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Coherent lower previsions constitute a convex set that is closed and compact 
under the topology of point-wise convergence, and Maaß [13] has shown that any 
coherent lower prevision can be written as a ‘countably additive convex combination’ 
of the extreme points of this set. We show that when the possibility space has 
a finite number n of elements, these extreme points are either degenerate precise 
probabilities, or fully imprecise and in a one-to-one correspondence with Minkowski 
indecomposable non-empty convex compact subsets of Rn−1. By exploiting this 
connection, we are able to prove that for n = 3, fully imprecise extreme lower 
previsions are lower envelopes of at most three linear previsions. For n ≥ 4, ‘most’ 
fully imprecise lower previsions are extreme. Finally, we show that in our context, 
Maaß’s result can be strengthened as follows: any coherent lower prevision can be 
written as, or approximated arbitrarily closely by, a finite convex combination of 
finitely generated extreme lower previsions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In his PhD dissertation, Maaß [13] proved a general, Choquet-like representation result for what he called 
inequality preserving functionals. When we apply his results to coherent lower previsions, which have an 
important part in the theory of imprecise probabilities, we find that the set of all coherent lower previsions 
defined on a subset of the linear space of all bounded real-valued maps (gambles) on a possibility space X

constitute a convex set, that is furthermore closed and compact under the topology of point-wise convergence, 
and that any coherent lower prevision can be written as a ‘countably additive convex combination’ of the 
extreme points of this set; see Refs. [12] and [34, Chapter 10].

It became apparent quite soon, however, that finding these extreme coherent lower previsions was a non-
trivial task, and Maaß himself formulated this as an open problem. Contributions to solving this problem 
were made by Quaeghebeur [22,23], who essentially concentrated on coherent lower previsions defined on 
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finite domains. In this paper, we look at the extreme points of the set of all coherent lower previsions defined 
on the infinite space of all real-valued maps on a finite set X , containing n elements.

We begin in Section 2 by defining (extreme) coherent lower previsions. In Section 3, we recall that coher-
ent lower previsions are in a one-to-one relationship with non-empty convex compact sets of probability mass 
functions, which allows us, in Sections 4 and 5, to establish a link between extreme coherent lower previsions 
on the one hand, and (Minkowski) indecomposability on the other. We show that any coherent lower previ-
sion can be uniquely decomposed in a precise and a fully imprecise part, thereby establishing that extreme 
lower previsions are either linear or fully imprecise. The only extreme linear previsions are the degenerate 
ones, and the fully imprecise extreme lower previsions are proved to be in one-to-one correspondence with 
Minkowski indecomposable non-empty convex compact subsets of Rn−1.

This link allows us to reduce the problem of finding all extreme coherent lower previsions to a problem 
that has received quite a bit of attention in the mathematical literature, and to use existing solutions for that 
problem. Section 6 provides on overview of some of the most relevant results on Minkowski indecomposability 
and explains some of their implications for extreme credal sets and lower previsions. In Section 6.2, we show 
that for n = 3, fully imprecise lower previsions are extreme if and only if they are lower envelopes of at 
most three linear previsions. For n ≥ 4, no such easy characterisation is available and the class of extreme 
lower previsions is surprisingly diverse; we provide several examples in Section 6.3.

In Section 7, we try to find out how many extreme lower previsions there are. We start with some 
topological groundwork in Section 7.1. This allows us to show in Section 7.2 that for n = 3, the extreme 
lower previsions are nowhere dense in the set of all fully imprecise ones. In contrast, and rather surprisingly, 
the answer for n ≥ 4 is completely different, as the extreme lower previsions are now a dense Gδ subset 
of the fully imprecise ones. This means that for n ≥ 4, in a categorical sense, ‘most’ of the fully imprecise 
lower previsions are extreme.

Finally, in Section 8, we show that in our context, where the cardinality of the possibility space X is finite, 
Maaß’s representation result can be strengthened: any coherent lower prevision is, or can be approximated 
arbitrarily closely by, a finite convex combination of finitely generated extreme lower previsions. For n ≥ 4, 
it even suffices to use a convex combination of degenerate linear previsions and a single, finitely generated, 
fully imprecise extreme lower prevision. We also investigate to which extent it is possible to obtain similar 
approximation results using smaller subclasses of extreme lower previsions.

We conclude in Section 9 by commenting on the theoretical and practical relevance of our results. Our 
main conclusion is that from a practical point of view, there are simply too many extreme coherent lower 
previsions and that, therefore, future research in this area should focus on particular subclasses of coherent 
lower previsions, either by imposing additional properties, or by restricting their domain. We provide some 
insight on how our work can be used to further research on these topics, present some open problems, and 
discuss possible avenues for future research. We end the paper by establishing a link between our results 
and Quaeghebeur’s [22,23] work on extreme coherent lower previsions on finite domains.

In order to make our main argumentation as readable as possible, all technical proofs are collected in 
Appendix B, which contains additional technical results as well. Appendix A collects topological results 
that are used in the proofs. For the interested reader, some of these results might be of independent interest 
as well: for example, for finite X , we show that the topology of pointwise convergence—when imposed on 
the set of all coherent lower previsions—is induced by a metric.

Part of the material in this paper has been published in an earlier conference version [3]. The present 
version gives a more detailed exposition of these results, provides them with proofs—omitted in the confer-
ence version—and extends them; notable extensions are the examples for the case n ≥ 4 in Section 6.3, the 
topological discussion in Section 7 and Appendix A, and the results on approximation in Section 8.
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2. Coherent lower previsions

Consider a variable X taking values in some non-empty set X , called possibility space. We will restrict 
ourselves to finite possibility spaces X = {x1, . . . , xn}, with n ∈ N>1.1,2 The theory of coherent lower 
previsions models a subject’s beliefs regarding the uncertain value of X by means of lower and upper 
previsions of so-called gambles. A gamble is a real-valued map on X and we use G (X ) to denote the set 
of all of them. A lower prevision P is a real-valued functional defined on this set G (X ). P is said to be 
coherent if it satisfies the following three conditions:

C1. P (f) ≥ min f for all f ∈ G (X )
C2. P (λf) = λP (f) for all f ∈ G (X ) and all λ ∈ R>0 (positive homogeneity)
C3. P (f + g) ≥ P (f) + P (g) for all f, g ∈ G (X ) (super-additivity)

The set of all coherent lower previsions on G (X ) is denoted by P(X ). The conjugate of a lower prevision 
P ∈ P(X ) is called an upper prevision. It is denoted by P and defined by P (f) := −P (−f) for all gambles 
f ∈ G (X ). Coherent lower and upper previsions can be given a behavioural interpretation in terms of buying 
and selling prices, turning the three conditions above into criteria for rational behaviour; see Refs. [34,35]
for in-depth studies, and Refs. [1,19] for recent surveys.

