be a superset of Bi that consists of finite disjoint unions of events in Bi . Replacing B1 by 

B′
1 and B2 by B′

2 then has no effect on the resulting independent natural extension D1 ⊗ D2 or P 1 ⊗ P 2 .

As a particular case of this result, it follows that if Bi is a finite partition of Xi , we can replace it by the generated 
algebra—minus the empty event. As an even more particular case, if X1 and X2 are finite, we find that epistemic atom-
and event-independence lead to the same notion of independent natural extension. For that reason, in the finite case, it 
does not really matter which of these two types of epistemic independence is adopted.

In the infinite case though, we will see that the difference does matter, which requires one to choose between 
epistemic atom- and event-independence. For lower previsions, Miranda and Zaffalon [16] recently adopted epistemic 
atom-independence in combination with Walley-coherence. Unfortunately, they found that the corresponding notion of in-
dependent natural extension does not always exist. They also considered the combination of epistemic atom-independence 
with Williams-coherence, and argued that the resulting model was too weak. For the case of lower probabilities, Vicig [21]
adopted epistemic event-independence in combination with Williams-coherence, showed that the corresponding indepen-
dent natural extension always exists, and proved that it satisfies factorisation properties. Our results so far can be regarded 
as a generalisation of the existence results of Vicig [21]. As we are about to show, his factorisation results can be generalised 
as well.

7. Factorisation and external additivity

When X1 and X2 are finite, the independent natural extension of two lower previsions P 1 and P 2 is well-known to 
satisfy the properties of factorisation and external additivity [10]. Factorisation, on the one hand, states that

(P 1 ⊗ P 2)(gh) = P 1(g P 2(h)) =
{

P 1(g)P 2(h) if P 2(h) ≥ 0

P 1(g)P 2(h) if P 2(h) ≤ 0,
(12)

where g is a non-negative gamble on X1, h is a gamble on X2 and P 1(g) := −P 1(−g). By symmetry, the role of 1 and 2
can of course be reversed. External additivity, on the other hand, states that

(P 1 ⊗ P 2)( f + h) = P 1( f ) + P 2(h) (13)

where f and h are gambles on X1 and X2, respectively.
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Compared to the properties that are satisfied by the joint expectation of a product measure of two probability measures, 
these notions of factorisation and external additivity are rather weak. For example, for a product measure, additivity is 
not ‘external’, in the sense that f and h do not have to be defined on separate variables, nor does factorisation require 
g to be non-negative. Nevertheless, even in this weaker form, these properties remain of crucial practical importance. For 
example, as explained in Reference [10], factorisation properties such as Equation (12)—when applied to more than two 
variables—are sufficient in order to establish laws of large numbers for lower previsions [8]. As another example, in the 
context of credal networks, which are Bayesian networks whose local models are partially specified, properties such as 
Equations (12) and (13) turned out to be the key to the development of efficient inference algorithms; see for example 
References [3,6,7]. Any notion of independent natural extension that aims to extend such algorithms to infinite spaces, 
therefore, should preserve some suitable version of Equations (12) and (13).

The aim of this section is to study the extent to which these equations are satisfied by the notion of independent natural 
extension that was developed in this paper. As we will see, the answer ends up being surprisingly positive.

For all i ∈ {1, 2}, let P i be a coherent conditional lower prevision on Ci ⊆ C (Xi), let Ei be its natural extension to 
C (Xi), and let Bi be a subset of P∅(Xi). The independent natural extension of P 1 and P 2 then satisfies the following 
three properties, the first of which implies the other two as special cases.

Theorem 7.1. Let {i, j} = {1, 2}. For any f ∈ G (Xi), h ∈ G (X j) and Bi -measurable g ∈ G≥0(Xi), we then have that

(P 1 ⊗ P 2)( f + gh) = Ei

(
f + g E j(h)

)
.

Corollary 7.2 (Factorisation). Let {i, j} = {1, 2}. For any h ∈ G (X j) and any g ∈ G≥0(Xi) that is Bi -measurable, we then have that

(P 1 ⊗ P 2)(gh) = Ei

(
g E j(h)

) =
{

Ei(g)E j(h) if E j(h) ≥ 0;
Ei(g)E j(h) if E j(h) ≤ 0.

Corollary 7.3 (External additivity). For any f ∈ G (X1) and h ∈ G (X2), we have that

(P 1 ⊗ P 2)( f + h) = E1( f ) + E2(h).

In each of these results, if the local domains C1 and C2 are sufficiently large—that is, if they include the gambles that 
appear in the statement of the results—it follows from Proposition 3.3 that Ei and E j can be replaced by P i and P j , 
respectively, and similarly for Ei and P i .

That said, let us now go back to the question of whether or not Equations (12) and (13) can be generalised to the case 
of infinite spaces. For the case of external additivity, it clearly follows from Corollary 7.3 that the answer is fully positive. 
Furthermore, this conclusion holds regardless of our choice for B1 and B2; they can even be empty. For factorisation, the 
answer does depend on B1 and B2. If we adopt epistemic event-independence—that is, if we choose B1 = P∅(X1) and 
B2 = P∅(X2)—it follows from Corollaries 2.3 and 7.2 that the answer is again fully positive, because P∅(Xi)-measurability 
then holds trivially. If B1 ∪ {∅} and B2 ∪ {∅} are sigma fields, the answer remains fairly positive as well, because Proposi-
tion 2.1 then implies that it suffices for g to be measurable in the usual, measure-theoretic sense.

Example 7.1. Let X1 = X2 = R and let B1 = B2 = B, with B = B∗ \ {∅} and with B∗ the σ -algebra of Lebesgue mea-
surable subsets of R. Furthermore, let g ∈ G≥0(X1) be the indicator of the nonnegative reals, defined for all x1 ∈ R by 
g(x1) := 1 if x1 ≥ 0 and g(x1) := 0 otherwise, and let h ∈ G (X2) be defined by h(x2) := x3

2 for all x2 ∈ R. We then know 
from Example 2.3 that g and h are both Lebesgue-measurable and therefore also B-measurable. Therefore, for any two 
coherent conditional lower previsions P 1 on C (X1) and P 2 on C (X2), Corollary 7.2 implies that

(P 1 ⊗ P 2)(gh) =
{

P 1(g)P 2(h) if P 2(h) ≥ 0;
P 1(g)P 2(h) if P 2(h) ≤ 0. ♦

However, these positive conclusions do not apply if we adopt epistemic atom-independence—that is, if we choose 
B1 = X1 and B2 = X2—because our factorisation result then requires g to be Xi -measurable, which, as we know from 
Example 2.2, is a rather strong requirement that easily fails. Nevertheless, the factorisation properties that do hold for atom-
independence are stronger than what is suggested in Reference [16]. In order to illustrate this, we consider the following 
adaptation of their Example 4.

Example 7.2. Let X1 = X2 = N and let P 1 and P 2 be coherent lower previsions on G (X1) and G (X2), respectively. Let 
g ∈ G≥0(X1) and h ∈ G≥0(X2) be defined by g(x1) := 1

x1
and h(x2) := 1

x2
for all x1 ∈ X1 and x2 ∈ X2. We then know 

from Example 2.1 that the gambles g and h are both P∅(N)-measurable and N-measurable. Furthermore, since g and h
are nonnegative, LP1 implies that P 1(g) ≥ 0 and P 2(h) ≥ 0. Hence, regardless of whether we adopt epistemic event- or 
atom-independence, we can apply Corollary 7.2 to find that (P 1 ⊗ P 2)(gh) = P 1(g)P 2(h). ♦
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For readers that are familiar with the work of Miranda and Zaffalon [16], the final conclusion of this example may 
seem surprising at first, because in their Example 4, Miranda and Zaffalon show that for the same two gambles g and 
h, for atom-independence and Williams-coherence, the independent natural extension assigns lower prevision zero to gh, 
regardless of the chosen local models P 1 and P 2. In contrast, our example above concludes that this lower prevision is equal 
to the product of P 1(g) and P 2(h). This apparent contradiction is a consequence of the fact that Miranda and Zaffalon do not 
require the independent natural extension of P 1 and P 2 to have P 1 and P 2 as its marginals. Instead—using their notation 
and terminology—they only require weak coherence with P 1(·|X2) and P 2(·|X1); see Reference [16] for more information. 
As we can see here, this leads to a notion of independent natural extension that satisfies fewer factorisation properties. Our 
Definitions 5.3 and 5.4 avoid this, by explicitly imposing that the independent natural extension of P 1 and P 2 should have 
P 1 and P 2 as its marginals.

Still, even with our strengthened definition, the issue remains that for atom-independence, our factorisation result 
requires the stringent assumption that g is Xi -measurable. This issue is fundamental because, as our next example 
demonstrates, it is not just a feature of Corollary 7.2 but rather an inherent property of atom-independence: epistemic 
atom-independence indeed leads to weaker factorisation properties.

Example 7.3. Let X1 = X2 = N and let g = Iodd ∈ G≥0(X1) and h = Ieven ∈ G≥0(X2), with Iodd and Ieven defined as in 
Example 2.2. Furthermore, let P 1 be a coherent lower prevision on G (X1) and let P 2 be a coherent lower prevision on 
G (X2). Since g and h are nonnegative, LP1 then implies that P 1(g) ≥ 0 and P 2(h) ≥ 0. Therefore, and because we know 
from Example 2.2 that g and h are P∅(N)-measurable, we can apply Corollary 7.2 to find that for event-independence: 
(P 1 ⊗ P 2)(gh) = P 1(g)P 2(h). However, unfortunately, this corollary cannot be applied for atom-independence, because we 
know from Example 2.2 that g and h are not N-measurable.

