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PREFACE

“Gratitude is one of the least articulate of the emotions,
especially when it is deep.”

Felix Frankfurter

This has been one hell of a ride! To reside at the very edge of knowledge
and to push it forward, ever so slowly, has been a brilliant experience and a
dream come true. During the past few years, I have been taught this edge-
pushing art form that is called research, and have been given the opportunity
to exercise it in an atmosphere that has been nothing short of delightful. I’ve
had the pleasure to call this my job, but I have to admit that it often felt like
a paid hobby, be it a very time-consuming one. Therefore, I would like to
kick off this preface by thanking all of you, my fellow tax-paying citizens, for
financially supporting me during these years. I have enjoyed it tremendously.
That being said, I have quite a few other people to thank as well.

First and foremost, I would like to thank Gert, for being such a terrific
scientific mentor. He taught me the ins and outs of research, ranging from
technical mathematics to linguistic style. He introduced me to the material
in References [42, 45], shared his views on the bigger picture behind it, and
as such provided me with the central ideas from which this dissertation has
grown. I learned from him that good research is about vision as much as it
is about solid mathematics. He trained me in both, shared his own views on
these aspects, and allowed me to develop my own. Our views sometimes clash;
beautiful results tend to emerge out of these clashes, which we can then go and
celebrate over a nice beer. It has been a true pleasure to do research with him,
and I hope to keep on doing so for a long time to come. Besides research,
he also initiated and trained me in various other aspects of academia, thereby
preparing me for the many challenges that lie ahead. If I am ever given the
chance to stay in academia, I owe it to him, and for that, I cannot thank him
enough. Finally, and most importantly, I would like to thank him for being
such a close friend.
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I conducted the research that led to this dissertation in a wonderful envi-
ronment, and I am grateful to the people that created it. On a small scale,
these have been the members of the SYSTeMS research group of Ghent Uni-
versity. I ride my bike to work with a smile, almost every single day, and I
owe that to my colleagues. For that, I would like to thank them. A special
place is reserved for Gert, Arthur and Stavros. I will never forget, and would
like to thank them for, the memorable road trips we made, the lovely dinners
we had, the many laughs we shared, and their enthusiasm at the blackboard.
On a larger scale, these have been the members of SIPTA—the Society for Im-
precise Probability: Theories and Applications. I thank them for creating such
a welcoming international community, full of friendly, helpful and inspiring
people, and for making conferences feel like holidays. Perhaps you won’t be-
lieve me, but mathematicians can be a lot of fun. A special thanks goes out to
Alessandro, Cassio, Enrique, Frank, Marco and Matthias, for their hospitality,
and for being such lovely people.

Writing this dissertation has been an exercise in perseverance. I have spent
countless hours on it, at the cost of many a good night’s sleep. I have definitely
squeezed myself to a point that can hardly be called healthy, the sole goal be-
ing the book in front of you. Although I hope you are enjoying this preface,
this book is ultimately about the content that is about to follow, and its main
reason of existence is to allow a jury to decide whether or not my research is of
sufficient merit. This decision, and the doors it can open, has been the ultimate
reason for the squeezing I referred to above. I would therefore like to express
my sincere gratitude towards the people that took it upon themselves to make
this decision—favourably, to my great delight. To the members of the exam-
ination board and the reading committee of this dissertation: thank you for
taking the time to thoroughly assess my research, for your constructive criti-
cism, for your thought-provoking questions, and for giving me the opportunity
to defend this dissertation in front of my friends and family.

Apart from being the culmination of four years of intense research, this
book also marks the end of my education, and the beginning of a new phase
in my life. That I have made it this far, and that I have enjoyed it this much,
is also—and mainly—due to a number of people that I have not yet mentioned
in this preface, for the sole reason that they were not directly involved in the
creation of this dissertation. Nevertheless, I would like to thank them here, for
all the things they have done for me.

My friends, for long talks about things that matter, for all those relaxing
days out, for the joy and piece of mind that only dancing can provide, for
their honest opinion, for their help with all sorts of little things, for beer in
good company—often very late at night—and for creating the buzzing sound
of happiness that convinces me, time and time again, that it is all worthwhile.
Guy, for his inspiring view on life and his everlasting enthusiasm, and Kwinten
and Evelien, for their heartwarming support during difficult times, when I most
needed it.
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My family, for the warm cosy feeling they create on various occasions,
and for their support and help, during different steps in my life, ranging from
the first very little ones, to the big ones further on. My parents, for raising
me, for teaching me the values that I now try to live by, and for their financial
support during all those years. My father, for passing on his love for science,
both genetically and personally, and for teaching me to walk through life with
a critical eye, thereby significantly increasing my chances for survival in this
jungle that we call society. My mother, for her unconditional love, for the
countless hours she spent driving me around, for her lovely cooking and the
delicious dinners that resulted from it, for her helping hand whenever needed,
and for teaching me to enjoy the little things in life.

Annelien, the love of my life, for taking care of me when this dissertation
started to take up far more time than it ever should have and for her unwaver-
ing support during the final months of writing. I also want to thank her for
the wonderful past seven years, for being such a warm and caring person, for
sharing my love for food and all the other great things life has to offer, for
expanding my horizon, and for all those mazurka’s. It makes me a very happy
man that she has chosen to share her life with me, in days of all sorts. May
our lives remain intertwined for a long time to come, filled with plenty of good
old-fashioned love. Liefde is niet alles, maar zonder liefde is alles niets.
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SUMMARY

This dissertation presents a detailed study of credal networks under epistemic
irrelevance [16], mathematical models that are capable of representing com-
pactly and intuitively the uncertainty that is associated with complex multi-
variate domains and that can subsequently be used to answer various domain-
specific queries of interest to the user. These models share many of the nice
features of Pearl’s celebrated Bayesian networks [78], but have the added ad-
vantage that they can represent uncertainty in a more flexible and realistic way.

We model uncertainty using imprecise probabilities [106], the underlying
theory of which is an extension of probability theory that can represent model
uncertainty and probabilistic uncertainty within a single framework. Simply
put, whenever it is infeasible to reliably estimate a single probability, this the-
ory allows for the use of a set of probabilities instead, each of whose elements
is regarded as a candidate for some ideal ‘true’ probability. However, this
simplified view is only one of the many ways to look at or interpret imprecise
probabilities. Uncertainty can also be expressed without any reference to prob-
abilities, using other imprecise-probabilistic frameworks such as sets of desir-
able gambles, lower previsions and sets of linear previsions. This dissertation
starts with a detailed overview of these different frameworks, their interpreta-
tion, and how they are connected to each other. We pay special attention to
conditional models, which we regard as primitive concepts whose connection
with unconditional models is established by means of rationality criteria. The
main advantage of the resulting so-called full conditional models is that they
do not suffer from the traditional problems that arise when some of the condi-
tioning events have probability zero. This is especially important in the context
of imprecise probabilities, where probability zero cannot be ignored because
it may easily happen that an event has lower probability zero but positive up-
per probability. Of course, even if we regard conditional models as primitive
concepts, they may not be readily available, or easy to assess. In that case, we
often have no choice but to derive them from an unconditional model. In an
imprecise-probabilistic setting, two conditioning rules are commonly used for
this purpose: regular extension and natural extension. We explain the differ-
ence between them and discuss various technical and computational aspects.

Although this overview of imprecise probability theory contains new re-
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sults that fill some gaps in the literature, its contribution mainly consists in
bringing together results from various existing frameworks and connecting
them to each other. The first real contribution of this dissertation is our dis-
cussion of updating, which is the act of changing a model based on the in-
formation that some event has occurred. In probability theory, it has become
standard practice to do this by conditioning on that event using Bayes’s rule.
Similarly, in an imprecise-probabilistic setting, updating is typically performed
by applying a conditioning rule such as regular or natural extension. However,
little argumentation is usually given as to why such an approach would make
sense. We help address this problem by providing a firm philosophical justifi-
cation for using natural and regular extension as updating rules. What makes
our justification especially powerful is that we derive it directly in terms of sets
of desirable gambles. In this way, we avoid making some of the unnecessarily
strong assumptions that are traditionally adopted, such as the existence of an
ideal ‘true’ probability mass function.

In order to apply the theory of imprecise probabilities in a multivariate con-
text, we need additional tools such as marginalisation and ways of combining
these tools with concepts such as conditioning and updating. This is all well
known and relatively easy in terms of probabilities, but it becomes more chal-
lenging for some of the imprecise-probabilistic frameworks that we consider.
We have gathered the existing tools, have added new ones whenever some-
thing was missing and have connected all of them with one another. The result
is a complete and well-founded theory of multivariate imprecise probabilities
that is, to the best of our knowledge, novel in its completeness, generality
and consistency. It allows us to formally introduce one of the most important
concepts of this dissertation: epistemic irrelevance, which is an asymmetric
imprecise-probabilistic notion of independence. We discuss several existing
definitions for this notion, argue why only one of them is really adequate, and
compare epistemic irrelevance to other imprecise-probabilistic independence
notions. Finally, we explain how the concept of conservative reasoning allows
us to combine structural assessments such as epistemic irrelevance with direct
or local partial probability assessments to construct a multivariate uncertainty
model.

The rest of this dissertation is concerned with one particular type of multi-
variate model: the irrelevant natural extension of a credal network under epis-
temic irrelevance. The basic idea is very similar to that of a Bayesian network.
The starting point is a collection of domain-specific variables that are con-
nected by means of arrows that reflect how these variables depend on each
other. The arrows form a Directed Acyclic Graph (DAG), which simply means
that there are no (directed) cycles. The interpretation of the graph is that for any
variable, conditional on its parents, its non-parent non-descendants are epis-
temically irrelevant. For each of the variables, we are given a local imprecise-
probabilistic model conditional on the values of its parents in the graph. In
combination with the assessments of epistemic irrelevance that correspond to
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the DAG, these local models form a credal network under epistemic irrele-
vance. The most conservative global uncertainty model that is compatible with
all these assessments is called the irrelevant natural extension of the network.
This concept was first introduced by Cozman [16], who defined it in terms of
sets of probabilities under the simplifying assumption that all probabilities are
strictly positive. We drop this positivity assumption and provide definitions
in terms of three other frameworks as well: sets of desirable gambles, lower
previsions and sets of linear previsions. These different definitions turn out to
be closely related, which allows us to translate results that are proved in one
framework to analogous results in other frameworks.

Credal networks under epistemic irrelevance are not the only imprecise-
probabilistic generalisations of Bayesian networks. In fact, they are not even
all that popular. At the present moment, most authors prefer to consider
credal networks under strong independence, the difference being that the as-
sessments of epistemic irrelevance that we make, are replaced by assessments
of strong independence, which is another imprecise-probabilistic notion of in-
dependence. We believe that the main reason for this lack of popularity is a
profound lack of known theoretical properties. This has severely inhibited the
development of tractable inference algorithms, where, simply put, inference is
intended as computing lower and upper updated probabilities. In fact, there is
currently only one inference algorithm available, and even then, only for a par-
ticular type of inference and for networks whose DAG has a tree structure [42].
Nevertheless, due to the remarkable efficiency of this particular algorithm,
which is linear in the size of the network, and because that same inference
problem is NP-hard in credal networks under strong independence [67], credal
networks under epistemic irrelevance are regarded as a promising alternative
that requires—and deserves—further research [2, Section 10.6]. This further
research is what this dissertation is all about.

One of our main contributions is a detailed study of the theoretical proper-
ties of the multivariate uncertainty model that corresponds to a credal network
under epistemic irrelevance: the irrelevant natural extension. By focusing on
the framework of sets of desirable gambles, we are able to derive some re-
markable properties of this model, which we then manage to translate to other
frameworks as well. A first important example is a fundamental separating
hyperplane result that establishes a connection between the irrelevant natu-
ral extension of a complete network and that of its subnetworks. This result
leads to various marginalisation, factorisation and external additivity proper-
ties. A second important result is that the irrelevant natural extension satisfies
a collection of epistemic irrelevancies that is induced by AD-separation, an
asymmetric adaptation of d-separation that is proved to satisfy all graphoid
properties except symmetry. We also establish connections with the notions of
independent natural extension and marginal extension and study the updated
models that are obtained by applying regular extension to the irrelevant natural
extension.
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In the final part of this dissertation, we show how the theoretical proper-
ties that we have proved can be used to develop efficient inference algorithms
for credal networks under epistemic irrelevance. A first important contribution
consists of two preprocessing techniques that allow us to simplify inference
problems before the actual algorithm is applied. We explain how and when it
is possible to translate an inference problem in a large network into a similar
problem in a smaller network, and show how solving a conditional inference
problem can be reduced to solving a series of unconditional ones. In a second
set of results, we rephrase inference as a linear optimisation problem. As was
already mentioned by Cozman [16], every unconditional inference can be com-
puted by solving a linear program. However, in order to establish this result, he
required a simplifying positivity assumption. We show that this positivity as-
sumption is not needed; unconditional inferences can always be characterised
as the solution of a linear program. For conditional inferences, multiple such
linear programs need to be solved. Unfortunately, the size of these linear pro-
grams is exponential in the size of the network and this in principle generally
applicable method is therefore only tractable for small networks. For the spe-
cific case of a network that consists of two disconnected binary variables, we
are able to solve the corresponding linear program symbolically. In this way,
we obtain closed-form expressions for the extreme points of the independent
natural extension of two binary models. Fortunately, the intractability of brute
force linear programming methods can often be circumvented by developing
other, more efficient and often recursive computational techniques. We illus-
trate this by means of a number of examples. Our most important contribution,
and the proverbial icing on the cake, is a collection of recursive algorithms that
can efficiently compute various inferences in credal networks under epistemic
irrelevance whose graphical structure is a recursively decomposable DAG, a
new type of DAG that includes trees as a special case.
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SAMENVATTING
Dutch summary

Dit proefschrift legt een gedetailleerde studie voor van credale netwerken on-
der epistemische irrelevantie [16], wiskundige modellen die de onzekerheid die
gepaard gaat met complexe multivariate domeinen compact en intuitief kunnen
voorstellen en vervolgens in staat zijn om allerhande domein-specifieke vra-
gen te beantwoorden die relevant zijn voor de gebruiker. Deze modellen delen
veel van de gevierde eigenschappen van Pearls Bayesiaanse netwerken [78], en
hebben het bijkomende voordeel dat ze onzekerheid flexibeler en realistischer
kunnen voorstellen.

We modelleren onzekerheid met imprecieze waarschijnlijkheden, waarvan
de onderliggende theorie een uitbreiding is van waarschijnlijkheidsleer die zo-
wel modelonzekerheid als probabilistische onzekerheid in één kader kan voor-
stellen. Eenvoudig gesteld, telkens als een waarschijnlijkheid niet betrouw-
baar geschat kan worden, dan maakt deze theorie het mogelijk om deze en-
kele waarschijnlijkheid te vervangen door een verzameling waarschijnlijkhe-
den, waarvan elk van de elementen beschouwd wordt als een kandidaat voor de
ideale ‘correcte’ waarschijnlijkheid. Dit is echter maar één van de vele manie-
ren waarop imprecieze waarschijnlijkheden kunnen geı̈nterpreteerd worden.
Onzekerheid kan ook beschreven worden in andere imprecieze waarschijnlijk-
heidskaders, zoals verzamelingen van begeerlijke gokken, onderprevisies en
verzamelingen van lineaire previsies. Dit proefschrift begint met een gede-
tailleerd overzicht van deze verschillende kaders, hun interpretatie, en hoe ze
verbonden zijn. We besteden speciale aandacht aan conditionele modellen,
die we als primitieve concepten beschouwen. Rationaliteitscriteria verbinden
deze met onconditionele modellen. Het belangrijkste voordeel van deze zo-
genaamde volledige conditionele modellen is dat ze de traditionele problemen
vermijden van het conditioneren op gebeurtenissen met waarschijnlijkheid nul.
Dit is extra belangrijk in de context van imprecieze waarschijnlijkheid omdat
het vaak voorvalt dat een gebeurtenis met onderwaarschijnlijkheid nul een po-
sitieve bovenwaarschijnlijkheid heeft. Conditionele modellen als primitieve
concepten beschouwen verhelpt natuurlijk niet het probleem dat deze vaak niet
direct beschikbaar, of moeilijk te bepalen kunnen zijn. In dat geval is het no-
dig om ze af te leiden van onconditionele modellen. Binnen de imprecieze
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waarschijnlijkheidsleer zijn er twee conditioneringsregels die hiervoor vaak
gebruikt worden: reguliere en natuurlijke extensie. We leggen het verschil uit
tussen beide en bespreken allerhande technische en computationele aspecten.

Hoewel dit overzicht van imprecieze waarschijnlijkheidsleer al enkele
nieuwe resultaten bevat die de bestaande literatuur waar nodig aanvullen,
draagt het vooral bij in de manier waarop we de verschillende bestaande ka-
ders samenbrengen en met elkaar verbinden. De eerste echte bijdrage van dit
proefschrift is onze bespreking van updaten: het aanpassen van een onzeker-
heidsmodel na geı̈nformeerd te zijn dat een bepaalde gebeurtenis is opgetreden.
In waarschijnlijkheidsleer is conditioneren met behulp van de regel van Bayes
de standaardmethode om dit probleem aan te pakken. Analoog, binnen de
imprecieze waarschijnlijkheidsleer, worden conditioneringsregels zoals regu-
liere en natuurlijke extensie vaak als updateregels beschouwt. Dit gebruik van
conditioneren als een updatemethode wordt echter vaak niet beargumenteerd
en meestal als vanzelfsprekend beschouwd. We verhelpen dit probleem door
een filosofische verantwoording te ontwikkelen voor het gebruik van reguliere
en natuurlijke extensie als updateregels. Wat onze verantwoording bijzonder
sterk maakt is dat we ze afleiden in het kader van verzamelingen van begeer-
lijke gokken en zo traditionele—maar onnodige—aannames zoals het bestaan
van een ideale ‘correcte’ waarschijnlijkheid vermijden.

Om imprecieze waarschijnlijkheidsleer toe te passen in een multivariate
context hebben we bijkomende technieken nodig, zoals marginalisatie, en me-
thodes om die te combineren met concepten zoals conditioneren en updaten.
Dit is allemaal vrij voor de hand liggend voor waarschijnlijkheden, maar wordt
heel wat uitdagender voor sommige van de imprecieze waarschijnlijkheidska-
ders die we beschouwen. We brengen de verschillende bestaande technieken
samen, voegen er nieuwe aan toe waar nodig en verbinden dit alles met el-
kaar. Het resultaat is een goed gefundeerde theorie van multivariate impre-
cieze waarschijnlijkheidsleer die, voor zover wij weten, nieuw is in haar vol-
ledigheid, algemeenheid en samenhang. Deze theorie stelt ons in staat om
één van de belangrijkste concepten van dit proefschrift formeel in te voeren:
epistemische irrelevantie, een asymmetrische notie van onafhankelijkheid voor
imprecieze waarschijnlijkheden. We bespreken verschillende bestaande defi-
nities ervan, beargumenteren waarom slechts één van ze adequaat is, en verge-
lijken epistemische irrelevantie met andere noties van onafhankelijkheid voor
imprecieze waarschijnlijkheden. Tot slot leggen we ook uit hoe het concept
van conservatief redeneren ons in staat stelt structurele aannames zoals epis-
temische irrelevantie te combineren met lokale partiële informatie over waar-
schijnlijkheden, om zo een multivariaat onzekerheidsmodel op te bouwen.

Het vervolg van dit proefschrift behandelt één specifiek type multivariaat
onzekerheidsmodel: de irrelevante natuurlijke extensie van een credaal net-
werk onder epistemische irrelevantie. Het basisidee is gelijkaardig aan dat
van een Bayesiaans netwerk. Het vertrekpunt is een collectie van domein-
specifieke veranderlijken die verbonden zijn door pijlen die uitdrukken hoe
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deze veranderlijken van elkaar afhangen. De pijlen vormen een Gerichte Acy-
clische Graaf (GAG), wat simpelweg betekent dat ze geen (gerichte) cycli vor-
men. De interpretatie van de graaf is dat voor elke veranderlijke, conditioneel
op haar ouders in de graaf, de veranderlijken die geen ouder of afstammeling
zijn epistemisch irrelevant zijn voor deze veranderlijke. Voor elk van de ver-
anderlijken is er ook een lokaal imprecies waarschijnlijkheidsmodel gegeven,
conditioneel op de waarde van haar ouders. In combinatie met de aannames
van irrelevantie die overeenstemmen met de graaf vormen deze lokale model-
len een credaal netwerk onder epistemische irrelevantie. Het meest conser-
vatieve onzekerheidsmodel dat compatibel is met deze irrelevanties en lokale
modellen noemen we de irrelevante natuurlijke extensie van het netwerk. Dit
concept werd ingevoerd door Cozman [16], die het definiëerde voor verza-
melingen van waarschijnlijkheden, onder de vereenvoudigende aanname dat
alle waarschijnlijkheden strikt positief zijn. We laten deze aanname vallen en
geven ook definities voor drie andere imprecieze waarschijnlijkheidskaders:
verzamelingen van begeerlijke gokken, onderprevisies en verzamelingen van
lineaire previsies. We tonen aan dat deze verschillende definities nauw met
elkaar verbonden zijn, wat ons in staat stelt om de resultaten in dit proefschrift
vlot te vertalen van het ene naar het andere kader.

Credale netwerken onder epistemische irrelevantie zijn niet de enige ver-
algemening van Bayesiaanse netwerken binnen de imprecieze waarschijnlijk-
heidsleer. Ze zijn niet eens zo populair. Op dit moment verkiezen de meeste
auteurs om met credale netwerken onder sterke onafhankelijkheid te werken,
waarbij het verschil is dat de aannames van epistemische irrelevantie die wij
opleggen, vervangen worden door aannames van sterke onafhankelijkheid, een
andere notie van onafhankelijkheid voor imprecieze waarschijnlijkheden. De
hoofdreden voor dit gebrek aan populariteit is volgens ons een fundamenteel
gebrek aan gekende theoretische eigenschappen. Dit heeft het bijna onmoge-
lijk gemaakt om efficiënte inferentie-algoritmen te ontwikkelen, waar inferen-
tie min of meer gelijk staat aan het berekenen van geüpdatete onder- en boven-
waarschijnlijkheden. Er is maar één efficiënt inferentie-algoritme beschikbaar
en dat kan maar één specifiek soort inferenties berekenen in netwerken waar-
van de GAG een boomstructuur heeft [42]. En toch, door de opmerkelijke
efficiëntie van dit algoritme, en omdat dat specifieke inferentieprobleem NP-
moeilijk is in credale netwerken onder sterke onafhankelijkheid [67], worden
credale netwerken onder epistemische irrelevantie beschouwd als een veelbe-
lovend alternatief dat verder onderzoek vereist en verdient [2, paragraaf 10.6].
We verrichten dit onderzoek in dit proefschrift.

Eén van de belangrijkste bijdragen van dit proefschrift is een gedetailleerde
studie van de theoretische eigenschappen van het multivariate onzekerheids-
model dat overeenstemt met een credaal netwerk onder epistemische irrele-
vantie: de irrelevante natuurlijke extensie. Door te werken in het kader van
verzamelingen van begeerlijke gokken zijn we er in geslaagd enkele opmerke-
lijke eigenschappen af te leiden, die we vervolgens ook naar andere imprecieze
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waarschijnlijkheidskaders hebben vertaald. Een eerste belangrijk voorbeeld is
een scheidend-hypervlakstelling die een verband legt tussen de irrelevante na-
tuurlijke extensie van een compleet netwerk en die van zijn deelnetwerken.
Dit leidt tot verscheidene marginalisatie-, factorisatie- en externe additiviteits-
eigenschappen. Een tweede belangrijk resultaat is dat de irrelevante natuur-
lijke extensie aan een verzameling van epistemische irrelevanties voldoet die
geı̈nduceerd is door AD-scheiding, een asymmetrische versie van d-scheiding
waarvan we aantonen dat ze aan alle grafoı̈de eigenschappen voldoet, behalve
symmetrie. We leggen ook enkele verbanden met de noties van onafhankelijke
natuurlijke extensie en marginale extensie en bestuderen de geüpdatete model-
len die verkregen worden door reguliere extensie toe te passen op de irrelevante
natuurlijke extensie.

In het laatste deel van dit proefschrift tonen we hoe de bewezen the-
oretische eigenschappen gebruikt kunnen worden om efficiënte inferentie-
algoritmen te ontwikkelen voor credale netwerken onder epistemische irre-
levantie. Een eerste belangrijke bijdrage bestaat uit twee technieken die kun-
nen gebruikt worden om een inferentieprobleem te vereenvoudigen voor een
inferentie-algoritme wordt toegepast. We leggen uit hoe en wanneer het moge-
lijk is om een inferentieprobleem in een groot netwerk om te vormen tot een ge-
lijkaardig inferentieprobleem in een kleiner netwerk, en tonen hoe conditionele
inferentie kan gereduceerd worden tot het oplossen van een reeks onconditio-
nele inferentieproblemen. In een tweede groep van resultaten herfraseren we
inferentie als een lineair optimalisatieprobleem. Zoals al vermeld werd door
Cozman [16] kan elke onconditionele inferentie berekend worden met lineaire
programmeertechnieken. Om dit resultaat te verkrijgen maakte hij een vereen-
voudigende positiviteitsaanname. We tonen dat deze positiviteitsaanname niet
noodzakelijk is; onconditionele inferenties kunnen altijd gekarakteriseerd wor-
den als de oplossing van een lineair programma. Voor conditionele inferenties
moeten er meerdere zulke lineaire programma’s opgelost worden. Jammer ge-
noeg is de grootte van deze lineaire programma’s exponentieel in het aantal
veranderlijken van het netwerk en deze in principe algemeen toepasbare tech-
niek is daarom enkel computationeel efficiënt voor kleinere netwerken. Voor
een netwerk dat bestaat uit twee niet verbonden binaire veranderlijken hebben
we het corresponderende lineaire programma symbolisch opgelost, en zo een
expliciete uitdrukking afgeleid voor de extreme punten van de onafhankelijke
natuurlijke extensie van twee binaire modellen. Gelukkig kan de computatio-
nele inefficiëntie van de aanpak met lineaire programma’s vaak omzeild wor-
den door andere, efficiëntere en vaak recursieve technieken te ontwikkelen.
We illustreren dit met enkele voorbeelden. Onze belangrijkste bijdrage, en de
spreekwoordelijke kers op de taart, is een verzameling van recursieve algorit-
men die op efficiënte wijze allerhande inferenties kunnen uitrekenen in credale
netwerken onder epistemische irrelevantie waarvan de grafische structuur een
recursief decomposeerbare GAG is, een nieuw type GAG dat bomen als een
speciaal geval omvat.
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LIST OF SYMBOLS AND TERMINOLOGY

This list of symbols and terminology is ordered topically. The locations we
provide correspond to a definition, or to a first or important use. We do not list
symbols that are used only locally. For symbols that have many variations, we
list a generic version and/or focus on the most important ones.

NUMBER SETS

Symbol Meaning Location

R Set of real numbers Page 38
R>0 Set of positive real numbers Page 38
R≥0 Set of non-negative real numbers Page 39
N Set of natural numbers: {1,2,3, . . .} Page 39
N0 Set of natural numbers with zero: N∪{0} Page 39

EVENTS AND GAMBLES

Symbol Meaning Location

X Variable Page 37
Ω State space Page 37
ω Element of Ω Page 37
B,O Events: subsets of Ω Section 2.138

P(Ω) Set of all events Section 2.138

P /0(Ω) Set of all non-empty events: P(Ω)\{ /0} Section 2.138

IB Indicator of B Section 2.138

f ,g,h Gambles Section 2.138

G (Ω) Set of all gambles on Ω Section 2.138
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G (Ω)>0 Set of all pointwise non-negative gambles on
Ω, excluding zero

Section 2.138

IB f Gamble that coincides with f on B and which
is zero outside of B

Section 2.2.240

C (Ω) Set of all couples ( f ,B), with B∈P /0(Ω) and
f ∈ G (B)

Section 2.3.142

C Subset of C (Ω) Section 2.3.142

CB Set of all gambles f ∈ G (B) for which ( f ,B)
is an element of C

Section 2.3.142

C∗(Ω) Set of all couples (ω,B), with B∈P /0(Ω) and
ω ∈ B

Section 2.551

BASIC UNCERTAINTY MODELS

Symbol Meaning Location

D Set of desirable gambles Section 2.238

A Assessment of desirable gambles Section 2.2.139

E (A ) Natural extension of A Section 2.2.139

DcB Set of desirable gambles, conditional on B Section 2.2.240

P( f ) Lower prevision of f Section 2.340

P( f ) Upper prevision of f Section 2.340

P(B) Lower probability of B Section 2.3.549

P(B) Upper probability of B Section 2.3.549

P(·) Unconditional lower prevision Section 2.340

P(·c·) Conditional lower prevision Section 2.3.142

P(·) Unconditional linear prevision Section 2.450

P(·c·) Conditional linear prevision Section 2.450

PB All linear previsions on G (B) Section 2.450

P All conditional linear previsions on C (Ω) Section 2.450

p(·c·) Full conditional probability mass function Section 2.551

M Set of (conditional) linear previsions Section 2.6.457

M cB Conditional set of linear previsions Section 2.6.457

F Set of (full conditional) probability mass
functions

Section 2.6.457

F cB Conditional set of probability mass functions Section 2.6.457
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DP Smallest set of desirable gambles that corre-
sponds to an unconditional lower prevision
P

Section 2.340

PD (Conditional) lower prevision that corre-
sponds to a set of desirable gambles D

Section 2.340

PM (Conditional) lower prevision that corre-
sponds to a set of (conditional) linear pre-
visions M

Section 2.6.457

MP Set of (conditional) linear previsions that
corresponds to a (conditional) lower previ-
sion P

Section 2.6.152

MF Set of (conditional) linear previsions that
corresponds to a set of (full conditional)
probability mass functions F

Section 2.6.457

FP Set of (full conditional) probability mass
functions that corresponds to a (conditional)
lower prevision P

Section 2.6.255

FM Set of (full conditional) probability mass
functions that corresponds to a set of (con-
ditional) linear previsions M

Section 2.6.457

E Natural extension of a (conditional) lower
prevision

Sections 2.3.244
and 2.7.261

R Regular extension of a conditional lower
prevision

Sections 2.7.261
and 3.4.790

R∗ Regular extension of the unconditional part
of a lower prevision

Section 3.4.790

MULTIVARIATE CONCEPTS

Symbol Meaning Location

Xs A single variable Section 4.1101

Xs State space of Xs Section 4.1101

xs,zs Generic elements of Xs Section 4.1101

XS A tuple of variables Xs, s ∈ S Section 4.1101

XS State space of XS: ×s∈SXS Section 4.1101

xS,zS Generic elements of XS Section 4.1101
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margS(DGcBI) Marginal set of desirable gambles
for XS, conditional on BI

Section 4.2.3105

PS(·cBI) Marginal lower prevision for XS,
conditional on BI

Section 4.2.3105

PS(·c ·×BI) Marginal conditional lower previ-
sion for XS, conditional on BI

Section 4.2.4109

PS(·cBI) Marginal linear prevision for XS,
conditional on BI

Section 4.2.3105

PS(·c ·×BI) Marginal conditional linear previ-
sion for XS, conditional on BI

Section 4.2.4109

pS(·cBI) Marginal probability mass function
for XS, conditional on BI

Section 4.2.3105

pS(·c ·×BI) Marginal full conditional probability
mass function for XS, conditional on
BI

Section 4.2.4109

margS(MGcBI) Marginal set of linear previsions for
XS, conditional on BI

Section 4.2.3105

margS(FGcBI) Marginal set of probability mass
functions for XS, conditional on BI

Section 4.2.3105

margc
S(MGc|BI) Marginal set of conditional linear

previsions for XS, conditional on BI

Section 4.2.4109

margc
S(FGc|BI) Marginal set of full conditional

probability mass functions for XS,
conditional on BI

Section 4.2.4109

GRAPHS AND NETWORKS

Terminology that has no symbol Location

Directed Acyclic Graph (DAG) Section 5.1129

Closed set Section 6.1153

Ancestral set Section 6.1153

Sub-DAG Section 6.1153

Induced DAG Section 7.5.1238

Recursively decomposable DAG Section 7.5.1238

Recursively decomposable credal network Section 7.5.2246

Comparable set Section 7.5.4255
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Symbol Meaning Location

s→ t There is an edge from s to t Section 5.1129

sv t s precedes t Section 5.1129

s@ t s strictly precedes t Section 5.1129

P(s) Parents of a node s Section 5.1129

C(s) Children of a node s Section 5.1129

D(s) Descendants of a node s Section 5.1129

PN(s) Non-parents non-descendants of a node s Section 5.1129

N(s) Non-descendants of a node s Section 5.1129

A(s) Ancestors of a node s Section 5.1129

P(S) Parents of a set of nodes S Section 6.1153

· · · · · · · · ·
PK(s) Parents of a node s, with respect to a sub-

DAG with nodes K.
Section 6.1153

· · · · · · · · ·
PK(S) Parents of a set of nodes S, with respect to a

sub-DAG with nodes K.
Section 6.1153

· · · · · · · · ·
Ro(G) Roots of a DAG with nodes G Section 5.1129

s ‖ t s and t are incomparable Section 7.5.1238

P̃(s) Induced parents of s Section 7.5.1238

C̃(s) Induced children of s Section 7.5.1238

D̃(s) Induced descendants of s Section 7.5.1238

Ks s and its descendants: D(s)∪{s} Section 7.5.1238

AD Asymmetric D-separation (AD-separation) Definition 3164

CREDAL NETWORKS UNDER EPISTEMIC IRRELEVANCE

Symbol Meaning Location

DscxP(s)
Local set of desirable gambles Section 5.2130

PscxP(s)
Local lower prevision Section 5.2130

MscxP(s)
Local set of linear prevision Section 5.2130

FscxP(s)
Local credal set Section 5.2130
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D irr
G Irrelevant natural extension of a network, in

the framework of sets of desirable gambles
Section 5.4.1135

Pirr
G Irrelevant natural extension of a network, in

the framework of lower previsions
Section 5.4.2139

M irr
G Irrelevant natural extension of a network, in

the framework of linear previsions
Section 5.4.3141

F irr
G Irrelevant natural extension of a network,

in the framework of probability mass func-
tions.

Section 5.4.4143

D irr
KcxP(K)

Irrelevant natural extension of a subnetwork
with nodes K, in the framework of sets of
desirable gambles

Section 6.2154

Pirr
KcxP(K)

Irrelevant natural extension of a subnetwork
with nodes K, in the framework of lower
previsions

Section 6.3158

M irr
KcxP(K)

Irrelevant natural extension of a subnetwork
with nodes K, in the framework of sets of
linear previsions

Section 6.3158

F irr
KcxP(K)

Irrelevant natural extension of a subnetwork
with nodes K, in the framework of probabil-
ity mass functions

Section 6.3158

Rirr
G Regular extension of Pirr

G Section 6.8180

E irr∗
G Natural extension of the unconditional part

of Pirr
G

Section 7.3219

Rirr∗
G Regular extension of the unconditional part

of Pirr
G

Section 7.3219

OTHER SYMBOLS

Symbol Meaning Location

cl(D) Set of almost desirable gambles that corre-
spond to D

Section 2.340

int(D) Topological interior of D Section 2.340

D r
P Set of desirable gambles that results in reg-

ular extension
Section 2.7.4

DO Updated set of desirable gambles Section 3.2.173

DO Set of O-desirable gambles Section 3.2.173
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E ε
O(D) Natural extension of D ∪{IO− ε} Section 3.4.381

EO(D) Intersection of all E ε
O(D) with ε > 0 Section 3.4.381

D r
O Updated set of desirable gambles that is

based on EO(D)
Section 3.4.587

VIR Epistemic value-irrelevance Section 4.3.1115

SIR Epistemic subset-irrelevance Section 4.3.2115

HIR Epistemic h-irrelevance Section 4.3.3117

IR Epistemic irrelevance Section 4.3.3117

⊗ Independent natural extension Section 6.6171

� Marginal extension Section 6.7175

ext(·) Operator that returns the extreme points of
a set

Page 55
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1
INTRODUCTION

“If people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is.”

John von Neumann

The theory of credal networks [16] extends that of Bayesian networks [78]
to allow it to deal with imprecise probability assessments [106] or, loosely
speaking, partial probability assessments. As a result, credal networks can
represent a wider range of expert knowledge and are able to cope with small
data sets robustly, while at the same time keeping many of the features that
have helped make Bayesian networks so popular. They achieve this goal by
replacing the local probability distributions of a Bayesian network by sets of
probability distributions, called credal sets.

This dissertation studies a specific type of credal networks, which are
called credal networks under epistemic irrelevance. We build a complete the-
oretical framework for this previously rather ill-known type of credal network
and develop several efficient inference algorithms for them. In this introduc-
tion, we provide some general information about credal networks, compare
them to Bayesian networks, explain why our type of credal network is espe-
cially promising and state our main results. We also discuss the navigational
tools in this dissertation and provide a short description of its different chap-
ters. We end this introduction with an overview of our main publications.
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1.1 MOTIVATION AND MAIN RESULTS

1.1 MOTIVATION AND MAIN RESULTS

A Bayesian network [78] is a special type of probabilistic graphical net-
work [64] that is popular in fields such as artificial intelligence, machine learn-
ing and statistics. It is able to compactly and intuitively represent the uncer-
tainty that is associated with large multivariate domains and can then be used
to answer various queries of interest to the user. It consists of a directed acyclic
graph (DAG) whose nodes represent relevant domain variables and whose
edges express (in)dependencies between these variables: nodes that are con-
nected by an edge influence each other directly; nodes that are not connected
represent variables that are conditionally independent of each other. Attached
to each of the nodes is a local probability model for the corresponding variable,
conditional on the values of its parents in the DAG. These local models are ob-
tained by eliciting them from experts, by learning them from data, or by means
of a combination of both approaches. By combining these local models with
the assessments of conditional independence that are expressed by the DAG, it
is possible to construct a unique global probabilistic model that can be used for
further inferences such as updating, classification and decision making. Effi-
cient algorithms have been developed for performing such inferences, leading
to the successful application of Bayesian networks in a multitude of real-life
problems [64,82], in various domains such as medicine, bioinformatics, speech
recognition, engineering, and so on.

Season

Flu

Hayfever

Congestion

Muscle pain

Itchy nose

Figure 1.1: A simple example of a Bayesian network

Figure 1.1 depicts a simple hypothetical example of the graphical structure
of a medical Bayesian network. Realistic examples typically consist of many
more variables, making them far more challenging from a computational point
of view. However, the general idea is the same. In this case, for example, the
season has a direct influence on your chances for having the flu, and whether or
not you have the flu in turn directly influences your chances of having muscle
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1.1 MOTIVATION AND MAIN RESULTS

pain. However, ‘Season’ and ‘Muscle pain’ are not directly related: condi-
tional on the value of ‘Flu’, ‘Muscle pain’ is independent of ‘Season’. The
local uncertainty model for ‘Muscle pain’ consists of two conditional proba-
bility distributions, one for each of the two possible values (‘yes’ and ‘no’) of
its parent variable ‘Flu’. Once all the local models are specified, this Bayesian
network can be used to answer queries such as the following: given that it is
winter and that a patient suffers from congestion but has no muscle pain, what
is the probability that she has the flu? By adding decision-theoretic tools such
as utility functions, other types of queries can also be answered: for exam-
ple, given the same—or other—evidence, we can use this Bayesian network to
decide whether the patient has the flu or hayfever, or both.

Despite their success, Bayesian networks have an important limitation: the
construction of a Bayesian network requires the exact specification of a local
conditional probability distribution for every variable in the network. In case
of limited data or disagreeing and/or partial expert opinions, this requirement
is clearly unrealistic and arguably renders the resulting model fairly arbitrary.
Credal networks [16] drop this requirement by allowing for the use of impre-
cisely specified local models [106]. Although the theory of credal networks
has by now adopted various imprecise-probabilistic frameworks, these local
models were initially taken to be credal sets, which are sets of probability
distributions—hence the terminology. Bayesian networks correspond to the
special case where each of these credal sets consists of only a single probabil-
ity distribution. For example, in order to specify a credal network that has the
DAG in Figure 1.1x as its graphical structure, it is not necessary—although
of course allowed—to provide an exact value for the local probability that a
patient has muscle pain given that he has the flu. Instead, it is possible to only
specify an interval. An expert may for example assess that this probability lies
somewhere between 60% and 80%. Partial probability assessments that are
more involved than intervals can also be considered. Alternatively, the local
credal sets can be learned from data by means of imprecise statistical models
such as the IDMM [8, 107] or, if the goal is to perform a sensitivity analysis
of some underlying Bayesian network, by considering neighbourhoods of the
local probability distributions of that Bayesian network [106, Section 4.6.5].

Credal networks can be used to answer the same queries as Bayesian net-
works. In a credal network, loosely speaking, updating corresponds to com-
puting a probability interval rather than a single probability. For example, in
the case of Figure 1.1x, we can compute the updated lower and upper proba-
bility that a patient has the flu, conditional on the information that it is winter
and that she suffers from congestion but has no muscle pain. Decision mak-
ing can be performed in multiple ways [95]. A typical feature is that a credal
network may sometimes return multiple answers among which it remains un-
decided. For example, in the case of Figure 1.1x, deciding whether a patient
has the flu may result in three answers: ‘yes’, ‘no’ and ‘no idea’ (‘yes’ or ‘no’).
If a credal network provides a single answer, this answer is guaranteed to be
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1.1 MOTIVATION AND MAIN RESULTS

robust with respect to variations within the partial probability constraints that
define the credal network. If it remains undecided between some subset of the
set of all possible answers, this indicates a lack of robustness of the underly-
ing (precise) probability models. The set-valued solution of a credal network
avoids this lack of robustness and, at the same time, often remains informative;
it may for example select two answers from a set of, say, twenty. In this way,
credal networks can be used to solve the same type of problems as Bayesian
networks. The added advantage of the ‘credal’ approach is that it produces
inferences that are more reliable, in the sense that they are robust with respect
to the available information or, to put it differently, more honest because they
only use the information that is actually available. This approach has been
successfully applied to various problems, ranging from military decision sup-
port [1] to medical diagnosis [119]. More examples can be found in—among
others—References [3, 30, 36].

The main existing problem in the field is that the inferences that are based
on credal networks tend to be much harder to compute than their counterparts
for Bayesian networks, to the point that they are often intractable even when
the corresponding Bayesian network inferences are not. Therefore, the main
challenge, and the focus of state of the art research on credal networks, is the
development of efficient inference algorithms. The availability of such algo-
rithms, and the extent to which they are efficient, crucially depends on the
specific type of credal network that is considered; see Cozman’s pioneering
work [16] for an overview of different types of credal networks. The most
popular type are credal networks under strong independence. This dissertation
focuses on a different type: credal networks under epistemic irrelevance. The
only difference is the notion of independence they adopt: strong independence
or epistemic irrelevance. Both are reasonable notions of independence that
generalise stochastic independence to an imprecise probability setting. The
former is essentially an assessment of elementwise stochastic independence
and takes a sensitivity analysis point of view. The latter is a behavioural notion
that can be stated directly in terms of the belief model—the credal set—itself,
without having to refer to its individual elements. Consequently, epistemic
irrelevance naturally has a wider scope because it can also be imposed in im-
precise probability frameworks that go beyond the context of credal sets.

As mentioned above, credal networks under strong independence are by
far the most popular type of credal networks. The reason for their popularity
is their close connection to Bayesian networks. A credal network under strong
independence is essentially a collection of Bayesian networks. Therefore, it is
quite intuitive to consider results and techniques from Bayesian networks and
try to adapt them to credal networks under strong independence. This has led
to an abundance of theoretical results and algorithms for credal networks un-
der strong independence. In fact, the potential for fundamentally new research
on this topic seems to slowly saturate. Nevertheless, despite all this atten-
tion, only very few efficient inference algorithms are available for this type
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1.1 MOTIVATION AND MAIN RESULTS

of credal network. For exact inference, the only really efficient algorithm is
the 2U algorithm [55], which can efficiently compute inferences in singly con-
nected networks that consist of binary variables. Applied researchers usually
resort to approximate algorithms, of which there are many; a recent overview
of state of the art algorithms can be found in Reference [2]. Of course, as the
approximation becomes better, computing it typically becomes less tractable.

Credal networks under epistemic irrelevance are an alternative type of
credal network that is rising in popularity. Although they have been around
for a while [16], it is only recently—more or less when I started my doctoral
research—that they have come to be regarded as a serious alternative. The rea-
son for this recent rise in ‘popularity’ is the development of an efficient exact
algorithm [42] that can compute inferences in credal trees—credal networks
whose DAG has a tree structure—whose variables may be non-binary. This
result is regarded as very promising because the same type of inference is NP-
hard in credal networks under strong independence [67]. However, besides
this promising development, very little is known about credal networks under
epistemic irrelevance. There is a serious shortage of theoretical results and,
consequently, almost no algorithms are available. There are no approximate
algorithms and the available exact algorithms are either very inefficient [16] or
can only be applied to credal trees [6, 30, 42].

The main contribution of this dissertation is the development of a complete
theory of credal networks under epistemic irrelevance, including a number of
efficient exact inference algorithms for them. We define this type of credal
network in terms of four different imprecise probability frameworks—sets of
desirable gambles, lower previsions, sets of linear previsions and credal sets—
and connect the resulting models with one another. We prove many previously
unknown theoretical properties, including factorisation, external additivity and
marginalisation. We also present a result that is analogous to the classical d-
separation result in Bayesian networks and establish close connections with
the notions of marginal extension and independent natural extension. We use
these properties to develop two types of algorithms. The first type can com-
pute any kind of inference, regardless of the topology of the network. However,
this generality comes at a price: these algorithms become computationally in-
tractable for larger networks. The second type of algorithms is recursive and
can efficiently compute various types of exact inferences in very large net-
works. As in Bayesian networks, efficiency can only be achieved for a re-
stricted class of topologies. However, as our discussion and our algorithms
illustrate, this class is definitely more general than trees.

In order to allow us to obtain and present these results, the availability of
powerful tools for modelling uncertainty using imprecise probabilities was cru-
cial, especially tools that are tailored towards a multivariate context. A number
of these tools were already available; we present, discuss and connect them to
make this dissertation more self-contained. Other tools were not available;
our development of them can be regarded as a contribution of its own, which
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should be useful also outside of the context of credal networks, whenever there
is a need to model uncertainty in a multivariate context.

Finally, on a more philosophical note, we present an extensive discussion
on updating. After being informed that an event has occurred, one often wishes
to update—or change—the original model to obtain a new model that takes this
information into account. For example, in the case of Figure 1.126, upon re-
ceiving the information that a patient has muscle pain, we might want to update
our model to take this information into account. The most popular approach for
doing so is to condition on this information. In a precise-probabilistic context,
this amounts to applying Bayes’s rule. Similarly, in an imprecise-probabilistic
context, one can apply imprecise conditioning rules such as natural and regu-
lar extension. This is also the approach taken in this dissertation: we update a
credal network by means of conditioning. However, at first sight, updating and
conditioning are two very different things. Conditioning is only a mathemati-
cal concept, expressed solely in terms of current beliefs. Updating, on the other
hand, is concerned with how to change these beliefs, after being informed that
some event has occurred. A claim that these two concepts should somehow be
related to one another—let alone that they should coincide—is by no means
trivial. Nevertheless, as we will argue extensively, under specific conditions, it
does indeed make perfect sense to update by means of a conditioning rule.

1.2 FINDING YOUR WAY AROUND

In this dissertation, as in most manuscripts of considerable length, there are
plenty of references, both internal and external.

The main internal references consist of chapters, sections, subsections, ap-
pendices, theorems, propositions, corollaries, lemmas and equations. We refer
to them by providing their number, which is parenthesized in the case of equa-
tions. The reader will often be required to navigate back and forth between
these references. In order to try and make this task less frustrating, we have
added a subscript to every reference that is not located on the same double-
page spread. This subscript provides either the page number or a clue to look
at the recto page (x) or the verso page (y). Theorem 53156—one of the most
important results in this dissertation—can for example be found on page 156
in Section 6.2154, which is the second section of Chapter 6152. Its proof is long
and complicated and has therefore been moved to Appendix 6.B188, which is
the second appendix of that same chapter. Also, we would like to apologise for
Equation (6.20)207.

External references are listed at the end of this dissertation. We refer to
them by means of numbers in square brackets. Interested readers with plenty
of time on their hands could for example stroll through Reference [106], which
is Walley’s seminal book on imprecise probabilities, or read Cozman’s pioneer-
ing paper on credal networks [16].
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1.3 A BRIEF OVERVIEW

Excluding this introduction, the rest of this dissertation consists of seven chap-
ters. The first three are concerned with various general aspects of modelling
uncertainty. In the subsequent three chapters, we use these general results to
develop a theory of credal networks under epistemic irrelevance. The final
chapter presents our conclusions and discusses avenues for further research
that we consider to be promising.

We give a brief overview of the results that are discussed in the six main
chapters. The introductions to these individual chapters often provide addi-
tional information.

We start off in Chapter 237 by connecting the theory of sets of desirable
gambles with that of conditional lower previsions, sets of conditional linear
previsions and sets of full conditional probability mass functions, restricting
ourselves to the case where the uncertain variables of interest take values in
a finite space. These are the four main imprecise-probabilistic frameworks
that we consider in this dissertation. We provide an overview of some of the
most important results in the literature and fill in some gaps as we go along.
For readers who are new to imprecise probabilities, this can be regarded as an
introduction to the field. The more advanced reader will notice that our ap-
proach differs from some of the more conventional ones. We build the theory
from scratch, using sets of desirable gambles as our starting point, in a way
that closely resembles—but nevertheless differs slightly from—the approach
that is advocated by Williams [112]. This chapter also discusses the two main
imprecise-probabilistic conditioning rules: natural and regular extension. We
define these rules in terms of each of the four frameworks we consider, com-
pare them to one another, provide pointers to the literature, and discuss various
technical and computational aspects.

In Chapter 369, we shift the focus from conditioning to updating and study
the problem of updating directly in terms of sets of desirable gambles. We in-
troduce an asymmetric—and arguably improved—version of Walley’s updat-
ing principle, discuss the conditions under which it makes sense to use it, and
explain how it leads to a justification for updating by means of natural exten-
sion. It turns out that our approach leaves room for other updating rules as well,
including more informative ones such as regular extension. However, in order
to justify them, our asymmetric version of Walley’s updating principle is not
sufficient, and needs to be combined with additional arguments. This is exactly
what we do in the remainder of the chapter, for the particular case of updating
by means of regular extension. The basic idea is that, since we are looking
for an updated model that is meant to be used after some event has occurred,
we are—in the process of coming up with such an updated model—making
an implicit assumption that this event can occur. This assumption allows us to
include an extra assessment that, when combined with our asymmetric version
of Walley’s updating principle, leads to conditional models that coincide with
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regular extension. We provide two versions of this justification for updating by
means of regular extension. A simple version, which requires an assumption
of ideal precision, and a more involved one, which does not.

Chapter 4100 explains how to model uncertainty in a multivariate context.
We study the concept of marginalisation and its interplay with conditioning,
discuss and compare various definitions of epistemic irrelevance, explain why
one of these definitions is to be preferred and compare epistemic irrelevance
with other imprecise-probabilistic notions of independence. Finally, we dis-
cuss the concept of conservative reasoning and explain how it allows us to
extend the notion of natural extension in such a way that it can deal with a
combination of direct and structural assessments.

Chapter 5128 marks the beginning of the second part of this dissertation,
which specifically focuses on credal networks under epistemic irrelevance.
We explain how the assessments of epistemic irrelevance that correspond to
such a network can be combined with its local models to construct a unique
most conservative global uncertainty model, which we call the irrelevant nat-
ural extension of the credal network. In contrast with Cozman, who invented
this concept [16, Section 8.3], we do not restrict ourselves to the framework
of credal sets, but consider other imprecise-probabilistic frameworks as well,
including sets of desirable gambles and lower previsions. Our approach also
has the advantage that it does not require the simplifying positivity assump-
tions imposed by Cozman. We end this chapter by comparing credal networks
under epistemic irrelevance with other types of credal networks.

Chapter 6152 develops some remarkable theoretical properties of the irrel-
evant natural extension of a credal network. The starting point, and perhaps
the main technical achievement of this dissertation is a very strong separating
hyperplane result. From it, we are able to derive various theoretical properties
of the irrelevant natural extension, including factorisation, external additivity
and marginalisation properties. We also show that the irrelevant natural exten-
sion satisfies separation properties that are similar to the ones that are induced
by d-separation in Bayesian networks. We introduce an asymmetric version of
d-separation, called AD-separation, and prove that it implies epistemic irrele-
vance. Furthermore, since AD-separation is shown to satisfy all asymmetric
graphoid properties—all graphoid properties except symmetry—the induced
set of epistemic irrelevancies does so as well. We end this chapter by de-
veloping connections with the notions of independent natural extension and
marginal extension, and by proving marginalisation properties for the updated
models that are obtained when we condition the irrelevant natural extension of
a credal network using regular extension.

Chapter 7211 is the last main chapter of this dissertation and is devoted
to the development of efficient inference algorithms. We begin by presenting
some techniques that can be used to simplify inference problems beforehand,
in a preprocessing step, before any actual inference algorithm is applied. This
includes techniques for removing barren nodes and AD-separated evidence as
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well as ways of reducing a conditional inference problem to an unconditional
one. In the next part of this chapter, we show that inference can be reformulated
as a linear programming problem, even in the presence of conditioning events
with probability zero. However, the size of the linear programs that need to be
solved is exponential in the size of the credal network and, therefore, this ap-
proach is only tractable for small networks. In the case of two binary variables,
we use this linear programming description to obtain elegant closed-form ex-
pressions for the extreme points of the independent natural extension of two
binary models. In the final part of this chapter, we develop efficient recursive
algorithms for exact inference. We start by focusing on credal networks of
which the underlying DAG is recursively decomposable—a new type of DAG
that includes trees as a special case. For these networks, we develop several
efficient inference algorithms, for various types of inference problems, includ-
ing inference problems that deal with multiple query variables at once. For
credal networks under epistemic irrelevance of which the underlying DAG is
not recursively decomposable, it is still possible to develop efficient inference
algorithms, but only in specific cases. We illustrate this by means of examples.
A particularly interesting example are inferences about a single query node in
case of complete evidence.

1.4 PUBLICATIONS

The research that led to this dissertation has resulted in fourteen publications.
Five of them have been published in international journals [30–33, 40]. The
other nine have been presented at international conferences and were subse-
quently published in their proceedings [24–29, 34, 39, 41]. The results in this
dissertation represent only a small subset of these publications. In order to
turn this dissertation into a coherent story that focuses on a single line of re-
search, I have decided to only include results that are directly related to credal
networks under epistemic irrelevance. In order to paint a more complete pic-
ture of my research, I end this introduction with a brief overview of my main
results, focusing especially on the results that are not discussed in this dis-
sertation. For the convenience of the reader, I explictly mention the authors,
title and journal—or conference proceedings—of each of my publications; the
bibliography contains more detailed information.

The three main publications that did make it into this dissertation are Ref-
erences [27, 28, 31]:

� Jasper De Bock and Gert de Cooman. Allowing for probability zero in
credal networks under epistemic irrelevance. Published in the proceed-
ings of ISIPTA ’13 [27].

� Jasper De Bock and Gert de Cooman. Credal networks under epistemic
irrelevance using sets of desirable gambles. Published in the proceedings
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of ISIPTA ’13 [28].

� Jasper De Bock and Gert de Cooman. Credal networks under epistemic
irrelevance: the sets of desirable gambles approach. Published in the
International Journal of Approximate Reasoning [31].

These publications formed the basis for many of the theoretical results in Chap-
ters 5128 and 6152 and Section 7.4221. The main difference with our former ex-
position of these results is that we now present them in terms of four different
imprecise-probabilistic frameworks, thereby making them more accessible to
various audiences. Most of our algorithms in Chapter 7211—especially the ef-
ficient recursive ones—are very recent and have therefore not been published
yet. This is also the case for the results in Chapters 237, 369 and 4100.

For imprecise hidden Markov models that adopt epistemic irrelevance as
their notion of independence—a specific type of credal network under epis-
temic irrelevance—I have developed a robust version of the Viterbi algo-
rithm that is capable of robustly estimating the value of a hidden sequence
of variables based on a corresponding sequence of—possibly incorrect—
observations of these variables, and I have used it to automatically cor-
rect the errors that are made by Optical Character Recognition (OCR) soft-
ware [25, 30, 41]:

� Jasper De Bock and Gert de Cooman. State sequence prediction in
imprecise hidden Markov models. Published in the proceedings of
ISIPTA ’11 [25].

� Jasper De Bock and Gert de Cooman. An efficient algorithm for esti-
mating state sequences in imprecise hidden Markov models. Published
in the Journal of Artificial Intelligence Research [30].

� Gert de Cooman, Jasper De Bock and Arthur Van Camp. Recent ad-
vances in imprecise-probabilistic graphical models. Published in the
proceedings of ECAI 2012 [41].

These results are closely related to the material in this dissertation and are
briefly mentioned in Section 7.5.7269. I do not discuss these results at length
because most of them were already reported in my master dissertation, be it in
a less developed form.

Besides credal networks under epistemic irrelevance, I have also worked
on credal networks under complete independence, which are very similar—
and for most inference problems even equivalent—to credal networks under
strong independence. For the corresponding notion of a hidden Markov model,
I have recently designed an algorithm that can be regarded as the ‘complete
independence’-version of the robust Viterbi algorithm that was mentioned
above [34]:
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� Cedric De Boom, Jasper De Bock, Arthur Van Camp and Gert de
Cooman. Robustifying the Viterbi algorithm. Published in the proceed-
ings of PGM 2014 [34].

My other work on credal networks under complete independence has been
concerned with using them to efficiently perform a global sensitivity analysis
in Bayesian networks and, by extension, in more general graphical models
such as Markov random fields [24]:

� Jasper De Bock, Cassio P. de Campos and Alessandro Antonucci.
Global sensitivity analysis for MAP inference in graphical models. Pub-
lished in the proceedings of NIPS 2014 [24].

Finally, during my research on credal networks, I have often not been able
to restrain myself from wandering off into other parts of the vast world that is
imprecise probability theory. This has led to a number of additional results that
are not directly related to credal networks. Some of this material has not been
published yet, most notably a number of results in game-theoretic probability,
including a game-theoretic ergodic theorem for imprecise Markov chains; a
paper on this topic is currently under review. Other results were published in
References [26, 29, 32, 33, 39, 40].

A first set of these results originated from my research on an imprecise-
probabilistic version of the concept of exchangeability, a structural assess-
ment of symmetry that can be imposed on multivariate models. This has
led to a behavioural justification for the use of imprecise Bernoulli pro-
cesses [26], imprecise-probabilistic representation theorems for partially ex-
changeable random variables [33], and the development of new predictive in-
ference models [39, 40]:

� Jasper De Bock and Gert de Cooman. Imprecise Bernoulli processes.
Published in the proceedings of IPMU 2012 [26].

� Jasper De Bock, Arthur Van Camp, Márcio Alves Diniz and Gert de
Cooman. Representation theorems for partially exchangeable random
variables. Accepted for publication in Fuzzy Sets and Systems [33].

� Gert de Cooman, Jasper De Bock and Márcio Alves Diniz. Predictive in-
ference under exchangeability, and the imprecise Dirichlet multinomial
model. Published in the proceedings of EBEB 2014 [39].

� Gert de Cooman, Jasper De Bock and Márcio Alves Diniz. Coherent
predictive inference under exchangeability with imprecise probabilities.
Published in the Journal of Artificial Intelligence Research [40].

The remaining result is a connection between the geometrical concept of
Minkowski decomposability and the problem of finding the extreme points of
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the set of all coherent lower previsions on the linear space of all gambles on
some finite state space [29, 32], which are called extreme lower previsions:

� Jasper De Bock and Gert de Cooman. Extreme lower previsions and
Minkowski indecomposability. Published in the proceedings of ES-
QARU 2013 (winner of the best student paper award) [29].

� Jasper De Bock and Gert de Cooman. Extreme lower previsions. Pub-
lished in the Journal of Mathematical Analysis and Applications [32].
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2
MODELLING UNCERTAINTY

“Free yourself from the rigid conduct of tradition and open
yourself to the new forms of probability.”

Hans Bender

Consider a variable X that takes values ω in a non-empty finite state
space Ω. This could be the number of days it will rain in Ghent next year,
the name of the first person that you will meet after reading this very sentence,
or simply the outcome of some coin flip. As you can gather from these exam-
ples, the actual value of such a variable X may be unknown. A subject’s—for
example your—uncertainty about the value of X can then be represented by
means of a belief model. The most common example of such a belief model is
a single probability mass function on Ω. However, it is far from the only one,
and definitely not the most general one.

In this chapter, we introduce four alternative frameworks for constructing
a belief model that captures a subject’s uncertainty about the value of X : sets
of desirable gambles, (conditional) lower previsions, sets of (conditional) lin-
ear previsions and sets of (full conditional) probability mass functions. We
build these theories from the ground up starting from basic principles and con-
nect them with each other. They all share two advantages over working with
individual probability mass functions. First of all: they allow for impreci-
sion; basically, this means that lower and upper probabilities need not coin-
cide. Secondly, conditioning on events with (lower) probability zero becomes
non-problematic and sometimes even trivial.
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2.1 PRELIMINARIES

Essential to each of the frameworks that we are about to introduce is the notion
of a gamble on Ω, which is a real-valued function on Ω that is interpreted as
an uncertain payoff. If the actual value of X turns out to be ω , the owner of
a gamble f receives the—possibly negative—payoff f (ω), expressed in units
of some predetermined linear utility scale.1 We denote the set of all gambles
on Ω as G (Ω). This is a linear space under pointwise addition of gambles and
pointwise multiplication of gambles with real numbers. For any two f1 and f2
in G (Ω), we write ‘ f1≥ f2’ if (∀ω ∈Ω) f1(ω)≥ f2(ω) and ‘ f1 > f2’ if f1≥ f2
and f1 6= f2. Interesting subsets of G (Ω) are denoted by using predicates as
subscripts; for example: G (Ω)>0 := { f ∈ G (Ω) : f > 0} is the set of all non-
negative gambles on Ω, excluding zero.

Events are identified with subsets of Ω. Hence, the set of all events is the
power set P(Ω) of Ω. We will often consider the set P /0(Ω) := P(Ω)\{ /0}
of all non-empty events as well. Since Ω is finite, P(Ω) and P /0(Ω) are finite
too. With every event B ∈P(Ω), we associate a special gamble IB on Ω,
called its indicator, that assumes the value 1 on B and 0 elsewhere.

2.2 SETS OF DESIRABLE GAMBLES

Sets of desirable gambles constitute the first framework we consider [85,109].
The basic idea here is to model a subject’s uncertainty about the value of X by
means of a set D ⊆ G (Ω) of gambles on Ω—risky transactions whose payoff
depends on the value of X—that he considers to be desirable. A subject is said
to find a gamble f ∈ G (Ω) desirable if he strictly prefers it to the zero gamble
or, equivalently, if he strictly prefers ownership of f over ownership of the zero
gamble—the status quo.

In order to reflect a rational subject’s uncertainty, a set of desirable gam-
bles D should be coherent, meaning that it satisfies the following consistency
criteria.

Definition 1 (Coherence for sets of desirable gambles). A set D of desirable
gambles on Ω is coherent if for all λ ∈ R>0 and all f , f1, f2 ∈ G (Ω):2

D1. f = 0⇒ f /∈D; [avoiding null gain]

D2. f > 0⇒ f ∈D; [desiring partial gain]

1As long as the amounts of money remain limited, many people perceive the utility of a
monetary reward to be a linear function of its monetary value; see Reference [106, Sections 2.2.1
and 2.2.2] for additional discussion, including an example of a well-defined utility scale that is
perfectly linear.

2We use R>0 as a convenient shorthand notation for {λ ∈ R : λ > 0}, and similarly for R≥0.
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D3. f ∈D ⇒ λ f ∈D; [positive scaling]

D4. f1, f2 ∈D ⇒ f1 + f2 ∈D . [combination]

Criteria D1x and D2x are rationality criteria; they follow directly from our
interpretation of desirability. The zero gamble should not be desirable [D1x];
gambles without negative payoffs and with the possibility of a positive pay-
off should always be desirable [D2x]. Criteria D3 and D4 follow from the
linearity of our utility scale.

Coherence has a number of useful consequences, which can be obtained by
combining D1x–D4. For example, for any coherent D , and any f ,g ∈ G (Ω):

D5. g≥ f and f ∈D ⇒ g ∈D ; [monotonicity]

D6. f ≤ 0⇒ f /∈D . [avoiding non-positive gain]

2.2.1 Natural extension

In practice, we cannot expect a subject to specify for each gamble f ∈ G (Ω)
whether or not he finds it desirable. Instead, all that is usually obtained from an
elicitation procedure is an assessment A ⊆ G (Ω), which may be only a subset
of a subject’s set of desirable gambles. Furthermore, such an assessment is
often not coherent. However, by applying D2x–D4, we can use A to infer the
desirability of other gambles. The largest set of desirable gambles that can be
constructed in this way is3

E (A ) :=
{ n

∑
i=1

λi fi : n ∈ N, fi ∈A ∪G (Ω)>0,λi ∈ R>0

}
. (2.1)

By construction, E (A ) satisfies D2x–D4. Consequently, E (A ) is coherent
if and only if it avoids null gain [D1x]. Furthermore, if E (A ) is coherent,
then it is the smallest coherent set of desirable gambles that contains A , and
we then call E (A ) the natural extension of A . Since coherence is trivially
preserved under taking intersections, this natural extension E (A ) is then also
equal to the intersection of all the coherent supersets of A .

Even after enlarging an assessment by means of natural extension, the re-
sulting set of desirable gambles is not guaranteed to be exhaustive. Further
elicitation may result in additional desirable gambles. However, for various
reasons, one may be unwilling or incapable of performing such further elic-
itation; see Reference [106, Section 2.10.3] for numerous examples. Hence,
we will not require a set of desirable gambles D to be exhaustive, nor will we
interpret it in this way.

3We define the natural numbers N as the set of all positive integers. We use N0 := N∪{0} to
refer to the version that includes zero.
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2.2.2 Conditional sets of desirable gambles

One of the advantages of working with sets of desirable gambles is that con-
ditioning is extremely elegant. Consider a set of desirable gambles D and an
event B ∈P /0(Ω). Then the corresponding conditional set of desirable gam-
bles is given by [47]

DcB := { f ∈ G (B) : IB f ∈D}, (2.2)

where, by introducing the convention that 0×undefined := 0, we let IB f be a
gamble on Ω that coincides with f on B and is zero elsewhere. The intuition
behind this definition is very simple: when B occurs, the gambles IB f and f
are indistinguishable in practice. Contingent on B occurring, they yield the
same payoff; if B does not occur, then IB f results in a zero payoff whereas f is
not defined. This definition of conditioning preserves coherence: if D ⊆ G (Ω)
is coherent, then DcB⊆ G (B) is clearly coherent as well.

Alternative methods for conditioning a set of desirable gambles have also
been proposed [14, 76, 106, 109], using the notation ‘|’ rather than ‘c’; all of
these alternative methods result in a set of gambles on Ω instead of B. We
prefer the present version because we find it more intuitive that conditioning
on an event B produces a model for—a set of gambles on—that event. In any
case, the choice between these definitions is mainly an aesthetic one, because
they are all mathematically equivalent [47, Section 3.2].

2.3 LOWER PREVISIONS

Instead of asking a subject to evaluate the desirability of a gamble directly,
one can also ask him at which prices he would be willing to buy or sell that
gamble. This is the approach that is taken in Walley’s theory of lower previ-
sions [68, 71, 96, 106]. For any gamble f on Ω, the lower prevision P( f ) of
f is a subject’s supremum buying price for f . Similarly, the upper prevision
P( f ) of f is his infimum selling price for f . Since selling f for a price α is
equivalent to buying− f for a price−α , lower and upper previsions are related
by conjugacy: P( f ) =−P(− f ). For this reason, it suffices to discuss only one
of them. We follow Walley in concentrating on lower previsions.

Due to their interpretation as supremum buying prices, lower previsions
can easily be related to sets of desirable gambles. In order to connect both
approaches, it suffices to require that a subject considers the gamble f −α to
be desirable if and only if he strictly prefers buying f for the price α to the
status quo—not buying any gamble at all. Using this connection, a coherent
set of desirable gambles D trivially results in a lower prevision PD , defined by

PD ( f ) := sup
{

α ∈ R : f −α ∈D
}

for every f ∈ G (Ω). (2.3)

Alternatively, lower previsions can be assessed directly as well. Any real val-
ued function P with arbitrary domain K ⊆ G (Ω) can be interpreted as a lower
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prevision. We say that P is coherent if there is a coherent set of desirable
gambles D ⊆ G (Ω) such that P( f ) = PD ( f ) for all f ∈K .4

Lower previsions are less expressive than sets of desirable gambles. For
a given coherent lower prevision P on G (Ω), there may be multiple coherent
sets of desirable gambles D such that P = PD , the smallest of which is5

DP := { f ∈ G (Ω) : P( f )> 0 or f > 0}. (2.4)

All of these sets have the same associated set of almost desirable gambles

cl(D) :=
{

f ∈ G (Ω) : (∀δ ∈ R>0) f +δ ∈D
}

(2.5)
={ f ∈ G (Ω) : PD ( f )≥ 0}. (2.6)

We write cl(D) because, if D is coherent, then the set on the right-hand side of
the defining equality in Equation (2.5) is equal to the topological closure of D ,
with respect to the topology that is induced by the Euclidean metric. Similarly,
they will also have the same topological interior

int(D) :=
{

f ∈ G (Ω) : (∃δ ∈ R>0) f −δ ∈D
}

(2.7)
={ f ∈ G (Ω) : PD ( f )> 0}.

It is furthermore easily proved that these conditions are equivalent: if D1 and
D2 are two coherent sets of desirable gambles, then

PD1
= PD2

⇔ cl(D1) = cl(D2)⇔ int(D1) = int(D2). (2.8)

Hence, coherent sets of desirable gambles with the same lower prevision PD

differ only in their border cl(D) \ int(D). Nevertheless, which part of this
border belongs to D—the border structure of D—may be important, for the
following two reasons [109]. First of all, in a decision making context, it en-
ables one to distinguish between strict and weak preference. For example,
for two gambles f ,g ∈ G (Ω), we might say that f is strictly preferred over
g if and only if f − g ∈ D , whereas f is weakly preferred over g if and only
if f −g ∈ cl(D)⇔ PD ( f −g) ≥ 0. The set of desirable gambles D is able to
distinguish between these two notions, but the lower prevision PD is not.6 Sec-
ondly, as we will illustrate further on, the border structure of a set of desirable
gambles may have a significant impact on the conditional models it produces.

4The connection with other definitions of coherence for lower previsions is discussed in Sec-
tion 2.3.347.

5In Reference [106, Section 3.8.1], this set is denoted by D+ and is called the associated set
of strictly desirable gambles.

6Similar observations can be made for other notions of strict and weak preference for sets of
desirable gambles; see for example References [74, 106, 109].
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2.3.1 Conditional lower previsions

In the theory of lower previsions, conditional models are not merely regarded
as derived concepts that are obtained through conditioning. Instead, they are
primitive concepts, can be assessed directly, and are related to their uncondi-
tional counterparts by coherence. For any event B ∈P /0(Ω) and any gamble
f ∈ G (B), we interpret the conditional lower prevision P( f cB) of f given B
as a subject’s supremum buying price for f , contingent on the occurrence of
B.7,8 When considered as an operator, a conditional lower prevision P(·c·) is
a real-valued function whose domain can be any set C of couples ( f ,B), with
B ∈P /0(Ω) and f ∈ G (B). Hence, if we let

C (Ω) := {( f ,B) : B ∈P /0(Ω), f ∈ G (B)}

be the largest such set, then C can be any subset of C (Ω). If C contains only
couples of the form ( f ,Ω), with f ∈K ⊆ G (Ω), then P(·c·) can be identified
with an unconditional lower prevision P on K , defined by P( f ) := P( f cΩ)
for all f ∈K . Furthermore, for any B ∈P /0(Ω), the operator P(·cB) can be
regarded as an unconditional lower prevision on

CB := { f ∈ G (B) : ( f ,B) ∈ C } ⊆ G (B).

Due to the connection between desirability and buying prices, every coher-
ent set of desirable gambles D has a unique corresponding conditional lower
prevision PD (·c·), obtained by letting PD (·cB) be the lower prevision that cor-
responds to DcB:

PD ( f cB) :=sup
{

α ∈ R : f −α ∈DcB
}

(2.9)

=sup
{

α ∈ R : IB[ f −α] ∈D
}

for every ( f ,B) ∈ C (Ω). (2.10)

However, sets of desirable gambles are still more expressive; different D can
lead to the same PD (·c·) [74, Section 6].

A conditional lower prevision is said to be coherent if it can be derived
from a coherent set of desirable gambles by means of Equation (2.10).

Definition 2 (Coherence for conditional lower previsions). A conditional
lower prevision P(·c·) with domain C is said to be coherent if there is some
coherent set of desirable gambles D ⊆ G (Ω) such that9

P( f cB) = PD ( f cB) for every ( f ,B) ∈ C .

7Other authors consider the conditional lower prevision P( f |B) of gambles f ∈ G (Ω) instead;
the connection with our approach will be established in Section 2.3.347.

8See Equation (2.10) for a definition in terms of sets of desirable gambles.
9We will establish a connection with other definitions of coherence for conditional lower

previsions in Section 2.3.347.
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Since coherence for sets of desirable gambles is preserved under taking
intersections, we find that coherence for conditional lower previsions is pre-
served under taking pointwise infima, or equivalently: the lower envelope of a
set of coherent lower previsions is again a coherent lower prevision.

Proposition 1. Consider an arbitrary index set I and, for every i ∈ I, a coher-
ent conditional lower prevision Pi(·c·) on C ⊆ C (Ω). The conditional lower
prevision P(·c·) on C , defined by

P( f cB) := inf
i∈I

Pi( f cB) for all ( f ,B) ∈ C

is then also coherent.

Proof of Proposition 1. For every i ∈ I, the fact that Pi(·c·) is coherent im-
plies the existence of a coherent set of desirable gambles Di ⊆ G (Ω) such that
Pi( f cB) = PDi

( f cB) for all ( f ,B)∈C . Now let D :=∩i∈IDi. Since coherence
for sets of desirable gambles is trivially preserved under taking intersections,
we know that D is coherent. Consider now any ( f ,B) ∈ C . In order to prove
the result, it clearly suffices to show that PD ( f cB) = infi∈I Pi( f cB).

For all i ∈ I, we infer from D ⊆Di that PD ( f cB)≤ PDi
( f cB) = Pi( f cB),

which in turn implies that PD ( f cB) ≤ infi∈I Pi( f cB). Consider now any ε ∈
R>0. Equation (2.10)x then implies that IB[ f −PD ( f cB)− ε] /∈D = ∩i∈IDi.
Hence, there is some i∗ ∈ I such that IB[ f − PD ( f cB)− ε] /∈ Di∗ . Since
Di∗ is coherent, this implies that IB[ f −α] /∈Di∗ for all α ≥ PD ( f cB) + ε ,
which in turn implies that PDi∗

( f cB) ≤ PD ( f cB) + ε . Since we also know
that infi∈I Pi( f cB) = infi∈I PDi

( f cB) ≤ PDi∗
( f cB), this allows us to infer that

infi∈I Pi( f cB) ≤ PD ( f cB)+ ε . Since this is true for all ε ∈ R>0, we find that
infi∈I Pi( f cB)≤ PD ( f cB). We conclude that PD ( f cB) = infi∈I Pi( f cB).

Coherence of P(·c·) implies that P(·c·) is separately coherent [106, Section
6.2.2], by which we mean that, for all B ∈P /0(Ω), P(·cB) is a coherent lower
prevision on CB.10 However, separate coherence does not imply coherence:
coherence of P(·cB), for all B ∈P /0(Ω), is not sufficient for P(·c·) to be co-
herent. Whenever we want to clearly distinguish between separate coherence
and coherence, we will refer to the latter as joint coherence.

If for every B ∈ B, with B a subset of P /0(Ω), we have a lower previ-
sion P(·cB) on KB ⊆ G (B), we use P(·cB) := {P(·cB) : B ∈B} to refer to
this collection of lower previsions. It should be clear that such a collection
can also be identified—trivially—with a conditional lower prevision P(·c·) on
C := {( f ,B) : B ∈B, f ∈KB}. We call a collection P(·cB) separately co-
herent if each of its individual elements P(·cB) is coherent; we call it (jointly)

10It suffices to realise that there is a coherent set of desirable gambles on G (B)—in particular:
DcB—from which P(·cB) can be obtained by means of Equation (2.3)40—in particular: Equa-
tion (2.9)x.
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coherent if the corresponding conditional lower prevision is (jointly) coher-
ent. If the collection we are referring to is clear from the context, we do not
mention it explicitly. For example, we might say that a lower prevision P on
G (Ω) is coherent with a lower prevision P(·cB) on G (B); by this, we simply
mean that the corresponding collection—consisting of the lower previsions
P(·cΩ) := P(·) and P(·cB)—is jointly coherent.

2.3.2 Natural extension

Since D is not required to be exhaustive, PD (·cB) is not exhaustive either; the
subject’s actual supremum buying price for f contingent on B may be higher
than PD (·cB). If P(·c·) is assessed directly, then similarly, we do not require
it to be exhaustive. A particularly useful advantage of this interpretation is
that it allows us to turn a—possibly incoherent—lower prevision P(·c·) into a
coherent one by correcting it upwards.

To understand how this comes about naturally, the first step is to realise
that a coherent lower prevision is simply an assessment of desirable gambles:
due to our interpretation for P( f cB), we know that for any ε ∈ R>0, there is
some α ≥ P( f cB)−ε such that IB[ f −α] is a desirable gamble. By combining
this with D238 and D439, we find that the gambles in

AP(·c·) :=
{
IB[ f −P( f cB)+ ε] : ( f ,B) ∈ C and ε ∈ R>0

}
are desirable and therefore also, by D238–D439, that each of the gambles in
EP(·c·) := E (AP(·c·)) is desirable. Furthermore, since EP(·c·) is the natural ex-
tension of the assessment AP(·c·), we know from Section 2.2.139 that EP(·c·) is
the smallest set of gambles whose desirability is implied by coherence (D238–
D439) and (the assessment that corresponds to) P(·c·).

The next step is to consider the supremum buying prices that correspond to
this set of desirable gambles EP(·c·), as given by

E( f cB) :=PEP(·c·)
( f cB) for all ( f ,B) ∈ C (Ω). (2.11)

The resulting operator E(·c·) is defined on C (Ω), and its restriction to C dom-
inates P(·c·), in the sense that

E( f cB)≥ P( f cB) for all ( f ,B) ∈ C . (2.12)

Let us begin by taking a look at what happens if EP(·c·) is coherent. In that
case, E(·c·) is a coherent conditional lower prevision, and we will refer to it as
the natural extension of P(·c·). Not only does it—if necessary—correct P(·c·)
upwards on C to make it coherent, it also extends the domain of this correction
to all of C (Ω). Furthermore, out of all such coherent upwards corrections of
P(·c·), E(·c·) is the most conservative—most imprecise—one and therefore
the only one that can always be inferred from P(·c·) without having to add
extra assessments.
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Proposition 2. Consider a conditional lower prevision P(·c·) with domain C
and let P′(·c·) be any coherent conditional lower prevision on C ′ ⊇ C that
dominates P(·c·) on C . Then

P′( f cB)≥ E( f cB) for all ( f ,B) ∈ C ′.

Proof of Proposition 2. By Definition 242, there is some coherent set of desir-
able gambles D such that PD ( f cB) = P′( f cB) for all ( f ,B) ∈ C ′. Further-
more, by an argument similar to the one we provided for EP(·c·) in the main
text, we know that EP′(·c·) consists of gambles whose desirability is implied by
P′(·c·). Hence, we find that EP′(·c·) ⊆ D . Also, since P′(·c·) dominates P(·c·)
on C , AP(·c·) is clearly a subset of AP′(·c·) and therefore EP(·c·) is a subset of
EP′(·c·). This implies that EP(·c·) ⊆ D and therefore also, by Equation (2.9)42,
that P′( f cB) = PD ( f cB)≥ PEP(·c·)

( f cB) = E( f cB) for all ( f ,B) ∈ C ′.

We conclude that, if EP(·c·) is coherent, the natural extension E(·c·) pro-
vides us with the most conservative—lowest—coherent supremum buying
prices that are compatible with (the assessment that corresponds to) P(·c·).

So far, so good. But what if EP(·c·) is incoherent? As we know from Sec-
tion 2.2.139, the only way for this to happen is if EP(·c·) does not avoid null
gain [D138], meaning that EP(·c·) contains the zero gamble. Even worse, as we
show in Proposition 3 below, there are f ∈ EP(·c·) for which f < 0. In other
words, there are gambles whose desirability is implied by P(·c·) and D238–
D439, but which are guaranteed never to yield a positive payoff, and in some
cases even yield a negative payoff. If this happens, then clearly, there is some-
thing wrong with P(·c·). Indeed, it turns out that if EP(·c·) is incoherent, then
P(·c·) is incoherent as well, and it cannot be made coherent by correcting it
upwards. Hence, in that case, it is not possible to construct a coherent lower
prevision that is consistent with (the non-exhaustive interpretation of) P(·c·),
and the only option is to reassess P(·c·).

Proposition 3. Consider a conditional lower prevision P(·c·) with domain C .
Then the following statements are equivalent:

(i) EP(·c·) is incoherent;

(ii) f < 0 for some f ∈ EP(·c·);

(iii) E( f cB) = +∞ for some ( f ,B) ∈ C ;

(iv) Every conditional lower prevision that dominates P(·c·) on C is inco-
herent.

Proof of Proposition 3. It clearly suffices to show that (i)⇒(ii)⇒(i), (i)⇒(iii)
and ¬(i)⇒¬(iv)⇒¬(iii).

We start by proving that (i)⇒(ii) and (i)⇒(iii). So assume that (i) holds:
EP(·c·) is incoherent. Then as explained in Section 2.2.139, EP(·c·) does not avoid
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null gain [D138], implying that there are n ∈ N, (∀i ∈ {1, . . . ,n}) ( fi,Bi) ∈ C ,
εi ∈ R>0, λi ∈ R>0 such that

g :=
n

∑
i=1

λiIBi [ fi−P( ficBi)+ εi] = 0.

Hence, for all λ ∈ R>0, we find that

−λ IB1 =−
2λ

λ1ε1
λ1IB1

ε1

2
≥ 2λ

λ1ε1

(
−

n

∑
i=1

λiIBi

εi

2
+g

)

=
2λ

λ1ε1

(
n

∑
i=1

λiIBi

[
fi−P( ficBi)+

εi

2

])
= : h

and therefore, since h ∈ EP(·c·), and because EP(·c·) satisfies D238 and D439
and therefore also D539, that −λ IB1 ∈ EP(·c·). This already implies that (ii)x
holds. Now assume ex absurdo that (iii)x does not hold, implying in particular
that E( f1cB1) < ∞, which in turn implies that there is some α ∈ R such that
IB1( f1−α) /∈ EP(·c·). Consider any λ ∈ R>0 such that λ > α −min f1. Then
IB1( f1−α)≥−λ IB1 and hence, since (as we have just shown)−λ IB1 ∈ EP(·c·),
and because EP(·c·) satisfies D539, we find that IB1( f1−α) ∈ EP(·c·). This is a
contradiction, allowing us to conclude that (iii)x holds.

(ii)x⇒(i)x is trivial: by combining (ii)x with the fact that EP(·c·) satisfies
D539, we immediately find that EP(·c·) does not avoid null gain [D138].

For ¬(i)x⇒¬(iv)x, it suffices to recall that, as explained earlier on in Sec-
tion 2.3.244, coherence of EP(·c·) implies that E(·c·) is a coherent conditional
lower prevision that dominates P(·c·) on C .

Finally, we prove that ¬(iv)x⇒¬(iii)x. So assume that ¬(iv)x: there is a
coherent conditional lower prevision P′(·c·) that dominates P(·c·) on C . Then
by Proposition 2x, for any ( f ,B) ∈ C , P′( f cB)≥ E( f cB). Since P′(·c·) is by
definition real-valued, this implies that E( f cB)< ∞ for all ( f ,B) ∈ C .

By combining this result with Proposition 2x, we obtain the following
alternative characterisation of coherence.

Corollary 4. Consider a conditional lower prevision P(·c·) with domain C .
Then P(·c·) is coherent if and only if it coincides with E(·c·) on C .

Proof of Corollary 4. First assume that P(·c·) is coherent. Then trivially,
P(·c·) is a coherent lower prevision that dominates P(·c·) on C . Hence, by
Proposition 2x, P(·c·) dominates E(·c·) on C . However, by Equation (2.12)44,
the converse holds as well. Hence, P(·c·) and E(·c·) coincide on C .

Next, assume that P(·c·) and E(·c·) coincide on C . Now assume ex ab-
surdo that EP(·c·) is incoherent. Then by Proposition 3(i)x&(iii)x, there is
some ( f ,B) ∈ C such that E( f cB) = +∞ and therefore, by assumption, also
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P( f cB) = +∞. This is a contradiction because P(·c·) is a conditional lower
prevision and therefore, by definition, real-valued. Hence, EP(·c·) is coherent.
This implies that E(·c·) is coherent too, and therefore, since P(·c·) is by as-
sumption the restriction of E(·c·) to C , P(·c·) is coherent as well.

If P(·c·) is coherent then, as one would intuitively expect, the most conser-
vative coherent upwards correction of P(·c·) is P(·c·) itself. However, even in
that case, natural extension is still a important tool, as it allows us to coherently
extend P(·c·) to all of C (Ω) in the most conservative way possible.

Consider for example the common case where C := {( f ,Ω) : f ∈ G (Ω)},
which means that P(·c·) is an unconditional lower prevision P(·) := P(·cΩ) on
G (Ω). In that case, natural extension can be regarded as a conditioning rule:
for any B ∈P /0(Ω), it provides us with a corresponding coherent lower previ-
sion E(·cB) on G (B);11 it is guaranteed to be coherent with P, and out of all
lower previsions on G (B) that are coherent with P, it is the most conservative—
most imprecise—one.

2.3.3 Comparison with other approaches

Besides Definition 242, many other definitions for coherence have been pro-
posed as well; see Reference [80] for an overview. As we are about to explain,
within our finitary context—recall that Ω is finite—, many of them are mathe-
matically equivalent to our approach.

First of all, in these other definitions, P(·|B) is defined for gambles on Ω

instead of B. By analogy with conditioning for sets of desirable gambles, we
reflect this in our notation by using ‘|’ instead of ‘c’. If we adopt this approach
as well, then PD ( f |B) is still defined by Equation (2.10)42, but with f an ele-
ment of G (Ω) instead of G (B). Definition 242 remains identical; we just have
to replace ‘c’ by ‘|’. We prefer our present version because we find it more in-
tuitive that conditioning on an event B produces a model for—a lower prevision
for gambles on—that event. Also, it allows us to use Equation (2.9)42, which
we think is particularly elegant because it illustrates that Equation (2.10)42
follows directly from Equations (2.2)40 and (2.3)40. Mathematically, both ap-
proaches are equivalent. If P(·|·) is coherent, then P( f |B) depends only on
the restriction fB ∈ G (B) of f to B, allowing us to identify P(·|·) with a co-
herent lower prevision P(·c·). Conversely, if P(·c·) is coherent, then the lower
prevision P(·|·) that is defined by

P( f |B) := P( fBcB) for all f ∈ G (Ω) and B ∈P /0(Ω) such that ( fB,B) ∈ C

is coherent. Even stronger: P(·|·) is coherent if and only if P(·c·) is coher-
ent. Given this connection, we now compare Definition 242 with a number of
alternative definitions for coherence.

11We provide an explicit expression for this conditioning rule further on in Section 2.7.261.
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Formally, the notion of coherence that resembles Definition 242 the most
is that of Williams [104, 112] (W-coherence). The main difference is that he
considers so-called acceptable gambles rather than desirable ones. As was
essentially pointed out by Williams himself—the cone A ′

0 in Reference [113,
Proposition 3] is identical to our EP(·c·)—, this leads to an equivalent definition;
see Reference [74] for some results in terms of desirable gambles. Two other
differences are that Williams considers upper rather than lower previsions and
that he imposes some structure on the domain of P(·|·).12 Reference [80, Sec-
tion 3.1] explains that this does not make any difference either; structure-free
generalisations of W-coherence for lower previsions can be found in Refer-
ences [80, 94, 98] and [96, Chapter 13]. Another, more popular definition of
coherence is that of Walley [106] (Walley-coherence); this definition is not
structure-free. When it is applicable, Walley-coherence is known to be equiv-
alent to W-coherence if Ω is finite [106, Appendix K]. We conclude that
within our finitary context, Definition 242 is equivalent to both Walley- and
W-coherence and that therefore, we can import all sorts of useful results that
were developed for these other notions of coherence, ranging from theoretical
properties [96, 106] to computational techniques [98, 111].

2.3.4 Properties of coherent conditional lower previsions

Coherence has many useful consequences; see for example References [96,
106, 112]. We list only a few.