2.1. Extreme lower previsions

Coherence is preserved under taking convex combinations [35, Section 2.6.4]. Consider two coherent lower 
previsions P 1 and P 2 in P(X ) and any λ ∈ [0, 1]. Then the lower prevision P = λP 1 + (1 − λ)P 2, defined 
by P (f) := λP 1(f) + (1 − λ)P 2(f) for all f ∈ G (X ), will also be coherent. One can now wonder whether 
every coherent lower prevision can be written as such a convex combination of others: given a coherent lower 
prevision P ∈ P(X ), is it possible to find coherent lower previsions P 1 and P 2 in P(X ) and λ ∈ [0, 1] such 
that P = λP 1+(1 −λ)P 2? If we exclude the trivial decompositions, where λ = 0, λ = 1 or P 1 = P 2 = P , then 
the answer can be no. We will refer to those coherent lower previsions for which no non-trivial decomposition 
exists as extreme lower previsions. The goal of this paper is to characterise, and where possible to find, the 
set extP(X ) of all extreme lower previsions on G (X ).

2.2. Special kinds of coherent lower previsions

In order to find these extreme lower previsions, it will be useful to split the set P(X ) into three disjoint 
subsets: linear previsions, lower previsions that are fully imprecise and lower previsions that are partially 
imprecise.

A coherent lower prevision P ∈ P(X ) is called a linear prevision if it has the additional property that 
P (f + g) = P (f) + P (g) for all f, g ∈ G (X ) or, equivalently, if P (f) = P (f) = −P (−f) for all f ∈ G (X ). 
It is then generically denoted by P and we use P(X ) to denote the set of all of them. For every mass 
function p in the so-called X -simplex

ΣX :=
{
p ∈ RX :

n∑
i=1

p(xi) = 1 and p(xi) ≥ 0 for all i ∈ N≤n

}
,

1
N denotes the positive integers (excluding zero) and R the real numbers. Subsets are denoted by using predicates as subscripts; 

e.g., N≤n := {i ∈ N: i ≤ n} = {1, . . . , n} denotes the positive integers up to n and R>0 := {r ∈ R: r > 0} the strictly positive 
real numbers.
2 We do not consider n = 1 because this case is both trivial and of no practical use. Indeed, a variable that can only assume 

a single value has no uncertainty associated with it.
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the corresponding expectation operator Pp, defined by Pp(f) :=
∑n

i=1 f(xi)p(xi) for all f ∈ G (X ), is a linear 
prevision in P(X ). Conversely, every linear prevision P ∈ P(X ) has a unique mass function p ∈ ΣX for 
which P = Pp. It is defined by p(xi) := P (I{xi}), i ∈ N≤n, where I{xi} denotes the indicator of {xi}: for all 
x ∈ X , I{xi}(x) = 1 if x = xi and I{xi}(x) = 0 otherwise.

Another special kind of coherent lower previsions are those that are fully imprecise. They are uniquely 
characterised by the property that P (I{xi}) = 0 for all i ∈ N≤n. As we shall see further on, we can interpret 
P (I{xi}) as the lower probability mass of xi, thereby making fully imprecise lower previsions those for which 
the lower probability mass of all elements in the possibility space is zero. We use P(X ) to denote the set of 
all such fully imprecise lower previsions. The reason why we call them fully imprecise is because they differ 
most from the precise, linear previsions. This distinction is already apparent from the following proposition, 
but will become even clearer in Section 5.1, where we shall prove that every coherent lower prevision that 
is neither linear nor fully imprecise can be uniquely decomposed into a linear and a fully imprecise part.

Proposition 1. P(X ) and P(X ) are disjoint subsets of P(X ): linear previsions are never fully imprecise.

We refer to coherent lower previsions in P(X ) that are neither fully imprecise nor linear previsions as 
partially imprecise, and we denote by P˜(X ) the set of all partially imprecise lower previsions. The next 
corollary is a direct consequence of Proposition 1.

Corollary 2. P(X ), P(X ) and P˜(X ) constitute a partition of P(X ).

3. Credal sets

Linear previsions are not the only coherent lower previsions that can be characterised by means of 
mass functions in ΣX . It is well known that every coherent lower prevision can be uniquely characterised 
by a so-called credal set, which is defined as a non-empty closed (and therefore compact) convex subset 
of ΣX [10, Section 10.2].3 We denote a generic credal set by M and use M(X ) to denote the set of all 
of them. For any P ∈ P(X ), its corresponding credal set MP is the set of all mass functions that define 
a dominating linear prevision:

MP :=
{
p ∈ ΣX : Pp(f) ≥ P (f) for all f ∈ G (X )

}
.

The original lower prevision P and its conjugate upper prevision P can be derived from the credal set MP : 
for all f ∈ G (X )

P (f) = min
{
Pp(f): p ∈ MP

}
and P (f) = max

{
Pp(f): p ∈ MP

}
. (1)

We can use this equation to justify our earlier statement in Section 2.2 that for all i ∈ N≤n, we can interpret 
P (I{xi}) as the lower probability mass of xi. Indeed,

P (I{xi}) = min
{
Pp(I{xi}): p ∈ MP

}
= min

{
p(xi): p ∈ MP

}
(2)

is the smallest probability mass of xi corresponding with the mass functions in MP .

3 Since we only consider finite possibility spaces X , we can use the topology that is induced by the Euclidean metric, or the more 
intuitive metric d that is discussed in Section 7.1; it makes no difference because, as we show in Appendix A, both metrics induce 
the same topology. For infinite X , Walley proves a similar equivalence between coherent lower previsions and non-empty compact 
convex sets of linear previsions using the weak* topology [35, Section 3.6] (the topology of pointwise convergence). For finite X , 
this weak* topology can be identified with those that are induced by the metrics above; see Ref. [34, Section 5.2] and Appendix A.
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Since credal sets are in a one-to-one correspondence with coherent lower previsions, we can think of 
a coherent lower prevision as a non-empty convex compact set of mass functions rather than as an operator 
on gambles. This geometric approach will be useful in our search for extreme lower previsions, since it will 
enable us to establish links with results already proved in fields other than coherent lower prevision theory.

3.1. Extreme credal sets

Similarly to what we have done in Section 2.1 for coherent lower previsions, we can also take convex 
combinations of credal sets. Consider two credal sets M1 and M2 in M(X ) and any λ ∈ [0, 1]. Then the 
set M = λM1 + (1 − λ)M2, defined by

M :=
{
λp1 + (1 − λ)p2: p1 ∈ M1 and p2 ∈ M2

}
,

will again be a credal set in M(X ).4 Due to the equivalence between credal sets and coherent lower previ-
sions, the following proposition should not cause any surprise.

Proposition 3. Consider coherent lower previsions P , P 1 and P 2 in P(X ) and their corresponding credal 
sets MP , MP 1 and MP 2 in M(X ). Then for all λ ∈ [0, 1]:

P = λP 1 + (1 − λ)P 2 ⇔ MP = λMP 1 + (1 − λ)MP 2 .

We now define an extreme credal set as a credal set M ∈ M(X ) that cannot be written as a convex 
combination of two other credal sets M1 and M2 other than in a trivial way, trivial meaning that λ = 0, 
λ = 1 or M1 = M2 = M . We will denote the set of all such extreme credal sets as extM(X ). The following 
immediate corollary of Proposition 3 shows that they are in a one-to-one correspondence with extreme lower 
previsions.