Of course, one could still believe that factorisation can be established in some other way, and that it is simply Corol-
lary 7.2 that is lacking in power, rather than the concept of atom-independence itself. This is however not the case: for 
atom-independence, as we will demonstrate in Example 9.1, (P 1 ⊗ P 2)(Iodd(X1)Ieven(X2)) can be strictly smaller than 
P 1(Iodd(X1))P 2(Ieven(X2)) ♦

Because of these weak factorisation properties, we think that for the case of infinite spaces, when it comes to choosing 
between epistemic atom- and event-independence, the latter should be preferred over the former. That is not the only rea-
son though. There is also a second, closely related reason, which is that event-independence leads to much more informative 
inferences. However, in order to explain and demonstrate that, we first need to establish a connection between conditional 
lower previsions, probabilities and expectations, which is what we now set out to do.

8. Connecting lower previsions with expectations and probabilities

The key to understanding the connection between lower previsions, expectations and probabilities is to consider condi-
tional lower previsions that are self-conjugate, in the sense that they coincide with their corresponding upper prevision. In 
that case, we simply refer to them as conditional previsions and denote them by P instead of P .

Definition 8.1 (Conditional prevision). A conditional prevision P on C ⊆ C (X ) is a conditional lower prevision on C that is 
self-conjugate, in the sense that

(− f , B) ∈ C and P ( f |B) = −P (− f |B) for all ( f , B) ∈ C . (14)

Unconditional previsions correspond to a special case. First, if B = X , then similarly to what we did for conditional lower 
previsions, we adopt the shorthand notation P ( f ) := P ( f |X ) and call P ( f ) the prevision of f . Second, if B = X for all 
( f , B) ∈ C , meaning that there is some G ⊆ G (X ) such that C = {( f , X ) : f ∈ G }, we regard P as an operator on G and 
then call P a(n unconditional) prevision.

If a conditional prevision is coherent, we refer to it as a conditional linear prevision. Similarly, coherent (unconditional) 
previsions are called linear previsions.

Definition 8.2 (Conditional linear prevision). A conditional linear prevision P on C ⊆ C (X ) is a coherent conditional previ-
sion on C .

The reason for this terminology, quite obviously, is that conditional linear previsions can be shown to be linear operators. 
In fact, they satisfy various other convenient properties as well, which, for the sake of completeness, are listed below.

Proposition 8.1. Let P be a conditional linear prevision on C ⊆ C (X ). Then for any two gambles f , g ∈ G (X ), any two events 
A, B ∈ P∅(X ), any real number λ ∈R and any sequence of gambles { fn}n∈N ⊆ G (X ), whenever the involved conditional previsions 
are well-defined—that is, if the arguments belong to their domain—we have that
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P1: P ( f |B) ≥ infx∈B f (x) [boundedness]
P2: P (λ f |B) = λP ( f |B) [homogeneity]
P3: P ( f + g|B) = P ( f |B) + P (g|B) [additivity]
P4: P (IB f |A) = P ( f |A ∩ B)P (B|A) if A ∩ B 
= ∅ [Bayes rule]
P5: limn→+∞ sup | f − fn| = 0 ⇒ limn→+∞ P ( fn|B) = P ( f |B) [uniform continuity]
P6: P ( f + λ|B) = P ( f |B) + λ [constant additivity]
P7: f (x) ≥ g(x) for all x ∈ B ⇒ P ( f |B) ≥ P (g|B) [monotonicity]

Proposition 8.2. Consider a set of events B ⊆ P∅(X ) that is closed under finite unions and let F ⊆ G (X ) be a linear space of 
gambles such that IB f ∈ F and IB ∈ F for every f ∈ F and B ∈ B. Now let C := {( f , B) : f ∈ F , B ∈ B}. Then a conditional 
prevision P on C is a conditional linear prevision on C if and only if it is real-valued and satisfies P1–P4.

Corollary 8.3. A conditional prevision P on C (X ) is linear if and only if it is real-valued and satisfies P1–P4.

Corollary 8.4. Consider a linear space of gambles G ⊆ G (X ) that includes the constant gamble 1. A prevision P on G is then linear 
if and only if it is real-valued and satisfies P1–P3.

By comparing these properties with the ones in Section 3, we see that the linearity of conditional linear previsions—the 
fact that they satisfy P2 and P3—is their most important property, in the sense that it distinguishes them from general 
coherent conditional lower previsions. Furthermore, this property is also what allows us to establish a connection with 
expectations. In particular, if we allow ourselves a small leap of faith here, then since expectations are well known to be 
linear, the fact that conditional linear previsions are also linear suggests that we can simply interpret them as conditional 
expectations.

In order to clarify why this is more than just intuition, it is instrumental to restrict the domain of P to elements that are 
of the form (IA, B), where IA is the indicator of an event A, and to then follow de Finetti [11] in adopting the alternative 
notation P (A|B) := P (IA |B). As this notation already suggests, P (A|B) can then be interpreted as the probability of A condi-
tional on B . This interpretation is furthermore mathematically sound, because the obtained objects P (A|B) can be shown to 
satisfy all the essential properties of conditional probabilities, including finite—but not necessarily countable—additivity and, 
if B 
= ∅, Bayes’s rule. Hence, by restricting the domain of a conditional linear prevision P to elements of the form (IA, B), 
we obtain a conditional probability measure. The original unrestricted conditional linear prevision P is then the conditional 
expectation operator that corresponds to this conditional probability measure. Here too, this connection is not merely intu-
itive, but can be made mathematically rigorous. A detailed account of the mathematics behind these connections, however, 
is beyond the scope of this contribution. For more information about (finitely additive) conditional probability measures, 
the interested reader is referred to the work of Dubins [13].

For our present purposes, it suffices to know that conditional linear previsions can indeed be interpreted as conditional 
expectation operators and that conditional probabilities are conditional linear previsions whose domain contains only—or 
is restricted to—elements of the form (IA , B). A similar observation applies to unconditional expectation operators and 
probability measures, with the role of the conditional linear prevision now taken up by an unconditional one.

Since conditional linear previsions are themselves a special (self-conjugate) case of coherent conditional lower previsions, 
we conclude that conditional expectations and conditional probability measures can both be regarded as special cases of 
conditional coherent lower previsions. Similarly, unconditional expectations and probability measures are special cases of 
coherent lower previsions. However, the connection goes much further, because conditional linear previsions are not just a 
special case of coherent conditional lower previsions: they can also be used to characterise them.

Proposition 8.5. A conditional lower prevision P on C ⊆ C (X ) is coherent if and only if there is a non-empty set P∗ of conditional 
linear previsions on C (X ) such that

P ( f |B) = inf{P ( f |B) : P ∈ P∗} for all ( f , B) ∈ C . (15)

The same is true if the infimum in this expression is replaced by a minimum.

This well-known result is essentially due to Williams [24,25] The result is fundamental, because it provides coherent 
conditional lower previsions with a second, alternative interpretation. Indeed, because of Proposition 8.5, a conditional 
lower prevision is not only a supreming buying price; alternatively, it can also be regarded as an infimum of conditional 
previsions. Since—as we have just seen—conditional previsions can themselves be interpreted as conditional expectations, 
this implies that coherent conditional lower previsions can be interpreted as lower envelopes of expectations, often referred 
to as lower expectations.

This interpretation can also be used to develop an alternative characterisation for the natural extension E of a coherent 
conditional lower prevision P on C ⊆ C (X ). In order to do that, we let P be the set of all conditional linear previsions on 
C (X ) and then let
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PP := {P ∈ P : P ( f |B) ≥ P ( f |B) for all ( f , B) ∈ C } (16)

be the subset that dominates P . The natural extension E is then the lower envelope of PP and, similarly, E is its upper 
envelope.

Proposition 8.6. Let P be a coherent conditional lower prevision P on C ⊆ C (X ), let E be its natural extension to C (X ) and let E
be the corresponding conditional upper prevision on C (X ). Then PP 
= ∅ and, for all ( f , B) ∈ C (X ):

E( f |B) = min{P ( f |B) : P ∈ PP } and E( f |B) = max{P ( f |B) : P ∈ PP }. (17)

Also, for any ( f , B) ∈ C (X ) and α ∈ [E( f |B), E( f |B)], there is some P ∈ PP such that P ( f |B) = α.

The final connection that remains to be discussed is that between conditional lower previsions and conditional lower 
probabilities. However, since conditional lower previsions are lower envelopes of conditional linear previsions, and since con-
ditional probability measures are conditional linear previsions whose domain is restricted to elements of the form (IA , B), 
this connection is immediate: conditional lower probabilities are simply conditional lower previsions whose domain is re-
stricted to elements of the form (IA , B). In that case, in order to emphasize this, we adopt P (A|B) as an intuitive alternative 
notation for P (IA |B).

9. Special cases of the independent natural extension

Now that we have established that expectations, lower expectations, probabilities and lower probabilities are indeed all 
special cases of lower previsions, we can come back to our claim at the end of Section 3, which was that our results can be 
applied to—and interpreted in terms of—these special cases as well.

Applying our results to the case of lower expectations is straightforward. Mathematically, nothing changes. The only 
difference is that the local conditional lower previsions that we start from are now interpreted—or defined—as lower bounds 
on expectations, and similarly for the independent natural extension that is derived from them. For lower probabilities, it 
suffices to restrict the domain of the local models P 1 and P 2 to elements of the form (IA1 , B1) and (IA2 , B2), respectively, 
and to similarly restrict the domain C of P 1 ⊗ P 2 to elements of the form (IA, B). Other than that, here too, the only 
difference is the interpretation. For results that are tailored to this specific case, we refer the interested reader to the work 
of Vicig [21], who focused on the independent natural extension for lower probabilities, but within a more general context 
that allows for more than two variables. As explained before, our results are basically a generalisation of his, extending 
them from lower probabilities to conditional lower previsions.