Consider a coherent conditional lower prevision P(·c·) with arbitrary do-
main C and let P(·c·) be the associated conditional upper prevision, defined
by

P( f cB) :=−P(− f cB) for all ( f ,B) ∈ C (Ω) such that (− f ,B) ∈ C .

Then for all A,B ∈P /0(Ω) such that B ⊆ A, all λ ∈ R≥0, all µ ∈ R and all
f ,g ∈ G (B), the following properties hold whenever the expressions involved
are well-defined:

C1. P( f cB)≥min f ;

C2. P(λ f cB) = λP( f cB); [non-negative homogeneity]

C3. P( f +gcB)≥ P( f cB)+P(gcB); [super-additivity]

C4. P(IB[ f −P( f cB)]cA) = 0;

C5. P( f cB)+P(gcB)≥ P( f +gcB)≥ P( f cB)+P(gcB)≥ P( f +gcB);

C6. P( f cB)≤ P( f cB)≤max f ;

12He requires the domain to be of the form in Corollary 650.
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C7. g≥ f ⇒ P(gcB)≥ P( f cB); [monotonicity]

C8. P( f +µcB) = P( f cB)+µ . [constant additivity]

Conditions C1x–C4x have a special status because—as the following result
by Williams establishes—they can be used to characterise coherence.

Proposition 5 ( [96, 106, 112]). Consider a non-empty subset B of P /0(Ω)
and, for all B ∈B, a linear subspace KB of G (B). Let P(·c·) be any condi-
tional lower prevision with domain C := {( f ,B) : B ∈B and f ∈KB}. Then
P(·c·) is coherent if and only if it satisfies C1x–C4x. Furthermore, for any
B ∈B, P(·cB) is coherent if and only if it satisfies C1x–C3x. Hence, in this
particular case, P(·c·) is jointly coherent if and only if it is separately coherent
and satisfies C4x.

2.3.5 Betting rates

Before we move on to the connection between lower previsions and probability
measures, we would like to draw attention to a particular aspect of sets of
desirable gambles and the lower previsions that are associated with them.

Clearly, the notion of a gamble is closely related to betting: similarly to
what happens with betting, we either lose or gain utility (money), depending
on the uncertain value of a variable X (the outcome of some experiment). This
connection is especially clear if we consider indicators of events. For any
B ∈P /0(Ω) and λ ∈ R>0 and α ∈ R, the gamble λ (IB−α) corresponds to
paying λα in order to receive λ if B happens. In other words: betting on B,
at a betting rate α , and with stakes λ . Due to the linearity of our utility scale
[C2x], the desirability of such a bet does not depend on the stakes λ , but only
on the betting rate α: the gamble IB−α is desirable if and only if you are
willing to bet on B at a betting rate α . Hence, we find that the supremum
betting rate at which you are willing to bet on B, defined by

PD (B) := sup
{

α ∈ R : IB−α ∈D
}
= PD (IB), (2.13)

is equal to the lower prevision of IB. Similarly, since α − IB is desirable if
and only if you are willing to take bets on B at a betting rate α—bet against B
at a betting rate 1−α—we find that the upper prevision of IB is equal to the
infimum betting rate

PD (B) := PD (IB) = inf
{

α ∈ R : α− IB ∈D
}

(2.14)

at which you are willing to take bets on B. By coherence [C1x and C6x], we
find that

0≤ PD (B)≤ PD (B)≤ 1, (2.15)

as is to be expected for (supremum and infimum) betting rates. For reasons that
should become clear shortly, PD (B) and PD (B)—or P(B) and P(B)—are often
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referred to as the lower and upper probability of B, respectively. However, this
should not be taken to imply the existence of an unknown probability P(B) of
B, for which PD (B) and PD (B) provide lower and upper bounds; this may be
the case in some situations, but in general, the interpretation in terms of betting
rates is more fundamental. We discuss this point further in Section 2.6.356.

2.4 LINEAR PREVISIONS

If a subject’s supremum rate P(B) for betting on B coincides with the infimum
rate P(B) at which he is willing to take bets on B, then P(B) := P(B) = P(B)
is his fair betting rate for the event B. Similarly, for a gamble f ∈ G (Ω),
if P( f ) = P( f ), then P( f ) := P( f ) = P( f ) is the subject’s fair price for f ,
called the prevision of f by de Finetti [50]. If a conditional lower prevision
P(·c·) with domain C assigns such fair prices to all gambles, in the sense that
( f ,B) ∈ C if and only if (− f ,B) ∈ C and that

P( f cB) = P( f cB) = : −P(− f cB) for all ( f ,B) ∈ C ,

then P(·c·) is said to be self-conjugate, is referred to as a conditional prevision,
and we then simply write P(·c·) instead of P(·c·) or P(·c·).

If a conditional prevision P(·c·) is coherent, then by combining C148–C448
with self-conjugacy, we find that it satisfies the following properties. For all
A,B ∈P /0(Ω) such that B ⊆ A, all λ ∈ R, and all f ,g ∈ G (B), and whenever
the expressions involved are well-defined:

P1. min f ≤ P( f cB)≤max f ;

P2. P(λ f cB) = λP( f cB); [homogeneity]

P3. P( f +gcB) = P( f cB)+P(gcB); [additivity]

P4. P(IB f cA) = P( f cB)P(BcA). [Bayes’s rule]

As we can see from conditions P2 and P3, for all B∈P /0(Ω), P(·cB) is a linear
operator, and for this reason, coherent conditional previsions are also referred
to as conditional linear previsions. Proposition 5x leads to the following con-
venient characterisation.

Corollary 6 ( [96,106,112]). Consider a non-empty subset B of P /0(Ω) and,
for all B ∈B, a linear subspace KB of G (B). Let P(·c·) be any conditional
prevision with domain C := {( f ,B) : B ∈B and f ∈KB}. Then P(·c·) is co-
herent if and only if it satisfies P1–P4. Furthermore, for any B ∈B, P(·cB) is
coherent if and only if it satisfies P1–P3. Hence, in this particular case, P(·c·)
is jointly coherent if and only if it is separately coherent and satisfies P4.
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We denote the set of all conditional linear previsions on C (Ω) by P. Fur-
thermore, for any B ∈P /0(Ω), we let PB be the set consisting of all uncon-
ditional linear previsions on G (B). In this way, for any B ∈ P /0(Ω) and
P(·c·) ∈ P, we have that P(·cB) ∈ PB. PΩ corresponds to an important spe-
cial case.

2.5 FULL CONDITIONAL PROBABILITY MASS FUNCTIONS

One of the reasons why linear previsions are an important, is because they al-
low us to link the gamble-orientated approach to modelling uncertainty, which
we have just introduced, with the more conventional approach that uses prob-
ability measures and probability mass functions.

Indeed, consider a conditional linear prevision P(·c·) on C (Ω) and use
P(CcB) as a shorthand notation for P(ICcB), for all C,B ∈P(Ω) such that
C ⊆ B. It then follows from P1x–P4x that, for all A,B ∈P /0(Ω) and C,D ∈
P(Ω) such that C∩D = /0 and C∪D⊆ B⊆ A:

F1. P(BcB) = 1;

F2. P(CcB)≥ 0;

F3. P(C∪DcB) = P(CcB)+P(DcB);

F4. P(CcA) = P(CcB)P(BcA). [Bayes’s rule]

Hence, formally, the restriction of P(·c·) to indicators can be identified with a
full conditional probability measure, because F1–F4 are the defining properties
for such a measure [54].13 Conditions F1–F3 assert that, for any B ∈P /0(Ω),
P(·cB) satisfies the usual axioms of probability, and F4 corresponds to Bayes’s
rule. Furthermore, the original conditional prevision can be fully recovered
from this full conditional probability measure. Indeed, by linearity, for any
f ∈ G (B), since f = ∑ω∈B f (ω)I{ω}, we find that

P( f cB) = P
(

∑
ω∈B

f (ω)I{ω}
⌋

B
)
= ∑

ω∈B
f (ω)P(I{ω}cB) = ∑

ω∈B
f (ω)p(ωcB)

is the expected value of the gamble f with respect to the probability mass
function p(·cB) on B that corresponds to P(·cB), defined for all ω ∈ B by
p(ωcB) := P({ω}cB) = P(I{ω}cB).

Inspired by these results, we let C∗(Ω) := {(ω,B) : B∈P /0(Ω) and ω ∈B}
and we call an operator p(·c·) on C∗(Ω) a full conditional probability mass

13See Reference [21] for a recent overview of related literature.
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function if and only if, for all A,B ∈P /0(Ω) such that B ⊆ A, p(·cB) is a
probability mass function on B and

p(ωcA) = p(ωcB) ∑
ω ′∈B

p(ω ′cA) for all ω ∈ B. (2.16)

It follows from the results above that there is a one-to-one correspondence
between conditional linear previsions, full conditional probability measures
and full conditional probability mass functions.

If every element of Ω has positive probability—if p(ωcΩ) > 0 for all
ω ∈ Ω—then Bayes’s rule—or, equivalently, Equation (2.16)—uniquely de-
termines all conditional probabilities. In that case, a full conditional prob-
ability mass function and its associated full conditional probability measure
and conditional linear prevision are completely characterised by the uncondi-
tional mass function p(·) := p(·cΩ). However, if P(B) = ∑ω∈B p(ωcB) = 0,
Bayes’s rule imposes no non-trivial restrictions on p(·cB) and in that case,
a full conditional probability mass function allows for p(·cB) to be specified
independently from p(·cΩ).

2.6 SETS OF LINEAR PREVISIONS OR MASS FUNCTIONS

The link between (full conditional) probability mass functions and (condi-
tional) lower previsions is not restricted to the special case of (conditional)
linear previsions. In general, lower previsions are related to sets of linear previ-
sions and therefore, by the results in the previous section, to sets of probability
mass functions.

2.6.1 The lower envelope theorem

For any conditional lower prevision P(·c·) on an arbitrary domain C , we can
consider the corresponding set of dominating linear conditional previsions, as
given by

MP(·c·) := {P(·c·) ∈ P : P( f cB)≥ P( f cB) for all ( f ,B) ∈ C }. (2.17)

The following fundamental result by Williams [112] shows that P(·c·) is co-
herent if and only if (a) there is at least one such dominating linear prevision
and (b) the lower envelope of all these dominating linear previsions is equal
to P(·c·).

Theorem 7 (Lower envelope theorem [112]). Consider a conditional lower
prevision P(·c·) with domain C . We then have that P(·c·) is coherent if and
only if MP(·c·) 6= /0 and

P( f cB) = min{P( f cB) : P(·c·) ∈MP(·c·)} for all ( f ,B) ∈ C .

52



2.6 SETS OF LINEAR PREVISIONS OR MASS FUNCTIONS

Furthermore, in that case, by conjugacy, the corresponding conditional upper
prevision is given by

P( f cB) = max{P( f cB) : P(·c·) ∈MP(·c·)} for all (− f ,B) ∈ C .

By combining the lower envelope theorem with the results in Sec-
tion 2.3.244, we obtain an alternative expression for the natural extension:
EP(·c·) is coherent if and only MP(·c·) 6= /0 and, in that case, we have that

E( f cB) = min{P( f cB) : P(·c·) ∈MP(·c·)} for all ( f ,B) ∈ C (Ω). (2.18)

Although the set MP(·c·) is extremely powerful from a theoretical point of
view, it is often too complex to work with in practice. For this reason, it is
sometimes convenient to restrict the domain of the conditional linear previ-
sions in MP(·c·). In particular, for any B ∈P /0(Ω), we may consider the set

MP(·c·)cB := {P(·cB) : P(·c·) ∈MP(·c·)} ⊆ PB, (2.19)

consisting of linear previsions on G (B). Alternatively, instead of restricting the
domain of the conditional previsions in MP(·c·), we may also regard P(·cB) as
an unconditional lower prevision on CB := { f ∈G (B) : ( f ,B)∈C }—provided
that CB 6= /0—and consider the set of all linear previsions on G (B) that locally
dominate P(·cB):

MP(·cB) := {P ∈ PB : P( f )≥ P( f cB) for all f ∈ CB}.

The following result establishes that it does not really matter which road we
take. If the domain of P(·c·) is sufficiently large, MP(·c·)cB and MP(·cB) coin-
cide.

Proposition 8. Consider an event B ∈ P /0(Ω) and a coherent conditional
lower prevision P(·c·) with domain C such that CB = G (B). It then holds
that MP(·cB) = MP(·c·)cB.14

Proof of Proposition 8. We only prove that MP(·cB) ⊆MP(·c·)cB. The con-
verse inclusion holds trivially. Consider therefore any P ∈MP(·cB). We show
that P ∈MP(·c·)cB.

Let P∗(·c·) be the conditional lower prevision on C that is defined by

P∗( f cA) :=

{
P( f cA) if A 6= B
P( f ) if A = B

for all ( f ,A) ∈ C

14Many thanks to Enrique Miranda. I still remember asking him if he knew whether this result
was true. He said he did not know. Later the same day, while strolling through town in search for
a beer, he handed me a folded sheet of paper. On it, he had written down the central idea of the
proof I provide here.
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and consider any g ∈ EP∗(·c·). We set out to prove that g 6< 0. If g > 0, this
is trivial. If g 6> 0, we infer from g ∈ EP∗(·c·) that there are n ∈ N and, for all
i ∈ {1, . . . ,n}, λi ∈ R>0, ( fi,Ai) ∈ C and εi ∈ R>0 such that

g≥
n

∑
i=1

λiIAi [ fi−P∗( ficAi)+ εi]

= ∑
i∈I

λiIAi [ fi−P∗( ficAi)+ εi]+ ∑
i∈I′

λiIAi [ fi−P∗( ficAi)+ εi]

= ∑
i∈I

λiIAi [ fi−P( ficAi)+ εi]+ ∑
i∈I′

λiIB[ fi−P( fi)+ εi],

with I := {i ∈ {1 . . .n} : Ai 6= B} and I′ := {i ∈ {1 . . .n} : Ai = B}. If I′ = /0—
and therefore I = {1, . . . ,n}—we find that g∈ EP(·c·) and therefore, by Proposi-
tion 345 and the fact that P(·c·) is coherent, that g 6< 0. Hence, we may assume
that I 6= /0, allowing us to define f := ∑i∈I′ λi fi and ε := ∑i∈I′ λiεi. By the
linearity of P, and the fact that P ∈MP(·cB), we now have that

g≥∑
i∈I

λiIAi [ fi−P( ficAi)+ εi]+ IB[ f +P(− f )+ ε]

≥∑
i∈I

λiIAi [ fi−P( ficAi)+ εi]+ IB[ f +P(− f cB)+ ε],

where P(− f cB) is well-defined because CB = G (B) and therefore (− f ,B) ∈
C . Since P(·c·) is coherent, we infer from the lower envelope theorem [Theo-
rem 752] that there is a linear conditional prevision P′(·c·) ∈MP(·c·) such that
P(− f cB) = P′(− f cB) =−P′( f cB) and therefore also

g≥∑
i∈I

λiIAi [ fi−P( ficAi)+ εi]+ IB[ f +P(− f cB)+ ε]

≥∑
i∈I

λiIAi [ fi−P′( ficAi)+ εi]+ IB[ f −P′( f cB)+ ε],

implying that g ∈ EP′(·c·) and therefore, by Proposition 345 and the fact that
P′(·c·) is coherent, that g 6< 0. Since we have proved that this holds for any
g ∈ EP∗(·c·), we infer from Proposition 345 that MP∗(·c·) is non-empty.

Now let P∗(·c·) be any element of this non-empty set MP∗(·c·). We infer
from P ∈MP(·cB) that P dominates P(·cB) on CB = G (B) and therefore, that
P∗(·c·) dominates P(·c·) on C . Furthermore, since P∗(·c·) ∈MP∗(·c·) implies
that P∗(·c·) dominates P∗(·c·) on C , we find that P∗(·c·) dominates P(·c·)
on C , or equivalently, that P∗(·c·) ∈MP(·c·). Also, by the linearity of P and
P∗(·c·), we find that

P( f ) = P∗( f cB)≤ P∗( f cB) =−P∗(− f cB)≤−P∗(− f cB) =−P(− f ) = P( f )

for all f ∈ G (B), implying that P∗(·cB) = P. Since P∗(·c·) ∈MP(·c·), this in
turn implies that P ∈MP(·c·)cB.
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Focusing on these ‘local’ sets MP(·cB) of linear previsions on G (B) is not
only useful from a practical point of view. They satisfy a fundamental theo-
retical property as well. As was proved by Walley [106, Section 3.6.1], for
any coherent lower prevision P on G (B), MP is closed and convex under the
weak*-topology—the topology of pointwise convergence—and is furthermore
the only such set that has P as its lower envelope. Hence, we find that MP(·cB)
is the unique closed and convex subset of PB that has P(·cB) as its lower enve-
lope.

One practical advantage of the fact that these local sets MP(·cB) are closed
and convex is that it allows us to characterise them by means of their set of
extreme points ext(MP(·cB))—those elements of MP(·cB) that cannot be written
as a proper convex combination of two other elements. In particular: MP(·cB)
is the convex hull of ext(MP(·cB)) [106, Section 3.6.2(b), note 5]. The most
important consequence of this result is that P(·cB) is the lower envelope of
ext(MP(·cB)) [106, Section 3.6.2(c)]:

P( f cB) = min{P( f ) : P ∈ ext(MP(·cB))} for all f ∈ G (B). (2.20)

This is especially useful if MP(·cB) is finitely generated, by which we mean
that it has a finite number of extreme points. By Equation (2.20), P( f cB) is
then simply the minimum of a finite number of previsions.

2.6.2 Credal sets

Since there is a one-to-one correspondence between conditional linear previ-
sions and full conditional probability mass functions, it follows that, for any
coherent lower prevision P(·c·), the associated set MP(·c·) of conditional linear
previsions on C (Ω) has a unique corresponding set FP(·c·) of full conditional
probability mass functions on C∗(Ω). Similarly, for any B ∈P /0(Ω), we let
FP(·cB) be the unique set of probability mass functions on B that corresponds
to MP(·cB). If we define

FP(·c·)cB := {p(·cB) : p(·c·) ∈FP(·c·)}, (2.21)

then by the results in the previous section and the one-to-one correspon-
dence between linear previsions and probability mass functions, we know that
FP(·c·)cB = FP(·cB).

These ‘local’ sets of probability mass functions FP(·cB) satisfy properties
that are similar to those of MP(·cB). Most importantly: FP(·cB) is a convex
and closed subset of RB, with respect to the natural topology, as induced by
the Euclidean metric [63, Section 10.2].15 Any such closed and convex set of

15Other, arguably more intuitive, metrics can be used as well; see References [32,92] for more
information.
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probability mass functions is called a credal set [66]. As is the case for every
subset of RB that is bounded, closed and convex, FP(·cB) is the convex hull of
its vertices [86, Corollary 18.5.1]—its extreme points. We use ext(FP(·cB)) to
refer to the set that consists of these vertices. If ext(FP(·cB)) is finite, FP(·cB)
is said to be a finitely generated credal set.

2.6.3 The sensitivity analysis interpretation

The lower envelope theorem is not merely a theoretical result, it also suggests
an alternative interpretation for coherent conditional lower previsions: a co-
herent conditional lower prevision P(·c·) is simply a convenient representation
for the set of linear conditional previsions MP(·c·), or equivalently, the corre-
sponding set of full conditional probability mass functions FP(·c·). On this
interpretation, one of these full conditional probability mass functions is be-
lieved to be the true, ideal model, but because of economic or time-constraints,
or due to measurement errors, we are unable to specify it exactly, and can only
provide a set of candidates. Walley [106, Section 1.1.5] refers to this belief
in the existence of an ideal probability mass function as the dogma of ideal
precision;16 the corresponding interpretation of conditional lower previsions is
called the sensitivity analysis interpretation.

However, care should be taken in adopting this interpretation. As we are
about to demonstrate by means of two examples, there are many situations
where it is not applicable. See References [106, 110] for extensive additional
discussion.

From a frequentist point of view, the existence of a fair betting rate—
probability—for an event follows from an hypothesis that the experiment
at hand is part of an infinite sequence of—independent or exchangeable—
analogous experiments, where analogous is taken to mean that they have the
same distribution. This notion of fair betting rate—probability—is problem-
atic because it requires a predefined notion of probability; in that sense, the
frequentist argument is circular. In any case, this frequentist hypothesis is only
tenable if the limiting frequency of the event actually converges.17 Neverthe-
less, it is sometimes applicable. For example, if each of the experiments corre-
sponds to a flip of the same fair coin, it seems reasonable to regard P(H) = 1/2

as a fair betting rate for heads. Similarly, if we are told that the coin is not
fair, but that its probability for heads lies in between 1/4 and 3/4, we are led to
consider the set of all linear previsions for which 1/4≤ P(H)≤ 3/4, which can
be conveniently represented by the—in this case unique—coherent lower pre-
vision for which P(H) = 1/4 and P(H) = 3/4. However, the limiting frequency

16We will refer to it as ‘ideal precision’, to avoid the provocative use of the term ‘dogma’.
17Under this hypothesis, the limiting frequency convergences almost surely because of the law

of large numbers.
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does not always converge. Consider for example a case where we do not know
how the instances of heads and tails are generated—it might be a coin flip, but
it might also be by some other generating process—and where we observe that
the limiting frequency of heads does not tend to converge, but rather cycles in
between 1/4 and 3/4. In such a case, for a single experiment in this series, it
seems again reasonable to bet on heads at any rate below 1/4 and to take bets
on heads at any rate above 3/4, leading us to adopt P(H) = 1/4 and P(H) = 3/4

as our lower and upper prevision for (the indicator of) heads. However, in this
case, there seems to be no reason to assume that there is such a thing as a fair
(but unknown) betting rate P(H) for betting on heads.18

A completely different, and rather extreme situation occurs when we want
to model an experiment that is not repeated, and about which we know abso-
lutely nothing, apart from the fact that the outcome is an element of Ω. In that
case, for any gamble f ∈ G (Ω), it would be sensible to buy f for any price
below min f , and sell it for any price higher than max f , leading us to adopt the
so-called vacuous lower prevision Pv and the corresponding upper prevision
Pv, defined by

Pv( f ) = min f and Pv( f ) = max f for all f ∈ G (Ω).

However, here too, there seems to be no reason to assume the existence of
some subject’s fair (but unknown) price P( f ), in the sense that he should be
willing to buy f for any price below P( f ), and buy f for any price above.

2.6.4 Arbitrary sets of linear previsions or mass functions

If we choose to adopt the sensitivity analysis interpretation, and apply it to a
coherent conditional lower prevision P(·c·), we are led to model uncertainty
by means of the set of linear conditional previsions MP(·c·) or the set of full
conditional probability mass functions FP(·c·). However, this is merely a spe-
cial case. As we have seen in Sections 2.6.152 and 2.6.255, MP(·c·) and FP(·c·)
satisfy very specific properties.

If we adopt ideal precision as a principle on its own—without the sensi-
tivity analysis interpretation—we are not required to restrict attention to sets
that are of this particular form. In principle, uncertainty can be modelled by
means of any set M of conditional linear previsions on C (Ω) or any set F
of full conditional probability mass functions on C∗(Ω). They need not be
conditional either. A set M of (unconditional) linear previsions or a set F
of probability mass functions can also be used. By the one-to-one correspon-

18Such an assumption could be reasonable if there is some time-dependent fair betting rate,
taking values in [1/4,3/4], of which the specific time evolution is unknown. However, we do not
consider it reasonable to assume the existence of such a time-dependent fair betting rate based
only on an observation that the limiting frequency cycles in between 1/4 and 3/4.
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dence between these frameworks, these sets can be used interchangeably. We
will mainly focus on the framework of (conditional) linear previsions.

We take FM to be the set of (full conditional) probability mass functions
that corresponds to M and use MF to refer to the set of (conditional) linear
previsions that corresponds to F . Furthermore, if M is a set of conditional
linear previsions on C (Ω) and F is a set of full conditional probability mass
functions on C∗(Ω), then for any event B ∈P /0(Ω), we let

M cB := {P(·cB) : P(·c·) ∈M } (2.22)

and
F cB := {p(·cB) : p(·c·) ∈F}

Equations (2.19)53 and (2.21)55 can be regarded as special cases of these defini-
tions. It should also be clear that MF cB = MF cB and FM cB = FM cB; this is
a direct consequence of the one-to-one correspondence between (conditional)
linear previsions and (full conditional) probability mass functions.

A link with lower previsions can still be established, even in this general
case. With any set M of conditional linear previsions on C (Ω), we can asso-
ciate a coherent19 conditional lower prevision PM (·c·), defined by

PM ( f cB) = inf{P( f cB) : P(·c·) ∈M } for all ( f ,B) ∈ C (Ω).

However, PM (·c·) is not guaranteed to represent M , in the sense that MPM (·c·)
might differ from M . In general, we only have that M ⊆MPM (·c·). Similarly,
the lower envelope PM of a set M of linear previsions on G (Ω) may not rep-
resent M ; the set of unconditional previsions that dominates PM is guaranteed
to include M , but the inclusion might be strict; equality is obtained if and only
if M is closed and convex.

As a simple example, consider a situation in which you have a biased coin,
but you do not know in which direction it is biased. You only know that it is
three times more likely to fall on one of its sides than on the other. In that case,
it seems reasonable to model this situation by means of a set M consisting of
two linear previsions P1 and P2, defined by P1(H) = 1/4 and P2(H) = 3/4, re-
spectively. The corresponding lower prevision is determined by PM (H) = 1/4

and PM (H) = 3/4—we obtain the same lower prevision as in Section 2.6.356.
However, information is lost by using PM rather than M , because PM (·) is
dominated not only by P1 and P2, but also by any convex combination of these
two, including for example the linear prevision that corresponds to a fair coin.

19This follows from the fact that coherence is preserved under taking pointwise infima; see
Proposition 143.
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2.7 REGULAR EXTENSION VERSUS NATURAL EXTENSION

So far, we have come across two different imprecise-probabilistic methods for
conditioning. For sets of desirable gambles, conditioning is fully determined
by Equation (2.2)40 and, for lower previsions, as explained at the end of Sec-
tion 2.3.244, natural extension can be regarded as a conditioning rule. We have
not stressed this yet, but both methods have a surprising property: they are
always well-defined, regardless of whether or not the conditioning event has
(lower or upper) probability zero. Bayes’s rule on the other hand, the most
famous probabilistic conditioning rule of all time, is ill-defined whenever the
conditioning event B has probability zero. Conditional linear previsions try to
remedy this situation by allowing P(·cB) to be specified separately, but this
does not resolve the issue, since the act of conditioning—deriving conditional
models from unconditional ones—remains ill-defined: starting from an un-
conditional linear prevision P on G (B), with P(B) = 0, Bayes’s rule places no
restrictions on P(·cB).

Should this lead us to conclude that imprecise-probabilistic approaches
are more powerful when it comes to dealing with probability zero? Yes in-
deed! Does it mean that we should forget about Bayes’s rule? Not at all! As
we are about to show, Bayes’s rule has a prominent place within imprecise-
probabilistic conditioning as well. In many cases, it even leads to a unique
conditioning rule, which will then coincide with natural extension. In the re-
maining cases, Bayes’s rule also leads to another imprecise-probabilistic con-
ditioning rule, called regular extension. The goal of this section is to introduce
this conditioning rule, to compare it with natural extension, and to discuss var-
ious related theoretical and computational aspects.

Since regular extension is especially intuitive from a sensitivity analysis
point of view, we start by introducing it in terms of sets of linear previsions.
Translations to the framework of probability mass functions are trivial and are
therefore omitted. The connection with lower previsions and sets of desirable
gambles will be established in Sections 2.7.261 and 2.7.465, respectively. Sec-
tion 2.7.363 discusses computational aspects.

2.7.1 In terms of sets of linear previsions

If we adopt ideal precision,20 and model uncertainty by means of a set M ∈PΩ

of—unconditional—linear previsions, conditioning on an event B ∈P /0(Ω) is
commonly performed by conditioning each of the elements of M separately,
through Bayes’s rule. For any P ∈M such that P(B)> 0, the resulting condi-

20See Sections 2.6.356 and 2.6.457.
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tional prevision P(·cB) is defined by

P( f cB) :=
P(IB f )
P(B)

for all f ∈ G (B). (2.23)

If P(B) > 0 for all P ∈M , this approach leads to a unique conditional
model M cB, which is obtained by applying Equation (2.23) to every element
of M :

M cB := {P(·cB) : P ∈M } ⊆ PB. (2.24)

The difference with Equation (2.22)58 is that M is now a set of unconditional
linear previsions. However, both equations are obviously closely related. If
M ′ is a set of conditional linear previsions on C (Ω) such that P(BcΩ) >
0 for all P(·c·) ∈M ′ and we let M := M ′cΩ be the corresponding set of
unconditional linear previsions on G (Ω), then M cB = M ′cB.

If P(B) = 0 for all P ∈M , then Bayes’s rule imposes no restrictions on
the conditional prevision P(·cB) and Equation (2.24) can no longer be applied.
This leads us to consider the set of all previsions on G (B) as our conditional
model: M cB := PB.

The situation is less clear if P(B) = 0 for some P ∈M , but P(B) > 0 for
others. We can then distinguish between two distinct approaches. By analogy
with the corresponding notions for lower previsions—which will be discussed
shortly—we call them natural and regular extension. Natural extension again
considers the set PB of all previsions on G (B), whereas regular extension ig-
nores the previsions in M for which P(B) = 0, and applies Bayes’s rule to the
others.

By including the aforementioned cases as well, we obtain two different
conditioning rules. Natural extension leads us to consider the conditional mod-
els that are given by

M cnB :=

{
{P(·cB) : P ∈M } if P(B)> 0 for all P ∈M ;
PB otherwise.

(2.25)

Regular extension results in the use of the conditional sets that are defined by

M crB :=

{
{P(·cB) : P ∈M and P(B)> 0} if (∃P ∈M ) P(B)> 0;
PB otherwise.

(2.26)
The first part of this formula—the case where B has positive probability ac-
cording to at least one P in M —is called extended Bayesian conditioning in
Reference [105]. It has also been called generalised (Bayesian) condition-
ing [11]. However, care should be taken when using this terminology, because
these names are used to refer to other concepts as well; see for example Refer-
ences [65] and [10], respectively.
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2.7.2 In terms of lower previsions

For lower previsions, the only conditioning rule that we have discussed so far
is natural extension: for a given unconditional coherent lower prevision P on
G (Ω), and any event B ∈P /0(Ω), the natural extension E(·cB) is the most
conservative—most imprecise—conditional lower prevision on G (B) that is
coherent with P. Even stronger, as we will explain shortly, it is often the only
one that is coherent with P.

By Proposition 549, we know that a conditional lower prevision P(·cB) on
G (B) is coherent with P if and only if both of them are separately coherent
and if they satisfy C448. In this particular context, with only these two lower
previsions, C448 reduces to

P(IB[ f −P( f cB)]) = 0 for all f ∈ G (B), (2.27)

which is referred to as the generalised Bayes rule (GBR) [106, Section 6.4].
One of the reasons why it has this name is because it reduces to Bayes’s rule if
P is a linear prevision; see P450 and F451. However, as we are about to show,
the GBR has an even more fundamental connection with Bayes’s rule.

If P(B) > 0, the GBR is known to have a unique solution [106, Section
6.4.1]:21 for any gamble f ∈ G (B), there is then a unique value of µ ∈ R
such that P(IB[ f − µ]) = 0. Since E(·cB) is coherent with P, and therefore
satisfies the GBR, this unique value coincides with E( f cB). In other words, if
P(B) > 0, E(·cB) is the only coherent lower prevision on G (B) that satisfies
the GBR, and therefore the only one that is jointly coherent with P.

Let us now consider the set MP of linear previsions that dominate P. If
we adopt the sensitivity analysis interpretation, we can condition this set by
means of the methods in the previous section. If P(B)> 0, then P(B)> 0 for all
P∈MP, and we can simply apply Bayes’s rule to each such P to obtain a linear
prevision P(·cB) on G (B), leading us to adopt the set MP

⌋
B as our conditional

model. Now let P(·cB) be the lower envelope of this set. Then P(·cB) is jointly
coherent with P, because for every P ∈MP, P and P(·cB) are jointly coherent,
and therefore their lower envelopes—P and P(·cB), respectively—are jointly
coherent as well—see Proposition 143. Hence, by the results in the previous
paragraph, P(·cB) coincides with E(·cB); see Reference [106, Section 6.4.2]
as well. Even stronger, as the following result establishes, E(·cB) is not only
the lower envelope of MP

⌋
B, it even represents it exactly.

Corollary 9. Consider a coherent lower prevision P on G (Ω) and let E(·c·)
be its natural extension. Then for all B ∈P /0(Ω) such that P(B)> 0, we have
that ME(·cB) = MP

⌋
B.

21This is only true if the domain of P is large enough, which is clearly the case here because it
is—assumed to be—equal to G (Ω).
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Proof of Corollary 9x. We only prove that ME(·cB) ⊆ MP
⌋
B, because the

converse inclusion follows trivially from the fact that E(·cB) is the lower enve-
lope of MP

⌋
B. So consider any P∗ ∈ME(·cB). Then by Proposition 853, there is

some P(·c·) ∈ME(·c·) such that P∗(·) = P(·cB). If we now let P(·) := P(·cΩ),
then P ∈MP, which implies that P(B)≥ P(B)> 0. Hence, we infer from the
coherence of P(·c·) [P450] that P(·cB) is related to P(·) by means of Equa-
tion (2.23)60. Since P ∈MP, this implies that P∗ = P(·cB) ∈MP

⌋
B.

Hence, in summary: if P(B)> 0, then by applying Bayes’s rule to the linear
previsions that dominate P, we obtain a unique conditional model MP

⌋
B that

is fully characterised by its lower envelope. This lower envelope is equal to
the natural extension E(·cB), and is the unique solution to Equation (2.27)x,
which is the ultimate reason why this equation is called the generalised Bayes
rule.

Unfortunately, these nice results no longer hold if P(B) = 0. In that case,
the GBR might have multiple solutions and coherence alone is not guaranteed
to lead to a unique value of P( f cB). The most conservative option is then
to resort to the vacuous lower prevision, as defined by Pv( f cB) := min f for
all f ∈ G (B); it is the most conservative—most imprecise—coherent lower
prevision on G (B), and it satisfies the GBR whenever P(B) = 0. Hence, in that
case, Pv(·cB) is the most conservative lower prevision on G (B) that is coherent
with P, and it is therefore equal to the natural extension E(·cB).

By combining this with the results for P(B) > 0, and also using the fact
that P(IB[ f −µ]) is non-increasing in µ because of (C7)49, it can be shown that
conditioning by means of natural extension results in the use of the following
expressions:

E( f cB) =

{
max{µ ∈ R : P(IB[ f −µ])≥ 0} if P(B)> 0
min f otherwise

for all f ∈ G (B).

(2.28)
If we adopt the sensitivity analysis interpretation, this conditioning rule—
Equation (2.28)—can be regarded as a special case of the notion of natu-
ral extension that was introduced in the previous section: if we apply Equa-
tion (2.25)60 to the set of dominating linear previsions MP, then the resulting
conditional model MP

⌋nB has E(·cB) as its lower envelope, and is even fully
characterised by this lower envelope.

Corollary 10. Consider a coherent lower prevision P on G (Ω) and let E(·c·)
be its natural extension. Then ME(·cB) = MP

⌋nB for all B ∈P /0(Ω).

Proof of Corollary 10. If P(B) > 0, this is exactly what is stated in Corol-
lary 9x. If P(B) = 0, it follows trivially from P150.

A similar, but slightly weaker result can be obtained for regular extension
as well. If we apply Equation (2.26)60 to MP, then the lower envelope of the
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resulting conditional model MP
⌋rB is given by

R( f cB) :=

{
max{µ ∈ R : P(IB[ f −µ])≥ 0} if P(B)> 0
min f otherwise

for all f ∈ G (B).

(2.29)
and the resulting conditioning rule for lower previsions is also called regu-
lar extension [106, Appendix J]. It coincides with natural extension whenever
P(B) > 0 or P(B) = 0, but may differ from it when 0 = P(B) < P(B). In
the latter case, in contradistinction with what we found for natural extension,
R(·cB) is not guaranteed to fully characterise the conditional model MP

⌋rB it
is the lower envelope of. The set MR(·cB) of linear previsions that dominate
R(·cB) is convex and closed [see Section 2.6.152] but MP

⌋rB is only guaran-
teed to be convex [20, 66], and may not be closed [20, Example 1]. However,
only very little information is lost; by convexity, and since R( f cB) is the lower
envelope of MP

⌋rB, the latter lies in between MR(·cB) and its relative interior,
and therefore approximates it very closely. At the expense of this minimal loss
of information, MP

⌋rB can be conveniently represented by R(·cB). If MP is
finitely generated, this representation is even exact [20, Section 2].

Regular extension can also be introduced without any reference to the sen-
sitivity analysis interpretation or the set MP of dominating linear previsions.
Again, as with the natural extension, the resulting lower prevision R(·cB) is
coherent with the original model P [71, Section 3.3.4]. It only differs from
the natural extension if 0 = P(B)< P(B) and is then the largest solution to the
GBR, and therefore the least conservative—most precise—model that is coher-
ent with P [69], whereas natural extension provides the most conservative—
most imprecise—such model. In order to turn the regular extension into a
most conservative model, coherence needs to be combined with additional
axioms. Reference [106, Appendix J3, Equation (C16)] provides an abstract
condition—if P(B) > 0 and P(IB f ) ≥ 0, then P( f cB) ≥ 0—that does the job,
but does not justify why a subject should want to impose this condition as an
axiom.

2.7.3 Computational aspects

From a computational point of view, calculating E( f cB) or R( f cB) requires
two things: evaluating the sign of P(B) or P(B), respectively, and—in case
it is positive—computing the value of max{µ ∈ R : P(IB[ f − µ]) ≥ 0}. We
consider two distinctly different approaches.

The first approach is to use the extreme points of MP. By Equation (2.20)55
and conjugacy, we know that P(B) is positive if and only if P(B) is posi-
tive for all P ∈ ext(MP), and that P(B) is positive whenever there is at least
one P ∈ ext(MP) for which P(B) > 0. The following result establishes that
max{µ ∈ R : P(IB[ f − µ]) ≥ 0} can be evaluated by applying Bayes’s rule to
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the element of ext(MP), whenever possible, and then taking the lower enve-
lope of the resulting models.

Proposition 11. Consider a coherent lower prevision P on G (Ω). Then for
any B ∈P /0(Ω) and any f ∈ G (B):22

max{µ ∈ R : P(IB[ f −µ])≥ 0}= inf
{

P( f IB)

P(B)
: P ∈ ext(MP), P(B)> 0

}
.

Proof of Proposition 11. By Equation (2.20)55, we have that P(IB[ f −µ])≥ 0
if and only if P(IB[ f −µ])≥ 0 for all P∈ ext(MP). Since each of these P is co-
herent, we also know that P(IB[ f −µ]) =P(IB f )−µP(B), and that P(IB f )= 0
whenever P(B) = 0. Hence, we find that

P(IB[ f −µ])≥ 0⇔ (∀P ∈ ext(MP) : P(B)> 0) P(IB f )−µP(B)≥ 0.

This completes the proof, because it implies that P(IB[ f −µ])≥ 0 if and only
if µ is lower than or equal to the right-hand side of the equality that we need
to prove.

Theoretically, this approach always works. In practice, it usually only works
if the number of extreme points is finite and reasonably small. It also requires
that these extreme points are given, or that they can be computed efficiently
from P.

Alternatively, we can work directly with the lower prevision P, and in par-
ticular, with the corresponding real-valued function ρ f ,B, defined by

ρ f ,B(µ) := P(IB[ f −µ]) for all µ ∈ R.

By Equation (2.20)55, we know that ρ f ,B is the pointwise minimum of a set
of linear, non-increasing functions P(IB f )− µP(B), with P ∈ ext(MP). It is
therefore (Lipschitz23) continuous, concave, and non-increasing, and its first
derivative, whenever it exists, lies between −P(B) and −P(B). The left and
right derivatives always exist, and are guaranteed to lie between the same
bounds.

Let µ0 < min f and µ1 > max f . It then follows from the coherence of P
that ρ f ,B(µ0) is positive if and only if P(B) is positive too, and similarly for
ρ f ,B(µ1) and P(B). Alternatively, the signs of P(B) and P(B) can be evaluated
directly as well. Evaluating µ∗ := max{µ ∈ R : P(IB[ f −µ])≥ 0} is done it-
eratively. If P(B) > 0, then ρ f ,B is a strictly decreasing function of µ , and µ∗

is its only root. By coherence, this root is guaranteed to lie between min f
and max f , and it can therefore be found easily by means of the bisection

22This result is essentially well-known; we provide its proof for the sake of completeness.
23See Reference [42, Section 6.1].
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method, or any other root-finding procedure; see References [42, Section 6.3]
and [108, p. 18] for methods that have been specifically designed to exploit
the properties of the function ρ f ,B. If we are able to evaluate ρ f ,B(µ) up to
some numerical error ε , and iterate sufficiently often, then by the bounds on
the first (left and right) derivative of ρ f ,B, the error that is made by the bisec-
tion method will not exceed ε/P(B). If P(B)> P(B) = 0, then ρ f ,B is identically
zero in ]−∞,µ∗] and strictly decreasing in ]µ∗,+∞[, and in this decreasing
part, the first derivative, whenever it exists, is bounded above by −P>0(B),
with P>0(B) := inf{P(B) : P ∈ ext(MP),P(B) > 0}, and similarly for the left
and right derivative, which always exist. Finding µ∗ is now a bit more tricky.
Since coherence again implies that µ∗ lies in between min f and max f , we
could in principle directly apply the bisection algorithm here as well. How-
ever, if during this procedure, numerical errors lead us to mistakenly conclude
that ρ f ,B(µ) is negative for some µ < µ∗, the obtained solution could greatly
underestimate the actual value µ∗. The simplest way to fix this is to look for the
unique root of ρ f ,B +δ , for some sufficiently small δ > ε . If P>0(B)> 0—for
example, if MP is finitely generated—then the obtained solution will overesti-
mate the actual value of µ∗, but by no more than (δ+ε)/P>0(B).

2.7.4 What about sets of desirable gambles?

After all this elaboration about conditioning with lower previsions, and in par-
ticular with natural and regular extension, one could wonder why we even
bother to deal with these notions. Why do we not simply work with sets
of desirable gambles? The answer is a practical one: from a computa-
tional point of view, conditioning by means of natural or regular extension—
Equations (2.28)62 and (2.29)63, respectively—is more tractable. Although
Equation (2.2)40 provides a conceptually very simple conditioning rule, it is
difficult to use in practice. If D has a complex border structure, it can be very
difficult—if not impossible—to check whether a gamble f ∈ G (B) belongs to
DcB or, equivalently, whether IB f ∈ D , especially if {IB f : f ∈ G (B)} is a
subset of the border of D . The two main reasons are numerical errors and
the fact that it is difficult—and sometimes even impossible due to memory
limitations—to provide a computer representation for the exact border struc-
ture of D .24

Nevertheless, even if the actual calculations are performed in terms of
lower previsions, sets of desirable gambles remain important, both theoret-
ically and philosophically. One of the key reasons for their importance, is
that they provide conditional lower previsions with an interpretation, without
any reference to Bayes’s rule or the sensitivity analysis interpretation: con-

24See References [14, 83] for some ingenious but complex methods that are able to deal with
the special case of so-called finitely generated sets of desirable gambles.
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ceptually, for every coherent conditional lower prevision P(·c·) on C , there is
a—possibly not given—coherent set of desirable gambles D such that PD (·c·)
coincides with P(·c·) on C .

If D is given, then in theory, conditioning should be done by applying
Equation (2.2)40 to D , resulting in a conditional set of desirable gambles DcB.
In practice however, we are usually only interested in the corresponding lower
prevision PDcB( f ) = PD ( f cB), for some gamble f ∈ G (B). Hence, rather than
constructing DcB, which is often intractable, we will instead try and calculate
PD ( f cB) directly. However, even this may be very hard, because—as is the
case for DcB—PD ( f cB) may crucially depend on the exact border structure of
D . In order to avoid this dependency on the border structure, the trick is to fo-
cus on the unconditional prevision PD . Unlike PD (·c·), PD (·) := PD (·cΩ)
does not depend on the exact border structure of D , and can therefore be
evaluated in a more reliable manner. If we now use the techniques in Sec-
tion 2.7.363 to obtain the natural extension E( f cB) of PD , then by the results
of Section 2.7.261, E( f cB) is guaranteed to provide a lower—conservative—
bound on PD ( f cB), and when PD (B) > 0, this bound will even be exact. For
some sets D , it is even possible to prove, on theoretical grounds, that PD ( f cB)
is bounded from below by the regular extension R( f cB) of PD ,25 thereby pro-
viding a lower bound on PD ( f cB) that is guaranteed to be exact whenever
PD (B)> 0.26 We will construct such sets in Section 3.479 and Appendix 3.A91
and prove that they indeed satisfy this property. In any case, for now, the main
message is that even if the underlying model is a set of desirable gambles D ,
we can still perform all the calculations in terms of lower previsions, using nat-
ural or regular extension. This approach is usually more feasible from a com-
putational point of view and is guaranteed to provide lower—conservative—
bounds on PD ( f cB), that are often even exact.

In many cases, D is not given, and is simply an underlying theoretical
concept. For example, in the case of conditioning, all we may have to start
from is the unconditional lower prevision P(·) := PD (·cΩ) on G (Ω), with
C = {( f ,Ω) : f ∈ G (Ω)}. In that case, by specifying the set D ourselves,
we are in fact specifying a conditioning rule: for every B ∈P /0(Ω), the set
D will provide us with a corresponding coherent lower prevision PD (·cB) on
G (B). Natural and regular extension correspond to particular choices of D . By
definition [see Section 2.3.244], natural extension can be obtained by using the
set EP(·c·), which in this case is equal to DP.

25This holds trivially if PD (B)> 0; if PD (B)> 0, this can either be proved directly—as we do
in Corollary 2186 and Proposition 2894—or, alternatively, by verifying the necessary and sufficient
conditions in Reference [74, Appendix A.1] or the sufficient conditions in Reference [14, Theo-
rem 10].

26Because PD (·cB) is coherent with PD , and because, as we have seen in Section 2.7.261,
R(·cB) is the least conservative lower prevision for which the case.
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Proposition 12. Consider a coherent ‘conditional’ lower prevision P(·c·)
whose domain C is equal to {( f ,Ω) : f ∈ G (Ω)}, and let P(·) := P(·cΩ) be
the corresponding unconditional lower prevision on G (Ω). Then EP(·c·) = DP.

Proof of Proposition 12x. In this particular case, we find that

AP(·c·) = { f −P( f )+ ε : f ∈ G (Ω),ε ∈ R>0}= {g ∈ G (Ω) : P(g)> 0},
(2.30)

using C849 to obtain the second equality. Hence, DP is clearly a subset of
EP(·c·) := E (AP(·c·)). In order to establish the converse inclusion, let us con-
sider any f ∈ EP(·c·) and prove that f ∈ DP. If f > 0, this is trivial. If f 6> 0,
then by Equation (2.1)39, f ≥ ∑

n
i=1 λi fi, with n ∈ N and, for all i ∈ {1, . . . ,n},

fi ∈ AP(·c·) and λi ∈ R>0. Hence, by coherence [C248, C348 and C749] and
Equation (2.30), we find that P( f ) ≥ P(∑n

i=1 λi fi) ≥ ∑
n
i=1 λiP( fi) > 0 and

therefore, that f ∈DP.

Regular extension can be obtained by using the set

D r
P :={ f ∈ G (Ω) : (P( f )≥ 0 and P( f )> 0) or f > 0}
=DP∪{ f ∈ G (Ω) : P( f ) = 0 and P( f )> 0}.

Proposition 13.27 Consider a coherent lower prevision P on G (Ω) and let
R(·c·) be the conditional lower prevision on C (Ω) that is defined by Equa-
tion (2.29)63. Then D r

P and R(·c·) are coherent, P = PD r
P

and

R( f cB) = PD r
P
( f cB) for all ( f ,B) ∈ C (Ω).

Proof of Proposition 13. Coherence of D r
P follows by straightforward verifi-

cation of D138–D439. D238 holds trivially. D138 and D339 follow directly from
the coherence of P [C849 and C248, respectively]. In order to prove D439, we
consider any f ,g ∈ D r

P, and show that f + g ∈ D r
P. If f ,g ∈ DP this follows

from the coherence of DP. Otherwise, we may assume without loss of general-
ity that P( f ) = 0 and P( f )> 0. Since g∈D r

P clearly implies that P(g)≥ 0, we
infer that P( f +g)≥ P( f )+P(g)≥ 0 [C348] and P( f +g)≥ P( f )+P(g)> 0
[C548], which in turn implies that f +g ∈D r

P.
Next, we prove that P = PD r

P
. Consider any f ∈ G (Ω) and any α ∈ R. If

α < P( f ), then P( f −α) > 0 [C849] and therefore f −α ∈ D r
P. If α > P( f ),

then P( f −α)< 0 [C849] and therefore also f −α 6> 0 [C148], which implies
that f −α /∈D r

P. Hence, by Equation (2.3)40, PD r
P
( f ) = P( f ).

27This result was stated without proof in Reference [84, Section 2.6.6]; References [106, Ap-
pendix F4] and [14] provide earlier, but less direct statements of the same result.
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Since D r
P is coherent, PD r

P
(·c·) is coherent by construction, and therefore,

the only thing that we still need to prove is that R(·c·) = PD r
P
(·c·). So con-

sider any ( f ,B) ∈ C (Ω). We will show that R( f cB) = PD r
P
( f cB). Since

PD r
P
(·c·) is coherent, PD r

P
(·cB) is clearly coherent with P = PD r

P
. First, as-

sume that P(B) > 0. Then P uniquely determines PD r
P
( f cB) through the

GBR [Equation (2.27)61], and therefore PD r
P
( f cB) coincides with R( f cB).

Next, assume that P(B) > P(B) = 0. Then coherence of PD r
P
(·cB) and P

implies that R( f cB) ≥ PD r
P
( f cB). Consider now any µ < R( f cB). Since

P(IB[ f −R( f cB)]) = 0, we know that P(IB[ f − µ]) ≥ 0 [C749] and that, with
λ := R( f cB)−µ > 0:

P(IB[ f −µ])≥ P(IB[ f −R( f cB)])+P(IBλ )≥ λP(B)> 0

[C548 and C248]. This implies that IB[ f −µ] ∈D r
P. Since this holds for all

µ < R( f cB), we infer from Equation (2.10)42 that PD r
P
( f cB) ≥ R( f cB) and

therefore that R( f cB) = PD r
P
( f cB). Finally, assume that P(B) = 0. Consider

any µ > min f and choose α ∈ R such that α > max f and α > 0. Then
P(IB[ f −µ])≤ P(IBα) = αP(B) = 0 [C749 and C248] and IB[ f −µ] 6> 0, and
therefore IB[ f − µ] /∈ D r

P. Since this holds for all µ > min f , we infer from
Equation (2.10)42 that PD r

P
( f cB)≤min f and therefore, by coherence [C148],

that PD r
P
( f cB) = min f = R( f cB).

It is important to realise that DP and D r
P are not necessarily the only sets of de-

sirable gambles that result in the use of natural or regular extension as a condi-
tioning rule, respectively. Since sets of desirable gambles are more expressive
than conditional lower previsions, other sets of desirable gambles may result
in the same conditioning rules. However, for natural extension, the set DP is
fundamental, because it is the smallest—most conservative, most imprecise—
set of gambles whose desirability is implied by P and coherence. For regular
extension, D r

P does not have such a special status; there are smaller sets of
desirable gambles that also lead to regular extension. We will construct an ex-
ample in Appendix 3.A91 and will show that it is a—sometimes strict—subset
of D r

P; see Corollary 3296 and Example 196.
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3
UPDATING

“... la théorie des probabilités n’est, au fond, que le bon sens
réduit au calcul; elle fait apprécier avec exactitude ce que les
esprits justes sentent par une sorte d’instinct, sans qu’ils
puissent souvent s’en rendre compte.”

Pierre-Simon Laplace

Conditioning is commonly—and successfully—used for a multitude of
practical purposes, the most important of which is to solve the following up-
dating problem: starting from an initial belief model for an uncertain variable
X that takes values in Ω, and given the additional information that some event
O ∈P /0(Ω) has occurred, how then should we update this belief model to
reflect this new information? If the belief model is taken to be a probability
mass function, then the traditional solution to this problem is to condition the
original model by means of Bayes’s rule. In fact, in that context, the act of
“conditioning on an event O” is often even identified with solving this updat-
ing problem. Similarly, if the belief model is an imprecise probability model,
the conditioning rules that we have discussed before are commonly used as
updating rules.

However, it should not be forgotten that conditioning is just a mathematical
concept. Before using this concept to solve a practical problem such as the
updating task, one should at least try and justify why it is indeed reasonable
to use it for this purpose. The goal of this chapter is to perform this exercise
for the two imprecise-probabilistic conditioning rules that we discussed earlier
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on: natural and regular extension. We intend to show that, in many cases, it
does indeed make sense to use these rules to update a belief model in the light
of the occurrence of an event.

Our starting point is an asymmetric version of Walley’s updating principle,
which we employ to argue for using conditioning as a conservative updating
rule for sets of desirable gambles. This will then lead to a rather straightfor-
ward justification for updating by means of natural extension. It will also fol-
low from our analysis that there is room for other updating strategies, including
less conservative ones, such as updating by means of regular extension. We end
this chapter with a justification for using regular extension as an updating rule.
We provide two versions of this justification: a simple one, which requires an
assumption of ideal precision, and a more involved one, which does not. Ap-
pendix 3.A91 gathers a number of additional technical results that are relevant
to the topic, but which do not fit into the main storyline of this chapter. Pointers
to these results have been inserted at appropriate places in the main text.

3.1 NARROWING DOWN THE PROBLEM

(Imprecise-probabilistic) belief updating, in a general sense, is highly com-
plicated. Many different, and often ill-defined aspects might come into play:
additional background information other than the occurrence of O, complex
dynamical aspects, changes of mind, biased information, and so on; see for
example References [91, 97, 118]. For our present purposes, we will restrict
ourselves to a specific, less general setting, which is nevertheless still applica-
ble in a wide variety of situations.

3.1.1 Updating by means of a rule

Our most important restriction is that we only consider situations where the
updated models are provided beforehand. In other words: we are looking for
an updating rule, which—by definition of a rule—is stated in advance. For any
event O ∈P /0(Ω) that is considered, this rule provides an associated updated
belief model, that is obtained simply by applying the rule to the original belief
model. If O occurs, this updated model is then simply adopted. This situation
for example reflects the typical practical two-phased approach to modelling,
where the model is first built by experts, based on expert knowledge and/or
data, only to be queried afterwards by the user. The user is then usually not an
expert in the field, and is therefore provided not only with a model, but also
with an updating rule to go with it.

An important consequence of restricting ourselves to this particular case,
is that it rules out the possibility of taking into account any additional infor-
mation other than the occurrence of some event O, because such additional
information cannot be anticipated when designing—or choosing—the rule. In
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other words, all that is learned is that O has occurred, and nothing else. How-
ever, our setting does not rule out the possibility of changing your mind, it only
requires you to do so in a way that is specified in advance, and that is based on
no information other than that O has occurred.

3.1.2 What does it mean to learn that an event has occurred?

Since our updating rule is based only on the initial belief model and the infor-
mation that O has occurred, we should clearly define what ‘to be informed that
O has occurred’ means. The ‘O has occurred’ part is easy: it simply means that
X has taken a value in O. The ‘to be informed that’ part is a more tricky. In our
set-up, we will only deal with cases where the information that O has occurred
is reported to us honestly, correctly and whenever it applies, and where we do
not receive any additional information about which particular value X takes
in O. We discuss each of these separate requirements below, but basically,
they reduce to the following single requirement: it should be agreed upon be-
forehand that we will be informed about the occurrence of O—and nothing
more—if and only if it actually occurs.

The requirement that we should not receive any additional information
about which particular value X takes in O may seem straightforward, but it
is in fact not that trivial. For example, among other things, it implies that the
point in time when we are informed that O has occurred should not provide
us with any additional information about the value of X , other than that it be-
longs to O. For example, if X is the outcome of two consecutive coin flips,
and O is the event that the outcome of at least one of them is heads, it could
be that after the first flip, this event is already known to be true. However, we
should not be told so until after the second flip, because otherwise, we would
not only learn that the outcome of at least one of the coin flips was heads—that
O has occurred—but we would also receive the additional information that the
outcome of the first flip was heads.

The requirement of honesty is typically relevant if the information is the an-
swer to some sensitive question, such as whether or not someone is a smoker.
The answer may be biased; patients who smoke will often say that they do not.
These kind of biases occur frequently, and should be taken into account. How-
ever, we do not consider them to be part of the updating problem, but rather of
the modelling problem. Whenever such a bias is suspected, the model should
be extended in such a way as to differentiate between the answer that is given
and the actual truth, and this extended model should try and capture the rela-
tionship between both. The event O is then simply the—possibly dishonest—
answer that is given by the patient, which is not required to coincide with the
truthful answer to the question. In this way the event O is trivially guaranteed
to be reported honestly, and hence our set-up applies to the extended model.

The requirement of correctness is similar to that of honesty, but refers to
unintended errors rather than intentional ones, for example due to measure-
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ment errors, miscommunication, and so on. Again, we do not consider this
to be part of the updating problem, but rather of the modelling problem. The
event O should be taken to refer to a—possibly wrong—actual observation;
the observation process itself, as well as the errors it produces, are taken to be
part of the model. This guarantees that the observation that O has occurred is
trivially correct, thereby making our set-up apply.

Finally, the information that the event O has occurred should be reported
whenever it applies. More exactly: it should be agreed upon beforehand that if
O occurs, we are guaranteed to receive the information that it indeed does. At
first sight, this might seem to follow from the requirements of honesty and cor-
rectness, but it does not: honesty and correctness only guarantee that whenever
we are informed that O has occurred, it has indeed occurred, but not the other
way around. Consider for example a situation where we come to know that the
outcome of the roll of a die is even. Then, under the assumptions of correct-
ness and honesty alone, this only allows us to infer that the event O on which
we should update is a subset of O∗ := {2,4,6}. For example, it might be that it
was decided beforehand—without our knowing—that the information that the
outcome is even would only be provided to us if the actual outcome is 2 or 4,
and kept from us whenever the outcome is 6. In that case, the information that
the outcome is even is correct, as well as honest, but it is too weak, since it
also implies that the outcome is not 6. Hence, the event on which we should
be updating is O := {2,4} rather than O∗.

3.1.3 Which events should be considered?

So far, we have restricted attention to a generic single event O∈P /0(Ω). How-
ever, that is not the end of the story. Can it be any event? Can we consider
multiple events? No and yes, respectively.

Since updating is by its very definition concerned with providing a new
belief model after getting to know that O has occurred, it clearly only applies
to observable events. We do not necessarily have to be able to observe it our-
selves, but someone has to be, and needs to be able to communicate it to us. In
contrast, conditioning can be applied to any event, regardless of whether it is
observable. It is for this reason that we use O—from ‘observation’—to refer
to a generic event on which we update, rather than B, which we use for events
on which we condition.

Many authors do not single out just one event O, but consider it to be part
of a structured collection of events that reflects the actual process of gathering
information. For example, Walley [106] focuses on partitions of Ω, the ele-
ments of which typically correspond to the outcome of some experiment, or
the answer to some question. Shafer [89] considers more complex structures,
which he calls protocols; they allow for multi-phased set-ups as well, where
additional experiments and/or questions can be used to further refine the sam-
ple space. These situations are covered by our setting as well; it suffices for
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the requirements of Section 3.1.271 to hold for every event in the considered
collection. However, our approach is more general. For example, if O is part
of some partition, then we do not require that there is some predetermined
point in time where we are guaranteed to know which event in this partition
has occurred. In any case, it is not necessary to consider a collection of events.
Furthermore, if O does belong to some natural collection, then most of our
analysis will not depend on it. Therefore, we will usually refrain from men-
tioning any collection, and will simply consider a single event O ∈P /0(Ω).
Whenever the specific collection to which O belongs does become relevant, it
will be mentioned explicitly; see for example Section 3.3.277.

3.2 CONDITIONING AS AN UPDATING STRATEGY

Now that we know exactly what we are dealing with, let us start solving the
problem. First of all, by our assumptions, we are guaranteed that whenever we
are informed that O has occurred, it has indeed occurred, meaning that X takes
a value in O. Hence, after learning that O has occurred, we no longer need
to consider the elements in Ω \O. This implies that the updated belief model
should capture the uncertainty about which value X takes in the remaining set
of possibilities O. Depending on the framework we adopt, this can be a set
of desirable gambles on O, a lower prevision on G (O), or any of the other
uncertainty models that we discussed in Chapter 237.

3.2.1 An asymmetric version of Walley’s updating principle

We first consider the framework of sets of desirable gambles. The initial belief
model is then a coherent set of desirable gambles on Ω, which we denote by
D , and the updated belief model is a coherent set of desirable gambles on
O, which we denote by DO. By definition of an updated model, DO consists
of gambles that are desirable after O occurs, whereas D consists of gambles
that are desirable now—before O occurs. The central question of the updating
problem is whether or not, and if yes, how, DO should be related to D .

In order to be able to answer this question, we distinguish DO from two
other sets of gambles on O. The set DcO has already been discussed at length;
it is fully determined by D , as it consists of those gambles f ∈ G (O) for which
the gamble IO f is desirable now—is an element of D . The set DO is new.
It consists of those gambles on O of which our subject now thinks that they
should become desirable after O occurs; following Walley’s terminology [106,
Section 6.5.1], we call these gambles O-desirable. So how is DO related to DO

and DcO?
The connection between DO and DO follows trivially from our assump-

tions. As explained in Section 3.1.170, we are restricting attention to situations
in which the updated model is provided in advance by an expert and then sim-
ply adopted by the user once O actually occurs. Within this setting, DO and DO
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coincide because the user—by assumption—will consider a gamble f ∈ G (O)
to be desirable after O occurs if and only if it was stated beforehand by the
expert that f should be desirable after O occurs, or equivalently, if the expert
considered it to be O-desirable.

The remaining task is to establish a relationship between DO and DcO.
The best-known solution is that of Walley [106, Section 6.1.6], who claims
that DO should be equal to DcO. We do not agree. We will argue that this re-
quirement is too strong, and that the only thing that can be reasonably imposed
is for DO to be a superset of DcO. We start by repeating Walley’s argument.
The central idea is very elegant: under the assumptions of Section 3.1.271,1 the
effect of owning a gamble f ∈ G (O) after being informed that O has occurred
is indistinguishable from the effect of owning the gamble IO f ∈ G (Ω) now; as
explained in Section 2.2.240, they result in the same payoff if O occurs and have
no effect otherwise. So far, we agree. However, Walley does not stop here. He
uses this fact to infer—without any actual argumentation—that f should be
O-desirable if and only if IO f is desirable: f ∈ DO⇔ IO f ∈ D ⇔ f ∈ DcO;
he calls this the updating principle.

We think that in order for the updating principle to be compelling, con-
sidering a gamble to be desirable should mean being willing to accept it, as
Walley seems to assume. If this is not the case, then the fact that two trans-
actions have the same effect does not imply that their desirability should be
equivalent. In our framework, where desirability of f means strict preference
of f over the status quo—a notion that is stronger than just being willing to ac-
cept f —such an equivalence would require the status quo to remain identical
as well, and this is not the case, because the frame of reference changes: after
O has occurred, the status quo is no longer the zero gamble on Ω, but rather
the zero gamble on O.

It seems to us that there are two situations where this change of status quo
may influence the desirability of a gamble: if—before the occurrence of O—
the subject believes that O cannot occur or if he has indeterminate beliefs about
whether or not O can occur. In those two cases, even if the subject does not
prefer IO f strictly over the status quo before the occurrence of O, it may still
make perfect sense for him to think that f should be strictly preferred over the
status quo after the occurrence of O, because it is then clear that O can occur. It
is only if the subject believes that O can occur—–again, and obviously, before
the occurrence of O—that it seems compelling that O-desirability of f should
imply the desirability of IO f . In that case, it can be argued that DO should be
a subset of DcO. However, in general, O-desirability of a gamble f does not
need to imply the desirability of IO f .

The converse relation does hold in general: DcO should be a subset of

1Actually, Walley seems to impose even stronger assumptions, as he requires O to be part of
a partition of Ω. We do not consider this to be necessary.
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DO. Indeed, if IO f is desirable now, then it must be that the restriction of
IO f to O—the gamble f —is strictly preferred over the restriction of the status
quo to O—the zero gamble on O—because outside of O, IO f is identical to
the status quo and therefore clearly not strictly preferred to it. Since, under the
conditions imposed in Section 3.1.271, these restrictions are exactly the payoffs
that become relevant after O has occurred, we conclude that f is O-desirable.

By combining the arguments above, we find that under the conditions de-
scribed in Section 3.170:

DO = DO ⊇DcO. (3.1)

Since we also want DO to be coherent, we find that the updated set of desirable
gambles DO should be a coherent superset of the conditional set of desirable
gambles DcO. Furthermore, as we have seen, if the subject believes that O
can occur, DO and therefore also DO should be equal to DcO. Of course, this
requires a clear definition of what it means for a subject to believe that O can
occur. We discuss this further in Section 3.3.277; until then, as we explain in
the next section, DO will automatically be equal to DcO.

3.2.2 Conditioning as a conservative updating strategy

Without any further assumptions, the only reasonable updating strategy
that follows from Equation (3.1) is to use the conditional model DcO as
our updated model DO, simply because it is the most conservative—most
imprecise—choice of DO that is compatible with Equation (3.1), and there-
fore the only one that is truly implied by it. Furthermore, provided that D
is coherent, DcO will be coherent as well. Hence, after all this effort to dis-
tinguish between conditioning and updating, it turns out—rather amusingly—
that indeed, as is commonly done, conditioning can be regarded as an updating
strategy—when the conditions of Section 3.170 are satisfied.

3.2.3 Justifying natural extension as an updating rule

The result above easily translates to the framework of lower previsions. If the
original belief model is a coherent conditional lower prevision P(·c·), it suf-
fices to apply the result of Section 3.2.2 to the smallest—most conservative—
associated set of desirable gambles EP(·c·) to find that the most conservative
updated lower prevision on G (O) that is compatible with—the only one that is
implied by—Equation (3.1) is given by the natural extension E(·cO) of P(·c·).

If P(·c·) is effectively an unconditional lower prevision P(·) = P(·cΩ) on
G (Ω), this natural extension can be calculated using the computational tech-
niques of Section 2.7.363. Otherwise, EP(·c·) is a (possibly strict) superset of
DE(·cΩ) and therefore, the natural extension E(·cO) of P(·c·) (possibly strictly)
dominates the natural extension E∗(·cO) of E(·cΩ). If the domain of P(·c·)
is large enough, such that P(·cΩ) is defined on G (Ω), E(·cΩ) can be re-
placed by P(·cΩ) because they are then equal. If P(·cΩ) is known—or if
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E(·cΩ) can be calculated—E∗(·cO) can be obtained by applying the computa-
tional techniques of Section 2.7.363. The result is guaranteed to coincide with
E(·cO) whenever P(OcΩ)> 0—E(OcΩ)> 0—but will be vacuous and might
therefore only be a (safe) lower approximation of E(·cO) if P(OcΩ) = 0—
E(OcΩ) = 0.

3.2.4 Justifying Bayes’s rule as an updating rule

For the special case of linear previsions—and hence also probability mass
functions—natural extension coincides with Bayes’s rule whenever O has pos-
itive probability, and therefore, in that case, we obtain a justification for using
Bayes’s rule as an updating strategy. Since it is impossible for a coherent lower
prevision to dominate a linear one without coinciding with it, we can even con-
clude that, whenever P(O) > 0, Bayes’s rule is the unique updating strategy
that is compatible with Equation (3.1)x. However, this special case is not our
main point of interest here, as there are many other justifications available for
updating by means of Bayes’s rule; see for example References [88, 89, 91].

3.3 WHAT ABOUT OTHER UPDATING STRATEGIES?

As we have just shown, the use of conditioning as an updating rule is justified
by Equation (3.1)x, and this expression applies whenever the conditions of
Section 3.170 are met. However, this is not the end of the story. Other updating
strategies can be justified as well, both more and less conservative.

3.3.1 More conservative strategies

More conservative updating rules—smaller updated sets of desirable
gambles—do not require any actual justification. Since we do not adopt an
exhaustive interpretation [see Section 2.2.139] they are fully consistent with
the commitments that are implied by the use of conditioning as an updating
rule. However, it is rather silly to use these more conservative updating strate-
gies because, as we have just shown, they are unnecessarily weak. The rea-
son why it may nevertheless be reasonable to apply them is a practical one:
computing conditional models may be intractable, and in those cases, tractable
more conservative updating strategies can serve as a useful safe approximation.
For example, as explained in Section 2.7.465, the natural extension E(·cO) of
the unconditional prevision PD serves as a tractable outer approximation of
PD (·cO), and PD (·cO) itself is already more tractable to compute, as well as
more conservative, than the actual conditional set of desirable gambles DcO.
In much the same way, as explained in Section 3.2.3x, the natural extension
E∗(·cO) of E(·cΩ)—or P(·cΩ)—can be used as a tractable lower bound for
the natural extension E(·cO) that we are actually after, which is the one that
corresponds to P(·c·).
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3.3.2 Less conservative strategies

Far more attractive are updating strategies that are less conservative, because
they result in belief models that are more informative and therefore, ulti-
mately, more powerful. One of the nice aspects of our argumentation in Sec-
tion 3.2.173—and Equation (3.1)75 in particular—is that it is compatible with
such strategies: DO may be strictly larger than DcO. However, the fact that
these updating strategies are not ruled out by Equation (3.1)75 does not suffice
to justify them. In order to truly justify adding extra gambles to DO, we need
to come up with a compelling principle that implies their addition. We will
introduce such a principle in Section 3.479, and show that it implies the use of
regular extension as an updating rule.

It is also important to realise that there are limits to how much larger DO
can be made. We have already mentioned two of these upper constraints in
Section 3.2.173. First of all: DO should be kept small enough to keep it co-
herent. Secondly: if the subject believes that O can occur, then DO should
be equal to DcO. In order to make this constraint exact, we need to define
what “believing that O can occur” means. In our finitary context, and within
the framework of sets of desirable gambles, we consider it reasonable to use
the following definition: a subject believes that O can occur if and only if he
is willing to bet on its occurrence at some strictly positive (but possibly very
small) betting rate—if PD (O)> 0; see Section 2.3.549.

A third upper constraint is that, DO and D should avoid partial loss, in the
sense that it should not be possible to combine a gamble f ∈D with a gamble
fO ∈DO such that the combined transaction f +IO fO results in a payoff that is
never positive and sometimes negative.2 This is important because D and DO
are both announced before the occurrence of O, and therefore, a subject who
has D and DO as its belief models can be forced to accept such a combination
of transactions. However, fortunately, as long as DO is a coherent superset of
DcO, this will never happen.

Proposition 14. Let D be a coherent set of desirable gambles on Ω, let O be
an event in P /0(Ω), and let DO be a coherent set of desirable gambles on O
such that DO ⊇DcO. Then

( f ∈D and fO ∈DO)⇒ f + IO fO 6≤ 0.

Proof of Proposition 14. Consider any f ∈ D and fO ∈ DO and let f ′O be the
restriction of f to O. If there is some ω ∈ Ω \O such that f (ω) > 0, then
( f + IO fO)(ω) = f (ω) > 0 and therefore f + IO fO 6≤ 0. Hence, without loss
of generality, we may assume that IO f ≥ f . By coherence of D [D539], this

2It suffices to consider just a single gamble from each of the sets involved because, by coher-
ence of the individual sets, any finite combination of gambles of the same set is again a member
of that set [D439].
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implies that IO f ′O = IO f ∈D and therefore also that f ′O ∈DcO⊆DO. Invoking
the coherence of DO, we find that f ′O + fO ∈ DO [D439] and therefore also
that f ′O + fO 6≤ 0 [D639]. Hence, we know that there is some ω ∈ O such
that f ′O(ω)+ fO(ω)> 0. Since f ′O(ω) = f (ω) and fO(ω) = IO(ω) fO(ω), this
implies that f (ω)+IO(ω) fO(ω)> 0 and therefore also that f +IO fO 6≤ 0.

The situation becomes more tricky if a subject announces, besides D , up-
dated models DO for multiple events O, for example for every element of some
partition O of Ω, or for the set of events O that corresponds to a protocol
[see Section 3.1.372]. In those cases, even if DO ⊇ DcO for all O ∈ O , it
is often very easy to combine gambles in D with gambles from these differ-
ent updated models DO, O ∈ O , in such a way that the combined transaction
makes the subject who announced these models suffer a partial loss, or some-
times even a sure loss—a strictly negative payoff regardless of the outcome.
Dempster’s rule of conditioning is for example known to suffer from this prob-
lem [106, Sections 5.13.9–11]. We will not discuss the exact conditions under
which a subject can be made to suffer from such a partial or sure loss any fur-
ther; see Reference [118] for detailed technical discussions of these and other
related consistency criteria between initial and updated belief models. For our
present purposes, it suffices to realise that updating by means of conditioning
will always avoid partial loss, simply because D is coherent and therefore sat-
isfies D639. As an immediate consequence, we find that whenever there is a
coherent set of desirable gambles D∗ such that D ⊆ D∗ and such that, for all
O ∈ O , DO ⊆ D∗cO, then updating by means of these models DO, O ∈ O , is
guaranteed to avoid partial loss. Regular extension provides a nice example:
by Proposition 1367, it can be seen to correspond to the use of updated models
that are obtained by conditioning the set of desirable gambles D r

P rather than
the actual model DP; since D r

P is a coherent superset of DP, we find that updat-
ing DP in this way is guaranteed to avoid partial loss, even if multiple updated
models are announced at the same time.

3.3.3 Different settings and interpretations

It should not be forgotten that our justification for updating by means of natural
extension only applies if the conditions that were discussed in Section 3.170 are
met, and that it furthermore crucially depends on our subjective interpretation
in terms of desirable gambles. If these conditions are not met, or if this inter-
pretation is not adopted, our argumentation is no longer compelling, and other
updating strategies could be considered, provided of course that one can find a
way to justify them. Reference [106, Section 6.11] and References [91,97,118]
provide some ideas on how to deal with situations where the conditions in Sec-
tion 3.170 are relaxed. Reference [53, Section 6.3.2] compares our approach
with updating rules that are not based on interpretations in terms of gambles.
Interestingly, many of the alternative updating rules that are provided in the lit-
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erature, regardless of the setting they consider or the interpretation they adopt,
tend to be at least as informative as natural extension. Maximum likelihood
updating (a special case of Dempster’s rule of conditioning) [59] and α-cut
updating [12] are two examples; see Section 3.4.1 as well. Since we do not
adopt an exhaustive interpretation, this implies that, rather surprisingly, and
despite the fact that they come from a completely different direction, these
other updating rules nevertheless turn out to be compatible with our approach.
This being said, we will now refocus on our setting, and our interpretation, and
we will use it to explain that it is possible to justify the use of regular extension
as an updating rule by combining the results of this section with additional
arguments.

3.4 JUSTIFYING UPDATING WITH REGULAR EXTENSION

Regular extension comes across as an intuitive updating rule because of its
clear interpretation in terms of sets of probability mass functions or sets of
linear previsions. Because of the popularity of Bayes’s rule as an updating tool,
it seems natural to simply apply it whenever possible, and to ignore the models
to which it cannot be applied—those that assign probability zero to the event
of interest. The goal of this section is to justify this approach, in two different
ways. Our first justification is based on an assumption of ideal precision. It
is expressed in terms of sets of linear previsions and closely resembles the
intuitive idea sketched above. Our second justification for the use of regular
extension as an updating rule starts from less restrictive assumptions; it does
not require an assumption of ideal precision and is expressed directly in terms
of sets of desirable gambles and/or lower previsions.

3.4.1 Using an assumption of ideal precision

As soon as ideal precision is adopted, justifying the use of regular extension
as an updating rule for sets of linear previsions is fairly straightforward. This
justification is often taken for granted, but for the sake of completeness, let us
make the argument explicit.

Let M be a set of linear previsions. Due to the assumption of ideal pre-
cision, each of these linear previsions is considered to be a candidate for the
‘correct’ linear prevision, but we do not know which one of them it is. How-
ever, so the argument goes, after an event O ∈P /0(Ω) occurs, some of these
candidates can be ruled out, in particular those that assign probability zero to O.
Indeed, due to our interpretation for linear previsions, adopting a prevision that
assigns P(O) = 0 implies that you are willing to bet against O at betting rates
that are arbitrarily close to 1—at all odds. With hindsight, after observing O,
and given that Ω is finite, this seems like an unreasonable commitment, which
is the reason why these previsions are no longer judged to be a candidate for
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the ‘correct’ model. Hence, with hindsight, after observing O, the initial set
of candidates should have been M ′ := {P ∈M : P(O) > 0} rather than M .
If M ′ 6= /0, then since every prevision in M ′ is a separate candidate model,
each of these is to be updated individually. If the conditions of Section 3.170
are met, then as explained in Section 3.2.275, the fact that O has positive prob-
ability implies that this should be done by means of Bayes’s rule, leading us
to use M ′cO = M crO as our updated set of candidate models. If M ′ = /0,
then none of the candidate models are reasonable, and this procedure cannot
be applied. In that case, we are led to consider the set PO = M crO of all pos-
sible previsions on O as our updated set of candidates, simply because by the
assumption of ideal precision, one of these previsions is guaranteed to be the
correct model. Either way, the approach above leads us to adopt M crO as our
updated set of candidate models, and thereby seems to provide a justification
for the use of regular extension as an updating rule.

However, there is still a slight issue with this justification, at least in the
way we have presented it so far. Indeed, one could argue that after O has
occurred, the initial candidate models are no longer relevant, and that therefore,
it makes no sense to go back and remove some of them. This problem is solved
by the fact that we are adopting the setting of Section 3.1.170. Since this setting
requires that the updated model is provided in advance, the act of constructing
this updated model is necessarily a thought experiment that is conducted in
advance, before the occurrence of any event. Within this thought experiment,
it is implicitly assumed that O can occur, because otherwise, it makes no sense
to provide an updated model for when O actually occurs, and it is this implicit
assumption that leads us to adopt M ′ instead of M . It is important to realise
that M ′ exists within this thought experiment only. Our initial belief model,
before any event has occurred, is still the set M .

Similar arguments can also be used to try and justify other updating rules.
For example, taking M ′ to be the set of all previsions that assign maximal
probability to O results in maximum likelihood updating, of which Dempster’s
rule of conditioning can be regarded as a special case [59]. α-cut updating cor-
responds to the removal of all previsions P in M for which P(O)< αPM (O),
for some α ∈ (0,1) [12]. However, we consider the case P(O) = 0 to be the
more fundamental. The removal of extra previsions seems hard to justify on
theoretical grounds. For example, the value of α is bound to be arbitrary. Fur-
thermore, the resulting rules are no longer guaranteed to avoid partial or sure
loss and will often fail to satisfy the second upper constraint that was discussed
in Section 3.3.277. Nevertheless, these rules have proved useful in practice,
and the argumentation above can be used to motivate their use on theoretical
grounds.

These arguments can also be used to justify regular extension as an up-
dating rule for lower previsions. It suffices to adopt the sensitivity analysis
interpretation, and to apply the reasoning above to the set of dominating linear
previsions. However, this is unnecessarily restrictive, because, as we are about
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to show, a similar justification can also be obtained more directly, without any
reference to the sensitivity analysis interpretation or ideal precision.

3.4.2 Dropping the assumption of ideal precision

One of the crucial points in the previous section was that, since the updated
model is (assumed to be) specified in advance, the act of constructing it is
necessarily a thought experiment that makes the implicit assumption that the
event O can occur. Under this assumption, some of the previsions in M can
be removed, and in this way, we obtain regular extension.

The very same idea can be applied to sets of desirable gambles. Our current
set of desirable gambles D need not be the same as the set of desirable gambles
D ′ that we would adopt under the extra assumption that O can occur—not to
be confused with the set of gambles DcO that are desirable contingent on the
actual occurrence of O. But what should D ′ be? Is it related to D? Can we
construct it in an automated way?

3.4.3 Adding an assessment

We think that an assumption that O can occur should lead us to add the follow-
ing assessment:3

For ε ∈ (0,1) sufficiently small, IO− ε should be desirable. (3.2)

In other words, there should be some positive—but possibly very small—
betting rate at which you are willing to bet on O. Although we prefer not
to stress this because it might easily be associated with an assumption of
ideal precision—which do not want to make—it might be useful to realise
that in terms of probabilities, this assessment simply means that O has some
positive—but possibly very small—probability ε . We consider our assumption
that Ω is finite to be crucial here, because it guarantees that O is ‘sufficiently
large’ with respect to Ω. If Ω were to be infinite, we would not be inclined to
adopt Assessment (3.2) for singleton events. Nevertheless, even for finite Ω,
one might think that Assessment (3.2) is still not compelling; we leave it to the
reader to decide for himself.

We want to stress that we are not assuming that O can occur. Our sugges-
tion here is simply that if such an assumption is made, then Assessment (3.2)
should be adopted. Our further analysis is based on this principle, and our con-
clusions therefore only apply to events O for which it is considered reasonable.
The main idea is that, while constructing an updated model that is to be used
after the occurrence of O, we are conducting a thought experiment in which O

3This can also be regarded as a consequence of our definition for “believing that O can occur”
in Section 3.3.277.
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can obviously occur, thereby allowing us to invoke Assessment (3.2)x. How-
ever, outside of this thought experiment, we do not assume that O can occur.

In any case, if we choose to adopt Assessment (3.2)x, the first problem we
are confronted with is the meaning of ‘sufficiently small’: how small should
ε be? An obvious suggestion is to return to the subject whose beliefs are
modelled by means of D—often an expert—and ask him to provide us with an
ε ∈ (0,1) such that, under the assumption that O can occur, IO− ε would be
desirable to him. Alternatively, the choice of ε can be based on someone else’s
opinion—possibly your own. For now, let us assume that ε is known; we will
come back to this shortly.

We are now faced with a classical belief expansion problem [56, 66]: we
have an initial belief model D—a coherent set of desirable gambles—and want
to incorporate the additional assessment that IO− ε is desirable. Similarly to
what is done in propositional logic, this can be achieved by considering the de-
ductive closure of the union of these assessments, where in the language of sets
of desirable gambles, the deductive closure is obtained by applying the natu-
ral extension operator E ; see References [38, 77, 114] for more information.
Applying this procedure, we obtain the following set of desirable gambles:

E ε
O(D) := E (D ∪{IO− ε}). (3.3)

This set is not guaranteed to be coherent; the assessment IO− ε can be incon-
sistent with D . It is easy to see that E ε

O(D) will be coherent if and only if
ε − IO /∈ D . It is useful to compare this with what happens in propositional
logic: a belief base can be expanded with a proposition a if and only if this
belief base does not contain the negation of a.

Let us now come back to the problem of choosing ε . In practice, it is
often very difficult to do so. The fact that we think that there should be some
ε ∈ (0,1) for which IO− ε is desirable does not imply that we can actually
provide such an ε . This typically occurs if D was provided by an expert that is
no longer available for extra questions. Therefore, instead of fixing ε in some
arbitrary way, we propose to restrict attention to the set of desirable gambles

EO(D) :=
⋂

ε∈(0,1)
E ε

O(D), (3.4)

which consists exactly of those gambles whose desirability can always be in-
ferred by expanding D with IO− ε , regardless of the value of ε ∈ (0,1). As-
sessment (3.2)x should clearly lead us to consider—at the very least—the
gambles in EO(D) as desirable. Other gambles might be desirable as well,
but in order to find out which ones, some kind of domain expertise seems nec-
essary. If this kind of expertise is not available, then EO(D) seems to be a
reasonable, conservative choice of model. Basically, we are then no longer
adopting Assessment (3.2)x, but merely some of its consequences.
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3.4.4 Investigating the consequences of the assessment

In its current form, our expression for EO(D) is rather indirect, making it diffi-
cult to get a feeling for which gambles it contains. Therefore, before drawing
any conclusions with respect to updating, we start with a theoretical study of
the set EO(D). We restrict ourselves to results that are directly related to the
updating problem we are trying to solve; see Appendix 3.A91 for additional
properties that are—although they are definitely relevant—not directly related
to the present discussion.

The following proposition establishes that in order for EO(D) to be coher-
ent, it is sufficient as well as necessary for PD (O) to be strictly positive.

Proposition 15. Consider a coherent set of desirable gambles D ⊆ G (Ω) and
an event O ∈P /0(Ω). Then EO(D) is incoherent if and only if PD (O) = 0.
Furthermore, if EO(D) is incoherent, then EO(D) = G (Ω).

Proof of Proposition 15. First, assume that EO(D) is incoherent. Since, by
construction, EO(D) satisfies D238–D439, this implies that EO(D) fails to sat-
isfy D138 and therefore, that 0 ∈ EO(D).

Fix ε ∈ (0,1). By Equation (3.4)x, we know that 0 ∈ E ε
O(D). By Equa-

tion (3.3)x, and since D is coherent, this implies that either IO− ε = 0 or
g+ λ (IO− ε) = 0, with λ ∈ R>0 and g ∈ D . The first option is impossible
because ε < 1. Hence, we have that ε− IO = 1/λg and therefore, by the coher-
ence of D and because 1/λ > 0 and g∈D , that ε−IO ∈D . Since this holds for
all ε ∈ (0,1), we infer from Equation (2.14)49 that PD (O) ≤ 0 and therefore,
by Equation (2.15)49, that PD (O) = 0.

Next, still assuming that EO(D) is incoherent, we set out to prove that
EO(D) = G (Ω). Choose any f ∈ G (Ω). Now choose any ε ∈ (0,1). From the
first part of this proof, we know that ε/2− IO ∈D . Now choose α ∈ R>0 high
enough such that f +α > 0. Then, by Equation (3.3)x,

f = ( f +α)+ 2α/ε(ε/2− IO)+ 2α/ε(IO− ε) ∈ E ε
O(D).

Since this holds for all ε ∈ R>0, we infer from Equation (3.4)x that f ∈
EO(D). Since this holds for all f ∈ G (Ω), we find that EO(D) = G (Ω).

Finally, assume that PD (O) = 0. Consider any ε ∈ (0,1). Then by Equa-
tion (2.14)49, we know that there is some 0 ≤ α < ε such that α − IO ∈ D .
Hence, due to Equation (3.3)x and the coherence of D , we obtain that
0 = (ε−α)+(α− IO)+(IO−ε) ∈ E ε

O(D). Since this holds for all ε ∈ (0,1),
we infer from Equation (3.4)x that 0 ∈ EO(D), implying that EO(D) is inco-
herent.

Therefore, if PD (O) = 0, the set EO(D) is clearly not very useful. For now,
let us assume that PD (O) is strictly positive. In that case, perhaps surprisingly,
none of the gambles IO− ε in Assessment (3.2)81 is actually added to D .
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Proposition 16. Consider a coherent set of desirable gambles D ⊆ G (Ω) and
an event O ∈P /0(Ω) such that PD (O)> 0. Then for all ε ∈ (0,1):

IO− ε ∈ EO(D)⇔ IO− ε ∈D .

Proof of Proposition 16. Since D is clearly a subset of EO(D), we only need
to prove the direct implication. So consider any ε ∈ (0,1) and assume that
IO−ε ∈ EO(D). We will prove that then IO−ε ∈D . If we choose 0 < ε ′ < ε ,
then by Equation (3.4)82, we know that IO−ε ∈ E ε ′

O (D). By Equation (3.3)82,
and because D is coherent, we now have that, without loss of generality, either
(a) IO−ε ∈D or (b) IO−ε = g+λ (IO−ε ′), with g ∈D ∪{0} and λ > 0. In
case of (a), the proof is concluded. In case of (b), we find that, with λ ′ := 1−λ ,

λ
′(IO− ε) = IO− ε +λ (ε ′− IO)+λ (ε− ε

′) = g+λ (ε− ε
′) ∈D ,

where the last inclusion is a consequence of the coherence of D . If λ ′ = 0,
we have that 0 ∈ D , contradicting the coherence of D . If λ ′ < 0, then, again
by the coherence of D , we find that ε− IO ∈D ⊆ EO(D). By combining this
with our assumption, and using the coherence of EO(D) [which is a conse-
quence of Proposition 15x and our assumption that PD (O)> 0], we find that
0 = (ε− IO)+(IO− ε) ∈ EO(D), contradicting the coherence of EO(D). The
only remaining possibility is that λ ′ > 0. In this case, by the coherence of D ,
we find that, indeed, IO− ε ∈D .

If PD (O) is strictly positive, we even find that EO(D) is equal to D .

Proposition 17. Consider a coherent set of desirable gambles D ⊆ G (Ω) and
an event O ∈P /0(Ω) such that PD (O)> 0. Then EO(D) = D .

Proof of Proposition 17. By Equation (2.13)49, and since PD (O) > 0, we
know that there is an ε > 0 such that IO−ε ∈D . Since D is coherent, we also
know that ε < 1. From Equation (3.3)82, we now infer that E ε

O(D) = E (D) and
therefore, since D is coherent, that E ε

O(D) = D . Applying Equation (3.4)82,
we find that EO(D) ⊆ D . Since clearly also D ⊆ EO(D), we conclude that
EO(D) = D .