Corollary 4. A coherent lower prevision is extreme if and only if its credal set is. For all P ∈ P(X ):

P ∈ extP(X ) ⇔ MP ∈ extM(X ).

3.2. Special kinds of credal sets

Because of the one-to-one correspondence between coherent lower previsions and credal sets, the special 
subsets of P(X ) that were introduced in Section 2.2 immediately lead to corresponding subsets of M(X ). 
The set

M(X ) :=
{
MP : P ∈ P(X )

}
=

{
{p}: p ∈ ΣX

}
of credal sets that correspond to linear previsions in P(X ) is the most obvious one.

Another subset of M(X ), which will become very important further on, contains those credal sets that 
correspond to fully imprecise coherent lower previsions:

M(X ) :=
{
MP : P ∈ P(X )

}
=

{
M ∈ M(X ): min

{
p(xi): p ∈ M

}
= 0 for all i ∈ N≤n

}
,

where the second equality is a consequence of Eq. (2) and the definition of fully imprecise lower previsions. It 
should also clarify our statement in Section 2.2 that for fully imprecise lower previsions the lower probability 

4 Since M1 and M2 are convex subsets of ΣX , M = λM1 + (1 −λ)M2 is clearly also a convex subset of ΣX . Since compactness 
is preserved as well [26, Section 1.7], we infer that M is indeed a credal set.
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mass of all elements of the possibility space is zero. We refer to elements of M(X ) as fully imprecise credal 
sets.

The final subset of M(X ) that we need to consider contains the partially imprecise credal sets, corre-
sponding to partially imprecise lower previsions in P˜(X ):

M˜ (X ) :=
{
MP : P ∈ P˜(X )

}
= M(X ) \

(
M(X ) ∪M(X )

)
.

Finally, the following result is a direct consequence of Corollary 2.

Corollary 5. M(X ), M(X ) and M˜ (X ) constitute a partition of M(X ).

3.3. Projected credal sets

Mass functions on the possibility space X = {x1, . . . , xn} are uniquely characterised by the probability 
of the first n − 1 elements because the final probability follows from the requirement that 

∑n
i=1 p(xi) = 1. 

This leads us to identify a mass function p on X with a point vp in Rn−1, defined by (vp)i := p(xi) for all 
i ∈ N<n. Similarly, a credal set M can be identified with a subset of Rn−1 by letting

KM := {vp: p ∈ M }.

We call KM the projected credal set of M . We will also use KP as a shorthand notation for KMP
and call 

it the projected credal set of P . For all M ∈ M(X ), KM is a non-empty convex compact5 (and therefore 
closed) subset of the so-called projected X -simplex

KX :=
{
v ∈ Rn−1:

n−1∑
i=1

vi ≤ 1 and vi ≥ 0 for all i ∈ N<n

}
, (3)

which is a non-empty convex compact subset of Rn−1. The set of all non-empty convex compact subsets 
of KX is denoted by K(X ). To show that both representations are indeed equivalent, let us define for 
every point v ∈ KX a corresponding mass function pv on X , defined by pv(xi) := vi for all i ∈ N<n and 
pv(xn) := 1 −

∑n−1
i=1 vi. It should be clear that vpv

= v and pvp = p, whence the equivalence. Similarly, we 
can define for all K ∈ KX a corresponding credal set

MK := {pv: v ∈ K}.

Again, we have that KMK
= K and MKM = M . Finally, the following intuitive result shows that projecting 

credal sets on KX preserves convex combinations.

Proposition 6. Consider credal sets M , M1 and M2 in M(X ) and their corresponding projected credal sets 
KM , KM1 and KM2 in K(X ). Then for all λ ∈ [0, 1]:

M = λM1 + (1 − λ)M2 ⇔ KM = λKM1 + (1 − λ)KM2 .

5 With respect to the topology induced by the Euclidean metric. See Appendix A for more information and a formal explanation 
of why KM is compact with respect to this topology.
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3.4. Special kinds of projected credal sets

Due the equivalence between credal sets and their projected versions, we can use the partition of M(X )
in Corollary 5 to construct a similar partition of K(X ). The first set in that partition corresponds to the 
credal sets of linear previsions and is equal to

K(X ) :=
{
KM : M ∈ M(X )

}
=

{
K ∈ K(X ): K = {v}, with v ∈ KX

}
. (4)

The second set consists of the projections of the credal sets in M(X ):

K(X ) :=
{
KM : M ∈ M(X )

}
=

{
K ∈ K(X ): min

v∈K
vi = 0 for all i ∈ N<n and max

v∈K

n−1∑
i=1

vi = 1
}
. (5)

The final set contains the projected credal sets of partially imprecise lower previsions:

K˜(X ) :=
{
KM : M ∈ M˜ (X )

}
= K(X ) \

(
K(X ) ∪K(X )

)
.

That these sets indeed form a partition of K(X ) follows trivially from Corollary 5.

Corollary 7. K(X ), K(X ) and K˜(X ) constitute a partition of K(X ).

4. Minkowski decomposition

Given two non-empty convex compact subsets A1 and A2 of Rn−1, their Minkowski sum or vector sum
is given by A1 + A2 := {a1 + a2: a1 ∈ A1 and a2 ∈ A2}. They are called homothetic if A1 = v + λA2 :=
{v + λa2: a2 ∈ A2} for some λ > 0 and v ∈ Rn−1. If A = A1 + A2, then A1 and A2 are called summands
of A. We say that a non-empty convex compact subset A of Rn−1 is written as a Minkowski sum in a 
non-trivial way—or has a non-trivial Minkowski decomposition—if neither of its summands is a singleton 
or homothetic to A. If there is such a non-trivial Minkowski decomposition, we say that A is Minkowski 
decomposable. Otherwise, A is called Minkowski indecomposable.6 Sections 6.2 and 6.3 point to relevant 
literature, where, incidentally, the prefix “Minkowski” is not always used. We add it in the present paper to 
avoid confusion with the decomposition of credal sets and lower previsions.

4.1. Connecting both theories

One of the main contributions of this paper consists in showing how the extensive literature on Minkowski 
decomposition of non-empty convex compact sets can be related to the search for extreme lower previsions 
in imprecise probability theory. The results in this section take the first step towards doing so, and will turn 
out to be crucial for our results further on.

We start by associating with any non-empty compact set A ⊆ Rn−1 a point m(A) ∈ Rn−1, defined by

mi(A) := min{vi: v ∈ A} for all i ∈ N<n

and a real number μ(A), given by

6 Gale was the first to introduce Minkowski indecomposable sets; he called them irreducible [5], a term which is now used to refer 
to a different, although related property [8, p. 322]. Ref. [7, Chapter 7] speaks of morphologically indecomposable shapes, which 
are not required to be convex.
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μ(A) := max
{

n−1∑
i=1

vi: v ∈ A

}
−

n−1∑
i=1

mi(A).

