A desirability-based axiomatisation for coherent choice functions Jasper De Bock & Gert de Cooman SMPS/BELIEF 2018

September 20

now :-)

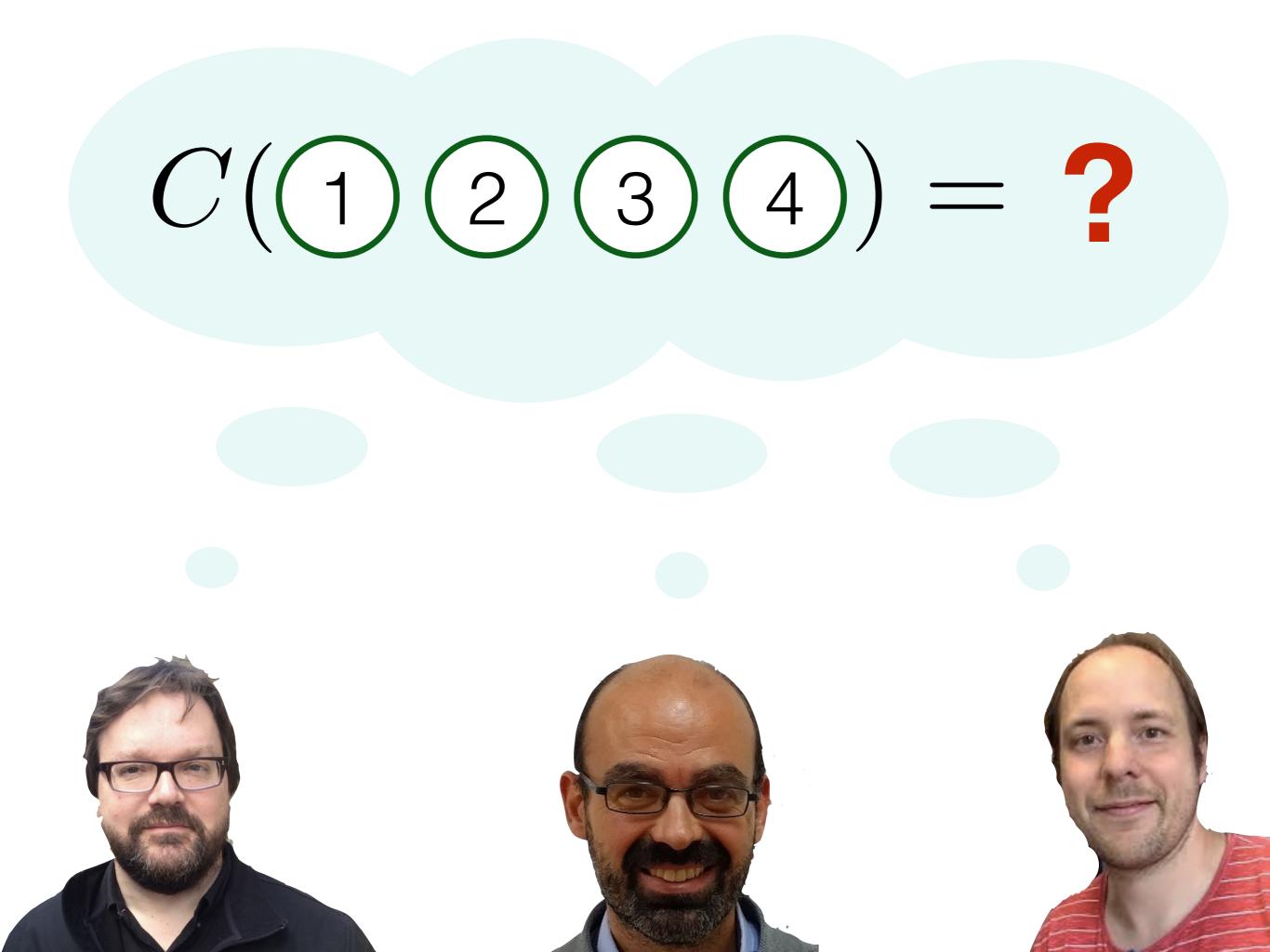
fo coherent choice functions lasper De Bock & Gert de Cooman SMPS/BELIEF 2018

September 20

now :-)

C((1)(2)(3)(4)) = ?