By Equation (2.15)49, the remaining option is that PD (O) > PD (O) = 0.
In that case, EO(D) is completely characterised by the following theorem, the
proof of which can be found in Appendix 3.B97.

Theorem 18. Consider a coherent set of desirable gambles D ⊆ G (Ω) and let
O ∈P /0(Ω) be any event such that PD (O)> 0. Then

f ∈ EO(D)

⇔ f ∈D or (∀ε ∈ (0,1))(∃λ ∈ R>0) f +λ (ε− IO) ∈D (3.5)

⇔ f ∈D or (∀ε ∈ (0,1))(∃λ ∈ R>0)(∀λ ∈ (0,λ ]) f +λ (ε− IO) ∈ int(D).
(3.6)
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Although this result applies whenever PD (O)> 0, we are of course mainly
interested in the case PD (O) = 0. If PD (O) is positive, we already know from
Proposition 17x that EO(D) = D . If PD (O) = 0, EO(D) might be strictly
larger than D ; however, as the following result shows, only slightly—or should
we say, marginally—so.

Corollary 19. Consider a coherent set of desirable gambles D ⊆ G (Ω) and
any O∈P /0(Ω) such that PD (O)> 0. Then D ⊆ EO(D)⊆ cl(D)= cl(EO(D))
and

PEO(D)( f ) = PD ( f ) for all f ∈ G (Ω).

Proof of Corollary 19. We first prove that D ⊆ EO(D) ⊆ cl(D). Since D is
clearly a subset of EO(D), it suffices to show that EO(D) ⊆ cl(D). So fix
any f ∈ EO(D) and δ ∈ R>0. By Equation (2.5)41, we need to prove that
f + δ ∈ D . If f ∈ D , this follows trivially from the coherence of D . Hence,
by Theorem 18x, we can assume without loss of generality that

(∀ε ∈ (0,1))(∃λ ∈ R>0)(∀λ ∈ (0,λ ]) f +λ (ε− IO) ∈ int(D)⊆D . (3.7)

Choose any ε ∈ (0,1). Equation (3.7) implies that there is some λ ∈R>0 such
that, with λ := min{δ ,λ}, f +λ (ε− IO) ∈ D . Since f +δ ≥ f +λ (ε− IO),
we infer from the coherence of D that f +δ ∈D .

We now know that D ⊆ EO(D) and EO(D) ⊆ cl(D). By applying the
operator cl to both sides of each of these inclusions, we find that

cl(D)⊆ cl(EO(D))⊆ cl(cl(D)) = cl(D),

where the last equality follows trivially from the fact that, for coherent D ,
cl coincides with the topological closure operator. Hence, we may conclude
that cl(D) = cl(EO(D)). By Equation (2.8)41, and since EO(D) is coher-
ent because of Proposition 1583, this implies that PEO(D)( f ) = PD ( f ) for all
f ∈ G (Ω).

Hence, if PD (O) > PD (O) = 0, the difference between D and EO(D) is
situated on their border. Nevertheless, this difference could be important, es-
pecially if we start to condition these models.

One particular conditional model that will be especially useful to us is
EO(D)cO. It has the nice property that the associated set of almost desirable
gambles does not depend on the border structure of EO(D) or D .

Proposition 20. Consider a coherent set of desirable gambles D ⊆ G (Ω) and
an event O ∈P /0(Ω) such that PD (O)> 0. Then for all f ∈ G (O):

f ∈ cl(EO(D)cO)⇔ IO f ∈ cl(EO(D))⇔ IO f ∈ cl(D).
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Proof of Proposition 20x. We prove that f ∈ cl(EO(D)cO)⇔ IO f ∈ cl(D);
this implies the other equivalences because, as we have shown in the proof of
Corollary 19x, cl(EO(D)) = cl(D).

First assume that IO f ∈ cl(D). Consider any λ ∈ R>0 and ε ∈ (0,1).
Then by Equation (2.5)41, IO( f +λ )+λ (ε − IO) = IO f +λε ∈ D [because
δ := λε ∈ R>0]. Since this holds for all ε ∈ (0,1), we infer from Theorem 1884
that IO( f + λ ) ∈ EO(D) or, equivalently, that f + λ ∈ EO(D)cO. Since this
holds for all λ ∈ R>0, we find that f ∈ cl(EO(D)cO).

Conversely, assume that f ∈ cl(EO(D)cO). Consider any δ ∈ R>0 and
choose α ∈ (0,1) such that α < δ . Then, by Equation (2.5)41, f + α/2 ∈
EO(D)cO and therefore IO( f + α/2) ∈ EO(D). If IO( f + α/2) ∈ D , then by
coherence of D also IO( f + δ ) ∈ D . If IO( f + α/2) /∈ D , then by applying
Theorem 1884 with ε := α/2, we find some λ ∈ R>0 such that

IO( f +α/2)+λ (α/2− IO) ∈ int(D)⊆D ,

with λ := min{1,λ} ∈ (0,λ ]. Since λ ≤ 1 and 0 < α < δ , we know that
δ > α ≥ α/2(1+ IO)≥ α/2(λ + IO), which implies that

IO f +δ > IO f +
α

2
(λ + IO)≥ IO f +

α

2
(λ + IO)− IOλ

= IO( f +
α

2
)+λ (

α

2
− IO).

Therefore, because IO( f +α/2)+λ (α/2−IO)∈D , the coherence of D implies
that, again, IO f + δ ∈ D . Hence, in all cases, IO f + δ ∈ D . Since this holds
for all δ ∈ R>0, we infer from Equation (2.5)41 that IO f ∈ cl(D).

Therefore, if we are only interested in cl(EO(D)cO), or equivalently, in
PEO(D)(·cO), all we need to know is cl(D), or equivalently, PD . The connec-
tion between PEO(D)(·cO) and PD is provided by regular extension.

Corollary 21. Consider a coherent set of desirable gambles D ⊆G (Ω) and an
event O in P /0(Ω) such that PD (O) > 0. Let R(·cO) be the regular extension
of PD , as given by Equation (2.29)63. Then

PEO(D)( f cO) = R( f cO) for all f ∈ G (O).

Proof of Corollary 21. Fix any f ∈ G (O) and any µ ∈R. By Proposition 20x
and Equation (2.6)41, we have that

PD (IO[ f −µ])≥ 0⇔ IO[ f −µ] ∈ cl(D)

⇔ f −µ ∈ cl(EO(D)cO)⇔ PEO(D)cO( f −µ)≥ 0.

Since PD (O) > 0, we know from Proposition 1583 that EO(D) is coher-
ent. This implies that EO(D)cO is coherent and therefore also that PEO(D)cO
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is coherent, which in turn implies that PEO(D)cO( f − µ) = PEO(D)cO( f )− µ

[C849]. Furthermore, due to Equations (2.3)40 and (2.9)42, we know that
PEO(D)cO( f ) = PEO(D)( f cO). Hence, putting it all together, we find that

PD (IO[ f −µ])≥ 0⇔ PEO(D)( f cO)≥ µ.

Since this holds for all µ ∈R, we infer from Equation (2.29)63 and the fact that
PD (O)> 0 that PEO(D)( f cO)≥ R( f cO).

Next, since EO(D) is coherent, we know that PEO(D)(·cO) is coherent with
PEO(D) and therefore also, since PEO(D) = PD because of Corollary 1985, that
PEO(D)(·cO) is coherent with PD . Since PD (O)> 0 guarantees that R(·cO) is
the largest lower prevision on G (O) that is coherent with PD , this implies that
PEO(D)( f cO)≤ R( f cO).

3.4.5 Turning the assessment into an updating rule

Plenty of mathematics so far, but still no updating rule. So let us get back to
the beginning: a coherent set of desirable gambles D ⊆ G (Ω) and an event
O ∈P /0(Ω). We are looking for an updated set of desirable gambles DO that
we intend to adopt after the occurrence of O, but which is specified in advance.

If O cannot occur, it makes no sense to provide an updated model DO,
nor does it matter if we get it wrong. Hence, while constructing the updated
model DO, we might as well assume that O can occur. Within this thought
experiment, if we are willing to adopt Assessment (3.2)81—and we will as-
sume that we are—then as explained in Section 3.4.381, we can combine this
assessment with our set of desirable gambles D to obtain a new set of gambles
that is guaranteed to include EO(D). Given that our interpretation for sets of
desirable gambles is non-exhaustive, using EO(D) itself puts us on the safe,
conservative side. The rest of the argument now depends on whether or not
EO(D) is coherent.

If it is, it means that Assessment (3.2)81 is compatible with D , and we are
led to consider D ′ = EO(D) as our set of desirable gambles. It is important to
realise that D ′ is only adopted within the thought experiment of—in advance—
constructing an updated model for after the occurrence of O; the belief model
of our subject is still D . Within this thought experiment, we can now apply the
arguments of Section 3.273 to the set D ′, and this results in the use of DO =
D ′cO = EO(D)cO as a conservative choice of updated model. If PD (O) > 0,
Proposition 1784 tells us that EO(D) = D , which implies that in that case, the
updated model DO = DcO is exactly the same as the one we would have used
had we not included Assessment (3.2)81.

If EO(D) is incoherent, or equivalently, by Proposition 1583, if PD (O) = 0,
it means that Assessment (3.2)81 is not compatible with D . In fact, it even im-
plies that EO(D) = G (Ω). Hence, in that case, it clearly makes no sense to use
EO(D) as the set D ′ that is adopted within the thought experiment of construc-
tion DO. A possible solution to this problem is to drop Assessment (3.2)81
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and take D ′ to be equal to D . By applying the arguments of Section 3.273
to D ′, this results in the use of DO = D ′cO = DcO as our updated model.
However, the same conclusion can also be reached without dropping Assess-
ment (3.2)81. The fact that Assessment (3.2)81 is incompatible with D does not
imply that this is also the case for subsets of D . Indeed, in particular, the gam-
bles that are of the form IO f , with f ∈ DcO, will always be compatible with
Assessment (3.2)81.4 Since these gambles are the only ones that are relevant
for Equation (3.1)75, the argumentation in Section 3.273 can still be applied,
and it leads us to conclude that using DO = DcO as our updated model is a
conservative approach.

By combining the case in which EO(D) is coherent with the one in which
it is not, we end up with the following updating rule:

D r
O :=


EO(D)cO = DcO if PD (O)> 0
EO(D)cO if PD (O)> PD (O) = 0
DcO if PD (O) = 0

for all O ∈P /0(Ω).

(3.8)
It is identical to simply conditioning, except if PD (O)> PD (O) = 0, in which
case it is guaranteed to be at least as informative—since EO(D) ⊇ D . Nev-
ertheless, despite it being more informative, this strategy still avoids partial
loss, even if we announce updated models for multiple events O at the same
time.5 Furthermore, it clearly also satisfies the second upper constraint that
was discussed in Section 3.3.277.

If we let R(·c·) be the regular extension of PD , then by Theorem 1884, for
all O ∈P /0(Ω), the lower prevision PD r

O
that is associated with the updated set

D r
O is given by

PD r
O
( f ) =


R( f cO) = PD ( f cO) if PD (O)> 0
R( f cO) if PD (O)> PD (O) = 0
PD ( f cO) if PD (O) = 0

(3.9)

for all f ∈ G (O).

4Because the coherence of D implies that IO f 6≤ 0, which in turn implies that f 6≤ 0. Hence,
for any ε ∈ (0,1) and any λ ∈ R>0, it holds that f + λ (1− ε) 6≤ 0 and therefore also that
IO f +λ (IO− ε) 6≤ 0.

5There is a coherent set of desirable gambles D∗ = E r(D) [see Corollary 3296 in Ap-
pendix 3.A91] for which it holds that D ⊆ D∗ and EO(D) ⊆ D∗ for all O ∈P /0(Ω) such that
PD (O)> PD (O) = 0. Hence, by Equation (3.8), for all O ∈P /0(Ω), D r

O ⊆ D∗cO. As explained
in Section 3.3.277, this implies that updating by means of the updated sets D r

O is guaranteed to
avoid partial loss, even if multiple updated sets are announced at the same time.
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3.4.6 Translating it into a justification for regular extension

The updating rule that was derived in the previous section can be translated
to the framework of lower previsions in a straightforward manner. For any
coherent conditional lower prevision P(·c·) and any event O ∈P /0(Ω), we
simply apply Equation (3.8)x to the smallest associated set of desirable gam-
bles D = EP(·c·) and consider the corresponding lower prevision PD r

O
, as given

by Equation (3.9)x. In order to reflect this particular choice of D in our no-
tation, we denote this lower prevision as RP(·c·)(·cO). The following result
establishes that RP(·c·)(·c·) is a coherent conditional lower prevision on C (Ω)
and expresses it directly in terms of P(·c·).

Corollary 22. Consider a coherent conditional lower prevision P(·c·) with
arbitrary domain C . Let E(·c·) be its natural extension and let R(·c·) be the
regular extension of E(·cΩ). Then RP(·c·)(·c·) is a coherent lower prevision on
C (Ω) and, for all ( f ,O) ∈ C (Ω):

RP(·c·)( f cO) =


R( f cO) = E( f cO) if E(OcΩ)> 0
R( f cO) if E(OcΩ)> E(OcΩ) = 0
E( f cO) if E(OcΩ) = 0

Proof of Corollary 22. The equality follows from Equation (3.9)x and the fact
that, with D = EP(·c·), by definition of natural extension, PD (·c·) = E(·c·) and
therefore also PD (·) = E(·cΩ). Since P(·c·) is coherent, D = EP(·c·) is coher-
ent as well, and therefore, Corollary 3196 [see Appendix 3.A91] implies that
RP(·c·)(·c·) = PE r(D)(·c·) is a coherent lower prevision on C (Ω).

Furthermore, if we apply this procedure to an unconditional lower previ-
sion P on G (Ω), the resulting conditional lower prevision RP(·c·) is equal to
the regular extension of P.

Corollary 23. Consider a coherent lower prevision P on G (Ω) and let R(·c·)
be its regular extension. Then

RP( f cO) = R( f cO) for all ( f ,O) ∈ C (Ω).

Proof of Corollary 23. As explained in the proof of Corollary 22, RP(·c·) is
equal to PE r(D)(·c·), with, in this particular case, D = EP = DP. The proof
now follows immediately from Corollary 3296 [see Appendix 3.A91].

Given that the only assumptions that were made to obtain R(·c·) are (i)
that we are working within the setting described in Section 3.170 and (ii) that
within the though experiment of constructing the updated model, the subject
whose beliefs are being modelled is willing to adopt Assessment (3.2)81, we
have finally found our justification for updating by means of regular extension.
It follows from our results that, whenever these two conditions are met, regular
extension serves as a conservative updating strategy.
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3.4.7 A generalisation of regular extension

Corollary 23x implies that RP(·c·)(·c·) can be regarded as a generalisation
of the notion of regular extension to coherent conditional lower previsions.
Therefore, from now on, for any conditional lower prevision P(·c·), we will
refer to RP(·c·)(·c·) as the regular extension of P(·c·) and, whenever it is clear
from the context which conditional lower prevision it is derived from, we drop
the index and write R(·c·) instead of RP(·c·)(·c·). As we have seen in the pre-
vious section, this generalised notion of regular extension—similarly to the
version for unconditional lower previsions—can be justified as a conservative
updating rule.

If we are considering the regular extension R(·c·) of a conditional lower
prevision P(·c·), some notational confusion might arise, because in Corol-
lary 22x, we used R(·c·) to refer to the regular extension of E(·cΩ), with
E(·c·) the natural extension of P(·c·). In order to avoid this confusion, we
will from now on denote the regular extension of E(·cΩ) by R∗(·c·). Simi-
larly, as we did in Section 3.2.375, we denote the natural extension of E(·cΩ)
by E∗(·c·). Using these conventions, the regular extension R(·c·) of P(·c·) is
given, for all ( f ,O) ∈ C (Ω), by

R( f cO) =


R∗( f cO) = E∗( f cO) = E( f cO) if E(OcΩ)> 0
R∗( f cO) if E(OcΩ)> E(OcΩ) = 0
E( f cO) if E(OcΩ) = 0.

(3.10)
It coincides with the natural extension E( f cO) whenever E(OcΩ) > 0 or
E(OcΩ) = 0. If E(OcΩ) > E(OcΩ) = 0, regular extension may differ from
natural extension and is guaranteed to dominate it.

If P( f cΩ) is defined for all f ∈ G (Ω), then E(·cΩ) will be equal to P(·cΩ)
and E∗(·c·) and R∗(·c·) can be taken to be the natural and regular extension of
P(·cΩ), respectively. If P(·cΩ) is known—or if E(·cΩ) can be calculated—
R∗(·cO) can be obtained by applying the computational techniques of Sec-
tion 2.7.363. The result is guaranteed to coincide with R(·cO) whenever
P(OcΩ) > 0—E(OcΩ) > 0—but will be vacuous and might therefore only
be a (safe) lower approximation of R(·cO) if P(OcΩ) = 0—E(OcΩ) = 0.

The natural extension E(·c·) of a conditional lower prevision P(·c·) can be
given a sensitivity analysis interpretation in terms of linear conditional previ-
sions: as we know from Equation (2.18)53, it is the lower envelope of the set
MP(·c·) consisting of the linear conditional previsions that dominate P(·c·). A
similar interpretation can be given to the regular extension R(·c·) of P(·c·) as
well. If E(OcΩ) = 0 or E(OcΩ)> 0, then R(·cO) is equal to E(·cO) and there-
fore borrows its sensitivity analysis interpretation. If E(OcΩ) > 0—which,
again, includes the case E(OcΩ)> 0—then R(·cO) is equal to the regular ex-
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tension R∗(·cO) of E(·cΩ), and therefore given by

R( f cO) = inf{P( f cO) : P ∈ME(·cΩ) and P(O)> 0}
= inf{P( f cO) : P(·c·) ∈MP(·c·) and P(OcΩ)> 0} (3.11)

for all f ∈ G (O), where the last equality follows because ME(·c·) = MP(·c·)
and because, if P(·c·) is a linear conditional prevision on C (Ω) such that
P(OcΩ)> 0, then P( f cO) is fully determined by P(·cΩ) through Bayes’s rule
[P450].

3.A TECHNICAL RESULTS RELATED TO UPDATING

Besides the ones that were already discussed in Section 3.4.483, the operator
EO that was introduced in Section 3.4.381 has some additional nice properties
as well. Since they do not fit nicely into the main discussion of the paper, we
gather them in this appendix.

We start by investigating what happens if we apply EO multiple, say n ∈N,
times. Consider a sequence of events Oi ∈P /0(Ω), i ∈ {1, . . . ,n}, and let us
apply the corresponding sequence of operators EOi , i∈ {1, . . . ,n}, to a coherent
set of desirable gambles D ⊆ G (Ω), in that order, resulting in a set of gambles

EO1,...,On(D) := EOn(EOn−1( · · · EO2(EO1(D)) · · · )).

What does this set look like? And does it depend on the order in which the
operators are applied? The following results provide an answer to these ques-
tions.

Proposition 24. Consider a coherent set of desirable gambles D ⊆ G (Ω) and
a sequence of n ∈ N events Oi ∈P /0(Ω), i ∈ {1, . . . ,n}. Then EO1,...,On(D) is
coherent if and only if PD (Oi)> 0 for all i ∈ {1, . . . ,n}. If it is coherent, then
cl(EO1,...,On(D)) = cl(D). If it is incoherent, then EO1,...,On(D) = G (Ω).

Proof of Proposition 24. We provide a proof by induction. For n= 1, the result
follows trivially from Proposition 1583 and Corollary 1985. Consider now the
case n > 1. Then by the induction hypothesis, we may assume that the result
is true for n−1.

First, assume that EO1,...,On(D) is coherent. Now assume ex absurdo that
EO1,...,On−1(D) is incoherent. The induction hypothesis then allows us to infer
that EO1,...,On−1(D) = G (Ω), which implies that

EO1,...,On(D) = EOn(EO1,...,On−1(D)) = EOn(G (Ω)) = G (Ω)

is incoherent, a contradiction. Hence, we find that D ′ := EO1,...,On−1(D)
must be coherent. By the induction hypothesis, this implies that cl(D ′) =
cl(D) and, for all i ∈ {1, . . . ,n− 1}, that PD (Oi) > 0. Since D ′ and D
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are both coherent, we infer from cl(D ′) = cl(D) and Equation (2.8)41 that
PD ′ = PD and therefore, by conjugacy, that PD ′(On) = PD (On). Since
we have that EO1,...,On(D) = EOn(D

′), we infer from Proposition 1583 and
the coherence of D ′ and EO1,...,On(D) that PD ′(On) > 0, which in turn im-
plies that cl(EOn(D

′)) = cl(D ′) [Corollary 1985]. In conclusion, we have
found that cl(EO1,...,On(D)) = cl(EOn(D

′)) = cl(D ′) = cl(D) and that, for all
i ∈ {1, . . . ,n}, PD (Oi)> 0.

Next, assume that EO1,...,On(D) is incoherent. We need to prove that
EO1,...,On(D) = G (Ω) and that PD (Oi) = 0 for some i∈ {1, . . . ,n}. This clearly
the case if D ′ := EO1,...,On−1(D) is incoherent, because it then follows from the
induction hypothesis (a) that PD (Oi) = 0 for some i ∈ {1, . . . ,n− 1} and (b)
that D ′ = G (Ω) and therefore also EO1,...,On(D) = EOn(D

′) = G (Ω). Hence,
without loss of generality, we can assume that D ′ is coherent. As shown in
the first part of this proof, this implies that PD ′(On) = PD (On). Since D ′ is
coherent and EO1,...,On(D) = EOn(D

′), we can now combine Proposition 1583
with the fact that EO1,...,On(D) is incoherent to infer that EO1,...,On(D) = G (Ω)
and PD ′(On) = PD (On) = 0.

Proposition 25. Consider a coherent set of desirable gambles D ⊆ G (Ω) and
a sequence of n ∈ N events Oi ∈P /0(Ω), i ∈ {1, . . . ,n}. Then

EO1,...,On(D) =
n⋃

i=1

EOi(D).

Proof of Proposition 25. Let us define D0 := D and, for all i ∈ {1, . . . ,n},
Di := EOi(Di−1) = EO1...,Oi(D). Since D0 ⊆ D1 ⊆ ·· · ⊆ Dn−1 ⊆ Dn, we find
that, for all i ∈ {1, . . . ,n},

EOi(D) = EOi(D0)⊆ EOi(Di−1) = Di ⊆Dn = EO1,...,On(D).

Hence, we are left to prove that EO1,...,On(D)⊆ ∪n
i=1EOi(D). So let us fix any

f ∈ EO1,...,On(D). We will prove that f ∈∪n
i=1EOi(D). By Proposition 1583, we

may assume without loss of generality that, for all i ∈ {1, . . . ,n}, PD (Oi)> 0,
because otherwise, ∪n

i=1EOi(D) would be equal to G (Ω), which would make
the proof trivial. Now let i∗ be the smallest i ∈ {0, . . . ,n} for which it holds
that f ∈Di [since f ∈ EO1,...,On(D) = Dn, i∗ always exists]. If i∗ = 0, then f ∈
D , which makes the proof trivial. Hence, without loss of generality, we may
assume that i∗ ≥ 1. This allows us to consider the set Di∗−1, of which we know,
by definition of i∗, that f /∈Di∗−1. Since PD (Oi)> 0 for all i ∈ {1, . . . , i∗−1},
we know that Di∗−1 is coherent and that cl(Di∗−1) = cl(D) [this is trivial if
i∗−1 = 0 and otherwise follows from Proposition 24x with n = i∗−1]. Since
Di∗−1 is coherent and PD (Oi∗) > 0, we can combine Theorem 1884 with the
fact that f ∈Di∗ \Di∗−1 = EOi∗ (Di∗−1)\Di∗−1 to infer that

(∀ε ∈ (0,1))(∃λ ∈ R>0)(∀λ ∈ (0,λ ]) f +λ (ε− IOi∗ ) ∈ int(Di∗−1). (3.12)
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Since D and Di∗−1 are both coherent, cl(Di∗−1) = cl(D) implies that
int(Di∗−1) = int(D) [Equation (2.8)41]. Therefore, since D is coherent and
PD (Oi∗) > 0, we can infer from Equation (3.12)x and Theorem 1884 that
f ∈ EOi∗ (D) and therefore also, that f ⊆ ∪n

i=1EOi(D).

It follows from this last result that EO1,...,On(D) is fully determined by the
set of events O = {Oi : i ∈ {1, . . . ,n}}, and we will therefore simply denote it
by EO(D). The order of the events O1, . . . ,On does not matter, neither does the
fact that some of the events might appear multiple times. For this reason, from
now on, we no longer consider sequences of events, but non-empty subsets O
of P /0(Ω).

For any non-empty set of events O ⊆P /0(Ω), and any coherent set of
desirable gambles D ⊆ G (Ω), we define

EO(D) :=
⋃

O∈O
EO(D).

By the results above, and since P /0(Ω) and therefore also O is finite, the fol-
lowing properties are immediate.

Corollary 26. Consider a coherent set of desirable gambles D ⊆ G (Ω) and
a non-empty set of events O ⊆P /0(Ω). Then EO(D) is coherent if and only if
PD (O) > 0 for all O ∈ O . If it is coherent, then cl(EO(D)) = cl(D). If it is
incoherent, then EO(D) = G (Ω).

Proof of Corollary 26. Trivial from Propositions 2491 and 25x.

The necessary and sufficient condition for EO(D) to be coherent—PD (O)> 0
for all O ∈ O—that is provided in the result above simplifies if O = P /0(Ω).
In that case, because D and therefore also PD is coherent, this condition is
satisfied if and only if PD (ω)> 0 for all ω ∈Ω.

It is also possible to characterise EO(D) differently, in a way that closely
resembles our definition for EO(D).

Theorem 27. Consider a coherent set of desirable gambles D ⊆ G (Ω) and a
non-empty set of events O ⊆P /0(Ω). Let E ε

O(D) := E (D∪{IO−εO : O∈O})
for any ε ∈ (0,1)O .6 Then

EO(D) =
⋂

ε∈(0,1)O
E ε

O(D).

6An element ε of (0,1)O is a map from O to (0,1). For any O ∈ O , the corresponding value
is an element of (0,1) and will be denoted by εO.
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Proof of Theorem 27x. For the sake of notational convenience, let us denote
the right-hand side of the desired equality by E ∗O(D). We will only prove
that E ∗O(D) ⊆ EO(D). The converse inclusion holds trivially because, for all
O ∈ O , EO(D) is clearly a subset of E ∗O(D).

Fix f ∈ E ∗O(D) and assume ex absurdo that f /∈ EO(D) =
⋃

O∈O EO(D),
which already implies that f /∈ D . Then for all O ∈ O , f /∈ EO(D) and there-
fore, there is some εO ∈ (0,1) such that f /∈ E εO

O (D). Let εmin := minO∈O εO
[this minimum is well-defined because Ω and therefore also P /0(Ω) and O are
finite] and let ε ′ ∈ (0,1)O be defined, for all O ∈O , by ε ′O := εmin|O|−1. Since
we know that f ∈ E ∗O(D)\D ⊆ E ε ′

O (D)\D , we can infer from the definition
of E ε ′

O (D) and the coherence of D that there are n ∈ N such that n ≤ |O|,
g ∈D ∪{0}, (∀i ∈ {1, . . . ,n}) λi ∈ R>0 and Oi ∈ O such that

f = g+
n

∑
i=1

λi(IOi − ε
′
Oi
) = g+

n

∑
i=1

λiIOi −
εmin

|O|

n

∑
i=1

λi. (3.13)

Let λmax := max{λi : 1≤ i≤ n} and imax ∈ argmax{λi : 1≤ i≤ n}, then

n

∑
i=1

λiIOi −
εmin

|O|

n

∑
i=1

λi ≥ λmaxIOimax
− εmin

|O|
nλmax ≥ λmaxIOimax

− εminλmax

≥ λmax(IOimax
− εOimax

)

and therefore, by Equation (3.13), f ≥ g+λmax(IOimax
−εOimax

), which implies

that f ∈ E
εOimax
Oimax

(D), a contradiction. Hence, we conclude that f ∈ EO(D).
Since this holds for all f ∈ E ∗O(D), we find that E ∗O(D)⊆ EO(D).

Again, as was the case for EO(D), EO(D) is closely connected with reg-
ular extension. For every event O ∈ O , PEO (D)(·cO) is equal to the regular
extension R(·cO) of PD .

Proposition 28. Consider a coherent set of desirable gambles D ⊆ G (Ω) and
a non-empty set of events O ⊆P /0(Ω) such that, for all O ∈ O , PD (O) > 0.
Let R(·c·) be the regular extension of PD , defined by Equation (2.29)63. Then
PEO (D) = PD ,

PEO (D)(·cO) = R(·cO) for all O ∈ O

and

PEO (D)(·cO) = PD (·cO) for all O ∈P /0(Ω) such that PD (O) = 0.

Proof of Proposition 28. We know from Corollary 26x that EO(D) is coher-
ent, and that cl(EO(D)) = cl(D). Therefore, by Equation (2.8)41, PEO (D) =
PD .
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Fix O ∈ O . The coherence of EO(D) implies that PEO (D)(·cO) is coherent
with PEO(D) and therefore also with PD . Since PD (O) > 0, this implies that
PEO (D)(·cO) ≤ R(·cO) [see Section 2.7.261]. By Corollary 2186, we know
that PEO(D)(·cO) =R(·cO). Furthermore, PEO (D)(·cO)≥PEO(D)(·cO) because
EO(D)⊆ EO(D). Putting it all together, we find that PEO (D)(·cO) = R(·cO).

Consider any O ∈P /0(Ω) such that PD (O) = 0. By Lemma 29, we know
that EO(D)cO = DcO, which implies that PEO (D)(·cO) = PD (·cO).

Lemma 29. Consider a coherent set of desirable gambles D ⊆ G (Ω) and a
non-empty set of events O ⊆P /0(Ω) such that, for all O ∈ O , PD (O) > 0.
Then

EO(D)cO = DcO for all O ∈P /0(Ω) such that PD (O) = 0.

Proof of Lemma 29. Fix O∈P /0(Ω) such that PD (O) = 0. We only prove that
EO(D)cO ⊆ DcO, because the other inclusion follows trivially from the fact
that D ⊆ EO(D).

Consider any f ∈ EO(D)cO and assume ex absurdo that f /∈ DcO. We
then have that IO f ∈ EO(D) \D , which implies that there is some O∗ ∈ O
such that IO f ∈ EO∗(D) \D . Using Lemma 30, we find that PD (IO f ) > 0.
Choose λ ∈ R>0 such that λ ≥max f . Then by the coherence of PD , we have
that PD (IO f ) ≤ PD (IOλ ) = λPD (O) = 0. This is a contradiction, allowing
us to infer that f ∈ DcO. Since this holds for all f ∈ EO(D)cO, we find that
EO(D)cO⊆DcO.

Lemma 30. Consider a coherent set of desirable gambles D ⊆ G (Ω) and a
non-empty set of events O ⊆P /0(Ω) such that, for all O ∈ O , PD (O) > 0.
Then for all f ∈ EO(D)\D: 0 = PD ( f )< PD ( f ).

Proof of Lemma 30. Consider any f ∈ EO(D)\D , which implies that there is
some O∈O such that f ∈ EO(D)\D . Choose ε ∈ (0,1) such that ε < PD (O).
Since PD (O) > 0, we know from Theorem 1884 that there is some λ ∈ R>0
such that f +λ (ε−IO)∈D , which implies that PD ( f +λ [ε−IO])≥ 0. Using
the coherence of PD [C248, C548 and C849], this allows us to infer that

PD ( f ) = PD (λ [IO− ε]+ f +λ [ε− IO])

≥ PD (λ [IO− ε])+PD ( f +λ [ε− IO])≥ PD (λ [IO− ε])

= λ (PD (O)− ε)> 0.

Since f ∈ EO(D), we know that PEO(D)( f ) ≥ 0 and therefore, by Corol-
lary 1985, that PD ( f ) ≥ 0. Finally, the fact that f /∈ D implies that, for all
α ≥ 0, f −α /∈D , which in turn implies that PD ( f )≤ 0.

If we let O be equal to O1(D) := {O ∈P /0(Ω) : PD (O) > PD (O) = 0}
or O2(D) := {O ∈P /0(Ω) : PD (O)> 0}, or any set in between these two, we
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obtain an important special instance of the operator EO , which we denote by
E r(D). For any coherent set of desirable gambles D ⊆ G (Ω), it is defined by

E r(D) :=
⋃

O∈P /0(Ω)
PD (O)>PD (O)=0

EO(D) =
⋃

O∈P /0(Ω)
PD (O)>0

EO(D).

The last equality is a consequence of Proposition 1784, which is also the reason
why E r(D) = EO(D) for all O1(D)⊆ O ⊆ O2(D).

Corollary 31. Consider a coherent set of desirable gambles D ⊆G (Ω) and let
R(·c·) be the regular extension of PD . Then E r(D) is coherent, PE r(D) = PD

and

PE r(D)( f cO) =

{
R( f cO) if PD (O)> 0
PD ( f cO) if PD (O) = 0

for all ( f ,O) ∈ C (Ω).

Proof of Corollary 31. Since E r(D) = EO2(D)(D), this follows immediately
from Corollary 2693 and Proposition 2894.

If D is the set of desirable gambles DP that corresponds to a coherent
lower prevision P, then E r(DP) is a subset of D r

P and—as is the case for D r
P—

its associated conditional lower prevision PE r(DP)
(·c·) is equal to the regular

extension of P.

Corollary 32. Consider a coherent lower prevision P on G (Ω) and let R(·c·)
be its regular extension. Then E r(DP) is a coherent subset of D r

P, PE r(DP)
= P

and
PE r(DP)

( f cO) = R( f cO) for all ( f ,O) ∈ C (Ω).

Proof of Corollary 32. Since DP is coherent and PDP
= P, we infer from

Corollary 31 that it suffices to prove that E r(DP) ⊆ D r
P and that, for all

( f ,O) ∈ C (Ω) such that P(O) = 0, PDP
( f cO) = R( f cO). The inclusion fol-

lows from Lemma 30x and the fact that E r(DP) = EO2(DP)(DP). So consider
any ( f ,O) ∈ C (Ω) such that P(O) = 0. Let E(·c·) be the natural extension of
P. Then as explained in Section 2.7.465, PDP

( f cO) = E( f cO). Hence, since
natural and regular extension coincide if the conditioning event has upper prob-
ability zero, PDP

( f cO) = R( f cO).

The following example illustrates that E r(DP) can be a strict subset of D r
P.

Example 1. Let Ω = {a,b} and consider the lower prevision P that is defined
by

P( f ) := min{ f (a),
f (a)+ f (b)

2
} for all f ∈ G (Ω).
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Then

DP = { f ∈ G (Ω) : f (a)> 0 and f (a)+ f (b)> 0}∪G (Ω)>0

= { f ∈ G (Ω) : f (a)≥ 0 and f (a)+ f (b)> 0} (3.14)

and

D r
P = DP∪{ f ∈ G (Ω) : − f (b) = f (a)> 0}
= { f ∈ G (Ω) : f (a)≥ 0 and f (a)+ f (b)≥ 0}\{0}.

Since P(Ω) = P(Ω) = 1, 1/2 = P({a})< P({a}) = 1, 0 = P({b})< P({b}) =
1/2 and PDP

= P, we know that O1(DP) consists of the singleton {b}, which
implies that E r(DP) = E{b}(DP). Assume ex absurdo that E{b}(DP) \DP 6=
/0. Consider any f ∈ E{b}(DP) \DP. Then by Theorem 1884, and since
PDP({b}) > 0, there is some λ ∈ R>0 such that, for all λ ∈ (0,λ ], f +
λ (1/2− I{b}) ∈ DP, which implies, by Equation (3.14), that f (a)+ λ 1/2 ≥ 0
and f (a)+ f (b)> 0. Since this holds for all λ ∈ (0,λ ], we infer that f (a)≥ 0
and f (a)+ f (b)> 0, or equivalently, that f ∈DP. This is a contradiction, al-
lowing us to infer that E{b}(DP)\DP = /0 and therefore, by Theorem 1884, and
since PDP({b}) > 0, that E{b}(DP) = DP and therefore also E r(DP) = DP.
Hence, in conclusion: DP = E r(DP)⊂D r

P. ♦

3.B PROOF OF THEOREM 18

Proof of Theorem 1884. First, assume that the right-hand side of Equa-
tion (3.5)84 or Equation (3.6)84 holds. Then clearly, for all ε ∈ (0,1), by Equa-
tion (3.3)82, f ∈ E ε

O(D). Hence, by Equation (3.4)82, f ∈ EO(D).
Next, assume that f ∈ EO(D). We will prove that this implies the right-

hand side of Equations (3.5)84 and (3.6)84. Clearly, without loss of generality,
we may assume that f ∈ EO(D)\D . Now fix ε ∈ (0,1). By Equation (3.3)82,
and because D is coherent, we find that there are g ∈ D ∪{0} and λ ε ∈ R>0
such that f = g+λ ε(IO− ε). If g = 0, then by the coherence of EO(D) [be-
cause of Proposition 1583 and because PD (O) > 0], IO− ε ∈ EO(D). Due to
Proposition 1684 and the coherence of D , this implies that f = λ ε(IO−ε)∈D ,
a contradiction. Hence, g ∈ D and therefore f +λ ε(ε − IO) ∈ D . By repeat-
ing this argument, we obtain a set of coefficients λ ε ∈ R>0, one for every
ε ∈ (0,1), that satisfies the following condition:

(∀ε ∈ (0,1)) f +λ ε(ε− IO) ∈D . (3.15)

This already proves Equation (3.5)84 [simply denote λ ε as λ ].
Now fix ε ∈ (0,1) and λ ∈ (0,λ ε∗ ], with ε∗ := ε/2. We will show that

f +λ (ε− IO) ∈ int(D) and thereby finish the proof for Equation (3.6)84 [sim-
ply denote λ ε∗ as λ ]. We consider two possibilities. The first possibility is
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that, for all ε ′ ∈ (0,ε∗], λ ε ′ε
′ ≥ λε∗. Then for all ε ′′ ∈ (0,1), we can choose

α > max{0,max f} and ε ′ ∈ (0,ε∗] small enough such that ε ′(1+α/λε∗)≤ ε ′′

and therefore also

λ ε ′(ε
′′− IO)≥ λ ε ′(ε

′(1+
α

λε∗
)− IO)≥λ ε ′(ε

′(1+
α

λ ε ′ε
′
)− IO)

=α +λ ε ′(ε
′− IO)> f +λ ε ′(ε

′− IO).

By combining this with Equation (3.15)x and the coherence of D , we find
that ε ′′− IO ∈ D . Since this holds for all ε ′′ ∈ (0,1), we infer from Equa-
tion (2.14)49 that PD (O) ≤ 0, which contradicts our assumption. Hence, we
only have to consider the second, remaining possibility, namely that there is
some ε ′ ∈ (0,ε∗] for which λ ε ′ε

′ < λε∗. Since also λε∗ ≤ λ ε∗ε
∗, we can use

this particular ε ′ to define

δ1 :=
λ ε∗ε

∗−λε∗

λ ε∗ε
∗−λ ε ′ε

′
≥ 0, δ2 := 1−δ1 =

λε∗−λ ε ′ε
′

λ ε∗ε
∗−λ ε ′ε

′
> 0

and

β := δ1λ ε ′ +δ2λ ε =
λ ε∗ε

∗−λε∗

λ ε∗ε
∗−λ ε ′ε

′
λ ε ′ +

λε∗−λ ε ′ε
′

λ ε∗ε
∗−λ ε ′ε

′
λ ε∗

=
λ ε∗ε

∗λ ε ′ −λε∗λ ε ′ +λε∗λ ε∗ −λ ε ′ε
′λ ε∗

λ ε∗ε
∗−λ ε ′ε

′
.

Since

β ≥ λ ⇔ λ ε∗ε
∗
λ ε ′ −λε

∗
λ ε ′ +λε

∗
λ ε∗ −λ ε ′ε

′
λ ε∗ ≥ λ ε∗ε

∗
λ −λ ε ′ε

′
λ

⇔ λ ε∗ε
∗
λ ε ′ −λε

∗
λ ε ′ −λ ε ′ε

′
λ ε∗ +λ ε ′ε

′
λ ≥ 0

⇔ λ ε∗ε
∗−λε

∗− ε
′
λ ε∗ + ε

′
λ ≥ 0⇔ (λ ε∗ −λ )(ε∗− ε

′)≥ 0,

we find that β ≥ λ . Since we also know that

δ1λ ε ′ε
′+δ2λ ε∗ε

∗ = δ1λ ε ′ε
′+(1−δ1)λ ε∗ε

∗

= λ ε∗ε
∗+δ1(λ ε ′ε

′−λ ε∗ε
∗) = λε

∗,

we find that

f +λ (ε∗− IO) = f +λε
∗−λ IO

≥ f +λε
∗−β IO

=(δ1 +δ2) f +δ1λ ε ′ε
′+δ2λ ε∗ε

∗− (δ1λ ε ′ +δ2λ ε)IO

=δ1[ f +λ ε ′(ε
′− IO)]+δ2[ f +λ ε∗(ε

∗− IO)].
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This implies that f + λ (ε∗− IO) ∈ D because of Equation (3.15)97 and the
coherence of D . Hence, if we define δ := λε∗ > 0, then since λε∗ = λε− δ

[because ε∗ = ε/2], we find that f +λ (ε− IO)−δ ∈D and therefore also, by
Equation (2.7)41, that f +λ (ε− IO) ∈ int(D).
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4
MULTIVARIATE MODELS

“We neither fear complexity nor embrace it for its own sake, but
rather face it with the faith that simplicity and understanding
are within reach.”

Frederick R. Adler

The frameworks introduced in Chapter 237 were all concerned with mod-
elling the uncertainty that is related to a single variable X . In contrast, practical
modelling tasks are usually concerned with multiple variables at once. Con-
sider for example a situation where we want to model the weather. In that case,
instead of modelling ‘the weather’ directly, we would usually separate it into
multiple more manageable variables such as rainfall, wind speed, barometric
pressure, and so on. Not only do we want to model the uncertainty that is as-
sociated with each of these variables individually, we also wish the capture the
connection between them and how they influence each other.

Fortunately, from a theoretical point of view, these multivariate set-ups are
identical to the univariate case that we considered before, and all the machin-
ery we have introduced so far keeps on working. In fact, as we will see, the
multivariate case even is a special case of the univariate one, and it comes
with its own additional toolbox, including concepts such as marginalisation,
structural assessments, and so on. The goal of this chapter is to introduce the
multivariate framework, to link it with the univariate one, and to discuss the
additional tools that become available. With respect to structural assessments,
we will mainly focus on epistemic irrelevance, an asymmetric notion of inde-
pendence, because it is one of the cornerstones of the theory of credal networks
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under epistemic irrelevance that will be the topic of the following chapters. As
we will see, and in contrast with the precise-probabilistic case, independence
becomes a highly non-trivial concept.

The underlying ideas behind many of the things that we do in this chapter
are not new. Our contribution mainly consists in presenting, justifying, unify-
ing, combining and extending existing ideas in the literature [19, 45, 76] into a
full-fledged and consistent account.

4.1 REDUCING EVERYTHING TO THE UNIVARIATE CASE

Consider a finite number of individual variables Xs, indexed by the elements s
of some finite set G. For every s ∈ G, the variable Xs assumes values in
some non-empty finite state space Xs. In the aforementioned weather exam-
ple, we could take G to be equal to {r,w,b}, using r, w and b as respective
shorthand notations for rainfall, wind speed and barometric pressure, respec-
tively. A simple choice of associated state spaces could be Xr = {yes,no},
Xw = {light,strong,storm} and Xb = {high, low}.

For any subset S of G, we now let XS be the tuple whose components are
the variables Xs, with s ∈ S. This new joint variable XS assumes values xS
in the finite Cartesian product set XS := ×s∈SXs. For any such tuple-valued
element xS of XS, and any s ∈ S, the s-component of xS is an element of Xs,
and we will denote it by xs. If S = /0, X /0 is taken to be a singleton—the empty
map. X/0 can then only assume this single value, so there is no uncertainty
about it. For S = {s}, XS can be identified with Xs. The case S = G is the most
important one, because it provides us with a single tuple-valued variable XG
that represents all the individual variables we are interested in.

Modelling the uncertainty that is associated with the collection of vari-
ables Xs, s ∈ G, is now extremely easy. It suffices to apply the frameworks
introduced in Chapter 237 to the single tuple-valued variable XG, simply by
choosing X := XG and Ω := XG. Depending on the chosen framework, one
can use a coherent set DG of desirable gambles on XG, a coherent conditional
lower prevision PG(·c·) on C (XG), a set MG of linear conditional previsions
PG(·c·) on G (XG), a set FG of full conditional probability mass functions
pG(·c·) on C∗(XG), or any of their unconditional versions. Whenever we need
to distinguish them from other—local—models that will be introduced further
on, we will refer to these uncertainty models for XG as global or joint mod-
els. The theory [see Chapter 237] remains exactly the same and our results for
conditioning and updating [see Chapter 369] are directly applicable.

4.2 MARGINALISATION, CONDITIONING AND UPDATING

One of the major advantages of the multivariate set-up is that it corresponds to
the use of a state space Ω = ×s∈GXs that is highly structured. This structure
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allows for the introduction of some new concepts—such as marginalisation—
as well as special cases of existing ones—such as conditioning and updating.
This is all well known and relatively easy in terms of probabilities, but for some
of the other frameworks that we consider, clear definitions are often missing.
We present an overview of existing tools, connect ideas from different frame-
works to one another and add new material whenever necessary. The result
is a complete and well-founded theory of multivariate imprecise probabilities
that is, to the best of our knowledge, novel in its completeness, generality and
consistency.

4.2.1 Marginalisation

In practice, we may not always wish to consider all the variables that are repre-
sented by XG. Instead, we may want to focus on a specific subset of variables
Xs only, indexed by the elements of some subset S of G. As an important
special case, we might want to focus on just a single variable Xs—choosing
S = {s}. Of course, we could simply construct a separate model for the uncer-
tainty that is associated with XS. However, in doing so, we would be ignoring
the fact that this information is already contained within the uncertainty model
for XG. In the precise-probabilistic case, as we all know, the model for XS is
related to that for XG by means of marginalisation. As we are about to show,
this concept generalises easily to the imprecise-probabilistic case.

Regardless of the framework we adopt, the uncertainty model for XS will
be expressed in terms of gambles on XS, either by assessing their desirability
directly—sets of desirable gambles—or by providing supremum buying and
infimum selling prices for them—lower and upper previsions. Any such gam-
ble f ∈ G (XS) is a map on XS that associates a real number f (xS) with every
xS ∈ XS. For any S ⊆ U ⊆ G, we now let fU be the cylindrical extension
of f to XU , defined by fU (xU ) := f (xS) for all xU ∈XU , letting xS be the
projection of xU on XS. Although fU is formally a function of xU —the val-
ues of the variables Xs that are indexed by an element of U—it only depends
on xS—the values of the variables that are indexed by an element of S—and
remains constant if xU\S is varied within XU\S. Hence, conceptually, fU is in-
distinguishable from f , which allows us to identify them with one another and
simply denote them both by f . Using this convention, for any K ⊆ G (XG),
we can write K ∩G (XS) to refer to the gambles in G (XS) whose cylindrical
extension belongs to K , or equivalently, those gambles in K that only depend
on the variables Xs, s ∈ S.

In terms of sets of desirable gambles, marginalisation is now based on the
intuitive idea that a gamble f ∈ G (XS) should be desirable if and only if its
cylindrical extension is desirable. This leads to the following definition for the
marginal model for XS [45]:

margS(DG) :=
{

f ∈ G (XS) : f ∈DG
}
= DG∩G (XS). (4.1)
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Loosely speaking, the marginal model margS(DG) consists of the gambles in
the global model DG that only depend on the variable XS. It is a matter of
straightforward verification to see that marginalisation preserves coherence:
if DG is coherent, margS(DG) will also be coherent. See Reference [45] for
additional properties of this marginalisation operator.

Similarly, in terms of lower previsions, we adopt the intuitive idea that
the lower prevision of a gamble f ∈ G (XS) should be identical to that of its
cylindrical extension. Starting from a lower prevision PG on G (XG), this
leads us to consider the following expression for the corresponding marginal
model PS:

PS( f ) := PG( f ) for all f ∈ G (XS). (4.2)

Coherence is again preserved: if PG is coherent, PS will be coherent as well.
For coherent lower previsions, Definition (4.2) can also be regarded as a con-
sequence of Definition (4.1)x: if PG is related to a coherent set of desirable
gambles DG by means of Equation (2.3)40, then PS and margS(DG) will be
related in the same way.

Since linear previsions are a special type of lower previsions, they can
be marginalised in the same way. In this special case, if we let pG be the
probability mass function for XG that corresponds to a linear prevision PG on
G (XG), then

PS( f ) := PG( f ) = ∑
xG∈XG

f (xG)pG(xG)

= ∑
xS∈XS

∑
xG\S∈XG\S

f (xS,xG\S)pG(xS,xG\S)

= ∑
xS∈XS

f (xS) ∑
xG\S∈XG\S

pG(xS,xG\S) = ∑
xS∈XS

f (xS)pS(xS),

letting pS be the marginalised probability mass function for the variable XS,
as derived from pG by summing out the variable XG\S. In other words: in
the case of linear previsions, our notion of marginalisation is equivalent to the
usual precise-probabilistic one.

A set MG of linear previsions on G (XG) or a set FG of probability mass
functions on XG can be marginalised by marginalising each of its elements
separately, leading to the following expressions for the corresponding marginal
models:

margS(MG) := {PS : PG ∈MG}

and
margS(FG) := {pS : pG ∈FG}.
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When applied to such sets, the operator margS(·) preserves closedness and
convexity: if MG is closed and/or convex, so too is margS(MG), and similarly
for FG and margS(FG).1

Although we prefer to interpret—and motivate the use of—
Equation (4.2)x directly in terms of supremum buying prices for gambles, PS
can also be given an alternative interpretation, which is especially intuitive if
the sensitivity analysis interpretation is adopted. If PG is coherent, it follows
from the lower envelope theorem [Theorem 752] that

PS( f ) = min{PS( f ) : PS ∈margS(MPG)} for all f ∈ G (XS). (4.3)

Since PG and therefore also PS are both coherent, we know from Sec-
tion 2.6.152 that MPG and MPS are the unique closed and convex sets of linear
previsions of which PG and PS are the respective lower envelopes. By combin-
ing this with Equation 4.3 and the fact that margS(·) preserves convexity and
closedness, we find that MPS = margS(MPG). Consequently, by the one-to-
one correspondence between linear previsions and probability mass functions,
we also have that FPS = margS(FPG).

4.2.2 A special type of conditional models

Given that the multivariate set-up is just a special case of the univariate one, we
could in theory consider conditional models with respect to any chosen con-
ditioning event B ∈P /0(XG). However, in the multivariate case, some con-
ditioning events are more fundamental than others, as they lead to conditional
models that are particularly intuitive.

The most fundamental type of events are those that correspond to fixing
the value of some subset of the variables Xs, s ∈ G, or in other words, fixing
the value xI of XI , for some subset I of G. With any such xI ∈XI , we can as-
sociate a corresponding event {xI}×XG\I := {zG ∈XG : zI = xI} ∈P /0(XG)
that consists of the tuples zG in XG for which, for all s ∈ I, the s-component
of zG is equal to that of xI . The indicator I{xI}×XG\I of {xI}×XG\I clearly
only depends on the variable XI . In fact, it is the cylindrical extension of the
indicator I{xI} ∈ G (XI), which allows us to identify these two indicators and
simply denote them both by I{xI}. In the same spirit, the events {xI}×XG\I
and {xI} can also be identified with each other, and we will use {xI} to refer to
them both or, whenever it is clear that we are referring to a set, simply denote
them both as xI .

1Convexity is trivially preserved. For sets of linear previsions, closedness is preserved be-
cause, with respect to the topology of pointwise convergence, restricting the domain of a linear
prevision PG—which is what marginalisation essentially does—is a continuous operation. For sets
of probability mass functions, closedness is preserved because, with respect to the topology that is
induced by the Euclidean metric, summing components together—which is what marginalisation
essentially does—is a continuous operation.
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If we start from a set of desirable gambles DG on G (XG) and condition it
on such an event {xI}, then according to Equation (2.2)40, the resulting condi-
tional model2,3

DGcxI =
{

f ∈ G ({xI}×XG\I) : I{xI} f ∈DG
}
.

is a subset of G ({xI}×XG\I). However, in practice, the gambles in DGcxI
only depend on the value of XG\I , because the value of XI is equal to xI and
therefore fixed. It is therefore far more intuitive to identify these gambles with
gambles on XG\I . By the obvious one-to-one correspondence between {xI}×
XG\I and XG\I , such an identification is trivial. The resulting conditional
model is4

margG\I(DGcxI) :=
{

f ∈ G (XG\I) : I{xI} f ∈DG
}
. (4.4)

It represents our subject’s beliefs about the values of the variables that are
represented by XG\I , contingent on the fact that XI assumes the value xI . Co-
herence is again trivially preserved. Also, since I{x /0} = 1, the degenerate case
I = /0 yields no problems. As is to be expected from conditioning on the value
of a deterministic variable such as X/0, it amounts to not conditioning at all.

Similar definitions can be given for conditional lower previsions, for (sets
of) conditional linear previsions, and for (sets of) full conditional probability
mass functions, by using a similar identification. However, since we are about
to introduce a generalised version of Equation (4.4), we will—in order to avoid
having to repeat ourselves—defer the translations to these other frameworks to
the next section, where we will introduce them directly for the general version
that is considered there, rather than the specific case that was considered here.

4.2.3 Marginalised conditional models

The concepts that were introduced in Sections 4.2.1102 and 4.2.2x can be com-
bined with each other to obtain a single generalised operator that includes them
both as special cases. For any two disjoint subsets S and I of G, the idea is to

2This is a nice example of an instance in where it is safe—as well as far more elegant—to use
xI as a shorthand notation for the set {xI}= {xI}×XG\I , because it is clear from the context that
we are referring to a set.

3In Reference [45], the authors used DGcxI to refer to a different set of desirable gambles: the
set margG\I(DGcxI), as given by Equation (4.4). We prefer to distinguish between these two sets
because it allows us to establish a clear connection with the general—non-multivariate—notion of
conditioning that was discussed in Chapter 237.

4For those among you who wonder why the marginalisation operator is part of our notation:
we will generalise this operator in the next section, in such a way that, in this particular case, it
maps gambles on {xI}×XG\I to their counterpart on XG\I . However, it would be overkill to
formally introduce this generalised version of the marginalisation operator already here, because
in this case, it corresponds to a rather degenerate notion of marginalisation.
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construct a model that represents our subject’s beliefs about the value of the
variable XS contingent on the occurrence of an event BS ×BI ∈P /0(XS∪I),
for some BS ∈P /0(XS) and BI ∈P /0(XI)—contingent on the fact that XS as-
sumes a value in BS and XI assumes a value in BI . This model should reflect
our subject’s beliefs about which value XS will take in the remaining set of
possibilities BS. Let us start by explaining how this works in terms of sets of
desirable gambles.

The first step consists in generalising the concept of conditioning on an
event {xI} to conditioning on an event BS × BI , with BS ∈ P /0(XS) and
BI ∈P /0(XI). As we did in the special case where BS = XS and BI = {xI}
[see Section 4.2.2104] we can identify the event BS × BI with the event
BS×BI×XG\(S∪I) ∈P /0(XG), and similarly for their indicators. Using this
convention, we also have that IBS×BI = IBSIBI . Conditioning on the event
BS×BI is now again a matter of applying Equation (2.2)40, which results in a
conditional model

DGcBS×BI =
{

f ∈ G (BS×BI×XG\(S∪I)) : IBSIBI f ∈DG
}

(4.5)

that consists of gambles on BS×BI×XG\(S∪I). However, unlike what hap-
pened in the special case where BS =XS and BI = {xI}, there is no immediate
one-to-one correspondence with gambles on BS×XG\(S∪I), and therefore def-
initely not with gambles on BS. Consequently, we do not trivially obtain a set
of desirable gambles on BS.

The second step therefore consists in generalising the concept of marginal-
isation. The central idea of marginalisation was to restrict attention to those
gambles in DG that, although they are formally defined on XG, depend on the
value of XS only. The very same trick can also be applied to a set D ′G of gam-
bles on BS×BI ×XG\(S∪I). Formally, we identify a gamble f ∈ G (BS) with
its cylindrical extension5 fG ∈ G (BS×BI×XG\(S∪I)), defined by

fG(xG) := f (xS) for all xG ∈ BS×BI×XG\(S∪I),

and denote them both by f . Using this identification, we can then define

margS(D
′
G) := D ′G∩G (BS) =

{
f ∈ G (BS) : f ∈D ′G

}
.

Loosely speaking, the elements of margS(D
′
G) are the gambles in D ′G that de-

pend on the value of XS only, meaning that they remain constant if the value
of XG\S varies within its remaining set of options BI ×XG\(S∪I). It is easy to
check that this generalised notion of marginalisation preserves coherence: if
D ′G is a coherent set of desirable gambles on BS×BI×XG\I , then margS(D

′
G)

is a coherent set of desirable gambles on BS.

5This is a more general notion of cylindrical extension than the one that was considered in
Section 4.2.1102, which restricted attention to the special case where BS = XS and BI = XI .
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By sequentially applying the two steps that were discussed above, we ob-
tain the following marginalised conditional model, which represents our sub-
ject’s beliefs about the value of the variable XS, contingent on the fact that XS
assumes a value in BS and XI assumes a value in BI :

margS(DGcBS×BI) :=(DGcBS×BI)∩G (BS)

=
{

f ∈ G (BS) : IBSIBI f ∈DG
}
. (4.6)

The operator margS(·cBS ×BI) is guaranteed to preserve coherence, simply
because this is the case for each of the two individual operators ·cBS×BI and
margS(·).

If BS = XS, we use DGcBI as a shorthand notation for DGcXS×BI ,6 and
similarly for DGcBS := DGcBS×XI . If BS = XS and BI = XI , we find that
DG = DGcXS×XI . In this way, we see that Equations (4.1)102 and (4.4)105
correspond to particular cases of margS(DGcBS×BI). The former corresponds
to letting BS = XS and BI = XI and the latter can be obtained by choosing
S = G\ I, BS = XS and BI = {xI}.

A similar story can be told in terms of lower previsions. If we start from
a conditional lower prevision PG(·c·) on C (XG), then PG(·cBS × BI) is a
lower prevision on G (BS×BI ×XG\(S∪I)). If all we are interested in is the
conditional lower prevision of gambles that only depend on the value that XS
takes in its remaining set of options BS, we can simply restrict the domain of
PG(·cBS×BI) to (cylindrical extensions of) gambles in G (BS). The resulting
operator is denoted by PS(·cBS×BI) and is trivially defined as

PS( f cBS×BI) := PG( f cBS×BI) for all f ∈ G (BS). (4.7)

Coherence is again preserved and—as was the case for marginalisation—this
definition can also be regarded as an immediate consequence of its counterpart
for desirable gambles: if PG(·c·) is obtained from a coherent set of desirable
gamble DG—by means of Equation (2.10)42—then PS(·cBS×BI) is the co-
herent lower prevision that corresponds to margS(DGcBS×BI)—as given by
Equation (2.3)40.

Linear previsions correspond to a special case. Furthermore, in that case,
if we let pG(·c·) be the unique full conditional probability mass function that
is associated with a linear conditional prevision PG(·c·) on C (XG), then for
all f ∈ G (BS):

6In previous work [31, Section 3.3], DGcBI was used to refer to a different set of desirable
gambles: the set margG\I(DGcBI), as given by Equation (4.6). We prefer the current notation be-
cause it allows for a clear connection with the general approach to conditioning that was discussed
in Chapter 237; see Footnote 3105 as well.
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PS( f cBS×BI) :=PG( f cBS×BI) (4.8)

= ∑
xG∈BS×BI×XG\(S∪I)

f (xG)pG(xGcBS×BI)

= ∑
xS∈BS

∑
xG\S∈BI×XG\(I∪S)

f (xS,xG\S)pG(xS,xG\ScBS×BI)

= ∑
xS∈BS

f (xS) ∑
xG\S∈BI×XG\(I∪S)

pG(xS,xG\ScBS×BI)

= ∑
xS∈BS

f (xS)pS(xScBS×BI),

(4.9)

where pS(xScBS×BI) is the probability that XS has the value xS, conditional
on BS × BI , as obtained in the conventional way, by summing out the re-
maining possible values for XG\S. Hence, we see that—as was the case for
marginalisation—the usual precise-probabilistic concept is again obtained as a
special case.

These combinations of conditioning and marginalisation can be introduced
for sets of conditional linear previsions and sets of full conditional probability
mass functions as well, simply by applying the above procedures elementwise.
For a set MG of conditional linear previsions PG(·c·) on C (XG), we define

margS(MGcBS×BI) :={PS(·cBS×BI) : PG(·cBS×BI) ∈MGcBS×BI}
={PS(·cBS×BI) : PG(·c·) ∈MG},

and for a set FG of full conditional probability mass functions on C∗(XG), we
let

margS(FGcBS×BI) :={pS(·cBS×BI) : pG(·cBS×BI) ∈FGcBS×BI}
={pS(·cBS×BI) : pG(·c·) ∈FG}.

The operator margS(·) will again preserve closedness and convexity:7 if
MGcBS×BI is closed and/or convex, then margS(MGcBS×BI) will be closed
and/or convex as well, and similarly for FGcBS×BI and margS(FGcBS×BI).

Finally, Equation (4.7)x can also be given a sensitivity analysis interpreta-
tion. If PG(·c·) is a coherent conditional lower prevision on C (XG), it follows
from the lower envelope theorem [Theorem 752] that, for all f ∈ G (BS):

PS( f cBS×BI)

= min{PS( f cBS×BI) : PG(·c·) ∈MPG(·c·)}
= min{PS( f cBS×BI) : PS(·cBS×BI) ∈margS(MPG(·c·)cBS×BI)}. (4.10)

7This follows from an argument that is analogous to the one in Footnote 1104.
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Since PS(·cBS × BI) is a coherent lower prevision, we know from Sec-
tion 2.6.152 that MPS(·cBS×BI) is the unique closed and convex set of lin-
ear previsions that has PS(·cBS×BI) as its lower envelope. However, since
MPG(·c·)cBS×BI =MPG(·cBS×BI) [see Proposition 853] and since MPG(·cBS×BI)

is a closed and convex set of linear previsions [see Section 2.6.152]
margS(MPG(·c·)cBS×BI) is also a closed and convex set of linear previsions
that, by Equation (4.10)x, has PS(·cBS×BI) as its lower envelope. Hence, we
may conclude that

MPS(·cBS×BI) = margS(MPG(·c·)cBS×BI) (4.11)

Due to the one-to-one correspondence between conditional linear previ-
sions and full conditional probability mass functions, this also implies that
FPS(·cBS×BI) = margS(FPG(·c·)cBS×BI).

4.2.4 Keeping all the conditional information together

The models that we have introduced in the previous section are fairly general,
as they consider two conditioning events: BS and BI . In many practical situ-
ations, the event BS will be trivial, in the sense that it is equal to XS. In that
case

margS(DGcBI) = { f ∈ G (XS) : IBI f ∈DG}

represents our subject’s beliefs about XS, contingent on partial information
about XI—the fact that XI takes a value in BI . It is important to realise that
margS(DGcBI) truly reflects all of our subject’s beliefs about XS, including
conditional beliefs: for any BS ∈P /0(XS), we can obtain the corresponding
conditional model margS(DGcBI)cBS by applying Equation (2.2)40. We find
that

margS(DGcBI)cBS = { f ∈ G (BS) : IBS f ∈margS(DGcBI)}
= { f ∈ G (BS) : IBI [IBS f ] ∈DG}
= margS(DGcBS×BI). (4.12)

In other words: margS(DGcBI) can be regarded as a convenient representation
for all the models margS(DGcBS×BI), with BS ∈P /0(XS).

This is no longer true if we move from the framework of sets of desirable
gambles to that of coherent lower previsions. Consider a coherent conditional
lower prevision PG(·c·) on C (XG) and an event BI ∈P /0(XI). Then for any
BS ∈P /0(XS), we can derive PS(·cBS×BI) from PG(·c·) by applying Equa-
tion (4.7)107. However, it may be impossible to derive PS(·cBS × BI) from
PS(·cBI)—unless PS(IBScBI) > 0. This means that, in contradistinction with
what we have found for margS(DGcBI), PS(·cBI) does not truly represent all of
our subject’s beliefs about XS contingent on BI , but only his ‘unconditional’ be-
liefs. In order to represent all of our subject’s beliefs about XS contingent on BI
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by a single operator, we introduce the conditional lower prevision PS(·c ·×BI)
on C (XS), defined by

PS( f cBS×BI) := PG( f cBS×BI) for all ( f ,BS) ∈ C (XS). (4.13)

For a fixed event BS ∈P /0(XS), PS(·cBS×BI) is a lower prevision on G (BS)
that is equal to the identically denoted operator that was defined in the previous
section [see Equation (4.7)107]. For BI = XI , we let PS(·c·) := PS(·c ·×XI).
It is a matter of straightforward verification that if PG(·c·) is derived from a
coherent set of desirable gambles DG, then PS(·c ·×BI) is the coherent con-
ditional lower prevision on C (XS) that corresponds to margS(DGcBI). As an
immediate consequence, we find that Equation (4.13) preserves coherence: if
PG(·c·) is coherent, then PS(·c ·×BI) is also coherent.

A similar concept can be introduced for a set MG of conditional linear
previsions on C (Ω). By applying Equation (4.13) to every element of MG, we
obtain a set

margc
S(MGc|BI) := {PS(·c ·×BI) : PG(·c·) ∈MG}

of conditional linear previsions on C (XS). For all BS ∈P /0(XS), we have that

margc
S(MGc|BI)cBS ={PS(·cBS×BI) : PS(·c ·×BI) ∈margc

S(MGc|BI)}
={PS(·cBS×BI) : PG(·c·) ∈MG}
=margS(MGcBS×BI). (4.14)

We add the superscript c to indicate that the set margc
S(MGc|BI) is more

than just a convenient representation of the sets margS(MGcBS × BI), for
BS ∈P /0(XS). The set margc

S(MGc|BI) also tells us, for a given combination
of elements of margS(MGcBS×BI), one for every BS ∈P /0(XS), whether or
not there is some conditional linear prevision P(·c·)∈MG from which they can
all be derived by means of Equation (4.8)108. This is a major difference with
PS(·c · ×BI), which only serves as a convenient representation for the lower
previsions PS(·cBS×BI), for BS ∈P /0(XS). Nevertheless, rather surprisingly,
we can still establish the following connection.

Theorem 33. Consider a coherent lower prevision PG(·c·) on C (Ω). Let S
and I be two disjoint subsets of G. Then for all BI ∈P /0(XI), it holds that
margc

S(MPG(·c·)c|BI) = MPS(·c·×BI).

Proof of Theorem 33. First consider any P∗S (·c·) ∈ margc
S(MPG(·c·)c|BI). This

means that there is some PG(·c·) ∈MPG(·c·) such that P∗S (·c·) = PS(·c ·×BI).
Hence, for all ( f ,BS) ∈ C (XS), we find that

P∗S ( f cBS) = PS( f cBS×BI)≥ PS( f cBS×BI),

which implies that P∗S (·c·) ∈MPS(·c·×BI).
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Next, consider any P∗S (·c·) ∈MPS(·c·×BI). Let P∗G(·c·) be the conditional
lower prevision on C (XG) that is defined by

P∗G( f cB) :=

{
P∗S ( f cBS) if f ∈ G (XS) and (∃BS ∈P /0(XS)) B = BS×BI ;
PG( f cB) otherwise.

Assume ex absurdo that EP∗G(·c·) is incoherent. As explained in Section 2.2.139,
this implies that EP∗G(·c·) does not avoid null gain [D138]: 0 ∈ EP∗G(·c·). Since
EP∗S (·c·) and EPG(·c·) are coherent, it now follows from the definition of EP∗G(·c·)
that there are fS ∈ EP∗S (·c·) and fG ∈ EPG(·c·) such that IBI fS + fG = 0.

By definition of EP∗S (·c·), we know that there are n ∈ N, ( fi,Bi) ∈ C (XS),
εi ∈ R>0, λi ∈ R>0 such that

fS =
n

∑
i=1

λiIBi [ fi−P∗S ( ficBi)+ εi]

=
n

∑
i=1

λiIBi [ fi−P∗S ( ficBi)+
εi

2
]+

n

∑
i=1

λiIBi

εi

2
≥ IBS [hS + ε], (4.15)

where we let BS := ∪n
i=1Bi, ε := 1/2 minn

i=1 λiεi and

hS :=
n

∑
i=1

λiIBi

[
fi−P∗S ( ficBi)+

εi

2

]
∈ G (BS).

Observe that IBS hS ∈ EP∗S (·c·). Since P∗S (·c·) is coherent and therefore coin-
cides with its natural extension, we have that P∗S (·c·) = PEP∗S (·c·)

. Hence, since
IBS hS ∈ EP∗S (·c·), we know that P∗S (hScBS)≥ 0.

Let f ′S be the restriction of fS to BS. It then follows from Equation (4.15)
that fS = IBS fS = IBS f ′S and that f ′S ≥ hS + ε . The linearity of P∗S (·cBS) now
implies that P∗S (− f ′ScBS) ≤ P∗S (−hS − εcBS) = −P∗S (hScBS)− ε < 0. Since
P∗S (·c·) ∈MPS(·c·×BI) and therefore P∗S (·c·)≥ PS(·c ·×BI), this in turn implies
that PS(− f ′ScBS×BI)< 0. Hence, we find that PG(− f ′ScBS×BI) < 0. Since
the coherence of PG(·c·) implies that it coincides with its natural extension, we
also know that PG(·c·) is the conditional lower prevision that corresponds to
EPG(·c·). By combining this with the fact that PG(− f ′ScBS×BI) < 0, we find
that IBI IBS [− f ′S] /∈ EPG(·c·). Since fG =−IBI fS =−IBI IBS f ′S = IBI IBS [− f ′S] and
fG ∈ EPG(·c·), this is a contradiction. Hence, we may conclude that EP∗G(·c·) is
coherent.

Due to Proposition 345, this allows us to infer that there is some condi-
tional linear prevision PG(·c·) on C (XG) such that PG(·c·) ≥ P∗G(·c·). Since
P∗S (·c·) ≥ PS(·c · ×BI), this implies that PG(·c·) ≥ PG(·c·) or, equivalently,
that PG(·c·) ∈ MPG(·c·). Furthermore, PG(·c·) ≥ P∗G(·c·) also implies that
PS(·c ·×BI)≥ P∗S (·c·). Since PS(·c ·×BI) and P∗S (·c·) are both conditional lin-
ear previsions on C (XS), this implies that PS(·c ·×BI) = P∗S (·c·), which allows
us to conclude that P∗S (·c·) ∈margc

S(MPG(·c·)c|BI).
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Finally, for a set FG of full conditional probability mass functions on
C∗(XG), we define

margc
S(FGc|BI) := {pS(·c ·×BI) : pG(·c·) ∈FG},

where, for every pG(·c·) ∈ FG, pS(·c · ×BI) is a full conditional probability
mass function on C∗(XS), defined for all (xS,BS) ∈ C∗(XS) by

pS(xScBS×BI) := ∑
xG\S∈BI×XG\(I∪S)

pG(xS,xG\ScBS×BI).

As a direct consequence of Equation (4.9)108 and the one-to-one correspon-
dence between conditional linear previsions and full conditional probability
mass functions, we find that margc

S(MFGc|BI) = Mmargc
S(FGc|BI). Similarly,

for any set MG of conditional linear previsions on C (XG), we have that
margc

S(FMGc|BI) = Fmargc
S(MGc|BI).

4.2.5 Conditioning and updating

In the previous two sections, all the required conditional models were avail-
able, simply because we started from a conditional lower prevision, a set of
conditional linear previsions, and so on. All we did was consider special cases
of these conditional models, and show how they can be marginalised. How-
ever, in practice, these conditional models are not always given. If they are
not, they have to be derived from unconditional ones or from other conditional
ones, using the methods discussed in the previous chapters.8

The concepts that we introduced in Section 4.2.3105 remain applicable
in these situations as well, in the way you would expect them to. For ex-
ample, if MG is a set of unconditional linear previsions on G (XG), we let
margS(MGcrBS ×BI) be the set of linear previsions on G (XS) obtained by
applying Equation (4.7)107 to every element of MGcrBS×BI , where BS×BI—
as before—serves as a shorthand notation for BS×BI ×XG\(S∪I). Similarly,
for the natural extension E(·c·) and regular extension R(·c·) of a (conditional)
lower prevision P(·c·) on C ⊆C (XG), the lower previsions ES(·cBS×BI) and
RS(·cBS×BI) are defined by

ES( f cBS×BI) := EG( f cBS×BI) for all f ∈ G (XS)

and
RS( f cBS×BI) := RG( f cBS×BI) for all f ∈ G (XS),

respectively. By not fixing the set BS in ES(·cBS×BI), we obtain—as in Sec-
tion 4.2.4109—a conditional lower prevision ES(·c ·×BI) on C (XS), and sim-
ilarly for RS(·c ·×BI).

8In particular: Sections 2.3.244, 2.759 and 3.4.790.
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Our justifications for updating by means of conditioning, as discussed in
Chapter 369, remain applicable as well. Once these updated models have
been constructed—for example, by means of conditioning—we can use the
techniques discussed in Section 4.2.3105 to marginalise them. In this way,
we find that the lower previsions ES(·cBS × BI) and RS(·cBS × BI) can be
interpreted as updated belief models for the variable XS, and similarly for
margS(MGcrBS ×BI), margS(MGcnBS ×BI), and so on. These models are
applicable in situations where we have some—possibly partial—observation
about the variables that are represented by XI—the event BI—and XS—the
event BS—and we want to use these observations to update our subject’s be-
liefs about XS. In many practical situations, there will not be an observation
for XS. In those cases, ES(·c ·×BI), RS(·c ·×BI), and so on, are the appropriate
updated belief models for XS.

With regard to updating and conditioning, the multivariate set-up is often
easier than the univariate one because it allows us to specify events more in-
tuitively. Events of the form BI = {xI}, with xI ∈XI , constitute an important
example. Observing such an event simply means observing the value xs of Xs
for all s ∈ I. These events are typical in the context of updating: we learn the
value of a number of variables and then wish to use this information to up-
date our beliefs about other variables. For these kinds of events, it will often
also be easier to fulfil the requirement that we should be informed about the
occurrence of an event—and nothing more—if and only if it actually occurs,
as needed in order for our justifications for updating by means of natural or
regular extension to apply [see Section 3.1.271].

4.2.6 Conditional lower previsions as gambles

A conditional lower prevision P(·c·) on C (Ω) takes two arguments, the first of
which is a gamble f and the second of which is an event B. Because of how
we have defined a conditional lower prevision, the event needs to be fixed first,
because it determines the set G (B) from which f is to be taken—the domain
of the unconditional lower prevision P(·cB).

In a multivariate context, it is rather intuitive to reverse this process, es-
pecially if we are considering lower previsions of the form PS( f cxI). Indeed,
for a fixed gamble f ∈ G (XS), it feels rather natural to regard PS( f cxI) as a
function of xI . More formally, we let PS( f cXI) be a gamble on G (XI), defined
by

PS( f cXI)(xI) := PS( f cxI) for all xI ∈XI .

The operator PS(·cXI) is map from G (XS) to G (XI). With every gamble
f ∈ G (XS), it associates a corresponding gamble PS( f cXI) ∈ G (XI). The
domain of the operator PS(·cXI) can also be extended to include gambles
f ∈ G (XW ), for some S ⊆ W ⊆ G, by letting PS( f cXI) be a gamble on
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X(W\S)∪I , defined by

PS( f cXI)(x(W\S)∪I) := PS( f (XS,xW\S)cxI) for all x(W\S)∪I ∈X(W\S)∪I .

In this way, PS(·cXI) can also be regarded as a map from G (XW ) to
G (X(W\S)∪I). For any V ⊇W ∪ I, the concept of cylindrical extension [see
Section 4.2.1102] even allows us to regard PS( f cXI) as a gamble on XV\S.

For conditional linear previsions, these conventions allow us to state the
well-known law of iterated expectation or, in our terminology, the law of it-
erated prevision. Consider pairwise disjoint subsets S1, S2 and I of G and let
S := S1∪S2. Then for any conditional linear prevision PG(·c·) on C (XG), we
have that

PS( f cXI) = PS2(PS1( f cXS2∪I)cXI) for all f ∈ G (XG). (4.16)

Proof of Equation (4.16). Let pG(·c·) be the full conditional probability mass
function that corresponds to PG(·c·). Fix any gamble f ∈ G (XG) and regard
g := PS1( f cXS2∪I) as a gamble on XG\S1 , as defined for all xG\S1 ∈XG\S1 by

g(xG\S1) := PS1( f cXS2∪I)(xG\S1) := PS1( f (XS1 ,xG\S1)cxS2∪I).

For any xG\S ∈XG\S, we then find that

PS( f cXI)(xG\S) = PS( f (XS,xG\S)cxI)

= ∑
xS∈XS

f (xS,xG\S)pS(xScxI)

= ∑
xS2∈XS2

∑
xS1∈XS1

f (xS1 ,xS2 ,xG\S)pS1(xS1cxS2∪I)pS2(xS2cxI)

= ∑
xS2∈XS2

PS1( f (XS1 ,xS2 ,xG\S)cxS2∪I)pS2(xS2cxI)

= ∑
xS2∈XS2

g(xS2 ,xG\S)pS2(xS2cxI) = PS2(g(XS2 ,xG\S)cxI)

= PS2(gcXI)(xG\S),

using Bayes’s rule for the third equality.

This proof shows that Equation (4.16) is an alternative formulation of the
law of total probability.

4.3 EPISTEMIC IRRELEVANCE

At this point, we have all the tools necessary to introduce one of the most im-
portant concepts in this thesis: epistemic irrelevance. We will distinguish be-
tween three variants: epistemic value-irrelevance, epistemic subset-irrelevance
and epistemic h-irrelevance. We focus on their conditional versions, as the un-
conditional ones can be recovered easily as a special case.
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4.3.1 Epistemic value-irrelevance

Consider three pairwise disjoint subsets C, I, and S of G. When a subject
judges XI to be epistemically value-irrelevant to XS conditional on XC, as de-
noted by VIR(I,S |C), he assumes that if he knew the value of XC, then know-
ing in addition which value XI assumes in XI would not affect his beliefs
about XS. Formally, depending on the framework that is used, he assumes that,
for all xC ∈XC and xI ∈XI :

margS(DGcxC∪I) = margS(DGcxC).

or
PS(·cxC∪I) = PS(·cxC).

or
margS(MGcxC∪I) = margS(MGcxC).

or
margS(FGcxC∪I) = margS(FGcxC).

The conditional models at both sides of these expressions should not be inter-
preted as updated ones. We take epistemic value-irrelevance to be a statement
that is concerned with current beliefs about XS, contingent on the fact that XC
(and XI) take specific values.

For the unconditional versions of value-irrelevance, it suffices to let C = /0.
This makes sure the variable XC has only one possible value x /0—and is there-
fore deterministic—so conditioning on that variable amounts to not condition-
ing at all.

4.3.2 Epistemic subset-irrelevance

Alternatively, a subject can make the stronger statement that he judges XI
to be epistemically subset-irrelevant to XS conditional on XC, as denoted by
SIR(I,S | C). In that case, he assumes that if he knew the value of XC, then
receiving the additional information that XI is an element of any non-empty
subset BI of XI would not affect his beliefs about XS. In other words, he
assumes that, for all xC ∈XC and all BI ∈P /0(XI):

margS(DGc{xC}×BI) = margS(DGcxC) (4.17)

or
PS(·c{xC}×BI) = PS(·cxC) (4.18)

or
margS(MGc{xC}×BI) = margS(MGcxC) (4.19)

or
margS(FGc{xC}×BI) = margS(FGcxC). (4.20)
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Again, the conditional models at both sides of these equations should be inter-
preted as contingent models, not as updated ones. The unconditional version
corresponds to C = /0.

Making a subset-irrelevance statement SIR(I,S |C) clearly implies the cor-
responding value-irrelevance statement VIR(I,S |C). Even stronger, it implies
that VIR(I′,S |C) for all I′ ⊆ I. As the following counterexample illustrates,
the converse relation does not hold in general.

Example 2. Consider two variables Xs1 and Xs2 that take values in their re-
spective state spaces Xs1 := {a,b,c} and Xs2 := {0,1}. Hence, G = {s1,s2}.
Now let I := {s1}, S := {s2}, C := /0 and BI := {a,c} ⊆XI , let g ∈ G (XS) be
defined by g(1) := 1 and g(0) :=−1, and define

DG := E({IBI g}) = { f ∈ G (XG) : (∃λ ∈ R>0) f ≥ λ IBI g or f > 0}.

According to this set of desirable gambles, XI is epistemically value-irrelevant
to XS because, for all xI ∈ XI , margS(DGcxI) = G (XS)>0 = margS(DG).
However, XI is not subset-irrelevant to XS, because

margS(DGcBI) = E({g}) = { f ∈ G (XO) : (∃λ ∈ R>0) f ≥ λg or f > 0}

is strictly larger than G (XS)>0 and therefore not equal to margS(DG). ♦

We consider epistemic subset-irrelevance to be the more natural of the two
concepts, as it requires all information about the value of XI to be irrelevant,
including partial information, which is what—in our opinion—epistemic irrel-
evance should mean.9 For example, in Example 2, although Xs1 is epistem-
ically value-irrelevant to Xs2 , knowing that Xs1 6= b does affect our subjects
beliefs about Xs2 ; this would be impossible if Xs1 were epistemically subset-
irrelevant to Xs2 .

Epistemic value-irrelevance and epistemic subset-irrelevance seem to be
the prevailing notions of epistemic irrelevance in the literature on imprecise
probabilities. However, the prefixes ‘value’ and ‘subset’ are not added.10 Both
notions are simply referred to as epistemic irrelevance and the distinction be-
tween them is usually not made [15, 18, 22, 45, 46, 106].11 In an attempt to

9If the state space is infinite—a case we do not consider here—then the advantages of
epistemic-subset irrelevance (and the notion of epistemic h-irrelevance that we consider further
on) over epistemic-value irrelevance are even more prominent because epistemic value-irrelevance
tends to become a very weak concept; see Example 4 (and Remark 1) in Reference [75].

10With the exception of References [28, 31], where we recently introduced the notion of epis-
temic subset-irrelevance for sets of desirable gambles; however, in these papers, we have also used
the term epistemic irrelevance to refer to what we now prefer to call epistemic value-irrelevance.

11The notion of epistemic irrelevance that is mentioned in References [15, 22, 45, 46, 106]
coincides with wat we have chosen to call epistemic value-irrelevance. On the other hand, Ref-
erence [18] uses the term epistemic irrelevance to refer to what we have called epistemic subset-
irrelevance.
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clarify the difference, we have chosen to let it be reflected in our terminol-
ogy. However, the possible definitions of epistemic irrelevance have not been
exhausted yet. The—in our opinion—most important variant is a very recent
notion of irrelevance, called (epistemic) h-irrelevance by Cozman [19].12

4.3.3 Epistemic h-irrelevance

For frameworks other than sets of desirable gambles, epistemic value- and
subset-irrelevance share a common weakness, which is that they require infor-
mation about the value of XI—be it the actual value or partial information—
to be irrelevant only to unconditional beliefs about XS, and not to beliefs
about XS that are conditional on some event BS ∈P /0(XS). For example, in the
framework of lower previsions, an assessment that XI is epistemically subset-
irrelevant to XS only requires that PS(·cBI) should be equal to PS(·). As we
know from the discussion in Section 4.2.4109, this may not imply the equality
of PS(·cBS×BI) and PS(·cBS). Nevertheless, it seems to us that any property
that claims to reflect epistemic irrelevance should impose this equality; there
seems to be no reason to restrict attention to unconditional beliefs about XS
only.

In order to strengthen the concept of epistemic (subset-)irrelevance in such
a way that it displays this desired behaviour, Cozman introduced the concept
of h-irrelevance [19, Definition 2], which he named after a similar precise-
probabilistic notion introduced by Hammond [61]. Within the framework of
lower previsions, Cozman calls XI h-irrelevant to XS conditional on XC if, for
all xC ∈XC, BI ∈P /0(XI) and BS ∈P /0(XS):

PS(·cBS×{xC}×BI) = PS(·cBS×{xC}). (4.21)

Inspired by this definition, and using the notation introduced in Sec-
tion 4.2.4109, we say that a subject judges XI to be epistemically h-irrelevant
to XS conditional on XC, as denoted by HIR(I,S |C), if he assumes that, for all
xC ∈XC and BI ∈P /0(XI):

margS(DGc{xC}×BI) = margS(DGcxC) (4.22)
or

PS(·c ·×{xC}×BI) = PS(·c ·×xC) (4.23)
or

margc
S(MGc|{xC}×BI) = margc

S(MGc|xC) (4.24)
or

margc
S(FGc|{xC}×BI) = margc

S(FGc|xC), (4.25)

12Besides epistemic value-, subset- and h-irrelevance, other—in our opinion less
fundamental—notions of (epistemic) irrelevance have been defined as well; some of them are
briefly mentioned in Section 4.4120.
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depending on the framework that is adopted. We add the prefix ‘epistemic’ be-
cause we believe that it better reflects the meaning of such an assessment. The
irrelevance that is imposed here is with respect to a belief model—subjective
knowledge—and need not be related to (a lack of) causation or some kind of
‘physical’ independence, concepts with which the word irrelevance—without
the prefix ‘epistemic’—might otherwise easily be associated.

Our definition for conditional lower previsions [Equation (4.23)x] is
clearly equivalent to that of Cozman [Equation (4.21)x]. We prefer our no-
tation because a similar equivalence does not hold for some of the other frame-
works that we consider. For example, for the framework of sets of conditional
linear previsions, mimicking Cozman’s definition would lead us to impose that,
for all xC ∈XC, BI ∈P /0(XI) and BS ∈P /0(XS):

margS(MGcBS×{xC}×BI) = margS(MGcBS×{xC}). (4.26)

However, as explained in Section 4.2.4109, this is not equivalent to our defini-
tion of epistemic h-irrelevance, which is stronger, in the sense that it implies
Equation (4.26). A similar statement can be made for the framework of sets of
full conditional probability mass functions.

The framework of sets of desirable gambles is special. For that framework,
as the reader might already have noticed, our definitions for subset-irrelevance
and h-irrelevance [Equations (4.22)x and (4.17)115] are identical. This makes
perfect sense because it follows from the discussion in Section 4.2.4109—in
particular, Equation (4.12)109—that, for a coherent set DG of desirable gambles
on XG, epistemic subset-irrelevance [Equation (4.17)115] implies that

margS(DGcBS×{xC}×BI) = margS(DGcBS×{xC}) (4.27)

for all xC ∈XC, BI ∈P /0(XI) and BS ∈P /0(XS). Hence, for sets of desirable
gambles, epistemic subset-irrelevance already displays the behaviour that is
expected of a notion of epistemic h-irrelevance. It is therefore not necessary—
nor possible—to strengthen the notion of epistemic subset-irrelevance any fur-
ther; it is already strong enough. The notion of epistemic h-irrelevance is there-
fore redundant in the framework of sets of desirable gambles. The reason why
we have chosen to define it anyway, is because it allows us to make general
statements about epistemic h-irrelevance that apply to each of the four frame-
works that we consider.

We consider epistemic h-irrelevance to be more fundamental than epis-
temic value- and subset-irrelevance. Not only does it require all information
about the value of XI—including partial information—to be irrelevant con-
ditional on the value of XC, it also requires it to be irrelevant to all beliefs
about XS—conditional and unconditional beliefs. We think that these are ex-
actly the properties that a notion of epistemic irrelevance should have. For
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this reason, from now on, we will drop the prefix ‘h’ and refer to epistemic h-
irrelevance simply as epistemic irrelevance, denoting it by IR(I,S |C) instead
of HIR(I,S | C). This is unconventional; as we have mentioned in the previ-
ous section, most authors use the term epistemic irrelevance to refer to either
epistemic value-irrelevance of epistemic subset-irrelevance. However, we are
convinced that it is appropriate, and that over time, epistemic h-irrelevance
will become the prevailing notion of epistemic irrelevance. We think that
epistemic value- and subset-irrelevance should be regarded as simplifications,
which should only be adopted if the added strength of epistemic h-irrelevance
is not important for the problem at hand.

Whenever the difference between the three different versions of epistemic
irrelevance is not relevant, we will also use epistemic irrelevance as a generic
term that refers to all three of them.

4.3.4 Does it matter which framework we use?

Suppose now that we have a coherent set DG of desirable gambles on XG, a
coherent conditional lower prevision PG(·c·) on C (XG), a set MG of condi-
tional linear previsions on C (XG) and a set FG of full conditional probability
mass functions on C∗(XG) that are all related to each other, in the sense that
PG(·c·) = PDG

(·c·), MG = MPG(·c·) and FG = FMG . Does it matter in which
framework we express an assessment of epistemic irrelevance? Yes, some-
times, but not that much.