Both m(A) and μ(A) are well defined due to the non-emptiness and compactness of A. If A is not a singleton, 
then it is easy to see that μ(A) > 0 and we can define

A := 1
μ(A)

[
A−m(A)

]
=

{
1

μ(A)
[
v −m(A)

]
: v ∈ A

}
. (6)

Proposition 8. For any non-empty convex compact subset A of Rn−1 that is not a singleton, the corresponding 
set A is an element of K(X ).

Proposition 9. A non-empty convex compact subset A of Rn−1 that is not a singleton is Minkowski decom-
posable if and only if the corresponding set A is Minkowski decomposable.

The following result shows how the transformation that we have just introduced can be usefully exploited 
to reformulate the property of Minkowski decomposability.

Theorem 10. A non-empty convex compact subset A of Rn−1 that is not a singleton is Minkowski decompos-
able if and only if its corresponding set A can be written as a non-trivial convex combination λK1+(1 −λ)K2, 
with K1, K2 ∈ K(X ), K1 �= K2 and 0 < λ < 1.

5. Characterising extreme lower previsions

We now have all the tools needed to characterise the set extP(X ) of all extreme lower previsions on 
G (X ), or equivalently, the set extM(X ) of all extreme credal sets. We will show that partially imprecise 
lower previsions are never extreme as they can be split up into a linear and a fully imprecise part. The only 
extreme linear previsions are the degenerate ones, and the fully imprecise extreme lower previsions will turn 
out to be closely related to the Minkowski indecomposable non-empty convex compact sets of Section 4.

5.1. Partially imprecise lower previsions

We claimed earlier on in Section 2.2 that every partially imprecise lower prevision can be uniquely 
decomposed in a linear and a fully imprecise part. To see why this is true, first consider the following 
proposition, which is the counterpart of that statement in the language of credal sets.

Proposition 11. Any partially imprecise credal set M ∈ M˜ (X ) can be uniquely written as a convex combi-
nation λM1 + (1 − λ)M2 of a credal set M1 ∈ M(X ) that contains only a single mass function p1 ∈ ΣX

and a fully imprecise credal set M2 ∈ M(X ). Moreover, 0 < λ =
∑n

i=1 min{p(xi): p ∈ M } < 1, the mass 
function p1 that characterises M1 is given by p1(xi) = 1

λ min{p(xi): p ∈ M } for all i ∈ N≤n, and

M2 =
{

1
1 − λ

p− λ

1 − λ
p1: p ∈ M

}
.

Fig. 1 should provide this result with some graphical intuition. It presents an example of a partially 
imprecise credal set and its decomposition into a singleton and a fully imprecise credal set. Since n = 3 in 
this example, we can depict the credal sets using the well-known simplex representation [35, Section 4.2.3].7

7 Mass functions on a ternary possibility space X can be conveniently represented by points in the 2-dimensional probability 
simplex, which is an equilateral triangle with unit height. The probabilities assigned to the three elements of X are identified with 
the perpendicular distances from the three sides of the triangle.
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Fig. 1. Decomposition of a partially imprecise credal set (n = 3).

Fig. 2. Decomposition of a mass function in three degenerate ones (n = 3).

Corollary 12. Any partially imprecise lower prevision P ∈ P˜(X ) can be uniquely written as a convex 
combination λP1 + (1 − λ)P 2 of a linear prevision P1 ∈ P(X ) and a fully imprecise lower prevision P 2 ∈
P(X ). Moreover, 0 < λ =

∑n
i=1 P (I{xi}) < 1 and

P1(f) = 1
λ

n∑
i=1

f(xi)P (I{xi}) and P 2(f) = 1
1 − λ

P (f) − λ

1 − λ
P1(f) for all f ∈ G (X ).

The fact that partially imprecise models can be decomposed in this way has some immediate important 
consequences for extreme credal sets and lower previsions.

Corollary 13. Extreme credal sets and lower previsions are never partially imprecise:

M ∈ M˜ (X ) ⇒ M /∈ extM(X ) and P ∈ P˜(X ) ⇒ P /∈ extP(X ).

In our search for extreme lower previsions, we therefore only need to look at those lower previsions that 
are either linear or fully imprecise.

5.2. Linear previsions

A special class of linear previsions are those that correspond to degenerate mass functions. For every 
i ∈ N≤n, the corresponding degenerate mass function p◦i ∈ ΣX has all its probability mass in xi and is 
therefore defined by p◦i := I{xi}. These degenerate mass functions satisfy the following important property.

Proposition 14. A credal set M ∈ M(X ) containing only a single mass function is extreme if and only if 
that single mass function is degenerate. Furthermore, any other mass function can be written as a convex 
combination of those degenerate ones.

Fig. 2 depicts the decomposition of a non-degenerate mass function into degenerate ones.
The linear previsions that correspond to degenerate mass functions are called degenerate linear previsions. 

For every i ∈ N≤n, we have a degenerate linear prevision P ◦
i , defined for all f ∈ G (X ) by P ◦

i (f) := f(xi). 
As a direct consequence of Proposition 14, we find that these degenerate linear previsions are the only 
extreme linear previsions.

Corollary 15. A linear prevision P ∈ P(X ) is extreme if and only if it is degenerate. Furthermore, any 
other linear prevision can be written as a convex combination of degenerate ones.
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For coherent lower previsions defined on a finite domain K ⊂ G (X ), a result that combines Corollaries 13
and 15 was already mentioned by Quaeghebeur [22, Proposition 1].

5.3. Fully imprecise lower previsions

So far, we have shown that partially imprecise lower previsions are never extreme and that the extreme 
linear previsions are those that are degenerate. The only lower previsions that are thus left to investigate 
are the fully imprecise ones. We start with a property of decompositions of fully imprecise credal sets.

Proposition 16. If a fully imprecise credal set M ∈ M(X ) can be written as a non-trivial convex combination 
λM1+(1 −λ)M2, with M1, M2 ∈ M(X ), M1 �= M2 and 0 < λ < 1, then M1 and M2 are both fully imprecise 
and therefore elements of M(X ).

In the language of coherent lower previsions, this turns into the following corollary.

Corollary 17. If a fully imprecise coherent lower prevision P ∈ P(X ) can be written as a non-trivial convex 
combination λP 1 +(1 −λ)P 2, with P 1, P 2 ∈ P(X ), P 1 �= P 2 and 0 < λ < 1, then P 1 and P 2 are both fully 
imprecise and therefore elements of P(X ).

Combined with Proposition 6 and Theorem 10, Proposition 16 leads to a crucial result.

Theorem 18. A fully imprecise credal set M ∈ M(X ) can be written as a non-trivial convex combination 
λM1 + (1 − λ)M2, with M1, M2 ∈ M(X ), M1 �= M2 and 0 < λ < 1 if and only if its projected credal 
set KM is Minkowski decomposable.

When stated in terms of coherent lower previsions, this result looks as follows.

Corollary 19. A fully imprecise coherent lower prevision P ∈ P(X ) can be written as a non-trivial convex 
combination λP 1 + (1 − λ)P 2, with P 1, P 2 ∈ P(X ), P 1 �= P 2 and 0 < λ < 1 if and only if its projected 
credal set KP is Minkowski decomposable.

The importance of these two results is that they immediately provide us with an easy characterisation 
of the extreme models that are fully imprecise.