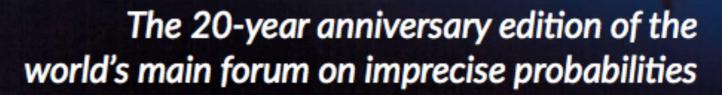
choice functions



There's more to uncertainty than probabilities

http://www.ISIPTA 2019.ugent.be

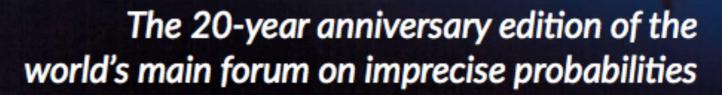
3 - 6 July Ghent, Belgium



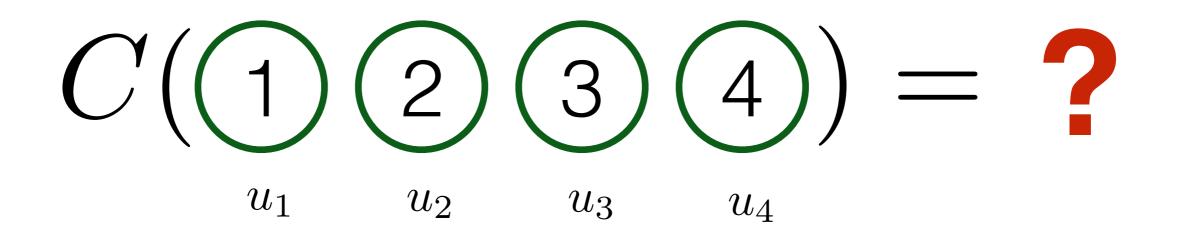
There's more to uncertainty than probabilities

http://www.ISIPTA 2019.ugent.be

3 - 6 July Ghent, Belgium

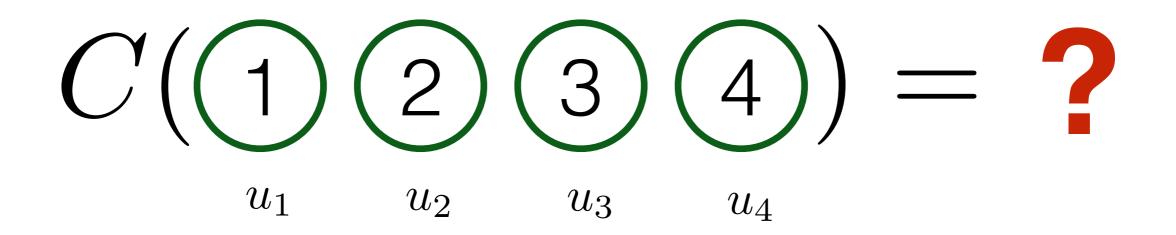


C((1)(2)(3)(4)) = ?