Once we interpret the independent natural extension as a lower expectation or a lower probability, it makes sense to 
consider the set of conditional linear previsions PP 1⊗P 2

that dominates the independent natural extension P 1 ⊗ P 2, and 
to then interpret the latter in terms of the elements of the former. An essential observation here is that the elements of 
PP 1⊗P 2

need not be independent themselves, nor is this the case for its extreme points. Consequently, the independent 
natural extension is not in general a lower envelope of precise independent models [22, Section 9.3.4]. For example, for any 
f1 ∈ G (X1) and B2 ∈ B2, since P 1 ⊗ P 2 is an independent product of P 1 and P 2, it follows from Definitions 5.3 and 4.2
that

(P 1 ⊗ P 2)( f1|B2) = (P 1 ⊗ P 2)( f1) = P 1( f1).

However, for P ∈ PP 1⊗P 2
, this does not necessarily imply that P ( f1|B2) = P ( f1). Instead, the only constraint that is imposed 

on P ( f1|B2) and P ( f1) is that they both belong to [P 1( f1), P 1( f1)]:
P 1( f1) ≤ P ( f1|B2) ≤ P 1( f1) and P 1( f1) ≤ P ( f1) ≤ P 1( f1).

This feature is an essential aspect of epistemic independence: it imposes independence on the uncertainty model itself. If 
this uncertainty model is a set of conditional expectations, then epistemic independence imposes constraints on this set—in 
this case, on the resulting lower and upper expectations—but not on the individual expectations themselves. Similarly, for 
lower probabilities, epistemic independence does not require P (A1|B2) and P (A1) to be equal, but only requires that

P 1(A1) ≤ P (A1|B2) ≤ P 1(A1) and P 1(A1) ≤ P (A1) ≤ P 1(A1). (18)

In this sense, epistemic independence requires that our knowledge about P (A1|B2) and P (A1) is identical: conditioning on 
B2 should have no effect on our bounds for P (A1). This also explains the prefix epistemic: epistemic independence imposes 
a constraint on our knowledge. In other words, and at the risk of oversimplifying it, one could say that an assessment of 
epistemic independence does not entail a belief of independence—because, for a given P ∈ PP 1⊗P 2

, X1 and X2 may very 
well be correlated—but rather an independence of beliefs.

Nevertheless, the standard notion of independence does correspond to a special case of epistemic independence: it 
suffices to use—restrictions of—two linear previsions P1 on G (X1) and P2 on G (X2) as our local models. Indeed, in that 
case, since the linearity of P1 implies that P 1(A1) = P 1(A1) = P1(A1), Equation (18) implies that for all P ∈ PP1⊗P2 :
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P (A1|B2) = P (A1) for all A1 ∈ P(X1) and B2 ∈ B2,

and similarly if the indexes 1 and 2 are reversed. Furthermore, it then follows from Corollary 7.2 and Property P1 that 
P (A1 ∩ B2) = P (A1)P (B2), which is the conventional and well known defining factorisation property of independence.

We end by taking an even closer look at this specific case. So consider a linear prevision P1 on G (X1) and a linear 
prevision P2 on G (X2) or—in case we want to consider probability measures instead of expectations—their restrictions to a 
suitable set of indicators. Using the notation that we have adopted so far, the independent natural extension of these local 
models is then denoted by P1 ⊗ P2. In this case however, this notation is a bit unfortunate, because it suggests that P1 ⊗ P2

is a (conditional) linear prevision itself, which, as we will see, may not be the case. Therefore, we will adopt P1⊗P2 as an 
alternative—less suggestive—notation for P1 ⊗ P2 and will then use P1⊗P2 to denote its corresponding conditional upper 
prevision, defined by

(P1⊗P2)( f |B) := −(P1 ⊗ P2)(− f |B) for all ( f , B) ∈ C (X1 × X2).

For atom-independence, the difference between (P1⊗P2)( f |B) and (P1⊗P2)( f |B) can be surprisingly large. For example, 
if the local models assign probability zero to all the singletons, then as already pointed out in the work of Miranda and 
Zaffalon [16], any joint linear prevision that marginalises to these local models will dominate the independent natural 
extension.

Proposition 9.1. Consider a linear prevision P1 on G (X1) and a linear prevision P2 on G (X2) such that P1(Ix1 ) = 0 and P2(Ix2 ) = 0
for all x1 ∈ X1 and x2 ∈ X2 . Let P12 be a linear prevision on G (X1 ×X2) that has P1 and P2 as its marginals. For atom-independence, 
we then have that for all f ∈ G (X1 × X2):

(P1⊗P2)( f ) ≤ P12( f ) ≤ (P1⊗P2)( f ).

We now use this result to obtain the following example. It demonstrates that (P1⊗P2)( f |B) and (P1⊗P2)( f |B) may 
be—substantially—different, and therefore, that PP1⊗P2 may have more than one element. Furthermore, and perhaps most 
importantly, it proves the claim that we made at the end of Example 7.3.

Example 9.1. Let X1 = X2 = N, and let g = Iodd ∈ G≥0(X1) and h = Ieven ∈ G≥0(X2), with Iodd and Ieven defined as in 
Example 2.2. Consider now two linear previsions Podd and Peven on G (N) such that Podd(In) = 0 and Peven(In) = 0 for all 
n ∈ N and such that Podd(Iodd) = 1 = Peven(Ieven), and let P := 1

2 (Podd + Peven). It then follows from Corollary 8.4 that P

is a linear prevision on G (N). Furthermore, we find that P (In) = 1
2 (Podd(In) + Peven(In)) = 0 for all n ∈ N and, in the same 

way, that P (Iodd) = P (Ieven) = 1
2 .

Now let P1 = P2 = P . Then as demonstrated in [16, Example 5], it is possible to construct a linear prevision P12 on 
G (X1 × X2) that has P1 and P2 as its marginals and for which P12(X1 odd and X2 even) = P12(gh) = 0. Therefore, 
for atom-independence, Proposition 9.1 implies that (P1⊗P2)(gh) ≤ 0. Since the converse inequality follows from Prop-
erty P1 and the non-negativity of f g , this implies that for atom-independence, (P1⊗P2)(gh) = 0. Since P1(g)P2(h) =
P (Iodd)P (Ieven) = 1

2 · 1
2 = 1

4 , this shows that atom-independence does not lead to factorisation here, and proves our claim 
from Example 7.3.

For event-independence however, since linear previsions are a special case of coherent lower previsions, we already 
know from Example 7.3 that we do have factorisation here, and therefore, that (P1⊗P2)(gh) = 1

4 .
Finally, we note that it follows from Property LP8 that, regardless of whether we adopt epistemic subset- or 

atom-indepence, (P1⊗P2)(gh) ≤ (P1⊗P2)(gh). Therefore, and because we know from Section 6 that epistemic event-
independence leads to more informative joint models than epistemic atom-independence, our results in this example imply 
that for epistemic atom-independence:

(P1⊗P2)(gh) ≥ 1

4
> 0 = (P1⊗P2)(gh). ♦

As explained in Section 7, the failure of factorisation that we observe in this example is a first important reason why 
we prefer epistemic event-independence over epistemic atom-independence. The second reason is that epistemic atom-
independence leads to an independent natural extension that may be too uninformative, in the sense that P1⊗P2 can be 
excessively small. This too was illustrated in the example above: for the same local models, epistemic event-independence 
gave rise to substantially higher joint lower previsions.

That said, even for event-independence, (P1⊗P2)( f |B) and (P1⊗P2)( f |B) may still be different. In that case, however, 
the reason is more subtle, and can be partially attributed to the fact that for infinite spaces and finitely additive probability 
measures, Fubini’s theorem may not hold. We demonstrate this in our final example, which relies heavily on the following 
proposition.
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Proposition 9.2. Consider a linear prevision P1 on G (X1) and a linear prevision P2 on G (X2). Then for all f ∈ G (X1 × X2), we 
have that

(P1⊗P2)( f ) ≤ P1(P2( f )) ≤ (P1⊗P2)( f ),

with P2( f ) a gamble on X1 , defined by P2( f )(x1) := P2( f (x1, X2)) for all x1 ∈ X1 .

Example 9.2. Consider a linear prevision P1 on G (X1), a linear prevision P2 on G (X2) and any f ∈ G (X1 ×X2) such that 
P1(P2( f )) 
= P2(P1( f )), where P2( f ) is defined as in Proposition 9.2 and where, similarly, P1( f ) is a gamble on X2 that 
is defined by P1( f )(x2) := P1( f (X1, x2)) for all x2 ∈ X2. It then follows from Proposition 9.2 and symmetry—reversing the 
role of P1 and P2—that

(P1⊗P2)( f ) ≤ min{P1(P2( f )), P2(P1( f ))} < max{P1(P2( f )), P2(P1( f ))} ≤ (P1⊗P2)( f ).

Concrete examples where this situation occurs—that is, where P1(P2( f )) 
= P2(P1( f ))—can be found in [16, Example 1]
and [19, Example 4]. ♦

10. Conclusions and future work

The main conclusion of this work is that by combining Williams-coherence with epistemic event-independence, we ob-
tain a notion of independent natural extension that always exists, and that furthermore satisfies factorisation and external 
additivity. For weaker types of epistemic independence, including epistemic atom-independence, the existence result and 
the external additivity property remain valid, but factorisation then requires measurability conditions and the resulting 
inferences become less informative. For that reason, I think that when it comes to choosing between epistemic event-
independence and epistemic atom-independence, the former should be preferred over the latter. In fact, I would advocate 
that from now on, and contrary to the current convention, epistemic independence should be taken to mean epistemic 
event-independence.