The versions for coherent conditional lower previsions, sets of condi-
tional linear previsions and sets of full conditional probability mass functions
are equivalent: PG(·c·) satisfies Equation (4.23)117 if and only if MG satis-
fies Equation (4.24)117 if and only if FG satisfies Equation (4.25)117. The
first equivalence follows from Equations (4.10)108 and (4.14)110 and Theo-
rem 33110. The second one follows from the one-to-one correspondence be-
tween conditional linear previsions and full conditional probability mass func-
tions; see the end of Section 4.2.4 as well. Similar equivalences also hold
for value-irrelevance and subset-irrelevance; Equation (4.14)110 is then no
longer necessary, and the role of Theorem 33110 is then taken up by Equa-
tion (4.11)109.

The version for coherent sets of desirable gambles [Equation (4.17)115]
clearly implies the one for conditional lower previsions; this follows from
Equation (4.27)x and the text that follows Equation (4.7)107. Consequently, it
also implies the other two versions. However, the converse relation does not
necessarily hold; it may be the case that PG(·c·) satisfies Equation (4.23)117
whereas DG does not satisfy Equation (4.22)117. Similar statements apply to
epistemic value- and subset-irrelevance too.

It follows from these considerations that if we prove an irrelevance state-
ment in terms of sets of desirable gambles, we immediately obtain a corre-
sponding result in terms of the other frameworks.
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4.4 VARIOUS OTHER NOTIONS OF INDEPENDENCE

Epistemic irrelevance is not the only imprecise-probabilistic notion of inde-
pendence that has been discussed in the literature. In fact, it is not even among
the more popular ones. The reason why we focus on it here, is (a) because
it will—obviously—be one of the essential tools further on in our study of
credal networks under epistemic irrelevance, and (b) because we believe that it
deserves more attention than it is currently receiving. In order to try and moti-
vate (b), we now give a brief overview of other imprecise-probabilistic notions
of independence, compare them to epistemic irrelevance, and discuss some of
the advantages of the latter. We focus on independence for variables; in partic-
ular, independence of XI and XS. We could easily add a variable XC and discuss
independence of XI and XS conditional on XC; our reason for not doing so is
because it would only distract from the main message.13 Other, more compre-
hensive overviews of imprecise-probabilistic notions of independence can be
found in References [15, 19, 37].

In order to understand why there are multiple notions of imprecise-
probabilistic independence, it is instrumental to start by taking a closer look at
precise-probabilistic independence or, as we prefer to call it, stochastic inde-
pendence. Consider a linear prevision on G (XG) and its corresponding proba-
bility measure. Then XS and XI are said to be stochastically independent if any
of the following three equivalent requirements holds. For all BS ∈P /0(XS)
and BI ∈P /0(XI):

P(BS×BI) = P(BS)P(BI) (4.28)
or

PS(BScBI) = PS(BS) whenever P(BI)> 0 (4.29)
or

PI(BIcBS) = PI(BI) whenever P(BS)> 0. (4.30)

Equation (4.28) is the most well-known of these three equivalent formulations.
Its popularity is mainly due to the mathematical convenience of this so-called
factorisation property. However, it provides little intuition about what indepen-
dence means. In that respect, Equations (4.29) and (4.30) are more important:
they clearly illustrate that independence means mutual irrelevance.

The way we have presented it so far, stochastic independence is a relatively
weak concept, especially in the presence of zero probabilities. It seems that the
only purpose of the inequalities in Equations (4.29) and (4.30) is to circumvent
the issue of conditioning on events with probability zero. Since conditional
linear previsions regard conditional models as primitive instead of as models
that need to be obtained through conditioning, they do not require such an

13And because the mathematical details of notions of independence other than epistemic irrel-
evance will not be used in the following chapters anyway.
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escape clause, and these inequalities can therefore simply be dropped. For
Equation (4.29)x, this results in the following requirement:

PS(BScBI) = PS(BS) for all BS ∈P /0(XS) and BI ∈P /0(XI).

This is equivalent to imposing that XI should be epistemically subset-irrelevant
to XS. We could take this even further, and impose epistemic (h-)irrelevance
instead. In any case, the main point here is that imposing epistemic irrelevance
on a conditional linear prevision implies stochastic independence, but not the
other way around. We consider this to be a first important property of epistemic
irrelevance: when applied to a precise model, it is a generalisation of the
usual notion of stochastic independence. For an overview of other precise-
probabilistic generalisations of stochastic independence, see Reference [21].

When moving from precise- to imprecise-probabilistic notions of indepen-
dence, two different routes can be taken. The first route is to stick with the
notion of stochastic independence—or any of its generalisations—and to im-
pose it on each—or some—of the elements of a set of precise models. The two
best-known examples are complete and strong independence.

Consider a set MG of linear previsions on G (XG). Then XI and XS are
said to be completely independent if XI and XS are stochastically independent
according to every PG ∈MG [18]. For sets of conditional linear previsions,
elementwise epistemic (value-, subset- or h-)irrelevance can be defined in the
same way. These notions of independence are especially intuitive if the ideal of
precision is adopted—if each of the elements of MG is regarded as a candidate
for some ‘true’ precise probabilistic model. Indeed, in that case, it often makes
sense for a structural judgement—such as independence—to be imposed on
each of the individual elements of MG rather than on the set MG itself. How-
ever, without an assumption of ideal precision, complete independence—and
any generalised version of it—is merely a mathematical property that seems
to have no intuitive meaning.14 Furthermore, these notions of independence
can only be applied to sets of precise models. They cannot be imposed on a
coherent lower prevision PG on G (XG) because complete independence is in-
compatible with the convexity of the set MPG [18, Section 3.1], and definitely
not on a coherent set of desirable gambles. We consider this to be a second
advantage of epistemic irrelevance: it can easily be imposed in each of the
four frameworks that we consider.

If MG is a closed and convex set of linear previsions on G (XG), then XI
and XS are said to be strongly independent if XI and XS are stochastically in-

14In all fairness, there are some very recent results that indicate that complete independence
could be axiomatised in terms of choice functions, a framework for modelling uncertainty that falls
beyond the scope of the present discussion [18, Section 4]. We believe this to be promising. In
cases where these kinds of axioms can be defended, they could lead to a justification for complete
independence that does not require an assumption of ideal precision.
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dependent according to every P ∈ ext(MG), or equivalently, if XG is a convex
hull of linear previsions for which XI and XS are stochastically independent.
More generally, for any set MG of conditional linear previsions on C (XG),
we could require MG to be of the form MPG(·c·), with PG(·c·) the lower en-
velope of some set of conditional linear previsions for which XI and XS sat-
isfy some generalised notion of stochastic independence, such as epistemic
value-irrelevance, epistemic subset-irrelevance, and so on. Strong indepen-
dence seems to have been introduced out of mathematical convenience, and
is an attempt to reconcile complete independence with convexity. However,
it seems to have little intuitive meaning, and is therefore hard to justify as a
concept of independence.15 Nevertheless, rather surprisingly, it is by far the
most popular imprecise-probabilistic notion of independence.

A second route that can be taken to move from precise- to imprecise-
probabilistic independence, is to forget about the individual elements of a set
of precise models, and to develop properties that can be expressed directly in
terms of the imprecise model. The advantage of taking this route—as epistemic
irrelevance does—is that it does not require an assumption of ideal precision.
Furthermore, since they do not need to refer to individual precise models, the
resulting notions of independence can also be expressed in the framework of
lower previsions and sets of desirable gambles. For this second route, three
different approaches can be distinguished, each of which tries to generalise
stochastic independence in a different way.

The first approach is to develop a generalised version of the factorisa-
tion property [Equation (4.28)120]. Reference [46, Section 3.1] provides an
overview of some of the ways in which this can be done. With the excep-
tion of Kuznetsov independence [20], most of these properties are not re-
ferred to as notions of independence, and rightly so. We believe that the use
of Equation (4.28)120 is justified only because of its equivalence with Equa-
tions (4.29)120 and (4.30)120. Without a similar equivalence, generalisations of
factorisation are merely mathematical properties; we see no reason why they
should be referred to as notions of independence.

The second approach is to develop a generalised version of Equa-
tion (4.29)120. This is exactly what we have done in Section 4.3114; the three
versions of epistemic irrelevance that we have discussed can all be regarded
as generalisations of Equation (4.29)120.16 The philosophical advantage of
such an approach is that it has a very clear and intuitive meaning: it simply
means that, according to the subject whose beliefs we are modelling, informa-

15See References [18, 26] for (partial) justifications of special cases, using an assessment of
infinite exchangeability.

16At first sight, it might seem like this is not the case for epistemic value-irrelevance, since it
does not consider conditioning on events BS, but only on values xS. However, the difference only
appears in the presence of (lower) probability zero, and this case is excluded by Equation (4.29)120.
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tion about the value of XI will not alter his belief model for XS—his ‘epistemic’
uncertainty about XS.

As illustrated by the three different versions that we have introduced, this
intuitive property can be formalised in different ways. We believe epistemic
h-irrelevance to be the most fundamental of those three. Some authors have
adopted yet other versions than the ones we consider, by requiring the condi-
tional models that appear in a statement of irrelevance to be derived by means
of regular extension—in the sense of Section 2.7.159—instead of consider-
ing them to be given as part of a ‘full conditional’ model such as a condi-
tional lower prevision, a set of conditional linear previsions, and so on; Refer-
ence [19, Section 2.1] provides an overview. It seems that the sole purpose for
doing so is to avoid the issue of conditioning on events with lower probability
zero. However, given that this issue can easily be dealt with by considering
conditional models as primitive notions—as ‘full conditional’ models do—we
see no reason why a conditioning rule—such as regular extension—should be
part of the definition of epistemic irrelevance. Epistemic irrelevance relates
different conditional models; where these models come from and how they are
obtained should—in our opinion—not be part of the definition.

Although an assessment of epistemic irrelevance does not require an as-
sumption of ideal precision, it is nevertheless fully compatible with it. If
such an assumption is made, epistemic subset-irrelevance assesses that the set
margS(MGcBI) of candidate belief models for XS is not affected by informa-
tion about the value of XI—the event BI . However, for an individual condi-
tional linear prevision PG(·c·) in MG, epistemic subset-irrelevance allows for
PS(·cBI) to be different from PS(·cB′I), for BI 6= B′I , and thereby allows for de-
pendencies between XI and XS. These dependencies are however limited by
the fact that epistemic subset-irrelevance requires that PS(·cBI) and PS(·cB′I)
should both be elements of margS(MG). If margS(MG) is small, the differ-
ence between PS(·cBI) and PS(·cB′I) is bounded, and this limits the amount of
dependence between XI and XS. In that sense, under an assumption of ideal
precision, from the point of view of the individual candidate models, epistemic
(subset-)irrelevance can be regarded as a notion of almost-independence or
almost-irrelevance. If margS(MG) is a singleton, it reduces to actual indepen-
dence. Since assessments of independence are usually regarded as ‘approxi-
mations of reality’ anyway, we consider such a notion of almost-independence
to be particularly realistic in practice.

The third approach is to impose mutual irrelevance, which is simply a
combination of two irrelevance statements: XI is epistemically irrelevant to
XS—using any of the definitions that were discussed before—and XS is epis-
temically irrelevant to XI . This notion of independence is called epistemic
independence [106]. Depending on the notion of irrelevance on which it is
based, one can distinguish between epistemic value-independence, epistemic
subset-independence, etcetera.

Epistemic independence, strong independence and complete independence
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can all be regarded as strengthened versions of epistemic irrelevance, in
the sense that—when suitably defined—they all imply epistemic irrelevance.
Making an assessment of epistemic irrelevance is therefore easier to justify.
As we have seen in this section, replacing epistemic irrelevance by one of the
other notions of independence requires additional assessments or assumptions.
Sections 5.3132 and 5.5145 discuss some additional advantages of epistemic
irrelevance in the context of graphical models.

Notions of independence are sometimes also compared with respect to the
graphoid properties that they satisfy [18, 21, 22]. For example, epistemic h-
irrelevance satisfies more graphoid properties than epistemic value- and subset-
irrelevance, and this could be regarded as an argument in favour of epistemic
h-irrelevance. However, we believe that graphoid properties are overrated as
axioms. In an imprecise-probabilistic context, some graphoid properties—
such as contraction and intersection—should not be regarded as axioms that
a notion of independence should satisfy, but rather as mathematically conve-
nient properties of models, which may or may not be satisfied. We discuss this
point further in Section 6.5.3168.

4.5 GENERALISING THE NOTION OF NATURAL EXTENSION

We have managed to fill a chapter with all kinds of tools for—and properties
of—multivariate models. However, we have not yet explained how to construct
one. So, in order to end this chapter: how can we construct a multivariate
model? The general answer is very simple: in the same way as a univariate
one, by means of natural extension.

The starting point is to gather assessments, either from a domain expert
or from data. In the framework of sets of desirable gambles, this would be
some set AG of gambles that are considered to be desirable. For lower pre-
visions, this would be a partial specification of a conditional lower prevision,
for some subdomain C ⊆ C (XG), or equivalently, assessments of supremum
contingent buying prices for some—usually limited—set of combinations of
gambles and events. For sets of conditional linear previsions or sets of full
conditional probability mass functions, an assessment consists of linear con-
straints on the individual elements of these sets. We will not discuss the prac-
ticalities of gathering such assessments any further; References [106, Chap-
ter 4], [4, 8, 93, 107, 108] and [81, Section 3.2] provide plenty of information
on the topic. For our present purposes, it suffices to say that these assessments
can either be given directly by the expert, or obtained indirectly from data,
in which case the role of the expert lies in selecting an appropriate model for
deriving assessments from data.

A problem that arises when gathering such assessments in a multivariate
set-up is that the size of the state space Ω = XG = ×i∈GXi is exponential
in the number of individual variables. For this reason, making assessments
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about the global tuple-valued variable XG directly is rather impractical. For-
tunately, the multivariate set-up itself already solves this problem, because it
provides us with tools that allow us to focus on individual variables Xs or small
sets of variables, as represented by XS, with S⊆ G. Using the example of Sec-
tion 4.1101, we could for example make an assessment such as: given that there
is no rainfall—Xr = no—the barometric pressure is at least as likely to be high
than it is to be low—pb(Xb = highcXr = no)≥ pb(Xb = lowcXr = no). If we let
S = {b}, I = {r}, and BI = {no}, such an assessment is concerned with the lo-
cal model margS(FGcBS). In the same way, local assessments in terms of other
frameworks can also be considered. Making assessments about these local
models is easier and more intuitive than trying to deal directly with the tuple-
valued variable XG. Nevertheless, since these local models are related to—are
derived from—a global model, local assessments can also be interpreted as
global assessments. For example, stating that a gamble f ∈ G (XS) belongs
to margS(DGcBS) is equivalent to stating that the gamble IBS f ∈ G (XG) is
globally desirable—belongs to DG. This connection between local and global
models is crucial for elicitation. On the one hand, we can gather intuitive local
assessments that are concerned with only few variables. On the other hand, we
can translate them into statements about the global variable XG. In this way,
many local assessments that are concerned with different local variables can
be combined into a single global set of assessments.

Within a multivariate set-up, we do not need to restrict ourselves to direct—
local or global—assessments, such as the ones discussed above. Other very
important types of assessments are the structural ones, such as assessments of
irrelevance or independence. On their own, structural assessments have little
impact. For example, the vacuous conditional lower prevision PG,v(·c·) on
C (XG), defined by

PG,v( f cB) := min f for all ( f ,B) ∈ C (XG),

satisfies every possible epistemic irrelevance statement that one could come
up with. However, combining these structural assessments with direct ones
can lead to a substantial increase in information. For example, if XI is as-
sessed to be epistemically irrelevant to XS, it implies that any direct assessment
about PS(·) immediately leads to an analogous assessment about PS(·cBI),
simply because the assessment of epistemic irrelevance requires that PS(·) and
PS(·cBI) should be equal.

Once we have a collection of assessments—which may include both direct
and structural ones—the next step is to use it to construct a global belief model.
Depending on the framework that is adopted, this might be a coherent set DG
of desirable gambles on XG, a coherent conditional lower prevision PG(·c·) on
C (XG), a set MG of conditional linear previsions on C (XG) or a set FG of
full conditional probability mass functions on C∗(XG). In order to be able to
associate a unique such global model with a collection of assessments, this col-
lection needs to satisfy two crucial properties. First of all, there must be at least
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one global model that is compatible with each of the assessments. Secondly,
out of all global models for which this is the case, there should be a unique
most conservative—most imprecise—one. If that is the case, this unique most
conservative model is the only model that can reasonably be inferred from the
assessments.

Satisfying the first property is a matter of careful elicitation. If it fails, some
of the assessments need to be reconsidered. In order for the second property to
be satisfied, it suffices that each assessment allows for conservative reasoning.
The exact definition depends on the framework. For sets of desirable gambles,
an assessment allows for conservative reasoning if it is preserved under taking
intersections. Indeed, suppose that this is the case, and consider the set DG,γ ,
γ ∈ Γ, of all coherent sets of desirable gambles that satisfy our assessments.
Then

⋂
γ∈Γ DG,γ will also be coherent, will also satisfy the assessments, and

will furthermore be the smallest—most conservative—set of desirable gam-
bles on G (XG) for which this is the case. Direct assessments clearly allow for
conservative reasoning: if f ∈DG,γ for all γ ∈Γ, then f ∈

⋂
γ∈Γ DG,γ . If there is

a global model—a coherent set DG of desirable gambles on XG—that is com-
patible with a direct assessment AG—such that AG ⊆ DG—then the unique
most conservative such model is the natural extension E (AG) of AG, as intro-
duced in Section 2.2.139. However, we can go further than that, because many
structural assessments also allow for conservative reasoning. For our present
purposes, epistemic irrelevance is the most important example: it is not hard to
see that if DG,γ satisfies a given epistemic irrelevance statement (using any of
the three versions we consider) for every γ ∈ Γ, then

⋂
γ∈Γ DG,γ also satisfies

this statement. When a type of structural assessments allows for conservative
reasoning, we can combine such structural assessments with direct ones, and
as soon as there is a single global model that satisfies the resulting collection of
assessments, we are guaranteed that there is a unique most conservative model
that satisfies them. This model can be regarded as a generalised notion of the
natural extension of Section 2.2.139.

This approach also works for the other three frameworks that we consider,
but the definition of ‘allowing for conservative reasoning’ changes. For co-
herent lower previsions, an assessment allows for conservative reasoning if it
is preserved under taking lower envelopes, in the sense that if an assessment
is satisfied by all coherent lower previsions PG,γ(·c·) that are indexed by the
elements γ of some set Γ, then the pointwise infimum of these coherent lower
previsions should also satisfy the assessment. For sets of conditional linear
previsions and sets of full conditional probability mass functions, an assess-
ment allows for conservative reasoning if it is preserved under taking unions.
Again, as was the case for sets of desirable gambles, it is not hard to see that
assessments of epistemic irrelevance allow for conservative reasoning. Hence,
also in these other frameworks, we can consider a generalised notion of natural
extension that can deal with assessments of epistemic irrelevance.

Although the concept of conservative reasoning and the resulting gener-
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alised notion of natural extension guarantee the existence of a unique most
conservative model that is compatible with a collection of assessments (pro-
vided that there is at least one compatible model), they do not provide practical
guidelines for constructing this most conservative model, because the index set
Γ is usually infinite. The actual construction of the most conservative model
that is compatible with a given collection of assessments is therefore a prob-
lem that needs to be solved on a case-by-case basis and that—depending on the
case—may have a practical solution method or not. In the following chapters,
we will focus on one specific case, where local direct assessments are com-
bined with structural assessments of epistemic irrelevance that are generated
automatically from a graphical model.

However, before we start focusing on this specific case, we should mention
that epistemic irrelevance is not the only structural assessment for which this
generalised notion of natural extension can be considered. There are many
other examples of structural assessments that allow for conservative reasoning:
symmetry, exchangeability, epistemic independence, complete independence,
and so on. For more information, the interested reader can take a look at,
among others, References [40,45–47,72,99] and [106, Chapter 9]. We believe
that the concept of conservative reasoning is important, and that it could be
successfully applied in various contexts. The specific case that we are about to
introduce and study in detail serves as a promising example.
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5
CREDAL NETWORKS UNDER EPISTEMIC

IRRELEVANCE

“...all models are approximations. Essentially, all models are
wrong, but some are useful. However, the approximate nature of
the model must always be borne in mind...”

George E. P. Box

Although multivariate models provide an intuitive framework for mod-
elling a multitude of real-life situations, they are far from easy to construct.
Theoretically speaking, as explained in Section 4.5124, we can consider any
combination of direct assessments and structural ones, and consider the most
conservative model that is compatible with them. However, in practice, com-
ing up with such a combination of assessments may be hard, especially since
they should satisfy two opposing criteria. On the one hand, it should be possi-
ble to construct a model that satisfies all these assessments. On the other hand,
the most conservative such model should be informative enough to yield useful
inferences.

In order to simplify this task, one can use graphical models as a tool for
helping domain experts in providing such assessments, and ultimately, to con-
struct multivariate models. In the precise-probabilistic case, Bayesian net-
works have proved to be a successful example. In this chapter, we will extend
this approach to the imprecise-probabilistic setting. The resulting generalised
notion of a Bayesian network is called a credal network, after the credal sets
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that were initially used by Cozman to define it [16]. However, as we will
see, it can be developed in terms of other imprecise-probabilistic frameworks
as well, the most important of which are sets of desirable gambles and lower
previsions. We will focus especially on credal networks under epistemic irrel-
evance, which—as their name suggests—adopt epistemic irrelevance as their
notion of independence. Relatively little is known about this particular type of
credal network. This dissertation is intended to be a first detailed study of the
topic.

Basically, a credal network under epistemic irrelevance is just a special
kind of multivariate model, which models some subject’s beliefs about a finite
set of variables Xs, with s ∈ G. We will consider four different frameworks.
Depending on the framework that is chosen, the multivariate model will either
be a set DG of desirable gambles on XG, a coherent conditional lower previ-
sion on C (XG), a set MG of linear conditional previsions on C (XG) or a set
FG of full conditional probability mass functions on C∗(XG).

5.1 DIRECTED ACYCLIC GRAPHS

The first step in constructing a credal network is to connect the variables of
our multivariate model by means of a graph. In particular, a directed acyclic
graph (DAG), which consists of a finite set of nodes (vertices), joined into
a network by a set of directed edges, each edge connecting one node with
another. Since this directed graph is assumed to be acyclic, it is not possible to
follow a directed sequence of edges from node to node and end up at the node
one started out from.

Formally, we will identify the elements s of the index set G with the nodes
of such a DAG. Technically, the DAG connects these nodes. Loosely speaking,
it connects the variables Xs. For two nodes s and t in G, if there is a directed
edge from s to t, we denote this as s→ t and say that s is a parent of t and t is
a child of s. For any node s, its set of parents is denoted by P(s) and its set of
children by C(s).1 If a node s has no parents, that is, P(s) = /0, then we call s a
root node. We will use Ro(G) to refer to the set of all root nodes. If C(s) = /0,
then we call s a leaf, or a terminal node.

Two nodes s and t are said to have a path between them if one can start
from s, follow the edges of the DAG regardless of their direction and end up
in t. In other words: one can find a sequence of nodes s = s1, . . . ,sn = t,
n ≥ 1, such that for all i ∈ {1, . . . ,n− 1} either si → si+1 or si ← si+1.
If this sequence is such that si → si+1 for all i ∈ {1, . . . ,n− 1} (all edges
in the path point away from s), we say that there is a directed path from

1The symbol P is already used for linear previsions as well. However, due to the rather differ-
ent meaning of these two concepts, and because we will mainly consider lower previsions—rather
than linear previsions—anyway, we do not consider this overload of notation to be problematic.
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s1

s3

s2

s4

s5

s7

s8

s6

s9

s10

G = {s1,s2,s3,s4,s5,s6,s7,s8,s9,s10}

P(s7) = {s4,s5}
C(s7) = {s9,s10}
D(s7) = {s9,s10}
N(s7) = {s1,s2,s3,s6,s8}
A(s7) = {s1,s2,s3,s4,s5}

Figure 5.1: Example of a directed acyclic graph (DAG).

s to t and write s v t. In that case we also say that s precedes t. If
s v t and s 6= t, we say that s strictly precedes t and write s @ t. For any
node s, we denote its set of descendants by D(s) := {t ∈ G : s@ t}, its set
of non-parent non-descendants by N(s) := G\ (P(s)∪{s}∪D(s)) and its set
of ancestors by A(s) := {t ∈ G : t @ s}. We also use the shorthand no-
tation PN(s) := P(s)∪N(s) = G\ ({s}∪D(s)) to refer to the so-called non-
descendants of s.

Example 3. Consider the DAG in Figure 5.1, which consists of 10 nodes—
the elements of G—and 10 edges. For the node s7 ∈ G, the set of parents is
P(s7) = {s4,s5}, the set of children is C(s7) = {s9,s10}, the set of ancestors is
A(s7) = {s1,s2,s3,s4,s5}, the set of descendants is D(s7) = {s9,s10} and the
set of non-parent non-descendants is N(s7) = {s1,s2,s3,s6,s8}. ♦

5.2 ADDING LOCAL MODELS

The second step in constructing a credal network is to add local uncertainty
models to each of the variables Xs, with s∈G. These local models are assumed
to be given beforehand and serve as basic building blocks that we will combine
into a global multivariate model.

For every node s ∈ G and any instantiation xP(s) ∈XP(s) of the variables
associated with the parents of s, we are provided with a local belief model
about Xs, conditional on xP(s). If we use the framework of sets of desirable
gambles, this local model will be a coherent set of desirable gambles on Xs,
which we will denote by DscxP(s)

. This local model represents our subject’s
beliefs about the variable Xs, contingent on the fact that its parents XP(s) assume
the value xP(s). If s is a root node—has no parents—then P(s) = /0, which
implies that XP(s) can take only the single value x /0 and therefore, that Dscx /0
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is effectively an unconditional model, which we will then simply denote by
Ds := Dscx /0 .

These local models constitute direct assessments of desirability. Given that
we do not enforce an exhaustive interpretation, they imply that, for all s ∈ G
and xP(s) ∈XP(s):

DscxP(s)
⊆margs(DGcxP(s)) (N1A)

It is not really essential for these local assessments to be coherent. Arbitrary
assessments AscxP(s)

⊆Xs can also be considered, as long as their natural ex-
tension exists. Without loss of generality, DscxP(s)

can then be taken to be equal
to E (AscxP(s)

).
Alternatively, these local assessments can also be expressed in terms of

other frameworks. Depending on the chosen framework, we assume that we
are given, for all s ∈ G and xP(s) ∈XP(s), either a coherent lower prevision
PscxP(s)

on G (Xs), a closed and convex set MscxP(s)
of linear previsions on

G (Xs) or a closed and convex set FscxP(s)
of probability mass functions on

Xs—a credal set. These local assessment are again interpreted as constraints
on a global model:

Ps(·cxP(s))≥ PscxP(s)
(N2A)

or
margs(MGcxP(s))⊆MscxP(s)

(N3A)
or

margs(FGcxP(s))⊆FscxP(s)
. (N4A)

Again, these local models do not need to be given as such, they can also be
derived from local assessments.

For example, we can consider a—not necessarily coherent—lower previ-
sion on some subset K of G (Xs) and let PscxP(s)

be the unconditional part of
its natural extension. In principle, we could also consider conditional lower
previsions P(·c·)scxP(s)

on C (Xs) as local models. In fact, if we were to do so,
the theory that we are about to develop would still work—given some rather
straightforward minor adaptations. Our only reason for not doing so is be-
cause it would be overkill. In practical modelling situations, local assessments
are always ‘unconditional’, in the sense that they are only conditional on the
value of the parent variables XP(s), and not conditional on an additional event
Bs ∈P /0(Xs).

For that same reason, the elements of MscxP(s)
are taken to be unconditional

linear previsions on G (Xs) rather than conditional linear previsions on C (Xs),
and similarly for FscxP(s)

. The requirement that MscxP(s)
and FscxP(s)

should be
closed and convex could in principle be dropped. However, this would lead to
non-trivial technical complications, especially with respect to the development
of efficient algorithms. In any case, such an assumption of closedness and
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convexity is standard in the context of credal networks.2 It is also not that re-
strictive because many imprecise-probabilistic methods for elicitation—either
directly from experts or indirectly by means of a statistical model and data—
result in closed and convex sets of probability mass functions. For example,
provided that it has at least one solution, a set of (non-strict) linear constraints
has a closed and convex solution set. Furthermore, for any set of probability
mass functions, the closure of its convex hull can always be used as a conser-
vative outer approximation.

5.3 JUDGEMENTS OF EPISTEMIC IRRELEVANCE

In Bayesian networks, the graphical structure of the DAG of a network is
taken to represent the following assessments: for any node s, conditional on
its parent variables, the associated variable is independent of its non-parent
non-descendant variables [64, Section 3.2.2]. When generalising this interpre-
tation to credal networks, the classical notion of independence gets replaced
by a more general, imprecise-probabilistic notion of independence. For credal
networks under epistemic irrelevance, this notion of independence is epistemic
irrelevance, as introduced in Section 4.3.3117.3

Let us state this interpretation more formally. We assume that the graphical
structure of the DAG embodies the following conditional epistemic irrelevance
assessments which, by definition, turn the corresponding multivariate model
into a credal network under epistemic irrelevance. Consider any node s in the
network, its set of parents P(s) and its set of non-parent non-descendants N(s).
Then conditional on XP(s), XN(s) is assumed to be epistemically irrelevant to Xs:

IR(N(s),{s} | P(s)). (NB)

Depending on the framework that is adopted, this means that, for all s ∈ G,
xP(s) ∈XP(s) and BN(s) ∈P /0(XN(s)):

margs(DGc{xP(s)}×BN(s)) = margs(DGcxP(s)) (N1B)

or
Ps(·c ·×{xP(s)}×BN(s)) = Ps(·c ·×{xP(s)}) (N2B)

or
margc

s(MGc|{xP(s)}×BN(s)) = margc
s(MGc|xP(s)) (N3B)

or
margc

s(FGc|{xP(s)}×BN(s)) = margc
s(FGc|xP(s)). (N4B)

2See Section 5.5 for a short overview of the theory of credal networks.
3Recall that we take epistemic irrelevance to mean epistemic h-irrlevance.
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s1 s2 s3

Xs1 Xs2 Xs3

IR({s1},{s3} | {s2}) IR({s3},{s1} | {s2})

Figure 5.2: Illustration of the non-symmetric irrelevance assessment that cor-
respond to a DAG

An at first sight perhaps peculiar aspect of these assessments is that they
are asymmetric. Consider for example the simple network in Figure 5.2. For
that DAG, the only epistemic irrelevance assessment that follows from Re-
quirement (NB)x is that Xs1 should be epistemically irrelevant to Xs3 con-
ditional on Xs2 : IR({s1},{s3} | {s2}). However, we do not impose that
IR({s3},{s1} | {s2}). We do not consider this aspect to be strange. In fact,
we think that it is very natural, for the following reasons.

First of all, the assessments of epistemic irrelevance that we make—in the
specific direction that we make them—have an intuitive meaning in terms of
the local models that we introduced in the previous section. For example, Re-
quirement (N1B)x is not just a structural assessment of irrelevance. In combi-
nation with Requirement (N1A)131, it can also be interpreted as an additional
collection of direct assessments: for any BN(s) ∈P /0(XN(s)), it leads us to im-
pose that DscxP(s)

should be a subset of margs(DGc{xP(s)}×BN(s)). Similar
things happen for the other frameworks. Basically, the effect of our epistemic
irrelevance assessments is that the local assessments are duplicated and applied
to a larger class of conditional models.

Secondly, there seems to be no fundamental reason why an assessment of
epistemic irrelevance—say IR({s1},{s3} | {s2})—should lead us to adopt the
reverse version—say IR({s3},{s1} | {s2}). As Dawid [23] put it: “The desir-
ability of the symmetry property is not so obvious: if learning Y is irrelevant to
X , must it follow that learning X is irrelevant to Y ?”. We agree with Dawid that
this is indeed not obvious, and that therefore, there is no reason why it should
be imposed by definition. Of course, this does not exclude that there might
be instances where it makes sense to impose mutual irrelevance. In fact, we
will sometimes do so: if a credal network under epistemic irrelevance consists
of two disconnected nodes, the associated variables will be epistemically ir-
relevant to each other and therefore epistemically independent; Section 6.6171
discusses more general cases.

Thirdly, to a practitioner who constructs a credal—or Bayesian—network,
the direction of the arrows matters intuitively. Suppose for example that Xs1
represents whether or not someone is a smoker, Xs2 represents whether or not
someone has lung cancer and Xs3 represents whether or not some medical test
indicates that the person has lung cancer. Then most people would put the
edges in Figure 5.2 as we have put them, in that particular direction, and would
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feel that changing the direction would alter the meaning of the assessment.
Nevertheless, in a Bayesian network, because stochastic independence is sym-
metric, these two graphs—ours and the one where the arrows are reversed—
correspond to the same structural assessments. In technical parlance: they are
Markov-equivalent. For credal networks under epistemic irrelevance, no such
equivalence is present: since epistemic irrelevance is an asymmetric notion
of independence, graphs that are Markov-equivalent in the Bayesian network
sense can lead to different structural assessments in a credal network under
epistemic irrelevance.

The intuitive philosophical difference between Markov-equivalent graphs
that is perceived by users of Bayesian networks is often associated with causal-
ity. As Shafer [90] put it: “we need a way to give mathematical and philosoph-
ical content to the differences between Markov-equivalent graphs, differences
that are none the less real to practitioners for the fact that they are not expressed
by conditional independence”. The theory of causal networks [64, Chapter 21]
does exactly that: although it is based on the theory of Bayesian networks,
it differentiates between Markov equivalent graphs, both mathematically and
philosophically. However, as explained above, it is not the only theory that is
capable of doing so. It shares these features with the theory of credal networks
under epistemic irrelevance.

The advantage that credal networks under epistemic irrelevance have over
causal networks is that they are more generally applicable. The reason why—
besides the fact that they allow for imprecision—is because causality is a prop-
erty that is hard to define, and an assessment that is often too strong to make.
Although it is natural to think of the edges in a credal network as some kind of
causal links, the notion of ‘causality’ that people tend to associate with these
links is usually rather vague and weak. For example, although one might think
of the edge from Xs1 to Xs2 as a causal link between smoking and lung cancer,
this is usually not taken to mean that smoking truly ‘causes’ lung cancer but
rather that it influences it in some way, and similarly for the edge from Xs2 to
Xs3 . Credal networks under epistemic irrelevance are fully compatible with this
weak notion of causality. Furthermore, if the edges of the DAG in Figure 5.2x
are truly causal—whatever that may mean—this will imply an assessment of
epistemic irrelevance. If Xs1 causes Xs2 and Xs2 in turn causes Xs3 , then given
Xs2 , Xs1 is causally irrelevant to Xs3—whatever that may mean—and therefore
definitely epistemically irrelevant. However, conversely, as mentioned in Sec-
tion 4.3.3117, an assessment of epistemic irrelevance does not require a causal
interpretation, it is simply a statement about beliefs.

5.4 THE IRRELEVANT NATURAL EXTENSION

The Requirements (N1A)131 and (N1B)132—and their counterparts for frame-
works other than sets of desirable gambles—usually do not determine a unique
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global coherent model. However, as explained in Section 4.5124, as soon as
there is a single model that satisfies them, then among all solutions, there is
a unique most conservative one. In the case of credal networks, we will call
this unique most conservative solution the irrelevant natural extension of the
network. The goal of this section is to define this irrelevant natural extension
in terms of each of the four frameworks that we consider, to derive manage-
able expressions for them, and to establish connections between them. Finally,
we will show that Bayesian networks correspond to the special case where the
local models are precise.

5.4.1 For sets of desirable gambles

Within the framework of sets of desirable gambles, the local models of a credal
network are coherent sets of desirable gambles DscxP(s)

. The irrelevant natural
extension is then a global coherent set of desirable gambles. In particular, the
most conservative one that includes the local assessments and furthermore sat-
isfies the irrelevancies that are encoded by the network. More formally: the ir-
relevant natural extension of the local models is the smallest coherent set DG of
desirable gambles on XG that satisfies Requirements (N1A)131 and (N1B)132.
As we are about to show, this global model can be constructed easily from
the local ones. Basically, it suffices to extend the ideas of De Cooman and
Miranda [45] to the context of credal networks; a published version of this
material can be found in Reference [31].

We start by looking at a single given local model DsczP(s)
and investigate

some of its implications for the global model DG. Consider any node s and
fix values zP(s) and zN(s) for its parents and non-parent non-descendants. Then
for any f ∈ DsczP(s)

, we infer from Requirements (N1A)131 and (N1B)132 that
f ∈ margs(DGczPN(s)) and therefore, that I{zPN(s)} f ∈ DG. Inspired by this
observation, we introduce the following set of gambles on XG:

A irr
G :=

{
I{zPN(s)} f : s ∈ G, zPN(s) ∈XPN(s), f ∈DsczP(s)

}
. (5.1)

It should be clear that A irr
G must be a subset of our joint model DG.

Proposition 34. A irr
G is a subset of any global set DG of desirable gambles on

XG that satisfies Requirements (N1A)131 and (N1B)132.

Proof of Proposition 34. Consider any s ∈ G and zPN(s) ∈ XPN(s). As
a consequence of Requirements (N1A)131 and (N1B)132, we see that
margs(DGczPN(s)) should be a superset of the given local model DsczP(s)

.
Hence, if we choose f ∈ DsczP(s)

and apply Equation (4.6)107, it follows im-
mediately that I{zPN(s)} f is an element of DG.

Since the global set of desirable gambles DG should also be coherent and there-
fore, in particular, a convex cone, we can derive the following corollary.
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Corollary 35. posi(A irr
G ) is a subset of any coherent set DG of desirable gam-

bles on XG that satisfies Requirements (N1A)131 and (N1B)132.

Proof of Corollary 35. We already know from Proposition 34x that A irr
G is a

subset of any joint model that satisfies Requirements (N1A)131 and (N1B)132:
A irr

G ⊆ DG. Applying the posi operator to both sides, we obtain that
posi(A irr

G ) ⊆ posi(DG). If in addition to satisfying Requirements (N1A)131
and (N1B)132, DG is also coherent, and thus in particular is a convex cone
(satisfies properties D339 and D439), then posi(DG) = DG and we get that
posi(A irr

G )⊆DG.

We now suggest the following expression for the irrelevant natural extension
of the network:

D irr
G := posi(A irr

G ). (5.2)

Since we know from Corollary 35 that it is guaranteed to be a subset of the
irrelevant natural extension, it is rather natural to propose it as a candidate
for the irrelevant natural extension itself. In the remainder of this section, we
will prove that D irr

G is indeed the unique smallest coherent set of desirable
gambles on XG that satisfies Requirements (N1A)131 and (N1B)132. We start
by providing two alternative characterisations of D irr

G , the first of which shows
that it is not necessary to take positive linear combinations of elements of A irr

G :
a simple sum will do the job just fine.

Proposition 36. A gamble f ∈ G (XG) is an element of D irr
G if and only if it

can be written as:

f = ∑
s∈G

∑
zPN(s)∈XPN(s)

I{zPN(s)} fs,zPN(s) ,

where, for all s ∈ G and zPN(s) ∈XPN(s), the gamble fs,zPN(s) is either zero or
an element of DsczP(s)

, and at least one of them is non-zero.

Proof of Proposition 36. Since D irr
G := posi(A irr

G ), the ‘if’ part of this proof is
trivial. For the ‘only if’ part, fix any f ∈ D irr

G . By the definition of D irr
G , we

know that

f = ∑
s∈G

∑
zPN(s)∈XPN(s)

∑
i∈I(s,zPN(s))

λs,zPN(s),iI{zPN(s)} fs,zPN(s),i,

where, for all s ∈ G and zPN(s) ∈ XPN(s), I(s,zPN(s)) is a (possibly empty)
finite index set (but with at least one of them non-empty) and for all s ∈ G,
zPN(s) ∈XPN(s) and i ∈ I(s,zPN(s)), λs,zPN(s),i ∈ R>0 and fs,zPN(s),i ∈DsczP(s)

.
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We now construct, for every s ∈ G and every zPN(s) ∈XPN(s), a gamble
fs,zPN(s) ∈ G (Xs). If I(s,zPN(s)) = /0, we let fs,zPN(s) = 0. If I(s,zPN(s)) 6= /0, we
let

fs,zPN(s) = ∑
i∈I(s,zPN(s))

λs,zPN(s),i fs,zPN(s),i,

which is an element of DsczP(s)
(and thus different from zero) because

fs,zPN(s),i ∈ DsczP(s)
for all i ∈ I(s,zPN(s)) and because DsczP(s)

is coherent. It
should now be clear that

f = ∑
s∈G

∑
zPN(s)∈XPN(s)

I{zPN(s)} fs,zPN(s) ,

in which the gambles fs,zPN(s) are elements of DsczP(s)
∪{0} and at least one of

them is non-zero.

Proposition 37. G (XG)>0 ⊆D irr
G and, consequently, D irr

G = E(A irr
G ).

Proof of Proposition 37. The first step in the proof consists in showing that
for any zG ∈ XG, the indicator I{zG} is an element of A irr

G . To prove this,
pick an arbitrary leaf s ∈ G. This is possible because a DAG with a finite
amount of nodes always has at least one leaf. Since s is a leaf, it has no
descendants and we therefore have that G = {s} ∪ PN(s). Due to the co-
herence of the local models, and in particular property D238, we know that
the indicator I{zs} is an element of DsczP(s)

. We can therefore apply Equa-
tion (5.1)135 to see that I{zs}I{zPN(s)} = I{z{s}∪PN(s)} = I{zG} is an element of

A irr
G . Since every f ∈ G (XG)>0 is a finite strictly positive linear combi-

nation of the indicators I{zG} that were constructed above, it follows that
G (XG)>0 ⊆ posi(A irr

G ) = : D irr
G .

To prove the second part, notice that any gamble in E(A irr
G ) is a fi-

nite, strictly positive linear combination of gambles in A irr
G and gambles in

G (XG)>0. Since we have just shown that gambles in G (XG)>0 are them-
selves finite strictly positive linear combinations of specific indicators in A irr

G ,
this implies that E(A irr

G ) ⊆ posi(A irr
G ). The converse inclusion is trivial and

we thus find that E(A irr
G ) = posi(A irr

G ) =: D irr
G .

These two propositions serve as a first step towards the following important
result, the proof of which can be found in Appendix 5.A148.

Proposition 38. D irr
G is a coherent set of desirable gambles.

The crucial step in our proof for this result is to consider a specific Bayesian
network that has the same topology as our credal network and to use the corre-
sponding joint probability mass function to construct a separating hyperplane
argument. In this way, we are using existing coherence results for Bayesian
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networks to prove their counterparts for credal networks. Since we now know
that D irr

G is coherent, Proposition 37x can now be taken to mean that D irr
G is

the natural extension of A irr
G .

Next, we turn to a factorisation result that is essential in order to prove
that D irr

G extends the local models and expresses all conditional irrelevancies
encoded in the network—satisfies Requirements (N1A)131 and (N1B)132. The
proof for this result is given in Appendix 5.A148.

Proposition 39. Fix any s ∈ G, xP(s) ∈XP(s) and g ∈ G (XN(s))>0. Then for
every f ∈ G (Xs):

gI{xP(s)} f ∈D irr
G ⇔ f ∈DscxP(s)

.

Corollary 40. D irr
G satisfies Requirements (N1A)131 and (N1B)132. Even

stronger: it holds for all s ∈ G, xP(s) ∈XP(s) and BN(s) ∈P /0(XN(s)) that:

margs(D
irr
G c{xP(s)}×BN(s)) = margs(D

irr
G cxP(s)) = DscxP(s)

.

Proof of Corollary 40. Fix any s ∈ G, f ∈ G (Xs), xP(s) ∈ XP(s) and any
BN(s) ∈P /0(XN(s)). Since IBN(s) and 1 are elements of G (XN(s))>0, we in-
fer from Equation (4.6)107 and Proposition 39 that

f ∈margs(D
irr
G c{xP(s)}×BN(s))⇔ IBN(s)I{xP(s)} f ∈D irr

G

⇔ f ∈DscxP(s)
⇔ I{xP(s)} f ∈D irr

G

⇔ f ∈margs(D
irr
G cxP(s)).

Interestingly, although (N1A)131 only requires margs(D
irr
G cxP(s)) to be a super-

set of the local model DscxP(s)
, they turn out to be equal.

At this point, we already know that D irr
G is coherent and that it satisfies

Requirements (N1A)131 and (N1B)132. The final result of this section ensures
that D irr

G is the smallest set for which this is the case, or equivalently, that it is
irrelevant natural extension that we have been looking for.

Theorem 41. D irr
G is the smallest coherent set of desirable gambles on XG

that satisfies Requirements (N1A)131 and (N1B)132.

Proof of Theorem 41. We know from Proposition 38x and Corollary 40 that
D irr

G := posi(A irr
G ) is a coherent set of desirable gambles on XG that satisfies

Requirements (N1A)131 and (N1B)132. Because of Corollary 35136, it is fur-
thermore the smallest coherent set of desirable gambles on XG for which this
is the case.

138



5.4 THE IRRELEVANT NATURAL EXTENSION

By carefully going through the proof of Theorem 41x and the proofs of the
results that it uses, one can furthermore see that if we were to replace Re-
quirement (N1B)132 with a weaker version that only imposes epistemic value-
irrelevance, the resulting irrelevant natural extension would be the same set
D irr

G and would therefore still end up satisfying the strong version of Require-
ment (N1B)132 that we are currently using. This is a nice example of how
imposing epistemic value-irrelevance can lead to epistemic (h-)irrelevance be-
ing satisfied ‘for free’.

5.4.2 For conditional lower previsions

Within the framework of lower previsions, the global model that corresponds
to a credal network is a coherent conditional lower prevision PG(·c·) on
C (XG) that satisfies Requirements (N2A)131 and (N2B)132. If such a model
exists—and we will show that it does—then, since coherence and both of
these properties are preserved under taking lower envelopes, there is a unique
most conservative—pointwise smallest—coherent conditional lower prevision
Pirr

G (·c·) on C (XG) that satisfies them both. We call this unique model the
irrelevant natural extension of the local models PscxP(s)

. The following results
show that this concept is strongly connected with its counterpart for sets of
desirable gambles.

Theorem 42. Let Pirr
G (·c·) be the irrelevant natural extension of local coher-

ent lower previsions PscxP(s)
and let D irr

G be the irrelevant natural extension of
the corresponding local coherent sets of desirable gambles DscxP(s)

:= DPscxP(s)
.

Then Pirr
G (·c·) = PD irr

G
(·c·).

Proof of Theorem 42. Since we know that D irr
G is coherent and satisfies Re-

quirements (N1A)131 and (N1B)132 [see Section 5.4.1135] it follows that
PD irr

G
(·c·) is also coherent and satisfies Requirements (N2A)131 and (N2B)132.

This implies that Pirr
G (·c·)≤ PD irr

G
(·c·).

Now let DG be any coherent set of desirable gambles on XG such that
Pirr

G (·c·) = PDG
(·c·) [there is such a set DG because Pirr

G (·c·) is coherent].
Choose any s ∈ G and xPN(s) ∈ XPN(s). Since it follows from Require-
ments (N2A)131 and (N2B)132 that Pirr

s ( f cxPN(s)) = Pirr
s ( f cxP(s))≥ PscxP(s)

( f )
for all f ∈ G (Xs), we have that

DscxP(s)
= DPscxP(s)

⊆DPirr
s (·cxPN(s))

⊆margs(DGcxPN(s)),

where the last inclusion holds because it follows from Pirr
G (·c·) = PDG

(·c·) that
the coherent set of desirable gambles margs(DGcxPN(s)) has Pirr

s (·cxPN(s)) as its
lower prevision [see Section 4.2.3105] and because DPirr

s (·cxPN(s))
is the smallest

coherent set of desirable gambles for which this holds [see Equation (2.4)41].
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Hence, we find that I{xP(s)} f ∈ DG for all f ∈DscxP(s)
. Since this holds for all

s ∈ G and xPN(s) ∈XPN(s), we find that D irr
G = posi(A irr

G )⊆DG because DG

is coherent, which in turn implies that PD irr
G
(·c·)≤ PDG

(·c·) = Pirr
G (·c·).

Proposition 43. Let D irr
G be the irrelevant natural extension of local coherent

sets of desirable gambles DscxP(s)
and let Pirr

G (·c·) be the irrelevant natural
extension of the corresponding coherent lower previsions PscxP(s)

:= PDscxP(s)
.

Then PD irr
G
= Pirr

G (·cXG).

Proof of Proposition 43. For each s ∈ G and xP(s) ∈XP(s), consider the local
set of desirable gambles D∗scxP(s)

:= DPscxP(s)
⊆ DscxP(s)

. If we let D irr∗
G be the

irrelevant natural extension of these local models, then D irr∗
G is clearly a subset

of D irr
G [by monotonicity of irrelevant natural extension].

Consider any f ∈ D irr
G and δ ∈ R>0. Due to Proposition 36136, we know

that
f = ∑

s∈G
∑

zPN(s)∈XPN(s)

I{zPN(s)} fs,zPN(s) ,

where, for all s ∈ G and zPN(s) ∈XPN(s), the gamble fs,zPN(s) is either zero or
an element of DsczP(s)

, and at least one of them is non-zero. It is now always
possible to choose ε ∈ R>0 small enough to guarantee that

∑
s∈G

∑
zPN(s)∈XPN(s)

I{zPN(s)}[ fs,zPN(s) + ε]≤ f +δ . (5.3)

For all s ∈G and zPN(s) ∈XPN(s), it follows from the coherence of DsczP(s)
and

the fact that fs,zPN(s) ∈DsczP(s)
∪{0} that

PsczP(s)
( fs,zPN(s) + ε) := PDsczP(s)

( fs,zPN(s) + ε)> 0,

which implies that fs,zPN(s) + ε ∈ D∗sczP(s)
. Therefore, it follows from Equa-

tion (5.3), Proposition 36136 and the coherence of D irr∗
G [see Proposition 38137]

that f +δ ∈D irr∗
G . Since this holds for all δ ∈ R>0, we find that f ∈ cl(D irr∗

G ).
Since this holds for all f ∈ D irr

G , we find that D irr
G ⊆ cl(D irr∗

G ), which in turn
implies that cl(D irr

G )⊆ cl(D irr∗
G ). Since we already know that D irr∗

G is a subset
of D irr

G , this allows us to infer that cl(D irr
G ) = cl(D irr∗

G ). The proof now follows
from Theorem 42x and Equation (2.8)41.

Similarly to what we found for sets of desirable gambles, a closer look at the
proof of Theorem 42x reveals that replacing Requirement (N2B)132 with a
weaker version that only imposes epistemic value-irrelevance would result in
the exact same notion of irrelevant natural extension.

The importance of Theorem 42x is that it allows us to—often trivially—
translate properties that we have proved—or will prove—for D irr

G into prop-
erties of Pirr

G (·c·). As a first example, we translate Corollary 40138 into the
language of lower previsions.
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Corollary 44. For all s ∈ G, xP(s) ∈XP(s) and BN(s) ∈P /0(XN(s)), it holds
that:

Pirr
s (·c{xP(s)}×BN(s)) = Pirr

s (·cxP(s)) = PscxP(s)

and
Pirr

s (·c ·×{xP(s)}×BN(s)) = Pirr
s (·c ·×{xP(s)}).

Proof of Corollary 44. Immediate consequence of Theorem 42139 and Corol-
lary 40138.

The second expression in this result is to be expected, as it simply means
that Pirr

G (·c·) satisfies Requirement (N2B)132. The first expression implies a
strengthened version of Requirement (N2A)131.

We end this section by showing that the irrelevant natural extension of
the local models is equal to the ‘normal’ natural extension of a set of global
assessments, obtained by extending the local assessments using epistemic ir-
relevance.

Proposition 45. Consider a conditional lower prevision PG(·c·) with domain
C = {( f ,xPN(s)) : s ∈ G, f ∈ G (Xs),xPN(s) ∈XPN(s)}, defined by

Ps( f cxPN(s)) := PscxP(s)
( f ) for all s ∈ G, f ∈ G (Xs) and xPN(s) ∈XPN(s).

Let EG(·c·) be the natural extension of PG(·c·). Then Pirr
G (·c·) = EG(·c·).

Proof of Proposition 45. Since Pirr
G (·c·) is coherent and, by Corollary 44, co-

incides with PG(·c·) on its domain, Proposition 345 implies that EPG(·c·) is co-
herent, which in turn implies that EG(·c·) exists and is coherent and, by Propo-
sition 245, that EG(·c·)≤ Pirr

G (·c·).
For any s ∈G and any xPN(s) ∈XPN(s), Equation (2.12)44 now implies that

Es( f cxPN(s)) ≥ Ps( f cxPN(s)) = PscxP(s)
( f ) for all f ∈ G (Xs). Hence, since

EG(·c·) = PEPG(·c·)
(·c·), an argument that is completely analogous to the one

that was given in the second part of the proof of Theorem 42139 leads us to
conclude that D irr

G ⊆ EPG(·c·) and therefore, that Pirr
G (·c·)≤ EG(·c·).

5.4.3 For sets of conditional linear previsions

If we use the framework of sets of conditional linear previsions, the global
model that corresponds to a credal network under epistemic irrelevance is a set
MG of conditional linear previsions PG(·c·) on C (XG) that satisfies Require-
ments (N3A)131 and (N3B)132. The largest—most conservative—such set is
denoted by M irr

G and is called the irrelevant natural extension of the local mod-
els MscxP(s)

. The following result establishes that this concept is equivalent to
the corresponding notion for lower previsions.
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Theorem 46. Let M irr
G be the irrelevant natural extension of the local closed

and convex sets of linear previsions MscxP(s)
and let Pirr

G (·c·) be the irrele-
vant natural extension of the corresponding local coherent lower previsions
PscxP(s)

:= PMscxP(s)
. Then M irr

G = MPirr
G (·c·).

Proof of Theorem 46. Since Pirr
G (·c·) is coherent and satisfies Require-

ment (N2B)132, we know from the discussion in Section 4.3.4119 that MPirr
G (·c·)

satisfies Requirement (N3B)132. It also satisfies Requirement (N3A)131, be-
cause

margs(MPirr
G (·c·)cxP(s)) = MPirr

s (·cxP(s))
⊆MPscxP(s)

= MscxP(s)
,

where the first equality is a consequence of Equation (4.11)109, the inclusion
follows from the fact that Pirr

G (·c·) satisfies Requirement (N2A)131 and the last
equality holds because of the one-to-one correspondence between uncondi-
tional coherent lower previsions and closed convex sets of unconditional linear
previsions. Since M irr

G is by definition the largest set of conditional linear pre-
vision on C (XG) for which this is the case, this implies that MPirr

G (·c·) ⊆M irr
G .

Conversely, since M irr
G satisfies Requirements (N3A)131 and (N3B)132,

its lower envelope PM irr
G
(·c·) satisfies Requirements (N2A)131 and (N2B)132.

Since Pirr
G (·c·) is the pointwise smallest coherent conditional lower prevision

on C (XG) for which this is the case, this implies that PM irr
G
(·c·)≥ Pirr

G (·c·),
which in turn implies that M irr

G ⊆MPirr
G (·c·).

Using this connection, we can translate—current and future—results for
Pirr

G (·c·) into analogous results for M irr
G . The following intuitive characterisa-

tion of M irr
G is a first example, as it is basically a translation of Proposition 45x

to the framework of sets of conditional linear previsions.

Proposition 47. A coherent conditional linear prevision PG(·c·) on C (XG)
belongs to M irr

G if and only if

Ps(·cxPN(s)) ∈MscxP(s)
for all s ∈ G and xPN(s) ∈XPN(s). (5.4)

Proof of Proposition 47. We define, for all s ∈ G and xPN(s) ∈ XPN(s),
PscxP(s)

:= PMscxP(s)
. Since MscxP(s)

is assumed to be closed and convex, we
know that MscxP(s)

= MPscxP(s)
, which implies that Equation (5.4) is equivalent

to
Ps(·cxPN(s))≥ PscxP(s)

for all s ∈ G and xPN(s) ∈XPN(s). (5.5)

Consider now any coherent conditional linear prevision PG(·c·) on C (XG). We
need to prove that PG(·c·) satisfies Equation (5.5) if and only if PG(·c·)∈M irr

G .
First assume that PG(·c·) ∈M irr

G . By applying Theorem 46, we find that
PG(·c·) ≥ Pirr

G (·c·). Due to Corollary 44x, this implies that PG(·c·) satisfies
Equation (5.5).
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Next, assume that PG(·c·) satisfies Equation (5.5)x. Let PG(·c·) and
EG(·c·) be defined as in Proposition 45141. Equation (5.5)x implies that
PG(·c·) dominates PG(·c·) and therefore, since PG(·c·) is coherent, that PG(·c·)
dominates EG(·c·), which means that PG(·c·) ∈MEG(·c·) or, equivalently, by
Proposition 45141, that PG(·c·) ∈MPirr

G (·c·). By applying Theorem 46x, we
find that PG(·c·) ∈M irr

G .

Our next result is the sets of linear previsions analogue to Corollary 40138. It
states—as is to be expected—that M irr

G satisfies Requirement (N3B)132 and a
strengthened version of Requirement (N3A)131.

Corollary 48. For all s ∈ G, xP(s) ∈XP(s) and BN(s) ∈P /0(XN(s)), it holds
that:

margs(M
irr
G c{xP(s)}×BN(s)) = margs(M

irr
G cxP(s)) = MscxP(s)

and
margc

s(M
irr
G c|{xP(s)}×BN(s)) = margc

s(M
irr
G c|xP(s)).

Proof of Corollary 48. Immediate consequence of Theorem 46x and Corol-
lary 44141.

5.4.4 For sets of full conditional probability mass functions

Within the framework of probability mass functions, the global model that
corresponds to a credal network under epistemic irrelevance is a set FG of
full conditional probability mass functions on C∗(Ω) that satisfies Require-
ments (N4A)131 and (N4B)132. The largest such set is called the irrelevant
natural extension of the local credal sets FscxP(s)

. It is connected to the corre-
sponding notion for sets of conditional linear previsions in the following trivial
way.

Proposition 49. Let F irr
G be the irrelevant natural extension of the credal sets

FscxP(s)
and let M irr

G be the irrelevant natural extension of the corresponding
local sets of linear previsions MFscxP(s)

. Then F irr
G = FM irr

G
.

Proof of Proposition 49. This is an immediate consequence of the one-to-one
correspondence between (conditional) linear previsions and (full conditional)
probability mass functions.

The following two results are direct translations of Proposition 47x and
Corollary 48 to the language of sets of full conditional probability mass func-
tions.

Corollary 50. A full conditional probability mass function pG(·c·) on C∗(XG)
belongs to F irr

G if and only if

ps(·cxPN(s)) ∈FscxP(s)
for all s ∈ G and xPN(s) ∈XPN(s).
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Proof of Corollary 50x. Immediate consequence of Proposition 49x and
Proposition 47142.

Corollary 51. For all s ∈ G, xP(s) ∈XP(s) and BN(s) ∈P /0(XN(s)), it holds
that:

margs(F
irr
G c{xP(s)}×BN(s)) = margs(F

irr
G cxP(s)) = FscxP(s)

and
margc

s(F
irr
G c|{xP(s)}×BN(s)) = margc

s(F
irr
G c|xP(s)).

Proof of Corollary 51. Immediate consequence of Proposition 49x and
Corollary 48x.

5.4.5 Bayesian networks as a special case

Let us now focus on an important special case. Consider the framework
of sets of full conditional probability mass functions and, for all s ∈ G and
xP(s) ∈XP(s), let FscxP(s)

:= {pscxP(s)
}, where pscxP(s)

is a probability mass
function on Xs. It then follows from Corollary 50x that a full conditional
probability mass function pG(·c·) on C∗(XG) belongs to F irr

G if and only if

ps(xscxPN(s)) = pscxP(s)
(xs) for all s ∈ G, xPN(s) ∈XPN(s) and xs ∈Xs. (5.6)

For readers who are familiar with the theory of Bayesian networks [64,78,82],
this requirement should ring a bell. It is well-known to imply that

pG(xG) = ∏
s∈G

ps(xscxP(s)) = ∏
s∈G

pscxP(s)
(xs) for all xG ∈XG, (5.7)

which is the celebrated factorised form of the joint probability mass function
for a Bayesian network. In other words, in this particular case, the uncondi-
tional part F irr

G cXG of F irr
G consists of a single probability mass function on

XG, which is identical to the joint probability mass function of a Bayesian
network with local models pscxP(s)

, as given by Equation (5.7). For this rea-
son, the theory of credal networks under epistemic irrelevance can rightfully
be referred to as a generalisation of the theory of Bayesian networks.

The main generalisation consists in introducing imprecision, but it is not
the only one. In the particular case that we are discussing here, where the local
models are precise, our approach is still more general than that of Bayesian
networks, because we regard conditional models as primitive notions. For ex-
ample, in our framework, for any pG(·c·) ∈F irr

G , the local model pscxP(s)
can

always be recovered from the global model pG(·c·): it is equal to ps(·cxP(s)).
For Bayesian networks, because they do not consider full conditional probabil-
ity mass functions, this is only possible if pP(s)(xP(s))> 0. More generally, for
every BG ∈P /0(XG), pG(·c·) provides us with a conditional probability mass
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function pG(·cBG). For Bayesian networks, this is only the case if pG(BG)> 0.
Of course, some of this extra conditional information may not be fully deter-
mined by Equation (5.6)x. If that is the case, then F irr

G will consist of multiple
full conditional probability mass functions. Nevertheless, as discussed above,
they will all have the same unconditional part. In the framework of Bayesian
networks, this unconditional part is taken to constitute the complete model,
whereas we consider the—possibly imprecise—conditional information to be
part of the model as well.

5.5 OTHER APPROACHES AND HOW THEY ARE RELATED

Bayesian networks can be generalised to allow for imprecision in many differ-
ent ways. The focus of this chapter has been on one specific approach—credal
networks under epistemic irrelevance—and, in particular, on the correspond-
ing irrelevant natural extension. In the next two chapters, we present a detailed
study of the properties of this irrelevant natural extension and we show how
these properties can be used to develop algorithms. However, before we do so,
we now take a step back and compare our approach to other types of credal
networks.

Let us start with the name ‘credal network’, which, according to our find-
ings, first appeared in Reference [55], where it was used to refer to what we
now prefer to call the complete extension of a credal network, as discussed be-
low. Cozman [16, 17] extended the scope of this terminology and used it as a
generic name for structures that associate convex sets of probability measures
with DAGs or, in other words, to refer to generalisations of Bayesian networks
that use convex sets of probabilities. Today, the theory of credal networks no
longer restricts attention to sets of probabilities but considers other imprecise-
probabilistic frameworks as well, such as sets of desirable gambles [31,76] and
lower previsions [27, 42].

The most straightforward way to develop an imprecise-probabilistic ver-
sion of a Bayesian network is to consider a set of Bayesian networks instead of
a single one. The elements of such a set have the same graphical structure but
their local conditional probabilities may differ. Equivalently, we consider a set
FG of joint probability mass functions on FG such that, for every s∈G, XPN(s)
is completely independent from Xs conditional on XP(s); see Section 4.4. For
obvious reasons, we call this a credal network under complete independence.
Starting from local credal sets FscxP(s)

, the corresponding largest set of joint
probability mass functions on XG is given by [55]

F com
G :=

{
∏
s∈G

pscXP(s)
(Xs) : (∀s ∈ G)(∀xP(s) ∈XP(s))pscxP(s)

∈FscxP(s)

}
.

We call it the complete extension of the local sets FscxP(s)
. This approach is

highly intuitive if the ideal of precision is adopted. The idea is then that there
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is an underlying true Bayesian network for which, for some reason, the local
models are only known to belong to a set of candidates FscxP(s)

—are partially
specified. It seems reasonable to model this type of uncertainty by means of a
set of Bayesian models.

However, credal networks under complete independence are almost never
considered. Instead, the large majority of results have been developed for
credal networks under strong independence; Reference [2] provides a recent
overview of related literature, containing numerous references to algorithmic
developments, practical applications, and so on. On that approach, FG is taken
to be closed and convex and it is assumed that, for every s ∈ G, XPN(s) is
strongly independent from Xs conditional on XP(s) or, equivalently, that the ex-
treme points of FG correspond to Bayesian networks with the same graphical
structure. In other words: a credal network under strong independence is the
convex hull of a credal network under complete independence. In particular:
the strong extension F strong

G of a collection of local credal sets FscxP(s)
is equal

to the convex hull of their complete extension F com
G .

It is unclear to us why credal networks under strong independence are more
popular than credal networks under complete independence, and similarly for
the corresponding extensions. We presume that this is due to a desire to keep
convexity, which, in many fields, is known to lead to more efficient computa-
tions. However, in the case of credal networks, it has already been shown in
Reference [55] that this does not lead to computational savings: for many com-
monly considered parameters of interest—such as posterior lower and upper
probabilities—it makes no difference whether we compute them with respect
to the complete extension or its convex hull—the strong extension. Hence, in
this case, enforcing convexity seems to serve no purpose. Combined with the
fact that complete extensions have a clear and intuitive sensitivity analysis in-
terpretation, which strong extensions do not have, we see no reason to keep on
favouring the latter approach.

Although the complete and strong extensions are named after the corre-
sponding imprecise-probabilistic notions of independence and—as we have
done—can be defined in terms of them, this is usually regarded as being of
minor importance. The crucial feature of credal networks under complete and
strong independence is that they can be defined in terms of sets of Bayesian
networks. Not only does this make these approaches familiar, it also helps
in the development of theoretical results and algorithms. The corresponding
concepts for Bayesian networks can be used as a starting point, and the ideas
behind them can be adapted to an imprecise-probabilistic setting. In fact, much
of the research on credal networks has been concerned with doing exactly that,
and we believe this to be one of the main reasons for the popularity of strong
extensions.

In his seminal paper [16], Cozman approached the topic of credal networks
from a different angle. He moved the focus away from sets of Bayesian net-
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works and instead suggested that imprecise-probabilistic notions of indepen-
dence should play a more central role. In our opinion, one of his most im-
portant insights was that the generalised notion of natural extension that was
discussed in Section 4.5124 can be applied in the context of credal networks;
our developments in this chapter serve as a nice example of such an approach.
Also, instead of restricting attention to imprecise-probabilistic notions of in-
dependence that are based on stochastic independence—such as complete and
strong independence—Cozman advocated the use of epistemic irrelevance and
epistemic independence. This led him to introduce two new types of credal
networks: credal networks under epistemic irrelevance and credal networks
under epistemic independence [16, 35].

The theory of credal networks under epistemic irrelevance that was put
forward by Cozman [16] can be regarded as a precursor to the one that we pre-
sented in this chapter. The basic idea is exactly the same: for all s ∈ G, XN(s)
is taken to be epistemically irrelevant to Xs conditional on XP(s). These struc-
tural assessments are combined with local direct assessments and the unique
most conservative model that satisfies them both—the irrelevant natural exten-
sion4—is then considered. The difference between our approach and that of
Cozman is that he only considers the framework of sets of probabilities and
that he makes the simplifying assumption that every event has strictly positive
lower probability.5 The main contribution of this chapter consists in dropping
these restrictions.6

The idea behind credal networks under epistemic independence is similar.
The only difference is that epistemic irrelevance is replaced by epistemic in-
dependence: for all s ∈ G, XN(s) is taken to be epistemically independent to Xs
conditional on XP(s). The most conservative global model that satisfies these
independence assessments and that is furthermore compatible with a given col-
lection of local models is called the independent natural extension.7,8 A prob-

4Cozman simply refers to it as the natural extension; we prefer to distinguish it from other
types of natural extension by adding the prefix ‘irrelevant’.

5Another difference is that he uses epistemic value-irrelevance instead of epistemic h-
irrelevance. However, as far as the definition of the irrelevant natural extension is concerned,
this makes no difference; see the comments after Proposition 43140 and Theorem 42139. The main
advantage of epistemic h-irrelevance—besides its philosophical superiority—lies in the fact that it
allows us to state more powerful properties for this irrelevant natural extension; see Chapter 6152.

6Moral [76] already considered the framework of sets of desirable gambles. However, he uses
a more stringent notion of epistemic irrelevance than we do. As a result, his theory can only be
applied to a restricted subset of DAGs; see Section 6.5.4170 for more information. For the special
case of credal networks under epistemic irrelevance that have a tree topology, the framework of
lower previsions was already considered in Reference [42].

7Reference [16] refers to it as the natural extension. We prefer to distinguish it from other
types of natural extension by adding the prefix ‘independent’; see Footnote 4 as well. Refer-
ence [35] calls it ‘the extension based on epistemic independence’ or ‘the epistemic extension’.

8This name is also used to refer to the most conservative so-called independent product of a
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lematic feature of this independent natural extension is that, in general, it has
no—known—closed-form expression. We believe this to be one of the main
reasons why credal networks under epistemic independence have received al-
most no attention; to the best of our knowledge, References [16] and [35] are
the only exceptions.

Credal networks under epistemic irrelevance have received considerably
more attention [6,16,27,28,30,31,35,42,67,76], and—in our opinion—rightly
so. On the one hand, from a philosophical point of view, credal networks un-
der epistemic irrelevance share the advantages of epistemic irrelevance that we
discussed in Section 4.4120. Most importantly: the irrelevant natural exten-
sion has a clear and intuitive definition that does not require an assumption of
ideal precision. On the other hand, from an algorithmic point of view, initial
results indicate that the irrelevant natural extension allows for efficient com-
putations. If the topology of the network is a tree, there is a polynomial-time
updating algorithm that can compute posterior beliefs about a single target
variable conditional on the observation of others [42]. We believe this to be
promising, especially since the same inference problem is NP-hard for credal
trees under strong independence [67]. Other promising algorithmic develop-
ments have also been made—in part by us—for the special case of imprecise
hidden Markov models under epistemic irrelevance [6, 30].

Despite these advantages and promising algorithmic developments, the
majority of research on credal networks is still concerned with credal networks
under strong independence. This is nicely illustrated by the fact that a recent
overview paper [2] deals almost exclusively with credal networks under strong
independence; credal networks under epistemic irrelevance are only mentioned
in passing. Nevertheless, they are regarded as a promising new subfield that
requires—and deserves—further research [2, Section 10.6]. One of the main
persisting problems is that—except for networks that are sufficiently small or
have a tree topology—no efficient, exact or even approximate inference algo-
rithm is available for the irrelevant natural extension. We believe that this is
to a great extent due to a profound lack of known theoretical properties. In
the next chapter, we start to remedy this situation by conducting a thorough
theoretical study of the properties of the irrelevant natural extension.

5.A PROOF OF PROPOSITIONS 38 AND 39

Our proof for Proposition 38137 (and Theorem 53156) uses the following con-
venient version of the separating hyperplane theorem. This result has been

collection of local models; see Section 6.6171 and Footnote 19171. Given that this most conserva-
tive independent product is equal to the independent natural extension of a credal network under
epistemic independence—or epistemic irrelevance—that consists of disconnected nodes, there is
no clash in terminology.
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proved in Reference [45, Lemma 2]; we repeat its statement here to make this
dissertation more self-contained.

Lemma 52. Consider a finite subset A of G (X). Then 0 /∈ E(A ) if and
only if there is a probability mass function p on X such that, for all f ∈ A ,
P( f ) := ∑x∈X p(x) f (x)> 0 and, for all x ∈X, p(x)> 0.

Proof of Proposition 38137. Since, by Proposition 37137, D irr
G = E(A irr

G ), we
know that D irr

G is coherent if and only if it satisfies D1, which states that 0
cannot be an element of D irr

G . So assume ex absurdo that 0 ∈ D irr
G . We will

show that this leads to a contradiction.
Since 0 ∈D irr

G , we know from Proposition 36136 that

0 = ∑
s∈G

∑
zPN(s)∈XPN(s)

I{zPN(s)} fs,zPN(s) , (5.8)

where every fs,zPN(s) is an element of DsczP(s)
∪{0} and at least one of them is

non-zero. We now construct, for every s ∈ G and zP(s) ∈XP(s), a finite subset
of the local model DsczP(s)

:

A 0
sczP(s)

:=
{

fs,xPN(s) : xPN(s) ∈XPN(s), xP(s) = zP(s) and fs,xPN(s) 6= 0
}
.

Since DsczP(s)
is coherent, we have that 0 /∈DsczP(s)

= posi(DsczP(s)
). This in turn

implies that 0 /∈ posi(A 0
sczP(s)

∪G (Xs)>0) = : E(A 0
sczP(s)

), because both A 0
sczP(s)

and G (Xs)>0 are subsets of DsczP(s)
, and we can therefore apply Lemma 52.

This yields, for every s ∈ G and zP(s) ∈ XP(s), a probability mass function
ps(·czP(s)) on Xs with associated linear prevision Ps(·czP(s)) on G (Xs) such
that ps(zsczP(s))> 0 for all zs ∈Xs and Ps(gczP(s))> 0 for every g ∈A 0

sczP(s)
.

The trick is now to create a Bayesian network that has the conditional prob-
ability mass functions ps(·czP(s)) as its local models and has the same graphi-
cal structure as our credal network under epistemic irrelevance. Let pG be the
global probability probability mass function of this Bayesian network and let
PG be the corresponding linear prevision. We then find that

PG( f ) = ∑
s∈G

∑
zPN(s)∈XPN(s)

PG
(
I{zPN(s)} fs,zPN(s)

)
= ∑

s∈G
∑

zPN(s)∈XPN(s)

PG(zPN(s))Ps
(

fs,zPN(s)

⌋
zPN(s)

)
= ∑

s∈G
∑

zPN(s)∈XPN(s)

PG(zPN(s))Ps
(

fs,zPN(s)

⌋
zP(s)

)
,

where we have applied Bayes’s rule and the conditional independencies en-
coded in the graph. Since all the local probabilities ps(·czP(s)) are strictly
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positive, this is also true for the global ones and we therefore find that
PG(zPN(s))> 0. For the previsions Ps( fs,zPN(s)czP(s)), there are two possibilities.
The first possibility is that fs,zPN(s) = 0, in which case Ps( fs,zPN(s)czP(s))= 0. The
second possibility is that fs,zPN(s) ∈A 0

sczP(s)
, in which case Ps( fs,zPN(s)czP(s))> 0.

Since at least one of the gambles fs,zPN(s) in Equation (5.8)x has to be non-zero,
it is not possible that Ps( fs,zPN(s)czP(s)) = 0 for all gambles fs,zPN(s) and we can
therefore conclude that PG(0)> 0. However, the coherence of PG implies that
PG(0) = 0, a contradiction.

Since Proposition 55157 generalises Proposition 39138 without building
upon it, it is not necessary to provide Proposition 39138 with a separate proof.
However, we feel that the complexity of the proof for Theorem 53156 (which
is essential for the proof of Corollary 54156 and therefore also for the proof
of Proposition 55157) obscures the ease with which Proposition 39138 can be
proved. We therefore choose to provide Proposition 39138 with a proof of its
own. As it makes use of so-called maximal sets of desirable gambles, a concept
that has not been introduced yet, we provide a short introduction here.

A coherent set D of desirable gambles on X is called maximal if it is not
included in any other coherent set of desirable gambles on X—in other words,
if adding any gamble f to D makes sure we can no longer extend the resulting
set D ∪{ f} to a coherent set of desirable gambles. Maximal sets of desirable
gambles have a number of useful properties. For example, a coherent set D of
desirable gambles on X is always the intersection of all the maximal coherent
sets D∗ of desirable gambles on X that include it; see Reference [47]. In other
words, f ∈ D if and only if f ∈ D∗ for every maximal coherent set D∗ ⊇ D .
As a consequence, we have the following separation property: if a gamble
f ∈ G (X) is not an element of D , there is at least one maximal coherent set
D∗ ⊇ D for which f /∈ D∗. Another useful property is that maximal sets of
desirable gambles resolve points: for any maximal coherent set D and any non-
zero gamble f in G (X ), either f or− f is an element of D ; see Reference [14].

Proof of Proposition 39138. Fix any s ∈ G, g ∈ G (XN(s))>0, f ∈ G (Xs) and
xP(s) ∈XP(s).

We begin by proving that f ∈ DscxP(s)
implies gI{xP(s)} f ∈ D irr

G . As ex-
plained in the main text of Section 5.4.1135 and in the proof of Proposi-
tion 34135, it holds for any xN(s) ∈XN(s) that I{xPN(s)} f is an element of D irr

G .
Hence, since g = ∑xN(s)∈XN(s)

g(xN(s))I{xN(s)}, we get that

gI{xP(s)} f = ∑
xN(s)∈XN(s)

g(xN(s))I{xPN(s)} f

is a finite strictly positive linear combination of elements of D irr
G . Hence, since

D irr
G is coherent [see Proposition 38137] we find that gI{xP(s)} f ∈D irr

G .
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Next we prove that f /∈DscxP(s)
implies gI{xP(s)} f /∈D irr

G . The case f = 0 is
trivial because gI{xP(s)} f is then equal to zero, which cannot be an element of
D irr

G due to its coherence; see Proposition 38137. If f 6= 0, we start by applying
some of the properties of maximal coherent sets of desirable gambles that were
introduced in the text preceding this proof. Due to the first property, we can
infer from f /∈ DscxP(s)

that there is at least one maximal set of desirable gam-
bles D∗scxP(s)

⊇ DscxP(s)
for which f /∈ D∗scxP(s)

. Due to the second property and
the fact that f 6= 0, this in turn implies that − f ∈D∗scxP(s)

. We will now denote

by D irr∗
G the set that is obtained by Equation (5.2)136 if we replace the local

model DscxP(s)
by the specific maximal superset D∗scxP(s)

. It should be clear that

D irr∗
G ⊇ D irr

G . Next, since − f ∈ D∗scxP(s)
, it follows from a similar argument as

the one that was used in the first part of this proof that gI{xP(s)}(− f ) ∈ D irr∗
G .

Hence, due to the coherence of D irr∗
G , gI{xP(s)} f /∈ D irr∗

G and therefore, since

D irr∗
G ⊇D irr

G , we find that gI{xP(s)} f /∈D irr
G .
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6
THEORETICAL PROPERTIES

“One cannot really argue with a mathematical theorem.”

Stephen Hawking

Some of the results in the previous chapter already illustrate that the prop-
erties of the irrelevant natural extension are not limited to the ones that are
needed and/or used to define it; see for example Proposition 39138 and Corol-
laries 40138 and 44141. However, so far, we have merely scratched the surface
of what can be done. As we are about to show, the irrelevant natural extension
satisfies numerous other, and often surprisingly strong, theoretical properties.

Our main technical achievement is a separating hyperplane result. As
we will see, it can be used to establish various connections between the ir-
relevant natural extension of a network and those of its subnetworks, includ-
ing marginalisation, factorisation and external additivity properties. Another
important consequence is an analogon of the classical result for Bayesian
networks that d-separation implies independence. In our case, the symmet-
ric notion of d-separation is replaced by an asymmetric version, called AD-
separation, and epistemic irrelevance takes the place of independence. We also
establish connections between the irrelevant natural extension and the notions
of marginal extension and independent natural extension and discuss some
properties of the updated models that result from applying regular extension
to the irrelevant natural extension. Published versions of some of this material,
be it in a less developed and/or general form, can be found in Reference [31].
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6.1 CLOSED SETS AND THEIR PROPERTIES

6.1 CLOSED SETS AND THEIR PROPERTIES

The different attributes of nodes s ∈ G that were introduced in Section 5.1129,
such as its parents P(s), its descendants D(s), etcetera, can also be defined
for subsets of G. For any subset K of G, we define its set of parents as
P(K) := (

⋃
s∈K P(s))\K and its set of children as C(K) := (

⋃
s∈G C(s)) \K.

We also let D(K) := (
⋃

s∈K D(s)) \K be its set of descendants and define its
set of ancestors as A(K) := (

⋃
s∈K A(s))\K. The non-parent non-descendants

of K are given by1 N(K) := G \ (P(K)∪K ∪D(K)) =
⋂

s∈K N(s) and we also
define PN(K) := P(K)∪N(K).

In general, PN(K) cannot be referred to as the non-descendants of K since
P(K) and D(K) are not necessarily disjoint. We call those subsets of G for
which they are disjoint closed: a set K ⊆G is closed if, for all s, t ∈ K and any
k ∈ G such that sv k v t, it holds that k ∈ K. For these closed subsets K of G,
we find that2 P(K)∩D(K) = /0 and therefore that PN(K) = G\ (K∪D(K)).
Hence, for closed sets K ⊆ G, PN(K) can rightfully be referred to as the non-
descendants of K.

A set K ⊆G is called ancestral if A(K) = /0—if it includes the ancestors of
each of its elements—or, equivalently,3 if P(K) = /0—if it includes the parents
of each of its elements. An ancestral set is always closed and, for any closed
set K ⊆ G, PN(K) is an ancestral set.4

Example 4. We illustrate these notions in Figure 6.1y. It depicts the same
DAG as the one that was shown in Figure 5.1130, but now focuses on the closed
subset K = {s5,s7,s9} of G—depicted in boldface. For this subset, we find
that P(K) = {s3,s4}, D(K) = {s8,s10} and N(K) = {s1,s2,s6}, implying that
P(K)∩D(K) = /0. The set PN(K)—the shaded nodes—is an ancestral set. ♦

With a subset K of G, we can also associate a so-called sub-DAG of the
DAG that is associated with G. The nodes of this sub-DAG are the elements
of K and the directed edges of this sub-DAG are those edges in the original
DAG that connect elements in K. For a sub-DAG that is associated with some
subset K of G, we will use similar definitions as those for the original DAG,
adding the subset K as an index. As an example: for all k ∈ K, we denote by
PK(k) the parents of k in the sub-DAG that is associated with the nodes in K.
It is not hard to see that5 PK(k) = P(k)∩K and P(k)\PK(k) = P(k)∩P(K).
Similar definitions can be given for DK(k), NK(k), PNK(k) and AK(k). In the
same way, for subsets S of K, we consider the sets PK(S), DK(S), etcetera.

1A proof for the last equality can be found in Lemma 77(ii)182 in Appendix 6.A182.
2See Lemma 78(i)183 in Appendix 6.A182.
3See Lemma 77(iv)182 in Appendix 6.A182.
4See Lemma 77(v)182 and Lemma 78(iv)183 in Appendix 6.A182, respectively.
5See Lemma 76182 in Appendix 6.A182.
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6.2 A FUNDAMENTAL SEPARATING HYPERPLANE RESULT

s1

s3

s2

s4

s5

s7

s8

s6

s9

s10

K = {s5,s7,s9}

P(K) = {s3,s4}
D(K) = {s8,s10}
N(K) = {s1,s2,s6}

PK(s7) = {s5}
DK(s7) = {s9}
NK(s7) = /0

Figure 6.1: Example of a sub-DAG of the DAG in Figure 5.1130.

Finally, Ro(K) := {s ∈ K : PK(s) = /0} is the set of root nodes of the sub-DAG
that corresponds to K.

Example 5. Consider again the DAG in Figure 6.1 and consider the sub-DAG
that is associated with K = {s5,s7,s9} ⊂G—depicted in boldface. We find that
PK(s7) = {s5}, DK(s7) = {s9} and NK(s7) = /0. ♦

These concepts we have just introduced have many properties, which, if the
actual graph is drawn, are often very intuitive. However, in general, for an
abstract DAG, it can be rather cumbersome to check them or work with them;
Appendix 6.A182 gathers some technical lemmas that provide proofs for nu-
merous useful results related to DAGs.

6.2 A FUNDAMENTAL SEPARATING HYPERPLANE RESULT

As explained in the previous section, a subset K of G can be associated with
a so-called sub-DAG of the original DAG. Similarly to what we have done
for the original DAG, we can consider the irrelevant natural extension of this
subnetwork. All that we need to be able to do so is local models. One particular
way of providing these local models is to derive them from the ones of the
original DAG. We start by explaining how this works within the framework of
sets of desirable gambles.

In that case, we need to provide, for every s∈K and zPK(s) ∈XPK(s), a local
set of desirable gambles DsczPK (s)

, whereas the original local models are of the
form DsczP(s)

. Hence, if we want to identify the new local models with the orig-
inal ones, we need to come up with a method for choosing the value zP(s)\PK(s)
of the remaining variables. We will do this in a specific way: by fixing a value
xP(K) ∈XP(K) for the variables that are associated with the parents P(K) of K.
Since P(s) \PK(s) is a subset of P(K), this provides us, for every s ∈ K, with
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s3

s4

s5

s7

s9

xs3

xs4

Ds5 = Ds5cxs3

Ds7czs5
= Ds7c(zs5 ,xs4 )

Ds9czs7

K = {s5,s7,s9}
P(K) = {s3,s4}

P(s5) = {s3}
PK(s5) = /0

P(s5)\PK(s5) = {s3}

P(s7) = {s4,s5}
PK(s7) = {s5}

P(s7)\PK(s7) = {s4}

P(s9) = {s7}
PK(s9) = {s7}

P(s9)\PK(s9) = /0

Figure 6.2: Local models for a sub-DAG: an illustration of Equation (6.1).

the value zP(s)\PK(s) := xP(s)\PK(s) that was missing, and thereby allows us to
identify the local model DsczPK (s)

of the sub-DAG with the local model DsczP(s)
of the original DAG, by letting zP(s) := (zPK(s),xP(s)\PK(s)).

This approach can be briefly summarised as follows: for any subset K of
G and any instantiation xP(K) ∈XP(K) of XP(K), we construct a collection of
local models for the sub-DAG that corresponds to K, by defining, for all s ∈ K
and zPK(s) ∈XPK(s):

DsczPK (s)
= Dsc(zPK (s),xP(s)\PK (s))

. (6.1)

The following example illustrates this method for constructing the local models
of a sub-DAG.

Example 6. Consider again the DAG in Figure 6.1x and the sub-DAG that
corresponds to the closed subset K = {s5,s7,s9} of G. In order to construct a
collection of local models for this sub-DAG, we fix some value xP(K) ∈XP(K)

for the variables that are associated with the parents of K. Equivalently, since
P(K) = {s3,s4}, we fix values xs3 ∈Xs3 and xs4 ∈Xs4 . We can now construct
local models by means of Equation (6.1). For the node s5, we obtain an un-
conditional local model Ds5 = Ds5cxs3

. For the node s7, this yields, for every
zs5 ∈ Xs5 , a conditional local model Ds7czs5

= Ds7c(zs5 ,xs4 )
. Finally, for the

node s9, we obtain, for every zs7 ∈Xs7 , a conditional local model Ds9czs7
. Fig-

ure 6.2 provides a graphical representation of the construction of these local
models. ♦

For every K ⊆G and xP(K) ∈XP(K), we can now use these local models to
construct an irrelevant natural extension for the subnetwork that corresponds
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to the set K. By applying Equation (5.2)136, we find that the resulting model is
given by

D irr
KcxP(K)

:= posi(A irr
KcxP(K)

), (6.2)
with

A irr
KcxP(K)

:=
{
I{zPNK (s)} f : s ∈ K,zPNK(s) ∈XPNK(s), f ∈Dsc(zPK (s),xP(s)\PK (s))

}
.

(6.3)
If K is an ancestral graph—if P(K) = /0—then we do not need to fix a value
xP(K) ∈XP(K) for XP(K), as it is deterministic. We will then use D irr

K and A irr
K

as shorthand notations for D irr
Kcx /0

and A irr
Kcx /0

.
A question that now naturally arises is whether the irrelevant natural ex-

tension of these subnetworks, as given by Equation (6.2), can be related to the
irrelevant natural extension D irr

G of the original network. The following sep-
arating hyperplane result establishes that, for subsets K of G that are closed,
this is indeed the case.

Theorem 53. Let K be a closed subset of G and consider any xP(K) ∈XP(K)

and nonzero f ∈ G (XK) and h ∈ G (XPN(K)) such that f /∈D irr
KcxP(K)

and
h /∈D irr

PN(K). Then for all f∗ ∈D irr
G and g ∈ G (XN(K))>0, there is a linear pre-

vision PG on G (XG) such that PG( f∗)> 0, PG(h)< 0 and PG(gI{xP(K)} f )< 0.

Our proof for this result is long and complicated, and has therefore been
moved to Appendix 6.B188. Nevertheless, the main idea is very simple. Sim-
ilarly to what we have done in the proof of Proposition 38137, we construct a
joint probability mass function pG to perform the separation. The correspond-
ing linear prevision PG characterises a hyperplane { f ′ ∈ G (XG) : PG( f ′) = 0},
with normal pG, that separates f∗ from h and gI{xP(K)} f . However, in contrast
with the proof of Proposition 38137, a factorising probability mass function is
not sufficient to perform this separation, and this renders constructing pG a
complex and extremely elaborate task.

We consider Theorem 53 to be one of the main technical achievements of
this dissertation. Almost all the results in the present chapter can ultimately
be traced back to this single theorem. However, in its current form, it is rather
technical. Theorem 53 clearly establishes some connection between the irrele-
vant natural extension of the original network and that of its subnetworks, but it
is hard to get a feeling for what it actually means. The following rather straight-
forward corollary expresses this connection more intuitively, and serves as
a first—and crucial—step towards even stronger—and clearer—connections,
such as the ones in Propositions 55y and 56158.