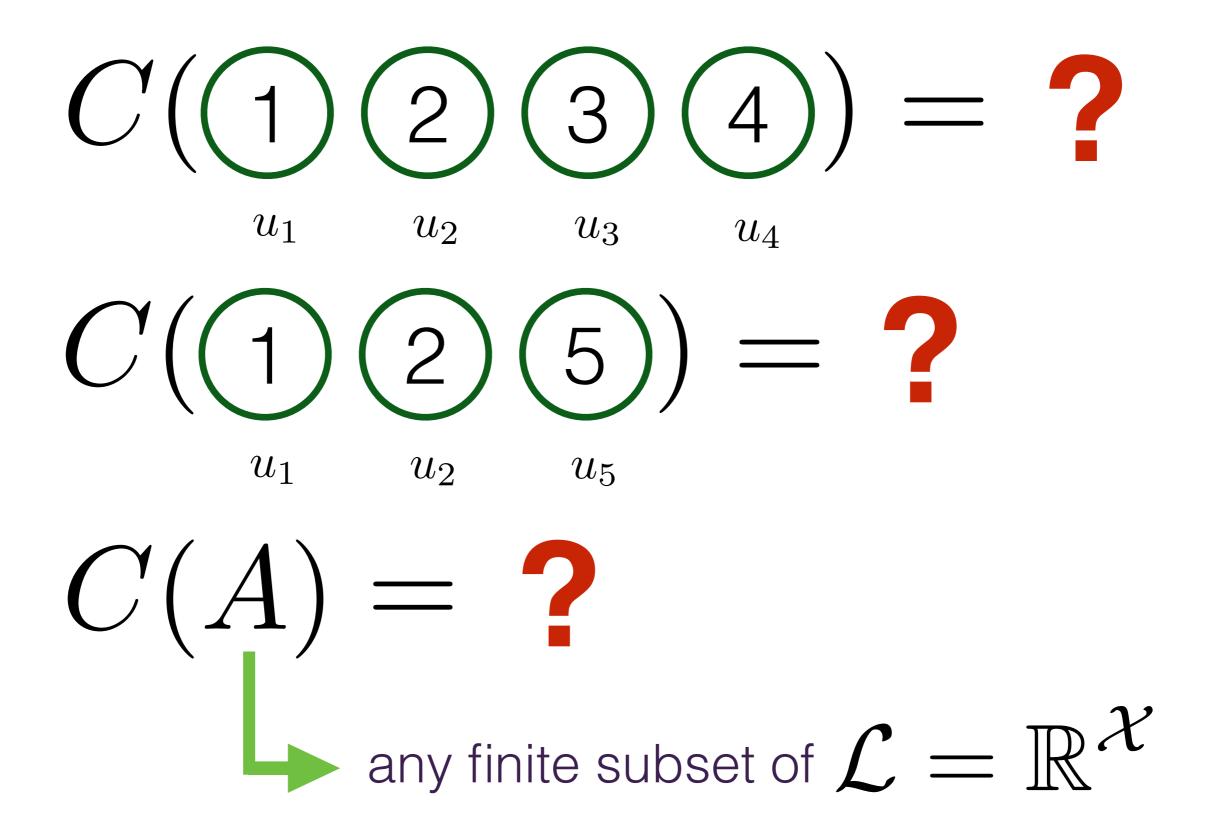


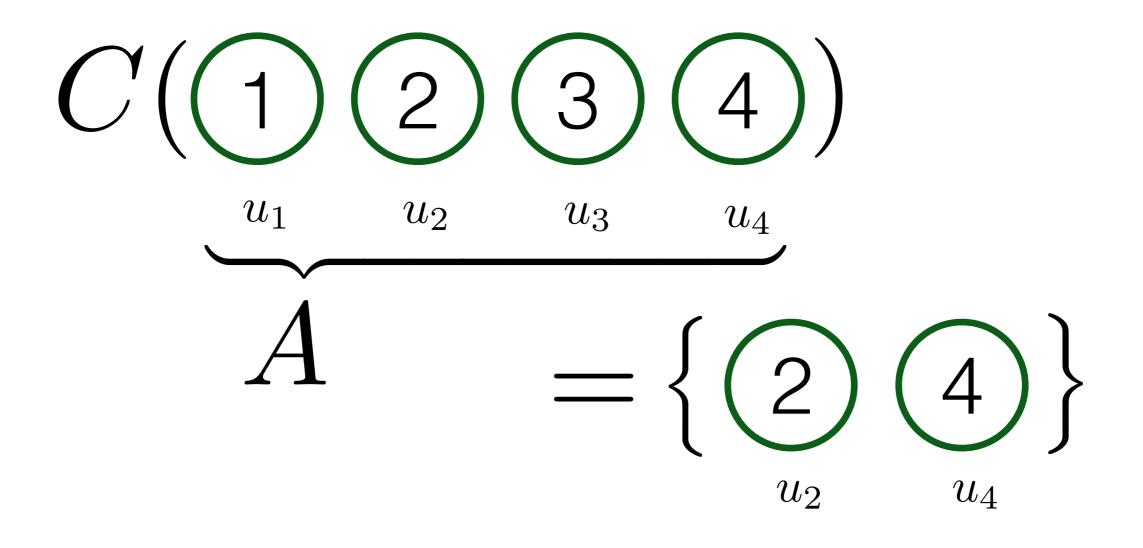
u_i is an uncertain reward: **a gamble**

