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Two very useful properties

External additivity
(Py ® Po)(f(X1) + h(X2)) = Py (f(X1)) + Po(R(X2))

Factorisation

(P71 ® P5)(g(X1)h(X2))

_ {§1<g<xl>>zg<h<xg>> if P(h(X5))
P1(g(X1))Py(h(X2)) if P(h(X2))
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P(f(X1)]|X2) = P(f(X1))
P(f(X2)|X1) = P(f(X2))
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