Corollary 54. Let K be a closed subset of G and consider any f ∈ G (XK),
h ∈ G (XPN(K)), g ∈ G (XN(K))≥0, xP(K) ∈XP(K). Then

f /∈D irr
KcxP(K)

and h /∈D irr
PN(K)⇒ h+gI{xP(K)} f /∈D irr

G .
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Proof of Corollary 54. Assume that f /∈D irr
KcxP(K)

and that h /∈ D irr
PN(K) and let

f∗ := h+gI{xP(K)} f ∈ G (XG). Assume ex absurdo that f∗ ∈D irr
G . If we let

f ′ :=

{
f if f 6= 0
−1 if f = 0,

h′ :=

{
h if h 6= 0
−1 if h = 0

and g′ :=

{
g if g 6= 0
1 if g = 0,

then f ′ 6= 0, h′ 6= 0 and g′ ∈ G (XN(K))>0. The coherence of D irr
KcxP(K)

and

D irr
PN(K) implies that f ′ /∈ D irr

KcxP(K)
and h′ /∈ D irr

PN(K). Therefore, Theorem 53x
provides us with a linear prevision PG on G (XG) such that PG( f∗)> 0,
PG(h′) < 0 and PG(g′I{xP(K)} f ′) < 0. If h = 0, then PG(h) = PG(0) = 0. Oth-
erwise, PG(h) = PG(h′) < 0. In any case: PG(h) ≤ 0. If f = 0 or g = 0, then
PG(gI{xP(K)} f ) = PG(0) = 0. Otherwise, PG(gI{xP(K)} f ) = PG(g′I{xP(K)} f ′)< 0.
In any case, PG(gI{xP(K)} f ) ≤ 0. Due to the linearity of PG, this implies that
PG( f∗)≤ 0, a contradiction.

6.3 FACTORISATION AND EXTERNAL ADDITIVITY

The first important types of consequences of Theorem 53x are factorisation
and (external) additivity properties, which are crucial for the development
of efficient algorithms.6 The following generalisation of Proposition 39138
[with K = {s}] is a first example of a factorisation property; it will turn out to
constitute the basis for many of the later results in this chapter.

Proposition 55. Let K be a closed subset of G and consider any f ∈ G (XK),
xP(K) ∈XP(K) and g ∈ G (XN(K))>0. Then

gI{xP(K)} f ∈D irr
G ⇔ f ∈D irr

KcxP(K)
.

Proof of Proposition 55. Due to Corollary 54x [with h := 0] we already know
that f /∈D irr

KcxP(K)
implies gI{xP(K)} f /∈D irr

G . Hence, we only need to prove that

f ∈D irr
KcxP(K)

implies gI{xP(K)} f ∈D irr
G .

By the coherence of D irr
G and the definition of D irr

KcxP(K)
and G (XN(K))>0,

we can assume, without loss of generality, that f ∈A irr
KcxP(K)

[Equation (6.3)x]

and g = I{zN(K)}, with zN(K) ∈ XN(K). Since f ∈ A irr
KcxP(K)

, we know that

f = I{zPNK (s)} f ′ for some s ∈ K, zPNK(s) ∈ XPNK(s) and f ′ ∈ DsczP(s)
, with

zP(s)\PK(s) = xP(s)\PK(s). We need to prove that I{zN(K)}I{xP(K)}I{zPNK (s)} f ′ ∈D irr
G .

By Lemma 76182,

I{zP(s)} = I{zP(s)\PK (s)}I{zPK (s)} = I{xP(s)\PK (s)}I{zPK (s)} = I{xP(K)∩P(s)}I{zPK (s)},

6See for example the algorithms in Sections 7.5.3249–7.5.6264.
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and therefore

I{zN(K)}I{xP(K)}I{zPNK (s)} f ′ = I{zN(K)}I{xP(K)}I{zPK (s)}I{zNK (s)} f ′

= I{zN(K)}I{xP(K)\P(s)}I{xP(K)∩P(s)}I{zPK (s)}I{zNK (s)} f ′

= I{zN(K)}I{xP(K)\P(s)}I{zP(s)}I{zNK (s)} f ′

= I{zN(K)}I{xP(K)\P(s)}I{zNK (s)}I{zP(s)} f ′ = g′I{zP(s)} f ′,

where g′ := I{zN(K)}I{xP(K)\P(s)}I{zNK (s)}. This means that we are left to prove

that g′I{zP(s)} f ′ ∈D irr
G . We have already explained in Section 5.4.1135 and in

the proof of Proposition 34135 that, for all yN(s) ∈XN(s), I{yN(s)}I{zP(s)} f ′ ∈D irr
G

because f ′ ∈DsczP(s)
. Therefore, the desired result follows from the coherence

of D irr
G because, since Lemma 79(iv)185 implies that N(K), P(K) \P(s) and

NK(s) are pairwise disjoint subsets of N(s), we know that g′ is a finite (and
non-empty) sum of indicators I{yN(s)}, yN(s) ∈XN(s).

Before we can formulate similar results in terms of other frameworks, we
first need to extend our method for constructing the irrelevant natural extension
of a subnetwork.

The main idea is identical. We fix a value xP(K) ∈XP(K) for the variable
XP(K) that corresponds to the parents of some subset K of G, and we use this
value to define a collection of local models for the sub-DAG that corresponds
to K. For every s ∈ K and zPK(s) ∈XPK(s), the corresponding local model is
defined as

PsczPK (s)
= Psc(zPK (s),xP(s)\PK (s))

(6.4)
or

MsczPK (s)
= Msc(zPK (s),xP(s)\PK (s))

(6.5)
or

FsczPK (s)
= Fsc(zPK (s),xP(s)\PK (s))

, (6.6)

depending on the framework that is adopted. Once we have these local models,
we can consider their irrelevant natural extensions, which we will denote by
Pirr

KcxP(K)
, M irr

KcxP(K)
and F irr

KcxP(K)
, respectively.

The following result is a first example of how these irrelevant natural ex-
tensions of subnetworks are related to those of the original network. It can
be regarded as a translation of Corollary 54156 and Proposition 55x to the
framework of coherent lower previsions. The proof can be found in Ap-
pendix 6.C199.

Proposition 56. Let K be a closed subset of G and consider any f ∈ G (XK),
xP(K) ∈XP(K), g ∈ G (XN(K))≥0 and h ∈ G (XPN(K)). Then
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Pirr
G (h+gI{xP(K)} f ) = Pirr

PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
)
.

The practical significance of this result is that it allows us to split a global
computational problem—evaluating Pirr

G —into two smaller ones—evaluating
Pirr

PN(K) and Pirr
KcxP(K)

. For h = 0, we obtain factorisation as a special case.

Corollary 57 (factorisation). Let K be a closed subset of G and consider any
f ∈ G (XK), xP(K) ∈XP(K) and g ∈ G (XN(K))≥0. Then

Pirr
G (gI{xP(K)} f ) =

Pirr
PN(K)(gI{xP(K)})P

irr
KcxP(K)

( f ) if Pirr
KcxP(K)

( f )≥ 0

Pirr
PN(K)(gI{xP(K)})P

irr
KcxP(K)

( f ) if Pirr
KcxP(K)

( f )≤ 0.

Proof of Corollary 57. This is an immediate consequence of Proposition 56x
[with h = 0], the coherence of Pirr

PN(K) [C248] and conjugacy.

The following result—and its proof—nicely illustrates how Corollary 57 al-
lows us to reduce a global optimisation problem into smaller subproblems.

Proposition 58. Consider any xG ∈XG. Then

Pirr
G (xG) = ∏

s∈G
PscxP(s)

(xs) and Pirr
G (xG) = ∏

s∈G
PscxP(s)

(xs)

Proof of Proposition 58. For every s ∈ G, it follows from Corollary 44141 and
conjugacy that Pirr

scxP(s)
(xs) = PscxP(s)

(xs) and Pirr
scxP(s)

(xs) = PscxP(s)
(xs). If G

contains only a single node s—if G := {s}—this already establishes the re-
sult.

For |G|> 1, we provide a proof by induction. The induction hypothesis is
that the result holds for all credal networks with less than |G| nodes. Let ` be
an arbitrary leaf of the DAG of the network [every DAG has at least one leaf].
Then D(`) = /0 and therefore also PN(`) = G \ {`}. Since coherence [C148]
implies that Pirr

scxP(s)
(I{xs})≥ 0, we infer from Corollary 57 that

Pirr
G (xG) = Pirr

G (I{xG}) = Pirr
G\{`}(I{xG\{`}})P

irr
scxP(s)

(I{xs})

= Pirr
G\{`}(xG\{`})P

irr
scxP(s)

(xs)

= Pirr
G\{`}(xG\{`})PscxP(s)

(xs).

The first equation of this corollary now follows from the induction hypothe-
sis. The proof of the second equation is completely analogous—after applying
conjugacy—and is therefore omitted.
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For P(K) = /0, we obtain external additivity7 as another important special case
of Proposition 56158.

Corollary 59 (external additivity). Let K be an ancestral set—a closed subset
of G such that P(K) = /0—and consider any f ∈ G (XK) and h ∈ G (XN(K)).
Then

Pirr
G (h+ f ) = Pirr

N(K)(h)+Pirr
K ( f ).

Proof of Corollary 59. This is an immediate consequence of Proposition 56158
[with g = 1] and the coherence of Pirr

N(K) [C849].

Analogous results can be obtained in terms of sets of linear previsions and
sets of probability mass functions, in a trivial way, by interpreting Pirr

G as the
lower envelope of M irr

G or MF irr
G

, and similarly for Pirr
PN(K), Pirr

KcxP(K)
, Pirr

N(K),
Pirr

K and PscxP(K)
; see Theorem 46142 and Proposition 49143.

6.4 CONDITIONING, MARGINALISATION AND IRRELEVANCE

The factorisation and external additivity properties in the previous section al-
ready illustrate that for closed subsets K of G, the irrelevant natural extensions
of the corresponding subnetworks—one for every xP(K) ∈XP(K)—are related
to that of the original network. The following result makes this connection
even clearer: the irrelevant natural extension of these subnetworks can be ob-
tained by conditioning and marginalising the irrelevant natural extension of the
original network.

Corollary 60. Let K be a closed subset of G and consider any xP(K) ∈XP(K)

and BN(K) ∈P /0(XN(K)). Then

margK(D
irr
G c{xP(K)}×BN(K)) = D irr

KcxP(K)

and
Pirr

K (·c ·×{xP(K)}×BN(K)) = Pirr
KcxP(K)

(·c·)
and

margc
K(M

irr
G c|{xP(K)}×BN(K)) = M irr

KcxP(K)

and
margc

K(F
irr
G c|{xP(K)}×BN(K)) = F irr

KcxP(K)
.

7We use this terminology because this property is a generalisation of the (strong) external
additivity property discussed in Reference [46]; see Section 6.6171 and Footnote 21172 as well.
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Proof of Corollary 60x. Consider any f ∈ G (XK). Since IBN(K)
is an element

of G (XN(K))>0, we find that

f ∈margK(D
irr
G c{xP(K)}×BN(K))⇔ IBN(K)

I{xP(K)} f ∈D irr
G ⇔ f ∈D irr

KcxP(K)
,

where the two equivalences follow from Equation (4.6)107 and Proposi-
tion 55157, respectively. This already implies the first equality of this corol-
lary. The second equality is a consequence of the first, Theorem 42139 and
the discussion after Equation (4.13)110. The third equality follows from the
second and Theorem 46142 and 33110. The final equality is a consequence
of the third equality, Proposition 49143 and the discussion at the end of Sec-
tion 4.2.4109.

In order to illustrate the generality of this result, let us consider the
special case where K is an ancestral set. It then follows from Corol-
lary 60x that, for example, margc

K(F
irr
G ) and F irr

K are equal, which im-
plies that their unconditional parts—margc

K(FG)cXK =margK(F
irr
G cXG) and

F irr
K cXK , respectively—are equal as well. This result has already been proved

by Cozman in Reference [16, Theorem 15],8 under the assumption that all
lower probabilities are strictly positive. Here, we recover it as a particular
special case.

As illustrated by our next result, Corollary 60x also implies a number of
irrelevancies. For now, this can be regarded as being of minor importance:
we will show in the next section [see Corollary 66168] that the irrelevant natu-
ral extension satisfies many more irrelevancies than the ones in the following
corollary.

Corollary 61. For all closed sets K ⊆G, the irrelevant natural extension satis-
fies the following irrelevance statement: IR(N(K),K | P(K)). In other words,
for any xP(K) ∈XP(K) and BN(K) ∈P /0(XN(K)), we have that

margK(D
irr
G c{xP(K)}×BN(K)) = margK(D

irr
G cxP(K))

and
Pirr

K (·c ·×{xP(K)}×BN(K)) = Pirr
K (·c ·×{xP(K)})

and
margc

K(M
irr
G c|{xP(K)}×BN(K)) = margc

K(M
irr
G c|xP(K))

and
margc

K(F
irr
G c|{xP(K)}×BN(K)) = margc

K(F
irr
G c|xP(K)).

8Reference [16] refers to an ancestral set as a top-subnetwork.
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Proof of Corollary 61x. By applying Corollary 60160 twice, we find that

margK(D
irr
G c{xP(K)}×BN(K)) = D irr

KcxP(K)
=margK(D

irr
G cxP(K)),

where we let BN(K) = XN(K) for the second equality. This already estab-
lishes the first equation of this corollary. The other three equations now follow
from Theorems 42139 and 46142, Proposition 49143 and the discussion in Sec-
tion 4.3.4119.

6.5 SEPARATION PROPERTIES

In probabilistic graphical networks that are defined by means of a symmetrical
independence concept, d-separation [57, 78] is a very powerful tool. On the
one hand, this separation concept is purely graphical, as it is defined solely in
terms of the DAG of the network. On the other hand, for Bayesian networks,
it is guaranteed to imply probabilistic independence of the variables that are
associated with the separated nodes. This is rather remarkable, as it allows us
to verify independencies without resorting to numerical computations.

In graphical networks that adopt an asymmetric notion of independence,
such as credal networks under epistemic irrelevance, d-separation cannot be
expected to have a similar property, because d-separation is symmetric. If d-
separation were to imply epistemic irrelevance, it would imply that epistemic
irrelevance is—in this context—symmetric, which is clearly not the case.

Nevertheless, separation properties that are similar to those of Bayesian
networks can still be obtained. We will replace d-separation by an asymmetric
alternative, called AD-separation, and will show that for the irrelevant natural
extension, this new notion of separation implies epistemic irrelevance.

6.5.1 Asymmetric D-separation

Asymmetric versions of d-separation have already been proposed in the liter-
ature. Moral [76] speaks of asymmetric D-separation9 (AD-separation) and
Vantaggi [100–103] has introduced the very similar L-separation criterion.
Here, we will not use any of these existing concepts, but choose to introduce
a slightly modified version. Borrowing Moral’s terminology, we will call it
AD-separation (asymmetric d-separation).10 We prefer our version because

9Judging by the references he provides [78, 79], Moral actually seems to mean asymmet-
ric d-separation rather than asymmetric D-separation; D-separation is an enhanced version of d-
separation that allows for deterministic nodes [58]. However, since d-separation is a special case
of D-separation, the term asymmetric D-separation (AD-separation) does not produce a conflict in
terminology and we choose to adopt it as well.

10We prefer Moral’s terminology over the one by Vantaggi because (i) we think that the term
asymmetric d-separation really captures the meaning of the concept and (ii) the L in L-separation
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our definition is weaker than—in the sense that it is implied by—Moral’s AD-
separation, slightly more general11 than Vantaggi’s L-separation and yet, it has
stronger properties than both of these other concepts.

Consider any path s1, . . . ,sn in G, with n ≥ 1. We say that this path is
blocked by a set of nodes C ⊆ G whenever at least one of the following four
conditions holds:

B1. s1 ∈C;

B2. there is a node si, with 1 < i < n, such that si→ si+1 and si ∈C;

B3. there is a node si, with 1 < i < n, such that si−1→ si← si+1, si /∈C and
D(si)∩C = /0;

B4. sn ∈C.

In Moral’s version of AD-separation, the notion of a blocked path is very
similar. The only difference is condition B1, which he strengthens by requiring
that s1→ s2. Clearly, our condition is implied by Moral’s. Vantaggi uses the
same notion of blocked path as we do,12 but leaves out conditions B1 and B4.
They are redundant in her case, because she does not need to consider cases
where s1 or sn are elements of C.13

Example 7. Figure 6.3y illustrates how each of the blocking conditions B1–
B4 can block a path. The examples for B1 and B4 are straightforward. Note
that in the example of B2, the crucial point is the arrow between s3 and s5. If
that arrow were reversed, the path would no longer be blocked. In the example
of B3, it is essential that s5, s6 and s7 are not elements of C. If any of them were,
the path would not be blocked. Notice also that the path in the example for B1
is not blocked according to Moral’s version of AD-separation, the reason being
that the arrow between s3 and s2 is pointing in the wrong direction.

We are now ready to define the important concept of AD-separation.

refers to the logical constraints that can be imposed in Vantaggi’s framework, which do not seem
relevant for our current purposes. It is however important to keep in mind that our notion of AD-
separation is different than the one by Moral. We consider the resulting conflict in terminology to
be minor, especially since our version of AD-separation is implied by Moral’s version.

11At least as far as the sets on which it can defined is concerned: L-separation is only defined
for pairwise disjoint sets. We should however mention that, if one restricts oneself to pairwise
disjoint sets, Vantaggi’s L-separation criterion is more general than ours because it also includes
the possibility to include logical constraints, which our notion of AD-separation does not.

12At first sight, it might seem as if she does not; loosely speaking, the confusion arises because
she applies her definition to the reversed path.

13Because L-separation is defined for pairwise disjoint sets only; see Definition 3y.
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s2

s3

s4

s1

s3← s2→ s4

B1
C = {s3} s2

s3

s4

s5s1

s2→ s3→ s5

B2
C = {s1,s3,s4}

s2

s3

s5

s4 s7

s6

s1

s2→ s3→ s5← s4

B3

C = {s1}
D(s5) = {s6,s7}

s2

s3

s4

s1

s1→ s3→ s2

B4
C = {s2}

Figure 6.3: Illustration of paths that are blocked by conditions B1x–B4x.

Definition 3 (AD-separation). Consider (not necessarily pairwise disjoint)
subsets I, S and C of G. Then I is AD-separated from S by C, denoted as
AD(I,S |C), if every path i = s1, . . . ,sn = s, n≥ 1, from any node i ∈ I to any
node s ∈ S, is blocked by C.

Figure 6.4y provides an example of AD-separated sets.
Moral and Vantaggi define their separation criteria in much the same way.

The only difference with Moral’s version of AD-separation is his notion of a
blocked path, as explained earlier. Clearly, AD-separation in Moral’s sense
implies AD-separation in our sense. The difference with Vantaggi’s criterion
is that L-separation is defined for pairwise disjoint sets only. Notice that if
we restrict ourselves to pairwise disjoint sets, AD-separation (both our version
and the one by Moral) is identical to L-separation.14

14Making abstraction of the logical component of L-separation.
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s1

s2

s3

s4

s5

s6

s7

s9

s8

s10

s11

s12

s13

s14

s15

I = {s3,s6,s12,s14}
S = {s1,s7,s9}
C = {s1,s5,s6}

AD(I,S |C)

G = {s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15}

Figure 6.4: Illustration of AD-separation

Like d-separation, AD-separtion satisfies a number of graphoid proper-
ties [78], which can be used to infer new separations from separations that
were already known. Since symmetry is not satisfied—AD(I,S | C) is not
equivalent to AD(S, I | C)—the other graphoid properties [see Theorem 62]
now come in different versions, depending on the order of the first two argu-
ments in AD(· , · | ·) [22]. Redundancy has two versions. Decomposition and
Weak union come in four different versions, and contraction and intersection
can even be stated in eight different ways. However, for each graphoid prop-
erty, only two versions make sense. The ‘direct’ version, which is how they
are usually stated, and the ‘reverse’ version, where the order of the two first
arguments has been reversed in every instance of AD(· , · | ·). We will refer to
the resulting ten properties as the asymmetric graphoid properties.

Theorem 62. AD-separation satisfies all asymmetric graphoid properties. For
any subsets I, S, W and C of G:15

Direct redundancy: AD(I,S | I)

Reverse redundancy: AD(I,S | S)

15We follow Reference [22] in naming these properties. Moral [76] uses almost the same
terminology; the only difference is that he interchanges the meaning of direct and reverse inter-
section; see Footnote 18169 as well. Vantaggi [101] uses a different terminology: for example, her
notion of reverse decomposition refers to a property denoted as (I∪W,S|C)l

G⇒ (I,S|C)l
G, which

seems similar to our notion of reverse decomposition, but actually, corresponds to what we call
direct decomposition, since, loosely speaking, Vantaggi reverses the order in which I and S occur
in the notation. Care should therefore be taken in comparing results.
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Direct decomposition: AD(I,S∪W |C)⇒ AD(I,S |C)

Reverse decomposition: AD(I∪W,S |C)⇒ AD(I,S |C)

Direct weak union: AD(I,S∪W |C)⇒ AD(I,S |C∪W )

Reverse weak union: AD(I∪W,S |C)⇒ AD(I,S |C∪W )

Direct contraction: AD(I,S |C) & AD(I,W |C∪S)⇒ AD(I,S∪W |C)

Reverse contraction: AD(I,S |C) & AD(W,S |C∪ I)⇒ AD(I∪W,S |C)

Direct intersection: if S∩W = /0, then

AD(I,S |C∪W ) & AD(I,W |C∪S)⇒ AD(I,S∪W |C)

Reverse intersection: if I∩W = /0, then

AD(I,S |C∪W ) & AD(W,S |C∪ I)⇒ AD(I∪W,S |C)

This result—and our proof for it in Appendix 6.D201—is very similar to,
and heavily inspired by, the work of Vantaggi [101, Theorem 7.1].16 The main
difference is that Vantaggi does not include the two redundancy properties,
since L-separation is defined only for pairwise disjoint subsets I, S and C of G.
Moral’s version of AD-separation does not require I, S and C to be pairwise
disjoint, but it does not satisfy direct redundancy, and proofs for a number of
other properties are not given [76, Theorem 4].

The following two results provide an alternative characterisation for
AD-separation. The first one shows that, as far as checking AD-separation
is concerned, we can restrict attention to pairwise disjoint sets I,S,C⊆G. The
second result establishes that, for such pairwise disjoint sets, AD-separation
can be characterised in terms of closed subsets of G. The proof for Theo-
rem 64y requires a few additional technical results and has therefore been
relegated to Appendix 6.E203.

Proposition 63. Consider any subsets I, S and C of G. Then

AD(I,S |C)⇔ AD(I \C,S\C |C) and (I \C)∩ (S\C) = /0.

16We provide a direct proof for Theorem 62x. However, as suggested to us by Barbara Van-
taggi, our result can probably be derived as a corollary of Reference [101, Theorem 7.1] as well.
A possible way of doing so could be to first prove (direct and reverse) redundancy and decom-
position (which is trivial) and to use these properties to try and infer (direct and reverse) weak
union, contraction and intersection from their ‘pairwise disjoint’ versions (which were proved by
Vantaggi in Reference [101, Theorem 7.1]).
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Proof of Proposition 63x. First assume that AD(I,S |C). This clearly implies
that AD(I \C,S\C |C) because AD-separation satisfies direct and reverse de-
composition [see Theorem 62165]. This in turn implies that I \C and S \C are
disjoint, because otherwise, any element t ∈ (I \C)∩ (S\C) would be a trivial
path from I \C to S\C—containing only the single node t—that is not blocked
by C, thereby contradicting AD(I \C,S\C |C).

Next, assume that AD(I \C,S \C |C) and that I \C and S \C are disjoint.
Consider any path from i ∈ I to s ∈ S. If i ∈ C or s ∈ C, this path is trivially
blocked [due to B1163 or B4163, respectively]. If i /∈C and s /∈C, then i ∈ I \C
and s ∈ S \C, which implies that the path is blocked by C because we know
that AD(I \C,S\C |C).

Theorem 64. Consider pairwise disjoint subsets I, S and C of G. Then
AD(I,S |C) if and only if there is some closed subset K of G such that S ⊆ K,
P(K)⊆C, I ⊆ N(K) and D(K)∩C = /0.

6.5.2 Graphoid properties of credal networks

The main reason why we have introduced AD-separation is because credal
networks under epistemic irrelevance satisfy a property that is very similar to
the classical d-separation result in Bayesian networks: for the irrelevant natural
extension of a credal network, AD-separation implies epistemic irrelevance. In
order to prove this, the starting point is the following factorisation property.

Theorem 65. Consider any pairwise disjoint I,S,C⊆G such that AD(I,S |C).
Then for all xC ∈XC, g ∈ G (XI)>0 and f ∈ G (XS):

gI{xC} f ∈D irr
G ⇔ I{xC} f ∈D irr

G .

Proof of Theorem 65. It follows from Theorem 64 that there is a closed subset
K of G such that S⊆K, P(K)⊆C, I ⊆N(K) and D(K)∩C = /0. By combining
Lemma 78(ii)183 with the fact that P(K)⊆C and D(K)∩C = /0, we infer that
I{xC} = I{xC∩N(K)}I{xP(K)}I{xC∩K}. Now let g′ := gI{xC∩N(K)}, g′′ := I{xC∩N(K)} and
f ′ := I{xC∩K} f , then

gI{xC} f = gI{xC∩N(K)}I{xP(K)}I{xC∩K} f = g′I{xP(K)} f ′

and
I{xC} f = I{xC∩N(K)}I{xP(K)}I{xC∩K} f = g′′I{xP(K)} f ′.

Since f ′ ∈G (XK), g′ ∈G (XN(K))>0 and g′′ ∈G (XN(K))>0, we can now apply
Proposition 55157 twice to find that

gI{xC} f ∈D irr
G ⇔ g′I{xP(K)} f ′ ∈D irr

G ⇔ f ′ ∈D irr
KcxP(K)

⇔ g′′I{xP(K)} f ′ ∈D irr
G ⇔ I{xC} f ∈D irr

G .
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Using this factorisation property, it is now fairly easy to prove that AD-
separation implies epistemic irrelevance.

Corollary 66. Consider any pairwise disjoint sets I,S,C ⊆ G such that
AD(I,S |C). The irrelevant natural extension then satisfies the irrelevance
statement IR(I,S |C): for any xC ∈XC and BI ∈P /0(XI), we have that

margS(D
irr
G c{xC}×BI) = margS(D

irr
G cxC)

and
Pirr

S (·c ·×{xC}×BI) = Pirr
S (·c ·×{xC})

and
margc

S(M
irr
G c|{xC}×BI) = margc

S(M
irr
G c|xC)

and
margc

S(F
irr
G c|{xC}×BI) = margc

S(F
irr
G c|xC).

Proof of Corollary 66. Consider any f ∈ G (XS). Since IBI is an element of
G (XI)>0, and because AD(I,S | C), we can apply Theorem 65x and Equa-
tion (4.6)107 to find that

f ∈margS(D
irr
G c{xC}×BI)⇔ IBI I{xC} f ∈D irr

G

⇔ I{xC} f ∈D irr
G ⇔ f ∈margS(D

irr
G cxC).

This concludes the proof for the first equation of this corollary. The other three
equalities now follow from Theorem 42139 and 46142, Proposition 49143 and
the discussion in Section 4.3.4119.

This result can be regarded as a generalisation of Corollary 61161 [see
Lemma 82205]. From a practical point of view, the significance of Corol-
lary 66 is that it allows us to detect epistemic irrelevancies in the joint model
in a purely graphical way, without resorting to numerical computations; all we
have to do is check for AD-separation.

6.5.3 On the relevance of graphoid axioms

Graphoid properties are not only associated with graphical separation criteria.
They can also be applied to notions of independence. In that context, these
properties are often regarded as axioms that a notion of independence should
satisfy, and it has become common practice to compare different notions of
independence by means of the graphoid axioms that they satisfy.

For example, for epistemic irrelevance, one could wonder whether the op-
erator IR( · , · | ·) satisfies the properties that were proved to hold for the oper-
ator AD( · , · | ·) in Theorem 62165. It turns out that some of them are indeed
satisfied. For example, it follows easily from the definition of epistemic h-
irrelevance that this notion of independence satisfies decomposition and weak
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union, in both their direct and reverse form. It could be argued—and we would
agree—that this is a reason for preferring epistemic h-irrelevance over epis-
temic value- or subset-irrelevance, because, if the conditioning events have
zero lower probability, epistemic value- and subset-irrelevance may start to
fail some of these properties.17

However, we think that care should be taken in regarding graphoid proper-
ties as axioms. Although we agree that it is reasonable to require any notion of
independence to satisfy decomposition and weak union, this is no longer ob-
vious for some of the other graphoid properties. Consider for example direct
contraction. If we were to impose that epistemic irrelevance should satisfy this
graphoid property, this would mean that

IR(I,S |C) and IR(I,W |C∪S)⇒ IR(I,S∪W |C) (6.7)

Consider now the framework of sets of desirable gambles and, for simplicity,
let C = /0. The left-hand side of the above implication then holds if and only if,
for all BI ∈P /0(XI):

margS(DGcBI) = margS(DG) and margW (DGc{xS}×BI) = margW (DGcxS).

In other words, if we let DS∪WcBI
:= margS∪W (DGcBI), then margS(DS∪WcBI )

and margW (DS∪WcBIcxS) do not depend on BI . According to Equation (6.7),
this should then imply that DS∪WcBI is independent of BI . We do not consider
it reasonable to enforce this, because it would mean that DS∪WcBI should be
fully determined by margS(DS∪WcBI ) and margW (DS∪WcBIcxS) or, more gener-
ally, that for any combination of a belief model for XS and a belief model for
XW conditional on XS, there is only one compatible belief model for XS∪W . It
is well known that, in general, this is not true for imprecise-probabilistic belief
models. We think that this is perfectly normal, and that there is no fundamental
reason why such a property should hold. For that reason, we consider it unrea-
sonable to regard direct contraction as an axiom. A similar argument can be
used to question direct intersection as a reasonable axiom. It is therefore not
surprising that many notions of epistemic irrelevance and epistemic indepen-
dence do not satisfy these graphoid properties; see for example Reference [22].
Moral’s version of epistemic irrelevance in Reference [76] is an important ex-
ception because it does satisfy direct contraction.18 However, this comes at a
serious cost. We discuss this further in Section 6.5.4y; for now, it suffices to
say that on Moral’s version of epistemic irrelevance, it is impossible for two
variables to be mutually irrelevant, except in some degenerate cases.

17Reference [22] provides some examples for epistemic value-irrelevance.
18Moral also proves that it satisfies direct intersection, but his terminology differs from ours as

well as from that in Reference [22]. Moral’s notion of direct intersection is what we call reverse
intersection. We prefer our terminology because of the obvious similarity between what we call
direct contraction and direct intersection.

169



6.5 SEPARATION PROPERTIES

In any case, regardless of whether or not we regard graphoid properties as
axioms that a notion of independence should satisfy, they are definitely useful
from a computational point of view. For example, in Bayesian networks, the
proof for the counterpart to Corollary 66168—with AD-separation replaced by
d-separation and epistemic irrelevance replaced by stochastic independence—
makes use of the fact that—given some positivity assumptions—stochastic in-
dependence satisfies all graphoid properties [78]. By applying these properties
to the independence assessments that are used to define a Bayesian network,
one can infer new independencies, and those are exactly the ones that corre-
spond to the d-separations in the DAG of a Bayesian network.

If one tries to mimic this approach in our context, then since epistemic ir-
relevance can fail some of the graphoid properties, one might (erroneously) be
led to suspect that Corollary 66168 cannot be proved. In fact, we believe that
this might be one of the main reasons why a result such as Corollary 66168
has thus far not appeared in the literature on credal networks. However, as
our proof for Corollary 66168 illustrates, it is not necessary to make use of the
graphoid properties of epistemic irrelevance: our proof for Theorem 65167—of
which Corollary 66168 is a straightforward consequence—only uses Proposi-
tion 55157 and a number of properties of AD-separation. At no point does it
invoke graphoid properties of epistemic irrelevance.

We conclude from all this that there is no need to focus on notions of in-
dependence that satisfy as many graphoid properties as possible, such as, for
example, complete independence. It is neither compelling from a philosophical
point of view—because some of the graphoid properties do not seem to make
reasonable sense as axioms of independence—nor necessary from a practi-
cal point of view—because it might be, and actually is, possible to provide
alternative proofs. In principle, any intuitive notion of independence can be
used to construct an uncertainty model. From a practical point of view, the
mathematical properties of the resulting model are more important than the
graphoid properties of the notion of independence that was used to construct
it. Graphoid properties can serve as useful tools for proving such mathemat-
ical properties, but—as we have illustrated—other approaches can be equally
successful.

6.5.4 A crucial difference with earlier work by Moral

Readers who are familiar with Moral’s results in Reference [76] may have no-
ticed the similarity between Reference [76, Theorem 5] and the first equation
in Corollary 66168. The main difference between our approach and Moral’s
approach, besides the fact that we use a slightly different separation criterion,
is that he enforces a more stringent version of epistemic irrelevance than we
do. He calls XI epistemically irrelevant to XS if and only if margI∪S(DG) is
the unique smallest set of desirable gambles on XI∪S that has margI(DG) and
margS(DG) as its marginal models and according to which XI is irrelevant to
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s1 s2 s3 s4

Ds1 Ds2 Ds3 Ds4

Figure 6.5: Example of a credal network consisting of disconnected nodes

XS in our sense. He refers to our concept of irrelevance as ‘weak’ epistemic ir-
relevance. Consequently, Moral’s results in Reference [76] are not applicable
to all directed acyclic networks. As a simple example: his concept of irrel-
evance does not allow for two variables to be mutually irrelevant, except in
some degenerate uninformative cases. Therefore, his results cannot be applied
to a network consisting of two unconnected nodes. More generally speaking,
we believe that his results can only be applied to networks where every pair of
nodes is connected by means of a directed path.

6.6 THE INDEPENDENT NATURAL EXTENSION

Let us now consider the special case of a credal network for which the under-
lying DAG has no edges or, equivalently, consists of disconnected nodes only;
Figure 6.5 provides an example with four nodes. Every node has then nei-
ther parents nor descendants. Consequently, for every s ∈ G, the local model
Ds—or Ps, Ms or Fs—is unconditional and all the other nodes are non-parent
non-descendants: N(s) = G \ {s}. Hence, in this particular case, it follows
from Equation (5.2)136 that

D irr
G = posi({I{zG\{s}} f : s ∈ G, zG\{s} ∈XG\{s}, f ∈Ds}).

The right-hand side of this equation is equal to the independent natural exten-
sion19 of the local models Ds, s ∈ G, denoted by ⊗s∈GDs [45, Equation (18)],
which was defined in Reference [45] as the most conservative independent
product of the local models Ds, s ∈ G, meaning that it is the smallest coherent
set DG of desirable gambles on XG such that margs(DG) =Ds for all s∈G and
such that XI is epistemically value-irrelevant to XS for all disjoint subsets I and
S of G. We conclude that for the particular case of a credal network that has no
edges, the irrelevant natural extension D irr

G is equal to the independent natural
extension⊗s∈GDs. Therefore, the properties that we have established—or will
establish—for D irr

G can be translated—trivially—to properties of ⊗s∈GDs.20

19Not to be confused with the notion of independent natural extension that was discussed in
Section 5.5145. However, given that the notion of independent natural extension that we consider
here is a special case of the one in Section 5.5145, there is no conflict in terminology.

20In fact, many of our results for D irr
G can be regarded as generalisations of results that were

proved to hold for ⊗s∈GDs in Reference [45]. For example, Proposition 15 in Reference [45]
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Since the ideas in Section 5.4.1135 are basically an extension of those in Ref-
erence [45], this is of course not that surprising.

A similar connection can be established in terms of lower previsions.
Again, consider a credal network that consists of disconnected nodes. For
every s ∈ G, the local model is then a coherent lower prevision Ps on G (Xs).
Due to the coherence of the local lower previsions, we can assume without loss
of generality that, for all s ∈ G, Ps = PDs , with Ds a coherent set of desirable
gambles on Xs.

The independent natural extension ⊗s∈GPs of the local lower previsions
Ps, s ∈ G, is defined as the most conservative coherent lower prevision PG on
G (XG) that has Ps as its marginal models and that satisfies a specific set of
independence assessments; see Reference [46] for an exact definition. Loosely
speaking, XI should be epistemically value-irrelevant to XS for all disjoint sub-
sets I and S of G. However, since PG—and ⊗s∈GPs—is taken to be an uncon-
ditional lower prevision on G (XG) instead of a conditional lower prevision on
C (XG), our notion of epistemic value-irrelevance needs to be replaced by a
more cumbersome version.

In any case, for our present purposes, it suffices to know that ⊗s∈GPs is
equal to P⊗s∈GDs [45, Theorem 21]. Combined with Theorem 42139 and the
fact that D irr

G = ⊗s∈GDs, this implies that, for credal networks that consist of
disconnected nodes, the unconditional part Pirr

G (·) := Pirr
G (·cXG) of the irrel-

evant natural extension Pirr
G (·c·) is equal to the independent natural extension

⊗s∈GPs of the local models Ps, s ∈ G. Consequently, our results for Pirr
G can

be used—often trivially—to obtain new properties—or alternative proofs for
‘old’ properties—of ⊗s∈GPs.21 The following two properties are important
examples. For all s ∈ G, consider a gamble fs ∈ G (Xs). Then

⊗s∈GPs

(
∑
s∈G

fs

)
= Pirr

G

(
∑
s∈G

fs

)
= ∑

s∈G
Ps( fs)

and, if there is some t ∈ G such that fs ≥ 0 for all s ∈ G\{t}, then also

is a special case of Proposition 38137, Proposition 17 and 18 in Reference [45] are both implied
by Theorem 60160, and by combining Theorem 41138 with Corollary 61161 we can generalise
Theorem 19 in Reference [45]. Furthermore, the associativity result in Reference [45, Theorem 20]
can be regarded as a special case of Proposition 67y: it suffices to apply Proposition 67y to a
DAG consisting of two separate, disconnected sub-DAGs, each of which consists of disconnected
nodes only.

21 For example, Proposition 13 in Reference [46] is basically a consequence of Corollary 44141
and the fact that Pirr

G (·c·) is coherent, Theorem 18 in Reference [46] is a consequence of Corol-
lary 59160 [with h = 0], and the (strong) factorisation and (strong) external additivity properties
in Reference [46, Theorems 22 and 24 and Proposition 27] can be derived from Corollaries 57159
and 59160, respectively. Furthermore, the associativity result in Reference [46, Theorem 23] can
be regarded as a special case of Proposition 67y: it suffices to apply Proposition 67y to a DAG
consisting of two separate, disconnected sub-DAGs, each of which consists of disconnected nodes
only.
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⊗s∈GPs

(
∏
s∈G

fs

)
= Pirr

G

(
∏
s∈G

fs

)
=

{
Pt( ft)∏s∈G\{t}Ps( fs) if Pt( ft)≥ 0;
Pt( ft)∏s∈G\{t}Ps( fs) if Pt( ft)≤ 0.

Due to Corollary 44141, these properties are trivial consequences of Corollar-
ies 57159 and 59160. They are extremely closely related—almost identical—to
properties that were referred to as external additivity and factorisation in Ref-
erence [46].

The definition of the independent natural extension can also be applied to
‘local’ models that depend on more than one variable. Consider a partition
G1, . . . ,Gm of G and, for every i ∈ {1, . . . ,m}, a coherent set Di of desirable
gambles on G (XGi) or a coherent lower prevision Pi on G (XGi). Again, with-
out loss of generality, we can assume that Pi = PDi

for all i ∈ {1, . . . ,m}. If we
regard Di—or Pi—as the local model of a variable Xi := XGi that takes values
in Xi := XGi , we can apply the same concepts as above. In this way, the inde-
pendent natural extension of the sets of desirable gambles Di, i ∈ {1, . . . ,m},
is equal to

⊗m
i=1Di := posi

(
{I{zG\Gi

} f : i ∈ {1, . . . ,m}, zG\Gi ∈XG\Gi , f ∈Di}
)

and the independent natural extension ⊗m
i=1Pi of the lower previsions Pi,

i ∈ {1, . . . ,m} is given by ⊗m
i=1Pi := P⊗m

i=1Di
. Furthermore, if fi ∈ G (XGi)

for all i ∈ {1, . . . ,m}, then

⊗m
i=1 Pi

( m

∑
i=1

fi

)
=

m

∑
i=1

Pi( fi) (6.8)

and, if there is some j ∈ {1, . . . ,m} such that fi ≥ 0 for all i 6= j in {1, . . . ,m},
then also

⊗m
i=1 Pi

( m

∏
i=1

fi

)
=


P j( f j) ∏

1≤i≤m
i6= j

Pi( fi) if P j( f j)≥ 0;

P j( f j) ∏
1≤i≤m

i6= j

Pi( fi) if P j( f j)≤ 0.
(6.9)

Our next two results show that the connection between the irrelevant natu-
ral extension of a credal network and this notion of independent natural exten-
sion goes much further than the simple case that was discussed in the beginning
of this section. The following proposition is proved in Appendix 6.F206.

Proposition 67. Consider a partition G1, . . . ,Gm of G such that P(Gi) = /0 for
all i ∈ {1, . . . ,m} or, equivalently, let the DAG of the complete network consist
of m separate, disconnected sub-DAGs, each of which has Gi as its set of nodes,
for i ∈ {1, . . . ,m}. Then D irr

G =⊗m
i=1D

irr
Gi

and Pirr
G (·) =⊗m

i=1Pirr
Gi
(·).
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s1

s3

s2 s4

s5

s6

s7

G = {s1,s2,s3,s4,s5,s6,s7}

D irr
G = D irr

G1
⊗D irr

G2

D irr
G1

D irr
G2

G1 = {s1,s2,s3} G2 = {s4,s5,s6,s7}

Figure 6.6: A simple illustration of Proposition 67x

Figure 6.6 illustrates this result with a simple example. It should be clear that
the connections that were established earlier in this section—D irr

G =⊗s∈GDs
and Pirr

G = ⊗s∈GPs—correspond to special cases of Proposition 67x.22 The
following corollary generalises this proposition even further.

Corollary 68. Consider a closed subset K of G and a partition K1, . . . ,Km of
K such that PK(Ki) = /0 for all i ∈ {1, . . . ,m} or, equivalently, let the sub-DAG
that corresponds to the set K consist of m separate, disconnected sub-DAGs,
each of which has Ki as its set of nodes, for i ∈ {1, . . . ,m}. Then P(Ki)⊆ P(K)
for all i∈ {1, . . . ,m} and, for all xP(K) ∈XP(K): D irr

KcxP(K)
=⊗m

i=1D
irr
KicxP(Ki)

and
Pirr

KcxP(K)
(·) =⊗m

i=1Pirr
KicxP(Ki)

(·).

Proof of Corollary 68. Fix i ∈ {1, . . . ,m} and consider any s ∈ P(Ki). Then
there is some q ∈ Ki ⊆ K such that s ∈ P(q) and s /∈ Ki. Due to our assumption
that PK(Ki) = /0, this implies that s /∈ K. Since q ∈ K, this allows us to infer
that s ∈ P(K). Hence, for all i ∈ {1, . . . ,m}, we have that P(Ki)⊆ P(K).

The rest of the proof is now a direct consequence of Proposition 67x. It
suffices to apply Proposition 67x to a credal network that has the sub-DAG
associated with K as its graphical structure and whose local models are given
by Equation (6.1)155 or (6.4)158.

Figure 6.7y illustrates this result with a simple example.
Results that are analogous to Proposition 67x and Corollary 68 can

also be obtained in terms of sets of linear previsions and sets of probabil-
ity mass functions, in a trivial way, by defining ⊗m

i=1Mi := M⊗m
i=1PMi

and
⊗m

i=1Fi := F⊗m
i=1MFi

= F⊗m
i=1PFi

.

22Choose m = |G| and let the sets Gi be singletons, each of which contains a different s ∈ G.
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s1
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s2

s4

s5

s7

s8

s6

s9

xs3

xs5

D irr
K1cxs5

D irr
K2c(xs3 ,xs5 )

G = {s1,s2,s3,s4,s5,s6,s7,s8,s9}

K = {s4,s6,s7,s8}
P(K) = {s3,s5}

K1 = {s6,s8}
PK(K1) = /0
P(K1) = {s5}

K2 = {s4,s7}
PK(K2) = /0
P(K2) = {s3,s5} D irr

Kc(xs3 ,xs5 )
= D irr

K1cxs5
⊗D irr

K2c(xs3 ,xs5 )

Figure 6.7: A simple illustration of Corollary 68x

t sDt Dscxt

Figure 6.8: Example of a credal network with two nodes and one edge

6.7 A CONNECTION WITH MARGINAL EXTENSION

Another important special case are credal networks whose graphical structure
consist of two nodes—G= {t,s}—and a single edge, as depicted in Figure 6.8.
In this particular case, we use Dt �DscXt as an alternative notation for D irr

G . It
follows from Proposition 36136 that

Dt �DscXt =
{

f ∈ G (Xt ×Xs)\{0} : f = ft +∑xt∈Xt I{xt} fscxt , (6.10)

ft ∈Dt ∪{0}, (∀xt ∈Xt) fscxt ∈Dscxt ∪{0}
}
.

In its current form, this expression does not seem all that useful. The reason
why we introduce a special notation for it is because the corresponding lower
prevision can be evaluated very easily.

Proposition 69. Consider a coherent set Dt of desirable gambles on Xt and,
for all xt ∈Xt , a coherent set Dscxt of desirable gambles on Xs. Let Pt := PDt
and, for all xt ∈Xt , let Pscxt

:= PDscxt
. It then holds for all f ∈ G (Xt ×Xs)

that
PDt�DscXt

( f ) = Pt(PscXt ( f )),
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where PscXt ( f ) is a gamble on Xt that is defined by

PscXt ( f )(xt) := Pscxt ( f (xt ,Xs)) for all xt ∈Xt .

Proof of Proposition 69x. Fix f ∈ G (Xt ×Xs).
First consider any α ∈R such that f −α ∈Dt�DscXt . It then follows from

Equation (6.10)x that

f = α + ft + ∑
xt∈Xt

I{xt} fscxt ,

where ft ∈Dt ∪{0} and, for all xt ∈Xt , fscxt ∈Dscxt ∪{0}. Since this implies
that

PscXt ( f ) = α + ft + ∑
xt∈Xt

I{xt}Pscxt ( fscxt )≥ α + ft ,

it follows from the coherence of Pt that Pt(PscXt ( f ))≥ α . Since this is true for
any α ∈ R such that f −α ∈ Dt �DscXt , we infer from Equation (2.3)40 that
PDt�DscXt

( f )≤ Pt(PscXt ( f )).
Next, consider any α ∈ R such that PDt�DscXt

( f ) < α . Equation (2.3)40

then implies that f −α /∈Dt �DscXt . Fix ε ∈ R>0. Let ft := PscXt ( f )−α− ε

and, for all xt ∈Xt :

fscxt := f (xt ,Xs)−Pscxt ( f (xt ,Xs))+ ε ∈Dscxt ,

where the inclusion follows from Equations (2.5)41 and (2.6)41 and the fact that
Pscxt ( f (xt ,Xs)−Pscxt ( f (xt ,Xs))) = 0. Assume ex absurdo that ft ∈Dt . Since

f −α = PscXt ( f )−α− ε + f +PscXt ( f )+ ε = ft + ∑
xt∈Xt

I{xt} fscxt ,

Equation (6.10)x and the fact that f −α /∈ Dt �DscXt then allows us to infer
that f −α = 0. This implies that PDt�DscXt

( f ) = α , a contradiction. Hence,
we may conclude that ft /∈Dt and therefore also that Pt( ft)≤ 0. Since

Pt( ft) = Pt(PscXt ( f )−α− ε) = Pt(PscXt ( f ))−α− ε,

this implies that Pt(PscXt ( f ))≤ α +ε . Since this is true for every ε ∈R>0, we
infer that Pt(PscXt ( f )) ≤ α . Since this inequality holds for every α ∈ R such
that PDt�DscXt

( f )< α , it follows that Pt(PscXt ( f ))≤ PDt�DscXt
( f ).

Inspired by this result, we are led to introduce the lower prevision Pt �PscXt
on G (Xt ×Xs), defined by

Pt �PscXt ( f ) := Pt(PscXt ( f )) for all f ∈ G (Xt ×Xs). (6.11)
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It follows from Proposition 69175, Theorem 42139 and our definition for
Dt �DscXt that Pt � PscXt = Pirr

G (·cXG), which also implies that this lower
prevision is coherent. The coherent lower prevision Pt �PscXt is called the
marginal extension of Pt and PscXt [70]. It was first considered by Walley [106,
Section 6.7.2], who showed that it is the most conservative coherent lower pre-
vision on G (Xt ×Xs) that is jointly coherent with the local models that are
used to define it.

A similar concept can be introduced in terms of sets of linear previsions
as well, simply by applying Equation (6.11)x elementwise. This leads us to
define

Mt �MscXt := {Pt �PscXt : Pt ∈Mt ,(∀xt ∈Xt)Pscxt ∈Mscxt} (6.12)

The following result establishes that Mt �MscXt is closely related to the cor-
responding concept for lower previsions.

Proposition 70. Consider a coherent lower prevision Pt on G (Xt) and,
for all xt ∈ Xt , consider a coherent lower prevision Pscxt on G (Xs). Let
Mt := MPt and, for all xt ∈ Xt , let Mscxt := MPscxt

. It then holds that
Mt �MscXt = MPt�PscXt

.23

Proof of Proposition 70. We only prove that MPt�PscXt
⊆ Mt �MscXt ; the

other direction is trivial. So consider any PG ∈MPt�PscXt
. We will prove that

PG ∈Mt �MscXt .
Let G := {t,s} and consider a coherent conditional lower prevision P∗G(·c·)

on C (XG) such that P∗G(·) = Pt(PscXt (·)), P∗t (·) = Pt(·) and, for all xt ∈Xt ,
P∗s (·cxt) = Pt(·) [it was proved by Walley that this is always possible [106,
Section 6.7.2]; see Reference [70, Theorem 1] as well]. It then follows from
Proposition 853 that there is some P∗G(·c·) ∈MP∗G(·c·) such that P∗G(·) = PG(·).
Since P∗G(·c·) ∈MP∗G(·c·), we find that P∗t ∈MPt and that, for all xt ∈ Xt ,
P∗tcxt

(·) := P∗s (·cxt) ∈MPscxt
. Since the law of iterated prevision [see Sec-

tion 4.2.6113] tells us that P∗G(·) = P∗t (P
∗
s (·cXt)) = P∗t (P

∗
scXt

(·)), we find that
P∗G(·) ∈Mt �MscXt and therefore also that PG ∈Mt �MscXt .

Combined with Theorem 46142 and the fact that Pt �PscXt = Pirr
G (·cXG), this

result implies that Mt �MscXt = M irr
G cXG.

Finally, we let Ft �FscXt be the set of all probability mass functions p on
Xt ×Xs for which there are pt ∈Ft and, for all xt ∈Xt , pscxt ∈Fscxt such
that

p(zt ,zs) = pt(zt)psczt (zs) for all (zt ,zs) ∈Xt ×Xs. (6.13)

23A weaker version of this result was already proved by Walley [106, Section 6.7.4]. He
showed that Pt �PscXt = PMt�MscXt

; a direct consequence of our result.
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It should be clear that if Ft = FMt and, for all xt ∈ Xt , Fscxt = FMscxt
,

then Ft �FscXt is the set of probability mass functions that corresponds to
Mt �MscXt . Consequently, it follows from Proposition 49143 that—again
in the particular case of Figure 6.8175—Ft �FscXt := F irr

G cXG. Equa-
tion (6.13)x also clearly shows that, in essence, marginal extension is just
an elementwise constructive application of Bayes’s rule.

We now extend these concepts to a more general setting, where the ‘local’
models are multivariate themselves. Instead of restricting attention to the case
G = {t,s}, we consider an arbitrary set of nodes G, a binary partition T,S of G
and a subset C of T .

We start with the framework of sets of desirable gambles. Let DT be a
coherent set of desirable gambles on XT and, for all xC ∈XC, let DScxC be a
coherent set of desirable gambles on XS. Then

DT �DScXC
:=
{

f ∈ G (XG))\{0} : f = fT +∑xT∈XT I{xT } fScxT ,

fT ∈DT ∪{0}, (∀xT ∈XT ) fScxT ∈DScxC ∪{0}
}
.

is a coherent set of desirable gambles on XG. Although it might not seem
so at first sight, this is just a special case of Equation (6.10)175. This should
be obvious if C = T ; it then suffices to identify Xt and Xs with XT and XS,
respectively. For C ⊂ T , we also need to identify DScXC with DScXT : for all
xT ∈XT , we let DScxT

:= DScxC , where xC is fully determined by xT because
C is a subset of T .

For the framework of lower previsions, as in the simple case above, this
turns into a very convenient expression. Consider a coherent lower previ-
sion PT on G (XT ) and, for all xC ∈ XC, a coherent lower prevision PScxC
on G (XS). For all f ∈ G (XG), we then let

PT �PScXC
( f ) := PT (PScXC

( f )), (6.14)

where—more or less as in Section 4.2.6113—PScXC
( f ) is a gamble on XT ,

defined by
(PScXC

( f ))(xT ) := PScxC
( f (xT ,XS)) for all xT ∈XT .

The operator PT � PScXC
is a coherent lower prevision on G (XG) and—

similarly to what we found for DT �DScXC —is a special case of the notion of
marginal extension that was considered above,24 with Xt := XT , Xs := XS and,
for all xT ∈XT , PScxT

:= PScxC
. Proposition 69175 can therefore be applied to

this special case as well: if PT = PDT
and, for all xC ∈XC, PScxC

= PDScxC
,

then PT �PScXC
= PDT�DScXC

.

24Also, if C = /0, then PT �PS is equal to the forward irrelevant natural extension of PT and
PS, as studied in Reference [44].
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Figure 6.9: A simple illustration of Proposition 71

A similar concept can be introduced for sets of linear previsions. Consider
a set MT of linear previsions on G (XT ) and, for all xC ∈XC, a set MScxC of
linear previsions on G (XS). We then define

MT �MScXC
:= {PT �PScXT : PT ∈MT ,(∀xT ∈XT )PScxT ∈MScxC}.

Since this is again a special case of the simple version that was discussed
above, Proposition 70177 applies here as well: if MT = MPT and, for all
xC ∈XC, MScxC = MPScxC

, then MT �MScXC
:= MPT�PScXC

.
Finally, we let FT �FScXC be the set of all probability mass functions pG

on XG for which there are pT ∈FT and, for all xT ∈XT , pScxT ∈FScxC such
that

pG(zG) = pT (zT )pSczT (zS) for all zG ∈XG.

If FT = FMT and, for all xC ∈XC, FScxC = FMScxC
, then FT �FScXC is the

set of probability mass functions that corresponds to MT �MScXC .
Our next result shows that the connection between credal networks un-

der epistemic irrelevance and the concept of marginal extension—and its
generalisations—goes far beyond the simple case that was discussed in the
beginning of this section. The proof of this proposition can be found in Ap-
pendix 6.G207.

Proposition 71. Consider a set S⊆G such that T :=G\S is an ancestral set—
P(T ) = /0—and such that, for all t ∈ T , S ⊆ D(t). Then D irr

G = D irr
T �D irr

ScXP(S)
and therefore also

Pirr
G (·) = Pirr

T (·)�Pirr
ScXP(S)

(·)
and

M irr
G cXG = (M irr

T cXT )� (M irr
ScXP(S)

cXS)

and
F irr

G cXG = (F irr
T cXT )� (F irr

ScXP(S)
cXS).
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The example in Figure 6.9x provides a simple illustration. The following
corollary establishes a similar result for sub-DAGs; see Figure 6.10y for an
example.

Corollary 72. Let K be a closed subset of G and consider a binary par-
tition S,T of K such that PK(T ) = /0 and, for all t ∈ T , S ⊆ DK(t). Then
P(S)\PK(S)⊆ P(K) and, for all xP(K) ∈XP(K):

D irr
KcxP(K)

= D irr
TcxP(T )

�D irr
Sc(xP(S)\PK (S),XPK (S))

and

Pirr
KcxP(K)

(·) = Pirr
TcxP(T )

(·)�Pirr
Sc(xP(S)\PK (S),XPK (S))

(·)
and

M irr
KcxP(K)

cXK = (M irr
TcxP(T )

cXT )� (M irr
Sc(xP(S)\PK (S),XPK (S))

cXS)

and

F irr
KcxP(K)

cXK = (F irr
TcxP(T )

cXT )� (F irr
Sc(xP(S)\PK (S),XPK (S))

cXS).

Proof of Corollary 72. Consider any t ∈ P(S) \PK(S). Since t ∈ P(S), there
is some s ∈ S such that t ∈ P(s) \ S. Therefore, we can infer from t /∈ PK(S)
that t /∈ K, which implies that t ∈ P(s) \K. Since s ∈ S ⊆ K, it follows that
t ∈ P(K). Hence, we find that P(S)\PK(S)⊆ P(K).

The rest of the proof is now a direct consequence of Proposition 71x. It
suffices to apply Proposition 71x to a credal network that has the sub-DAG
associated with K as its graphical structure and whose local models are given
by Equation (6.1)155, (6.4)158, (6.5)158 or (6.6)158.

6.8 WHAT IF WE APPLY REGULAR EXTENSION?

We conclude this chapter by taking a quick look at the regular extension
Rirr

G (·c·) that corresponds to Pirr
G (·c·), in the sense of Section 3.4.790. Since

Pirr
G (·c·) is coherent and therefore coincides with its natural extension, we know

from Equation (3.10)90 that Rirr
G (·c·) is defined by

Rirr
G ( f cO) :=

{
Rirr∗

G ( f cO) if Pirr
G (O)> 0

Pirr
G ( f cO) if Pirr

G (O) = 0
for all ( f ,O) ∈ C (XG), (6.15)

where Rirr∗
G (·c·) is the regular extension of the unconditional lower prevision

Pirr
G (·) := Pirr

G (·cXG), as defined by Equation (2.29)63. The following result
shows that Rirr

G (·c·) satisfies a marginalisation property that is very similar to
that of Pirr

G (·c·) [see Corollary 60160]. The proof is rather elaborate and has
therefore been moved to Appendix 6.H208.
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6.8 WHAT IF WE APPLY REGULAR EXTENSION?

s1

s3

s2

s4

s5

s7

s8

s6

s9

s10

xs1

xs2

xs8

D irr
Sc(xs8 ,Xs4 ,Xs5 )

D irr
Tc(xs1 ,xs2 )

G = {s1,s2,s3,s4,s5,s6,s7,s8,s9,s10}

K = {s3,s4,s5,s7,s10}
P(K) = {s1,s2,s8}

T = {s3,s4,s5}
PK(T ) = /0
P(T ) = {s1,s2}

S = {s7,s10}
PK(S) = {s4,s5}
P(S) = {s4,s5,s8} D irr

Kc(xs1 ,xs2 ,xs8 )
= D irr

Tc(xs1 ,xs2 )
�D irr

Sc(xs8 ,Xs4 ,Xs5 )

Figure 6.10: A simple illustration of Corollary 72x

Theorem 73. Let K be a closed subset of G and consider any xP(K) ∈XP(K)

and BN(K) ∈P /0(XN(K)). Then

Rirr
K (·c·×{xP(K)}×BN(K))=

Rirr
KcxP(K)

(·c·) if Pirr
PN(K)({xP(K)}×BN(K))> 0;

Pirr
KcxP(K)

(·c·) if Pirr
PN(K)({xP(K)}×BN(K)) = 0.

This result simplifies if we are only interested in the ‘unconditional’ part of
Rirr

K (·c ·×{xP(K)}×BN(K)). In that case, we find that Rirr
K (·c{xP(K)}×BN(K)) is

equal to Pirr
KcxP(K)

(·).

Corollary 74. Let K be a closed subset of G. Then for every xP(K) ∈XP(K)

and BN(K) ∈P /0(XN(K)), it holds that Rirr
K (·c{xP(K)}×BN(K)) = Pirr

KcxP(K)
(·).

Proof of Corollary 74. Since the unconditional parts of Rirr
KcxP(K)

(·c·) and

Pirr
KcxP(K)

(·c·) are trivially equal, this follows directly from Theorem 73.

By applying this property to sets of the form K = {s}, we find that regular
extension recovers the local models that were used to construct Pirr

G (·c·).

Corollary 75. Consider any s ∈ G, xP(s) ∈ XP(s) and BN(s) ∈P /0(XN(s)).
Then Rirr

s (·c{xP(s)}×BN(s)) = Rirr
s (·cxP(s)) = PscxP(s)

.

Proof of Corollary 75. Since Corollary 44141 implies that Pirr
scxP(s)

(·) = PscxP(s)
,

this is an immediate consequence of Corollary 74 [with K := {s}].
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6.A TECHNICAL LEMMAS ABOUT PROPERTIES OF DAGS

Lemma 76. Fix any K ⊆ G and k ∈ K. Then PK(k) = P(k)∩K = P(k)\P(K)
and P(k)\PK(k) = P(k)∩P(K).

Proof of Lemma 76. We start by proving that PK(k) = P(k) ∩ K. An ele-
ment q ∈ PK(k) is by definition a parent of k according to the sub-DAG
that corresponds to K, therefore q is also a parent of k in the original DAG:
q ∈ P(k). Since q is an element of the sub-DAG, we have q ∈ K and therefore
q ∈ P(k)∩K. Conversely, if q ∈ P(k)∩K, then q is clearly a parent of k in the
sub-DAG that corresponds to K and therefore q ∈ PK(k).

Next we show that P(k)∩K =P(k)\P(K). By definition of P(K) and since
k ∈ K, we know that q ∈ P(k) implies q ∈ P(K)∪K and we therefore have that
P(k) ⊆ P(K)∪K. Since P(K) and K are disjoint by definition, we infer that
P(k)∩K = P(k)\P(K).

The final property is a direct consequence of the previous equality:

P(k)\PK(k) = P(k)\ (P(k)\P(K)) = P(k)∩P(K).

Lemma 77. Consider any K ⊆ G, k ∈ K, s ∈ G and t ∈ PN(s). Then the
following statements hold:

(i) P(t)⊆ PN(s);

(ii) N(K) =
⋂

q∈K N(q);

(iii) N(K)⊆ N(k);

(iv) A(K) = /0 if and only if P(K) = /0;

(v) If P(K) = /0, then K is a closed set;

(vi) If P(K) = /0, then G\K is a closed set and D(G\K) = /0.

(vii) If D(K) = /0, then G\K ⊆ PN(k).

Proof of Lemma 77. (i). Consider any q ∈ P(t). By the definition of PN(s), it
suffices to show that q /∈ {s}∪D(s). Assume ex absurdo that sv q, then we de-
rive from q@ t (since q ∈ P(t)) that s@ t, meaning that t ∈D(s), contradicting
t ∈ PN(s).

(ii). This follows at once from:

N(K) := G\ (P(K)∪K∪D(K)) = G\
( ⋃

q∈K

P(q)∪K∪
⋃

q∈K

D(q)
)

= G\
( ⋃

q∈K

(P(q)∪{q}∪D(q))
)

=
⋂

q∈K

(G\ (P(q)∪{q}∪D(q)) =
⋂

q∈K

N(q).
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(iii)x. Trivial due to (ii)x.
(iv)x. Since P(K) ⊆ A(K), it suffices to prove that P(K) = /0 implies

A(K) = /0 or, equivalently, that A(K) 6= /0 implies P(K) 6= /0. So, assume that
A(K) 6= /0. This means that there is some s ∈ K such that A(s)\K 6= /0, which
in turn implies that there is some t @ s such that t /∈ K. This means that there is
a directed sequence of nodes t = r1, . . . ,ri, . . . ,rn = s, n > 1, in G. Let i be the
first index in {1, . . . ,n} for which ri ∈ K. Since s ∈ K, we know that i always
exists and, since t /∈ K, we know that i > 1. Since ri−1 ∈ P(ri) and ri−1 /∈ K,
we find that P(ri)\K 6= /0 and therefore, since ri ∈ K, that P(K) 6= /0.

(v)x. Assume that P(K) = /0. We then know from (iv)x that A(K) = /0.
Consider now any s, t ∈ K and any k ∈G such that sv kv t. We need to prove
that k∈K. If k = t, this is trivial. Otherwise, we know that k@ t, which implies
that k ∈ A(t) and therefore, since t ∈ K, that k ∈ A(K)∪K. Since A(K) = /0,
this implies that k ∈ K.

(vi)x. Assume that P(K) = /0. We then know from (iv)x that A(K) = /0.
We first prove that G \K is a closed set. So consider any s, t ∈ G \K and

any k ∈ G such that s v k v t. We need to prove that k ∈ G \K. Assume ex
absurdo that k ∈ K. Since sv k and s /∈ K, this implies that s ∈ A(K). This is
a contradiction because A(K) = /0.

Next, we prove that D(G\K) = /0. Assume ex absurdo that D(G\K) 6= /0.
This implies that there is some k∈K and s∈G\K such that sv k and therefore
s ∈ A(k). This is a contradiction because A(K) = /0.

(vii)x. Assume that D(K) = /0. This implies that D(k) ⊆ K and therefore
also that {k}∪D(k)⊆ K. Since PN(k) = G\ ({k}∪D(k)), this in turn implies
that G\K ⊆ PN(k).

Lemma 78. Consider any closed K ⊆ G and any k ∈ K. Then the following
statements hold:

(i) P(K)∩D(K) = /0;

(ii) P(K), N(K), K and D(K) constitute a partition25 of G;

(iii) PN(K) and D(K) are closed subsets of G;

(iv) P(PN(K)) = /0;

(v) PN(D(K)) = PN(K)∪K;

(vi) P(K)⊆ PN(k);

(vii) PN(K)⊆ PN(k);

25We use the term ‘partition’ in a somewhat looser sense than is usual, as we do not exclude
that some of its elements may be empty.
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(viii) P(K)\P(k)⊆ N(k).

Proof of Lemma 78x. (i)x. Assume ex absurdo that q ∈ P(K) and q ∈ D(K).
Then q ∈ D(K) implies the existence of some r1 ∈ K such that r1 v q and
q ∈ P(K) implies the existence of some r2 ∈ K such that q v r2. We find
that r1 v q v r2, with r1,r2 ∈ K. Since K is closed, this implies that q ∈ K,
contradicting both q ∈ P(K) and q ∈ D(K).

(ii)x. Direct consequence of (i)x and the definition of P(K), D(K) and
N(K).

(iii)x. To prove that PN(K) is closed, consider q1,q2 ∈ PN(K) and r ∈ G
such that q1 v r v q2 and assume ex absurdo that r /∈ PN(K), implying, due
to (ii)x, that r ∈ K∪D(K). This in turn implies that there is some u ∈ K such
that uv r and therefore uv q2, which implies that q2 ∈K∪D(K), contradicting
q2 ∈ PN(K) due to (ii)x.

To prove that D(K) is closed, consider q1,q2 ∈ D(K) and r ∈ G such that
q1v rv q2 and assume ex absurdo that r /∈D(K). q1 ∈D(K) implies that there
is some u∈K such that uv q1 and therefore uv r, implying that r ∈K∪D(K)
and, since r /∈ D(K), that r ∈ K. We thus find that u v q1 v r, with u,r ∈ K.
Because K is closed, this tells us that q1 ∈ K, contradicting q1 ∈ D(K).

(iv)x. Assume ex absurdo that q ∈ P(PN(K)), so there is some r ∈ PN(K)
such that q ∈ P(r). By definition of P(PN(K)), this implies that q /∈ PN(K),
which in turn implies, due to (ii)x, that q ∈ K∪D(K). By definition of D(K),
this implies that there is some u ∈ K such that u v q. Since q @ r (because
q ∈ P(r)), we find that u @ r, implying that r ∈ K ∪D(K). Due to (ii)x, this
contradicts r ∈ PN(K).

(v)x. First notice that it suffices to show that D(D(K)) = /0. Indeed,
this implies PN(D(K)) = G \D(K) = PN(K) ∪ K by applying (ii)x once
for the closed D(K) and once for the closed K. So assume ex absurdo that
q ∈ D(D(K)), implying that there is some r ∈ D(K) such that r @ q. Since
r ∈ D(K) in turn implies that there is some u ∈ K such that u @ r, we find
that u @ q, implying that q ∈ K ∪D(K). But q /∈ D(K) because we know that
q ∈ D(D(K)), and therefore q ∈ K. Since u,q ∈ K and u @ r @ q, we derive
from K being closed that r ∈ K, contradicting r ∈ D(K).

(vi)x. Choose q ∈ P(K) and assume, ex absurdo, that q /∈ PN(k). This
implies that q ∈ {k} ∪D(k), or equivalently, that k v q, and therefore that
q ∈ K∪D(K), contradicting q ∈ P(K) because of (ii)x.

(vii)x. Direct consequence of (vi)x and Lemma 77(iii)182.
(viii). Choose q ∈ P(K) \P(k) and assume ex absurdo that q /∈ N(k), im-

plying that q ∈ P(k)∪{k}∪D(k) or, since q /∈ P(k), that q ∈ {k}∪D(k) and
therefore kv q. This in turn implies that q∈K∪D(K), contradicting q∈ P(K)
because of (ii)x.

Lemma 79. Consider any closed set K ⊆ G and any k ∈ K, s ∈ G \K and
t ∈ PN(s)∩K. Then the following statements hold:
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(i) DK(k) = D(k)∩K;

(ii) NK(k) = N(k)∩K;

(iii) PNK(k) = PN(k)∩K;

(iv) N(K), P(K)\P(k) and NK(k) are pairwise disjoint subsets of N(k);

(v) PK(t)⊆ PN(s)∩K;

(vi) P(t)\PK(t)⊆ PN(s)∩P(K).

Proof of Lemma 79x. (i). An element q∈DK(k) is by definition a descendant
of k according to the sub-DAG that corresponds to K, therefore q is also a
descendant of k in the original DAG: q ∈ D(k). Since q is an element of the
sub-DAG, we have q ∈ K and therefore q ∈ D(k)∩K.

Conversely, if q ∈ D(k)∩K, then q ∈ D(k) implies the existence of a di-
rected sequence of nodes k = r1, . . . ,rn = q, n ≥ 1, in G. Since k ∈ K and
q ∈ K, we can derive from K being closed that for all i ∈ {1, . . . ,n}, ri ∈ K,
implying that in the sub-DAG that corresponds to K, q is also a descendant of
k: q ∈ DK(k).

(ii). This follows at once from the definitions of NK(k) and N(k):

NK(k) = K \ (PK(k)∪{k}∪DK(k)) = K \ ((P(k)∩K)∪{k}∪ (D(k)∩K))

= K \ (P(k)∪{k}∪D(k)) = N(k),

where the second equality is due to Lemma 76182 and (i).
(iii). This follows at once from the definitions of PNK(k) and PN(k):

PNK(k) = PK(k)∪NK(k) = (P(k)∩K)∪ (N(k)∩K)

= (P(k)∪N(k))∩K = : PN(k)∩K,

where the second equality is due to Lemma 76182 and (ii).
(iv). N(K), P(K) and K are pairwise disjoint subsets of G because of

Lemma 78(ii)183. Since P(K)\P(k)⊆ P(K) and NK(k)⊆ K, this implies that
N(K), P(K)\P(k) and NK(k) are pairwise disjoint as well. It only remains to
show that N(K), P(K)\P(k) and NK(k) are subsets of N(k). For N(K), this is
due to Lemma 77(iii)182. For P(K)\P(k), this is due to Lemma 78(vi)183 and
for NK(k), this follows from (ii).

(v). By definition, PK(t) ⊆ K. To show that PK(t) ⊆ PN(s), use
Lemma 76182 to find that PK(t) ⊆ P(t), and use Lemma 77(i)182 to infer that
P(t)⊆ PN(s).

(vi). We know from Lemma 76182 that P(t) \ PK(t) ⊆ P(t) ∩ P(K).
Lemma 77(i)182 implies that P(t) ⊆ PN(s) and therefore also that P(t) ∩
P(K)⊆ PN(s)∩P(K). Hence, P(t)\PK(t)⊆ PN(s)∩P(K).
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Lemma 80. Consider any closed K ⊆ G and s ∈ PN(K) and let P1(K) and
P2(K) be an arbitrary partition of P(K).26 Let K2 := K ∩D(P2(K)) and
K1 := K \K2 = K \D(P2(K)) and choose any k1 ∈ K1 and k2 ∈ K2. The fol-
lowing statements hold:

(i) K2 is a closed subset of G;

(ii) P(K1)⊆ P1(K);

(iii) P2(K)⊆ P(K2);

(iv) K1 ⊆ PN(k2);

(v) P(k1)∩K = P(k1)∩K1;

(vi) P(k1)∩P(K) = P(k1)∩P(K1);

(vii) PN(s)∩K1 = K \D((P(K)\PN(s))∪ (PN(s)∩P2(K))).

Proof of Lemma 80. (i). Consider q1,q2 ∈ K ∩D(P2(K)) and r ∈ G such that
q1 v rv q2. Since K is closed, we have that r ∈K, and we are left to show that
r ∈ D(P2(K)). That q1 ∈ D(P2(K)) implies the existence of some u ∈ P2(K)
such that u v q1 and therefore u v r, implying that r ∈ P2(K)∪D(P2(K)).
Since r ∈ K, we know that r /∈ P(K) and therefore r /∈ P2(K). We infer that
indeed r ∈ D(P2(K)).

(ii). Consider any q ∈ P(K1), implying the existence of some r ∈ K1 such
that q ∈ P(r) and q /∈ K1. We are first going to show that q /∈ P2(K)∪K2.
Assume ex absurdo that q ∈ P2(K)∪K2, implying that q ∈ P2(K)∪D(P2(K)),
which means that there is some u ∈ P2(K) for which uv q and, since q ∈ P(r),
that u v r. From this we infer that r ∈ P2(K)∪D(P2(K)) and therefore that
r ∈ D(P2(K)), since r ∈ K1 ⊆ K implies that r /∈ P(K), which in turn implies
that r /∈ P2(K). We have thus found that r ∈ K ∩D(P2(K)) = K2, contradict-
ing r ∈ K1. Hence indeed q /∈ P2(K)∪K2, implying q /∈ P2(K) and q /∈ K2.
Since also q /∈ K1, we find that q /∈ K, which implies that q ∈ P(K), since
q∈ P(r) with r ∈K1 ⊆K. Since P1(K) and P2(K) form a partition of P(K) and
q /∈ P2(K), we conclude that indeed q ∈ P1(K).

(iii). Consider any q ∈ P2(K) ⊆ P(K), implying the existence of some
r ∈ K such that q ∈ P(r). From this we infer that q v r and therefore
r ∈ P2(K)∪D(P2(K)). Since r ∈ K, we see that r /∈ P(K) and therefore
r /∈ P2(K), whence r ∈D(P2(K)). Together with r ∈K, this implies that r ∈K2.
Since q∈ P(K) implies q /∈K and therefore q /∈K2, we can infer from q∈ P(r)
that q ∈ P(K2).

26Here too, we allow that one of the sets P1(K) or P2(K) may be empty; see Footnote 25183.
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(iv). Consider any q ∈ K1. Assume ex absurdo that q /∈ PN(k2), imply-
ing that q ∈ {k2} ∪D(k2) and therefore that k2 v q. Since k2 ∈ K2, we in-
fer that k2 ∈ D(P2(K)), implying the existence of some r ∈ P2(K) such that
r v k2 and therefore r v q, which in turn implies that q ∈ P2(K)∪D(P2(K)).
Since q ∈ K1 ⊆ K, we have that q /∈ P(K) and therefore that q /∈ P2(K). Hence
q ∈ D(P2(K)) and therefore also q ∈ K2, since q ∈ K. This contradicts q ∈ K1,
since K1 and K2 form a partition of K.

(v)x. Since it trivially holds that P(k1)∩K ⊇ P(k1)∩K1, we only need
to prove that P(k1)∩K ⊆ P(k1)∩K1. So consider any q ∈ P(k1)∩K. By
definition of P(K1), we derive from q ∈ P(k1) that either q ∈ P(K1) or q ∈ K1.
Assume ex absurdo that q ∈ P(K1), then due to (ii)x, q ∈ P1(K). Since q ∈ K
implies q /∈ P(K) and therefore q /∈ P1(K), we have a contradiction. We have
thus found that q ∈ K1 and, since q ∈ P(k1), that q ∈ P(k1)∩K1.

(vi)x. Since we know from (ii)x that P(K1) ⊆ P1(K), we find that
P(K1) ⊆ P(K) and therefore P(k1)∩ P(K) ⊇ P(k1)∩ P(K1). To prove that
P(k1)∩P(K) ⊆ P(k1)∩P(K1), consider any q ∈ P(k1)∩P(K). By definition
of P(K1), we derive from q ∈ P(k1) that either q ∈ P(K1) or q ∈ K1. Since
q ∈ P(K), we have that q /∈ K and therefore also that q /∈ K1. Hence q ∈ P(K1)
and therefore, since q ∈ P(k1), also q ∈ P(k1)∩P(K1).

(vii)x. First, notice that by subtracting both sides of the expression from
K, we obtain the equivalent statement

K2∪ (K1 \PN(s)) = K∩D((P(K)\PN(s))∪ (PN(s)∩P2(K))).

Since (P(K) \PN(s))∪ (PN(s)∩P2(K)) = P2(K)∪ (P(K) \PN(s)) and also
K2∪ (K1 \PN(s)) = K2∪ (K \PN(s)), this is in turn equivalent to:

K2∪ (K \PN(s)) = K∩D(P2(K)∪ (P(K)\PN(s))).

We will prove this statement instead of the original one.
We first prove that K2 ∪ (K \ PN(s)) ⊆ K ∩D(P2(K)∪ (P(K) \ PN(s))).

Consider therefore any q ∈ K2 ∪ (K \ PN(s)). On the one hand, if q ∈ K2,
then q ∈ D(P2(K)). Since q /∈ P2(K) ∪ (P(K) \ PN(s)) because K and
P2(K)∪ (P(K) \ PN(s)) ⊆ P(K) are disjoint, this allows us to infer that in-
deed q ∈ K∩D(P2(K)∪ (P(K)\PN(s))). On the other hand, if q ∈ K \PN(s),
then q /∈ PN(s) and therefore q ∈ {s} ∪D(s). Since s ∈ PN(K) and there-
fore due to Lemma 78(ii)183, s /∈ K, we know from q ∈ K that q 6= s. We
can therefore infer that q ∈ D(s), implying the existence of a directed path
s = r1, . . . ,rn = q, n > 1. Now let j be the first index in {1, . . . ,n} for which
r j ∈K. Since q∈K, such an index exists, and since s /∈K, j > 1, and therefore
we can consider the node r j−1. Since r j−1 ∈ P(r j), r j ∈ K and r j−1 /∈ K, we
infer that r j−1 ∈ P(K). Since sv r j−1, we have r j−1 ∈ {s}∪D(s) and therefore
r j−1 /∈ PN(s), whence r j−1 ∈ P(K)\PN(s) ⊆ P2(K)∪ (P(K)\PN(s)). Since
q /∈ P2(K)∪ (P(K)\PN(s)) because q ∈ K, and since r j−1 v q, we obtain that
q ∈ K∩D(P2(K)∪ (P(K)\PN(s))).
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We now prove that K2 ∪ (K \PN(s)) ⊇ K ∩D(P2(K)∪ (P(K) \PN(s))).
Consider any q ∈ K ∩D(P2(K)∪ (P(K) \ PN(s))). This implies that there
is some r ∈ P2(K)∪ (P(K)\PN(s)) such that r v q. On the one hand, if
r ∈ P2(K), then q ∈ D(P2(K)) because q ∈ K and therefore q /∈ P(K), whence
indeed q ∈ K∩D(P2(K)) = K2 ⊆ K2∪ (K \PN(s)). On the other hand, if
r ∈ P(K)\PN(s), then since r /∈ PN(s), r ∈ {s} ∪D(s) and therefore s v r,
implying that s v q. We therefore find that q ∈ {s} ∪D(s), or equivalently,
that q /∈ PN(s). By combining this with the fact that q ∈ K, we obtain that
q ∈ K \PN(s)⊆ K2∪ (K \PN(s)).

6.B PROOF OF THEOREM 53

Proof of Theorem 53156. Fix a closed set K ⊆ G, consider any nonzero
f ∈ G (XK), nonzero h∈G (XPN(K)) and xP(K) ∈XP(K) such that f /∈D irr

KcxP(K)

and h /∈D irr
PN(K), and choose any f∗ ∈D irr

G and g ∈ G (XN(K))>0. We construct
a probability mass function pG on XG such that for the corresponding linear
prevision PG on G (XG): PG( f∗)> 0, PG(h)< 0 and PG(gI{xP(K)} f )< 0.

First of all, since f∗ ∈D irr
G , Proposition 36136 implies that

f∗ = ∑
s∈G

∑
zPN(s)∈XPN(s)

I{zPN(s)} fs,zPN(s) , (6.16)

where every fs,zPN(s) is an element of DsczP(s)
∪{0} and at least one of them is

non-zero.
As shown in the proof of Proposition 38137, it is possible to find, by re-

peated application of Lemma 52149, for all s ∈ G and all zP(s) ∈XP(s), a lo-
cal probability mass function ps(·czP(s)) on Xs with corresponding linear pre-
vision Ps(·|zP(s)) on G (Xs), such that ps(zsczP(s)) > 0 for all zs ∈ Xs, and
Ps( fs,zPN(s)czP(s))> 0 for all zN(s) ∈XN(s) for which fs,zPN(s) 6= 0. We will now
use these local probability mass functions to create, for specific closed subsets
S of G, Bayesian networks that have a graphical structure corresponding to this
closed subset S. By an argument similar to the one for local sets of desirable
gambles in Section 6.2154, we see that in order to do so, all that is needed is for
us to instantiate the value of XP(S). Every choice of yP(S) ∈XP(S) then yields,
for all s ∈ S and zPS(s) ∈XPS(s), a conditional local probability mass function
ps(·czPS(s)) and corresponding linear prevision Ps(·czPS(s)), obtained by identi-
fying them with ps(·czP(s)) and Ps(·czP(s)), where we let zP(s)\PS(s) = yP(s)\PS(s).
We denote the probability mass function of the resulting Bayesian network
by pS(·cyP(S)) and its corresponding linear prevision by PS(·cyP(S)). In order
to explicitly recall the specific choice of yP(S) ∈ XP(S) in the notation used
for the local models, we will also write ps(·czPS(s),yP(S)) := ps(·czPS(s)) and
Ps(·czPS(s),yP(S)) := Ps(·czPS(s)). For every fixed yP(S) ∈XP(S), the linear pre-
vision PS(·cyP(S)) has a number of useful properties.

A first and trivial property is that PS(1|yP(S)) = 1.
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Secondly, consider any s ∈ S. S is a closed subset of G and therefore,
due to Lemma 78(vi)183, P(S) ⊆ PN(s). It then holds for all zPN(s) ∈XPN(s)
such that fs,zPN(s) 6= 0 and zP(S) = yP(S), that PS(I{zPN(s)∩S} fs,zPN(s)cyP(S)) > 0.
To see why, first notice that because S is closed, PNS(s) = PN(s)∩ S due to
Lemma 79(iii)185. It then follows from the conditional independence proper-
ties of Bayesian networks that indeed

PS(I{zPN(s)∩S} fs,zPN(s)cyP(S)) = PS(I{zPNS(s)
} fs,zPN(s)cyP(S))

= PS(zPNS(s)cyP(S))Ps( fs,zPN(s)czPNS(s),yP(S))

= PS(zPNS(s)cyP(S))Ps( fs,zPN(s)czPS(s),yP(S))

= PS(zPNS(s)cyP(S))Ps( fs,zPN(s)czP(s))> 0,

where the inequality holds because Ps( fs,zPN(s)czP(s)) and PS(zPNS(s)cyP(S)) are
strictly positive. For Ps( fs,zPN(s)czP(s)), this is true by construction, and for
PS(zPNS(s)cyP(S)), this holds because all local probabilities are by construction
strictly positive and therefore the global ones are too.

Thirdly, fix s∈G\S and zPN(s) ∈XPN(s) such that zP(S)∩PN(s) = yP(S)∩PN(s).
By applying the factorisation and conditional independence properties of the
resulting Bayesian network, we find that

PS(I{zPN(s)∩S}cyP(S))

= ∑
wS∈XSwPN(s)∩S=zPN(s)∩S

pS(wScyP(S))

= ∑
wS∈XSwPN(s)∩S=zPN(s)∩S

∏
k∈S

pk(wkcwPS(k),yP(S))

= ∏
k∈PN(s)∩S

pk(zkczPS(k),yP(S)) ∑
wS∈XSwPN(s)∩S=zPN(s)∩S

∏
k∈S\PN(s)

pk(wkcwPS(k),yP(S))

= ∏
k∈PN(s)∩S

pk(zkczPS(k),yP(S))

= ∏
k∈PN(s)∩S

pk(zkczP(k)).

To understand the third equality, notice that since S is closed, Lemma 79(v)185
implies, for all k ∈ PN(s)∩ S, that PS(k) ⊆ PN(s)∩ S. For the fifth equal-
ity, it suffices to apply Lemma 79(vi)185 to find that for all k ∈ PN(s)∩ S:
P(k)\PS(k)⊆ PN(s)∩P(S). The fourth equality is a bit more complicated.
It is trivial if S \PN(s) = /0, so suppose that S \PN(s) 6= /0. Pick any leaf `
from the sub-DAG that corresponds to the nodes in S \PN(s); this is possible
because S \PN(s) 6= /0 and a DAG always has at least one leaf. We then find
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that

∑
wS∈XSwPN(s)∩S=zPN(s)∩S

∏
k∈S\PN(s)

pk(wkcwPS(k),yP(S))

= ∑
wS\{`}∈XS\{`}

wPN(s)∩S=zPN(s)∩S

∑
w`∈X`

∏
k∈S\PN(s)

pk(wkcwPS(k),yP(S))

= ∑
wS\{`}∈XS\{`}

wPN(s)∩S=zPN(s)∩S

∏
k∈(S\PN(s))\{`}

pk(wkcwPS(k),yP(S)) ∑
w`∈X`

p`(w`cwPS(`),yP(S))

= ∑
wS\{`}∈XS\{`}

wPN(s)∩S=zPN(s)∩S

∏
k∈(S\PN(s))\{`}

pk(wkcwPS(k),yP(S)).

The first equality holds because ` /∈ PN(s)∩ S, and the second one because
` /∈ PS(k) for all k ∈ (S \PN(s)) \ {`}, since ` was assumed to be a leaf of
the sub-DAG that corresponds to S\PN(s). By repeating this argument for the
sub-DAG that corresponds to the nodes in (S\PN(s))\{`}, we can remove yet
another node, and if we go on in this way until no node remains, we eventually
obtain that indeed

∑
wS∈XSwPN(s)∩S=zPN(s)∩S

∏
k∈S\PN(s)

pk(wkcwPS(k),yP(S)) = 1.

Hence, for any s∈G\S and zPN(s) ∈XPN(s) such that zP(S)∩PN(s) = yP(S)∩PN(s):

PS(I{zPN(s)∩S}cyP(S)) = ∏
k∈PN(s)∩S

pk(zkczP(k)).

We can derive two additional things from this result. First of all,
PS(I{zPN(s)∩S}cyP(S)) is strictly positive because all local probabilities are strictly
positive by construction. And secondly, PS(I{zPN(s)∩S}cyP(S)) does not de-
pend on the particular value of yP(S)\PN(s) because for all k ∈ PN(s) ∩ S,
P(k)⊆ PN(s) due to Lemma 77(i)182.

If we now no longer consider a fixed value of yP(S) ∈XP(S), then the results
mentioned above have a number of immediate consequences. First of all, the
gamble PS(1cXP(S)) is constant and equal to 1. Secondly, for all s ∈ S and
zPN(s) ∈ XPN(s) such that fs,zPN(s) 6= 0, PS(I{zPN(s)∩S} fs,zPN(s)czP(S)) > 0. And
thirdly, for all s ∈ G\S and zPN(s) ∈XPN(s) the gamble

PS(I{zPN(s)∩S}czP(S)∩PN(s),XP(S)\PN(s))

is constant, strictly positive, and equal to ∏k∈PN(s)∩S pk(zkczP(k)).
We are now ready for the main proof, which consists of four parts. The

first three parts are separate. In each of these three parts, we will construct
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specific probability mass functions and linear previsions and show that they
satisfy a number of properties. In the fourth part of the proof, we will combine
these models and their properties with each other to construct pG and PG, and
to show that PG( f∗)> 0, PG(h)< 0 and PG(gI{xP(K)} f )< 0.