Corollary 20. A fully imprecise credal set M ∈ M(X ) is extreme if and only if its projected credal set KM

is Minkowski indecomposable. Equivalently, a fully imprecise lower prevision P ∈ P(X ) is extreme if and 
only if its projected credal set KP is Minkowski indecomposable.

These alternative characterisations of fully imprecise extreme credal sets and lower previsions will allow 
us to import known results from the literature on Minkowski decomposability, and to use them to find the 
sets extM(X ) and extP(X ) containing all extreme credal sets and lower previsions, respectively.

To conclude this section, we want to mention a very special fully imprecise credal set. It contains every 
single mass function in ΣX and will be denoted as MV := ΣX . It is used to model complete ignorance 
and is called the vacuous credal set. The corresponding (fully imprecise) lower prevision PV is referred to 
as the vacuous lower prevision and is given by PV (f) = min f for all f ∈ G (X ).

Proposition 21. The vacuous credal set is extreme: MV ∈ extM(X ).

Corollary 22. The vacuous lower prevision is extreme: PV ∈ extP(X ).
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6. Finding all extreme lower previsions

The size of extM(X ) and extP(X ) and the complexity of their elements turn out to depend heavily 
on the number of elements in the possibility space X = {x1, . . . , xn}. We consider three distinct cases: 
n = 2, n = 3 and n ≥ 4. We focus on constructing extM(X ), since extP(X ) can be derived from it using 
Corollary 4.

6.1. Possibility spaces with two states

For n = 2, constructing extM(X ) is almost trivial. Nevertheless, it serves as a good didactic exercise to 
get to know the basic tools in this paper.

It follows from the results in Section 5 that in our search for the extreme credal sets, we do not need to 
consider the partially imprecise ones. It suffices to look at the precise and the fully imprecise credal sets. We 
know from Proposition 14 that of all the precise credal sets (those consisting of only a single mass function) 
the only extreme ones are those that correspond to a degenerate mass function. In the current binary case, 
with X = {x1, x2}, this yields the extreme credal sets M ◦

1 := {p◦1} and M ◦
2 := {p◦2}. All other extreme 

credal sets will be fully imprecise. We know from Proposition 21 that MV is one of those fully imprecise 
extreme credal sets, but finding the other ones would normally require the use of Corollary 20. However, in 
this simple binary case, MV is the only fully imprecise credal set (we leave the simple proof of this statement 
as an exercise for the reader) and we can therefore conclude that for binary possibility spaces:

extM(X ) =
{
M ◦

1 ,M
◦
2 ,MV

}
.

By applying Corollary 4, we obtain the corresponding result for lower previsions:

extP(X ) =
{
P ◦

1 , P
◦
2 , PV

}
.

6.2. Possibility spaces with three states

For n = 3, finding extM(X ) becomes a bit more involved. As always, the partially imprecise credal sets 
are never extreme and the only precise extreme credal sets are the degenerate ones. Finding the fully impre-
cise credal sets that are extreme is more difficult than it was in the binary case. Here, the vacuous credal set 
MV will not be the only fully imprecise extreme credal set. In order to find the others, we rely on Corollary 20, 
using it to import the following result from the theory of Minkowski decomposability into our framework.

Theorem 23. A non-empty convex compact subset of R2 is Minkowski indecomposable if and only if it is 
a triangle or a line segment [28,29].8

This theorem is highly non-trivial since it holds for general non-empty convex compact subsets of R2

and not only for convex polygons. It allows us to derive the next result, which concludes our search for the 
extreme credal sets of ternary possibility spaces.

Corollary 24. Let X = {x1, x2, x3} be a possibility space that contains only three elements and consider 
any fully imprecise credal set M ∈ M(X ). Then M is extreme if and only if it is the convex hull of three 
probability mass functions: we can find p1, p2, p3 ∈ ΣX such that

M =
{ 3∑

i=1
λipi: (λ1, λ2, λ3) ∈ ΣX

}
.

8 This result was stated without proof by Gale [5]; we refer to the first (analytic) proof by Silverman [28,29]. Meyer [17] provides 
a geometric proof.
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Fig. 3. Examples of extreme credal sets (n = 3).

Fig. 4. Decomposition of a fully imprecise credal set into two extreme ones (n = 3).

Fig. 3 depicts some examples of extreme credal sets for a ternary possibility space. The first three credal 
sets on the top line are degenerate mass functions, all the others are fully imprecise credal sets that are the 
convex hull of three mass functions; the line segments correspond to cases where one of these three mass 
functions is part of the line segment connecting the other two.

In order to obtain the extreme lower previsions for a ternary possibility space, all we need to do is apply 
Corollary 4. We find that apart from the three degenerate linear previsions P ◦

1 , P ◦
2 and P ◦

3 , all other extreme 
lower previsions are characterised by the following translation of Corollary 24.

Corollary 25. Let X = {x1, x2, x3} be a possibility space that contains only three elements and consider any
fully imprecise lower prevision P ∈ P(X ). Then P is extreme if and only if it is the lower envelope of three 
linear previsions: one can find P1, P2, P3 ∈ P(X ) such that

P (f) = min
i∈N≤3

Pi(f) for all f ∈ G (X ).

Since these results can be perceived as rather counterintuitive, we provide three examples of credal 
sets that are not extreme, and show how to decompose them into extreme ones. They should provide 
Corollaries 24 and 25 with some extra intuition.

The first example, which is depicted in Fig. 4, shows how a fully imprecise credal set with four vertices 
can be decomposed into two extreme credal sets, each of which has three vertices. It serves as a good exercise 
to try and see that, in this example, this decomposition is unique.

However, as illustrated by our next example, this uniqueness does not hold in general. Fig. 5 provides an 
example of a fully imprecise credal set that allows for two different decompositions into extreme credal sets.

As a last example, we decompose a coherent lower prevision P that cannot be written as the lower 
envelope of a finite number of linear previsions—whose credal set MP is not a polytope—into an infinite 
number of extreme lower previsions Pλ, 0 ≤ λ ≤ 1, each of which is the lower envelope of three linear 
previsions: P ◦

1 , P ◦
2 and λP ◦

3 + (1 − λ)P ◦
2 . The credal set M that corresponds to P is depicted on the
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Fig. 5. Two different decompositions of the same credal set (n = 3).

Fig. 6. Decomposition of a fully imprecise credal set into an infinity of extreme ones (n = 3).

left-hand side of Fig. 6. The credal set Mλ that is depicted on the right-hand side corresponds to Pλ, with 
λ = 0.7; varying λ from 0 to 1 corresponds to moving the black dot upwards along the right edge of the 
simplex. The coherent lower prevision P can be decomposed in the following way9,10:

P (f) =
1∫

0

Pλ(f)dλ for all f ∈ G (X ). (7)

Without the availability of such a decomposition, calculating the lower prevision P (f) of some gamble f
amounts to solving a convex optimisation problem: minimising Pp(f) while constraining p to be an element 
of M . This is non-trivial since M has an infinite number of vertices/constraints. Using the decomposition 
in Eq. (7), P (f) can be obtained either by integration or by Monte Carlo sampling. For the latter approach, 
it suffices to sample λ from the uniform distribution on the unit interval and keep track of the running 
average of Pλ(f). Since Pλ(f) can be calculated by minimising Pp(f) over the three vertices of Mλ, this is 
particularly easy. We illustrate this approach in Fig. 7.