As far as future research is concerned, a first important step would be to extend our results from the case of two 
variables to that of any finite number of variables. Based on our own preliminary exploration of this topic, we expect that 
our proofs can be easily extended to that case. However, care will have to be taken when considering concepts such as 
independence, factorisation and external additivity, because for multiple variables, these have several variations; for finite 
state spaces, Reference [10] provides an excellent starting point.

Next, these extended versions of our results could then be used to develop efficient algorithms for credal networks 
whose variables take values in infinite spaces, by suitably adapting existing algorithms for the finite case. See for example 
the work in References [3,6,7].

On the more technical side, it would be useful to see whether our results can be extended from gambles—which are 
taken to be bounded—to the more general case of unbounded functions; in that case, establishing factorisation could prove 
to be tricky, because our proof for Corollary 7.2 relies rather heavily on the fact that gambles are bounded.

Finally, for variables that take values in Euclidean space, I would suggest to take a closer look at the case where B1 and 
B2 are restricted to the Lebesgue measurable events. Combined with a suitably chosen assessment of continuity, I think 
that this might lead to the development of a notion of independent natural extension that includes sigma additive product 
measures as a special case.
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Appendix A. Proofs and additional material

In order to avoid forward referencing—and the associated risk of circular reasoning—the ordering of the proofs in this ap-
pendix sometimes differs from the order in which the corresponding results appear in the main text. Most importantly, the 
additional material for Section 8 presented immediately after of Section 3. Furthermore, since the proof of Proposition 2.1
relies on Proposition 2.2, the order of the proofs of these two results is reversed.

A.1. Proofs and additional material for Section 2

Proof of Proposition 2.2. Since g ≥ 0 is a gamble and therefore by definition bounded, there is some α ∈ Q>0 such that 
0 ≤ g < α. Fix any n ∈N and let gn ∈ G (X ) be defined by

gn := 1

n
α

n−1∑
k=1

IAk , where, for all k ∈ {1, . . . ,n − 1}, Ak :=
{

x ∈ X : g(x) ≥ k

n
α

}
.

For all x ∈ X , we then find that

gn(x) = kx

n
α ≤ g(x) ≤ kx + 1

n
α, where we let kx := max{k ∈ {0, . . . ,n − 1} : g(x) ≥ k

n
α},

which implies that |g(x) − gn(x)| ≤ α
n . Since this is true for every x ∈ X , this allows us to infer that sup |g − gn| ≤ α

n .

Consider now any k ∈ {1, . . . , n − 1}. Since k
n α ∈ Q≥0, it follows from our assumptions on g that Ak is a finite union of 

pairwise disjoint events in B ∪ {X , ∅}. Therefore, there is some mk ∈N and, for all i ∈ {1, . . . , mk}, some Bk,i ∈ B ∪ {X , ∅}
such that IAk = ∑mk

i=1 IBk,i . Since this is true for every k ∈ {1, . . . , n − 1}, it follows that gn = α
n

∑n−1
k=1

∑mk
i=1 IBk,i . Since gn

is clearly non-negative, and because IX = 1 and I∅ = 0, it now follows from Definition 2.1 that gn ∈ G≥0(X ) is a simple 
B-measurable gamble.

So, in summary then, for any fixed n ∈ N, we know that we can construct a simple B-measurable gamble gn ∈ G≥0(X )

such that sup |g − gn| ≤ α
n . Definition 2.2 therefore clearly implies that g is B-measurable. �

Proof of Proposition 2.1. Consider any B ⊆ P∅(X ) such that B∗ := B ∪ {∅} is a sigma field and fix some g ∈ G≥0(X ).
We first prove the ‘only if’ part of the statement. So assume that g is B∗-measurable in the measure-theoretic sense [17, 

Definition 10.1]. It then follows from [17, Corollary 10.5] that {x ∈ X : g(x) ≥ r} ∈ B∗ = B ∪ {∅} for all r ∈ Q≥0. Therefore, 
it follows from Proposition 2.2 that g is B-measurable in the sense of Definition 2.2.

We end by proving the ‘if’ part of the statement. So assume that g is B-measurable in the sense of Definition 2.2. This 
means that there is a sequence {gn}n∈N of simple B-measurable gambles in G≥0(X ) such that limn→+∞ sup |g − gn| = 0. 
Then on the one hand, since limn→+∞ sup |g − gn| = 0 implies that limn→+∞ |g(x) − gn(x)| = 0 for all x ∈ X , we know that 
{gn}n∈N converges pointwise to g on X . On the other hand, for any n ∈ N, we know from Definition 2.1 that there are 
c0 ∈ R≥0, m ∈ N0 and, for all i ∈ {1, . . . , m}, ci ∈ R≥0 and Bi ∈ B, such that g = c0 + ∑m

i=1 ciIBi . Let B0 = X . Since IX = 1, 
and because B∗ is a sigma field and therefore includes X , we then find that g = ∑m

i=0 ciIBi , where, for all i ∈ {0, . . . , n}, 
Bi ∈ B∗ . [17, Example 10.2] therefore implies that gn is a B∗-measurable function in the measure-theoretic sense. Since this 
is true for every n ∈ N, and because {gn}n∈N converges pointwise to g on X , it now follows from [17, Corollary 10.11(a)]
that g is B∗-measurable in the measure-theoretic sense. �
Proof of Corollary 2.3. Immediate consequence of Proposition 2.2. �
A.2. Additional material for Section 3

Many of the results in Section 3 and this corresponding part of the appendix are essentially well-known. Historically, 
most of them date back to Williams [24,25]. Our versions are basically just minor variations of his results, expressed in 
terms of lower previsions—instead of upper previsions—and without imposing structural constraints on the domain. Similar 
results can also be found in Reference [18] and, for the case of Walley-coherence, in Reference [14]. For that reason, and 
in order not to dilute the core novel part of our work, we state these results without proof. For those interested, explicit 
proofs are available in an online arXiv version of this contribution [5].

Lemma A.1. For any A ⊆ G (X ), E (A ) is a coherent set of desirable gambles on X if and only if it satisfies D4.

Lemma A.2. Let A1 and A2 be two subsets of G (X ) such that A1 ⊆ A2 . Then

posi(A1) ⊆ posi(A2) and E (A1) ⊆ E (A2).

Lemma A.3. Let D be a coherent set of desirable gambles on X . Then E (D) = D .
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Lemma A.4. Let D be a coherent set of desirable gambles on X . If f ∈ G (X ) and f /∈ D ∪ {0}, then E (D ∪ {− f }) is a coherent set 
of desirable gambles on X .

Proposition A.5. Let P be a coherent conditional lower prevision on C ⊆ C (X ). Then for any C ′ ⊆ C (X ) such that C ⊆ C ′ , the 
restriction of E to C ′ is the pointwise smallest coherent conditional lower prevision on C ′ that coincides with P on C .

Lemma A.6. Let P be a coherent conditional lower prevision on C ⊆ C (X ). Then for any ( f , B) ∈ C such that f IB ∈ E (P ), we have 
that P ( f |B) ≥ 0.

Proof of Lemma A.6. It suffices to notice that

P ( f |B) = E( f |B) = PE (P )( f |B) = sup{μ ∈R : [ f − μ]IB ∈ E (P )} ≥ 0,

where the equalities follow from Proposition 3.3, Equation (6) and Equation (3), respectively, and where the final inequality 
follows from the fact that f IB ∈ E (P ). �
Lemma A.7. Let P be a coherent lower prevision on G ⊆ G (X ). Then for any f ∈ G ∩ E (P ), we have that P( f ) ≥ 0.

Proof of Lemma A.7. Immediate consequence of Lemma A.6, for C = {( f , X ) : f ∈ G }. �
A.3. Additional material for Section 8

Here too, as in Appendix A.2, it should be noted that the results in Section 8 and this corresponding part of the appendix 
are essentially well-known; they are basically just minor variations of the results of Williams [24,25] and Pelessoni and 
Vicig [18]. As before, we therefore state these results without proof. For those interested, explicit proofs and intermediate 
results are available in an online arXiv version of this contribution [5].

Proposition A.8. Let P be a coherent conditional lower prevision on C (X ) and let P be the corresponding conditional upper prevision 
on C (X ). Then there is a non-empty set P∗ of conditional linear previsions on C (X ) such that

P ( f |B) = min{P ( f |B) : P ∈ P∗} and P ( f |B) = max{P ( f |B) : P ∈ P∗}
for all ( f , B) ∈ C (X ). Furthermore, for any ( f , B) ∈ C (X ) and α ∈ [P ( f |B), P ( f |B)], there is some P ∈ P∗ such that P ( f |B) = α.

A.4. Proofs and additional material for Section 5

A.4.1. The sets of desirable gambles part

Proposition A.9. D1 ⊗ D2 is a coherent set of desirable gambles on X1 × X2 .

Proof. Because of Lemma A.1, it suffices to prove D4. So consider any f ∈ D1 ⊗ D2 and assume ex absurdo that f ≤ 0. We 
will prove that this leads to a contradiction.