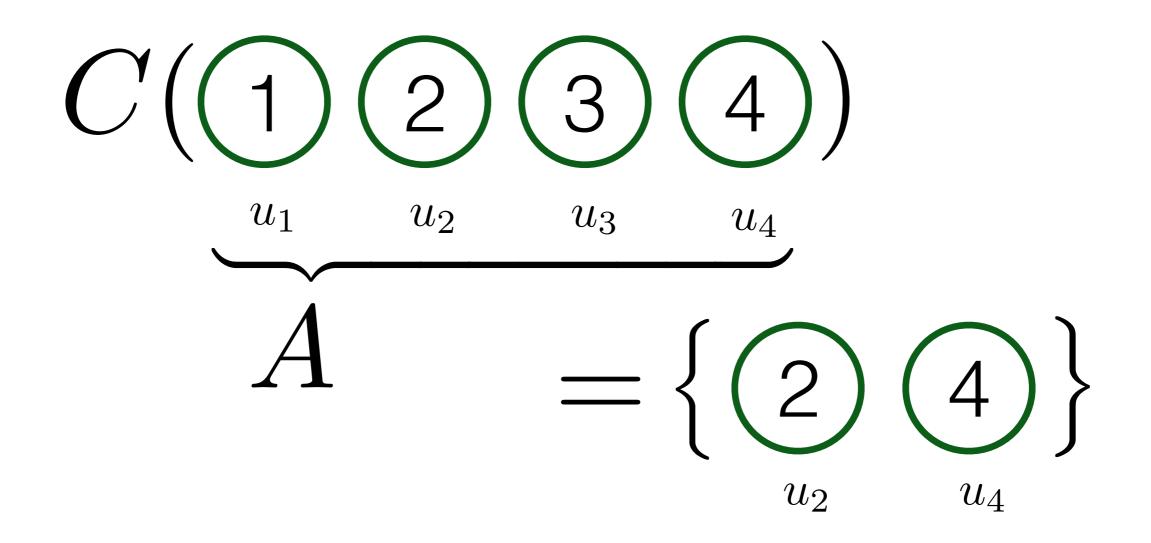
 $\forall x \in \mathcal{X} \colon u_i(x)$ is the reward that you receive if x happens



(1), (2), (3), (4), $\{(1)(2)\},\{(2)(4)\},\ldots$







 $u \in R(A) = \{(1)(3)\}$ u_3 u_1

f is (a) desirable (gamble) $\Leftrightarrow f$ is strictly preferred to 0

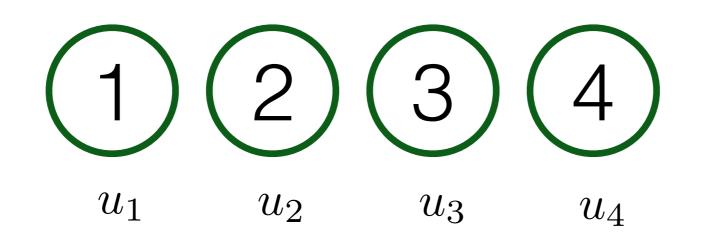
0 is not desirable

- f > 0 implies f desirable
- f, g desirable implies $\lambda f + \mu g$ desirable for $(\lambda, \mu) > 0$

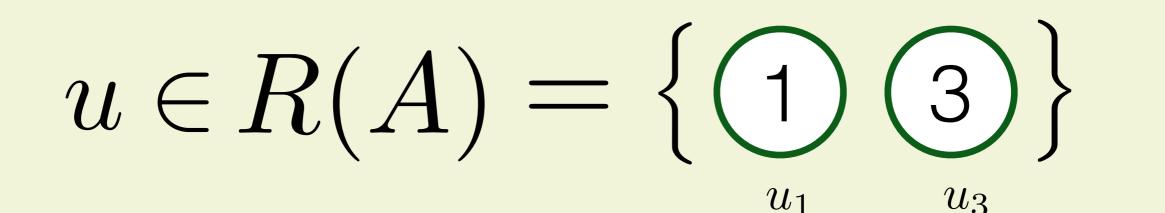
f is (a) desirable (gamble) $\Leftrightarrow f$ is strictly preferred to 0

$v \succ u$

$\Leftrightarrow v \text{ is strictly preferred to } u$ $\Leftrightarrow v - u \text{ is desirable}$