6.3. General possibility spaces

For n ≥ 4, finding extM(X ) becomes even more involved. In fact, we will no longer be able to completely 
characterise extM(X ), as we did for n = 2 and n = 3. It should however be clear that all extreme credal 

9 For more information about expressing lower previsions as such ‘non-finitary convex combinations’ of extreme lower previsions, 
we refer to the work by Maaß [13,34], mentioned in the Introduction.
10 Strictly speaking, according to our definition of an extreme lower prevision, showing that P is extreme requires us to write P
as a convex combination λP 1 + (1 − λ)P 2 of two lower previsions instead of an infinite number of them. Such a decomposition 
is easily derived from the infinite decomposition in Eq. (7), for example, by considering λ := 1/2 and defining, for all f ∈ G (X ), 
P 1(f) := 2 

∫ 0.5
0 Pλ(f)dλ and P 2(f) := 2 

∫ 1
0.5 Pλ(f)dλ.
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Fig. 7. Monte Carlo sampling with imprecise probabilities (n = 3).

Fig. 8. Extreme credal sets that consist of a single degenerate mass function (n = 4).

sets will again be fully imprecise, except for those that consist of a single degenerate mass function. For 
n = 4, these degenerate mass functions are depicted in Fig. 8.11

We know from Corollary 20 that fully imprecise extreme credal sets correspond to Minkowski inde-
composable non-empty convex compact subsets of Rn−1. For n = 3, we were dealing with Minkowski 
indecomposability in the plane, which is completely determined by Theorem 23. In higher dimensions, 
Minkowski indecomposability is not yet fully resolved in the literature; see Ref. [26, Section 3.2] and the 
notes therein for a detailed overview. We state some of the most relevant results and explain their implica-
tions for extreme credal sets and, by extension, extreme lower previsions.

Most known results deal only with polytopes12; Grünbaum [8, Chapter 15] provides a good summary. In 
our language, polytopes correspond to finitely generated credal sets, which are the convex hulls of finitely 
many mass functions; also see Section 8 further on. Meyer presents a necessary and sufficient condition for 
the Minkowski indecomposability of a polytope in terms of the rank of a certain matrix, which is related to 
the facets of the polytope [16,18]. McMullen obtains the same results by using an arguably simpler approach 
based on diagrams [14]. Although these results allow Minkowski decomposability to be characterised in an 
algebraic manner, they are far from intuitive. Therefore, we prefer to focus on a number of easier, intuitive 
sufficient criteria for a polytope to be either Minkowski indecomposable or Minkowski decomposable. We 
start with some sufficient conditions for Minkowski indecomposability; the introduction to Ref. [21] provides 
a recent overview.

Theorem 26. A polytope is Minkowski indecomposable if all of its 2-dimensional faces are triangles [27].

11 For n = 4, mass functions can be represented by points in the 3-dimensional probability simplex, which is a regular tetrahedron 
with unit height. The probabilities assigned to the four elements of the possibility space are identified with the perpendicular 
distances from the four facets of the tetrahedron.
12 A polytope is the convex hull of a finite number of points [8] and therefore always non-empty, convex and compact.
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Fig. 9. Examples of credal sets that are extreme due to Corollary 27 (n = 4).

Fig. 10. Examples of extreme credal sets that correspond to simplicial polytopes (n = 4).

A first class of polytopes for which the condition in Theorem 26 clearly holds are the simplices. Hence, 
simplices are always Minkowski indecomposable,13 which allows us to extend the sufficient part of Corol-
lary 24 to n ≥ 4.

Corollary 27. Fully imprecise credal sets that are the convex hull of (at most n) affinely independent mass 
functions are always extreme.14

Fig. 9 provides some examples of credal sets that are extreme due to Corollary 27.
If we translate Corollary 27 into the language of coherent lower previsions, we obtain the following result.

Corollary 28. Fully imprecise lower previsions that are the lower envelope of (at most n) affinely independent 
linear previsions are always extreme.

Unlike what we found for n = 3, the condition in Corollary 27 is not necessary for a fully imprecise credal 
set to be extreme. For n ≥ 4, which corresponds to d-dimensional polytopes with d := n − 1 ≥ 3, another 
important class of polytopes that are Minkowski indecomposable due to Theorem 26 are those that are 
simplicial, meaning that all of their facets are simplices. For d = 3, a polytope is simplicial if all of its facets 
are triangles. Fig. 10 depicts some examples of extreme, fully imprecise credal sets whose corresponding 
polytopes are simplicial. Note that simplices are a special case of simplicial polytopes.

Although Theorem 26 already provides us with a very large class of Minkowski indecomposable polytopes, 
these are not the only ones. As was first mentioned by Gale, pyramids are Minkowski indecomposable 
as well [5], which is why the first two credal sets in Fig. 11 are extreme. Clearly, a pyramid can have 
a 2-dimensional face that is not a triangle. In subsequent papers, a number of authors have established 
increasingly weaker sufficient conditions for a polytope to be Minkowski decomposable [11,15,21]. Most 
of these require that “sufficiently many” of its 2-dimensional faces are triangles. In fact, for d = 3, any 
Minkowski indecomposable polytope must have at least four triangular facets [31].15 The credal set that is 
depicted on the right-hand side of Fig. 11 corresponds to a Minkowski indecomposable polytope with seven 
facets, only four of which are triangles [37].

13 Gale [5] already mentioned this without proof.
14 A set—in this case, consisting of mass functions—is called affinely independent if none of its elements can be written as an 
affine combination of the other elements in the set. An affine combination is a linear combination of which the coefficients sum to 
one.
15 This does not extend to higher dimensions; Smilansky provides an example of a Minkowski indecomposable 4-dimensional 
polytope all of whose facets are decomposable [30].
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Fig. 11. Additional examples of extreme credal sets (n = 4).

Fig. 12. Decomposition of a credal set that corresponds to a hexahedron (n = 4).

Fig. 13. Decomposition of a credal set that corresponds to a truncated simplex (n = 4).

Fig. 14. Decomposition of a credal set whose corresponding polytope is not simple (n = 4).

Next, we turn to some sufficient criteria for Minkowski decomposability of a polytope. The following 
result by Shephard establishes a first, large class of decomposable polytopes.

Theorem 29. Every simple polytope that is not a simplex is Minkowski decomposable [27].16

A d-dimensional polytope is called simple if each of its vertices is contained in exactly d edges or, 
equivalently, if each of its vertices is contained in exactly d facets. Figs. 12 and 13 provide examples of 
credal sets whose corresponding polytopes are simple and their decomposition into extreme credal sets.

Other sufficient criteria for Minkowski decomposability of polytopes are available as well. A particularly 
easy one is that every 3-dimensional polytope that has more vertices than facets is Minkowski decompos-
able [31]. Fig. 14 provides an example of a credal set whose corresponding polytope is not simple but has 
more vertices than facets, including its decomposition into two extreme credal sets.