For the first part of the proof, we consider the Bayesian networks that
correspond to the subset S := D(K) of G, which is closed because of
Lemma 78(iii)183. Every yP(D(K)) ∈XP(D(K)) yields a Bayesian network, and
therefore a probability mass function pD(K)(·cyP(D(K))) on XD(K) and an as-
sociated linear prevision PD(K)(·cyP(D(K))) on G (XD(K)). If we do not fix
the value of yP(D(K)) ∈XP(D(K)), then PD(K)(·cXP(D(K))) satisfies a number
of properties, which have already been proved above for general closed sub-
sets S of G. First of all, the gamble PD(K)(1cXP(D(K))) is constant and equal
to 1. Secondly, for all s ∈ D(K) and zPN(s) ∈XPN(s) such that fs,zPN(s) 6= 0,
PD(K)(I{zPN(s)∩D(K)} fs,zPN(s)czP(D(K)))> 0. And thirdly, for all s ∈ G\D(K) and
zPN(s) ∈XPN(s) the gamble

PD(K)(I{zPN(s)∩D(K)}czP(D(K))∩PN(s),XP(D(K))\PN(s))

is constant, strictly positive, and equal to ∏k∈PN(s)∩D(K) pk(zkczP(k)).
For the second part of the proof, we start by considering the following

collection of gambles on XK :

A ∗
KcxP(K)

:=
{
I{zPN(s)∩K1

} fs,zPN(s) : s ∈ K, zPN(s) ∈XPN(s),

zP(s)\PK(s) = xP(s)\PK(s), P(s)∩K ⊆ K1 ⊆ K,

fs,zPN(s) 6= 0
}
,

which is a finite subset of D irr
KcxP(K)

:= posi(A irr
KcxP(K)

). To see why, first no-

tice that because PNK(s) = PN(s)∩K due to Lemma 79(iii)185, I{zPN(s)∩K1
} is

clearly the (finite) sum of all indicators I{yPNK (s)} such that yPNK(s) ∈XPNK(s)

and yPN(s)∩K1 = zPN(s)∩K1 . By definition of the posi operator, we are now
left to show that for any yPNK(s) ∈XPNK(s) such that yPN(s)∩K1 = zPN(s)∩K1 , we
have I{yPNK (s)} fs,zPN(s) ∈ A irr

KcxP(K)
. By construction of A ∗

KcxP(K)
, we know that

zP(s)\PK(s) = xP(s)\PK(s), and it therefore suffices to show that yPK(s) = zPK(s).
To see why this last equality holds, first notice that PK(s) = P(s)∩K due to
Lemma 76182. Also, P(s)∩K ⊆ PN(s)∩K1 because P(s)∩K ⊆ K1 by con-
struction of A ∗

KcxP(K)
and P(s)∩K ⊆ PN(s) by definition of PN(s). Therefore,

we find that PK(s) ⊆ PN(s)∩K1, implying that yPK(s) = zPK(s) is a direct con-
sequence of yPN(s)∩K1 = zPN(s)∩K1 .

Due to the coherence of D irr
KcxP(K)

and the fact that f 6= 0 and f /∈D irr
KcxP(K)

,

we have that 0 /∈ posi({− f} ∪D irr
KcxP(K)

). To see why this holds, assume ex
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absurdo that 0 ∈ posi({− f}∪D irr
KcxP(K)

). Hence, since D irr
KcxP(K)

is coherent, we

can find λ1,λ2 > 0 and f ′ ∈D irr
KcxP(K)

such that λ1(− f )+λ2 f ′= 0 and therefore

f = (λ2/λ1) f ′ ∈D irr
KcxP(K)

, contradicting f /∈D irr
KcxP(K)

.

Since A ∗
KcxP(K)

and G (XK)>0 are both subsets of D irr
KcxP(K)

, we can infer

from 0 /∈ posi({− f}∪D irr
KcxP(K)

) that

0 /∈ posi({− f}∪A ∗
KcxP(K)

∪G (XK)>0) = : E({− f}∪A ∗
KcxP(K)

).

We also know that {− f}∪A ∗
KcxP(K)

is a finite subset of G (XK) and therefore,
we can apply Lemma 52149. This provides us with a probability mass func-
tion pKcxP(K)

on XK with an associated linear prevision PKcxP(K)
on G (XK) for

which pKcxP(K)
(zK) > 0 for all zK ∈XK , PKcxP(K)

( f ′) > 0 for all f ′ ∈A ∗
KcxP(K)

and PKcxP(K)
( f )< 0.

Using this probability mass function pKcxP(K)
on XK and the local prob-

ability mass functions that were introduced avove, we will now construct,
for every instantiation yP(K) ∈XP(K), a conditional probability mass function
pK(·cyP(K)) on XK . So consider any yP(K) ∈ XP(K). If yP(K) = xP(K), we
define pK(·cxP(K)) := pKcxP(K)

. If yP(K) is such that yk 6= xk for all k ∈ P(K),
then pK(·cyP(K)) is constructed in the same way as already discussed above for
general closed sets S: we use the local probability mass functions and the in-
stantiation yP(K) of the parent variables XP(K) to construct a Bayesian network
that has a graphical structure corresponding to the subset K of G. Unlike the
one in the preceding paragraphs, this construction does not take into account
the gamble f . In all other cases, we need a more complex construction that
includes the previous two as a special case.

Let us denote by P1(K) the largest subset of P(K) such that yk = xk for all
k ∈ P1(K) and let P2(K) := P(K)\P1(K). We also let K2 := K∩D(P2(K)) and
K1 := K \D(P2(K)). These sets depend on yP(K), but we have not reflected this
in the notation to avoid cluttering up the formulas and because yP(K) is fixed in
this part of the proof.

Due to Lemma 80(i)186, K2 is a closed subset of G. Therefore, as we
already explained for general closed sets S, for any zP(K2) ∈XP(K2), we can
construct a strictly positive probability mass function pK2(·czP(K2)) on XK2
and an associated linear prevision PK2(·czP(K2)) on G (XK2), by using the local
probability mass functions to construct a Bayesian network that has a graphical
structure corresponding to the subset K2 of G. By our results for general closed
sets S above, with S = K2, we know for all s ∈ G and zPN(s) ∈XPN(s) such
that fs,zPN(s) 6= 0 that PK2(I{zPN(s)∩K2

} fs,zPN(s)czP(K2)) > 0 if s ∈ K2 and that the
gamble PK2(I{zPN(s)∩K2

}czP(K2)∩PN(s),XP(K2)\PN(s)) is constant, strictly positive
and equal to ∏k∈PN(s)∩K2

pk(zkczP(k)) if s /∈ K2.
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Next, we define the mass function pK1(·cxP1(K)) on XK1 as the marginali-
sation of pKcxP(K)

to XK1 : for all zK1 ∈XK1 , we let

pK1(zK1cxP1(K)) := ∑
wK∈XK
wK1=zK1

pKcxP(K)
(wK).

Since all the terms in this sum are strictly positive by construction, we have
that pK1(zK1cxP1(K))> 0 for all zK1 ∈XK1 .

For the corresponding linear prevision PK1(·cxP1(K)) on G (XK1), we get
that PK1( f ′cxP1(K)) = PKcxP(K)

( f ′) for all f ′ ∈ G (XK1).
We can now construct the probability mass function pK(·cyP(K)) by defin-

ing, for all zK ∈XK :

pK(zKcyP(K)) :=pK1(zK1cyP1(K))pK2(zK2cyP(K2)∩P(K),zP(K2)\P(K))

=pK1(zK1cxP1(K))pK2(zK2cyP(K2)∩P(K),zP(K2)\P(K)),

which makes sense because P(K2)\P(K) ⊆ K1. It should be clear that for all
zK ∈XK , we have that pK(zK |yP(K))> 0.

For the corresponding linear prevision PK(·|yP(K)), the law of iterated pre-
vision yields for all f ′ ∈ G (XK) that

PK( f ′cyP(K)) = PK1(PK2( f ′cyP(K2)∩P(K),XP(K2)\P(K))cxP1(K)). (6.17)

This linear prevision has two useful properties that we will need further on
in this proof.

For the first property of PK(·|yP(K)), consider any s ∈ K, implying that
P(K) ⊆ PN(s) due to Lemma 78(vi)183. It then holds for all zPN(s) ∈XPN(s)
such that fs,zPN(s) 6= 0 and zP(K) = yP(K), that PK(I{zPN(s)∩K} fs,zPN(s)czP(K)) > 0.
To see why, consider two distinct cases: s ∈ K2 and s ∈ K1.

If s ∈ K2, then because K1 ⊆ PN(s) due to Lemma 80(iv)186, we infer from
Equation (6.17) that

PK(I{zPN(s)∩K} fs,zPN(s)cyP(K))

= PK1(PK2(I{zK1}
I{zPN(s)∩K2

} fs,zPN(s)cyP(K2)∩P(K),XP(K2)\P(K))cxP1(K))

= PK1(I{zK1}
PK2(I{zPN(s)∩K2

} fs,zPN(s)cyP(K2)∩P(K),zP(K2)\P(K))cxP1(K))

= PK1(I{zK1}
cxP1(K))PK2(I{zPN(s)∩K2

} fs,zPN(s)cyP(K2)∩P(K),zP(K2)\P(K))

= pK1(zK1cxP1(K))PK2(I{zPN(s)∩K2
} fs,zPN(s)czP(K2))> 0,

where the final expression is strictly positive because both factors have been
proved above to be strictly positive.
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If s ∈ K1, then because P(K) ⊆ PN(s), we infer from Equation (6.17)x
that

PK(I{zPN(s)∩K} fs,zPN(s)cyP(K))

= PK1(PK2(I{zPN(s)∩K1
} fs,zPN(s)I{zPN(s)∩K2

}czP(K2)∩PN(s),XP(K2)\PN(s))cxP1(K))

= PK1(I{zPN(s)∩K1
} fs,zPN(s)PK2(I{zPN(s)∩K2

}czP(K2)∩PN(s),XP(K2)\PN(s))cxP1(K))

= PK1(I{zPN(s)∩K1
} fs,zPN(s)cxP1(K))PK2(I{zPN(s)∩K2

}czP(K2)∩PN(s),XP(K2)\PN(s))

> 0.

The third equality holds because PK2(I{zPN(s)∩K2
}czP(K2)∩PN(s),XP(K2)\PN(s)) has

been shown to be a constant gamble earlier on and the final expression is
strictly positive because the two constituting factors are strictly positive. For
PK2(I{zPN(s)∩K2

}czP(K2)∩PN(s),XP(K2)\PN(s)), this has already been proved. For
PK1(I{zPN(s)∩K1

} fs,zPN(s)cxP1(K)), this follows from

PK1(I{zPN(s)∩K1
} fs,zPN(s)cxP1(K)) = PKcxP(K)

(I{zPN(s)∩K1
} fs,zPN(s))> 0,

where the final inequality holds because I{zPN(s)∩K1
} fs,zPN(s) ∈ A ∗

KcxP(K)
. This

last inclusion in turn holds because P(s)∩K = P(s)∩K1 ⊆ K1 ⊆ K due to
Lemma 80(v)186, and because P(s)∩P(K) = P(s)∩P(K1) ⊆ P(K1) ⊆ P1(K)
due to Lemma 80(vi)186&(ii)186 and therefore zP(s)∩P(K) = xP(s)∩P(K), implying
that zP(s)\PK(s) = xP(s)\PK(s) due to Lemma 76182.

The second property of PK(·cyP(K)) is that for all s ∈ PN(K) and
zPN(s) ∈XPN(s) such that zP(K)∩PN(s) = yP(K)∩PN(s), PK(I{zPN(s)∩K}cyP(K))

is strictly positive and does not depend on the particular value of
yP(K)\PN(s) that was used to construct PK(·cyP(K)). To prove this,
we start by recalling from the discussion above that, because s /∈ K2,
PK2(I{zPN(s)∩K2

}czP(K2)∩PN(s),XP(K2)\PN(s)) is a constant, strictly positive gam-
ble that is furthermore equal to ∏k∈PN(s)∩K2

pk(zkczP(k)), which implies that
this is also the case for

PK2(I{zPN(s)∩K2
}czP(K2)∩PN(s),y(P(K2)∩P(K))\PN(s),X(P(K2)\P(K))\PN(s)).

Since the fact that zP(K)∩PN(s) = yP(K)∩PN(s) allows us to infer that
zP(K2)∩P(K)∩PN(s) = yP(K2)∩P(K)∩PN(s), this implies that

PK2(I{zPN(s)∩K2
}cyP(K2)∩P(K),z(P(K2)\P(K))∩PN(s),X(P(K2)\P(K))\PN(s))

is a constant, strictly positive gamble that is equal to ∏k∈PN(s)∩K2
pk(zkczP(k)).
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Hence, using Equation (6.17)193, we find that

PK(I{zPN(s)∩K}cyP(K))

= PK1(PK2(I{zPN(s)∩K1
}I{zPN(s)∩K2

}cyP(K2)∩P(K),XP(K2)\P(K))cxP1(K))

= PK1(I{zPN(s)∩K1
}

PK2(I{zPN(s)∩K2
}cyP(K2)∩P(K),z(P(K2)\P(K))∩PN(s),X(P(K2)\P(K))\PN(s))

cxP1(K))

= PK1(I{zPN(s)∩K1
}cxP1(K)) ∏

k∈PN(s)∩K2

pk(zkczP(k)).

The property that we are trying to prove will therefore follow if we can show
that both PK1(I{zPN(s)∩K1

}cxP1(K)) and ∏k∈PN(s)∩K2
pk(zkczP(k)) are strictly posi-

tive and do not depend on the particular value of yP(K)\PN(s) ∈XP(K)\PN(s).
We start with PK1(I{zPN(s)∩K1

}cxP1(K)). It is by definition equal to
PKcxP(K)

(I{zPN(s)∩K1
}) and therefore strictly positive because pKcxP(K)

is a
strictly positive probability mass function. Since s ∈ PN(K), we can use
Lemma 80(vii)186 to infer that

PN(s)∩K1 = K \D((P(K)\PN(s))∪ (PN(s)∩P2(K))).

We therefore find that PN(s)∩K1 does not depend on the particular value
of yP(K)\PN(s) in XP(K)\PN(s) because PN(s)∩ P2(K) is fully determined by
yP(K)∩PN(s). Hence, PKcxP(K)

(I{zPN(s)∩K1
}) does not depend on yP(K)\PN(s) either.

For ∏k∈PN(s)∩K2
pk(zkczP(k)), it is clearly true that it is strictly positive.

To show that it does not depend on yP(K)\PN(s), we start by noticing that
PN(s) ∩ K2 does not depend on yP(K)\PN(s) because, as we have shown in
the previous paragraph, PN(s) ∩ K1 does not depend on it, and because
PN(s)∩K2 = (PN(s)∩K) \ (PN(s)∩K1). Next, for all k ∈ PN(s)∩K2, the
factor pk(zkczP(k)) will not depend on yP(K)\PN(s) because P(k) ⊆ PN(s) due
to Lemma 77(i)182. Hence, ∏k∈PN(s)∩K2

pk(zkczP(k)) does not depend on the
particular value of yP(K)\PN(s) in XP(K)\PN(s).

If we now no longer consider a fixed value of yP(K) ∈ XP(K), then
the results mentioned above have two immediate consequences. Firstly,
for all s ∈ K and zPN(s) ∈ XPN(s) such that fs,zPN(s) 6= 0, we have
that PK(I{zPN(s)∩K} fs,zPN(s)czP(K)) > 0. Secondly, for all s ∈ PN(K) and
zPN(s) ∈XPN(s), the gamble PK(I{zPN(s)∩K}czP(K)∩PN(s),XP(K)\PN(s)) is constant
and strictly positive.

For the third part of the proof, we start by considering the following col-
lection of gambles on XPN(K):

A ∗
PN(K) :=

{
I{zPN(s)∩PN(K)} fs,zPN(s) : s ∈ PN(K), zPN(s) ∈XPN(s), fs,zPN(s) 6= 0

}
.
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which is a finite subset of A irr
PN(K), for the following three reasons. First of

all, because P(PN(K)) = /0 [see Lemma 78(iv)183]. Secondly, because—since
PN(K) is closed because of Lemma 78(iii)183—Lemma 79(iii)185 implies that
PN(s)∩PN(K) = PNPN(K)(s) for all s ∈ PN(K). Thirdly, because the first
point implies that, for all s ∈ PN(K), PPN(K)(s) = P(s).

Since A irr
PN(K) ⊆ D irr

PN(K), we find that A ∗
PN(K) is a finite subset of D irr

PN(K).
Since h 6= 0 and h /∈ D irr

PN(K), we can now use an argument that is completely
analogous to the one that we used for A ∗

KcxP(K)
, f and D irr

KcxP(K)
earlier on in this

proof to show that 0 /∈ E ({−h}∪A ∗
PN(K)). Since we know that {−h}∪A ∗

PN(K)

is a finite subset of G (XPN(K)), we can now apply Lemma 52149. This pro-
vides us with a probability mass function pPN(K) on XPN(K) with an associated
linear prevision PPN(K) on G (XPN(K)) for which pPN(K)(zPN(K)) > 0 for all
zPN(K) ∈XPN(K), PPN(K)( f ′)> 0 for all f ′ ∈A ∗

PN(K) and PPN(K)(h)< 0. As a
direct consequence, we find that PPN(K) has two additional properties as well.

Firstly, for all s∈PN(K) and zPN(s) ∈XPN(s) such that fs,zPN(s) 6= 0, we find
that PPN(K)(I{zPN(s)∩PN(K)} fs,zPN(s))> 0 because I{zPN(s)∩PN(K)} fs,zPN(s) ∈A ∗

PN(K).
Secondly: PPN(K)(gI{xP(K)}) > 0. Indeed, since gI{xP(K)} ∈ G (XPN(K)>0),

we know that PPN(K)(gI{xP(K)}) is a positive linear combination of probabilities
pPN(K)(zPN(K)), with zPN(K) ∈XPN(K), of which we already know that they are
strictly positive.

We are now ready for the fourth and final part of the proof. We start by
defining the mass function pG on XG that we have been after all along. For all
zG ∈XG, we let

pG(zG) := pPN(K)(zPN(K))pK(zK |zP(K))pD(K)(zD(K)|zP(D(K))),

where all three factors have been defined in earlier parts of this proof. Since
PN(K), K and D(K) constitute a partition of G due to Lemma 78(ii)183, and
since P(K) ⊆ PN(K) and P(D(K)) ⊆ PN(K)∪K, we see that pG is indeed a
mass function on XG. For the corresponding linear prevision PG, the law of
iterated prevision implies that for all f ′ ∈ G (XG):

PG( f ′) = PPN(K)(PK(PD(K)( f ′cXP(D(K)))cXP(K))). (6.18)

Hence, since h ∈ G (XPN(K)), we find that

PG(h) = PPN(K)(PK(PD(K)(hcXP(D(K)))cXP(K)))

= PPN(K)(hPK(1PD(K)(1cXP(D(K)))cxP(K)))

= PPN(K)(hPK(1cxP(K))) = PPN(K)(h)< 0.
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Similarly, since g ∈ G (XN(K))>0 and f ∈ G (XK), we find that

PG(gI{xP(K)} f ) = PPN(K)(PK(PD(K)(gI{xP(K)} f cXP(D(K)))cXP(K)))

= PPN(K)(gI{xP(K)}PK( f PD(K)(1cXP(D(K)))cxP(K)))

= PPN(K)(gI{xP(K)}PK( f cxP(K)))

= PK( f cxP(K))PPN(K)(gI{xP(K)})< 0,

where the final inequality holds because PK( f cxP(K)) is strictly negative and
PPN(K)(gI{xP(K)}) is strictly positive. For PK( f cxP(K)), this is true by construc-
tion because PK( f cxP(K)) = PKcxP(K)

( f )< 0 and for PPN(K)(gI{xP(K)}), this has
been shown earlier on in this proof.

All that is now left to do is to show that PG( f∗) > 0. Since fs,zPN(s) 6= 0
for at least one s ∈ G and zPN(s) ∈XPN(s), Equation (6.16)188 tells us that it
suffices to show that PG(I{zPN(s)} fs,zPN(s))> 0 for all s ∈ G and zPN(s) ∈XPN(s)

such that fs,zPN(s) 6= 0. So let us fix any such s ∈ G and zPN(s) ∈XPN(s) and
show that PG(I{zPN(s)} fs,zPN(s)) > 0. We consider three cases: s ∈ D(K), s ∈ K
and s ∈ PN(K). They are exhaustive and mutually exclusive because, as we
already mentioned before, D(K), K and PN(K) constitute a partition of G [see
Lemma 78(ii)183].

If s ∈ D(K), then, because D(K) is closed due to Lemma 78(iii)183,
and because PN(D(K)) = PN(K)∪K due to Lemma 78(v)183, we can use
Lemma 78(vii)183 to infer that PN(K)∪K ⊆ PN(s). By combining this with
Equation (6.18)x, we find that

PG(I{zPN(s)} fs,zPN(s))

= PPN(K)(PK(PD(K)(I{zPN(s)} fs,zPN(s)cXP(D(K)))cXP(K)))

= PPN(K)(PK(PD(K)(I{zPN(K)}I{zK}I{zPN(s)∩D(K)} fs,zPN(s)cXP(D(K)))cXP(K)))

= PPN(K)(I{zPN(K)}PK(I{zK}PD(K)(I{zPN(s)∩D(K)} fs,zPN(s)czP(D(K)))czP(K)))

= PPN(K)(I{zPN(K)}PK(I{zK}czP(K)))PD(K)(I{zPN(s)∩D(K)} fs,zPN(s)czP(D(K)))

= PPN(K)(I{zPN(K)})PK(I{zK}czP(K))PD(K)(I{zPN(s)∩D(K)} fs,zPN(s)czP(D(K)))

= pPN(K)(zPN(K))pK(zKczP(K))PD(K)(I{zPN(s)∩D(K)} fs,zPN(s)czP(D(K)))> 0,

where the inequality holds because all three constituting factors have been
shown to be strictly positive earlier on.

If s ∈ K, then since PN(K) ⊆ PN(s) due to Lemma 78(vii)183, Equa-
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tion (6.18)196 implies that

PG(I{zPN(s)} fs,zPN(s))

= PPN(K)(PK(PD(K)(I{zPN(s)} fs,zPN(s)cXP(D(K)))cXP(K)))

= PPN(K)(PK(PD(K)(I{zPN(K)}I{zPN(s)∩K}I{zPN(s)∩D(K)} fs,zPN(s)cXP(D(K)))cXP(K)))

= PPN(K)(I{zPN(K)}PK(I{zPN(s)∩K} fs,zPN(s)

PD(K)(I{zPN(s)∩D(K)}czP(D(K))∩PN(s),XP(D(K))\PN(s))

czP(K))),

which, since PD(K)(I{zPN(s)∩D(K)}czP(D(K))∩PN(s),XP(D(K))\PN(s)) has been shown
to be a constant gamble earlier on in this proof (observe that s /∈D(K) because
s ∈ K), in turn implies that

PG(I{zPN(s)} fs,zPN(s))

= PPN(K)(I{zPN(K)}PK(I{zPN(s)∩K} fs,zPN(s)czP(K)))

PD(K)(I{zPN(s)∩D(K)}czP(D(K))∩PN(s),XP(D(K))\PN(s))

= PPN(K)(I{zPN(K)})PK(I{zPN(s)∩K} fs,zPN(s)czP(K))

PD(K)(I{zPN(s)∩D(K)}czP(D(K))∩PN(s),XP(D(K))\PN(s))

= pPN(K)(zPN(K))PK(I{zPN(s)∩K} fs,zPN(s)czP(K))

PD(K)(I{zPN(s)∩D(K)}czP(D(K))∩PN(s),XP(D(K))\PN(s))> 0,

where the final expression is strictly positive since all three constituting factors
have been shown to be strictly positive earlier on in this proof.

If s ∈ PN(K), Equation (6.18)196 implies that

PG(I{zPN(s)} fs,zPN(s))

= PPN(K)(PK(PD(K)(I{zPN(s)∩PN(K)}I{zPN(s)∩K}I{zPN(s)∩D(K)} fs,zPN(s)

cXP(D(K)))cXP(K)))

= PPN(K)(I{zPN(s)∩PN(K)} fs,zPN(s)

PK(I{zPN(s)∩K}

PD(K)(I{zPN(s)∩D(K)}czP(D(K))∩PN(s),XP(D(K))\PN(s))

czP(K)∩PN(s),XP(K)\PN(s))),

which, since PD(K)(I{zPN(s)∩D(K)}czP(D(K))∩PN(s),XP(D(K))\PN(s)) has been shown
to be a constant gamble earlier on in this proof, in turn implies that
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PG(I{zPN(s)} fs,zPN(s))

= PPN(K)(I{zPN(s)∩PN(K)} fs,zPN(s)

PK(I{zPN(s)∩K}czP(K)∩PN(s),XP(K)\PN(s)))

PD(K)(I{zPN(s)∩D(K)}czP(D(K))∩PN(s),XP(D(K))\PN(s))

and therefore, since PK(I{zPN(s)∩K}czP(K)∩PN(s),XP(K)\PN(s)) has also already
been shown to be a constant gamble, that

PG(I{zPN(s)} fs,zPN(s))

= PPN(K)(I{zPN(s)∩PN(K)} fs,zPN(s))

PK(I{zPN(s)∩K}czP(K)∩PN(s),XP(K)\PN(s))

PD(K)(I{zPN(s)∩D(K)}czP(D(K))∩PN(s),XP(D(K))\PN(s))> 0,

where the inequality is again due to the fact that the three constituting factors
are strictly positive, as was shown earlier on in this proof.

6.C PROOF OF PROPOSITION 56

Proof of Proposition 56158. First, define DsczP(s)
:= DPsczP(s)

for all s ∈ G and

zP(s) ∈XP(s), where the coherent lower previsions PsczP(s)
are the local models

that were used to construct Pirr
G , Pirr

PN(K) and Pirr
KcxP(K)

. This allows us to consider

the corresponding irrelevant natural extensions D irr
G , D irr

PN(K) and D irr
KcxP(K)

.

Next, define f∗ := f −Pirr
KcxP(K)

( f ) and

h∗ := h+gI{xP(K)}P
irr
KcxP(K)

( f )−Pirr
PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
)
.

Then Pirr
PN(K)(h∗) = 0 and Pirr

KcxP(K)
( f∗) = 0 because Pirr

PN(K) and Pirr
KcxP(K)

are
coherent [C849].

Now fix any ε > 0. Theorem 42139 and Equations (2.5)41 and (2.6)41
then imply that f∗+ ε ∈D irr

KcxP(K)
and h∗ + ε ∈ D irr

PN(K). Hence,
gI{xP(K)}[ f∗+ ε] ∈D irr

G because of Proposition 55157. Furthermore, since
PN(K) is closed because of Lemma 78(iii)183 and P(PN(K)) = /0 because
of Lemma 78(iv)183, Proposition 55157 [with K′ = PN(K), f ′ = h∗+ ε and
g′ = 1] also implies that h∗+ ε ∈D irr

G . Since D irr
G is coherent, this allows

us to conclude that gI{xP(K)}[ f∗ + ε] + h∗ + ε ∈ D irr
G and therefore, due to

Theorem 42139 and Equation (2.3)40, that Pirr
G (gI{xP(K)}[ f∗+ ε]+ h∗+ ε) ≥ 0.
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Hence, since Pirr
G is coherent, we find that

0≤ Pirr
G (gI{xP(K)}[ f∗+ ε]+h∗+ ε)

= Pirr
G
(
h+gI{xP(K)} f +gI{xP(K)}ε + ε−Pirr

PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
))

= Pirr
G
(
h+gI{xP(K)} f +gI{xP(K)}ε

)
+ ε−Pirr

PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
)

≤ Pirr
G (h+gI{xP(K)} f )+ εPirr

G (gI{xP(K)})+ ε

−Pirr
PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
)
,

where the second equality follows from C849 and the last inequality from C548,
C248 and conjugacy. If we rewrite the final inequality, we find that

Pirr
G (h+gI{xP(K)} f )≥ Pirr

PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
)
−ε
(
Pirr

G (gI{xP(K)})+1
)

and therefore, since this holds for all ε > 0, and because C148 and C648 guar-
antee that Pirr

G (gI{xP(K)})+1 > 0, it follows that

Pirr
G (h+gI{xP(K)} f )≥ Pirr

PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
)
,

which is already half of the proof. All that is now left to do is to establish the
converse inequality.

Again, fix any ε > 0. Theorem 42139 and Equation (2.3)40 then imply that
f∗− ε /∈D irr

KcxP(K)
and h∗− ε/2 /∈D irr

PN(K). Hence, by Corollary 54156, we know
that gI{xP(K)}[ f∗− ε] + h∗− ε/2 /∈ D irr

G and therefore, by Theorem 42139 and

Equations (2.5)41 and (2.6)41, that Pirr
G (gI{xP(K)}[ f∗− ε]+h∗− ε)< 0. Hence,

since Pirr
G is coherent, we find that

0 > Pirr
G (gI{xP(K)}[ f∗− ε]+h∗− ε)

= Pirr
G
(
h+gI{xP(K)} f −gI{xP(K)}ε− ε−Pirr

PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
))

= Pirr
G (h+gI{xP(K)} f −gI{xP(K)}ε)− ε−Pirr

PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
)

≥ Pirr
G (h+gI{xP(K)} f )− εPirr

G (gI{xP(K)})− ε

−Pirr
PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
)
,

where the second equality follows from C849 and the final inequality from
C548, C248 and conjugacy. If we rewrite the final inequality, we find that

Pirr
PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
)
> Pirr

G (h+gI{xP(K)} f )−ε
(
Pirr

G (gI{xP(K)})+1
)

and therefore, since this holds for all ε > 0, and because C148 and C648 guar-
antee that Pirr

G (gI{xP(K)})+1 > 0, it follows that

Pirr
PN(K)

(
h+gI{xP(K)}P

irr
KcxP(K)

( f )
)
≥ Pirr

G (h+gI{xP(K)} f ).
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6.D PROOF OF THEOREM 62

Proof of Theorem 62. Direct and reverse redundancy follow from the consid-
eration that every path from I to S is blocked by I in its first node and by S in
its last node.

To prove direct decomposition, notice that every path from I to S is also
a path from I to S∪W . It is therefore blocked by C due to AD(I,S∪W |C).
Reverse decomposition is proved analogously.

To verify direct weak union, consider any path from i ∈ I to s ∈ S. Since
this is also a path from I to S∪W , we know from AD(I,S∪W | C) that it is
blocked by C. Now let j be the first node in the path for which that path is
blocked by C in j. If the path from i to s is blocked by C in j using condition
B1163, B2163 or B4163, then j ∈C ⊆C∪W , implying that the path is blocked
by C∪W in j and concluding the proof.

So suppose that the path is blocked by C in j using condition B3163. We
then have that j /∈ C and D( j)∩C = /0. If j /∈W and D( j)∩W = /0, then
j /∈C∪W and D( j)∩ (C∪W ) = /0, implying that the path is blocked by C∪W
in j and concluding the proof.

So suppose, and this is the only remaining possibility, that there is some
node t ∈ { j}∪D( j) for which t ∈W . In that case there is a directed path from
j to t and one can concatenate the section from i to j with this directed path
from j to t, obtaining a path from i ∈ I to t ∈ S∪W . This however leads to a
contradiction with AD(I,S∪W |C) because this path from i to t is not blocked
by C. To see why, first consider all the nodes in the part from i to j, excluding
j. The path from i to t cannot be blocked by C in these nodes, because j was
the first node in the original path from i to s for which this path was blocked
by C in j. It also cannot be blocked by C in the nodes in the part from j to
t because this part is directed, j /∈ C and D( j)∩C = /0. This means that this
possibility cannot occur, which concludes the proof of direct weak union.

Reverse weak union has a similar proof. Every path from i ∈ I to s ∈ S is
also a path from I ∪W to S and is thus blocked by C. Let j be the last node
in the path for which that path is blocked by C in j. If the path from i to s is
blocked by C in j using condition B1163, B2163 or B4163, then j ∈C ⊆C∪W ,
implying that the path is blocked by C∪W in j and concluding the proof.

So suppose that the path is blocked by C in j by condition B3163. We then
have that j /∈C and D( j)∩C = /0. If j /∈W and D( j)∩W = /0, then j /∈C∪W
and D( j)∩ (C∪W ) = /0, implying that the path is blocked by C∪W in j and
concluding the proof.

So suppose, and this is the only remaining possibility, that there is some
node t ∈ { j} ∪D( j) for which t ∈W . In that case there is a directed path
from j to t and one can understand it as a reverse directed path from t to j and
concatenate it with the section from j to s, obtaining a path from t ∈ I ∪W to
s ∈ S. This however leads to a contradiction with AD(I∪W,S |C) because this
path from t to s is not blocked by C. To see why, first consider all the nodes
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in the part from j to s, excluding j. The path from t to s cannot be blocked
by C in these nodes, because j was the last node in the original path from i to
s for which this path was blocked by C in j. It also cannot be blocked by C
in the nodes in the part from t to j because this part is a reverse directed path,
j /∈C and D( j)∩C = /0. This means that this possibility cannot occur, which
concludes the proof of reverse weak union.

To prove direct contraction, consider any path from i ∈ I to w ∈ S∪W .
We need to show that it is blocked by C. If w ∈ S, this follows directly from
AD(I,S |C), so we can assume that w ∈W , implying that the path from i to w
is blocked by C∪S because of AD(I,W |C∪S). Let t be one of the nodes for
which the path from i to w is blocked by C∪S in t. If t ∈C or t /∈C∪S, then
the path from i to w is blocked by C in t, concluding the proof. If t ∈ S\C, and
this is the only remaining possibility, then AD(I,S | C) implies that the path
from i to t must be blocked by C, from which one can also infer that the path
from i to w is blocked by C.

Reverse contraction has a similar proof. Take any path from w ∈ I∪W to
s ∈ S. We need to show that it is blocked by C. If w ∈ I, this follows directly
from AD(I,S |C), so we can assume that w∈W , implying that the path from w
to s is blocked by C∪ I because of AD(W,S |C∪ I). Let t be one of the nodes
for which the path from w to s is blocked by C∪ I in t. If t ∈C or t /∈C∪ I, then
the path from w to s is blocked by C in t, concluding the proof. If t ∈ I \C, and
this is the only remaining possibility, then AD(I,S | C) implies that the path
from t to s is blocked by C, from which one can also infer that the path from w
to s is blocked by C.

For the verification of direct intersection, consider any path from i ∈ I to
w ∈ S∪W . We need to show that it is blocked by C. Due to the symmetry of
the problem, we can assume without loss of generality that w ∈W , implying
that the path from i to w is blocked by C∪S because of AD(I,W |C∪S). Now
let t be the first node in the path from i to w for which this path is blocked by
C∪ S in t. If t ∈ C or t /∈ C∪ S, then the path from i to w is blocked by C in
t, concluding the proof. If t ∈ S \C, and this is the only remaining possibility,
then this implies that t 6= w, since S∩W = /0 by assumption. It also implies
that the path from i to t is blocked by C∪W because of AD(I,S |C∪W ). If
it is blocked by some q for which q ∈ C or q /∈ C ∪W , then the path from
i to w is blocked by C in q, concluding the proof. If q ∈W \C, and this is
the only remaining possibility, then this implies that q 6= t, since S∩W = /0 by
assumption. It also implies that the path from i to q is blocked by C∪S because
of AD(I,W |C∪S). However, this would in turn imply that the path from i to
w is blocked by C∪ S in some node of the path from i to q, contradicting the
earlier assumption that t is the first node for which this is the case.

Finally, to prove reverse intersection, consider any path from w ∈ I∪W to
s ∈ S. We need to show that it is blocked by C. Due to the symmetry of the
problem, we can assume without loss of generality that w ∈W , implying that
the path from w to s is blocked by C∪ I because of AD(W,S | C∪ I). Now
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let t be the last node in the path from w to s for which this path is blocked by
C∪ I in t. If t ∈ C or t /∈ C∪ I, then the path from w to s is blocked by C in
t, concluding the proof. If t ∈ I \C, and this is the only remaining possibility,
then this implies that t 6= w, since I ∩W = /0 by assumption. It also implies
that the path from t to s is blocked by C ∪W because of AD(I,S | C ∪W ).
If it is blocked by some q for which q ∈ C or q /∈ C∪W , then the path from
w to s is blocked by C in q, concluding the proof. If q ∈W \C, and this is
then only remaining possibility, then this implies that q 6= t, since I∩W = /0 by
assumption. It also implies that the path from q to s is blocked by C∪ I because
of AD(W,S | C∪ I). However, this would in turn imply that the path from w
to s is blocked by C∪ I in some node of the path from q to s, contradicting the
earlier assumption that t is the last node for which this is the case.

6.E PROOF OF THEOREM 64

Our proof for Theorem 64167 makes use of the following two sets. For all
I,C ⊆ G, we define

S∗I,C := {s ∈ G : AD(I,{s} |C)}

and
K∗I,C := {k ∈ S∗I,C : (∃s ∈ S∗I,C \C)sv k}.

The following result establishes some properties of these sets.

Proposition 81. Consider any I,C ⊆ G. Then the following statements hold:

(i) K∗I,C is a closed subset of G;

(ii) P(K∗I,C)⊆ S∗I,C \K∗I,C ⊆C ⊆ S∗I,C;

(iii) S∗I,C \C = K∗I,C \C;

(iv) D(K∗I,C)∩C = /0;

(v) I \C ⊆ N(K∗I,C)\C.

Proof of Proposition 81. (i). Fix u,v ∈ K∗I,C and k ∈ G such that uv k v v and
assume ex absurdo that k /∈ K∗I,C. Since u ∈ K∗I,C, we can infer the existence of
some s ∈ S∗I,C such that s /∈ C and s v u v k, implying that k /∈ S∗I,C because
k ∈ S∗I,C would imply k ∈ K∗I,C, contradicting k /∈ K∗I,C. So we now know that
there is a path from some i ∈ I to k that is not blocked by C. Since s v k, we
also have a directed path from s to k and thus a reverse directed path from k to s.
Concatenating the path both from i to k and the reverse directed path from k to
s, we obtain a path from i∈ I to s, which should be blocked by C since s∈ S∗I,C.
The only way for this to be possible is if k /∈ C and D(k)∩C = /0. However,
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then the path from i ∈ I to v, formed by concatenating the path from i to k and
a directed path from k to v, is not blocked by C , contradicting v ∈ K∗I,C ⊆ S∗I,C.

(ii)x. We begin by proving that P(K∗I,C) ⊆ S∗I,C \K∗I,C. Consider any node
p ∈ P(K∗I,C) and let k be (one of) the child(ren) of p for which k ∈ K∗I,C ⊆ S∗I,C.
Assume ex absurdo that p /∈ S∗I,C. This means that there is a path from some
i ∈ I to p that is not blocked by C. If k /∈ C, then the concatenation of the
path from i to p with the node k, yields a path from i ∈ I to k ∈ S∗I,C that is not
blocked by C, a contradiction. If k ∈C, then k ∈ K∗I,C implies the existence of
some s ∈ S∗I,C such that s @ k and s /∈C. Since s @ k, we can now construct a
directed path from s to k, yielding a reverse directed path from k to s. If we
concatenate the path from i to p with this reverse directed path from k to s, we
obtain a path from i ∈ I to s ∈ S∗I,C that is not blocked by C, a contradiction.
Hence, we may conclude that P(K∗I,C) ⊆ S∗I,C. Since P(K∗I,C)∩K∗I,C = /0, this
implies that P(K∗I,C)⊆ S∗I,C \K∗I,C.

Next, we prove that S∗I,C \K∗I,C ⊆C. Consider any k∈ S∗I,C \K∗I,C and assume
ex absurdo that k /∈ C. Then s = k is an element of S∗I,C such that s v k and
s /∈C, which implies that k ∈ K∗I,C, a contradiction. Hence, we may conclude
that k ∈C.

The final inclusion—C ⊆ S∗I,C—is trivial.
(iii)x. Since we already know from (ii)x that S∗I,C \K∗I,C ⊆ C, it follows

that S∗I,C \C ⊆ S∗I,C \ (S∗I,C \K∗I,C) = K∗I,C, where the last equality holds because
K∗I,C ⊆ S∗I,C. Clearly, this implies that S∗I,C \C⊆ K∗I,C \C. Since K∗I,C ⊆ S∗I,C also
implies that K∗I,C \C ⊆ S∗I,C \C, we find that K∗I,C \C = S∗I,C \C

(iv)x. Assume ex absurdo that D(K∗I,C)∩C 6= /0 and fix any t ∈D(K∗I,C)∩C.
Since t ∈C, we know from (ii)x that t ∈ S∗I,C. On the other hand, t ∈ D(K∗I,C)
implies the existence of some k ∈ K∗I,C such that k v t. Since k ∈ K∗I,C in turn
implies the existence of some s ∈ S∗I,C such that sv k v t and s /∈C, we obtain
from t ∈ S∗I,C that t ∈ K∗I,C, contradicting t ∈D(K∗I,C). Hence, we may conclude
that D(K∗I,C)∩C = /0.

(v). I \C⊆ N(K∗I,C)\C follows trivially from I \C⊆ N(K∗I,C), so it suffices
to prove the latter statement. Consider any i ∈ I \C, implying that i /∈C. Since
i∈G = N(K∗I,C)∪P(K∗I,C)∪K∗I,C∪D(K∗I,C), it suffices to prove that i /∈ P(K∗I,C),
i /∈ K∗I,C and i /∈D(K∗I,C). First, i cannot be an element of P(K∗I,C) because (ii)x
then implies that i ∈ C, a contradiction. Second, i is not an element of K∗I,C
because then i ∈ S∗I,C, which implies that the trivial path from i to i should
be blocked by C, again yielding a contradiction with i /∈C. Third, assume ex
absurdo that i ∈ D(K∗I,C). We have shown in the proof of D(K∗I,C)∩C = /0 that
this implies the existence of some s∈ S∗I,C such that sv i and s /∈C. Since sv i,
we can now construct a directed path from s to i, yielding a reverse directed
path from i to s that is not blocked by C [because it is a reverse directed path,
and because neither i nor s belong to C], which contradicts s ∈ S∗I,C.

Using these properties, the proof for Theorem 64167 is now relatively easy.
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Proof of Theorem 64167. Consider pairwise disjoint subsets I, S and C of G.
First assume that AD(I,S |C). This implies that S ⊆ S∗I,C. Let K := K∗I,C.

Since I, S and C are pairwise disjoint, it follows from Proposition 81203 that K
is a closed subset of G for which P(K)⊆C, S⊆K, D(K)∩C = /0 and I⊆N(K).

Conversely, assume that there is a closed subset K of G such that S ⊆ K,
P(K)⊆C, I ⊆N(K) and D(K)∩C = /0. Since AD(N(K),K | P(K)) because of
Lemma 82, direct and reverse decomposition [see Theorem 62165] imply that

AD(I∪ (N(K)∩C),S∪ (K∩C) | P(K)).

By applying direct and reverse weak union [see Theorem 62165] this in turn
implies that

AD(I,S | P(K)∪ (N(K)∩C)∪ (K∩C)). (6.19)

Since we know that P(K)⊆C and D(K)∩C = /0, Lemma 78(ii)183 allows us to
infer that P(K)∪ (N(K)∩C)∪ (K∩C) =C and therefore, by Equation (6.19),
that AD(I,S |C).

Lemma 82. For any closed subset K of G: AD(N(K),K | P(K)).

Proof of Lemma 82. Consider any path t = s1, . . . ,sn = k, n ≥ 1, from a node
t ∈ N(K) to a node k ∈ K. We will prove that this path is blocked by P(K).

Let i be the last index in {1, . . . ,n} for which si /∈ K [i is well-defined
because s1 = t /∈K]. Since sn = k ∈K, we know that i< n and we can therefore
consider si+1. Clearly, by definition of i, it holds that si+1 ∈ K. We now
consider two mutually exclusive and exhaustive cases: si→ si+1 and si← si+1.

We first consider the case si → si+1. Then si ∈ P(si+1). Since si /∈ K and
si+1 ∈ K, this implies that si ∈ P(K). The path t = s1, . . . ,sn = k is therefore
blocked by P(K) in si [using blocking condition B1163 or B2163].

Next, assume that si ← si+1. Since s1 = t ∈ N(K), it follows from
Lemma 78(ii)183 that s1 /∈ D(K). Since si+1 ∈ K, this implies that there is
at least one j ∈ {2, . . . , i + 1} such that s j−1 → s j. Let j∗ be the largest
j ∈ {2, . . . , i + 1} for which this is the case. Since si ← si+1 implies that
j∗ < i+ 1, it follows from the definition of j∗ that s j∗−1 → s j∗ ← s j∗+1 and
that s j∗ ∈ D(si+1). Consider now any s ∈ {s j∗}∪D(s j∗). Then s ∈ D(si+1)
because s j∗ ∈ D(si+1). Since si+1 ∈ K, this implies that s ∈ K ∪D(K). Using
Lemma 78(ii)183, this allows us to infer to s /∈ P(K). Since this holds for ev-
ery s ∈ {s j∗}∪D(s j∗), we find that s j∗ /∈ P(K) and D(s j∗)∩P(K) = /0. Since
we also know that 1 < j∗ < i+ 1 ≤ n, we can combine this with the fact that
s j∗−1→ s j∗ ← s j∗+1 to find that the path t = s1, . . . ,sn = k is blocked by P(K)
in s j∗ [using blocking condition B3163].
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Proof of Proposition 67173. Consider a partition G1, . . . ,Gm of G such that
P(Gi) = /0 for all i ∈ {1, . . . ,m}. Then, clearly, the sets Gi are disconnected
from one another. Indeed, assume ex absurdo that there is an arrow from a
node s ∈ Gi to a node t ∈ G j, with i, j ∈ {1, . . . ,m} and i 6= j. Then s is an ele-
ment of P(G j), which contradicts our assumption that P(G j) = /0. Conversely,
and similarly, one can easily see that if the DAG consists of disconnected sets
G1, . . . ,Gm, then P(Gi) = /0 for all i ∈ {1, . . . ,m}.

In any case, whenever one of these two equivalent conditions holds, then
for any i∈{1, . . . ,m} and s∈Gi, we have that PGi(s)=P(s)⊆Gi and DGi(s)=
D(s)⊆ Gi, and therefore also that PN(s) = PNGi(s)∪ (G\Gi).

Now let D irr
G be the irrelevant natural extension of the complete network, as

given by Equation (5.2)136, and, for all i ∈ {1, . . . ,m}, let D irr
Gi

be the irrelevant
natural extension of the network that has the sub-DAG associated with Gi as
its graphical structure, as given by Equation (6.2)156. We then find that

⊗n
i=1D

irr
Gi

= posi({I{zG\Gi
} f : i ∈ {1, . . . ,m}, zG\Gi ∈XG\Gi , f ∈D irr

Gi
})

= posi({I{zG\Gi
} f : i ∈ {1, . . . ,m}, zG\Gi ∈XG\Gi ,

f ∈ posi({I{zPNGi
(s)} f ′ : s ∈ Gi,zPNGi (s)

∈XPNGi (s)
,

f ′ ∈DsczP(s)
})})

= posi({I{zG\Gi
}I{zPNGi

(s)} f ′ : i ∈ {1, . . . ,m}, zG\Gi ∈XG\Gi , s ∈ Gi,

zPNGi (s)
∈XPNGi (s)

, f ′ ∈DsczP(s)
})

= posi({I{zPN(s)} f ′ : s ∈ G, zPN(s) ∈XPN(s), f ′ ∈DsczP(s)
}) = D irr

G .

The first equality in this derivation follows from Equation (5.2)136. The sec-
ond one follows from Equation (6.2)156 and the earlier proved fact that, for
all i ∈ {1, . . . ,m} and every s ∈ Gi: PGi(s) = P(s). The third equality is due
to the definition of the posi operator and the fourth equality holds because
G1 . . . ,Gm is a partition of G and because we have already shown that, for all
i∈ {1, . . . ,m} and every s∈Gi, PN(s) = PNGi(s)∪(G\Gi). The final equality
follows from the definition of D irr

G ; see Equation (5.2)136. Hence, we already
know that D irr

G =⊗m
i=1D

irr
Gi

.
Without loss of generality, we now assume that DsczP(s)

:= DPsczP(s)
for

all s ∈ G and zP(s) ∈XP(s). For all i ∈ {1, . . . ,m}, we then infer from The-
orem 42139 that Pirr

Gi
(·) = PD irr

Gi
. As explained in the main text, this im-

plies that ⊗m
i=1Pirr

Gi
(·) = P⊗m

i=1D irr
Gi

and therefore, since D irr
G = ⊗m

i=1D
irr
Gi

, that

⊗m
i=1Pirr

Gi
(·) = PD irr

G
. Since Theorem 42139 also tells us that Pirr

G (·) = PD irr
G

, we

find that Pirr
G (·) =⊗m

i=1Pirr
Gi
(·).
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Proof of Proposition 71179. Due to Lemma 77(v)182&(vi)182, we know that T
and S are closed subsets of G and that D(S) = /0.

First consider any s ∈ T . Then, by assumption, S ⊆ D(s), which implies
that PN(s)⊆ T . By combining this with Lemma 76182 and 79(iii)185, we find
that PNT (s) = PN(s) and PT (s) = P(s).

Next, consider any s ∈ S. Lemma 77(vii)182 then implies that T ⊆ PN(s).
By combining this with Lemma 79(iii)185, we find that PNS(s) = PN(s) \ T
and PN(s) = T ∪PNS(s). Also, due to Lemma 76182: PS(s) = P(s)\T .

The following series of equalities establishes that D irr
G = D irr

T �D irr
ScXP(S)

.

D irr
T �D irr

ScXP(S)
=
{

f ∈ G (XG))\{0} : f = fT +∑xT∈XT I{xT } fScxT ,

fT ∈D irr
T ∪{0}, (∀xT ∈XT ) fScxT ∈D irr

ScxP(S)
∪{0}

}
=
{

f ∈ G (XG))\{0} : f = fT +∑xT∈XT I{xT } fScxT ,(
fT = ∑s∈T ∑zPNT (s)∈XPNT (s)

I{zPNT (s)} fsczPNT (s)
,

(∀s ∈ T )(∀zPNT (s) ∈XPNT (s)) fsczPNT (s)
∈DsczPT (s)

∪{0}
)
,

(∀xT ∈XT )
(

fScxT = ∑s∈S ∑zPNS(s)
∈XPNS(s)

I{zPNS(s)
} fsc(zPNS(s)

,xT ),

(∀s ∈ S)(∀zPNS(s) ∈XPNS(s))

fsc(zPNS(s)
,xT ) ∈Dsc(zPS(s)

,xP(s)\PS(s)
)∪{0}

)}
=
{

f ∈ G (XG))\{0} : f = fT +∑xT∈XT I{xT } fScxT ,(
fT = ∑s∈T ∑zPN(s)∈XPN(s)

I{zPN(s)} fsczPN(s)
,

(∀s ∈ T )(∀zPN(s) ∈XPN(s)) fsczPN(s)
∈DsczP(s)

∪{0}
)
,

(∀xT ∈XT )
(

fScxT = ∑s∈S ∑zPN(s)\T∈XPN(s)\T
I{zPN(s)\T } fsc(zPN(s)\T ,xT ),

(∀s ∈ S)(∀zPN(s)\T ∈XPN(s)\T )

fsc(zPN(s)\T ,xT ) ∈Dsc(zP(s)\T ,xP(s)∩T )
∪{0}

)}
=
{

f ∈ G (XG))\{0} : f = ∑s∈G ∑zPN(s)∈XPN(s)
I{zPN(s)} fsczPN(s)

,

(∀s ∈ G)(∀zPN(s) ∈XPN(s)) fsczPN(s)
∈DsczP(s)

∪{0}
}

= D irr
G . (6.20)

The second and the last equality follow from Proposition 36136. The third and
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fourth equality follow from some basic manipulations and the properties that
we derived in the beginning of this proof.

The other three equations of this Proposition now follow from Proposi-
tion 43140, Theorem 46142, Proposition 49143 and the connections that were
established in Section 6.7175 between the four different expressions for our
generalised notion of marginal extension.
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Proof of Theorem 73181. First assume that Pirr
PN(K)({xP(K)}×BN(K)) = 0. For

every BK ∈P /0(XK), this implies that Pirr
G (BK ×{xP(K)}× BN(K)) = 0 and

therefore, we infer from Equation (6.15)180 that

Rirr
K (·cBK×{xP(K)}×BN(K)) = Pirr

K (·cBK×{xP(K)}×BN(K)).

Since this holds for all BK ∈P /0(XK), we find that

Rirr
K (·c ·×{xP(K)}×BN(K)) = Pirr

K (·c ·×{xP(K)}×BN(K)) = Pirr
KcxP(K)

(·c·),

where the last equality follows from Corollary 60160.
Next, assume that Pirr

PN(K)({xP(K)}×BN(K)) > 0. We need to prove for all
BK ∈P /0(XK) that Rirr

K (·cBK×{xP(K)}×BN(K)) = Rirr
KcxP(K)

(·cBK). So fix any

BK ∈P /0(XK). It follows from Corollary 57159 and conjugacy that

Pirr
G (BK×{xP(K)}×BN(K)) = Pirr

PN(K)({xP(K)}×BN(K))P
irr
KcxP(K)

(BK). (6.21)

We now consider two cases: Pirr
KcxP(K)

(BK) = 0 and Pirr
KcxP(K)

(BK)> 0.

If Pirr
KcxP(K)

(BK) = 0 then also Pirr
G (BK ×{xP(K)}×BN(K)) = 0 because of

Equation (6.21). Hence, we find that

Rirr
K (·cBK×{xP(K)}×BN(K)) = Pirr

K (·cBK×{xP(K)}×BN(K))

= Pirr
KcxP(K)

(·cBK) = Rirr
KcxP(K)

(·cBK),

where the first and last equality follow from Equation (6.15)180 and the second
equality follows from Corollary 60160.

If Pirr
KcxP(K)

(BK) > 0 then also Pirr
G (BK ×{xP(K)}×BN(K)) > 0 because of

Equation (6.21) and the assumption that Pirr
PN(K)({xP(K)}×BN(K))> 0. Con-

sider any f ∈ G (BK). It follows from Equation (3.11)91 that

Rirr
K ( f cBK×{xP(K)}×BN(K))

= inf
{

PK( f cBK×{xP(K)}×BN(K)) : PG(·c·) ∈MPirr
G (·c·),

PG(BK×{xP(K)}×BN(K))> 0
}

(6.22)
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and

Rirr
KcxP(K)

( f cBK) = inf
{

PK( f cBK) : PK(·c·)∈MPirr
KcxP(K)

, PK(BK)> 0
}
. (6.23)

The only thing that we still need to show in order to finish this proof is that
Rirr

K ( f cBK×{xP(K)}×BN(K)) = Rirr
KcxP(K)

( f cBK).

We first show that Rirr
KcxP(K)

( f cBK) ≤ Rirr
K ( f cBK ×{xP(K)}×BN(K)). Con-

sider any PG(·c·) ∈ MPirr
G (·c·) such that PG(BK × {xP(K)} × BN(K)) > 0 and

let P′K(·c·) := PK(·c · ×{xP(K)}×BN(K)). Since Corollary 60160 implies that
Pirr

K (·c · ×{xP(K)}×BN(K)) = Pirr
KcxP(K)

(·c·), we infer from PG(·c·) ∈MPirr
G (·c·)

that P′K(·c·) ∈MPirr
KcxP(K)

(·c·). Also, since it follows from Bayes’s rule that

PG(BK×{xP(K)}×BN(K))=PK(BKc{xP(K)}×BN(K))PPN(K)({xP(K)}×BN(K)),
(6.24)

we infer from PG(BK×{xP(K)}×BN(K))> 0 that P′K(BK)> 0. Equation (6.23)
therefore implies that

Rirr
KcxP(K)

( f cBK)≤ P′K( f cBK) = PK( f cBK×{xP(K)}×BN(K)).

Hence, it follows from Equation (6.22)x—and from the fact that this is true
for every PG(·c·) ∈MPirr

G (·c·) such that PG(BK ×{xP(K)}× BN(K)) > 0—that

Rirr
KcxP(K)

( f cBK)≤ Rirr
K ( f cBK×{xP(K)}×BN(K)).

Next, we show that Rirr
K ( f cBK×{xP(K)}×BN(K))≤ Rirr

KcxP(K)
( f cBK). Con-

sider any P′K(·c·) ∈MPirr
KcxP(K)

(·c·) such that P′K(BK) > 0. Since it follows from
coherence [C548] that

Pirr
PN(K)({xP(K)}×BN(K))≤ ∑

zN(K)∈XN(K)

Pirr
PN(K)

(
(xP(K),zN(K))

)
,

we infer from Pirr
PN(K)({xP(K)}×BN(K)) > 0 that there is some z∗N(K) ∈XN(K)

such that Pirr
PN(K)

(
(xP(K),z∗N(K))

)
> 0. Let x∗PN(K)

:= (xP(K),z∗N(K)). Consider
any s ∈ PN(K). Proposition 58159 then implies that Pscx∗P(s)

(x∗s ) > 0. Hence,
by Theorem 752, there is some linear prevision P∗scx∗P(K)

∈MPscx∗P(s)
such that

P∗scx∗P(K)
(x∗s ) > 0. We now construct a new credal network that has the same

graphical structure and whose local models are given by

P∗sczP(s)
=

P∗scx∗P(s)
if s ∈ PN(K) and zP(s) = x∗P(s);

PsczP(s)
otherwise.

Let Pirr∗
G (·c·) be the corresponding ‘global’ irrelevant natural extension, and

similarly for Pirr∗
PN(K)(·c·) and Pirr∗

KcxP(K)
(·c·). Since P∗sczP(s)

= PsczP(s)
for all
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s ∈ K and zP(s) ∈XP(s), it follows that Pirr∗
KcxP(K)

(·c·) = Pirr
KcxP(K)

(·c·). Therefore,

since Corollary 60160 implies that Pirr∗
K (·c ·×{xP(K)}×BN(K)) = Pirr∗

KcxP(K)
(·c·),

we find that Pirr∗
K (·c · ×{xP(K)} × BN(K)) = Pirr

KcxP(K)
(·c·). Hence, since

P′K(·c·) ∈MPirr
KcxP(K)

(·c·), it follows from Theorem 33110 that there is some

PG(·c·) ∈ MPirr∗
G (·c·) such that PK(·c · ×{xP(K)} × BN(K)) = P′K(·c·). Since

P′K(BK)> 0, this also implies that PK(BKc{xP(K)}×BN(K))> 0. Due to Propo-
sition 58159, we find that

Pirr∗
PN(K)(x

∗
PN(K)) = ∏

s∈PN(K)

P∗scx∗P(s)
(x∗s ) = ∏

s∈PN(K)

P∗scx∗P(s)
(x∗s )> 0,

which, because of coherence [C749], implies that Pirr∗
PN(K)({xP(K)}×BN(K))> 0.

Hence, since PG(·c·) ∈MPirr∗
G (·c·), we find that PPN(K)({xP(K)}×BN(K))> 0.

Since we already know that PK(BKc{xP(K)}×BN(K)) > 0, Equation (6.24)x
now tells us that PG(BK ×{xP(K)}×BN(K)) > 0. Since the local models that
are used to construct Pirr∗

G (·c·) dominate the corresponding local models of
Pirr

G (·c·), we know that Pirr∗
G (·c·) dominates Pirr

G (·c·). Since PG(·c·)∈MPirr∗
G (·c·),

this implies that PG(·c·) ∈MPirr
G (·c·). We conclude from all this that there is

some PG(·c·) ∈MPirr
G (·c·) such that PK(·c · ×{xP(K)}× BN(K)) = P′K(·c·) and

PG(BK×{xP(K)}×BN(K))> 0. Equation (6.22)208 therefore implies that

Rirr
K ( f cBK×{xP(K)}×BN(K))≤ PK( f cBK×{xP(K)}×BN(K)) = P′K( f cBK).

Since this is true for every P′K(·c·)∈MPirr
KcxP(K)

(·c·) such that P′K(BK)> 0, Equa-

tion (6.23)x implies that Rirr
K ( f cBK×{xP(K)}×BN(K))≤ Rirr

KcxP(K)
( f cBK).
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7
INFERENCE ALGORITHMS

“The question of whether a computer can think is no more
interesting than the question of whether a submarine can swim.”

Edsger W. Dijkstra

If it were not for this final chapter, all the definitions, theoretical properties
and philosophical discussions in this dissertation would be nothing more than
a—rather masochistic—thought experiment. Although I must admit that I am
rather fond of mathematical masochism, it seems to me that this is a rather
peculiar personality feature, shared by academics only, and even then, only
by a few. Therefore, besides for my personal enjoyment, the main motivation
for developing this theory of credal networks under epistemic irrelevance is
of course not merely its mathematical beauty. The ultimate goal is to use this
theory to solve practical problems.

In principle, credal networks can be applied to solve the same problems
as Bayesian networks. The added advantage is that in those cases where it is
too costly, time-consuming or simply unrealistic to provide the precise local
conditional probabilities that are required for the construction of a Bayesian
network, we can use imprecise-probabilistic local models instead, making the
resulting global model and the inferences it leads to more reliable. This ap-
proach has been successfully applied to various problems. Two important
types of applications are knowledge-based expert systems—see for example
References [1, 3, 36]—and data-based classifiers—Reference [13] provides a
recent overview of the growing literature on credal classification; an early ex-
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ample can be found in Reference [119]. Other examples are filtering [6] and
state estimation [30] in imprecise hidden Markov models.

With the exception of these last two examples, both of which adopt epis-
temic irrelevance, nearly all applications of credal networks have been devel-
oped using credal networks under strong independence. The main—and often
only—reason for this choice is the simple fact that, for credal networks under
epistemic irrelevance, there is no generally applicable algorithm that is capable
of computing the inferences that are required for these applications—that can
evaluate Pirr

G ( f cB), for specific choices of f and B. If such an algorithm were
available, the applications that are now using credal networks under strong
independence could be dealt with equally well using credal networks under
epistemic irrelevance.

In fact, we think that in many cases, credal networks under epistemic irrele-
vance would be better suited for the job. On the one hand, from a philosophical
point of view, as has been acknowledged by several authors [16, 46, 81, 106],
assessments of epistemic irrelevance—or epistemic independence—naturally
have a broader scope because of their more intuitive meaning, which is es-
pecially important in the case of knowledge-based expert systems; see Sec-
tion 4.4120 as well. On the other hand, the reason for the—relative—abundance
of algorithms for credal networks under strong independence is not that they
are somehow inherently more tractable. On the contrary, initial complexity
results seem to suggest otherwise.

Indeed, the main conclusion of a very recent paper [67] about the com-
plexity of inference in these two types of credal networks was (a) that there are
inferences—even in singly-connected networks—that are NP-hard according
to both types of networks [67, Theorem 1] and (b) that each type of network
has a particular class of ‘simple’ inferences that are known to be computable
in polynomial time. The type of inference problem that is ‘simple’ is the com-
putation of the lower or upper prevision of a gamble on a single variable—the
query variable—conditional on the value of some set of evidence variables.
For credal networks under strong independence, this type of inference is ef-
ficient if the network is singly connected—is a polytree—and consists of bi-
nary variables only [55]. For credal networks under epistemic irrelevance,
this type of inference is efficient if the network has a tree structure, regard-
less of the cardinality of the variables [42]. Given that tree topologies are
very common—Markov chains, hidden Markov models and naive classifiers
are popular examples—and that many networks contain non-binary nodes, this
suggests that inferences in credal networks under epistemic irrelevance are at
least as tractable as those in credal networks under strong independence, espe-
cially since inference in trees with non-binary nodes is known to be NP-hard
for credal networks under strong independence [67, Theorem 2].

So, given that these complexity results tend to favour credal networks under
epistemic irrelevance over credal networks under strong independence, why
then is this preference not shared by practitioners? The answer is very sim-
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ple: because there are far more algorithms available; see Reference [2, Sec-
tion 10.5.3] for a recent overview of algorithmic developments for credal net-
works under strong independence. Although most of these algorithms are ei-
ther inefficient or not exact, they do allow for approximate inferences to be
computed within reasonable time. Of course, as the approximation improves,
the required time typically becomes less reasonable. Despite the inherent com-
plexity of inference in credal networks under strong independence, these ap-
proximate algorithms do yield results—be it often inner and therefore unsafe
approximations—and thereby allow for applications to be tackled—be it in-
exactly. No such approximate algorithms are available for credal networks
under epistemic irrelevance. For this reason, so far, applications of credal net-
works under epistemic irrelevance have been restricted to networks with a tree
topology—such as hidden Markov models [6, 30].

We believe that the availability of approximate algorithms for credal net-
works under strong independence is not related to an inherent tractability of
these networks, but rather to the fact that they can be defined in terms of sets
of Bayesian networks, as discussed in Section 5.5145. This has inspired re-
searchers to try and adapt existing algorithms for Bayesian networks and we
believe that this is the main reason why there are so many—approximate—
algorithms for credal networks under strong independence.

The goal of this chapter is to show that the algorithmic possibilities of
credal networks under epistemic irrelevance go far beyond the special cases
that have been considered so far. We will explore some of these possibili-
ties and will provide tools and ideas that can be used for further exploration.
First of all, as we will see, efficient exact inference in credal networks un-
der epistemic irrelevance is neither limited to inferences with only a single
query node—and multiple evidence nodes—nor to credal networks with a tree
topology. Credal networks with more complicated topologies allow for effi-
cient inference as well, and it is possible to consider multiple query variables
at once. We illustrate this by developing algorithms that can deal with more
general topologies, for broad classes of inference problems that significantly
extend the case of a single query node with multiple evidence nodes. Further-
more, and perhaps most importantly, we introduce algorithmic tools and ideas
that should allow practitioners to move beyond the specific inference problems
and topologies that are tackled by our algorithms and to develop their own
algorithms for solving the particular inference problems that are relevant for
their applications. We illustrate these techniques by means of a number of
examples.

7.1 WHICH KINDS OF INFERENCES DO WE CONSIDER?

The most general inference problem that we will consider in this chapter is the
numerical evaluation of Pirr

G ( f cO) or Rirr
G ( f cO)—see Equation (6.15)180—for
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some arbitrary O ∈P /0(XG) and f ∈ G (O). This corresponds to condition-
ing by means of natural extension and regular extension, respectively.1 As
argued extensively in Chapter 369, it makes sense to interpret Pirr

G (·cO) and
Rirr

G (·cO) as updated uncertainty models that become applicable after O has
been observed. If f is the indicator IB of some event B ⊆ O, we obtain the
updated lower and upper probabilities of B as special cases: they are given by
Pirr

G (BcO) := Pirr
G (IBcO) and Pirr

G (BcO) :=−Pirr
G (−IBcO) for natural extension,

and similarly for regular extension.
The fact that we focus on the framework of lower previsions here is not re-

strictive. Due to the connections that we have established between the different
notions of irrelevant natural extension that were introduced in Chapter 5128,2

the value of Pirr
G ( f cO) or Rirr

G ( f cO) can also be interpreted in terms of other
frameworks. For example, if we start from local credal sets FscxP(s)

and let
Pirr

G (·c·) be the irrelevant natural extension of the network that has the lower
previsions PscxP(s)

:= PFscxP(s)
as its local models, then

Pirr
G ( f cO) = min

{
∑

xG∈B
f (xG)pG(xGcO) : pG(·c·) ∈F irr

G

}
. (7.1)

If Pirr
G (O) = 0, then Rirr

G ( f cO) = Pirr
G ( f cO). Otherwise, it follows from Equa-

tion (3.11)91 and Proposition 49143 that

Rirr
G ( f cO) = inf

{
∑

xG∈B
f (xG)pG(xGcO) : pG(·c·) ∈F irr

G , pG(O)> 0
}
. (7.2)

Similar interpretations for Pirr
G ( f cO) and Rirr

G ( f cO) can be obtained in terms
of sets of conditional linear previsions as well; it suffices to replace FscxP(s)

,
F irr

G , pG(·c·) and ∑xG∈B f (xG)pG(xGcO) by MscxP(s)
, M irr

G and PG(·c·) and
PG( f cO), respectively.

The situation is slightly different for sets of desirable gambles. If we start
from arbitrary local sets of desirable gambles DscxP(s)

and let PscxP(s)
be the cor-

responding lower previsions, then, for any O∈P /0(XG) such that Pirr
G (O)> 0,

Pirr
G (·cO) is equal to PD irr

G
(·cO).3 However, in general, Pirr

G (·c·) is only known
to be dominated by PD irr

G
(·c·)4 and will not always be equal to it. If they dif-

fer, then Pirr
G ( f cO) serves as a conservative—safe, lower—approximation of

PD irr
G
( f cO). Similarly, Rirr

G ( f cO) is only guaranteed to be equal to PD r
O
( f )—

1Since Pirr
G (·c·) is coherent, it coincides with its natural extension.

2See Theorems 42139 and 46142 and Proposition 49143.
3For O = XG, this follows from Proposition 43140. The other cases then follow from the

GBR; see Section 2.7.261.
4By the same argument that was used in the beginning of Theorem 42139.
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with D r
O as in Equation (3.8)88, for D = D irr

G —if Pirr
G (O) > 0; otherwise, it

might only be a conservative—safe, lower—approximation of PD r
O
( f ).

In any case, in practice, the local models that are elicited from experts or
data are usually not sets of desirable gambles, but lower previsions or their
corresponding credal sets. The role of the framework of sets of desirable gam-
bles is then a theoretical and philosophical one. If we let DscxP(s)

be the unique
smallest coherent set of desirable gambles that corresponds to PscxP(s)

, as given
by Equation (2.4)41, then Pirr

G (·c·) is the conditional lower prevision that corre-
sponds to D irr

G [see Theorem 42139] and, for all O∈P /0(XG), Rirr
G (·cO) = PD r

O
[see Equation (3.9)88]. The advantage of this connection with the framework
of sets of desirable gambles is (a) that it has allowed us to develop and prove
the theoretical properties discussed in the previous chapter and (b) that it pro-
vides us with a justification for regarding Pirr

G (·cO) and Rirr
G (·cO) as updated

models [see Chapter 369]. From a practical and computational point of view,
we will mainly focus on the frameworks of lower previsions and credal sets.
The choice is a matter of personal preference—we prefer lower previsions—
and mathematical convenience—both frameworks have their merits—because,
as can be seen from Equations (7.1)x and (7.2)x, they lead to mathematically
equivalent results. For now, we consider the framework of lower previsions.

The choice between Pirr
G ( f cO) and Rirr

G ( f cO) is also a matter of personal
preference; it depends on whether one is willing to make the additional assess-
ments that are required to justify updating by means of regular extension; see
Chapter 369. We consider these additional assessments to be reasonable and
therefore prefer regular extension. From a practical point of view, regular ex-
tension also has the advantage that it produces more informative inferences, a
feature that is of course important in applications.

Although we will be offering methods for computing Pirr
G ( f cO) and

Rirr
G ( f cO) for general events O ∈P /0(XG) and gambles f ∈ G (O) [see for ex-

ample Section 7.4221], they can only be applied for small networks; for larger
networks, these general methods are simply too demanding from a computa-
tional point of view. As is the case for Bayesian networks, computational ef-
ficiency can only be achieved for specific choices of O and f . We give a brief
overview of the specific choices for which we will present efficient algorithms.
A first important—and popular—example is the evaluation of Pirr

q ( f cxE) and
Rirr

q ( f cxE), for some q∈G, E ⊆G\{q}, f ∈G (Xq) and xE ∈XE . In that case,
Xq is referred to as the query variable and the variables that are represented by
XE—the variables Xe, with e ∈ E—are called the evidence variables. The idea
is to use information about the evidence variables—in this case their value—to
learn something about the query variable. Multiple query nodes can also be
considered. This corresponds to considering disjoint subsets Q and E of G
and evaluating Pirr

Q ( f cxE) or Rirr
Q ( f cxE), for some f ∈ G (XQ) and xE ∈XE .

In that case, f will often be structured in some way. It could for example be
the indicator I{xQ} of some value xQ ∈XQ—in order to compute the lower
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probability of xQ—a sum ∑q∈Q fq of gambles fq ∈ G (Xq) or even a prod-
uct ∏q∈Q fq—of which the indicator I{xQ} is a special case. We discuss these
examples—as well as others—further on in this chapter [see Sections 7.5.3249–
7.5.6264]. Although it often makes things easier, it is not necessary for all of
the evidence to be specified completely; partially specified evidence can be
dealt with as well, in the sense that we condition on an event BE ∈P /0(XE)
that is not of the form BE = {xE}. In order to formalise this, we can consider a
third subset L of G, pairwise disjoint from Q and E, and let the evidence con-
sist of a completely specified part xE ∈XE and a—possibly—partially spec-
ified part BL ∈P /0(XL). The goal is then to evaluate Pirr

Q ( f c{xE}×BL) or
Rirr

Q ( f c{xE}×BL), for some f ∈ G (XQ).5

7.2 MAKING THE PROBLEM SMALLER

Before actually trying to compute Pirr
G ( f cO) or Rirr

G ( f cO), the first step should
be to see whether it is possible to simplify the specific inference problem at
hand. As we know from Corollary 60160 and Theorem 73181, it is sometimes
possible to reduce an inference problem in the global network to a similar infer-
ence problem in a subnetwork. If the subnetwork is substantially smaller, this
preprocessing step can result in significantly decreased computational costs,
and can sometimes even turn an intractable problem into a tractable one.

A first important special case is the removal of so-called barren nodes.
Consider a subset S of G, an event BS ∈P /0(XS) and a gamble f ∈ G (BS).
Consider a node `1 ∈ G\S that is a leaf of the network and let G1 := G\{`1}.
Then G1 is clearly an ancestral and therefore closed subset of G. Hence, we
know from Corollary 60160 that Pirr

G1
(·c·) is not only the marginalisation of

Pirr
G (·c·) to G1, it is also the irrelevant natural extension of a credal network

that has the sub-DAG that corresponds to G1 as its graphical structure and that
has the same local models as the original model—except for the local models
of the node `1, because that node has been removed. In fact, for this reason,
our notation does not even distinguish between these two interpretations of
Pirr

G1
(·c·).6 Consequently, as far as the computation of Pirr

S ( f cBS) is concerned,
we do not need to consider the original network but can simply work with
the subnetwork that corresponds to G1. If there is a node `2 ∈ G1 \ S that

5All these inferences assume that missing evidence is ‘Missing At Random’ (MAR), which
more or less means that it is not missing in some biased way. This requirement is closely related to
the honesty that was referred to in Section 3.1.271. In this case, in the example of the smoker, the
issue is that a smoker might choose not to answer a question about his smoking habits—instead of
lying about it. References [49, 117] provide more information about MAR and what can be done
if this requirement is not fulfilled.

6Our notation does distinguish between them in the other frameworks. For example, in terms
of sets of full conditional probability mass functions, we find that margc

G1
(F irr

G ) = F irr
G1

.
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s1 s2 s3 s4 s5 s6 s7

Figure 7.1: Example of a Markov chain

is a leaf of the sub-DAG that corresponds to G1, we can remove `2 as well
and consider the sub-network that corresponds to G2 := G1 \ {`2}, which is
again an ancestral set, and so on. The nodes that can be removed in this way
are called barren nodes. Clearly, a node is barren if it does not belong to
S and either has no children—is a leaf—or has only barren children. Any
ancestral subset K of G can be obtained by removing barren nodes. If S is a
subset of such an ancestral set K, then Pirr

S ( f cBS) can be computed using only
the subnetwork that corresponds to K. Similar techniques can be applied to
simplify the computation of the regular extension Rirr

S ( f cBS): it follows from
Theorem 73181 that Rirr

K (·c·) is, besides the marginalisation of Rirr
G (·c·), also the

regular extension of Pirr
K (·c·).7

Example 8. Consider a simple credal network under epistemic irrelevance
that has the DAG in Figure 7.1 as its graphical structure; this is called an
imprecise Markov chain [43]. Let S := {s2,s3,s4,s5} and consider an event
BS ∈P /0(XS) and a gamble f ∈ G (BS). Then as far as the computation of
Pirr

S ( f cBS) or Rirr
S ( f cBS) is concerned, the nodes s6 and s7 are barren and can

therefore be removed from the network prior to performing any computations.
Similarly, if the graphical structure of the network is the DAG in Figure 5.1130,
then for the same inferences, the nodes s6, s7, s8, s9 and s10 are barren and can
therefore be removed beforehand.

Removing barren nodes can be automated easily. It suffices to look for a leaf
that does not belong to S and to remove it from the network. By repeating this
process until we obtain a DAG whose leaves all belong to S, all barren nodes
will eventually be removed.

Another important special case is the removal of AD-separated evidence.
Let I, C and S be three pairwise disjoint subsets of G and let BI ∈P /0(XI),
xC ∈ XC, BS ∈P /0(XS) and f ∈ G (XS). Then if AD(I,S | C), we know
from Corollary 66168 that Pirr

S ( f cBS ×{xC}×BI) = Pirr
S ( f cBS ×{xC}). Al-

though removing AD-separated evidence in this way might already lead to
computational savings, we can go a lot further. By actually removing the AD-
separated evidence nodes rather than just the evidence itself, we can reduce
the problem to an equivalent problem in a smaller network. Due to Theo-
rem 64167, we know that there is a closed subset K of G such that S ⊆ K,

7It suffices to apply Theorem 73181 with BN(K) = XN(K). Since P(K) = /0, we find that

Pirr
PN(K)({xP(K)}×XN(K)) = Pirr

N(K)(XN(K)) = 1 > 0.
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P(K) ⊆C, I ⊆ N(K) and D(K)∩C = /0. It then follows from Corollary 60160
that Pirr

K (·c ·×{xC\K}×BI) = Pirr
KcxP(K)

(·c·) and therefore, we find that

Pirr
S ( f cBS×{xC}×BI) = Pirr

ScxP(K)
( f cBS×{xC∩K}), (7.3)

where Pirr
ScxP(K)

(·c·) is obtained by applying Equation (4.13)110 to the irrele-
vant natural extension Pirr

KcxP(K)
(·c·) of the subnetwork that corresponds to K

and xP(K). Since it corresponds to a smaller network, the right-hand side
of Equation (7.3) will be easier to compute than the left-hand side. Ob-
viously, if there are multiple closed sets K such that S ⊆ K, P(K) ⊆ C,
I ⊆ N(K) and D(K)∩C = /0 it is best to choose the smallest one. Similar
techniques can be used to simplify the computation of the regular extension
Rirr

S ( f cBS × {xC} × BI). It follows from Theorem 73181 that it is equal to
Rirr

ScxP(K)
( f cBS×{xC∩K}) or Pirr

ScxP(K)
( f cBS×{xC∩K}), depending on the sign

of the upper probability Pirr
PN(K)({xC\K}×BN(K)).

In general, it does not seem feasible to have a computer remove AD-
separated evidence (nodes) in an automated way, as it would require some
method for detecting that the conditioning event O in Pirr

G ( f cO) is of the form
BS×{xC}×BI , with AD(I,S |C). This seems hard. Nevertheless, of course,
for individual inference problems, it might still be easy for a practitioner to
detect that O is of this form, in which case he can apply the simplification we
suggest.

However, there is one particular—but very popular—case where it does
seem feasible to remove AD-separated evidence nodes in an automated way,
while at the same time also removing barren nodes. This is the case where f is
a gamble on XQ and the evidence O is of the form {xE}, for some xE ∈XE ,
with Q and E disjoint subsets of G, and we wish to compute Pirr

Q ( f cxE) or
Rirr

Q ( f cxE). Removing barren nodes and removing AD-separated nodes then
amounts to the same thing. In both cases, we end up with a closed subset
K of G such that Q ⊆ K, P(K) ⊆ E and D(K)∩E = /0. Furthermore, as the
following result establishes, there is always a unique smallest such set.

Proposition 83. Consider two disjoint subsets Q and E of G. Then there will
always be a unique smallest closed subset K of G such that Q⊆ K, P(K)⊆ E
and D(K)∩E = /0.

Proof of Proposition 83. The set G itself is a trivial closed subset of G and,
since P(G) = /0 and D(G) = /0, it also satisfies the other properties. Therefore,
since the number of closed subsets of G is finite, it suffices to prove that if
two closed sets K1 and K2 both satisfy these properties, then their intersection
K = K1∩K2 is closed and satisfies them as well.

So consider two closed subsets Ki of G, with i ∈ {1,2}, such that Q ⊆ Ki,
P(Ki)⊆ E and D(Ki)∩E = /0. Then K := K1∩K2 is clearly a closed subset of
G and Q⊆ K. We are left to prove that P(K)⊆ E and that D(K)∩E = /0.
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First assume ex absurdo that P(K) is not a subset of E. This means that
there is some s ∈ P(K) such that s /∈ E, which implies that s /∈ P(K1) and
s /∈ P(K2). Since s ∈ P(K), we know that s /∈ K and that there is some k ∈ K
such that s∈ P(k). Since k ∈K ⊆K1 and s /∈ P(K1), this implies that s∈K1. In
the same way, we also find that s∈K2. This implies that s∈K, a contradiction.

Next, assume ex absurdo that D(K)∩E = /0. This means that there is some
s ∈ D(K) such that s ∈ E, which implies that s /∈ D(K1) and s /∈ D(K2). Since
s ∈D(K), there is some k ∈ K such that kv s and s /∈ K. Since k ∈ K ⊆ K1 and
s /∈ D(K1), this implies that s ∈ K1. In the same way, we find that s ∈ K2. This
implies that s ∈ K, a contradiction.

Once we know this unique smallest set K—or any other K that satis-
fies these properties—we can compute Pirr

Q ( f cxE) and Rirr
Q ( f cxE) using

only the subnetwork that corresponds to K and xP(K). Pirr
Q ( f cxE) is then

equal to Pirr
QcxP(K)

( f cxE∩K) and Rirr
Q ( f cxE) is equal to Rirr

QcxP(K)
( f cxE∩K) or

Pirr
QcxP(K)

( f cxE∩K), depending on whether or not Pirr
PN(K)(xE\K) is strictly pos-

itive. Therefore, in this case, removing barren nodes and AD-separated evi-
dence nodes can be done in a single step: all we have to do is find the unique
smallest closed superset K of Q such that P(K) ⊆ E and D(K)∩E = /0. Al-
though we will not pursue this path any further, it seems that it should be
possible to construct this set K in an automated manner. Developing an algo-
rithm that is able to do so would be useful in applications where many different
inferences need to be computed, for different sets Q and E; we leave this as
an interesting line of future research. For individual inferences, this set K
can often be found manually, just by looking at the network. The following
simple example illustrates this; more involved examples can be found in Sec-
tion 7.6271.

Example 9. Consider the Markov chain in Figure 7.1217 and let Q = {s3,s4}
and E = {s2,s5}. Then the smallest closed set K such that Q ⊆ K, P(K) ⊆ E
and D(K)∩E = /0 is clearly {s3,s4,s5}. For the DAG in Figure 5.1130, with
Q = {s4,s10} and E = {s3,s6,s7}, the smallest such set is K = {s4,s5,s7,s10}.

Before applying any of the algorithms that will be introduced in the remain-
der of this chapter, these preprocessing steps should always be executed first.
Our algorithms can then be used to solve the equivalent—but smaller-sized and
therefore usually more tractable—inference problem in the subnetwork that
corresponds to K and xP(K) instead of the original—less tractable—inference
problem in the original network.

7.3 REDUCTION TO THE UNCONDITIONAL CASE

Another important trick that will help us render the computation of Pirr
G ( f cO)

tractable, even for large networks, is to focus on computing unconditional
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lower previsions. As we will see further on in Sections 7.5235 and 7.6271,
the unconditional part of Pirr

G (·c·) can sometimes be evaluated by means of
recursive techniques that are far more efficient than the brute force linear pro-
gramming approaches that will be discussed in Section 7.4.3225. Furthermore,
even when this is not the case, it will sometimes be possible to solve small
subproblems with brute force methods and to combine the solutions of these
subproblems recursively. In any case, for now, the main point is that—as is to
be expected—Pirr

G (·) is easier to evaluate than Pirr
G (·c·).

Once we are able to evaluate Pirr
G (·), we can use the techniques in Sec-

tion 2.7.363 to compute the natural and regular extensions of Pirr
G (·), given by

E irr∗
G ( f cO) :=

{
max{µ ∈ R : Pirr

G (IO[ f −µ])≥ 0} if Pirr
G (O)> 0

min f otherwise
and

Rirr∗
G ( f cO) :=

{
max{µ ∈ R : Pirr

G (IO[ f −µ])≥ 0} if Pirr
G (O)> 0

min f otherwise,

respectively. In order to be able to apply the techniques in Section 2.7.363, all
we need is a method for evaluating the real-valued function ρ irr

f ,O, defined by

ρ
irr
f ,O(µ) := Pirr

G (IO[ f −µ]) for all µ ∈ R.

As explained in Section 2.7.363, max{µ ∈R : Pirr
G (IO[ f −µ])≥ 0} can then be

obtained by a simple root-finding procedure such as the bisection method and
Pirr

G (O), and Pirr
G (O) will be strictly positive if and only if this is the case for

ρ irr
f ,O(µ0) and ρ irr

f ,O(µ1), respectively, with µ0 < min f and µ1 > max f .
It is important to realise that E irr∗

G ( f cO) and Rirr∗
G ( f cO) are not the actual

inferences that we are looking for, which are Pirr
G ( f cO) or Rirr

G ( f cO); see Sec-
tion 7.1213. In general, E irr∗

G ( f cO) and Rirr∗
G ( f cO) only provide conservative—

lower, safe—approximations. However, in many cases, these approxima-
tions will be exact. As explained in Section 3.2.375, E irr∗

G ( f cO) is guaran-
teed to coincide with Pirr

G ( f cO) whenever Pirr
G (O) > 0 and otherwise pro-

vides a vacuous lower approximation. Similarly, as we know from 6.8180,
Rirr∗

G ( f cO) is guaranteed to coincide with Rirr
G ( f cO) whenever Pirr

G (O)> 0; oth-
erwise, Rirr∗

G ( f cO) = min f provides a vacuous conservative lower bound for
Rirr

G ( f cO). Since, from a practical point of view, updating on an observation
that has upper probability zero will most likely rarely happen anyway, this
means that, as far as updating by means of regular extension is concerned,
being able to evaluate Pirr

G (·) will be sufficient in order to compute Rirr
G ( f cO)

exactly in almost all cases.
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After applying these preprocessing steps and tricks, we are still left with the
same type of problem: the numerical evaluation of Pirr

G ( f cO) or Rirr
G ( f cO), for

some O∈P /0(XG) and f ∈G (O). So far, all we have done is provide methods
that can—in some cases—make G smaller or that can reduce the problem to
the unconditional case, with O = XG. However, we still do not know how
to evaluate Pirr

G ( f cO) or Rirr
G ( f cO). In this section, we provide a number of

brute force techniques for solving this problem, some of which we already
published in Reference [27]. If the problem is small enough for these methods
to remain tractable, these techniques can be applied to all networks and all
types of inferences. For specific cases, more efficient recursive techniques will
be developed in Sections 7.5235 and 7.6271.

7.4.1 Regarding the model as a normal natural extension

One way to compute Pirr
G ( f cO) is to regard it as a special case of the problem

of computing the natural extension of a partially specified conditional lower
prevision. Indeed, as we know from Proposition 45141, the irrelevant natu-
ral extension Pirr

G (·c·) is the ‘normal’ natural extension of a conditional lower
prevision PG(·c·) with domain

C = {(g,xPN(s)) : s ∈ G,g ∈ G (Xs),xPN(s) ∈XPN(s)},

defined by

Ps(gcxPN(s)) := PscxP(s)
(g) for all s ∈ G, g ∈ G (Xs) and xPN(s) ∈XPN(s).

Since the domain of PG(·c·) is infinite, computing its natural extension is gen-
erally infeasible. However, in practice, it will often not be necessary to con-
sider an infinite domain because the local models PscxP(s)

are usually finitely
generated.

Finitely generated models were introduced in Section 2.6.152 as closed and
convex sets of linear previsions that have a finite number of extreme points.
Similarly, as defined in Section 2.6.255, a finitely generated credal set is a
closed and convex set of probability mass functions that has a finite num-
ber of vertices. In the framework of lower previsions, we say that PscxP(s)

is
finitely generated if it is fully determined by its restriction to some finite do-
main KscxP(s)

⊆ G (Xs), in the sense that PscxP(s)
is the unconditional part of

the natural extension of its restriction to KscxP(s)
. This terminology is consis-

tent: it is well known that PscxP(s)
is finitely generated if and only if the corre-

sponding credal set FPscxP(s)
is finitely generated, and similarly for MPscxP(s)

.8

8This follows from the fact that a bounded subset of Euclidean space is the intersection of
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Particular classes of finitely generated models are 2-monotone lower previ-
sions [48],9 credal sets that correspond to comparative probability assess-
ments [73], ε-contaminated models [7], etcetera. Local models are typically
finitely generated because they belong to one of these classes, or because they
are based on a finite number of assessments. Furthermore, if the local models
are not finitely generated, it is always possible to approximate them arbitrarily
closely by a finitely generated one.

More generally, we may have that each of the local models PscxP(s)
is equal

to the unconditional part of the natural extension of its restriction to some—
not necessarily finite—subdomain KscxP(s)

⊆ G (Xs). The irrelevant natural
extension Pirr

G (·c·) is then equal to the global ‘normal’ natural extension of a
conditional lower prevision P′G(·c·) with domain

C ′ = {(g,xPN(s)) : s ∈ G,xPN(s) ∈XPN(s),g ∈KscxP(s)
},

defined by10

P′s(gcxPN(s)) := PscxP(s)
(g) for all s ∈ G, xPN(s) ∈XPN(s) and g ∈KscxP(s)

.

(7.4)
If the local models are finitely generated—if KscxP(s)

is finite—then C ′ will
also be finite. In that case, Pirr

G ( f cO) can be computed by means of any al-
gorithm that is capable of computing the natural extension of a conditional
lower prevision with a finite domain. The most efficient algorithm seems to
be the one in Reference [98, Section 17.2.2], which extends the techniques
in Reference [111] from probabilities to previsions. Basically, this algorithm
consists of a sequence of linear programs; see References [98, 111] for more
information.