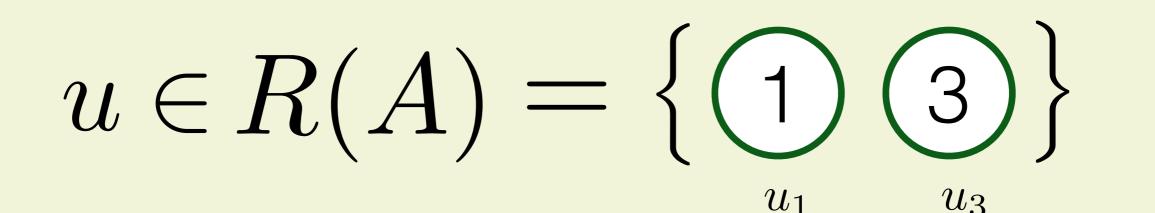


$\exists v \in A : v - u$ is desirable



 $\exists \text{ desirable } f \in \{v - u \colon v \in A\}$

$\exists v \in A : v - u$ is desirable



 $\exists \text{ desirable } f \in \{v - u : v \in A\}$

$\exists v \in A : v - u$ is desirable

$u \in R(A) \Leftrightarrow u \notin C(A)$

A is (a) desirable (gamble set) $\Leftrightarrow \exists \text{ desirable } f \in A$

Let K be the set of all of them

possible assessments:

 $\{f\} \in K, \{f_1, f_2\} \in K, \dots$

 $\exists \text{ desirable } f \in \{v - u : v \in A\}$ $\{v - u \colon v \in A\} \in K$

$u \in R(A) \Leftrightarrow u \notin C(A)$

A is (a) desirable (gamble set) $\Leftrightarrow \exists desirable f \in A$

Let K be the set of all of them

Which properties should we impose on it ?

A is (a) desirable (gamble set) $\Leftrightarrow \exists$ desirable $f \in A$

Let K be the set of all of them

Definition 4 (Coherence). A set of desirable gamble sets $K \subseteq Q$ is called coherent if it satisfies the following axioms: $K_0. \ \emptyset \notin K;$ $K_1. \ A \in K \Rightarrow A \setminus \{0\} \in K$, for all $A \in Q;$ $K_2. \ \{u\} \in K$, for all $u \in \mathcal{L}_{>0};$ $K_3. \ if A_1, A_2 \in K \ and \ if, \ for \ all \ u \in A_1 \ and \ v \in A_2, \ (\lambda_{u,v}, \mu_{u,v}) > 0, \ then$ $\{\lambda_{u,v}u + \mu_{u,v}v : u \in A_1, v \in A_2\} \in K;$ $K_4. \ A_1 \in K \ and \ A_1 \subseteq A_2 \Rightarrow A_2 \in K, \ for \ all \ A_1, A_2 \in Q.$

$\emptyset \notin K$

Let K be the set of all of them

Definition 4 (Coherence). A set of desirable gamble sets $K \subseteq Q$ is called coherent if it satisfies the following axioms: $K_0 : \emptyset \notin K;$ $K_1 : A \in K \Rightarrow A \setminus \{0\} \in K$, for all $A \in Q;$ $K_2 : \{u\} \in K$, for all $u \in \mathcal{L}_{>0};$ $K_3 : if A_1, A_2 \in K$ and if, for all $u \in A_1$ and $v \in A_2$, $(\lambda_{u,v}, \mu_{u,v}) > 0$, then $\{\lambda_{u,v}u + \mu_{u,v}v : u \in A_1, v \in A_2\} \in K;$ $K_4 : A_1 \in K$ and $A_1 \subseteq A_2 \Rightarrow A_2 \in K$, for all $A_1, A_2 \in Q$.

$A \in K \Rightarrow A \setminus \{0\} \in K$

Let K be the set of all of them

Definition 4 (Coherence). A set of desirable gamble sets $K \subseteq Q$ is called coherent if it satisfies the following axioms: $K_0. \notin K$: $K_1. A \in K \Rightarrow A \setminus \{0\} \in K$, for all $A \in Q$; $K_2. \{u\} \in K$, for all $u \in L_{>0}$; $K_3. if A_1, A_2 \in K$ and if, for all $u \in A_1$ and $v \in A_2$, $(\lambda_{u,v}, \mu_{u,v}) > 0$, then $\{\lambda_{u,v}u + \mu_{u,v}v : u \in A_1, v \in A_2\} \in K$; $K_4. A_1 \in K$ and $A_1 \subseteq A_2 \Rightarrow A_2 \in K$, for all $A_1, A_2 \in Q$.