Since D1 and D2 are coherent, they are closed with respect to positive scaling and finite sums. Therefore, and because 
f ∈ D1 ⊗ D2 = E (A1→2 ∪ A2→1), it follows from Equations (9) and (10) that

f =
∑
i∈I

IB1,i (X1) f2,i(X2) +
∑
j∈ J

IB2, j (X2) f1, j(X1) + g, (A.1)

with I and J finite—possibly empty—index sets, with B1,i ∈ P∅(X1) and f2,i ∈ D2 for all i ∈ I , with B2, j ∈ P∅(X2) and 
f1, j ∈ D1 for all j ∈ J , with g ≥ 0, and where g = 0 is only possible if |I| + | J | > 0.

Let us assume ex absurdo that |I|+ | J | = 0. Then on the one hand, since we know that g = 0 is only possible if |I|+ | J | >
0, it follows that g 
= 0. On the other hand, |I| + | J | = 0 also implies that I = J = ∅, and therefore, due to Equation (A.1), 
that f = g . Since g ≥ 0 and f ≤ 0, this in turn implies that g = 0, thereby contradicting the fact that g 
= 0. Hence, it follows 
that at least one of the two ex absurdo assumptions that we have so far made must be wrong. If f � 0, then the proof is 
finished. For that reason, in the remainder of the proof, we can assume that |I| + | J | 
= 0, and therefore, that |I| + | J | > 0. 
The only ex absurdo assumption that still remains is that f ≤ 0.

Now let {B1,k}k∈K be the set consisting of those atoms of the algebra generated by {B1,i}i∈I that belong to ∪i∈I B1,i and, 
for all k ∈ K , let f2,k := ∑

i∈I : B1,k⊆B1,i
f2,i . The following properties are then easily verified. First, since I is finite, K is also 

finite. Secondly, |K | = 0 if and only if |I| = 0. Thirdly, for all k ∈ K , we have that B1,k ∈ P∅(X1) and—since D1 is coherent 
and therefore satisfies D3—that f2,k ∈ D1. Fourthly, 

∑
k∈K IB1,k (X1) f2,k(X2) is equal to 

∑
i∈I IB1,i (X1) f2,i(X2). Fifthly, the 

events in {B1,k}k∈K are pairwise disjoint. For this reason, without loss of generality, we can assume the events {B1,i}i∈I
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in Equation (A.1) to be pairwise disjoint. A completely similar argument leads us to conclude that the events {B2, j} j∈ J in 
Equation (A.1) can be assumed to be pairwise disjoint, again without loss of generality.

If {B1,i}i∈I is a partition of X1, then we let Y1 := I . Otherwise, we let Y1 := I ∪ {i∗} and define B1,i∗ := X1 \ ∪i∈I B1,i . 
Similarly, we let Y2 := J if {B2, j} j∈ J is a partition of X2, and let Y2 := J ∪ { j∗} and B1, j∗ := X2 \ ∪ j∈ J B2, j otherwise. Next, 
for every i ∈ I , we let h2,i be a gamble on Y2, defined by

h2,i(y2) := sup{ f2,i(x2) : x2 ∈ B2,y2} for all y2 ∈ Y2. (A.2)

Similarly, for every j ∈ J , we let h1, j be a gamble on Y1, defined by

h1, j(y1) := sup{ f1, j(x1) : x1 ∈ B1,y1} for all y1 ∈ Y1. (A.3)

Using these gambles on Y1 and Y2, we now construct a real-valued function h on Y1 × Y2, defined by

h(y1, y2) :=
∑
i∈I

Ii(y1)h2,i(y2) +
∑
j∈ J

I j(y2)h1, j(y1) for all y1 ∈ Y1 and y2 ∈ Y2 (A.4)

This function is non-positive, in the sense that h ≤ 0. In order to prove that, let us fix any y1 ∈ Y1 and y2 ∈ Y2. It then 
follows from Equations (A.2) and (A.3) that

h(y1, y2) =
∑
i∈I

Ii(y1) sup
x2∈B2,y2

f2,i(x2) +
∑
j∈ J

I j(y2) sup
x1∈B1,y1

f1, j(x1).

Since Ii(y1) can be non-zero for at most one i ∈ I and I j(y2) can be non-zero for at most one j ∈ J , we know that each 
of the two summations on the right hand side contains at most one non-zero term. The suprema can therefore be moved 
outside of the summations, yielding

h(y1, y2) = sup
x1∈B1,y1

sup
x2∈B2,y2

⎛
⎝∑

i∈I

Ii(y1) f2,i(x2) +
∑
j∈ J

I j(y2) f1, j(x1)

⎞
⎠ .

For the next step, we start by observing the following. For any x1 ∈ B1,y1 and any i ∈ I , since the sets {B1,i}i∈I are pairwise 
disjoint, we know that x1 ∈ B1,i if and only if y1 = i, which implies that Ii(y1) = IB1,i (x1). Similarly, for any x2 ∈ B2,y2 and 
any j ∈ J , since the sets {B2, j} j∈ J are pairwise disjoint, we know that x2 ∈ B2, j if and only if y2 = j, which implies that 
I j(y2) = IB2, j (x2). As an immediate consequence, it follows that

h(y1, y2) = sup
x1∈B1,y1

sup
x2∈B2,y2

⎛
⎝∑

i∈I

IB1,i (x1) f2,i(x2) +
∑
j∈ J

IB2, j (x2) f1, j(x1)

⎞
⎠ .

Finally, in combination with Equation (A.1), this implies that

h(y1, y2) = sup
x1∈B1,y1

sup
x2∈B2,y2

( f (x1, x2) − g(x1, x2)) ≤ 0,

where, for the last inequality, we use the fact that f ≤ 0 and g ≥ 0. Since this true for every y1 ∈ Y1 and y2 ∈ Y2, it follows 
that h ≤ 0.

Now let A1 := {h1, j : j ∈ J } and A2 := {h2,i : i ∈ I} and assume ex absurdo that H1 := E (A1) and H2 := E (A2) are 
coherent sets of desirable gambles on Y1 and Y2, respectively. We will prove that this is impossible, by constructing a 
probability mass function p on X1 × X2 such that the corresponding expectation of h is both non-positive and positive, 
thereby obtaining a contradiction. In order to do that, we borrow an argument of De Cooman and Miranda [9, Proof of 
Proposition 15] that is based on a very useful lemma of them, which, in order to make this paper self-contained, is restated 
here in Lemma A.10.

Since H1 is a coherent set of desirable gambles on Y1, it follows from Definition 3.1—and D4 in particular—that 0 /∈
H1 = E (A1). Therefore, and because Y1 and J —and hence also A1—are finite, it follows from Lemma A.10 that there is a 
probability mass function p1 on Y1 such that p1(y1) > 0 for all y1 ∈ Y1 and 

∑
y1∈Y1

p1(y1)h1, j(y1) > 0 for all j ∈ J . Using 
a completely analogous argument, we also infer that there is a probability mass function p2 on Y2 such that p2(y2) > 0 for 
all y2 ∈ Y2 and 

∑
y2∈Y2

p2(y2)h2,i(y2) > 0 for all i ∈ I .
We now let p be the probability mass function on Y1 × Y2 that is defined by p(y1, y2) := p1(y1)p2(y2) for all y1 ∈ Y1

and y2 ∈ Y2, and we let E p(h) be the expectation of h with respect to p, as defined by

E p(h) :=
∑

y1∈Y1

∑
y2∈Y2

p(y1, y2)h(y1, y2) =
∑

y1∈Y1

∑
y2∈Y2

p1(y1)p2(y2)h(y1, y2).

Then on the one hand, since h ≤ 0, we have that E p(h) ≤ 0. On the other hand, however, it follows from Equation (A.4) that
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E p(h) =
∑

y1∈Y1

∑
y2∈Y2

p1(y1)p2(y2)

⎛
⎝∑

i∈I

Ii(y1)h2,i(y2) +
∑
j∈ J

I j(y2)h1, j(y1)

⎞
⎠

=
∑

y1∈Y1

∑
y2∈Y2

p1(y1)p2(y2)
∑
i∈I

Ii(y1)h2,i(y2) +
∑

y1∈Y1

∑
y2∈Y2

p1(y1)p2(y2)
∑
j∈ J

I j(y2)h1, j(y1)

=
∑
i∈I

∑
y1∈Y1

p1(y1)Ii(y1)
∑

y2∈Y2

p2(y2)h2,i(y2) +
∑
j∈ J

∑
y2∈Y2

p2(y2)I j(y2)
∑

y1∈Y1

p1(y1)h1, j(y1)

=
∑
i∈I

p1(i)
∑

y2∈Y2

p2(y2)h2,i(y2) +
∑
j∈ J

p2( j)
∑

y1∈Y1

p1(y1)h1, j(y1).

For every i ∈ I , it follows from the properties of p1 and p2 that the corresponding term in this summation is positive. 
Similarly, for every j ∈ J , it follows from the properties of p1 and p2 that the corresponding term in this summation is 
positive. Since |I| + | J | > 0, this implies that E p(h) > 0, thereby contradicting the fact that E p(h) ≤ 0. Hence, it follows that 
one of the two remaining ex absurdo assumptions is wrong. If f ≤ 0, then the proof is finished. Therefore, in the remainder 
of the proof, we can assume that there is at least one i ∈ {1, 2} for which Hi is incoherent. Without loss of generality, 
symmetry allows us to assume that i = 1, that is, that H1 is incoherent. The only ex absurdo assumption that still remains 
is that f ≤ 0.