The advantage of this approach is that it can be applied to compute any
Pirr

G ( f cO) of interest. However, for large networks, this computation will be
intractable because the number of constraints in the linear programs that need
to be solved is more or less equal to the cardinality of C ′, which is exponential
in the size of the network. Also, this approach only works for Pirr

G ( f cO). In or-
der to compute Rirr

G ( f cO), we need to apply the techniques in Section 7.4.1x,
which, basically, requires us to evaluate Pirr

G (·) for a number of different gam-
bles. In the next two sections, we focus on evaluating this unconditional part
of Pirr

G (·c·).

a finite number of closed half spaces if and only if it is the convex hull of a finite number of
vertices [60, Theorem 3.1.3].

9This class includes, as a special case, the lower previsions that correspond to—are the natural
extension of—belief functions [52, 87].

10Since PscxP(s)
is—the unconditional part of—the natural extension of its restriction to

KscxP(s)
, every conditional lower prevision that dominates P′G(·c·) also dominates PG(·c·). There-

fore, since P′G(·c·) coincides with PG(·c·) on its domain C ′, they both have the same natural
extension, which, due to Proposition 45141, is equal to Pirr

G (·c·).
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7.4.2 Alternative characterisations for the unconditional part

We already know from the previous section that Pirr
G (·c·) is the natural ex-

tension of a conditional lower prevision. Our next result establishes that its
unconditional part Pirr

G (·) is the natural extension of an unconditional lower
prevision.

Proposition 84. For all s ∈ G and xP(s) ∈XP(s), consider some subdomain
KscxP(s)

⊆ G (Xs) such that the local lower prevision PscxP(s)
on G (Xs) is equal

to the unconditional part of the natural extension of its restriction to KscxP(s)
.11

Consider a lower prevision PG that is equal to zero on its domain

K =
{
I{xPN(s)}[g−PscxP(s)

(g)] : s ∈ G, xPN(s) ∈XPN(s), g ∈KscxP(s)

}
and let EG be the unconditional part of the natural extension of PG. Then
Pirr

G ( f ) = EG( f ) for all f ∈ G (XG).

Proof of Proposition 84. Fix any f ∈ G (XG). For all s ∈ G, xPN(s) ∈XPN(s)
and g ∈KscxP(s)

, we have that

0 = Pirr
G (I{xPN(s)}[g−Pirr

s (gcxPN(s))]) = Pirr
G (I{xPN(s)}[g−PscxP(s)

(g)]),

where the first equality follows from the coherence of Pirr
G (·c·) [C448] and the

second one from Corollary 44141. Hence, Pirr
G (·) is equal to zero on K . Since

EG is the pointwise smallest coherent lower prevision on G (XG) for which
this is the case, it follows that Pirr

G ( f )≥ EG( f ).
As explained in Section 7.4.1221, Pirr

G (·c·) is the natural extension of the
conditional lower prevision P′G(·c·) on C ′ that is defined by Equation (7.4)x.
Fix any ε ∈R>0. Then f −Pirr

G ( f )+ε ∈ EP′G(·c·)
because of Equation (2.11)44,

coherence [C849] and Equations (2.5)41 and (2.6)41. By the definition of
EP′G(·c·)

, this implies that there are m ∈ N and, for all i ∈ {1, . . . ,m}, (gi,Bi) ∈
C ′ and λi ∈ R≥0 such that

f −Pirr
G ( f )+ ε ≥

m

∑
i=1

λiIBi [gi−P′G(gicBi)] =
m

∑
i=1

λi fi, (7.5)

where, for all i ∈ {1, . . . ,m}, due to Equation (7.4)x and the definition of C ′,
fi := IBi [gi−P′G(gicBi)] is an element of K . This implies that

EG( f )≥ EG

(
Pirr

G ( f )−ε +
m

∑
i=1

λi fi

)
≥ Pirr

G ( f )−ε +
m

∑
i=1

λiEG( fi)≥ Pirr
G ( f )−ε,

11This is always possible; KscxP(s)
= G (Xs) is a trivial choice.
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where the first inequality follows from coherence [C749] and Equation (7.5)x
and the second one from coherence alone [C248, C348 and C849]. The third
inequality holds because EG dominates PG on K [Equation (2.12)44] and be-
cause PG is equal to zero on K . Since this holds for all ε ∈ R>0, we find that
EG( f )≥ Pirr

G ( f ).

This result allows us to evaluate Pirr
G (·) by means of a general purpose algo-

rithm for calculating the natural extension of an unconditional lower prevision,
which typically involves solving a single linear program; we will construct the
dual form of this linear program explicitly in the next section. Of course,
from a practical point of view, this approach is only useful if the local models
are finitely generated—if KscxP(s)

consists of a finite number of gambles—and
even then, it will only be tractable for networks that are sufficiently small.

The following rather immediate consequence of Proposition 84x provides
a simple characterisation of the linear previsions that dominate Pirr

G (·).

Corollary 85. For all s ∈ G and xP(s) ∈ XP(s), consider some subdomain
KscxP(s)

⊆ G (Xs) such that the local lower prevision PscxP(s)
on G (Xs) is equal

to the unconditional part of the natural extension of its restriction to KscxP(s)
.

A linear prevision PG on G (XG) then belongs to MPirr
G (·) if and only if for all

s ∈ G and xPN(s) ∈XPN(s):

PG(I{xPN(s)}[g−PscxP(s)
(g)])≥ 0 for all g ∈KscxP(s)

(7.6)

Proof of Corollary 85. We know from Proposition 84x that Pirr
G (·) is the

pointwise smallest coherent lower prevision on G (XG) that satisfies Equa-
tion (7.6)—that dominates zero on K , with K as in Proposition 84x. This
implies that a linear prevision PG on G (XG) satisfies Equation (7.6) if and only
if it is an element of MPirr

G (·)—if and only if it dominates Pirr
G (·).

Due to the one-to-one correspondence between linear previsions and probabil-
ity mass functions, this result leads to the following intuitive characterisation
of F irr

G cXG—the unconditional part of F irr
G .

Corollary 86. A probability mass function pG on XG belongs to F irr
G cXG if

and only if, for all s ∈ G and xPN(s) ∈XPN(s):

pPN(s)(xPN(s)) = 0 or ps(·cxPN(s)) ∈FscxP(s)
, (7.7)

where, when pPN(s)(xPN(s)) 6= 0,

ps(zscxPN(s)) :=
p{s}∪PN(s)(zs,xPN(s))

pPN(s)(xPN(s))
for all zs ∈Xs.

224



7.4 BRUTE FORCE TECHNIQUES

Proof of Corollary 86x. For all s ∈ G and xP(s) ∈ XP(s), let PscxP(s)
be the

unique coherent lower prevision that corresponds to FscxP(s)
. Consider any

probability mass function pG on XG. It then follows from Theorem 46142 and
Proposition 49143 that pG belongs to F irr

G cXG if and only if the corresponding
linear prevision PG is an element of MPirr

G (). By combining this with Corol-
lary 85x, with KscxP(s)

= G (Xs), we find that pG belongs to F irr
G cXG if and

only if, for all s ∈ G and xPN(s) ∈XPN(s):

∑
zG∈XG

I{xPN(s)}(zPN(s))[g(zs)−PscxP(s)
(g)]pG(zG)≥ 0 for all g ∈ G (Xs).

(7.8)
If pPN(s)(xPN(s)) = 0, then pG(zG) = 0 for all zG ∈XG such that zPN(s) = xPN(s)
[because pPN(s)(xPN(s)) ≥ pG(zG) ≥ 0], which implies that Equation (7.8) is
trivially satisfied. If pPN(s)(xPN(s))> 0, then Equation (7.8) is equivalent to

∑
zs∈Xs

g(zs)
p{s}∪PN(s)(zs,xPN(s))

pPN(s)(xPN(s))
≥ PscxP(s)

(g) for all g ∈ G (Xs),

which, since ps(·cxPN(s)) is a probability mass function on Xs, is true if and
only if ps(·cxPN(s)) ∈FscxP(s)

.

As we will see in the next section, this characterisation can be used to obtain a
description of F irr

G cXG in terms of linear constraints.

7.4.3 Reducing the problem to linear programming

For readers who are not familiar with the notion of natural extension, it will
probably not be clear why the fact that the irrelevant natural extension is a spe-
cific kind of ‘normal’ natural extension implies that computing Pirr

G (·) basically
comes down to solving a linear program. Therefore, and because we think that
this link with linear programming is important, we will now explicitly con-
struct the linear program that needs to be solved.

The starting point are the local models. For every s ∈ G and xP(s) ∈XP(s),
we have a coherent lower prevision PscxP(s)

on G (Xs) and a corresponding
credal set FscxP(s)

. It then follows from Equation (7.1)214 that the unconditional
parts Pirr

G (·) and F irr
G cXG of the respective irrelevant natural extensions are

related in the following way. For all f ∈ G (XG), we have that

Pirr
G ( f ) = min

{
∑

xG∈XG

f (xG)pG(xG) : pG ∈F irr
G cXG

}
. (7.9)

Computing Pirr
G ( f ) is therefore a matter of minimising the linear function

∑xG∈XG
f (xG)pG(xG) over the set of vectors F irr

G cXG. Hence, it follows that
if we can characterise F irr

G cXG as the solution set of some collection of linear
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constraints, then computing Pirr
G ( f ) comes down to solving a linear program.

This means that, provided that the number of variables—|G|—and constraints
is small enough, this problem can be tackled by one of the many available
algorithms that have been specifically designed for this task; see for example
Reference [9]. In the remainder of this section, we show that it is indeed pos-
sible to construct a set of linear constraints that is able to fully characterise the
elements of F irr

G cXG.
In order to derive such a representation for the joint model F irr

G cXG, we
start from similar representations for the local models. For all s ∈ G and
xP(s) ∈XP(s), we characterise the local credal set FscxP(s)

as the set of all real-
valued functions pscxP(s)

on Xs that satisfy the unitary constraint

∑
zs∈Xs

pscxP(s)
(zs) = 1 (7.10)

and a—possibly infinite—set of linear homogeneous inequalities

∑
zs∈Xs

pscxP(s)
(zs)γ(zs)≥ 0, (7.11)

where γ takes values in a—possibly infinite—set ΓscxP(s)
of gambles on Xs.

Such a description for FscxP(s)
always exists because it can be derived from the

corresponding coherent lower prevision PscxP(s)
by letting

Γs,xP(s) =
{

g−PscxP(s)
(g) : g ∈ G (Xs)

}
. (7.12)

Indeed, for this particular choice of ΓscxP(s)
, the combination of Equa-

tions (7.10) and (7.11) will always be equivalent to requiring that pscxP(s)
should

be a probability mass function on Xs for which the corresponding linear pre-
vision dominates PscxP(s)

or, equivalently, that pscxP(s)
should be an element

of FscxP(s)
. To understand why this is so, the starting point is to notice that

if γ = g− PscxP(s)
(g), with g ∈ G (Xs), then due to Equation (7.10), Equa-

tion (7.11) becomes equivalent to

∑
zs∈Xs

pscxP(s)
(zs)g(zs)≥ PscxP(s)

(g). (7.13)

Due to the coherence [C148] of PscxP(s)
, this implies, for all zs ∈ Xs, that

pscxP(s)
(zs) = PscxP(s)

(I{zs})≥ 0. By combining this with Equation (7.10), it fol-
lows that pscxP(s)

is a probability mass function on Xs. Since Equation (7.13)
imposes that the corresponding linear prevision dominates PscxP(s)

, this estab-
lishes the equivalence.

Equation (7.12) produces an infinite set of constraints that is guaranteed
to characterise FscxP(s)

. However, in practice, most of these constraints will

226



7.4 BRUTE FORCE TECHNIQUES

often be redundant. This is especially so for finitely generated local models
[see Section 7.4.1221]. Since these are fully determined by their value on some
finite domain KscxP(s)

, one can easily construct a set Γs,xP(s) that contains only
a finite number of gambles and yet fully characterises FscxP(s)

by means of
Equations (7.10)x and (7.11)x. For example, by an argument that is similar
to the one above, it follows that

Γs,xP(s) =
{

g−PscxP(s)
(g) : g ∈KscxP(s)

or (∃xs ∈Xs)g = I{xxs}
}

satisfies this property. It might also be possible to consider even smaller sets,
as some of the indicators I{xs} may also be redundant.

The importance of these local representations in terms of linear
constraints—regardless of whether Γs,xP(s) is finite or not—is that we can use
the local constraints to derive global ones. This results in the following charac-
terisation of F irr

G cXG in terms of linear constraints. Due to the homogeneity of
the local constraints—except for the unitary constraint—the global constraints
in Equation (7.14) are also homogeneous, thereby making them especially el-
egant.

Corollary 87. For every s∈G and xP(s) ∈XP(s), consider some subset ΓscxP(s)

of G (Xs) such that the local credal set FscxP(s)
is fully characterised by Equa-

tions (7.10)x and (7.11)x. A probability mass function pG on XG then be-
longs to F irr

G cXG if and only if(
∀γ ∈ ΓscxP(s)

)
∑

zs∈Xs

∑
zD(s)∈XD(s)

pG(xPN(s),zs,zD(s))γ(zs)≥ 0 (7.14)

for all s ∈ G and xPN(s) ∈XPN(s).

Proof of Corollary 87. Consider any probability mass function pG on XG and
fix some s∈G and xPN(s) ∈XPN(s). Due to Corollary 86224, it suffices to prove
that Equations (7.7)224 and (7.14) are equivalent.

First assume that Equation (7.7)224 holds. If pPN(s)(xPN(s)) = 0, Equa-
tion (7.14) is trivially true. If ps(·cxPN(s)) ∈FscxP(s)

, Equation (7.14) follows
from the fact that FscxP(s)

satisfies Equation (7.11)x.
Next, assume that Equation (7.14) holds. If pPN(s)(xPN(s)) 6= 0, divid-

ing both sides of the inequality in Equation (7.14) by pPN(s)(xPN(s)) tells us
that ps(·cxPN(s)) satisfies Equation (7.11)x. Since ps(·cxPN(s)) is a prob-
ability mass function—because pG is one—we also know that it satisfies
Equation (7.10). Since FscxP(s)

is fully characterised by Equations (7.10)x
and (7.11)x, this allows us to infer that ps(·cxPN(s)) ∈FscxP(s)

.

When all lower probabilities are strictly positive, this result is fairly straight-
forward. The global inequalities can then be obtained by imposing all irrele-
vancies through element-wise Bayes’s rule and clearing the denominators, as
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is done in Reference [16, Section 8.3]. The importance of Corollary 87x is
that it shows that these inequalities remain valid even if lower (and upper)
probabilities are allowed to be zero.

Reference [16] does not explicitly impose that pG should be a probability
mass function. The author seems to assume that it suffices to impose only the
unitary constraint ∑zG∈XG

p(zG) = 1; the requirement that p(zG) ≥ 0 for all
zG ∈XG is regarded as redundant. Although we agree with this statement, we
do not consider it to be trivial. The following theorem formalises this property.
The proof can be found in Appendix 7.A278.

Theorem 88. For every s ∈G and xP(s) ∈XP(s), consider some subset ΓscxP(s)

of G (Xs) such that the local credal set FscxP(s)
is fully characterised by Equa-

tions (7.10)226 and (7.11)226. F irr
G cXG then consists of those real-valued

functions pG on XG for which ∑zG∈XG
pG(zG) = 1 and, for all s ∈ G and

xPN(s) ∈XPN(s):(
∀γ ∈ ΓscxP(s)

)
∑

zs∈Xs

∑
zD(s)∈XD(s)

pG(xPN(s),zs,zD(s))γ(zs)≥ 0.

Corollary 87x and Theorem 88 are valid regardless of whether or not
ΓscxP(s)

is finite. However, in the infinite case, their value is mainly of a theo-
retical nature. They can only be used in practice—at least in an exact way—if
ΓscxP(s)

is finite for all s∈G and xP(s) ∈XP(s), or equivalently, if all local credal

sets are finitely generated.12 In that case, Corollary 87x and Theorem 88 char-
acterise F irr

G cXG as the solution set of a finite number of constraints and there-
fore, as explained in the beginning of this section, allow us to reformulate the
computation of Pirr

G ( f ) as a linear programming problem. Although the size of
this linear program is exponential in the number of variables of the network,
this approach allows for inference problems in small networks to be solved
exactly. For large networks, this brute force approach will not be tractable.
However, as we will show in Section 7.5235, there are classes of networks for
which specific types of inferences can be computed more intelligently, result-
ing in algorithms that remain tractable even for large networks.

By considering a network that consists of disconnected nodes only, the
results in this—and the previous—section trivially lead to analogous state-
ments for the independent natural extension, because, as we know from Sec-
tion 6.6171, the independent natural extension is equal to the unconditional
part of the irrelevant natural extension of such a network. For example, for all

12If we allow for non-linear constraints, then local credal sets that are not finitely generated
could be practical as well, as they can often be described by means of a finite set of non-linear
constraints. We believe that Corollary 87x and Theorem 88 could easily be adapted to allow for
such non-linear (homogeneous) constraints, thereby expanding their practical use if one combines
them with non-linear solvers.
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f ∈ G (XG), Equation (7.9)225 implies that

(
⊗s∈G Ps

)
( f ) = min

{
∑

xG∈XG

f (xG)pG(xG) : pG ∈ ⊗s∈GFs

}
. (7.15)

The following immediate consequence of Theorem 88x implies that this op-
timisation problem can be solved by means of standard linear programming
techniques.

Corollary 89. Consider a finite number of local credal sets Fs, s ∈ G, each
of which is fully characterised means of Equations (7.10)226 and (7.11)226.
Then ⊗s∈GFs consists of those real-valued functions pG on XG for which
∑zG∈XG

pG(zG) = 1 and, for all s ∈ G and xG\{s} ∈XG\{s}:(
∀γ ∈ Γs

)
∑

zs∈Xs

p(xG\{s},zs)γ(zs)≥ 0.

Proof of Corollary 89. This is an immediate consequence of Theorem 88x
and the fact that—in this special case of the independent natural extension—
P(s) = /0 and N(s) = G\{s} for all s ∈ G.

7.4.4 Enumerating the extreme points explicitly

A final brute force method for computing Pirr
G (·) is by enumerating the extreme

points of F irr
G cXG. Since we know from Section 2.6.255 that F irr

G cXG is the
convex hull of its extreme points, it follows from Equation (7.9)225 that, for all
f ∈ G (XG):

Pirr
G ( f ) = min

{
∑

xG∈XG

f (xG)pG(xG) : pG ∈ ext(F irr
G cXG)

}
. (7.16)

Computing Pirr
G ( f ) is therefore a matter of evaluating ∑xG∈XG

f (xG)pG(xG) for
all pG ∈ ext(F irr

G cXG). If the extreme points of F irr
G cXG are available, and if

their number is finite and sufficiently small, this approach allows us to compute
Pirr

G ( f ) at blazing speeds.
Unfortunately, these extreme points are usually not available, and if they

are, their number is often huge. One example where the extreme points are
known, are imprecise Markov chains, which are credal networks under epis-
temic irrelevance of which the underlying DAG is a directed chain; see for
example Figure 7.1217. In that specific case, the extreme points of F irr

G cXG
correspond to probability trees whose local probability mass functions are the
extreme points of the local models FscxP(s)

; see for example Reference [43].
However, since the number of such probability trees is exponential in the
length of the Markov chain, a direct application of Equation (7.16) becomes
intractable for long Markov chains.
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If the extreme points are not directly available, they can be derived from the
characterisations in terms of linear constraints that were discussed in the pre-
vious section, by applying standard vertex enumeration algorithms. However,
since the number of linear constraints that characterise F irr

G cXG is exponential
in the size of the network, constructing the extreme points of F irr

G cXG in this
way will be intractable for large networks, and their number will usually be ex-
ponential in the size of the network as well. Furthermore, even if it is tractable,
constructing these extreme points will typically be less efficient than comput-
ing Pirr

G ( f ) directly by solving a linear program. Nevertheless, if we need to
compute Pirr

G ( f ) for many different f ∈ G (XG), it might sometimes still be
a good idea to construct the extreme points of F irr

G cXG explicitly. Once we
have constructed these extreme points, we can use them to compute Pirr

G ( f ) for
as many gambles f ∈ G (XG) as we want, whereas a direct linear program-
ming approach would require us to solve a new linear program for every new
gamble.

In the remainder of this section, we focus on a simple special case: a credal
network with two disconnected binary variables. For all i ∈ G = {1,2}, the
variable Xi assumes values in its binary state space Xi = {hi, ti} and has a given
local uncertainty model in the form of a credal set Fi. In this case, F irr

G cXG
is equal to the independent natural extension F1⊗F2 of the local models Fi,
i ∈ {1,2}. We intend to show that it is possible to obtain elegant closed-form
expressions for the extreme points of this independent natural extension. The
starting point is to describe F1⊗F2 in terms of linear constraints, by applying
Corollary 89x. As we will see, the corresponding vertex enumeration problem
can then be solved symbolically.

Since Xi, i ∈ {1,2}, is a binary variable, the credal set Fi is completely
characterised by the lower and upper probabilities of one of its elements. For
example: the lower and upper probability of hi, which we denote as p(hi)
and p(hi), respectively. Each of these two probabilities defines a unique prob-
ability mass function on Xi and Fi is equal to their convex hull. In other
words: Fi consists of the probability mass functions p on Xi for which
p(hi) ∈ [ p(hi), p(hi)]. The corresponding lower and upper probability of ti
is equal to p(ti) := 1− p(hi) and p(ti) := 1− p(hi), respectively.

Before we can apply Corollary 89x, we first need to characterise Fi,
i ∈ {1,2}, by means of the unitary constraint and a finite number of linear
homogeneous inequalities. In this binary case, we can use the following two
inequalities:

p(ti)p(hi)− p(hi)p(ti)≥ 0

−p(ti)p(hi)+ p(hi)p(ti)≥ 0.

By applying Corollary 89x, these local constraints can be turned into global
ones. We find that F1⊗F2 consists of the real-valued functions p on X1×X2
for which
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p(h1,h2)+ p(h1, t2)+ p(t1,h2)+ p(t1, t2) = 1 (7.17)

and

p(t1)p(h1,h2)− p(h1)p(t1,h2)≥ 0 (I1)

−p(t1)p(h1,h2)+ p(h1)p(t1,h2)≥ 0 (I2)

p(t1)p(h1, t2)− p(h1)p(t1, t2)≥ 0 (I3)

−p(t1)p(h1, t2)+ p(h1)p(t1, t2)≥ 0 (I4)

p(t2)p(h1,h2)− p(h2)p(h1, t2)≥ 0 (I5)

−p(t2)p(h1,h2)+ p(h2)p(h1, t2)≥ 0 (I6)

p(t2)p(t1,h2)− p(h2)p(t1, t2)≥ 0 (I7)

−p(t2)p(t1,h2)+ p(h2)p(t1, t2)≥ 0. (I8)

If the inequalities in equations (I1)–(I8) are replaced by equalities, we will
refer to the resulting equations as (E1)–(E8):

p(t1)p(h1,h2)− p(h1)p(t1,h2) = 0 (E1)

−p(t1)p(h1,h2)+ p(h1)p(t1,h2) = 0 (E2)

p(t1)p(h1, t2)− p(h1)p(t1, t2) = 0 (E3)

−p(t1)p(h1, t2)+ p(h1)p(t1, t2) = 0 (E4)

p(t2)p(h1,h2)− p(h2)p(h1, t2) = 0 (E5)

−p(t2)p(h1,h2)+ p(h2)p(h1, t2) = 0 (E6)

p(t2)p(t1,h2)− p(h2)p(t1, t2) = 0 (E7)

−p(t2)p(t1,h2)+ p(h2)p(t1, t2) = 0. (E8)

These equations can be used to state the following necessary and sufficient
conditions for being an extreme point of F1⊗F2.

Proposition 90. Every p ∈ ext(F1⊗F2) is the unique solution to the unitary
constraint (7.17) and three of the equations (E1)–(E8).

Proof of Proposition 90. Consider an arbitrary extreme point pext of F1⊗F2.
Denote by E= the set of all equalities in (E1)–(E8) that are satisfied by pext and
use E=

1 to denote the union of E= and the unitary constraint (7.17). Let C be
the intersection of the hyperplanes that are defined by the equalities in E=

1 .
Clearly, pext ∈C. Since all the equalities in E= are linear and homogeneous,
C will either be a singleton (and therefore be equal to {pext}) or contain a line
(that necessarily contains pext).
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Assume ex absurdo that C 6= {pext}, which implies that there is some line
L⊆C such that pext ∈ L. Since pext is an element of F1⊗F2, we know that it
satisfies the unitary constraint and the inequalities (I1)x–(I8)x. If we denote
by E> the set of inequalities in (I1)x–(I8)x that are strictly satisfied by pext
(and therefore not with equality), we can construct a closed ball B around pext,
with radius ε > 0, such that all the elements of B satisfy the inequalities in
E>. It should now be clear that the elements of B∩C satisfy (I1)x–(I8)x,
because these inequalities are either an element of E> or their corresponding
equality is an element of E=. Since B∩C also satisfies the unitary constraint
(because it is a subset of C), it follows that B∩C is a subset of F1⊗F2. This
implies that the closed line segment B∩L, of which the midpoint is equal to
pext, is a subset of F1⊗F2. Therefore, if we denote the endpoints of B∩L by
p1 and p2, we find that p1, p2 ∈F1⊗F2 and pext = (p1 + p2)/2. Since this
contradicts the fact that pext is an extreme point of F1⊗F2, we may conclude
that C = {pext}.

As a direct consequence of the fact that C = {pext}, it follows that pext is
the unique solution of the equations in E=

1 . Since we are working in R4 and be-
cause all the equations in E=

1 are linear, this implies that E=
1 contains a subset

of four equalities for which it also holds that pext is their unique solution. This
subset must contain the unitary constraint (7.17)x because it would otherwise
contain only homogeneous linear equalities, which would imply that their so-
lution set can only be a singleton if it is equal to the origin, which clearly is
not the case here. Therefore we conclude that pext is the unique solution to the
unitary constraint and three equations in E=, which by construction is a subset
of the equalities (E1)x–(E8)x.

Proposition 91. Consider any ternary subset of (E1)x–(E8)x that, in com-
bination with the unitary constraint (7.17)x, has a unique solution p. Then
p ∈F1⊗F2 if and only if p ∈ ext(F1⊗F2).

Proof of Proposition 91. One of the directions is trivial: p ∈ ext(F1 ⊗F2)
clearly implies that p ∈F1⊗F2. Now assume ex absurdo that p ∈F1⊗F2
and p /∈ ext(F1⊗F2), which implies that there are pa, pb ∈ (F1⊗F2)\{p}
and λ ∈ (0,1) such that p = λ pa +(1−λ )pb. Without loss of generality, we
may assume that p is the unique solution of the unitary constraint (7.17)x
and Equations (E1)x, (E2)x and (E3)x; the proof for other ternary subsets
of (E1)x–(E8)x is analogous. Since pa is a probability mass function that
differs from p, it follows that pa does not satisfy Equation (E1)x, (E2)x or
(E3)x. Without loss of generality, we may assume that Equation (E1)x is not
satisfied; the proof for the other cases is analogous. Since pa and pb belong to
F1⊗F2, we know that they satisfy Equation (I1)x. Since pa does not satisfy
Equation (E1)x, this implies that p= λ pa+(1−λ )pb satisfies Equation (I1)x
strictly, which implies that p does not satisfy Equation (E1)x, a contradiction.
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p(h1,h2)∑ p(h1, t2)∑ p(t1,h2)∑ p(t1, t2)∑

pS1 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2)

pS2 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2)

pS3 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2)

pS4 p(h1)p(h2) p(h1)p(t2) p(t1)p(h2) p(t1)p(t2)

pA1 p(h1)p(h1)p(h2) p(h1)p(h1)p(t2) p(t1)p(h1)p(h2) p(h1)p(t1)p(t2)

pA2 p(h1)p(h1)p(h2) p(h1)p(h1)p(t2) p(h1)p(t1)p(h2) p(t1)p(h1)p(t2)

pA3 p(h1)p(t1)p(h2) p(t1)p(h1)p(t2) p(t1)p(t1)p(h2) p(t1)p(t1)p(t2)

pA4 p(t1)p(h1)p(h2) p(h1)p(t1)p(t2) p(t1)p(t1)p(h2) p(t1)p(t1)p(t2)

pB1 p(h2)p(h2)p(h1) p(t2)p(h2)p(h1) p(h2)p(h2)p(t1) p(h2)p(t2)p(t1)

pB2 p(h2)p(t2)p(h1) p(t2)p(t2)p(h1) p(t2)p(h2)p(t1) p(t2)p(t2)p(t1)

pB3 p(h2)p(h2)p(h1) p(h2)p(t2)p(h1) p(h2)p(h2)p(t1) p(t2)p(h2)p(t1)

pB4 p(t2)p(h2)p(h1) p(t2)p(t2)p(h1) p(h2)p(t2)p(t1) p(t2)p(t2)p(t1)

Table 7.1: Numerators of the candidates for the extreme points of the indepen-
dent natural extension of two binary variables

The extreme points of F1⊗F2 can therefore be found in the following
way. First, we need to consider every possible subset of three equalities from
(E1)231–(E8)231. Then, for every such combination of three equalities, we need
to combine them with the unitary constraint and check whether this results in
a unique solution. If this is the case, we need to check whether this unique
solution satisfies the inequalities in (I1)231–(I8)231. If yes, then that unique
solution is an extreme point of F1⊗F2.

Since there are 56 possible ways of choosing three equalities out of eight,
solving this problem manually might seem like a daunting task. However, due
to the extreme symmetry—switching X1 and X2, h1 and t1 or h2 and t2 yields
an equivalent set of inequalities—only 7 of those 56 cases need to be consid-
ered, as the others can be derived from these 7 by an argument of symmetry.
By exploiting this symmetry, we have managed to obtain elegant closed-form
expressions for the extreme points of F1⊗F2.
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∑ ∑ ∑

pS1 1 pA1 p(h1)p(t2)+ p(h1)p(h2) pB1 p(h2)p(t1)+ p(h2)p(h1)

pS2 1 pA2 p(h1)p(h2)+ p(h1)p(t2) pB2 p(t2)p(t1)+ p(t2)p(h1)

pS3 1 pA3 p(t1)p(t2)+ p(t1)p(h2) pB3 p(h2)p(h1)+ p(h2)p(t1)

pS4 1 pA4 p(t1)p(h2)+ p(t1)p(t2) pB4 p(t2)p(h1)+ p(t2)p(t1)

Table 7.2: Denominators of the candidates for the extreme points of the inde-
pendent natural extension of two binary variables

Theorem 92. Tables 7.1x and 7.2 contain expressions for up to 12 probability
mass functions, which can be obtained by dividing the rows of Table 7.1x by
the corresponding denominator in Table 7.2. Based on the particular values of
p(h1), p(h1), p(t1), p(t1), p(h2), p(h2), p(t2) and p(t2), the diagram in Fig-
ure 7.2y—which is continued in Figures 7.3236 and 7.4237—indicates which
subset of these probability mass functions are the extreme points of F1⊗F2.
In these diagrams, we use the shorthand notation pS1=S2 to denote that pS1 and
pS2 are two coinciding extreme points, and similarly for other combinations.13

The diagrams in Figures 7.2y–7.4237 might seem rather complicated, but
this is only because they treat a number of special cases with probability zero.
The main result can be summarised quite easily. If one of the local models
is precise or vacuous, then the independent natural extension has the same
extreme points (pS1, pS2, pS3 and pS4) as—and therefore coincides with—the
so-called strong product of F1 and F2,14,15 defined by

F1×F2 := CH
(
{p1 · p2 : p1 ∈F1, p2 ∈F2}

)
, (7.18)

where CH is the convex hull operator. In all other cases, F1 ⊗F2 has up
to four additional extreme points. If we ignore the cases with lower proba-
bility zero, then these extreme points are determined by the relative value of
p(h1)p(t1)p(h2)p(t2) and p(h1)p(t1)p(h2)p(t2). Depending on which one of
these two parameters is higher, the additional extreme points are either pA1,

13We only indicate this in the instances where we consider this information to be of interest.
Otherwise, we simply depict one representative element of the set of coinciding extreme points.

14This is the strong extension of a credal network with local models F1 and F2; see Sec-
tion 5.5145 as well.

15This partial result was already proved in Reference [46, Section 5.5].
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Is (at least) one of the local
models Fi, i ∈ {1,2}, precise?(
p(hi) = p(hi) and p(ti) = p(ti)

)

Is (at least) one of the local
models Fi, i ∈ {1,2}, vacuous?([

p(hi), p(hi)
]
=
[

p(ti), p(ti)
]
= [0,1]

)

pS1=S3,
pS2=S4

pS1=S2,
pS3=S4

pS1=S2=S3=S4

yes F1

F2

F1 and F2pS1, pS2,
pS3, pS4

Go to Figure 7.3y

no

yes

no

Figure 7.2: Diagram to obtain the extreme points of the independent natural
extension of two binary variables (PART 1)

pA2, pA3 and pA4 or pB1, pB2, pB3 and pB4. If the parameters are equal, these
two sets of additional extreme points are identical. Walley’s well-known nu-
merical example [106, Section 9.3.4] has six extreme points; it corresponds to
the case F1 = F2 in Figure 7.4237.

7.5 RECURSIVELY DECOMPOSABLE NETWORKS

So far, the most promising algorithms for credal networks under epistemic ir-
relevance have been developed for networks with a tree topology [6, 30, 42].
The underlying reason is that for trees, the global model can be constructed
recursively, by combining the local models using marginal extension and inde-
pendent natural extension [42, Section 4]. This allows for the development of
efficient recursive algorithms. The most well-known example is the algorithm
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p(h1)p(t1)p(h2)p(t2) ? p(h1)p(t1)p(h2)p(t2)

p(h2) = 0 or p(t2) = 0?
>

pS1, pS2,
pS3, pS4,
pA2, pA4

p(h2) pS1, pS2,
pS3, pS4,
pA1, pA3

p(t2)

pS1, pS2, pS3, pS4,
pA1, pA2, pA3, pA4

no

p(h1) = 0 or p(t1) = 0?
<

pS1, pS2,
pS3, pS4,
pB3, pB4

p(h1) pS1, pS2,
pS3, pS4,
pB1, pB2

p(t1)

pS1, pS2, pS3, pS4,
pB1, pB2, pB3, pB4

no

Go to Figure 7.4y

=

Figure 7.3: Diagram to obtain the extreme points of the independent natural
extension of two binary variables (PART 2)
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p(h1) = 0 or p(t1) = 0?

p(h2) = 0 or p(t2) = 0?

p(h1)

pS1, pS2, pS3, pS4,
pA4=B4

p(h2)

pS1, pS2, pS3, pS4,
pA3=B3

p(t2)

p(h2) = 0 or p(t2) = 0?

p(t1)

pS1, pS2, pS3, pS4,
pA2=B2

p(h2)

pS1, pS2, pS3, pS4,
pA1=B1

p(t2)

F1 = F2?

no

pS1, pS2, pS3, pS4,
pA1=A4=B1=B4,
pA2=A3=B2=B3

yes

pS1, pS2, pS3, pS4,
pA1=A4, pB1=B4,
pA2=A3, pB2=B3

no

Figure 7.4: Diagram to obtain the extreme points of the independent natural
extension of two binary variables (PART 3)
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s1 s2 s3 s4 s5 s6 s7

s8 s9 s10 s11 s12 s13 s14

Figure 7.5: Example of a hidden Markov model (HMM)

by De Cooman et al. [42], which is able to compute Pq( f cxE) efficiently, for
any q ∈ G, E ⊆ G\{q}, f ∈ G (Xq) and xE ∈XE . As we are about to show,
this recursive approach can be extended in two ways. First of all, this approach
is not limited to networks with a tree topology; it can be applied to a more gen-
eral class of networks, which we call recursively decomposable. Secondly, it
can be applied to more general inference problems, with multiple query nodes.

7.5.1 Recursively decomposable DAGs

We start by introducing some additional notation and terminology. Two nodes
s, t ∈ G are said to be incomparable, denoted by s ‖ t, if they are different and
if there is no directed path that connects them:

s ‖ t ⇔
(
s 6= t, s /∈ D(t) and t /∈ D(s)

)
We then call a DAG recursively decomposable if every pair of incomparable
nodes has no common descendants:

(∀s, t ∈ G)
(
s ‖ t ⇒ D(s)∩D(t) = /0

)
.

To the best of our knowledge, this type of DAG has never been considered be-
fore. Why we call these DAGs recursively decomposable will become clear in
the next section, where we show that the irrelevant natural extension of credal
networks with such a DAG can be decomposed in a natural, recursive way.
For now, we focus on the topological properties of recursively decomposable
DAGs.

First of all: the class of recursively decomposable DAGs includes trees as
a special case. In a tree, two nodes s and t are incomparable if and only if
they belong to a different branch, where a branch is taken to be a directed path
from the root of the tree to one of its leaves. Clearly, this implies that s and
t have no common descendants. Therefore, recursively decomposable DAGs
also include Markov chains [see Figure 7.1217] and hidden Markov models
(HMMs) [see Figure 7.5] as special cases.

However, not every recursively decomposable DAG is a tree. A first—
rather trivial—example are forests, which are unions of pairwise disjoint trees.
By an argument similar to that for trees, it follows that every forest is a re-
cursively decomposable DAG. A second class of recursively decomposable
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s1 s2 s3 s4 s5 s6 s7

Figure 7.6: Example of a Markov chain of order 2

s1 s2 s3 s4 s5 s6 s7

s8 s9 s10 s11 s12 s13 s14

Figure 7.7: Example of a hidden Markov model (HMM) of order 2

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

Figure 7.8: Example of a dynamic network that is recursively decomposable

DAGs that are not trees are Markov chains of order m, with m≥ 2. They have
no incomparable nodes and are therefore trivially recursively decomposable.
Figure 7.6 depicts a simple Markov chain of order 2. Hidden Markov models
of order m, with m ≥ 2 are also recursively decomposable; Figure 7.7 depicts
an example of a hidden Markov model of order 2. Figures 7.8 and 7.9y pro-
vide two additional examples of recursively decomposable DAGs that do not
fit into any of the above-mentioned general classes. Figure 7.8 can be regarded
as a simple dynamic network; Figure 7.9y is just some random example.

For any DAG with nodes G and any node s ∈G, we now define two impor-
tant subsets of C(s) and P(s), respectively. The first set consists of the roots of
the sub-DAG that corresponds to D(s):

C̃(s) := Ro(D(s)) =
{

t ∈ D(s) : PD(s)(t) = /0
}

(7.19)

The following result shows that C̃(s) is a subset of the children of s and pro-
vides a convenient alternative characterisation for this set.
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s1

s2

s3

s4

s5

s6

s7

s8

s10 s11

s12

s13

s9

Figure 7.9: Example of a recursively decomposable DAG

Proposition 93. Consider any s ∈ G. Then C̃(s) ⊆ C(s) and, for all t ∈ G,
t ∈ C̃(s) if and only if the only directed path from s to t is a single edge s→ t.

Proof of Proposition 93x. Consider any t ∈ C̃(s), which implies that t ∈ D(s)
and PD(s)(t) = /0. Since t ∈ D(s), there is at least one directed path from s to t.
Consider any such directed path s = s1, . . . ,sn−1,sn = t from s to t. The node
sn−1 is then clearly an element of D(s)∪{s}. Hence, since PD(s)(t) = /0, it must
be that sn−1 = s. Since s1 = s, and because a DAG has by definition no cycles,
this implies that n−1 = 1, which implies that the path s = s1, . . . ,sn−1,sn = t
consists of a single edge s→ t.

Next, consider any t ∈ G for which the only directed path from s to t is
a single edge s→ t. It then follows from s→ t that t ∈ D(s). Now assume
ex absurdo that PD(s)(t) 6= /0. This implies that there is some u ∈ P(t) such
that u ∈ D(s). Since u ∈ D(s), there is a directed path s = s1, . . . ,sn = u from
s to u, with n ≥ 2. Since, u ∈ P(t), this implies that s = s1, . . . ,sn = u, t is a
directed path from s to t that consists of more than one edge, a contradiction.
Therefore, we may conclude that PD(s)(t) = /0, which, since t ∈ D(s), implies
that t ∈ C̃(s).

We will call the elements of C̃(s) the induced children of s. The induced par-
ents of s are then defined as

P̃(s) :=
{

t ∈ P(s) : s ∈ C̃(t)
}
.

Table 7.3y illustrates these concepts by means of examples, for nodes in vari-
ous recursively decomposable DAGs.

For any DAG, regardless of whether it is recursively decomposable, we can
use these concepts to select a subset of its edges: the edges s→ t for which
s ∈ G and t ∈ C̃(s). By removing all the other edges, we obtain a new DAG,
which we call the induced DAG. For any node s ∈ G, C̃(s) and P̃(s) are the set
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s D(s) C(s) C̃(s) P(s) P̃(s)

Figure 7.5238 s5 s6,s7,s12,s13,s14 s6,s12 s6,s12 s4 s4

Figure 7.1217 s3 s4,s5,s6,s7 s4 s4 s2 s2

Figure 7.6239 s4 s5,s6,s7 s5,s6 s5 s2,s3 s3

Figure 7.7239 s5 s6,s7,s12,s13,s14 s6,s7,s12 s6,s12 s3,s4 s4

Figure 7.8239 s8 s9,s10,s11,s12 s9,s10 s9,s10 s4,s7 s7

Figure 7.9x s3 s4, . . . ,s13 s4,s10,s11 s4,s10,s11 s1,s2 s2

Table 7.3: Examples of C̃(s) and P̃(s), for various recursively decomposable
DAGs

of children and parents of s in this induced DAG, respectively. We use D̃(s) to
denote the descendants of s in this induced DAG. In Figures 7.1217 and 7.5238,
the induced DAG coincides with the original DAG. In Figures 7.6239, 7.7239,
7.8239 and 7.9x, the edges of the induced DAG have been thickened. The
induced DAG is closely related to the original one. Intuitively speaking, the
induced DAG is obtained by removing shortcuts from the original DAG: if
there is a direct edge from s to t as well as a longer directed path from s to t,
the induced DAG removes the direct edge; this can be regarded as an informal
statement of Proposition 93239. It is therefore not surprising that both DAGs
assign the same descendants to every node.

Proposition 94. For any s ∈ G, we have that D(s) = D̃(s).

Proof of Proposition 94. Since the edges of the induced DAG are a subset of
the edges of the original DAG, D̃(s) is clearly a subset of D(s). So consider
any t ∈ D(s) and assume ex absurdo that t /∈ D̃(s).

Consider the sub-DAG that corresponds to D(s). Since t ∈D(s), it follows
from Lemma 95y that this sub-DAG has some root node s1 ∈ Ro(D(s)) such
that s1 v t. It follows from Equation (7.19)239 and Proposition 93239 that s1 ∈
C̃(s) ⊆ C(s). If s1 = t, then t ∈ C̃(s)⊆ D̃(s), a contradiction. Therefore, it
must be that s1 6= t. Since s1 v t, this implies that t ∈ D(s1).

Consider now the sub-DAG that corresponds to D(s1). Since t ∈ D(s1),
it follows from Lemma 95y that this sub-DAG has some root node s2 ∈
Ro(D(s1)) such that s2 v t. It follows from Equation (7.19)239 and Propo-
sition 93239 that s2 ∈ C̃(s1)⊆C(s1). If s2 = t, then t ∈ C̃(s1). Since we already
know that s1 ∈ C̃(s), this would imply that t ∈ D̃(s), a contradiction. Therefore,
it must be that s2 6= t. Since s2 v t, this implies that t ∈ D(s2).

By continuing in this way, we obtain an infinite sequence of nodes
s,s1,s2, . . . ,sn, . . . in G such that s1 ∈ C(s) and, for all i ∈ N, si+1 ∈ C(si).
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Since a DAG contains no cycles, all nodes in this sequence must be different.
Since |G| is finite, this is a contradiction.

Lemma 95. Consider a DAG with nodes G. For every node t ∈ G, there is
some root node s ∈ Ro(G) such that sv t.

Proof of Lemma 95. If P(t) = /0, then t ∈ Ro(G), which concludes the proof
[choose s = t]. Otherwise, let t1 be an arbitrary element of P(t). This implies
that t1 v t. If P(t1) = /0, then t1 ∈ Ro(G), which concludes the proof [choose
s = t1]. Otherwise, let t2 be an arbitrary element of P(t1). Since t1 v t, this
implies that t2 v t. If P(t2) = /0, then t2 ∈ Ro(G), which concludes the proof
[choose s = t2]. If we continue in this way, this process will eventually end,
thereby concluding the proof. Indeed, assume ex absurdo that this process does
not end. Then we obtain an infinite sequence of nodes t, t1, t2, . . . , tn, . . . in G
such that t1 ∈ P(t) and, for all i ∈ N, ti+1 ∈ P(ti). Since a DAG contains no
cycles, all nodes in this sequence most be different. Since |G| is finite, this is a
contradiction.

Proposition 94x implies that the root nodes and leaves of the induced DAG
are identical to those of the original DAG.

Corollary 96. For any node s ∈ G, we have that C(s) = /0⇔ C̃(s) = /0 and
P(s) = /0⇔ P̃(s) = /0.

Proof of Corollary 96. For any s ∈ G, we have that

C(s) = /0⇔ D(s) = /0⇔ D̃(s) = /0⇔ C̃(s) = /0
and

P(s) 6= /0⇔ (∃ t ∈ G)s ∈ D(t)⇔ (∃ t ∈ G)s ∈ D̃(t)⇔ P̃(s) 6= /0,

where, in each case, the first and last equivalences are trivial and the second
one follows from Proposition 94x.

Consequently, for forests, and for trees in particular, the induced DAG is iden-
tical to the original DAG.

Corollary 97. For a forest, the induced DAG is identical to the original one.

Proof of Corollary 97. By its definition, the edges of the induced DAG are a
subset of those of the original DAG. So consider any edge s→ t in the original
DAG and assume ex absurdo that it is not an edge of the induced DAG. This
implies that s ∈ P(t) and s /∈ P̃(t). Since in a forest, a node has at most one
parent, we know that P(t) = {s}. Therefore, because P̃(t) ⊆ P(t) and s /∈
P̃(t), we find that P̃(t) = /0. Due to Corollary 96, this implies that P(t) = /0, a
contradiction.
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Not every DAG is a forest; see for example Figure 7.9240. However, interest-
ingly, if a DAG is recursively decomposable, the corresponding induced DAG
will always be a forest.

Proposition 98. Consider a recursively decomposable DAG. In the corre-
sponding induced DAG, every node s ∈ G then has at most one parent:
|P̃(s)| ≤ 1.

Proof of Proposition 98. Assume ex absurdo that there is some node s ∈ G
such that |P̃(s)| ≥ 2. This means that we can consider t1, t2 ∈ P̃(s) such that
t1 6= t2. Since P̃(s) ⊆ P(s), we find that t1, t2 ∈ P(s) and it therefore follows
that s ∈ D(t1) and s ∈ D(t2), which implies that D(t1)∩D(t2) 6= /0. Since we
are considering a recursively decomposable DAG, this implies that t1 and t2
are not incomparable. Therefore, because t1 6= t2, we can assume without loss
of generality that t2 ∈ D(t1). Since we also know that t2 ∈ P(s), this implies
that t2 ∈ PD(t1)(s). However, since it follows from t1 ∈ P̃(s) that s ∈ C̃(t1), we
also find that PD(t1)(s) = /0, a contradiction.

This works in the other direction as well, leading to the following alternative
characterisation of recursively decomposable DAGs.

Proposition 99. A DAG is recursively decomposable if and only if the corre-
sponding induced DAG is a forest.

Proof of Proposition 99. If a DAG is recursively decomposable, it follows
from Proposition 98 that the corresponding induced DAG is a forest.

So, assume that the induced DAG is a forest and consider any s, t ∈ G
that are incomparable with respect to the original DAG. Since the edges of
the induced DAG are a subset of the edges of the original DAG, it follows
that s and t are also incomparable with respect to the induced DAG. Since the
induced DAG is a forest, this implies that D̃(s)∩D̃(t) = /0. It then follows from
Proposition 94241 that D(s)∩D(t) = /0.

By combining this result with Corollary 96x, it follows that a DAG with a
single root node is recursively decomposable if and only if the induced DAG is
a tree. The examples in Figure 7.1217 and Figures 7.5238–7.9240 are all of this
type.

Next, for any s ∈ G, we define Ks := D(s)∪{s} as the union of s and its
descendants D(s). Table 7.4y provides a number of examples, for nodes in
various decomposable DAGs. For any DAG, D(s) and Ks are always closed
subsets of G.

Proposition 100. For any s ∈ G, D(s) and Ks are closed subsets of G.
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s D(s) Ks P(Ks)

Figure 7.5238 s5 s6,s7,s12,s13,s14 s5,s6,s7,s12,s13,s14 s4

Figure 7.1217 s3 s4,s5,s6,s7 s3s4,s5,s6,s7 s2

Figure 7.6239 s4 s5,s6,s7 s4,s5,s6,s7 s2,s3

Figure 7.7239 s5 s6,s7,s12,s13,s14 s5,s6,s7,s12,s13,s14 s3,s4

Figure 7.8239 s8 s9,s10,s11,s12 s8,s9,s10,s11,s12 s4,s7

Figure 7.9240 s3 s4, . . . ,s13 s3, . . . ,s13 s1,s2

Table 7.4: Examples of Ks and P(Ks), for various recursively decomposable
DAGs

Proof of Proposition 100x. First consider any u,v ∈D(s) and k ∈G such that
uv kv v. Since u∈D(s), we know that s@ u and therefore, we find that s@ k,
which implies that k ∈ D(s).

Next, consider any u,v∈Ks and k∈G such that uv kv v. Since u∈Ks, we
know that sv u and therefore, we find that sv k, which implies that k∈Ks.

For recursively decomposable DAGs, the sets D(s) and Ks satisfy a number of
additional properties. The following result establishes that every recursively
decomposable DAG consists of disconnected sub-DAGs, each of which corre-
sponds to a set Ks, with s a root node of the original DAG.

Proposition 101. Consider a recursively decomposable DAG. Then the sets
Ks, s ∈ Ro(G), constitute a partition of G and, for all s ∈ Ro(G), Ks is
ancestral—P(Ks) = /0.

Proof of Proposition 101. Since the induced DAG is a forest [see Proposi-
tion 99x] that has the same roots as the original DAG [see Proposition 98x]
we know that the sets D̃(s)∪{s}, s∈ Ro(G), constitute a partition of G. Due to
Proposition 94241, this implies that the sets Ks, s∈ Ro(G), constitute a partition
of G.

Consider now any s ∈ Ro(G) and assume ex absurdo that P(Ks) 6= /0. This
implies that there is some u ∈ Ks and v ∈ P(u) such that v /∈ Ks. Therefore, it
follows from the first part of this proof that there is some s′ ∈ Ro(G) such that
s′ 6= s and v ∈ Ks′ , since v ∈ P(u), this implies that u ∈ Ks′ . Since we already
know that u ∈ Ks, the first part of this proof leads us to a contradiction.

For any s ∈G, the sub-DAG that correspond to D(s) can be decomposed simi-
larly.
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Corollary 102. Consider a recursively decomposable DAG with nodes G.
Then for any node s ∈ G, the sets Kc, c ∈ C̃(s), constitute a partition of D(s)
and, for all c ∈ C̃(s), PD(s)(Kc) = /0.

Proof of Corollary 102. Since the induced DAG is a forest [see Proposi-
tion 99243] we know that the sets D̃(c)∪{c}, c ∈ C̃(s) constitute a partition
of D̃(s). Due to Proposition 94241, this implies that the sets Kc, c ∈ C̃(s), con-
stitute a partition of D(s).

Consider now any c∈ C̃(s) and assume ex absurdo that PD(s)(Kc) 6= /0. This
implies that there is some u ∈ Kc and v ∈ D(s) such that v ∈ P(u) and v /∈ Kc.
Since v ∈ D(s) and v /∈ Kc, it follows from the first part of this proof that there
is some c′ ∈ C̃(s) such that c′ 6= c and v ∈ Kc′ , since v ∈ P(u), this implies that
u ∈ Kc′ . Since we already know that u ∈ Kc, the first part of this proof leads us
to a contradiction.

The inference algorithms for recursively decomposable networks that we
will develop further on in this chapter make extensive use of the concepts we
have just introduced. In particular, for every node s ∈ G, they require the sets
C̃(s), P̃(s) and P(Ks). If these sets are not available, as will usually be the case,
they first need to be constructed, preferably in some automated way. Therefore,
before moving on, we briefly explain how to construct these sets efficiently.

For any s ∈ G, we know from Proposition 93239 that C̃(s) consists of those
nodes t ∈ C(s) for which the only directed path from s to t is a single edge
s→ t. Therefore, in order to find those nodes t efficiently, all we need to do
is to start from s and move along the paths of the DAG following the direction
of the edges—for example by means of a depth-first search—until we reach
the leaves of the DAG and, for every node, keep track of how often we have
visited it by raising a counter. Every t ∈ C(s) will clearly be visited at least
once. If a node t ∈C(s) is visited more than once, it means that there is more
than one directed path from s to t, and t is therefore not an element of C̃(s). If
a node t ∈C(s) is visited only once, it must be through the trivial path s→ t
and it therefore follows that t ∈ C̃(s).

After constructing C̃(s), its elements need to be stored as attributes of the
node s and, for all t ∈ C̃(s), s needs to be added as an element of the set
P̃(t), which is initialised as empty at the beginning of this procedure, before
processing any of the nodes s. After doing this for every s∈G, all the elements
of P̃(t) will have been added, for all t ∈ G. The sets C̃(s) and P̃(t) are now
available for further use by inference algorithms.

This procedure is not restricted to recursively decomposable networks; it
works for any DAG. In fact, it even allows us to find out whether a DAG is
recursively decomposable. All we need to check is whether the induced DAG
is a forest, or equivalently, whether |P̃(t)| ≤ 1 for all t ∈ G. As we know from
Proposition 99243, this will be so if and only if the original DAG is recursively
decomposable.
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Finally, for any s ∈ G, the set P(Ks) can also be constructed by starting
from s and moving along the paths of the DAG following the direction of the
edges until we reach its leaves. We need to do this twice. The first time, we
simply mark the nodes we have visited; these are the elements of Ks. The
second time, for every node we visit—every element of Ks—we check each
of its parent nodes and store the ones that do not belong to Ks—that have not
been marked during the first pass. The nodes that are stored during this second
pass are the elements of P(Ks).

7.5.2 Recursively decomposable credal networks

By adding local imprecise-probabilistic models to the nodes of a recursively
decomposable DAG, we obtain a recursively decomposable credal network.
We call them—and the corresponding DAGs—recursively decomposable be-
cause, as we are about to show, for such a credal network (the unconditional
part of) its irrelevant natural extension can be decomposed into (the uncondi-
tional parts of) the irrelevant natural extensions of its subnetworks, recursively,
and eventually even into its local models.

The first step in this recursive decomposition is to decompose the credal
network into its disconnected subnetworks. Since we know from Proposi-
tion 101244 that the sets Ks, s ∈ Ro(G), form a partition of G such that, for
all s ∈ Ro(G), P(Ks) = /0, it follows directly from Proposition 67173 that

Pirr
G (·) =⊗s∈Ro(G)P

irr
Ks(·). (7.20)

If the DAG has only a single root node s—if Ro(G) = {s}—this step is trivial;
we then find that Pirr

G (·) = Pirr
Ks
(·). In fact, in this case, we even have that

Pirr
G (·c·) = Pirr

Ks
(·c·).

The next step consists in further decomposing Pirr
Ks
(·), for s ∈ Ro(G). Since

P(Ks) = /0, this is a special case of the more general task of decomposing the
irrelevant natural extension Pirr

KscxP(Ks)
(·), for s ∈ G and xP(Ks) ∈XP(Ks). We

therefore solve that problem first.
The more general task is trivial if s is a leaf of the network—if D(s) = /0.

In that case, it follows from Corollary 44141 that

Pirr
KscxP(Ks)

(·) = PscxP(s)
(·) (7.21)

because Ks = {s} and P(Ks) = P(s), where PscxP(s)
(·) is the local model that is

attached to the node s. In all other cases, the following two important results
allow us to decompose Pirr

KscxP(Ks)
(·) recursively.

Proposition 103. Consider a—not necessarily recursively decomposable—
credal network and a node s ∈ G such that D(s) 6= /0. Then P(s) and
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P(D(s)) \ {s} are subsets of P(Ks), s is an element of P(D(s)) and, for all
xP(Ks) ∈XP(Ks):

Pirr
KscxP(Ks)

(·) = PscxP(s)
(·)�Pirr

D(s)c(xP(D(s))\{s},Xs)
(·)

Proof of Proposition 103x. The inclusions that are mentioned in this proposi-
tion are trivial. Now let K := Ks = D(s)∪{s}, T := {s} and S := D(s). Then
P(T )=P(s), PK(T )=PK(s)=P(s)∩K =P(s)∩Ks = /0 and PK(S) = {s}. Fur-
thermore, for all t ∈ T , we have that t = s and therefore, since D(s) = DKs(s),
that S⊆ DK(t). Since K is also a closed set [see Proposition 100243] the result
now follows from Corollaries 72180 and 44141.

Proposition 104. Consider a recursively decomposable credal network and a
node s ∈ G such that D(s) 6= /0. Then, for all c ∈ C̃(s), P(Kc) is a subset of
P(D(s)) that contains s and, for all xP(D(s)) ∈XP(D(s)):

Pirr
D(s)cxP(D(s))

(·) =⊗c∈C̃(s)P
irr
KccxP(Kc)

(·)

Proof of Proposition 104. Let K := D(s). Due to Corollary 102245, we know
that the sets Kc, c ∈ C̃(s), form a partition of K and that, for all c ∈ C̃(s),
PK(Kc) = /0. Since we know from Proposition 100243 that K is a closed set, the
result now follows directly from Corollary 68174.

Equipped with these new tools, we can now go back to the original problem:
decomposing Pirr

Ks
(·), for some s ∈ Ro(G). If s is a leaf of the network, then

Pirr
Ks
(·) = Ps(·). Otherwise, since P(Ks) = /0, it follows from Proposition 103x

that
Pirr

Ks(·) = Ps(·)�Pirr
D(s)cXs

(·) (7.22)

The local model Ps(·) is given. Pirr
D(s)cXs

(·) can be decomposed further by ap-
plying Proposition 104. Since P(Kc) = {s} for all c ∈ C̃(s),16 we find that for
all xs ∈Xs:

Pirr
D(s)cxs

(·) =⊗c∈C̃(s)P
irr
Kccxs

(·).

We are now again faced with the very same general problem: decomposing
Pirr

KscxP(Ks)
(·) into smaller models—in this case, with s = c and P(Ks) = {s}.

The solution is identical. If s is a leaf, then Pirr
KscxP(Ks)

(·) = PscxP(s)
(·) because

Ks = s and P(Ks) = P(s). Otherwise, Pirr
KscxP(Ks)

(·) can be decomposed into

16We know from Proposition 104 that s ∈ P(Kc) ⊆ P(D(s)). Furthermore, since P(Ks) = /0,
Proposition 103x tells us that P(D(s))\{s}= /0. Hence, indeed: P(Kc) = {s}.
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smaller models of the form Pirr
KccxP(Kc)

(·), with c ∈ C̃(s), by applying Proposi-
tions 103246 and 104x.

By continuing in this way, we eventually reach all the leaves of the net-
work, at which point Pirr

G (·) has been fully decomposed into the local models of
the network. During this recursive decomposition, we have followed the edges
of the induced forest: for every node s, we have considered its children C̃(s)
in the induced forest and used these to decompose the model. Furthermore,
since the root nodes and leaves of the induced DAG are identical to those of
the original DAG [see Corollary 96242], what we have effectively done is start
from the roots of the trees that make up the induced forest and follow their
edges up to their leaves.

By reversing this process, this recursive decomposition of Pirr
G (·) turns

into a construction of Pirr
G (·). Starting from the local models at the leaves

of the induced forest, we work our way down to the roots. For every leaf s,
Pirr

KscxP(Ks)
(·) = Pirr

scxP(s)
(·) is equal to the local model PscxP(s)

(·). For every node

s∈G that is not a leaf, Pirr
KscxP(Ks)

(·) is constructed from the models Pirr
KccxP(Kc)

(·),
with c ∈ C̃(s), using Propositions 103246 and 104x. Finally, we use Equa-
tion 7.20246 to construct Pirr

G (·) from the models Pirr
Ks
(·), with s ∈ Ro(G).

Of course, this construction of Pirr
G (·) is only symbolic. So far, we have not

computed any of the marginal extensions and independent natural extensions
that appear in these recursive expressions. However, as we will illustrate in
the next sections, for specific types inferences, we can turn these symbolic
recursive expressions into an actual recursive algorithm that is able to compute
our inference of choice efficiently.

A similar recursive construction of Pirr
G (·) has already been described by

De Cooman et al. [42], for credal networks under epistemic irrelevance whose
graphical structure is a tree, and under the simplifying assumption that the
local upper probabilities are strictly positive. In our case, for trees, the in-
duced DAG coincides with the original one [see Corollary 97242] and, for all
s ∈ G: P(Ks) = P(s)—with |P(s)|= 1—C̃(s) = C(s), P(D(s)) = {s} and, for
all c ∈ C̃(s) =C(s), P(Kc) = {s}. Therefore, if s is not a leaf, we find that

(∀xP(s) ∈XP(s)) Pirr
KscxP(s)

(·) = PscxP(s)
(·)�Pirr

D(s)cXs
(·)

and
(∀xs ∈Xs) Pirr

D(s)cxs
(·) =⊗c∈C(s)P

irr
Kccxs

(·),

which are exactly the recursive expressions used in Reference [42]. Our con-
struction can therefore be regarded as a generalisation of the one in Refer-
ence [42]; we extend it from trees to recursively decomposable networks and
drop the local positivity assumptions.
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7.5.3 Sums of univariate gambles

The reason why recursively decomposable networks are interesting is be-
cause the symbolic recursive construction of Pirr

G (·) can be used to compute
Pirr

G ( f ) recursively—and therefore efficiently—for various types of gambles
f ∈ G (XG). A first class of gambles for which this is the case are gambles of
the form f = ∑i∈G fi where, for all i ∈ G, fi ∈ G (Xi) is a univariate gamble
that only depends on the value of the variable Xi.

Computing Pirr
G (∑i∈G fi) is a matter of applying the symbolic recursive

decomposition introduced in the previous section and combining it with the
properties of marginal extension and independent natural extension discussed
in Sections 6.6171 and 6.7175. In order to simplify the notation, we let
ψs := ∑i∈Ks fi for all s ∈ G.

The first step consists in combining Equations (7.20)246 and (6.8)173. Since
it follows from Proposition 101244 that ∑i∈G fi = ∑s∈Ro(G) ψs, we find that

Pirr
G

(
∑
i∈G

fi

)
= Pirr

G

(
∑

s∈Ro(G)

ψs

)
= ∑

s∈Ro(G)

Pirr
Ks(ψs). (7.23)

Our global optimisation problem is therefore already reduced to the smaller-
sized problem of computing Pirr

Ks

(
ψs
)
, with s ∈ Ro(G). Since P(Ks) = /0 for

these root nodes [see Proposition 101244] this is a special case of a more gen-
eral problem that, as we are about to show, can be solved recursively. For any
s ∈ G and xP(Ks) ∈XP(Ks), we will compute Pirr

KscxP(Ks)

(
ψs
)
. We consider two

cases.
If s is a leaf of the network—or, equivalently, if it is a leaf of the induced

forest—then Ks = {s} and P(Ks) = P(s) and the problem becomes trivial. By
applying Equation (7.21)246, we find that

Pirr
KscxP(Ks)

(ψs) = PscxP(s)
( fs). (7.24)

If s is not a leaf of the induced forest, then D(s) 6= /0 and we can therefore apply
Proposition 103246. In combination with Equation (6.14)178, this proposition
implies that

Pirr
KscxP(Ks)

(ψs) = PscxP(s)

(
Pirr

D(s)c(xP(D(s))\{s},Xs)
(ψs)

)
= PscxP(s)

(
fs +Pirr

D(s)c(xP(D(s))\{s},Xs)

(
∑

i∈D(s)
fi

))
= PscxP(s)

(
fs + ∑

xs∈Xs

I{xs}P
irr
D(s)cxP(D(s))

(
∑

i∈D(s)
fi

))
, (7.25)

where, since Corollary 102245 implies that ∑i∈D(s) fi = ∑c∈C̃(s) ψs,
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Pirr
D(s)cxP(D(s))

(
∑

i∈D(s)
fi

)
= Pirr

D(s)cxP(D(s))

(
∑

c∈C̃(s)

ψc

)
= ∑

c∈C̃(s)

Pirr
KccxP(Kc)

(ψc)

(7.26)
because of Proposition 104247 and Equation (6.8)173. By combining Equa-
tions (7.25)x and (7.26), it follows that, for any s ∈G that is not a leaf, and for
any xP(Ks) ∈XP(Ks):

Pirr
KscxP(Ks)

(ψs) = PscxP(s)

(
fs + ∑

xs∈Xs

I{xs} ∑
c∈C̃(s)

Pirr
KccxP(Kc)

(ψc)

)
. (7.27)

For all s ∈ Ro(G), the above equations allow us to compute Pirr
Ks
(ψs) recur-

sively, in the following simple manner: we start by applying Equation (7.24)x
in the leaves of the induced forest and then work our way down towards its
roots by means of Equation (7.27). Once we have computed Pirr

Ks
(ψs) for all

s ∈ Ro(G), a final application of Equation (7.23)x provides us with the value
of Pirr

G (∑i∈G fi) that we are after.
The value of Pirr

G (∑i∈G fi) can be computed similarly. It suffices to replace
the lower previsions in the recursion equations above by the corresponding up-
per previsions. However, developing such an approach is unnecessary because
the task of computing Pirr

G (∑i∈G fi) can also be regarded as a special case of
computing Pirr

G (∑i∈G fi). All we need to do is let f ′i :=− fi for all i∈G and use
the above procedure to compute Pirr

G (∑i∈G f ′i ). It then follows from conjugacy
that

Pirr
G

(
∑
i∈G

fi

)
=−Pirr

G

(
−∑

i∈G
fi

)
=−Pirr

G

(
∑
i∈G

f ′i

)
.

The computational complexity of these recursive algorithms depends
on the topology of the network. For every s ∈ G, we need to compute
Pirr

KscXP(Ks)
(ψs), which is a function on XP(Ks) that is defined by

(
Pirr

KscXP(Ks)
(ψs)

)
(xP(Ks)) := Pirr

KscxP(Ks)
(ψs) for all xP(Ks) ∈XP(Ks).

Provided that the local models can be evaluated in constant time17 and that
|C̃(s)| is small enough18 it follows from Equations (7.27) and (7.24)x that
for a fixed xP(Ks) ∈ XP(Ks), the value of this function can be computed in
constant time because the recursive character of our algorithm implies that
for every c ∈ C̃(s)—for every child of s in the induced forest—the function
Pirr

KccXP(Kc)
(ψc) has already been computed earlier on in the algorithm.

17If not, there is no point in devising a global algorithm anyway.
18Since C̃(s)⊆C(s), this assumption is easily satisfied. Table 7.5y provides maximum values

of |C̃(s)| for different types of recursively decomposable networks.
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maxs∈G|P(Ks)| maxs∈G|C̃(s)|

forest 1 maxs∈G|C(s)|

trees 1 maxs∈G|C(s)|

Markov chains 1 1

hidden Markov models 1 2

Markov chains of order m m 1

hidden Markov models of order m m 2

Figure 7.8239 2 2

Figure 7.9240 2 3

Table 7.5: Parameters of different types of recursively decomposable DAGs

Therefore, for a single node s ∈ G, evaluating this function for every
xP(Ks) ∈XP(Ks) has a computational complexity that is exponential in the num-
ber of nodes in P(Ks). Since evaluating Equation (7.23) takes a constant
amount of time, this allows us to conclude that the computational complex-
ity of the complete recursive algorithm is linear in the number of nodes and
exponential in maxs∈G|P(Ks)|. This last parameter is the determining factor;
if it is small enough, the procedure that we have just described can com-
pute Pirr

G (∑i∈G fi) efficiently. Table 7.5 provides examples of maxs∈G|P(Ks)|
for different types of recursively decomposable networks; in our examples—
Figure 7.1217 and Figures 7.5238–7.9240—this parameter never exceeds two. If
the network is a tree or a forest, maxs∈G|P(Ks)| will always be at most one19

and therefore, in that case, the algorithm is linear in the number of nodes.
Although the class of gambles that are sums of univariate functions is of

course fairly limited, it does already allow us to compute various inferences
that are of practical interest. For example, in a decision making context, ad-
ditive utility functions are of this form. It is also important to realise that the
sum does not need to run over all the nodes of the network. We can easily
consider functions of the form ∑i∈S fi, for some S ⊆ G, simply by choos-
ing fi = 0 for all i ∈ G \ S. In this way, for any q ∈ G and f ∈ G (Xq), the
algorithm in this section allows us to compute the marginal lower prevision
Pirr

q ( f ) := Pirr
G ( f ); it suffices to choose S = {q} and fq = f . Other interesting

examples occur in networks where the variables Xi, i ∈ S ⊆ G, have the same

19Because in a forest, for every s ∈ G, we have that P(Ks) = P(s) and |P(s)| ≤ 1.
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state space Xi = X and represent the same type of object. We can then let
fi = f , for i ∈ S, where f is some function on X. For f = Ix, with x ∈X,
the resulting sum ∑i∈S fi represents the number of occurrences of x. For ex-
ample, in case of a stationary queue of length n (possibly of order m ≥ 2),
where each variable Xi, i∈G = {1, . . . ,n}, represents the number of customers
in the queue at time i, with X = {0, . . . ,k}, we can choose S = G and let f
be the indicator of zero to compute the lower—and by conjugacy the upper—
prevision—expected value—of the number of time points in which the queue
is empty. In that same example, letting f be equal to the identity function di-
vided by n— f (x) := x/n for all x ∈X = {0, . . . ,k}—allows us to compute the
lower and upper prevision—expected value—of the average number of cus-
tomers over time.

7.5.4 Products of univariate gambles

A second class of gambles f ∈ G (XG) for which Pirr
G ( f ) and Pirr

G ( f ) can
be computed efficiently in a recursively decomposable credal network are
products of univariate functions: gambles of the form f = ∏i∈G fi, with
(∀ i ∈ G) fi ∈ G (Xi). However, only for specific types of such products.

The simplest case is when each of the univariate gambles is non-negative:
fi ≥ 0 for all i ∈G. Despite its simplicity, it already covers a number of impor-
tant cases. For example, many multiplicative utility functions are of this form.
Perhaps the most important special case is the one where, for all i∈G, fi = IBi ,
with Bi ∈P /0(Xi) an event that represents partial information about the value
of Xi. The resulting product ∏i∈G IBi is then the indicator of the event ×i∈GBi
and the lower and upper prevision of this indicator are the lower and upper
probability of ×i∈GBi, respectively. This also includes events of the form xE
as a special case: it suffices to let Bi = {xi} if i ∈ E and Bi = Xi otherwise.
Since the case of non-negative functions fi includes these important special
cases, we think we are justified in treating it separately, especially since—as
we will see—it leads to simplified expressions. More complicated cases will
be discussed later.

So, for now, we assume that fi ≥ 0 for all i ∈ G. In this case, the value
of Pirr

G (∏i∈G fi) can be computed by means of a recursive scheme that is very
similar to the one we developed in the previous section. The main difference
is that we now exploit the factorisation property of the independent natural
extension rather than its external additivity. In order to simplify the notation,
we let φs := ∏i∈Ks fi for all s ∈ G.

First of all, for all s ∈ Ro(G), we have that φs ≥ 0 and therefore, be-
cause of coherence [C148], that Pirr

Ks
(φs) ≥ 0. Therefore, and since it follows

from Proposition 101244 that ∏i∈G fi = ∏s∈Ro(G) φs, we can combine Equa-
tions (7.20)246 and (6.9)173 to find that
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Pirr
G

(
∏
i∈G

fi

)
= Pirr

G

(
∏

s∈Ro(G)

φs

)
= ∏

s∈Ro(G)

Pirr
Ks(φs). (7.28)

Hence, solving the problem is now reduced to computing Pirr
Ks
(φs), for

s ∈ Ro(G). As before, this is a special case—with P(Ks) = /0—of a more gen-
eral problem that can be solved recursively. For any s∈G and xP(Ks) ∈XP(Ks),
we will compute the value of Pirr

KscxP(Ks)
(φs). We consider two cases.

If s is a leaf of the induced forest, the problem becomes trivial. Since
Ks = {s} and P(Ks) = P(s), it follows from Equation (7.21)246 that

Pirr
KscxP(Ks)

(φs) = PscxP(s)
( fs). (7.29)

If s is not a leaf of the induced forest, we can apply Proposition 103246 and
Equation (6.14)178 to find that

Pirr
KscxP(Ks)

(φs) = PscxP(s)

(
Pirr

D(s)c(xP(D(s))\{s},Xs)
(φs)

)
= PscxP(s)

(
∑

xs∈Xs

I{xs} fs(xs)Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

))
, (7.30)

where, since Corollary 102245 implies that ∏i∈D(s) fi = ∏c∈C̃(s) φs, it follows
from Proposition 104247 and Equation (6.9)173 that

Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
= Pirr

D(s)cxP(D(s))

(
∏

c∈C̃(s)

φc

)
= ∏

c∈C̃(s)

Pirr
KccxP(Kc)

(φc)

(7.31)
because, for all c ∈ C̃(s), φc ≥ 0 and therefore, due to coherence [C148], also
Pirr

KcczP(Kc)
(φc)≥ 0. By combining Equations (7.30) and (7.31), we find that

Pirr
KscxP(Ks)

(φs) = PscxP(s)

(
∑

xs∈Xs

I{xs} fs(xs) ∏
c∈C̃(s)

Pirr
KccxP(Kc)

(φc
))

(7.32)

for any s ∈ G that is not a leaf and any xP(Ks) ∈XP(Ks).
Using these equations, Pirr

G (∏i∈G fi) can easily be computed recursively.
We start by applying Equation (7.29) at the leaves of the induced forest and
then move along its branches towards its roots by means of Equation (7.32). A
final application of Equation (7.28) provides us with the value of Pirr

G (∏i∈G fi).
The value of Pirr

G (∏i∈G fi) can be computed similarly. It suffices to
replace the lower previsions in the above expressions by the correspond-
ing upper ones. However, unlike in the case of sums of univariate gam-
bles [see Section 7.5.3249] this problem cannot be regarded as a special
case of computing the lower prevision. Although conjugacy implies that
Pirr

G (∏i∈G fi) =−Pirr
G (−∏i∈G fi), we cannot apply the above procedure to
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compute Pirr
G (−∏i∈G fi) because the assumption that all the univariate gambles

in the product should be non-negative fails. Therefore, let us briefly illustrate
how it can be proved that computing Pirr

G (∏i∈G fi) indeed amounts to replacing
the lower previsions in the above expressions by the corresponding upper ones.

In order to prove the upper prevision version of Equation (7.28)x, the start-
ing point is the conjugacy relation Pirr

G (∏i∈G fi) =−Pirr
G (−∏i∈G fi). The mi-

nus sign within the argument of Pirr
G can then be dealt with by considering

some arbitrary t ∈ Ro(G) and assigning the minus sign to the partial product
φt = ∏i∈Kt fi. Because coherence [C648] guarantees that Pirr

Kt
(−φt) ≤ 0, the

combination of Equations (7.20)246 and (6.9)173 then allows us to infer that

Pirr
G

(
∏
i∈G

fi

)
=−Pirr

G

(
− ∏

s∈Ro(G)

φs

)
=−Pirr

Kt (−φt) ∏
s∈Ro(G)\{t}

Pirr
Ks(φs) = ∏

s∈Ro(G)

Pirr
Ks(φs),

where the final equality is again due to an application of conjugacy. We find
that, indeed, as mentioned before, the only difference with Equation (7.28)x is
that the lower previsions are replaced by the corresponding upper previsions.
The upper prevision version of Equation (7.31)x can be proved similarly; we
find that:

Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
= ∏

c∈C̃(s)

Pirr
KccxP(Kc)

(φc). (7.33)

The remaining equations follow trivially from conjugacy and the argumenta-
tion for the original equation. For every s ∈ G and xP(Ks) ∈XP(Ks), we find
that

Pirr
KscxP(Ks)

(φs) = PscxP(s)
( fs). (7.34)

if s is a leaf. If s is not a leaf, then

Pirr
KscxP(Ks)

(φs) = PscxP(s)

(
∑

xs∈Xs

I{xs} fs(xs) ∏
c∈C̃(s)

Pirr
KccxP(Kc)

(φc
))

. (7.35)

These upper prevision versions of our recursion equations can also be regarded
as special cases of—and can therefore be derived from—the more general ex-
pressions that we will discuss later in this section.20

Let us now try and weaken the requirement that each of the gambles fi,
i ∈ G, should be non-negative. We have introduced this assumption because it
leads to simplified expressions. However, it is not necessary. As we will now
show, some of the gambles fi can be allowed to have negative values. The only

20See Equations (7.37)256, (7.40)257, (7.41)257, (7.43)257 and (7.44)258.
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requirement that we need to impose is that the nodes of the gambles for which
this is the case should all be mutually comparable. In other words, if we call a
subset T of G comparable if there are no two nodes t, t ′ ∈ T such that t ‖ t ′,21

then what we need to impose is that fi ≥ 0 for those i ∈ G that do not belong
to T , for some comparable subset T of G. Before we go on to show that this
condition is sufficient in order to develop a recursive algorithm, we first take a
closer look at this condition itself and characterise it alternatively.

Consider the partial order that is imposed on the elements of G by the
binary operator v. The roots and leaves of the DAG are then the minimal
and maximal elements of this partially ordered set, respectively. Using the
standard terminology from partial orders, the condition above simply requires
that T should be a chain: a totally ordered subset of G. Equivalently, since |G|
is finite, T is comparable if and only if it is a subset of a directed path. For any
T that satisfies this condition, the following two properties hold.

Proposition 105. Consider a recursively decomposable DAG and a non-empty
comparable set T . Then there is a unique t ∈ Ro(G) such that Kt ∩T 6= /0.

Proof of Proposition 105. Since the DAG is recursively decomposable, we
know from Proposition 101244 that the sets Ks, s ∈ Ro(G), form a partition
of G. Therefore, since T 6= /0, it follows that there is some t ∈ Ro(G) such
that Kt ∩T 6= /0. Assume ex absurdo that there is some t ′ ∈ Ro(G) such that
t ′ 6= t and Kt ′ ∩T 6= /0. Since Kt ∩ T 6= /0, we can consider some u ∈ Kt ∩ T .
Since Kt ′ ∩T 6= /0, we can consider some v ∈ Kt ′ ∩T . Since T is comparable,
and because u and v are elements of T , it follows that u and v are comparable.
Therefore, we may assume—without loss of generality—that u v v. Since it
follows from u ∈ Kt that t v u, this implies that t v v, which in turn implies that
v ∈ Kt . Since Kt and Kt ′ are elements of a partition, this is a contradiction.

Proposition 106. Consider a recursively decomposable DAG and a compara-
ble set T . Then for all s ∈ G such that D(s)∩T 6= /0, there is a unique t ∈ C̃(s)
such that Kt ∩T 6= /0.

Proof of Proposition 106. Consider any s ∈ G such that D(s)∩T 6= /0. Since
the DAG is recursively decomposable, we know from Corollary 102245 that
the sets Kc, c ∈ C̃(s), form a partition of D(s). Therefore, it follows that there
is some t ∈ C̃(s) such that Kt ∩T 6= /0. Assume ex absurdo that there is some
t ′ ∈ C̃(s) such that t ′ 6= t and Kt ′ ∩T 6= /0. The same argument that we already
used in the proof of Proposition 105 then leads to a contradiction.

21This terminology is compatible with our definition for (in)comparability of nodes at the
beginning of Section 7.5.1238: if T consists of two elements, then T is (in)comparable if and only
if its two elements are.
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We now consider a comparable set T and a product ∏i∈G fi of univariate
gambles fi ∈ G (Xi), i ∈ G, such that fi ≥ 0 for all i ∈ G\T . As we will see,
it is still possible to compute Pirr

G (∏i∈G fi) and Pirr
G (∏i∈G fi) recursively. The

expressions that allow us to do so just become a bit more complicated.
We start by computing Pirr

G (∏i∈G fi). If T = /0, we have the special case
discussed in the beginning of this section, and the recursive expressions for
that special case can then be used. If T 6= /0, we need some new techniques.
In that case, the first step is to apply Proposition 105x, from which we can
infer that there is a unique t ∈ Ro(G) such that Kt ∩T 6= /0. Therefore, for all
s ∈ Ro(G) \ {t}, we have that Ks ∩ T = /0, which implies that φs ≥ 0. This
allows us to combine Equations (7.20)246 and (6.9)173 to find that

Pirr
G

(
∏
i∈G

fi

)
=


Pirr

Kt
(φt) ∏

s∈Ro(G)\{t}
Pirr

Ks(φs) if Pirr
Kt
(φt)≥ 0

Pirr
Kt
(φt) ∏

s∈Ro(G)\{t}
Pirr

Ks(φs) if Pirr
Kt
(φt)≤ 0.

(7.36)

Since we do not know beforehand—when starting the recursion at the leaves
of the induced network—what the sign of Pirr

Kt
(φt) will be, it no longer suffices

to compute the value of Pirr
Ks
(φs) for all s ∈ Ro(G). We also need the value of

Pirr
Ks(φs), for all s ∈ Ro(G)\{t}.

This problem is a special case—with P(Ks) = /0—of the following more
general problem, which can be solved recursively: for every s ∈ G and
xP(Ks) ∈XP(Ks), we will compute Pirr

KscxP(Ks)
(φs) and Pirr

KscxP(Ks)
(φs). As before,

we consider two cases.
This problem is trivial if s is a leaf of the induced forest. In that case, it

follows from Equation (7.21)246 and conjugacy that

Pirr
KscxP(Ks)

(φs) = PscxP(s)
( fs) and Pirr

KscxP(Ks)
(φs) = PscxP(s)

( fs). (7.37)

If s is not a leaf of the induced forest, we can apply Proposition 103246 and
Equation (6.14)178 to find that

Pirr
KscxP(Ks)

(φs) = PscxP(s)

(
Pirr

D(s)c(xP(D(s))\{s},Xs)
(φs)

)
= PscxP(s)

(
hscxP(Ks)

)
, (7.38)

where hscxP(Ks)
:= Pirr

D(s)c(xP(D(s))\{s},Xs)
(φs) is a gamble on Xs, given for all

xs ∈Xs by

hscxP(Ks)
(xs) =


fs(zs)Pirr

D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if fs(xs)≥ 0;

fs(zs)Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if fs(xs)≤ 0.

(7.39)
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Similarly, we also find that

Pirr
KscxP(Ks)

(φs) = PscxP(s)

(
Pirr

D(s)c(xP(D(s))\{s},Xs)(φs)
)
= PscxP(s)

(
hscxP(Ks)

)
, (7.40)

where hscxP(Ks)
:= Pirr

D(s)c(xP(D(s))\{s},Xs)
(φs) is a gamble on Xs, given for all

xs ∈Xs by

hscxP(Ks)
(xs) :=


fs(zs)Pirr

D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if fs(xs)≥ 0;

fs(zs)Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if fs(xs)≤ 0.

(7.41)

The following equations allow us to evaluate the gambles hscxP(Ks)
and hscxP(Ks)

recursively. For all xP(D(s)) ∈XP(D(s)), we have that

Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)

=


Pirr

KtcxP(Kt )
(φt) ∏

c∈C̃(s)\{t}
Pirr

KccxP(Kc)
(φc) if Pirr

KtcxP(Kt )
(φt)≥ 0

Pirr
KtcxP(Kt )

(φt) ∏
c∈C̃(s)\{t}

Pirr
KccxP(Kc)

(φc) if Pirr
KtcxP(Kt )

(φt)≤ 0
(7.42)

and

Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)

=


Pirr

KtcxP(Kt )
(φt) ∏

c∈C̃(s)\{t}
Pirr

KccxP(Kc)
(φc) if Pirr

KtcxP(Kt )
(φt)≥ 0

Pirr
KtcxP(Kt )

(φt) ∏
c∈C̃(s)\{t}

Pirr
KccxP(Kc)

(φc) if Pirr
KtcxP(Kt )

(φt)≤ 0.
(7.43)

Both equations follow from Proposition 104247, Equation (6.9)173 and con-
jugacy. The node t should be an element of C̃(s) such that φc ≥ 0 for all
c ∈ C̃(s)\{t}. If D(s)∩T = /0, then any t ∈ C̃(s) has this property. Otherwise,
Proposition 106255 guarantees the existence of a unique t ∈ C̃(s) that has this
property.

Using these equations, the value of Pirr
G (∏i∈G fi) can be computed recur-

sively, in more or less the same way as before. All we need to do is apply
Equation (7.37)x in the leaves of the induced forest and then move along its
branches towards its roots by means of Equations (7.38)x–(7.43). A final ap-
plication of Equation (7.36)x will provide us with the value of Pirr

G (∏i∈G fi).
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The corresponding upper prevision Pirr
G (∏i∈G fi) can be computed in ex-

actly the same way. The only difference is the final step. If T = /0, then φi ≥ 0
for all i ∈ G. In that case, we can apply the simplified methods that were dis-
cussed above. If T 6= 0, we can combine Equations (7.20)246 and (6.9)173 with
conjugacy to find that

Pirr
G

(
∏
i∈G

fi

)
=


Pirr

Kt (φt) ∏
s∈Ro(G)\{t}

Pirr
Ks(φs) if Pirr

Kt (φt)≥ 0;

Pirr
Kt (φt) ∏

s∈Ro(G)\{t}
Pirr

Ks(φs) if Pirr
Kt (φt)≤ 0.

(7.44)

with t as in Equation (7.36)256.
Although the expressions in this section are a bit more involved—

especially the ones where we partially drop the assumption of non-negativity—
the computational complexity of the resulting recursive algorithms is the same
as that of the algorithm for sums of univariate gambles discussed in Sec-
tion 7.5.3249. For every s ∈ G, we now need to compute two real-valued func-
tions on XP(Ks): Pirr

KscXP(Ks)
(φs) and Pirr

KscXP(Ks)
(φs), defined by(

Pirr
KscXP(Ks)

(φs)
)
(xP(Ks)) := Pirr

KscxP(Ks)
(φs) for all xP(Ks) ∈XP(Ks)

and (
Pirr

KscXP(Ks)
(φs)

)
(xP(Ks)) := Pirr

KscxP(Ks)
(φs) for all xP(Ks) ∈XP(Ks),

whereas before, we only needed to compute one such function. Clearly, such a
factor of two does not influence the computational efficiency of the procedure.
In fact, in the simplified cases discussed in the beginning of this section, a sin-
gle such function will suffice. Evaluating one of these functions for some fixed
xP(Ks) ∈XP(Ks) can be done in constant time, using the recursive expressions
provided above. Therefore, the complexity of computing Pirr

G (∏i∈G fi) and/or
Pirr

G (∏i∈G fi) in this way is linear in the number of nodes |G| and exponential
in the parameter maxs∈G|P(Ks)|, which implies that it is linear for trees and
forests; see Section 7.5.3249 for more information.

7.5.5 A single query node with evidence

Although the notion of a comparable set T might come across as a fairly ab-
stract concept, it has a number of very simple intuitive cases. Rather amus-
ingly, the most important example is trivial: every singleton T = {q}, with
q ∈ G, is—trivially—a comparable set. A non-trivial example is the set
that consists of all the hidden nodes in a hidden Markov model; see Sec-
tion 7.5.6264. For now, we focus on the trivial case. In that case, as we are
about to explain, the algorithm in the previous section allows us to compute
inferences about a single query variable Xq, conditional on the value xE ∈XE
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of some arbitrary set of evidence variables XE , with E ⊆ G \ {q}. This is the
most import inference problem in credal networks; in fact, most of the existing
inference algorithms for credal networks only consider this type of inferences.

For any f ∈ G (Xq), as explained in Section 7.3219, Pirr
q ( f cxE) and

Rirr
q ( f cxE) can be approximated from below—and in most cases coincide

with—E irr∗
q ( f cxE) and Rirr∗

q ( f cxE), respectively. Furthermore, in order to com-
pute E irr∗

q ( f cxE) or Rirr∗
q ( f cxE), all that we need is some method for evaluating

the real-valued function ρ irr
f ,xE

, defined by

ρ
irr
f ,xE

(µ) := Pirr
G (I{xE}[ f −µ]) for all µ ∈ R.

For some fixed µ ∈R, we can use the algorithm in the previous section for this
purpose. It suffices to let T = {q} and define

fi :=


f −µ if i = q
I{xi} if i ∈ E
1 otherwise

for all i ∈ G (7.45)

because the product ∏i∈G fi will then be equal to I{xE}[ f −µ]. Evaluating ρ irr
f ,xE

for some fixed µ therefore has a computational complexity that is linear in the
number of nodes |G| and exponential in the parameter maxs∈G|P(Ks)|. As ex-
plained in sections 2.7.363 and 7.3219, computing E irr∗

q ( f cxE) or Rirr∗
q ( f cxE)

now amounts to applying the bisection method or some other root-finding pro-
cedure to find the highest—rightmost—root of ρ irr

f ,xE
. For some fixed float-

ing point precision, the number of evaluations of the function ρ irr
f ,xE

that is
required to find this root is always finite and can furthermore be bounded uni-
formly from above. This allows us to conclude that the overall complexity of
this method for computing E irr∗

q ( f cxE) or Rirr∗
q ( f cxE) is linear in the number

of nodes |G| and exponential in the parameter maxs∈G|P(Ks)|. By conjugacy,
E irr∗

q ( f cxE) and Rirr∗
q ( f cxE) can be computed similarly.