For non-polytopes, very few results are known. There is a conjecture by Gale that all ‘sufficiently smooth’ 
sets, including those whose boundaries are twice continuously differentiable, are Minkowski decomposable [5]. 
However, no further specification of ‘sufficiently smooth’ was given and, so far, no proof has been published. 
The most—if not only—important result seems to be due to Sallee [25], who shows that a fairly wide class of 
non-empty convex compact sets is decomposable. The only condition he imposes is that the boundary of the 

16 This was already mentioned without proof by Gale [5].
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set contains a neighbourhood that is (i) rotund—that is, contains no line segments—and (ii) ε-smooth, with 
ε > 0. Intuitively speaking, a neighbourhood N of the boundary of some convex set C is called ε-smooth if 
a ball of radius ε can be moved around inside of C to touch every point of N . Since a neighbourhood that 
is twice continuously differentiable is guaranteed to be ε-smooth for some ε > 0, this bring us fairly close 
to Gale’s conjecture, the main difference being the necessity of condition (i).

We conclude that for polytopes, Minkowski decomposability has been completely characterised on an 
abstract level, but no intuitive condition exists that is both necessary and sufficient. For general non-empty 
convex compact subsets of Rd, almost no results are known. As illustrated by our examples, there are 
surprisingly many fully imprecise extreme credal sets. The next section will show, in a formal way, just how 
many there really are.

7. How many extreme lower previsions are there?

It should be more than clear by now that extreme lower previsions are either linear or fully imprecise and 
that the only extreme linear previsions are the degenerate ones, of which there are only a finite number (n). 
The question we will try and answer in the current section is: how many fully imprecise extreme lower 
previsions are there? We know from Section 6.1 that for n = 2, the vacuous lower prevision is the only one. 
For n ≥ 3, answering this question becomes more difficult and will require some topology, which we introduce 
in Section 7.1. As we will see, one has to distinguish between two distinct cases: for n = 3, the ‘minority’ of 
the fully imprecise lower previsions are extreme, whereas, for n ≥ 4, ‘most’ of them are. For ease of reference, 
we denote the set consisting of all fully imprecise extreme lower previsions by extP(X ) := P(X ) ∩extP(X ). 
Note that, due to Corollary 17, the elements of extP(X ) can also be referred to as extreme fully imprecise
lower previsions: they are extreme points of the set P(X ) as well as the set P(X ). An analogue statement 
can be made about extM(X ) := M(X ) ∩ extM(X ); see Proposition 16.

7.1. Topological groundwork

We turn the X -simplex ΣX into a compact metric space by means of the following intuitive distance 
function between two probability mass functions p and p′ in ΣX :

d
(
p, p′

)
:= max

A⊆X

∣∣p(A) − p′(A)
∣∣ = 1

2
∑
x∈X

∣∣p(x) − p′(x)
∣∣,

where for all A ⊆ X , p(A) =
∑

x∈A p(x) is the probability of the event A.
The corresponding Hausdorff distance between two credal sets M and M ′ is given by

dH
(
M ,M ′) := max

{
max
p∈M

min
p′∈M ′

d
(
p, p′

)
, max
p′∈M ′

min
p∈M

d
(
p, p′

)}
. (8)

Since dH and d coincide on singletons—meaning that dH({p}, {p′}) = d(p, p′)—we will, from now on, denote 
both of these distances by d. Observe that 0 ≤ d(M , M ′) ≤ 1 for all credal sets M and M ′. By using d as 
a metric, M(X ) turns into a compact metric space,17 allowing us to make topological claims such as the 
following.

Proposition 30. The credal sets that are not extreme are dense in M(X ).18

17 See Appendix A for more information.
18 A set A is said to be dense in a set B if B is the closure of A. In metric spaces, this is equivalent to the property that for every 
b ∈ B, there is a sequence of elements of A that converges to b.
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In order to allow us to make similar claims for fully imprecise coherent lower previsions, we introduce 
the following distance between two coherent lower previsions P and P ′:

d̃
(
P , P ′) := max

f∈G1(X )

∣∣P (f) − P ′(f)
∣∣,

where G1(X ) consists of those gambles f on X for which 0 ≤ f(x) ≤ 1 for all x ∈ X [32]. Due to the 
positive homogeneity of coherent lower previsions, G1(X ) cannot be replaced by G (X ) since this would 
render d̃(P , P ′) infinitely large for almost every choice of P and P ′. Some further intuition about d̃ can be 
obtained by noticing that∣∣P (f) − P ′(f)

∣∣ ≤ [max f − min f ]d̃
(
P, P ′) for all f ∈ G (X ). (9)

What makes d̃ particularly interesting is that, as shown by Škulj and Hable [32, Theorem 2], the distance 
d̃(P , P ′) between two coherent lower previsions P and P ′ is equal to the distance d(MP , MP ′) between 
their corresponding credal sets. Therefore, in the sequel, we will denote both of these distances by d as 
well. A particularly useful consequence of this result is that it turns M(X ) and P(X ) into isometric metric 
spaces.19

Corollary 31. The metric spaces M(X ) and P(X ), with d as a metric, are isometric. The bijective isometry 
that yields this result is the one that maps every M ∈ M(X ) to its unique corresponding P ∈ P(X ).

Consequently, every metric or topological statement about M(X ) can be easily translated to P(X ). For 
example, since M(X ) is a compact metric space, P(X ) is a compact metric space as well. The following 
result provides another example.

Corollary 32. The coherent lower previsions that are not extreme are dense in P(X ).

Although the topological notions above are sufficient in order to interpret the results further on, some of 
their proofs require additional topological tools. We have collected these in Appendix A, which also contains 
further explanations for some of the topological claims that were made above.

For the interested reader, Appendix A contains additional topological results that are of independent 
interest. As a first example: for probability mass functions and credal sets, the topology that is induced by 
the metric d is identical to the one that is induced by the Euclidean distance and its associated Hausdorff 
distance, respectively. Another, perhaps surprising result is that, for finite possibility spaces X , a sequence 
of coherent lower previsions P i on G (X ) converges with respect to the metric d if and only if it converges 
pointwise for every gamble f ∈ G (X ); even stronger: for coherent lower previsions, the topology of pointwise 
convergence is identical to the topology that is induced by the metric d.

For the remainder of this paper, all topological statements are tacitly understood to refer to the topologies 
that are induced by the metric d. However, due to the aforementioned results in Appendix A, the results for 
credal sets can also be interpreted in terms of the Euclidean distance and its associated Hausdorff distance, 
and the results for lower previsions can be interpreted in terms of the topology of pointwise convergence.

7.2. Possibility spaces with three states

For n = 3, we have shown in Section 6.2 that fully imprecise credal sets are extreme if and only if they are 
the convex hull of only three probability mass functions. Although this is a fairly large class, one gets the 

19 Appendix A provides similar results for other metric spaces, including M(X ) and P(X ).
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intuitive idea that most fully imprecise credal sets are not extreme. The following result shows, in a formal 
categorical sense, that this is indeed the case.