Since H1 is incoherent, it follows from Lemma A.1 that there is some h∗ ∈ H1 such that h∗ ≤ 0. Furthermore, since 
h∗ ∈ H1, Equation (2) implies that h∗ = λg∗ +∑

j∈ J λ jh1, j , for some λ ∈R≥0 and g∗ ∈ G>0(Y1) and, for all j ∈ J , some λ j ∈
R≥0, with λ + ∑

j∈ J λ j > 0. If λ j = 0 for all j ∈ J , then λ > 0 and g∗ = 1
λ

h∗ ≤ 0, which is impossible because g∗ ∈ G>0(Y1). 
Therefore, we know that there is at least one j ∈ J such that λ j > 0.

Now let f1 := ∑
j∈ J λ j f1, j and fix any x∗

1 ∈ X1. Since the events in {B1,y1 }y1∈Y1 are pairwise disjoint, there will then be 
a unique y∗

1 ∈ Y1 such that x∗
1 ∈ B1,y∗

1
. For this particular choice of y∗

1, we then find that

f1(x∗
1) =

∑
j∈ J

λ j f1, j(x∗
1) ≤

∑
j∈ J

λ j sup
x1∈B1,y∗

1

f1, j(x1) =
∑
j∈ J

λ jh1, j(y∗
1) = h∗(y∗

1) − λg∗(y∗
1) ≤ 0,

where the first equality follows from Equation (A.3) and the second inequality follows from the fact that h∗ ≤ 0, λ ≥ 0 and 
g∗ ∈ G>0(Y1). Since this is true for every x∗

1 ∈ X1, we infer that f1 ≤ 0. However, on the other hand, since there is at least 
one j ∈ J such that λ j > 0, and because f1, j ∈ D1 for all j ∈ J , the coherence of D1 implies that f1 ∈ D1 and therefore, 
because of D4, that f1 � 0. From this contradiction, it follows that one of our ex absurdo assumptions must be false. Since 
the only remaining ex absurdo assumption is that f ≤ 0, this concludes the proof. �
Lemma A.10. [9, Lemma 2] Let � be a finite set and consider some finite subset A of G (�). Then 0 /∈ E (A ) if and only if there is a 
probability mass function p on � such that p(ω) > 0 for all ω ∈ � and 

∑
ω∈� p(ω) f (ω) > 0 for all f ∈ A .

Proposition A.11. D1 ⊗ D2 is an independent product of D1 and D2 .

Proof. For ease of notation, let D := D1 ⊗ D2. Because of symmetry, it clearly suffices to prove that

(∀B2 ∈ B2) D1 = marg1(D) = marg1(D |B2),

which, since marg1(D) = marg1(D |X2), is equivalent to proving that, for all f1 ∈ G (X1) and B2 ∈ B2 ∪ {X2},

f1(X1)IB2(X2) ∈ D ⇔ f1 ∈ D1.

Since f1 ∈ D1 implies that f1(X1)IB2 (X2) ∈ A2→1 ⊆ D for all B1 ∈ B2 ∪ {X2}, the converse implication holds trivially. So 
consider any f1 ∈ G (X1) and B2 ∈ B2 ∪ {X2} such that f1(X1)IB2 (X2) ∈ D . Since we know from Proposition A.9 that D is 
coherent, this implies that f1 
= 0. It remains to prove that f1 ∈ D1.

Assume ex absurdo that f1 /∈ D1. Then since f1 
= 0, D•
1 := E (D1 ∪ {− f1}) is a coherent set of desirable gambles on X1

because of Lemma A.4, and therefore, if we let

A •
2→1 :=

{
f ′
1(X1)IB ′

2
(X2) : f ′

1 ∈ D•
1 , B ′

2 ∈ B2 ∪ {X2}
}

, (A.5)

it follows from Proposition A.9 that D•
1 ⊗ D2 := E (A1→2 ∪ A •

2→1) is a coherent set of desirable gambles on X1 × X2. Now 
on the one hand, since − f1 ∈ D•

1 , it follows from Equation (A.5) that − f1(X1)IB2 (X2) ∈ A •
2→1 ⊆ D•

1 ⊗ D2. On the other 
hand, since D1 ⊆ D•

1 implies that D1 ⊗ D2 ⊆ D•
1 ⊗ D2, we infer from f1(X1)IB2 (X2) ∈ D that f1(X1)IB2 (X2) ∈ D•

1 ⊗ D2. 
Since D•

1 ⊗ D2 is coherent, this implies that

0 = f1(X1)IB2(X2) − f1(X1)IB2(X2) ∈ D•
1 ⊗ D2,

which contradicts D4. �
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Proof of Theorem 5.1. Since we know from Proposition A.11 that D1 ⊗D2 is an independent product of D1 and D2, it suffices 
to prove that any other such independent product of D1 and D2 is a superset of D1 ⊗ D2.

So let D be any independent product of D1 and D2. Definition 5.1 then implies that D is coherent and that A1→2 ∪
A2→1 ⊆ D . Hence, we find that

D1 ⊗ D2 = E (A1→2 ∪ A2→1) ⊆ E (D) = D,

where the inclusion follows from Lemma A.2 and the final equality from Lemma A.3. �
A.4.2. The conditional lower previsions part

Proposition A.12. P 1 ⊗ P 2 is a coherent conditional probability on C (X1 × X2).

Proof. For all i ∈ {1, 2}, since P i is a coherent conditional lower prevision on Ci , it follows from Proposition 3.2 that E (P i)

is a coherent set of desirable gambles on Xi . Therefore, Proposition A.9 implies that E (P 1) ⊗ E (P 2) is a coherent set of 
desirable gambles on X1 × X2. The result now follows from Definition 3.3. �
Proposition A.13. Consider two indexes i and j such that {i, j} = {1, 2}. Then for any f i ∈ G (Xi) and Bi ∈ P∅(Xi) and any B j ∈ B j , 
we have that

(P 1 ⊗ P 2)( f i|Bi ∩ B j) = (P 1 ⊗ P 2)( f i |Bi) = Ei( f i |Bi). (A.6)

Proof. For all i ∈ {1, 2}, since P i is a coherent conditional lower prevision on Ci , it follows from Proposition 3.2 that E (P i) is 
a coherent set of desirable gambles on Xi . Therefore, we infer from Proposition A.11 that E (P 1) ⊗E (P 2) is an independent 
product of E (P 1) and E (P 2). For ease of notation, we now let P := P 1 ⊗ P 2 and D := E (P 1) ⊗ E (P 2). As we know from 
Equation (11), P is then equal to PD . Furthermore, since D is an independent product of E (P 1) and E (P 2), we know that 
D is epistemically independent and that it has E (P 1) and E (P 2) as its marginals.

We are now ready to prove Equation (A.6). In order to do that, we fix any two indexes i and j such that {i, j} = {1, 2}, any 
f i ∈ G (Xi) and Bi ∈ P∅(Xi) and any B j ∈ B j . We start by proving the first equality. Since D is epistemically independent, 
we know that

[ f i − μ]IBi ∈ D ⇔ [ f i − μ]IBi ∈ margi(D)

⇔ [ f i − μ]IBi ∈ margi(D |B j) ⇔ [ f i − μ]IBi IB j ∈ D ⇔ [ f i − μ]IBi∩B j ∈ D

for all μ ∈R, and therefore, we find that

P ( f i|Bi) = sup
{
μ ∈R : [ f i − μ]IBi ∈ D

} = sup
{
μ ∈R : [ f i − μ]IBi∩B j ∈ D

} = P ( f i |Bi ∩ B j).

Next, we prove the second equality of Equation (A.6). Since D has E (P 1) and E (P 2) as its marginals, we know that

[ f i − μ]IBi ∈ D ⇔ [ f i − μ]IBi ∈ margi(D) ⇔ [ f i − μ]IBi ∈ E (P i)

for all μ ∈R, and therefore, we find that

P ( f i|Bi) = sup
{
μ ∈R : [ f i − μ]IBi ∈ D

} = sup
{
μ ∈R : [ f i − μ]IBi ∈ E (P i)

} = Ei( f i|Bi),

using Equation 6 to establish the last equality. �
Proposition A.14. The restriction of P 1 ⊗ P 2 to C is an independent product of P 1 and P 2 .

Proof. Since we know from Proposition A.12 that P 1 ⊗ P 2 is a coherent lower prevision on C (X1 × X2), it follows from 
Definition 3.3 that its restriction to C is coherent as well. Due to Definition 5.3, it remains to show that this restriction of 
P 1 ⊗ P 2 to C is epistemically independent and that it coincides with P 1 and P 2 on their domain. Epistemic independence 
follows trivially from Definition 4.2 and Proposition A.13. Hence, it remains to prove that the restriction of P 1 ⊗ P 2 to C
coincides with P 1 and P 2 on their domain, or equivalently, that

(P 1 ⊗ P 2)( f i|Bi) = P i( f i |Bi) for all i ∈ {1,2} and ( f i, Bi) ∈ Ci .

So fix any i ∈ {1, 2} and ( f i, Bi) ∈ Ci . We then find that indeed, as desired,

(P 1 ⊗ P 2)( f i|Bi) = Ei( f i|Bi) = P i( f i|Bi),

where the first equality follows from Proposition A.13 and the second equality follows from Equation (6) and Proposi-
tion 3.2. �
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Proof of Theorem 5.2. Since we know from Proposition A.14 that the restriction of P 1 ⊗ P 2 to C is an independent product 
of P 1 and P 2, it suffices to prove that any other such independent product of P 1 and P 2 dominates P 1 ⊗ P 2 on C .