If the network has a tree topology, this procedure reduces to the infer-
ence algorithm for credal trees introduced in Reference [42]. The parameter
maxs∈G|P(Ks)| is then equal to one [see Section 7.5.3] and the computational
complexity is therefore—in this special case—linear in the number of nodes
in the network. Basically, what we have done in this section is to extend the
algorithm in Reference [42] from trees to recursively decomposable networks.
Reference [42] also discusses some simplifications that can speed up the com-
putation; these apply in our more general case as well. For example, as can
be seen from Equation (7.45), only one of the univariate gambles in ∏i∈G fi
depends on µ: the function fq. As a result, for all s ∈ G such that q /∈ Ks, the
function φs will also not depend on µ , which implies that for these nodes s, the
value of Pirr

KscxP(Ks)
(φs) and Pirr

KscxP(Ks)
(φs) can be reused while iterating over µ .
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The other simplifications in Reference [42] are basically special cases of the
general tricks in Section 7.2216.

The same algorithm can also be used if we do not know the exact value of
XE but only have partial information about each of the variables Xi, i ∈ E, in
the sense that we know that its value belongs to some set Bi ∈P /0(Xi). The
only difference is that in that case, the univariate gambles fi are given by

fi :=


f −µ if i = q
IBi if i ∈ E
1 otherwise

for all i ∈ G.

The resulting product ∏i∈G fi is then equal to IO[ f − µ], with O =×i∈EBi.22

Again, we can apply the algorithm that we introduced in Section 7.5.4 to com-
pute ρ irr

f ,O(µ) := Pirr
G (∏i∈G fi) = Pirr

G (IO[ f −µ]) and then apply a root-finding
procedure to compute E irr∗

q ( f cO) or Rirr∗
q ( f cO) and, by conjugacy, the corre-

sponding upper previsions.
The algorithms in this section can be used to compute conditional infer-

ences about a single query node in any recursively decomposable credal net-
work. This includes many practically relevant instances. In order to illustrate
this, we end this section by briefly discussing some examples.

A first important example is filtering and smoothing in imprecise Hidden
Markov models, that is, inference about the last or some intermediate hidden
variable, respectively, conditional on evidence about the observed variables. In
Figure 7.5238, filtering corresponds to letting q = s7 whereas choosing q = s4
corresponds to smoothing; in both cases, E is equal to {s8, . . . ,s14}. Filter-
ing and smoothing are two important tasks in classical precise hidden Markov
models; they are equally important in imprecise hidden Markov models and
can be used to tackle the same kinds of practical problems, but more robustly.
This example is a bit unfair because—since a hidden Markov model is a special
kind of tree—filtering and smoothing can also be dealt with by the algorithm
in Reference [42]; our generalisation to recursively decomposable networks is
not necessary here. However, this is no longer the case if we consider a hidden
Markov model of order m≥ 2—Figure 7.6239 provides an example with m= 2.
In that case, our algorithm can still perform the task of filtering and smoothing,
whereas the algorithm in Reference [42] no longer applies.

The graphical structure of some well-known classifiers are also decompos-
able. The simplest example is the naive credal classifier [115], which is the
imprecise version of the naive Bayes classifier. Figure 7.10y provides an ex-
ample of a DAG that corresponds to such a naive—Bayes or credal—classifier.
The variable Xt that is attached to the root node t is called the class variable.
The other variables correspond to so-called features. The goal is to estimate the

22We assume that missing evidence is MAR; see Footnote 5216.
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s1 s2 s3 s4 s5

t

Figure 7.10: Example of a naive classifier

value of the class variable based on—possibly partial—evidence O = ×i∈EBi
about the feature variables, with E = G\{t} and, for all i ∈ E, Bi ∈P /0(Xi).
In a naive Bayes classifier, this is done by choosing the class value that has
the highest posterior probability conditional on the evidence. In a naive credal
classifier, imprecise-probabilistic decision criteria are used instead; see Refer-
ence [95] for an overview.

One of the criteria that was used in Reference [115] is maximality.23 The
idea is to consider a partial order over the elements in Xt . For two classes xt
and x̃t in Xt , it is said that x̃t is better than xt , denoted by x̃t � xt , if the proba-
bility of x̃t is higher than that of xt for each of the probability mass functions in
the updated credal set margs(F

irr
G cO), or equivalently, in terms of lower pre-

visions, if Pirr
t
(
I{x̃t}− I{xt}

⌋
O
)
> 0. The classes that are returned by the naive

credal classifier are those elements of Xt that are not dominated under this
partial order, in the sense that no other class is better. Since a partial order may
have more than one maximal element, this imprecise-probabilistic classifier
can be indeterminate.24 Although this might seem undesirable, it is in fact not
because indeterminacy typically occurs in those instances—for those instan-
tiations of the feature variables—where precise-probabilistic classifiers suffer
from robustness issues, in the sense that their accuracy drops drastically [13].
Other partial orders can also be considered, resulting in classifiers with similar
properties. For example, if we update by means of regular extension, x̃t is said
to be better than xt if Rirr

t
(
I{x̃t}−I{xt}

⌋
O
)
> 0. This is often equivalent because,

for this kind of classifiers, the lower probability of the evidence O is usually
positive, which implies that Pirr

t
(
I{x̃t}− I{xt}

⌋
O
)

and Rirr
t
(
I{x̃t}− I{xt}

⌋
O
)

are
equal. For the sake of this discussion, let us assume that we use the latter
expression.

What is important is that in order to perform this kind of classification, all
we need to be able to do is compute Rirr

q ( f cO), with q = t, f = I{x̃t}− I{xt}
and O =×i∈EBi. Unless the evidence O has upper probability zero, Rirr

q ( f cO)

will be equal to Rirr∗
q ( f cO) [see Section 7.3], which implies that we can use the

algorithm in this section to perform this classification task. Similar statements

23Actually, the authors of Reference [95] speak of credal dominance. However, over the years,
maximality seems to have become the preferred name for this criterion.

24Any classifier that has this feature of indeterminacy is called a credal classifier [115].
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s1 s2 s3 s4 s5

t

Figure 7.11: Example of a tree-augmented naive classifier

can be made for other decision criteria. For example, if we use interval domi-
nance, x̃t is said to be better than xt if Rirr

t (x̃tcO)> Rirr
t (x̃tcO). The Γ-maximin

and Γ-maximax criteria do not consider a partial order, they simply select the
class that maximises Rirr

t (x̃tcO) and Rirr
t (x̃tcO). Again, the clue is that in order

to perform this kind of classification, all we need to be able to do is compute
Rirr

q ( f cO)—or the corresponding upper prevision—with f now equal to the
indicator of x̃t or xt . If the evidence O has positive upper probability, then
Rirr

q ( f cO) is equal to Rirr∗
q ( f cO) and we can use the algorithm in this section.

Of course, this example is again a bit unfair. First of all, since a naive credal
classifier has a tree structure, the algorithm in Reference [42] is also capable
of computing Rirr∗

q ( f cO); our extension to recursively decomposable networks
provides no added value. Furthermore, due to the very simple structure of this
specific network, applying a general purpose algorithm—even the specialized
algorithm in Reference [42]—would be overkill. It is a much better idea to
derive explicit expressions for Rirr∗

q ( f cO). We leave this as an exercise to the
reader. For evidence of the form O = {xE}, with xE ∈XE , Zaffalon provides
such expressions in Reference [115].25

However, this is no longer the case once we move from the naive credal
classifier to more involved types of credal classifiers. A first extension is the
tree-augmented naive credal classifier, which is the imprecise version of the
tree-augmented naive Bayesian classifier. The DAG that corresponds to this
type of classifier is identical to that of a naive classifier, but with additional
edges such that the features form a tree; see Figure 7.11 for an example. The
goal is still to classify Xt , where t is the unique root of the network. As before,
we can do this by computing inferences of the form Rirr∗

q ( f cO), with q = t and
O =×i∈EBi. Since the DAG of a tree-augmented naive classifier is always de-
composable but never a tree, our algorithm is capable of computing this type
of inference, but the algorithm in Reference [42] is not. Furthermore, since
the parameter maxs∈G|P(Ks)| is at most two for this type of DAGs—regardless
of the number of nodes and the specific tree-augmented classifier that we are

25The naive credal classifier of Zaffalon [115] considered a credal network under strong in-
dependence instead of a credal network under epistemic irrelevance. However, as was proved in
Reference [67, Corollary 6], in this specific case, the resulting inferences are identical.
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s1 s2 s3 s4 s5

t

Figure 7.12: Example of a forest-augmented naive classifier

s1 s2 s3 s4 s5

t

Figure 7.13: Example of an augmented naive classifier that is recursively de-
composable but does not belong to any other specific type

considering—the computational complexity of our algorithm will be linear in
the number of nodes. For this type of classifiers, there are still alternative
methods available. Reference [116] presents an efficient classification algo-
rithm for a tree-augmented credal classifier under strong independence instead
of epistemic irrelevance; however, they only consider local models of a spe-
cific type—derived from probability intervals—and, for every i ∈ E, Bi should
either be a singleton or equal to Xi—every feature should either be known
exactly or completely missing.

Clearly, our algorithm can also deal with classifiers whose graphical struc-
ture is more complicated than that of a tree-augmented naive classifier. In
principle, we can consider any recursively decomposable network, as long as
the parameter maxs∈G|P(Ks)| remains small enough. For example, we could
consider the recursively decomposable network in Figure 7.9240, with t = s4
as the class node; notice that t is not the root node here. Figure 7.12 depicts
an example of a forest-augmented naive classifier, which is a straightforward
generalisation of a tree-augmented naive classifier. The DAG in Figure 7.13 is
also a recursively decomposable augmented naive classifier, but not of any of
the types that were mentioned before. To the best of our knowledge, for these
more general types of recursively decomposable networks, there is no other
efficient exact algorithm that can compute the inferences that are required to
classify Xt .

And, we can even go further than this. If the evidence is of the form
O = {xE}, with E = G\{t} and xE ∈XE , we can consider any—not necessar-
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ily recursively decomposable—network and, for any t ∈G, efficiently compute
the inferences that are required to classify Xt ; see Section 7.6.1271.

7.5.6 Multiple query nodes with evidence

So far, we have restricted attention to inferences with multiple query variables
and no evidence—Sections 7.5.3249 and 7.5.4252—or a single query variable
with evidence—Section 7.5.5258. We now consider the remaining case: multi-
ple query variables with evidence.

Consider a non-empty comparable set Q ⊆ G, some x̂Q ∈XQ and, for all
i ∈ G\Q, an event Bi ∈P /0(Xi). Define O :=×i∈(G\Q)Bi. For any E ⊆ G\Q
and xE ∈ XE , this includes O = {xE} as a special case. We will compute
E irr∗

Q (x̂QcO) and Rirr∗
Q (x̂QcO) and the corresponding upper previsions. The re-

quirement that Q should be a comparable set is not that restrictive. For ex-
ample, in a hidden Markov model (of order m), the set of hidden nodes is
comparable, which means that we can use the algorithm below to compute the
lower and upper probability of a hidden state sequence conditional on the value
of—or partial information about—the observable states. Arbitrary subsets of
the nodes of a Markov chain (of order m) are also comparable. As another
example, in Figure 7.9240, every subset of {s1, . . . ,s9} is comparable.

We start by computing E irr∗
Q (x̂QcO) and Rirr∗

Q (x̂QcO). As we know from
Section 7.3219, all we need in order to be able to do that is some method for
evaluating the real-valued function ρ irr

x̂Q,O
, defined by

ρ
irr
x̂Q,O

(µ) := Pirr
G
(
IO[Ix̂Q −µ]

)
for all µ ∈ R.

We will now develop a recursive algorithm that can do this efficiently. We start
by defining

fi :=

{
1 if i ∈ Q
IBi if i /∈ Q

for all i ∈ G

and
φs := ∏

i∈Ks

fi for all s ∈ G

and
κs := φs[Ix̂Q∩Ks

−µ] for all s ∈ G such that Q∩Ks 6= 0.

Since Q 6= 0, we know from Proposition 105255 that there is a unique t ∈ Ro(G)
such that Kt ∩Q 6= /0. It then follows that

IO[Ix̂Q −µ] = [Ix̂Q −µ]∏
i∈G

fi = κt ∏
s∈Ro(G)\{t}

φs. (7.46)

By combining this with Equations (6.9)173 and (7.20)246, we find that
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ρ
irr
x̂Q,O

(µ) =


Pirr

Kt
(κt) ∏

s∈Ro(G)\{t}
Pirr

Ks(φs) if Pirr
Kt
(κt)≥ 0

Pirr
Kt
(κt) ∏

s∈Ro(G)\{t}
Pirr

Ks(φs) if Pirr
Kt
(κt)≤ 0.

(7.47)

In order to compute this number, we need to compute the value of Pirr
Kt
(κt)

and—since we do not know beforehand what the sign of Pirr
Kt
(κt) will be—for

all s ∈ Ro(G)\{t}, both Pirr
Ks
(φs) and Pirr

Ks(φs).
As before, this task is a special case—with P(Ks) = /0—of a more

general problem, which can be solved recursively. For every s ∈ G
and xP(Ks) ∈XP(Ks), we compute Pirr

KscxP(Ks)
(φs) and Pirr

KscxP(Ks)
(φs) and, if

Q∩Ks 6= /0, also Pirr
KscxP(Ks)

(κs). For the first two values, we can use the same
recursive expressions as before [see Equations (7.29)253, (7.32)253, (7.34)254
and (7.35)254]. If Q∩Ks 6= /0, then Pirr

KscxP(Ks)
(κs) can be computed by means of

the following expressions.
We consider two cases. If s is a leaf of the induced forest, this problem is

trivial. In that case, it follows from Equation (7.21)246 that

Pirr
KscxP(Ks)

(κs) = PscxP(s)
(Ix̂s −µ) (7.48)

If s is not a leaf of the induced forest, we can apply Proposition 103246 and
Equation (6.14)178 to find that

Pirr
KscxP(Ks)

(κs) = PscxP(s)

(
Pirr

D(s)c(xP(D(s))\{s},Xs)
(κs)

)
= PscxP(s)

(
gscxP(Ks)

)
, (7.49)

where gscxP(Ks)
:= Pirr

D(s)c(xP(D(s))\{s},Xs)
(κs) is a gamble on Xs that is given by

one of the following three expressions. If s ∈ Q and Q∩D(s) 6= /0, then for all
xs ∈Xs:

gscxP(Ks)
(xs) =



Pirr
D(s)cxP(D(s))

(
[Ix̂Q∩D(s) −µ] ∏

i∈D(s)
fi

)
if xs = x̂s;

−µ Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs 6= x̂s and µ ≥ 0;

−µ Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs 6= x̂s and µ ≤ 0.

If s ∈ Q and Q∩D(s) = /0, then for all xs ∈Xs:
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gscxP(Ks)
(xs) =



(1−µ)Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs = x̂s and µ ≤ 1;

(1−µ)Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs = x̂s and µ ≥ 1;

−µ Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs 6= x̂s and µ ≥ 0;

−µ Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs 6= x̂s and µ ≤ 0.

If s /∈ Q, then Q∩D(s) 6= /0 [becasue Q∩Ks 6= /0] and, for all xs ∈Xs:

gscxP(Ks)
(xs) =

Pirr
D(s)cxP(D(s))

(
[Ix̂Q∩D(s) −µ] ∏

i∈D(s)
fi

)
if xs ∈ Bs;

0 if xs /∈ Bs.

If s ∈ Q and Q∩D(s) = /0, we can already compute this gamble recursively
by means of Equations (7.31)253 and (7.33)254. In the two remaining cases,
we have that Q∩D(s) 6= /0. Proposition 106255 then guarantees that there is a
unique t ∈ C̃(s) such that Kt ∩Q 6= /0. In combination with Corollary 102245,
this implies that

[Ix̂Q∩D(s) −µ] ∏
i∈D(s)

fi = κt ∏
c∈C̃(s)\{t}

φc. (7.50)

By applying Proposition 104247 and Equation (6.9)173, we find that

Pirr
D(s)cxP(D(s))

(
[Ix̂Q∩D(s) −µ] ∏

i∈D(s)
fi

)

=


Pirr

KtcxP(Kt )
(κt) ∏

c∈C̃(s)\{t}
Pirr

KccxP(Kc)
(φc) if Pirr

KtcxP(Kt )
(κt)≥ 0

Pirr
KtcxP(Kt )

(κt) ∏
c∈C̃(s)\{t}

Pirr
KccxP(Kc)

(φc) if Pirr
KtcxP(Kt )

(κt)≤ 0

By combining this expression with Equations (7.31)253 and (7.33)254, the gam-
ble gscxP(Ks)

can be evaluated recursively in all instances.

The discussion above suggest the following recursive procedure. We
start by applying Equations (7.29)253 and (7.34)254 and, if s ∈ Q, also Equa-
tion (7.48)x at the leaves s of the induced forest. Next, we move along
the branches of the induced forest towards its roots by means of Equations
(7.32)253 and (7.35)254 and, if Q∩Ks 6= /0, also Equations (7.48)x and (7.49)x.
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A final application of Equation (7.47)265 will provide us with the value of
ρ irr

x̂Q,O
(µ).

The computational complexity of this procedure is identical to that of the
previous algorithms that we have discussed. For every s ∈ G, we now need
to compute at most three real-valued functions on XP(Ks): Pirr

KscXP(Ks)
(φs) and

Pirr
KscXP(Ks)

(φs) and, if Q∩Ks 6= /0, also Pirr
KscXP(Ks)

(κs). Evaluating one of these
functions for some fixed xP(Ks) ∈XP(Ks) can be done in constant time, using
the recursive expressions that are provided above. Therefore, the complex-
ity of computing ρ irr

x̂Q,O
(µ) in this way is linear in the number of nodes |G|

and exponential in the parameter maxs∈G|P(Ks)|. Again, this implies that for
trees and forests, it is linear in the number of nodes. The complexity of com-
puting E irr∗

Q (x̂QcO) or Rirr∗
Q (x̂QcO) is identical because, as explained in Sec-

tion 7.5.5258, for some fixed floating point precision, the number of µ’s for
which we need to compute ρ irr

x̂Q,O
(µ) is bounded.

E irr∗
Q (x̂QcO) and Rirr∗

Q (x̂QcO) can be computed in a similar—and equally
efficient—way. By conjugacy, we know that they are equal to−E irr∗

Q (−Ix̂QcO)

and −Rirr∗
Q (−Ix̂QcO), so we can focus on computing E irr∗

Q (−Ix̂QcO) or
Rirr∗

Q (−Ix̂QcO). As we know from Section 7.3219, all we need to compute these
numbers is some method for evaluating the real-valued function ρ

irr
x̂Q,O, defined

by

ρ
irr
x̂Q,O(µ) := Pirr

G
(
IO[−Ix̂Q −µ]

)
=−Pirr

G
(
IO[Ix̂Q +µ]

)
for all µ ∈ R.

For reasons of notational convenience, we will compute ρ
irr
x̂Q,O(−µ) instead of

ρ
irr
x̂Q,O(µ); clearly, this makes no difference.

By combining Equations (6.9)173, (7.20)246 and 7.46 with conjugacy, we
find that

ρ
irr
x̂Q,O(−µ) =


−Pirr

Kt (κt) ∏
s∈Ro(G)\{t}

Pirr
Ks(φs) if Pirr

Kt (κt)≥ 0

−Pirr
Kt (κt) ∏

s∈Ro(G)\{t}
Pirr

Ks(φs) if Pirr
Kt (κt)≤ 0.

Everything else is now completely analogous. The only difference is that for
nodes s ∈ G such that Q∩Ks 6= /0, we now need to compute Pirr

KscxP(Ks)
(κs)

instead of Pirr
KscxP(Ks)

(κs)
Again, we consider two cases. If s is a leaf of the induced forest, this

problem is trivial. It then follows from Equation (7.21)246 that

Pirr
KscxP(Ks)

(κs) = PscxP(s)
(Ix̂s −µ)

If s is not a leaf of the induced forest, we can combine Proposition 103246 and
Equation (6.14)178 with conjugacy to find that
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Pirr
KscxP(Ks)

(κs) = PscxP(s)

(
Pirr

D(s)c(xP(D(s))\{s},Xs)(κs)
)
= PscxP(s)

(
gscxP(Ks)

)
,

where gscxP(Ks)
:= Pirr

D(s)c(xP(D(s))\{s},Xs)(κs) is a gamble on Xs that is given by
one of the following three expressions. If s ∈ Q and Q∩D(s) 6= /0, then for all
xs ∈Xs:

gscxP(Ks)
(xs) =



Pirr
D(s)cxP(D(s))

(
[Ix̂Q∩D(s) −µ] ∏

i∈D(s)
fi

)
if xs = x̂s;

−µ Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs 6= x̂s and µ ≥ 0.

−µ Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs 6= x̂s and µ ≤ 0.

If s ∈ Q and Q∩D(s) = /0, then for all xs ∈Xs:

gscxP(Ks)
(xs) =



(1−µ)Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs = x̂s and µ ≤ 1;

(1−µ)Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs = x̂s and µ ≥ 1;

−µ Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs 6= x̂s and µ ≥ 0;

−µ Pirr
D(s)cxP(D(s))

(
∏

i∈D(s)
fi

)
if xs 6= x̂s and µ ≤ 0.

If s /∈ Q, then Q∩D(s) 6= /0 [because Q∩Ks 6= /0] and, for all xs ∈Xs:

gscxP(Ks)
(xs) =

Pirr
D(s)cxP(D(s))

(
[Ix̂Q∩D(s) −µ] ∏

i∈D(s)
fi

)
if xs ∈ Bs;

0 if xs /∈ Bs.

(7.51)

Furthermore, in the two cases where Q∩D(s) 6= /0, we can combine Proposi-
tion 104247 and conjugacy with Equations (6.9)173 and (7.50)266 to find that

Pirr
D(s)cxP(D(s))

(
[Ix̂Q∩D(s) −µ] ∏

i∈D(s)
fi

)

=


Pirr

KtcxP(Kt )
(κt) ∏

c∈C̃(s)\{t}
Pirr

KccxP(Kc)
(φc) if Pirr

KtcxP(Kt )
(κt)≥ 0

Pirr
KtcxP(Kt )

(κt) ∏
c∈C̃(s)\{t}

Pirr
KccxP(Kc)

(φc) if Pirr
KtcxP(Kt )

(κt)≤ 0.
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By combining this expression with Equations (7.31)253 and (7.33)254, the gam-
ble gscxP(Ks)

, and therefore also the value of Pirr
KscxP(Ks)

(κs), can be evaluated
recursively in all instances.

7.5.7 Other types of inferences

Although the algorithms in the previous sections already cover a number of
very important types of inferences in recursively decomposable networks, it
is important to realise that they are only examples. The recursive decompo-
sition of Pirr

G (·) presented in Section 7.5.2246 can be used to compute other
inferences in recursively decomposable networks as well. The main idea is
always the same: plug some function in the recursive equations for Pirr

G (·) and
use the mathematical properties of marginal extension and independent natural
extension to simplify the resulting expressions. For unconditional inferences,
this function will be a gamble f ∈ G (XG) and the goal is then to compute
Pirr

G ( f ). For conditional inferences, the function that is plugged into Pirr
G (·)

is of the form IO[ f − µ] and an additional iteration over µ is then needed to
compute E irr∗

G ( f cO) or Rirr∗
G ( f cO). We end this section by briefly discussing

two additional examples. We provide only very few details; our goal here is to
illustrate the range of additional inferences that can be computed by means of
the decomposition in Section 7.5.2246, and not to actually compute them.

As a first—rather arbitrary—example, consider the recursively decompos-
able network in Figure 7.9240 and let Q = {s1,si}, with i ∈ G \ {1}. Let E be
any subset of G\Q and consider some f ∈ G (XQ) and xE ∈XE . Then in or-
der to compute E irr∗

Q ( f cxE) or Rirr∗
Q ( f cxE), as we know from Section 7.3219, all

that we need is some method for evaluating Pirr
G (I{xE}[ f −µ]) for different val-

ues of µ ∈R. Since G = Ks1 , it follows from Equations (6.14)178 and (7.22)247
that

Pirr
G
(
I{xE}[ f −µ]

)
= Ps1

(
Pirr

D(s1)cXs1

(
I{xE}[ f −µ]

))
= Ps1

(
∑

xs1∈Xs1

I{xs1}
Pirr

D(s1)cxs1

(
I{xE}[ fxs1

−µ]
))

where, for all xs1 ∈Xs1 , fxs1
is a gamble on Xsi that is defined by

fxs1
(xsi) := f (xs1 ,xsi) for all xsi ∈Xsi .

The rest of the computation now consists in applying the recursive expres-
sions in Section 7.5.4252 because I{xE}[ fxs1

−µ] is a product of univariate func-
tions, only one of which is non-negative. So, although the original problem—
computing Pirr

G (I{xE}[ f −µ])—cannot be solved by means of the algorithms in
the previous sections, we see that with a little extra effort, we obtain a solution
method whose computational complexity is similar to that of the algorithms
presented before.
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As a final example, we consider the problem of state estimation in hidden
Markov models. For example, for the hidden Markov model in Figure 7.5238,
with Q = {s1, . . . ,s7} and E = {s8,s14}, the problem of state estimation con-
sists in estimating the value of XQ based on the information that XE = xE ,
for some sequence of observed states xE ∈XE . If we use regular extension,
this information leads us to consider the updated model Rirr

Q (·cxE), which, pro-
vided that xE has positive upper probability, is equal to Rirr∗

Q (·cxE). In or-
der to estimate—classify—the value of XQ, we can now apply an imprecise-
probabilistic decision criterion.

If we use interval dominance, Γ-maximin or Γ-maximax [see Sec-
tion 7.5.5258], this requires us to compute inferences of the form Rirr∗

Q (xQcxE)
and Rirr∗

Q (xQcxE), with xQ ∈XQ. Since Q is a comparable set, we can use the
algorithm in Section 7.5.6264 to perform these computations efficiently. How-
ever, this does not mean that the actual classification problem can be solved
efficiently. Since the number of sequences xQ ∈ XQ for which we need to
compute the inferences above is exponential in the length of these sequences,
this approach is intractable for long hidden Markov models.

An alternative option is to use the maximality criterion [see Sec-
tion 7.5.5258]. In that case, we need to be able to check inequalities of the
form Rirr∗

Q (I{x̃Q}− I{xQ}cxE) > 0, with x̃Q,xQ ∈XQ. As we know from Sec-
tion 7.3219, evaluating the left-hand side of such an inequality requires us to
compute Pirr

G ([I{x̃Q}− I{xQ}−µ]I{xE}) for different values of µ ∈ R. Although
none of the algorithms that we have introduced is capable of doing that, it
should be clear that this problem is very similar to that in Section 7.5.6264. It
should therefore not be surprising that it is possible to obtain recursive expres-
sions that allow us to compute Pirr

G ([I{x̃Q}−I{xQ}−µ]I{xE}) efficiently. We will
not derive these expression here; it serves as nice exercise. See our paper [30]
for more information. Again, the trick is to consider the decomposition in
Section 7.5.2246 and exploit the mathematical properties of marginal extension
and independent natural extension to simplify the resulting expressions. As
before, the fact that we can compute this single inference efficiently does not
imply that the complete classification problem can be solved easily; the num-
ber of equalities that need to be checked is still exponential in the length of
the hidden Markov model. Nevertheless, by applying a number of additional
tricks, it is possible to solve this classification problem efficiently: we have
designed an algorithm that returns all the maximal hidden sequences; it has
a computational complexity that is linear in the number of such sequences.
These ‘additional tricks’ and the resulting algorithm for state estimation in im-
precise hidden Markov models are presented in Reference [30], which also
discusses an application where we automatically detect and correct the errors
that are made by Optical Character Recognition (OCR) software. A detailed
discussion of this algorithm and its application falls beyond the scope of this
dissertation. For our present purposes, the only point that is really important
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here is that the main reason why we were able to solve this state estimation
problem efficiently is because the expressions necessary for solving it can be
obtained recursively, using methods similar to the ones derived in the previous
sections.

We trust that these additional examples, and the algorithms in the previous
sections, will inspire others to use similar techniques to solve the inference
problems relevant for their particular applications.

7.6 WHAT ABOUT OTHER TYPES OF NETWORKS?

Up to this point, we have presented two types of algorithms for computing
inferences in credal networks under epistemic irrelevance. For specific in-
ferences in recursively decomposable networks, we have developed efficient
recursive algorithms. For general inferences in general networks, we have
introduced—generally intractable—brute force methods and a number of pre-
processing tricks to make the inference problem smaller, and to reduce it to
the unconditional case. We conclude this chapter by showing that even for
general networks that are not recursively decomposable, inferences can some-
times be computed efficiently, either by exploiting the theoretical properties in
Chapter 6152, by reducing the network to a recursively decomposable one, or
by applying brute force techniques only locally. Except for the result in Sec-
tion 7.6.1, which can be regarded as the basis for an algorithm, we will not
develop generally applicable methods; in fact, we believe that recursively de-
composable networks are more or less the largest class of networks for which
this is possible. Nevertheless, as we will illustrate by means of examples, it is
still possible to devise solution methods on a case-by-case basis. As before, we
trust that these examples will inspire others to use similar techniques to solve
the inference problems relevant for their particular applications

7.6.1 A single query node with complete evidence

There is one specific inference problem that can be solved efficiently in any
credal network under epistemic irrelevance: the computation of Pirr

q ( f cxE) or
Rirr

q ( f cxE), in the specific case where E = G\{q}. This means that the value
of all the non-query nodes is known; we call this complete evidence. This type
of inference is important in classifiers, where data is usually not missing. In
expert systems however, complete evidence is a rather idealistic situation.

Solving this inference problem is trivial if q is a leaf node. We then
have that PN(q) = E and it therefore follows directly from Corollaries 44141
and 75181 that

Pirr
q ( f cxE) = Rirr

q ( f cxE) = PqcxP(q)
( f ).

When q is not a leaf node, we start by applying the tricks at the end of Sec-
tion 7.2216. For Q = {q}, the smallest closed subset K of G such that Q ⊆ K,
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P(K)⊆ E and D(K)∩E = /0 is clearly K := Kq = D(q)∪{q}. Therefore, and
because E ∩Kq = D(q) and PN(Kq) = PN(q) and E \Kq = G\Kq = PN(q), it
follows from the discussion in Section 7.2216 that

Pirr
q ( f cxE) = Pirr

qcxP(Kq)
( f cxD(q))

and

Rirr
q ( f cxE) =

Rirr
qcxP(Kq)

( f cxD(q)) if Pirr
PN(q)(xPN(q))> 0

Pirr
qcxP(Kq)

( f cxD(q)) if Pirr
PN(q)(xPN(q)) = 0.

where, because of Proposition 58159:

Pirr
PN(q)(xPN(q)) = ∏

s∈PN(q)
PscxP(s)

(xs).

In this way, the original inference problem is already reduced to a simi-
lar but smaller sized inference problem in the subnetwork that corresponds
to Kq and xP(Kq). The remaining task is to compute Pirr

qcxP(Kq)
( f cxD(q)) or

Rirr
qcxP(Kq)

( f cxD(q)).

By applying the discussion in Section 7.3219 to the subnetwork that corre-
sponds to Kq and xP(Kq), we know that

Pirr
qcxP(Kq)

( f cxD(q)) = E irr∗
qcxP(Kq)

( f cxD(q)) if Pirr
qcxP(Kq)

(xD(q))> 0

and

Rirr
qcxP(Kq)

( f cxD(q)) = Rirr∗
qcxP(Kq)

( f cxD(q)) if Pirr
qcxP(Kq)

(xD(q))> 0.

If the positivity conditions are not satisfied, the equalities may fail and the
right-hand side of these equations then provides a—vacuous—lower approxi-
mation of the left-hand side. In the remainder of this section, we compute the
right-hand side of these equalities.

As we know from Section 7.3219, all that we need in order to compute these
right-hand sides—and to check the positive conditions—is an efficient method
for evaluating the real-valued function ρ irr

f ,xKq cxP(Kq)
, defined by

ρ
irr
f ,xKq cxP(Kq)

(µ) := Pirr
KqcxP(Kq)

(
[ f −µ]I{xD(q)}

)
for all µ ∈ R.

Once we can do that, a simple root-finding procedure such as the bisection
method provides us with the value of E irr∗

qcxP(Kq)
( f cxD(q)) and Rirr∗

qcxP(Kq)
( f cxD(q))

that we are after.
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So let us fix some µ ∈R. Since q is not a leaf of the network, we know that
D(q) 6= /0. Therefore, it follows from Proposition 103246 and Equation 6.14178
that

ρ
irr
f ,xKq cxP(Kq)

(µ) = PqcxP(q)
(gµ),

where gµ := Pirr
D(q)c(xP(D(q))\{q},Xq)

(
[ f − µ]I{xD(q)}

)
is a gamble on Xq that can

be easily computed because it follows from coherence [C248], conjugacy and
Proposition 58159 that

gµ(xq) =


[ f (xq)−µ] ∏

s∈D(q)
PscxP(s)

(xs) if f (xq)≥ µ

[ f (xq)−µ] ∏
s∈D(q)

PscxP(s)
(xs) if f (xq)≤ µ

for all xq ∈Xq.

The computational complexity of evaluating ρ irr
f ,xKq cxP(Kq)

is therefore linear in
the number of nodes in D(q).

7.6.2 Reducing a problem to the recursively decomposable case

As we have explained in Section 7.2216, it is sometimes possible to reduce
an inference problem in a global network to a similar inference problem in a
subnetwork. If the subnetwork is recursively decomposable, this trick can turn
a seemingly intractable inference problem into an easier problem that can be
solved efficiently by means of the recursive algorithms in Section 7.5235. We
illustrate this by means of an example.

Consider the DAG in Figure 7.14y, which is not recursively decomposable
because s1 and s3 are incomparable and yet they have a common descendant
s10, and similarly for s2 and s5 and for s7 and s8. This can also be seen by
looking at the induced DAG, whose edges have been made thicker. Since the
induced DAG is not a forest, we know from Proposition 99243 that the original
DAG is not recursively decomposable.

Consider now a credal network under epistemic irrelevance that has this
graphical structure. Let Q := {s2,s12} and E := {s5,s8,s11,s13} and choose
some x̂Q ∈XQ and xE ∈XE . The inference task that we consider is that of
computing the value of Pirr

Q (x̂QcxE).
We will simplify this problem by means of the techniques in Sec-

tion 7.2216. The trick is to find a closed subset K of G such that Q⊆ K,
P(K) ⊆ E and D(K) ∩ E = /0. In this case, it is not hard to see that
the set K := {s2,s3,s4,s11,s12,s13} meets these criteria. In fact, it is the
unique smallest set K for which this is the case. Since P(K) = {s5} and
E ′ := E ∩K = {s11,s13}, it now follows from the discussion in Section 7.2216
that

Pirr
Q (x̂QcxE) = Pirr

Qcxs5
(x̂QcxE ′),
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s1

s2

s3

s4

s5

s6

s7

s8

s10
s11

s12

s13

s9

Q = {s2,s12}
E = {s5,s8,s11,s13}

Figure 7.14: Example of a DAG that is not recursively decomposable

s2

s3

s4

s5 xs5

s11

s12

s13

K = {s2,s3,s4,s11,s12,s13}
P(K) = {s5}

Q = {s2,s12}
E ′ := E ∩K = {s11,s13}

Figure 7.15: Recursively decomposable sub-DAG of the DAG in Figure 7.14

where the right-hand side is computed with respect to the subnetwork that
corresponds to K and xs5 ; see Figure 7.15 for an illustration.

What is especially nice about this simplification of the problem is that the
sub-DAG that corresponds to K is recursively decomposable. Therefore, we
can use the algorithm in Section 7.5.4252 to compute Pirr

K (xE ′). If this lower
probability is positive, then as explained in Section 7.3, Pirr

Qcxs5
(x̂QcxE ′) is equal

to E irr∗
Qcxs5

(x̂QcxE ′), which, since Q is clearly a comparable set, can be computed
efficiently by means of the algorithm in Section 7.5.6264.

7.6.3 Combining brute force techniques with recursion

The computational methods that we have presented so far consist of two types.
On the one hand, we have presented generally applicable brute force methods,
which are intractable for large networks. On the other hand, we have presented
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t1

s1a

s1b

t2

s2a

s2b

t3

s3a

s3b

t4

s4a

s4b

t5

s5a

s5b

Figure 7.16: Example of a dynamic network that is not recursively decompos-
able

efficient recursive algorithms that manage to decompose the problem in such
a way that all we really ever have to evaluate are the local models. However,
these are not the only two options. For some inference problems that can-
not be fully decomposed, it may nevertheless be possible to decompose them
partially. The idea is to recursively decompose the global problem into sub-
problems that are as small as possible, and to solve these remaining problems
by means of brute force methods. We conclude this chapter with an example
that illustrates this method.

Consider a network that consists of 3n nodes, with n ∈ N. For every
i ∈ {1, . . . ,n}, the variables Xti , Xsia and Xsib represent domain-specific pa-
rameters at time i, whose local models depend on the value of these pa-
rameters in the previous time slot. This is a simple example of a dynamic
network, which aims to model the evolution of parameters as time evolves.
Figure 7.16 depicts an example for n = 5. For n = 14, this network was
used as an example in a recent paper about dynamic credal networks [62].
It is a simplified version of a network that models various aspects of the
ripening process of Camembert cheese [5]. It represents the coupled dy-
namics of a yeast behaviour—Kluyveromyces marxianus concentration Xsia —
with their substrate consumptions—lactose concentration Xsib—influenced by
temperature—Xti . For our present purposes, the local models that are attached
to the variables in this network are not really important; see Reference [62] for
examples. What we intend to show here is that inference in this network can
be performed efficiently.

We focus on one particular inference problem, which is estimating the evo-
lution of the variables Xsia and Xsib through time, based on their value at time
1 and the evolution of the temperature—Xti—over time. In order to formalise
this problem we define

Si := {sia,sib} for all i ∈ {1, . . . ,n}
and
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Tk:` := {tk, . . . , t`} for all k, ` ∈ {1, . . . ,n} such that k ≤ `.

Let m ∈ {2, . . . ,n} be some arbitrary point in time and consider a gam-
ble f ∈ G (XSm), an initial state xS1 ∈ XS1 and a sequence of temperatures
xT1:n ∈XT1:n . The generic inference problem that we intend to solve is the com-
putation of Pirr

Sm
( f cxS1∪T1:n) or Rirr

Sm
( f cxS1∪T1:n), which—as we will show—are

two identical problems. The example in Figure 7.16x corresponds to m = 4.
Reference [62] considered a specific version26 of this inference problem, for a
credal network with the same graphical structure but with other independence
assumptions.27 The authors used an approximate Monte Carlo sampling algo-
rithm to compute their inferences because no exact algorithm was available.
As we are about to show, in our case—for a credal network under epistemic
irrelevance—these inferences can be computed efficiently and exactly, with a
recursive algorithm that has a computational complexity that is linear in m.

The first step is to simplify the inference problem by applying the tech-
niques in Section 7.2216. If we define

Sk:` := ∪`i=kSi for all k, ` ∈ {1, . . . ,n} such that k ≤ `,

then for all k, ` ∈ {1, . . . ,n} such that k ≤ `:

P(Sk:`) = Sk−1∪Tk−1:`−1 and D(Sk:`) = S`+1:n

If we now let Q := Sm and E := S1∪T1:n, then it should be clear that K := S2:m is
a closed subset of G such that Q⊆ K, P(K)⊆ E and D(K)∩E = /0. Therefore,
it follows from the discussion in Section 7.2216 that

Pirr
Sm( f cxS1∪T1:n) = Rirr

Sm( f cxS1∪T1:n) = Pirr
SmcxP(S2:m)

( f ),

where the right-hand side is an inference problem in the subnetwork that cor-
responds to S2:m and xP(S2:m). Figure 7.17y depicts an example with m = 4.
The remaining task is to compute Pirr

SmcxP(S2:m)
( f ).

We now consider two cases: m = 2 and m > 2.
If m = 2, then S2:m = S2 = {s2a,s2b}. This implies that the subnetwork that

corresponds to S2:m and xP(S2:m) consists of two disconnected nodes. There-
fore, and because P(S2:m) = P(s2a) = P(s2b), it follows from the discussion in
Section 6.6171 that

Pirr
SmcxP(S2:m)

( f ) = Pirr
S2cxP(S2)

( f ) = Ps2acxP(s2a)
⊗Ps2bcxP(s2b)

( f ).

26Instead of general inferences about XSm , they computed lower and upper expected values of
Xsma and Xsmb , which corresponds to choosing specific gambles f ∈ G (XSm ).

27Strong independence and a notion of independence which they call repetitive independence.
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t1xt1

s1axs1a

s1bxs1b

t2xt2

s2a

s2b

t3xt3

s3a

s3b

s4a

s4b

Figure 7.17: Subnetwork of the network in Figure 7.16275

Since this computation involves only two local models, it can easily be dealt
with by means of brute force techniques. If Xs2a and Xs2b are binary, we can
use the extreme points in Theorem 92233. Otherwise, we need to solve a linear
program; see Equation 7.15229 and Corollary 89229. In any case, the important
point here is that this computation is local in nature because it involves only
two local models. Therefore, if the local models are finitely generated and
are based on a reasonable number of assessments, this computation can be
expected to be tractable.

If m > 2, it follows from Corollary 72180 [with K = S2:m, T = S2 and
S = S3:m] that

Pirr
S2:mcxP(S2:m)

(·) = Pirr
S2cxP(S2)

(·)�Pirr
S3:mc(xP(S3:m)\S2

,XS2 )
(·)

Therefore, if we define g2 ∈ G (XS2) by

g2(xS2) := Pirr
SmcxP(S3:m)

( f ) for all xS2 ∈XS2 , (7.52)

where the right-hand side is an inference problem in the subnetwork that cor-
responds to S3:m and xP(S3:m), it follows from Equation (6.14)178 that

Pirr
SmcxP(S2:m)

( f ) = Pirr
S2cxP(S2)

(g2) = Ps2acxP(s2a)
⊗Ps2bcxP(s2b)

(g2).

As before, this independent natural extension can be computed by means of
brute force techniques because it only involves two local models. The remain-
ing problem is now to evaluate g2. As we can see from Equation (7.52), this
inference problem is of the same type as the one that we have considered above.
The solution is completely analogous. For all xS2 ∈XS2 , we find that

g2(xS2) = Pirr
SmcxP(S3:m)

( f ) = Pirr
S3cxP(S3)

(g3) = Ps3acxP(s3a)
⊗Ps3bcxP(s3b)

(g3),

where g3 is a gamble on XS3 that is equal to f if m = 3 and defined by

g3(xS3) := Pirr
SmcxP(S4:m)

( f ) for all xS3 ∈XS3
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if m > 3. By continuing in this way, we obtain the following recursive solution
method. We start by defining gm := f . Next, for all i ∈ {3, . . . ,m}, we define
gi−1 ∈ G (XSi−1) by

gi−1(xSi−1) := PsiacxP(sia)
⊗PsibcxP(sib)

(gi) for all xSi−1 ∈XSi−1

The value of the final inference that we are after is then given by

Pirr
Sm( f cxS1∪T1:n) = Rirr

Sm( f cxS1∪T1:n) = Ps2acxP(s2a)
⊗Ps2bcxP(s2b)

(g2).

Assuming that the independent natural extension of two local models can be
computed in a reasonable—constant—amount of time, this recursive proce-
dure has a computational complexity that is linear in m.

7.A PROOF OF THEOREM 88

Proof of Theorem 88228. If G = {s}, the constraints in this theorem reduce to
Equations (7.10)226 and (7.11)226 and, therefore, they are equivalent to impos-
ing that pG ∈Fs, which implies that pG is a probability mass function. The
result then follows trivially from Corollary 87227.

Since the theorem holds for |G|= 1, we can now provide a proof by induc-
tion. Consider a credal network with n := |G| > 1 nodes and assume that the
theorem is true for networks with n−1 nodes.

Due to Corollary 87227, any pG ∈F irr
G cXG clearly satisfies the constraints

in this theorem. The hard part is the other implication. So, consider any real-
valued function pG on XG for which ∑zG∈XG

pG(zG) = 1 and, for all s ∈ G
and xPN(s) ∈XPN(s):(

∀γ ∈ ΓscxP(s)

)
∑

zs∈Xs

∑
zD(s)∈XD(s)

pG(xPN(s),zs,zD(s))γ(zs)≥ 0. (7.53)

We need to prove that pG ∈F irr
G cXG. In order to do so, it suffices to show

that pG is a probability mass function, because it then follows from Corol-
lary 87227 that pG ∈ F irr

G cXG. Since we already know that pG satisfies the
unitary constraint, we are left to prove that pG(zG)≥ 0 for all zG ∈XG.

Consider any ` ∈ G that is a leaf of the network; this is always possible
because every DAG has at least one leaf. Define K := G\{`} and let qK be the
real-valued function on XK that is defined by

qK(zK) = ∑
z`∈X`

pG(zK ,z`) for all zK ∈XK .

Since ∑zG∈XG
p(zG) = 1, we find that ∑zK∈XK qK(zK) = 1. Since K is clearly

an ancestral set, we can consider the irrelevant natural extension F irr
K of

the corresponding subnetwork. We now prove that qK ∈ F irr
K cXK . Since
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|K|= n−1, we can use the induction hypothesis for this purpose. It suffices to
prove that, for any s ∈ K and xPNK(s) ∈XPNK(s):(

∀γ ∈ ΓscxP(s)

)
∑

zs∈Xs

∑
zDK (s)∈XDK (s)

qK(xPNK(s),zs,zDK(s))γ(zs)≥ 0.

So fix any s ∈ K, xPNK(s) ∈XPNK(s) and γ ∈ ΓscxP(s)
. We consider two cases:

DK(s) = D(s) and DK(s)∪{`} = D(s). It follows from Lemma 79(i)185 that
these two cases are exhaustive. If DK(s) = D(s), then PNK(s)∪{`} = PN(s)
and therefore

∑
zs∈Xs

∑
zDK (s)∈XDK (s)

qK(xPNK(s),zs,zDK(s))γ(zs)

= ∑
zs∈Xs

∑
zDK (s)∈XDK (s)

∑
x`∈X`

pG(xPNK(s),zs,zDK(s),x`)γ(zs)

= ∑
x`∈X`

∑
zs∈Xs

∑
zD(s)∈XD(s)

pG(xPN(s),zs,zD(s))γ(zs)≥ 0,

where the final inequality is a consequence of Equation (7.53)x. In case
DK(s)∪{`}= D(s), we have that PNK(s) = PN(s) and therefore

∑
zs∈Xs

∑
zDK (s)∈XDK (s)

qK(xPNK(s),zs,zDK(s))γ(zs)

= ∑
zs∈Xs

∑
zDK (s)∈XDK (s)

∑
z`∈X`

pG(xPNK(s),zs,zDK(s),z`)γ(zs)

= ∑
zs∈Xs

∑
zD(s)∈XD(s)

pG(xPN(s),zs,zD(s))γ(zs)≥ 0,

where the final inequality again follows from Equation (7.53)x. Hence, by
the induction hypothesis, it follows that qK ∈F irr

K cXK , which implies that qK
is a probability mass function. We still need to prove that pG(zG) ≥ 0 for all
zG ∈XG.

Assume ex absurdo that there is some z∗G ∈XG such that pG(z∗G)< 0. Since
` is a leaf of the network, we know that D(`) = /0 and PN(`) = K. It therefore
follows from Equation (7.53)x that(

∀γ ∈ Γ`cz∗P(`)

)
∑

z`∈X`

pG(z∗K ,z`)γ(z`)≥ 0. (7.54)

Choose some arbitrary p`cz∗P(`) ∈ F`cz∗P(`)
. Since pG(z∗G) < 0, it is then pos-

sible to choose ε > 0 such that p(z∗G)+ ε p`cz∗P(`)(z
∗
`) < 0. Let θ be the real-

valued function on X` that is defined by θ(z`) = pG(z∗K ,z`)+ ε p`cz∗P(`)(z`) for

all z` ∈X`. Then θ(z∗`)< 0 and

λ := ∑
z`∈X`

θ(z`) = ∑
z`∈X`

pG(z∗K ,z`)+ ε ∑
z`∈X`

p`cz∗P(`)(z`) = qK(z∗K)+ ε ≥ ε > 0,
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where the first inequality follows from the fact that qK is a probability mass
function. Therefore, we can define the real-valued function π = θ/λ on X`,
for which it should be clear that ∑z`∈X`

π(z`) = 1 and, because of Equa-
tions (7.54)x and (7.11)226, that for all γ ∈ Γ`cz∗P(`)

:

∑
z`∈X`

π(z`)γ(z`) =
1
λ

∑
z`∈X`

p(z∗K ,z`)γ(z`)+
ε

λ
∑

z`∈X`

p`cz∗P(`)(z`)γ(z`)≥ 0.

Since F`cz∗P(`)
is by assumption completely characterised by Equa-

tions (7.10)226 and (7.11)226, we infer that π ∈ F`cz∗P(`)
, which implies that

π(z∗`)≥ 0 and therefore also that θ(z∗`)≥ 0, a contradiction.
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Proof of Theorem 92233. Consider four parameters τ,τ,π,π ∈ R such that
0≤ τ ≤ τ ≤ 1 and 0≤ π ≤ π ≤ 1 and let a,b,c,d ∈ R be four unknowns that
satisfy the following constraints:

a+b+ c+d = 1 (7.55)
and

(1− τ)a≥ τc (i1)
τc≥ (1− τ)a (i2)

(1− τ)b≥ τd (i3)
τd ≥ (1− τ)b (i4)

(1−π)a≥ πb (i5)
πb≥ (1−π)a (i6)

(1−π)c≥ πd (i7)
πd ≥ (1−π)c (i8)

If the inequalities in Equations (i1)–(i8) are replaced by equalities, we refer to
the resulting expressions as (e1)y–(e8)y:
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(1− τ)a = τc (e1)
τc = (1− τ)a (e2)

(1− τ)b = τd (e3)
τd = (1− τ)b (e4)

(1−π)a = πb (e5)
πb = (1−π)a (e6)

(1−π)c = πd (e7)
πd = (1−π)c (e8)

It is a matter of straightforward verification that by replacing the param-
eters and unknowns in the constraints (7.55)x and (i1)x–(i8)x by the ones
given in column T1 of Table (7.6)y, we obtain Equations (7.17)231 and (I1)231–
(I8)231. A perhaps more surprising result is that due to the symmetry of this set
of constraints, the substitutions in columns T2–T8 of Table (7.6)y also yield
Equations (7.17)231 and (I1)231–(I8)231.

As explained in Section 7.4.4229 , the extreme points of F1⊗F2 can be
found by considering every possible subset of three equalities from (E1)231–
(E8)231. For every such combination of three equalities, we need to combine
them with the unitary constraint and check whether this results in a unique
solution. If this is the case, we need to check whether this unique solution
satisfies the inequalities in (I1)231–(I8)231. If yes, then that unique solution is
an extreme point of F1⊗F2.

For ease of notation, we will use (E123) to denote the system of con-
straints consisting of Equations (E1)231, (E2)231, (E3)231 and (7.17)231, and
similarly for other combinations of Equation (7.17)231 with a ternary subset
of (E1)231–(E8)231. In the same way, the combination of Equations (e1), (e2),
(e3) and (7.55)x is denoted by (e123) and similarly for other combinations of
Equation (7.55)x with a ternary subset of (e1)–(e8).

We start by considering the following systems of equalities: (E135),
(E136), (E247), (E248), (E157), (E368), (E257) and (E468). By applying
the substitutions in Table 7.6y, these eight problems all become equivalent
to (e135). If this system provides a unique solution, we need to check whether
it satisfies (i1)x–(i8)x and if it does, applying each of the substitutions T1–T8
to that solution yields a (possibly different) extreme point.

Equation (e1) tells us that (1 − τ)a = τc, which is equivalent to
a = τ(a+ c). Equation (e3) tells us that (1− τ)b = τd, which is equivalent
to b = τ(b+d). By combining them, we find that

a+b = τ(a+b+ c+d) = τ, (7.56)

where the last equality follows from Equation (7.55)x. Equation (e5) tells us
that (1−π)a = πb, which is equivalent to a = π(a+ b). By combining this

281



7.B PROOF OF THEOREM 92

T1 T2 T3 T4 T5 T6 T7 T8

τ p(h1) p(h1) p(t1) p(t1) p(h2) p(t2) p(h2) p(t2)

τ p(h1) p(h1) p(t1) p(t1) p(h2) p(t2) p(h2) p(t2)

1− τ p(t1) p(t1) p(h1) p(h1) p(t2) p(h2) p(t2) p(h2)

1− τ p(t1) p(t1) p(h1) p(h1) p(t2) p(h2) p(t2) p(h2)

π p(h2) p(t2) p(h2) p(t2) p(h1) p(h1) p(t1) p(t1)

π p(h2) p(t2) p(h2) p(t2) p(h1) p(h1) p(t1) p(t1)

1−π p(t2) p(h2) p(t2) p(h2) p(t1) p(t1) p(h1) p(h1)

1−π p(t2) p(h2) p(t2) p(h2) p(t1) p(t1) p(h1) p(h1)

a p(h1,h2) p(h1, t2) p(t1,h2) p(t1, t2) p(h1,h2) p(h1, t2) p(t1,h2) p(t1, t2)

b p(h1, t2) p(h1,h2) p(t1, t2) p(t1,h2) p(t1,h2) p(t1, t2) p(h1,h2) p(h1, t2)

c p(t1,h2) p(t1, t2) p(h1,h2) p(h1, t2) p(h1, t2) p(h1,h2) p(t1, t2) p(t1,h2)

d p(t1, t2) p(t1,h2) p(h1, t2) p(h1,h2) p(t1, t2) p(t1,h2) p(h1, t2) p(h1,h2)

(7.55)280 (7.17)231 (7.17)231 (7.17)231 (7.17)231 (7.17)231 (7.17)231 (7.17)231 (7.17)231

(i1)280 (I1)231 (I3)231 (I2)231 (I4)231 (I5)231 (I6)231 (I7)231 (I8)231

(i2)280 (I2)231 (I4)231 (I1)231 (I3)231 (I6)231 (I5)231 (I8)231 (I7)231

(i3)280 (I3)231 (I1)231 (I4)231 (I2)231 (I7)231 (I8)231 (I5)231 (I6)231

(i4)280 (I4)231 (I2)231 (I3)231 (I1)231 (I8)231 (I7)231 (I6)231 (I5)231

(i5)280 (I5)231 (I6)231 (I7)231 (I8)231 (I1)231 (I3)231 (I2)231 (I4)231

(i6)280 (I6)231 (I5)231 (I8)231 (I7)231 (I2)231 (I4)231 (I1)231 (I3)231

(i7)280 (I7)231 (I8)231 (I5)231 (I6)231 (I3)231 (I1)231 (I4)231 (I2)231

(i8)280 (I8)231 (I7)231 (I6)231 (I5)231 (I4)231 (I2)231 (I3)231 (I1)231

(e135) (E135) (E136) (E247) (E248) (E157) (E368) (E257) (E468)

(e137) (E137) (E138) (E245) (E246) (E357) (E168) (E457) (E268)

(e123) (E123) (E134) (E124) (E234) (E567) (E568) (E578) (E678)

(e125) (E125) (E346) (E127) (E348) (E156) (E356) (E278) (E478)

(e126) (E126) (E345) (E128) (E347) (E256) (E456) (E178) (E378)

(e167) (E167) (E358) (E258) (E467) (E235) (E146) (E147) (E238)

(e145) (E145) (E236) (E237) (E148) (E158) (E367) (E267) (E458)

Table 7.6: The symmetry in Equations (7.17)231 and (I1)231–(I8)231
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with Equation (7.56)281 we find that a = τ π , which, when we plug it back into
Equation (7.56)281, in turn implies that b = τ(1− π). If τ = 0, then clearly
the system (e135) does not define a unique solution. If τ > 0, then plugging
the result for a in Equation (e1)281 yields c = (1− τ)π and plugging the result
for b in Equation (e3)281 yields d = (1− τ)(1− π). We can summarise our
findings as follows: if τ = 0, then (e135) does not lead to a unique solution
and if τ > 0, then the unique solution is

a = τ π , b = τ(1−π), c = (1− τ)π , d = (1− τ)(1−π). (7.57)

It is a matter of straightforward verification that this solution satisfies the in-
equalities in (i1)280–(i8)280.

By applying each of the substitutions in Table 7.6x to Equation (7.57), we
obtain the following probability mass functions: columns T1 and T5 yield pS1,
columns T2 and T6 yield pS2, columns T3 and T7 yield pS3 and columns T4
and T8 yield pS4. For each of these substitutions, the corresponding probability
mass function is an extreme point of F1⊗F2 if and only if the parameter that
was used to substitute τ with differs from zero.

Next, we consider the following systems of equalities: (E137), (E138),
(E245), (E246), (E357), (E168), (E457) and (E268). By applying the substi-
tutions in Table (7.6)x, these eight problems all become equivalent to (e137).
If this system provides a unique solution, we need to check whether it satisfies
(i1)280–(i8)280 and if it does, applying each of the substitutions T1–T8 to that
solution yields a (possibly different) extreme point.

Equation (e1)281 tells us that (1 − τ)a = τc, which is equivalent to,
c = (1− τ)(a+ c). Equation (e3)281 tells us that (1−τ)b= τd, which is equiv-
alent to d = (1− τ)(b+d). By combining them, we find that

c+d = (1− τ)(a+b+ c+d) = 1− τ, (7.58)

where the last equality follows from Equation (7.55)280. Equation (e7)281 tells
us that (1− π)c = πd, which is equivalent to c = π(c+ d). By combining
this with Equation (7.58), we find that c = (1− τ)π , which, when we plug it
back into Equation (7.58), in turn implies that d = (1− τ)(1−π). If τ = 1,
then clearly the system (e137) does not define a unique solution. If τ < 1, then
plugging the result for c in Equation (e1)281 yields a = τ π and plugging the
result for d in Equation (e3)281 yields b = τ(1− π). We can summarise our
findings as follows: if τ = 1, then (e137) does not lead to a unique solution
and if τ < 1, then the unique solution is

a = τ π , b = τ(1−π), c = (1− τ)π , d = (1− τ)(1−π). (7.59)

Since this solution is identical to the solution found in Equation (7.57), we
already know that it satisfies the inequalities in (i1)280–(i8)280.

By applying each of the substitutions in Table 7.6x to Equation (7.59), we
obtain the same probability mass functions that we found when solving (e135):
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pS1, pS2, pS3 and pS4. However, this time, these probability mass functions
are extreme points of F1⊗F2 if and only if the parameter used to substitute
τ for differs from 1, whereas for the system (e135), they were extreme points
of F1⊗F2 if and only if that same parameter differed from 0. Since that
parameter cannot be 1 and 0 at the same time, we conclude that the probability
mass functions pS1, pS2, pS3 and pS4 are always extreme points of F1⊗F2,
regardless of the particular values of the parameters p(h1), p(h1), p(t1), p(t1),
p(h2), p(h2), p(t2) and p(t2). These probability mass functions have a special
status: they are the extreme points of the strong product F1×F2 of F1 and
F2, as defined by Equation (7.18)234.

Consider now the special case where (at least) one of the local mod-
els Fi, i ∈ {1,2} is precise—p(hi) = p(hi) and p(ti) = p(ti)—or vacuous—
[ p(hi), p(hi)] = [ p(ti), p(ti)] = [0,1]. In that case, the strong product F1×F2
and independent natural extension F1 ⊗F2 coincide [46, Section 5.5] and
therefore have the same extreme points, which implies that pS1, pS2, pS3 and
pS4 are then the only extreme points of F1⊗F2. This already explains the di-
agram in Figure 7.2235. It is a matter of straightforward verification to see that
as soon as (at least) one of the local models is precise, then some of the extreme
points pS1, pS2, pS3 and pS4 coincide; it suffices to compare the formulas in
Table 7.1233. If both local models are precise, then all four extreme points even
reduce to a single probability mass function, which is just the product of the
two local ones.

So, from now on, without loss of generality, we can exclude the cases where
(at least) one of the local models is precise or vacuous. Whatever the substitu-
tion that is chosen in Table 7.6282, this always implies—among other things—
that τ 6= τ and π 6= π , which in turn implies that τ 6= 0, 1− τ 6= 0, π 6= 0 and
1−π 6= 0.

With that in mind, let us take a closer look at the systems of equations
(e123), (e125) and (e126). Each of these systems corresponds to eight dif-
ferent combinations of the unitary constraint (7.17)231 with three equalities
out of (E1)231–(E8)231; see Table 7.6282. The solution of each of these three
systems needs to satisfy Equations (e1)281 and (e2)281, which implies that
(1− τ)a = τc and τc = (1− τ)a. By multiplying the first equation with τ ,
multiplying the second one with τ and combining the resulting equations,
we get τ(1− τ)a = τ(1− τ)a, or equivalently, (τ − τ)a = 0, which is in turn
equivalent with a = 0 since we already excluded the case τ = τ . By plugging
this into Equation (e2)281, we find that τc = 0, which implies that c = 0 be-
cause we have already excluded the case τ = 0. So, for each of the systems of
equalities (e123), (e125) and (e126), we have that a = c = 0.

For the system of equations (e123), Equations (e1)281 and (e2)281 are com-
bined with Equations (e3)281 and (7.55)280. Equation (e3)281 tells us that
(1− τ)b = τd, which is equivalent with b = τ(b + d). Combined with the
unitary constraint (7.55)280, this implies that b = τ because a = c = 0. By
plugging this back into the unitary constraint (7.55)280, we find that d = 1−τ .
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The unique solution of (e123) is therefore

a = 0, b = τ , c = 0, d = 1− τ. (7.60)

This solution always satisfies Equations (i1)280, (i2)280, (i3)280, (i4)280, (i6)280
and (i8)280. It satisfies Equations (i5)280 and (i7)280 if and only if 0≥ π τ and
0 ≥ π(1− τ), or equivalently, if π = 0. The probability mass functions that
are obtained by applying the substitutions in Table 7.6282 to Equation (7.60)
will therefore be an extreme point of F1⊗F2 if and only if the parameter that
is used to substitute π with is equal to zero. However, these extreme points
are already included in the ones that correspond to Equation (7.59)283, because
π = 0 makes Equations (7.60) and (7.59)283 identical. We conclude that the
system of equations (e123) does not provide us with additional extreme points
of F1⊗F2.

For the system of equations (e125), Equations (e1)281 and (e2)281 are com-
bined with Equations (e5)281 and (7.55)280. Equation (e5)281 tells us that
(1−π)a = πb, which implies that πb = 0 because a = 0. If π = 0, this sys-
tem has no unique solution. If π > 0, then we find that b = 0 and d = 1,
where the last equality follows from the unitary constraint (7.55)280. However,
this solution does not satisfy Equation (i7)280 because that would require that
(1− π)c ≥ πd, or equivalently, since c = 0 and d = 1, that 0 ≥ π , a contra-
diction. We conclude that the system of equations (e125) does not provide us
with additional extreme points of F1⊗F2.

For the system of equations (e126), Equations (e1)281 and (e2)281 are com-
bined with Equations (e6)281 and (7.55)280. Equation (e6)281 tells us that
πb = (1− π)a, which implies that πb = 0 because a = 0. Since we already
excluded π = 0, we find that b = 0 and d = 1, where the last equality fol-
lows from the unitary constraint 7.55280. By plugging this solution into Equa-
tions (i1)280–(i8)280, we find that these inequalities are satisfied if and only if
τ = π = 0, which implies that only in that case, the solution

a = 0, b = 0, c = 0, d = 1, (7.61)

yields extreme points of F1 ⊗F2, by applying the substitutions in Ta-
ble 7.6282. However, since τ = π = 0, these extreme points are clearly already
included in the extreme points that correspond to Equation (7.59)283, because
τ = π = 0 makes Equations (7.61) and (7.59)283 identical. We conclude that
the system of equations (e126) does not provide us with additional extreme
points of F1⊗F2.

Next, we consider the system of equations (e167). The corresponding eight
different combinations of the unitary constraint (7.17)231 with three equalities
out of (E1)231–(E8)231 can be found in Table 7.6282.

Equation (e1)281 tells us that (1− τ)a = τc, Equation (e6)281 tells us that
πb = (1−π)a and Equation (e7)281 tells us that (1−π)c = πd. By combining
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these three equations, we find that

(1−π)π(1− τ)b = π(1−π)τd. (7.62)

Since Equation (i3)280 must be satisfied, we know that (1 − τ)b ≥ τd,
which turns into (1− π)π(1− τ)b ≥ (1− π)πτd by multiplying both sides
with (1−π)π . In combination with Equation (7.62), this implies that
π(1−π)τd ≥ (1−π)πτd, or equivalently, that (π−π)τd ≥ 0. Since we have
already excluded the case π = π , it must be that τd ≤ 0, which implies that
d ≤ 0 or τ = 0.

If d ≤ 0, it follows from Equation (e7)281 that (1−π)c≤ 0. Since we have
already excluded the case 1− π = 0, this implies that c ≤ 0. Due to Equa-
tion (e1)281, c≤ 0 in turn implies that a≤ 0 because we have already excluded
the case 1− τ = 0. Finally, due to Equation (e6)281, a≤ 0 in turn implies that
b ≤ 0 because we have already excluded the case π = 0. We conclude that
a+b+ c+d ≤ 0, which contradicts the unitary constraint (7.55)280.

If τ = 0, it follows from Equation (e1)281 that a = 0. Therefore, it follows
from Equation (e6)281 that b = 0 because we have already excluded the case
π = 0. From Equation (e7)281, we now derive that c = π(c+ d) = π , where
the last equality is due to the unitary constraint (7.55)280, which also tells us
that d = 1−π . Therefore, we have found that

a = 0, b = 0, c = π , d = 1−π. (7.63)

However, this solution cannot yield additional extreme points of F1⊗F2 be-
cause, since τ = 0, Equations (7.63) and (7.59)283 are identical.

At this point, we have already considered 48 of the 56 possible ternary
subsets of (E1)231–(E8)231. So far, our conclusions are that, regardless of the
particular values of the parameters p(h1), p(h1), p(t1), p(t1), p(h2), p(h2),
p(t2) and p(t2), the probability mass functions pS1, pS2, pS3 and pS4 are always
(possibly coinciding) extreme points of F1⊗F2 and, as soon as (at least) one
of the local models is either precise or vacuous, these are the only extreme
points of F1⊗F2.

Finally, we consider the system of equations (e145). The correspond-
ing eight different combinations of the unitary constraint (7.17)231 with three
equalities out of (E1)231–(E8)231 are (E145), (E236), (E237), (E148), (E158),
(E367), (E267) and (E458); see Table 7.6282.

Equation (e1)281 says that (1 − τ)a = τc, which is equivalent to
a = τ(a+ c). Equation (e4)281 says that τd = (1− τ)b, which is equivalent
to b = τ(b+d). Equation (e5)281 tells us that (1−π)a = πb. Combined with
the unitary constraint (7.55)280, this implies that

ττπ = ττπ(a+b+ c+d)

= ττπ(b+d)+ ττπ(a+ c) = τ πb+ τπa = τ(1−π)a+ τπa

= (τ(1−π)+ τπ)a. (7.64)
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Since we have already excluded the cases 1− τ = 0 and 1−π = 0, the system
(e145) clearly does not lead to a unique solution if τ = π = 0. If we assume that
τ +π > 0, then since we have already excluded the cases 1−π = 0 and τ = 0,
we find that τ(1−π)+τπ > 0, which allows us to infer from Equation (7.64)x
that

a =
ττπ

τ(1−π)+ τπ
. (7.65)

If π > 0, we can combine this with Equation (e5)281 to find that

b =
ττ(1−π)

τ(1−π)+ τπ
. (7.66)

If π = 0, then τ > 0 [because τ+π > 0] and a= 0 [because of Equation (7.65)]
and therefore, we infer from Equation (e1)281 that c = 0. Since the unitary
constraint (7.55)280 then tells us that b+d = 0, it follows from Equation (e4)281
that b = τ , which, with π = 0 and τ > 0, is a special case of Equation (7.66).
Since the cases π > 0 and π = 0 are exhaustive, it follows that—under the
assumption that τ +π > 0—Equation (7.66) always holds.

If τ > 0, we can combine Equation (7.65) and (e1)281 to find that

c =
(1− τ)τπ

τ(1−π)+ τπ
. (7.67)

If τ = 0, then π > 0 [because τ+π > 0] and a= 0 [because of Equation (7.65)]
and therefore, we infer from Equation (e5)281 that b= 0. Since we have already
excluded the case τ = 0, Equation (e4)281 now tells us that d = 0. By applying
the unitary constraint (7.55)280, it follows that c = 1, which, with τ = 0, π > 0
and τ > 0, is a special case of Equation (7.67). Since the cases τ > 0 and
τ = 0 are exhaustive, it follows that—under the assumption that τ +π > 0—
Equation (7.67) always holds.

Finally, since we have already excluded the case τ = 0, it follows from
Equations (7.66) and (e4)281 that

d =
τ(1− τ)(1−π)

τ(1−π)+ τπ
. (7.68)

We can summarise our findings as follows. If τ = π = 0, then (e145) does
not lead to a unique solution. If τ +π > 0 (τ > 0 and/or π > 0), the unique
solution of (e145) is given by Equations (7.65), (7.66), (7.66) and (7.68). Fur-
thermore, in that case, by substituting this solution into Equations (i1)280–
(i8)280, one can see that Equations (i1)280–(i7)280 are all satisfied and that
Equation (i8)280 is satisfied if and only if

τ(1− τ)π(1−π)≥ τ(1− τ)π(1−π). (7.69)
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Therefore, if this inequality holds and if τ +π > 0, then by applying the sub-
stitutions in Table 7.6282 to Equations (7.65)x, (7.66)x, (7.66)x and (7.68)x,
we obtain eight new extreme points of F1⊗F2.

Using the substitutions in columns T1, T2, T3 and T4, we find that if

p(h1)p(t1)p(h2)p(t2)≥ p(h1)p(t1)p(h2)p(t2) (7.70)

then

� pA1 is an extreme point of F1⊗F2 unless p(h1) = 0 and p(h2) = 0;

� pA2 is an extreme point of F1⊗F2 unless p(h1) = 0 and p(t2) = 0;

� pA3 is an extreme point of F1⊗F2 unless p(t1) = 0 and p(h2) = 0;

� pA4 is an extreme point of F1⊗F2 unless p(t1) = 0 and p(t2) = 0.

Similarly, using the substitution in column T5, T6, T7 and T8, we find that
if

p(h1)p(t1)p(h2)p(t2)≤ p(h1)p(t1)p(h2)p(t2) (7.71)

then

� pB1 is an extreme point of F1⊗F2 unless p(h1) = 0 and p(h2) = 0;

� pB2 is an extreme point of F1⊗F2 unless p(h1) = 0 and p(t2) = 0;

� pB3 is an extreme point of F1⊗F2 unless p(t1) = 0 and p(h2) = 0;

� pB4 is an extreme point of F1⊗F2 unless p(t1) = 0 and p(t2) = 0.

We can now explain the second part of the diagram, which is depicted
in Figures 7.3236 and 7.4237. As we have already explained, for this second
part, we already know that pS1, pS2, pS3 and pS4 are extreme points F1⊗F2.
Furthermore, we may assume that neither of the local models is precise or
vacuous. For each i ∈ {1,2}, this implies that p(hi)> 0 and p(ti)> 0 and that
p(hi) and p(ti) cannot both be zero.

If p(h1)p(t1)p(h2)p(t2) > p(h1)p(t1)p(h2)p(t2), then Equation (7.70) is
satisfied and Equation (7.71) is not. The left-hand side of this inequality can
not be zero since this would force it to be equal to the right-hand side. There-
fore we have that p(h1) > 0 and p(t1) > 0. This implies that F1⊗F2 has
four additional extreme points: pA1, pA2, pA3 and pA4. If p(h2) = 0, then one
can check in Tables 7.1233 and 7.2234 that pA1 coincides with pS3 and that pA3
coincides with pS1, which leaves only pA2 and pA4 as actual additional ex-
treme points. If p(t2) = 0, then pA2 coincides with pS4 and pA4 coincides with
pS2, which leaves only pA1 and pA3 as actual additional extreme points. p(h2)
and p(t2) cannot both be zero because this would imply that F2 is a vacuous
model, which is a case that was already excluded earlier on in the diagram.
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If p(h1)p(t1)p(h2)p(t2)< p(h1)p(t1)p(h2)p(t2), then Equation (7.71)x is
satisfied and Equation (7.70)x is not. The right-hand side of this inequality
can not be zero since this would force it to be equal to the left-hand side.
Therefore we have that p(h2) > 0 and p(t2) > 0. This implies that F1⊗F2
has four additional extreme points: pB1, pB2, pB3 and pB4. If p(h1) = 0, then
one can check in Tables 7.1233 and 7.2234 that pB1 coincides with pS2 and that
pB2 coincides with pS1, which leaves only pB3 and pB4 as actual additional
extreme points. If p(t1) = 0, then pB3 coincides with pS4 and pB4 coincides
with pS3, which leaves only pB1 and pB2 as actual additional extreme points.
p(h1) and p(t1) cannot both be zero because this would imply that F1 is a
vacuous model, which is a case that was already excluded earlier on in the
diagram.

If
p(h1)p(t1)p(h2)p(t2) = p(h1)p(t1)p(h2)p(t2), (7.72)

then Equations (7.70)x and (7.71)x are both satisfied. The diagram distin-
guishes between three cases: p(h1) = 0 or p(t1) = 0 or neither of them equal
to zero. The case p(h1) = p(t1) = 0 is excluded because this would imply that
F1 is a vacuous model.

If p(h1) 6= 0 and p(t1) 6= 0, then since we already excluded p(h2) = 0 and
p(t2) = 0, it must hold that p(h2) 6= 0 and p(t2) 6= 0 because otherwise the
right-hand side of Equation (7.72) would be zero whereas the left-hand side
is not. We find that F1⊗F2 has eight additional extreme points: pA1, pA2,
pA3, pA4, pB1, pB2, pB3 and pB4. However, some of them coincide: it follows
from Equation (7.72) that pA1 = pA4, pA2 = pA3, pB1 = pB4 and pB2 = pB3. If
we also have that F1 = F2, then p(h1) = p(h2), p(h1) = p(h2), p(t1) = p(t2)
and p(t1) = p(t2). It is a matter of straightforward verification to see that then
pA1 = pA4 = pB1 = pB4 and pA2 = pA3 = pB2 = pB3.

If p(h1) = 0 or p(t1) = 0, then in order for Equation (7.72) to hold, the
right-hand side of that equality must be zero. Since we already excluded
p(h1) = 0 and p(t1) = 0, this means that p(h2) = 0 or p(t2) = 0. They cannot
both be zero because this would imply that F2 is a vacuous model, which is a
case that was already excluded earlier on in the diagram. There are now four
options left.

If p(h1) = 0 and p(h2) = 0, we find that F1⊗F2 has six additional ex-
treme points: pA2, pA3, pA4, pB2, pB3 and pB4. However, some of them coin-
cide with each other and/or with the extreme points that we already know. It
follows from p(h1) = 0 and p(h2) = 0 that pS1 = pA2 = pA3 = pB2 = pB3 and
pA4 = pB4.

If p(h1) = 0 and p(t2) = 0, then F1⊗F2 has the following six additional
extreme points: pA1, pA3, pA4, pB1, pB3 and pB4. Again, some of them coin-
cide with each other and/or with the extreme points that we already know. It
follows from p(h1) = 0 and p(t2) = 0 that pS2 = pA1 = pA4 = pB1 = pB4 and
pA3 = pB3.

289



7.B PROOF OF THEOREM 92

If p(t1) = 0 and p(h2) = 0, then F1⊗F2 has the following six additional
extreme points: pA1, pA2, pA4, pB1, pB2 and pB4. Again, some of them coin-
cide with each other and/or with the extreme points that we already know. It
follows from p(t1) = 0 and p(h2) = 0 that pS3 = pA1 = pA4 = pB1 = pB4 and
pA2 = pB2.

If p(t1) = 0 and p(t2) = 0, then F1⊗F2 has the following six additional
extreme points: pA1, pA2, pA3, pB1, pB2 and pB3. Again, some of them coin-
cide with each other and/or with the extreme points that we already know. It
follows from p(t1) = 0 and p(t2) = 0 that pS4 = pA2 = pA3 = pB2 = pB3 and
pA1 = pB1.
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8
CONCLUSIONS

“The only relevant thing is uncertainty—the extent of our
knowledge and ignorance. The actual fact of whether or not the
events considered are in some sense determined, or known by
other people, and so on, is of no consequence.”

Bruno de Finetti

The main conclusion of this dissertation is that credal networks under epis-
temic irrelevance satisfy surprisingly many powerful theoretical properties,
and that these properties can be exploited to develop efficient exact inference
algorithms, for large classes of inference problems that were previously pre-
sumed to be intractable. Since many of these inference problems are NP-hard
in credal networks under strong independence, our results turn credal networks
under epistemic irrelevance into a serious, practically feasible alternative that
should enable practitioners to solve real-life problems for which the corre-
sponding necessary inferences were hitherto regarded as intractable.

More generally, there are also some interesting lessons to be drawn from
how we obtained our results. The most important lesson is that there is much
to be gained from considering different imprecise probability frameworks si-
multaneously. Each of these frameworks has its own specific features and,
by combining them, we can take advantage of their respective merits within a
single theory.

The framework of sets of desirable gambles has been our theoretical and
philosophical workhorse. On the one hand, it endows lower previsions with
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a clear behavioural interpretation that does not require an assumption of ideal
precision. As explained in Chapter 369, this interpretation can be used to jus-
tify the use of regular and natural extension as conservative updating rules. On
the other hand, sets of desirable gambles have proved to be an extremely pow-
erful theoretical tool that excels both in elegance and mathematical generality.
Perhaps most importantly: the usual issues with conditioning on events with
probability zero are completely non-existing in this framework. It should there-
fore not be surprising that all of our main technical results were first proved in
terms of sets of desirable gambles, only to be—often trivially—translated to
other frameworks afterwards. Working the other way around would, in all
likelihood, have been much more difficult.

Sets of probabilities—credal sets—reside at the other end of the spectrum.
Centuries of probability theory have endowed us with an instinctive intuition
about them that is hard to compete with. Given that practically everyone grasps
the concept of probability—or at least some primitive notion of it—the edu-
cational purpose of this framework should clearly not be underestimated. Al-
though I have done my very best to promote various alternatives that have clear
advantages, I must admit that at the end of the day, I often think in terms of
probabilities. They provide many of the concepts in this dissertation with a
valuable intuition and will most likely remain the most important tool for elic-
itation for a long time to come. On a more technical side, in our specific case,
they have enabled us to reformulate inference as a linear optimisation task
and to characterise the independent natural extension of two binary models by
means of the extreme points of its credal set.

Sets of linear previsions are the least important framework in this disserta-
tion and, with hindsight, perhaps redundant. Their main advantage is that they
allow us to clarify—intuitively—and simplify—mathematically—the link be-
tween credal sets and lower previsions, by serving as an intermediate step.

Lower previsions have been our main algorithmic tool. Given that infer-
ence is all about computing bounds, having a language that has these bounds
as its primitive concepts is clearly beneficial in order to develop and present
inference algorithms. It is therefore no coincidence that the efficient recur-
sive algorithms in this dissertation are all expressed in terms of lower previ-
sions. On the philosophical side, the main advantage of this framework is that
these ‘bounds’—lower and upper previsions—can be interpreted in two dif-
ferent ways. On the one hand, they are lower and upper expectations—lower
and upper bounds on precise expectations. On the other hand, they are supre-
mum buying prices and infimum selling prices. In this way, lower and upper
previsions provide a unifying language that connects the framework of sets of
desirable gambles to that of credal sets.

The features of these four different frameworks are not specific to our par-
ticular context. We are convinced that combining their respective advantages
within a single theory could prove beneficial in other contexts as well, such as,
for example, statistics with imprecise probabilities.
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We conclude this dissertation by briefly discussing some avenues for fur-
ther research that we consider to be promising, ranging from applications of
our results, over possible extensions of the ideas in this dissertation, to funda-
mentally new concepts.

As far as applications of our results are concerned, we see plenty of direc-
tions for further research. The inference algorithms in this dissertation should
already allow practitioners to solve large classes of inference problems that
are relevant to their applications. To give but one example: the algorithms in
Sections 7.5.5258 and 7.6.1271 can be directly applied to solve classification
problems. However, this requires two additional steps. First of all, it would
be necessary to implement our algorithms and to develop user-friendly soft-
ware that computes inferences with them; no such software currently exists.
Secondly, it should be thoroughly tested whether the inferences that are com-
puted by our algorithms are informative enough to be useful in practice. Since
epistemic irrelevance imposes less stringent constraints than complete, strong,
or epistemic independence, the inferences of a credal network under epistemic
irrelevance will be more conservative than those that correspond to other types
of credal networks, and possibly too conservative to be of practical use. Al-
though we did not observe such behaviour in the OCR application that was
mentioned in Section 7.5.7269 [30], it remains to be seen whether this will be
the case in other applications as well.

Besides applying the algorithms in this dissertation to real-life problems,
another important avenue for future research would be to develop new algo-
rithms, for inference problems that were not yet considered here. The theoret-
ical tools in Chapter 6152, together with the examples in Chapter 7211, should
enable theoretically oriented researchers to develop such algorithms. However,
given that general inference in credal networks under epistemic irrelevance is
NPPP-hard [67], there will be inference problems for which it is not possible to
develop efficient exact algorithms. In order to be able to deal with these infer-
ence problems anyway, the development of approximate algorithms is crucial.
A first idea could be to add additional arrows to a network until it becomes
recursively decomposable. It is not hard to see that this is always possible. In
the case of Figure 1.126, we could for example add an arrow from ‘Hayfever’
to ‘Flu’, thereby making this simple network recursively decomposable. This
arrow should be virtual, in the sense that it does not affect the local models.
Its only purpose is to remove some of the assessments of irrelevance that are
imposed by the graph. For example, although the local model for ‘Flu’ would
then formally depend on the value of ‘Hayfever’ and ‘Season’, it would in
practice only depend on the value of ‘Season’—would remain constant if the
value of ‘Hayfever’ is changed. The resulting irrelevant natural extension will
produce inferences that provide lower bounds for those of the original model
and, since the network is now recursively decomposable, this approximation
can be computed recursively. By reversing the direction of this new virtual ar-
row, we obtain a second approximation. For every inference, the best of these
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two approximations—the highest lower bound—can then be considered. This
idea can be extended beyond this simple example and, in this way, it is possi-
ble to develop approximate algorithms. The main bottlenecks are that (a) there
might be exponentially many different ways in which these virtual arrows can
be added and (b) the number of virtual arrows that needs to be added could
be large, which would increase the value of the parameter maxs∈G|P(Ks)| and,
therefore, decrease the computational efficiency of this approximation method.
Nevertheless, I believe that this idea is worth exploring.

Instead of developing additional—exact or approximate—inference algo-
rithms for the notion of irrelevant natural extension that we considered here, it
would also be interesting to try and generalise this notion itself, for example
by relaxing the assumption that the variables in the network can only take a
finite number of values. Since variables that can take infinitely many values—
for example natural- or real-valued variables—are frequently used in real-life
applications, being able to deal with them would clearly be beneficial. One
way of doing so could be to focus on some finite partition of the state space.
However, it would be more elegant to deal with infinite state spaces directly.
I believe that investigating whether or not this is possible and, if yes, to what
extent, could be a very interesting line of future research. I do not expect ma-
jor problems in defining the irrelevant natural extension. I believe that in the
infinite case, the choices that we have made here, which are using epistemic
h-irrelevance instead of epistemic value-irrelevance, and (a slightly adapted
version of) W-coherence (Williams-coherence) instead of Walley-coherence,
will enable us to avoid the typical problems with Walley-coherence (most im-
portantly the fact that the natural extension might not exist [106, Appendix K])
as well as the problem that the notion of natural extension that corresponds to
W-coherence is sometimes too weak; see Footnote 9116. Extending some of
the theoretical properties in Chapter 6152—for example Theorem 53156—will
most likely be much harder. Defining conditioning rules and justifying them as
updating rules could also be tricky, especially if the state space is uncountably
infinite and the conditioning event is a singleton; in that case, I expect this to
require a limit argument, as it does in standard measure-theoretic probability.
The most challenging task would be the development of inference algorithms
for the infinite case; this seems far from trivial and I expect this to require sig-
nificant amounts of additional research. Nevertheless, if successful, it would
be well worth the effort.

A final avenue for future research, which I believe most promising, is to
develop a new type of credal networks, called mixed credal networks. Instead
of adopting a single notion of independence, as current theories of credal net-
works do, the basic idea is to use a mix of different notions of independence.
By allowing assessments of different notions of independence to be combined
within a single model, we obtain a richer theory that is able to represent a wider
range of structural assessments. At first sight, this might come across as a nice
but nevertheless completely unrealistic idea. Given that mixed credal networks
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include conventional credal networks as special cases, it would seem obvious
that inference is bound to become even harder than it already is for the types of
credal networks that have been considered so far. However, I believe that this is
not the case. In fact, I am convinced that the standard types of credal networks
that are currently being used are among the hard instances, and that there are
specific types of mixed credal networks for which inference will turn out to
be a much simpler problem, to the point that it will be possible to develop in-
ference algorithms whose computational complexity is comparable to that of
inference algorithms for Bayesian networks. The use of the specific types of
mixed credal networks for which I believe this to be possible can even be jus-
tified on philosophical grounds. I hope that I will be given the opportunity to
further explore this idea in the context of postdoctoral research.

295



BIBLIOGRAPHY

[1] Alessandro Antonucci, Ralph Brühlmann, Alberto Piatti, and Marco
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predictive inference under exchangeability with imprecise probabilities.
Journal of Artificial Intelligence Research, 52:1–95, 2015.

[41] Gert de Cooman, Jasper De Bock, and Arthur Van Camp. Recent ad-
vances in imprecise-probabilistic graphical models. In Frontiers in Arti-
ficial Intelligence and Applications, Volume 242 (Proceedings of ECAI
2012), pages 27–32. 2012.

[42] Gert de Cooman, Filip Hermans, Alessandro Antonucci, and Marco
Zaffalon. Epistemic irrelevance in credal nets: the case of impre-
cise Markov trees. International Journal of Approximate Reasoning,
51(9):1029–1052, 2010.

[43] Gert de Cooman, Filip Hermans, and Erik Quaeghebeur. Imprecise
Markov chains and their limit behaviour. Probability in the Engineering
and Informational Sciences, 23(4):597–635, 2009.

[44] Gert de Cooman and Enrique Miranda. Forward irrelevance. Journal of
Statistical Planning and Inference, 139(2):256–276, 2009.

[45] Gert de Cooman and Enrique Miranda. Irrelevant and independent nat-
ural extension for sets of desirable gambles. Journal of Artificial Intel-
ligence Research, 45:601–640, 2012.

[46] Gert de Cooman, Enrique Miranda, and Marco Zaffalon. Independent
natural extension. Artificial Intelligence, 175(12):1911–1950, 2011.

[47] Gert de Cooman and Erik Quaeghebeur. Exchangeability and sets of
desirable gambles. International Journal of Approximate Reasoning,
53(3):363–395, 2012.

[48] Gert de Cooman, Matthias C. M. Troffaes, and Enrique Miranda. n-
Monotone lower previsions. Journal of Intelligent and Fuzzy Systems,
16(4):253–263, 2005.

[49] Gert de Cooman and Marco Zaffalon. Updating beliefs with incomplete
observations. Artificial Intelligence, 159(1-2):75–125, 2004.

[50] Bruno De Finetti. Teoria delle probabilità. Einaudi, Turin, 1970. En-
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Destercke, and Teddy Seidenfeld, editors, ISIPTA ’13: Proceedings of
the Eighth International Symposium on Imprecise Probability: Theory
and Applications, pages 159–169. SIPTA, Compiègne, 2013.
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[67] Denis D. Mauá, Cassio P. de Campos, Alessio Benavoli, and Alessandro
Antonucci. Probabilistic inference in credal networks: new complexity
results . Journal of Artificial Intelligence Research, 50:603–637, 2014.

[68] Enrique Miranda. A survey of the theory of coherent lower previsions.
International Journal of Approximate Reasoning, 48(2):628–658, 2008.

[69] Enrique Miranda. Updating coherent previsions on finite spaces. Fuzzy
Sets and Systems, 160(9):1286–1307, 2009.

[70] Enrique Miranda and Gert de Cooman. Marginal extension in the the-
ory of coherent lower previsions. International Journal of Approximate
Reasoning, 46(1):188–225, 2007.

[71] Enrique Miranda and Gert de Cooman. Lower previsions. In Thomas
Augustin, Frank P. A. Coolen, Gert de Cooman, and Matthias C. M.
Troffaes, editors, Introduction to Imprecise Probabilities, pages 28–55.
John Wiley & Sons, Chichester, 2014.

[72] Enrique Miranda and Gert de Cooman. Structural judgements. In
Thomas Augustin, Frank P. A. Coolen, Gert de Cooman, and Matthias
C. M. Troffaes, editors, Introduction to Imprecise Probabilities, pages
56–78. John Wiley & Sons, Chichester, 2014.
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