$u > 0 \Rightarrow \{u\} \in K$

Let K be the set of all of them

Definition 4 (Coherence). A set of desirable gamble sets $K \subseteq Q$ is called coherent if it satisfies the following axioms: $K_0. \ \emptyset \notin K;$ $K_1. A \in K \Rightarrow A \setminus \{0\} \in K, \text{ for all } A \in Q;$ $K_2. \{u\} \in K, \text{ for all } u \in \mathcal{L}_{>0};$ $K_3. \ if A_1, A_2 \in K \text{ and } if, \text{ for all } u \in A_1 \text{ and } v \in A_2, (\lambda_{u,v}, \mu_{u,v}) > 0, \text{ then}$ $\{\lambda_{u,v}u + \mu_{u,v}v : u \in A_1, v \in A_2\} \in K;$ $K_4. A_1 \in K \text{ and } A_1 \subseteq A_2 \Rightarrow A_2 \in K, \text{ for all } A_1, A_2 \in Q.$

$$A_1, A_2 \in K \text{ implies}$$
$$\{\lambda_{u,v}u + \mu_{u,v}v \colon u \in A_1, v \in A_2\} \in K$$

Let K be the set of all of them

Definition 4 (Coherence). A set of desirable gamble sets $K \subseteq Q$ is called coherent if it satisfies the following axioms: $K_0. \ \emptyset \notin K;$ $K_1. A \in K \Rightarrow A \setminus \{0\} \in K, \text{ for all } A \in Q;$ $K_2. \{u\} \in K, \text{ for all } u \in f_{>0};$ $K_3. \text{ if } A_1, A_2 \in K \text{ and if, for all } u \in A_1 \text{ and } v \in A_2, (\lambda_{u,v}, \mu_{u,v}) > 0, \text{ then}$ $\{\lambda_{u,v}u + \mu_{u,v}v: u \in A_1, v \in A_2\} \in K;$ $K_4. A_1 \in K \text{ and } A_1 \subseteq A_2 \Rightarrow A_2 \in K, \text{ for all } A_1, A_2 \in Q.$

if $A_1 \subseteq A_2$ then $A_1 \in K$ implies $A_2 \in K$

Let K be the set of all of them

Definition 4 (Coherence). A set of desirable gamble sets $K \subseteq Q$ is called coherent if it satisfies the following axioms: $K_0. \ \emptyset \notin K;$ $K_1. \ A \in K \Rightarrow A \setminus \{0\} \in K$, for all $A \in Q;$ $K_2. \ \{u\} \in K$, for all $u \in \mathcal{L}_{>0};$ $K_3. \ if A_1, A_2 \in K \ and \ if, \ for \ all \ u \in A_1 \ and \ v \in A_2, \ (\lambda_{u,v}, \mu_{u,v}) > 0, \ then$ $\{\lambda_{u,v}u + \mu_{u,v}v: u \in A_1, v \in A_2\} \in K;$ $K_4. \ A_1 \in K \ and \ A_1 \subseteq A_2 \Rightarrow A_2 \in K, \ for \ all \ A_1, A_2 \in Q.$