So let P be any independent product of P 1 and P 2. Definition 5.3 then implies that P is an epistemically independent 
coherent conditional lower prevision on C that coincides with P 1 and P 2 on their domain. Let AP be the corresponding 
set of gambles, as defined by Equation (5), and let D := E (P ) = E (AP ). We then know from Proposition 3.2 that D is a 
coherent set of desirable gambles on X1 × X2 and that PD coincides with P on C . In the remainder of this proof, we 
will show that E (P 1) ⊗ E (P 2) ⊆ D . Because of Equation (11), this clearly implies that PD ( f |B) ≥ (P 1 ⊗ P 2)( f |B) for all 
( f , B) ∈ C . Since PD coincides with P on C , this implies that P dominates P 1 ⊗ P 2 on C , thereby concluding the proof.

Let D1 := E (P 1) and let A2→1 be the corresponding set of gambles on X1 × X2, as defined by Equation (10). We will 
now prove that A2→1 ⊆ D . So consider any f1 ∈ D1 and any B2 ∈ B2 ∪ {X2}. We need to prove that f1(X1)IB2 (X2) ∈ D . 
Since f1 ∈ D1 = E (P 1) = posi(AP 1

∪ G>0(X1)), it follows from Equation (1) that there are n ∈ N and, for all i ∈ {1, . . . , n}, 
λi ∈ R>0 and gi ∈ AP 1

∪ G>0(X1) such that f1 = ∑n
i=1 λi gi .

For any i ∈ {1, . . . , n}, we now let hi(X1, X2) := gi(X1)IB2 (X2) ∈ G (X1 × X2). As we will show, this gamble hi belongs 
to D . We consider two cases: gi ∈ G>0(X1) and gi /∈ G>0(X1). If gi ∈ G>0(X1), then hi ∈ G>0(X1 × X2), which, since D is 
a coherent set of desirable gambles on X1 × X2, implies that hi ∈ D . If gi /∈ G>0, then since gi ∈ AP 1

∪ G>0(X1), it follows 
that gi ∈ AP 1

, which implies that there are ( f ′
1, B1) ∈ C1 and μ < P 1( f ′

1|B1) such that gi = [ f ′
1 − μ]IB1 . Furthermore, 

since P coincides with P 1 on its domain, we also know that P 1( f ′
1|B1) = P ( f ′

1|B1). If B2 = X2, Equation (5) therefore 
implies that hi ∈ AP ⊆ D because IB2 = 1. If B2 
= X2, then B2 ∈ B2. Since P is epistemically independent, this implies that 
P ( f ′

1|B1) = P ( f ′
1|B1 ∩ B2). Hence, here too, Equation (5) implies that hi ∈ AP ⊆ D—because IB1∩B2 = IB1IB2 .

In summary then, we have found that hi ∈ D for all i ∈ {1, . . . , n}. Since f1 = ∑n
i=1 λi gi , this implies that

f1(X1)IB2(X2) =
(

n∑
i=1

λi gi(X1)

)
IB2(X2) =

n∑
i=1

λi gi(X1)IB2(X2) =
n∑

i=1

λihi(X1, X2) ∈ D,

where the inclusion holds because D is coherent. Since this is true for every f1 ∈ D1 and every B2 ∈ B2 ∪ {X2}, it follows 
that A2→1 ⊆ D . Using a completely analogous argument, it also follows that A1→2 ⊆ D , with A1→2 defined by Equation (9)
for D2 := E (P 2). Hence, we find that A1→2 ∪ A2→1 ⊆ D , and therefore, that

E (P 1) ⊗ E (P 2) = D1 ⊗ D2 = E (A1→2 ∪ A2→1) ⊆ E (D) = D,

where the second equality follows from Equation (8), the inclusion follows from Lemma A.2, and the last equality follows 
from Lemma A.3. �
A.5. Proofs and additional material for Section 6

Proof of Proposition 6.1. We only prove the result for D1 ⊗ D2. The result for P 1 ⊗ P 2 then follows trivially from Equa-
tion (11).

Let D1 ⊗ D2 be the independent natural extension that corresponds to B1 and B2, as defined by Equations (8)–(10), 
and let D1 ⊗′ D2 be the independent natural extension that corresponds to B′

1 and B′
2, defined by

D1 ⊗′ D2 := E
(
A ′

1→2 ∪ A ′
2→1

)
,

with

A ′
1→2 :=

{
f2(X2)IB ′

1
(X1) : f2 ∈ D2, B ′

1 ∈ B′
1 ∪ {X1}

}
and

A ′
2→1 :=

{
f1(X1)IB ′

2
(X2) : f1 ∈ D1, B ′

2 ∈ B′
2 ∪ {X2}

}
.

Then as explained in the main text, in the paragraph that precedes Proposition 6.1, we have that D1 ⊗ D2 ⊆ D1 ⊗′ D2. It 
remains to prove that D1 ⊗′ D2 ⊆ D1 ⊗ D2.

Fix any f2 ∈ D2 and B ′
1 ∈ B′

1 ∪{X1}. We will prove that f2(X2)IB ′
1
(X1) ∈ D1 ⊗D2. If B ′

1 = X1, this follows trivially from 
Equations (8) and (9). Otherwise, it follows from our assumptions that there is some m ∈N and, for all k ∈ {1, . . . , m}, some 
B1,k ∈ B1 such that B ′

1 is a finite disjoint union of the events {B1,k}1≤k≤m , which implies that IB ′
1
= ∑m

k=1 IB1,k and therefore 
also that f2(X2)IB ′

1
(X1) = ∑m

k=1 f2(X2)IB1 (X1). Hence, Equations (8) and (9) again imply that f2(X2)IB ′
1
(X1) ∈ D1 ⊗ D2. 

Since this is true for every f2 ∈ D2 and B ′
1 ∈ B′

1 ∪ {X1}, it follows that A ′
1→2 ⊆ D1 ⊗ D2. Using a completely analogous 

argument, we also infer that A ′
2→1 ⊆ D1 ⊗ D2. The result now follows because A ′

1→2 ∪ A ′
2→1 ⊆ D1 ⊗ D2 implies that

D1 ⊗′ D2 = E
(
A ′

1→2 ∪ A ′
2→1

) ⊆ E (D1 ⊗ D2) = D1 ⊗ D2,

using Lemma A.2 for the inclusion and Lemma A.3 and Proposition A.9 for the last equality. �



J. De Bock / International Journal of Approximate Reasoning 104 (2019) 84–107 105
A.6. Proofs and additional material for Section 7

Lemma A.15. For any f ∈ G (X1) and h ∈ G (X2) and any simple B1-measurable g ∈ G≥0(X1), we have that

(P 1 ⊗ P 2)( f + gh) ≥ E1

(
f + g E2(h)

)
.

Proof. Since g ∈ G≥0(X1) is a simple B-measurable gamble, we know from Definition 2.1 that there are c0 ∈ R≥0, n ∈
N0 and, for all i ∈ {1, . . . , n}, ci ∈ R≥0 and Bi ∈ B1, such that g = c0 + ∑n

i=1 ciIBi . Furthermore, since we know from 
Proposition A.12 that P 1 ⊗ P 2 is coherent, it follows from Proposition 3.4 that P 1 ⊗ P 2 satisfies LP2, LP3 and LP4. Finally, 
since E2 is coherent, we know from Proposition 3.4 that it satisfies LP6. Therefore, we find that

(P 1 ⊗ P 2)( f + gh) = (P 1 ⊗ P 2)
(

f + g E2(h) + (
c0 +

n∑
i=1

ciIBi

)[h − E2(h)]
)

≥ (P 1 ⊗ P 2)
(

f + g E2(h)
) + c0(P 1 ⊗ P 2)

(
h − E2(h)

) +
n∑

i=1

ci(P 1 ⊗ P 2)
(
IBi [h − E2(h)])

= E1

(
f + g E2(h)

) + c0 E2

(
h − E2(h)

) +
n∑

i=1

ci(P 1 ⊗ P 2)
(
IBi [h − (P 1 ⊗ P 2)(h|Bi)]

)
= E1

(
f + g E2(h)

) + c0
(

E2(h) − E2(h)
) = E1

(
f + g E2(h)

)
,

where the first equality follows because g = c0 +∑n
i=1 ciIBi , where the first inequality follows because P 1 ⊗ P 2 satisfies LP3 

and LP2, where the second equality follows from Proposition A.13, and where the third equality follows because E2 satis-
fies LP6 and P 1 ⊗ P 2 satisfies LP4. �
Lemma A.16. For any f ∈ G (X1) and h ∈ G (X2) and any simple B1-measurable g ∈ G≥0(X1), we have that

(P 1 ⊗ P 2)( f + gh) ≤ E1

(
f + g E2(h)

)
.

Proof. Since E2 is a coherent conditional lower prevision on C (X2), we know from Proposition A.8 that there is a con-
ditional linear prevision P2 on C (X2) such that P2(h) = E2(h) and P2 ≥ E2. Similarly, since E1 is a coherent conditional 
lower prevision on C (X1), we know from Proposition A.8 that there is a conditional linear prevision P1 on C (X1) such 
that P1

(
f + g E2(h)

) = E1

(
f + g E2(h)

)
and P1 ≥ E1.

Consider now any i ∈ {1, 2}. We then know from Proposition A.5 that Ei coincides with P i on Ci . Therefore, and because 
Pi ≥ Ei , we also know that Pi dominates P i on Ci . Due to Equation (5), this implies that AP i

⊆ APi and therefore, using 
Lemma A.2, also that E (P i) ⊆ E (Pi). Since this is true for every i ∈ {1, 2}, it follows from Equation (8) and Lemma A.2 that 
E (P 1) ⊗ E (P 2) ⊆ E (P1) ⊗ E (P2), and therefore, because of Equation (11), that P 1 ⊗ P 2 ≤ P1 ⊗ P2.