K is coherent

Let K be the set of all of them

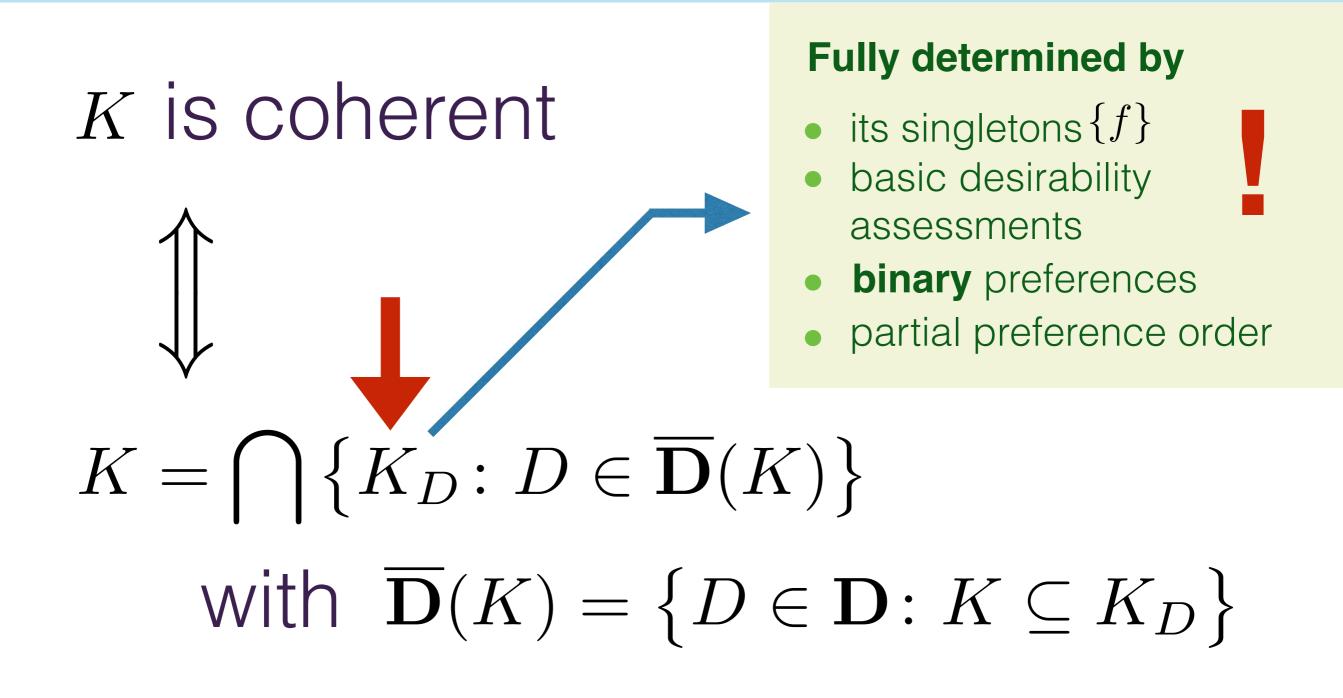
Definition 4 (Coherence). A set of desirable gamble sets $K \subseteq Q$ is called coherent if it satisfies the following axioms: $K_0. \ \emptyset \notin K;$ $K_1. A \in K \Rightarrow A \setminus \{0\} \in K$, for all $A \in Q;$ $K_2. \{u\} \in K$, for all $u \in \mathcal{L}_{>0};$ $K_3. if A_1, A_2 \in K$ and if, for all $u \in A_1$ and $v \in A_2$, $(\lambda_{u,v}, \mu_{u,v}) > 0$, then $\{\lambda_{u,v}u + \mu_{u,v}v : u \in A_1, v \in A_2\} \in K;$ $K_4. A_1 \in K$ and $A_1 \subseteq A_2 \Rightarrow A_2 \in K$, for all $A_1, A_2 \in Q$.

K is coherent

K is coherent

Fully determined by

- its singletons $\{f\}$
- basic desirability assessments
- **binary** preferences
- partial preference order



Theorem 8. Let $\{K_i\}_{i \in I}$ be an arbitrary non-empty family of sets of desirable gamble sets, with intersection $K \coloneqq \bigcap_{i \in I} K_i$. If K_i is coherent for all $i \in I$, then so is K. This implies that $(\overline{\mathbf{K}}, \subseteq)$ is a complete meet-semilattice.

Theorem 10 (Natural extension). Consider any assessment $\mathcal{A} \subseteq \mathcal{Q}$. Then \mathcal{A} is consistent if and only if $\emptyset \notin \mathcal{A}$ and $\{0\} \notin \text{Posi}(\mathcal{L}_{>0}^{s} \cup \mathcal{A})$. Moreover, if \mathcal{A} is consistent, then $\text{Ex}(\mathcal{A}) = \text{Rs}(\text{Posi}(\mathcal{L}_{>0}^{s} \cup \mathcal{A}))$.

existing decision models are special cases

similar results with (extra) convexity axiom