The result can now be proved as follows. First, since P 1 ⊗ P 2 ≤ P1 ⊗ P2, we find that

(P 1 ⊗ P 2)( f + gh) ≤ (P1 ⊗ P2)( f + gh). (A.7)

Secondly, since we know from Proposition A.12 that (P1 ⊗ P2) is coherent, it follows from Proposition 3.4 that (P1 ⊗ P2)

satisfies LP8, which implies that

(P1 ⊗ P2)( f + gh) ≤ −(P1 ⊗ P2)(− f − gh) ≤ −P1
( − f + g P2(−h)

)
, (A.8)

using Lemma A.15 for the second inequality. Finally, we also know that

−P1
( − f + g P2(−h)

) = P1
(

f + g P2(h)
) = E1

(
f + g E2(h)

)
, (A.9)

where the first equality follows from Definitions 8.1 and 8.2 because P1 and P2 are conditional linear previsions, and 
where the second equality follows because P2(h) = E2(h) and P1

(
f + g E2(h)

) = E1

(
f + g E2(h)

)
. By combining Equa-

tions (A.7)–(A.9), the result is now immediate. �
Proposition A.17. For any f ∈ G (X1) and h ∈ G (X2) and any simple B1-measurable g ∈ G≥0(X1), we have that

(P 1 ⊗ P 2)( f + gh) = E1

(
f + g E2(h)

)
.

Proof. Immediate consequence of Lemmas A.15 and A.16. �
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Proof of Theorem 7.1. Since g ∈ G≥0(X1) is B1-measurable, we know from Definition 2.2 that there is a sequence {gn}n∈N
of simple B1-measurable gambles in G≥0(X1) such that gn converges uniformly to g . This also implies that f + gn E2(h)

converges uniformly to f + g E2(h) and, since h is a gamble and therefore by definition bounded, that f + gnh converges 
uniformly to f + gh. The result now follows from the following series of equalities:

(P 1 ⊗ P 2)( f + gh) = lim
n→+∞(P 1 ⊗ P 2)( f + gnh) = lim

n→+∞ E1

(
f + gn E2(h)

) = E1

(
f + g E2(h)

)
.

The first of these equalities holds because it follows from Propositions A.12 and 3.4 that P 1 ⊗ P 2 satisfies LP5. The sec-
ond equality follows from Proposition A.17. The third equality holds because the coherence of E1 allows us to infer from 
Proposition 3.4 that E1 satisfies LP5. �
Proof of Corollary 7.2. Let f := 0 ∈ G (Xi). We then know from Theorem 7.1 that

(P 1 ⊗ P 2)(gh) = (P 1 ⊗ P 2)( f + gh) = Ei

(
f + g E j(h)

) = Ei

(
g E j(h)

)
.

The result can now be inferred from the non-negative homogeneity—LP2—of Ei that is implied by its coherence. If E j(h) ≥ 0, 
we simply apply the non-negative homogeneity for λ := E j(h). If E j(h) ≤ 0, we apply it for λ := −E j(h) and combine this 
with the fact that Ei(g) := −Ei(−g). �
Proof of Corollary 7.3. Let g := 1. Then g belongs to G≥0(X1) and is B1-measurable. Therefore, we know from Theorem 7.1
that

(P 1 ⊗ P 2)( f + h) = (P 1 ⊗ P 2)( f + gh) = E1

(
f + g E2(h)

) = E1

(
f + E2(h)

)
.

The result now follows from the constant additivity—LP6—of E1 that is implied by its coherence. �
A.7. Proofs and additional material for Section 9

Proof of Proposition 9.1. Fix any ε > 0. It then follows from Equations (11) and (3) that there is some μ ∈ R such that 
μ > (P1⊗P2)( f ) − ε and f − μ ∈ E (P1) ⊗ E (P2). Consider any such μ. Since f − μ ∈ E (P1) ⊗ E (P2), it follows from 
Equations (8), (9), (10), (2) and (1) that

f − μ = g +
n∑

i=1

λi f2,i(X2)IB1,i (X1) +
m∑

j=1

λ j f1, j(X1)IB2, j (X2)

with g ∈ G≥0 and n, m ∈N0 and, for all i ∈ {1, . . . , n}, λi ∈ R>0, f2,i ∈ E (P2) and B1,i ∈ B1 ∪ {X1} and, for all j ∈ {1, . . . , m}, 
λ j ∈R>0, f1, j ∈ E (P1) and B2, j ∈ B2 ∪ {X2}. Since P12 is a linear prevision—and hence satisfies P1–P3—this implies that

P12( f ) = P12(μ) + P12(g) +
n∑

i=1

λi P12( f2,i(X2)IB1,i (X1)) +
m∑

j=1

λ j P12( f1, j(X1)IB2, j (X2))

≥ μ +
n∑

i=1

λi P12( f2,i(X2)IB1,i (X1)) +
m∑

j=1

λ j P12( f1, j(X1)IB2, j (X2))

Furthermore, for any i ∈ {1, . . . , n}, there are two cases. If B1,i = X1, then

P12( f2,i(X2)IB1,i (X1)) = P12( f2,i(X2)) = P2( f2,i) ≥ 0,

where the second equality follows from our assumptions on P12 and the third equality follows from Lemma A.7. If B1,i ∈ B1, 
then

P12( f2,i(X2)IB1,i (X1)) ≥ P12( inf
x2∈X2

f2,iIB1,i (X1)) = inf
x2∈X2

f2,i P12(IB1,i (X1)) = inf
x2∈X2

f2,i P1(IB1,i ) = 0,

where the inequality follows from LP7, the first equality follows from P2 and the last two equalities follow from our assump-
tions on P12 and P1 and from the fact that—since we consider atom-independence—B1,i ∈ B1 implies that there is some 
x1 ∈ X1 such that B1,i = {x1} and hence also P1(IB1,i ) = P1(Ix1 ) = 0. In both cases, we find that P12( f2,i(X2)IB1,i (X1)) ≥
0. Similarly, for any j ∈ {1, . . . , m}, we find that P12( f1, j(X1)IB2, j (X2)) ≥ 0. Hence, it follows that P12( f ) ≥ μ. Since 
μ > (P1⊗P2)( f ) − ε , this implies that P12( f ) > (P1⊗P2)( f ) − ε , and, since ε > 0 is arbitrary, this in turn implies that 
P12( f ) ≥ (P1⊗P2)( f ). This already establishes the first inequality of the statement. For the second equality of the state-
ment, it suffices to apply the first equality to − f , yielding (P1⊗P2)(− f ) ≤ P12(− f ). Indeed, since P12 is linear, this trivially 
implies that
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(P1⊗P2)( f ) = −(P1⊗P2)(− f ) ≥ −P12(− f ) = P12( f ),

thereby establishing the second inequality of the statement. �
Proof of Proposition 9.2. Fix any ε > 0. It then follows from Equations (11) and (3) that there is some μ ∈ R such that 
μ > (P1⊗P2)( f ) − ε and f − μ ∈ E (P1) ⊗ E (P2). Consider any such μ. Since f − μ ∈ E (P1) ⊗ E (P2), it follows from 
Equations (8), (9), (10), (2) and (1) that

f − μ = g +
n∑

i=1

λi f2,i(X2)IB1,i (X1) +
m∑

j=1

λ j f1, j(X1)IB2, j (X2)

with g ∈ G≥0 and n, m ∈N0 and, for all i ∈ {1, . . . , n}, λi ∈ R>0, f2,i ∈ E (P2) and B1,i ∈ B1 ∪ {X1} and, for all j ∈ {1, . . . , m}, 
λ j ∈ R>0, f1, j ∈ E (P1) and B2, j ∈ B2 ∪ {X2}. Since P1 and P2 are linear previsions—and hence satisfy P1–P3—this implies 
that

P1(P2( f )) = P1(P2(μ) + P1(P2(g)) +
n∑

i=1

λi P1(P2( f2,i(X2)IB1,i (X1))) +
m∑

j=1

λ j P1(P2( f1, j(X1)IB2, j (X2)))

≥ μ +
n∑

i=1

λi P1(P2( f2,i(X2))IB1,i (X1)) +
m∑

j=1

λ j P1( f1, j(X1)P2(IB2, j (X2)))

= μ +
n∑

i=1

λi P1(IB1,i (X1))P2( f2,i(X2)) +
m∑

j=1

λ j P1( f1, j(X1))P2(IB2, j (X2)).

Furthermore, for any i ∈ {1, . . . , n}, it follows from Lemma A.7 that P2( f2,i(X2)) ≥ 0 and from P1 that P1(IB1,i (X1)) ≥ 0, 
which implies that λi P1(IB1,i (X1))P2( f2,i(X2)) ≥ 0. Using a completely analogous argument, for any j ∈ {1, . . . , m}, we find 
that λ j P1( f1, j(X1))P2(IB2, j (X2)) ≥ 0. Hence, it follows that P1(P2( f )) ≥ μ. Since μ > (P1⊗P2)( f ) − ε , this implies that 
P1(P2( f )) > (P1⊗P2)( f ) − ε , and, since ε > 0 is arbitrary, this in turn implies that P1(P2( f )) ≥ (P1⊗P2)( f ). This already 
establishes the first inequality of the statement. For the second equality of the statement, it suffices to apply the first 
equality to − f , yielding (P1⊗P2)(− f ) ≤ P1(P2(− f )). Indeed, since P1 and P2 are linear, this trivially implies that

(P1⊗P2)( f ) = −(P1⊗P2)(− f ) ≥ −P1(P2(− f )) = P1(P2( f )),

thereby establishing the second inequality of the statement. �
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