Theorem 33. For n = 3, extM(X ) is a nowhere dense closed subset of M(X ).20

Technically, this implies that it is not possible to find an open subset O of M(X ), however small, such 
that every credal set in O can be approximated arbitrarily closely by an extreme credal set in extM(X ). 
Loosely speaking, nowhere dense sets are ‘small’ in the intuitive geometric sense of being perforated with 
holes [20, p. 4]. We conclude that for n = 3, the ‘minority’ of the fully imprecise credal sets are extreme.

By exploiting Corollary 31, this result is easily translated into the language of coherent lower previsions. 
We find that for n = 3, the ‘minority’ of the fully imprecise coherent lower previsions are extreme.

Corollary 34. For n = 3, extP(X ) is a nowhere dense closed subset of P(X ).

The following section will establish that this result does not extend to n ≥ 4. In fact, the total opposite 
is proved to hold.

7.3. Possibility spaces with four or more states

For n = 4, no intuitive characterisation of extreme credal sets is available. Although we know that the 
fully imprecise credal sets that are not extreme are dense in M(X ) (see Proposition 30), the examples in 
Section 6.3 indicate that there are many fully imprecise extreme credal sets as well. In fact, the following 
theorem proves that, in a categorical sense, ‘most’ of the fully imprecise credal sets are extreme.

Theorem 35. For n ≥ 4, extM(X ) is a dense Gδ subset of M(X ).21

This implies that extM(X ) can be written as (and therefore trivially contains) a countable intersection 
of dense open subsets of M(X ), thereby making it a so-called comeagre set, also referred to as a residual 
set. Since M(X ) is a compact metric space and therefore also a Baire space, such a set exhibits properties 
that can be expected to hold for ‘large’ sets. For example, in a Baire space, every countable intersection of 
residual sets is residual. A property that holds on such a residual set is called generic and is considered to 
be ‘typical’ for elements of the space [26, p. 119]. Hence for n ≥ 4, in this specific categorical sense, ‘most’ 
of the fully imprecise credal sets are extreme.

Due to Corollary 31, it is particularly simple to obtain an analogous result for coherent lower previsions. 
We find that for n ≥ 4, ‘most’ of the fully imprecise coherent lower previsions are extreme.

Corollary 36. For n ≥ 4, extP(X ) is a dense Gδ subset of P(X ).

The difference with Corollary 34 is rather striking and indicates that there is a marked difference between 
the two cases n = 3 and n ≥ 4. For example: for n = 3, extP(X ) is a nowhere dense subset of P(X ), 
whereas for n ≥ 4, it is a dense subset. A similar distinction will be observed in the next section, where we 
study the possibility of approximating coherent lower previsions by finite convex combinations of extreme 
ones.

20 A set is said to be nowhere dense if the interior of its closure is empty. A nowhere dense closed set is a set whose complement 
is open and dense.
21 A set is said to be a Gδ set if it can be written as a countable intersection of open sets.
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8. Extending upon the results by Maaß

We started this paper by recalling a result by Maaß: every coherent lower prevision can be written as 
a ‘countably additive convex combination’ of extreme ones. In fact, this result is what first inspired us to 
try and identify the set of all extreme lower previsions for a given finite possibility space X . In the present 
section, we will show that it is not always necessary to consider ‘countably additive convex combinations’: 
within the context of this paper, where X is considered to be finite, every coherent lower prevision can 
either be written as, or approximated arbitrarily closely by, a finite convex combination of extreme lower 
previsions.

Exact results can be obtained for finitely generated models [35, Section 4.2.1]. A credal set is called 
finitely generated if it is the convex hull of a finite number of mass functions—see Section 6.3 as well—or, 
equivalently, if it can be specified by a finite number of linear inequality constraints on the mass func-
tions.22 The following result shows that every finitely generated credal set can be written as a finite convex 
combination of extreme ones.

Proposition 37. Every finitely generated credal set can be written as a finite convex combination of finitely 
generated extreme credal sets.

The corresponding coherent lower previsions, which are also called finitely generated,23 are those that 
are the lower envelope of a finite number of linear previsions. For these finitely generated lower previsions, 
a similar result holds.

Corollary 38. Every finitely generated lower prevision can be written as a finite convex combination of finitely 
generated extreme lower previsions.

For models that are not finitely generated, the above results hold only approximately. To state this more 
concisely, we introduce the notion of a universal approximating class [26, p. 162]. We call a subset A of some 
set S a universal approximating class for S if every S ∈ S can be approximated arbitrarily closely by finite 
convex combinations of elements of A . Let extM(X )f be the set of all finitely generated, fully imprecise, 
extreme credal sets—the finitely generated credal sets in extM(X ). Then our next result establishes that 
every fully imprecise credal set can be approximated arbitrarily closely by finite convex combinations of 
elements of extM(X )f . For n ≥ 4, it is not even necessary to consider convex combinations; a single finitely 
generated extreme credal set suffices.

Theorem 39. extM(X )f is a universal approximating class for M(X ) and, for n ≥ 4, it is even a dense 
subset.

It is not hard to see the implications of this result for general—not necessarily fully imprecise—credal 
sets. By combining Theorem 39 with Propositions 11 and 14, one finds that every M ∈ M(X ) can be 
approximated arbitrarily closely by finite convex combinations of finitely generated extreme ones; for n ≥ 4, 
only one of these finitely generated extreme ones needs to be fully imprecise. Furthermore, since a finite 
convex combination of finitely generated credal sets is again finitely generated, Theorem 39 also implies that 
every credal set can be approximated arbitrarily closely by a single finitely generated—but not necessarily 
extreme—one; see Lemma 60 in Appendix B as well.

22 In Ref. [2], Cozman refers to such credal sets as polytopic.
23 Troffaes calls them polyhedral lower previsions [33].
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As usual, we can apply Corollary 31 to obtain similar results in terms of lower previsions. We let extP(X )f
be the set of all finitely generated, fully imprecise, extreme coherent lower previsions—the finitely generated 
lower previsions in extP(X ).

Corollary 40. extP(X )f is a universal approximating class for P(X ) and, for n ≥ 4, it is even a dense 
subset.

Again, it is not hard to see the implications of this result for general—not necessarily fully imprecise—
coherent lower previsions; it suffices to combine Corollary 40 with Corollaries 12 and 15. We find that every 
coherent lower prevision P ∈ P(X ) can be approximated arbitrarily closely by finite convex combinations of 
finitely generated extreme ones and that for n ≥ 4, only one of these finitely generated extreme ones needs 
to be fully imprecise. Alternatively, P can be approximated arbitrarily closely by a single finitely generated 
one, which is however not guaranteed to be extreme.

Theorem 39 and its corollary are especially powerful in the case n = 3, because there, by combining 
them with Corollaries 24 and 25 respectively, we find that every fully imprecise credal set or lower prevision 
can be approximated arbitrarily closely by finite convex combinations of very simple building blocks: fully 
imprecise credal sets that have at most three vertices or fully imprecise lower previsions that are the lower 
envelope of at most three linear previsions.

For n ≥ 4, Theorem 39 and its corollary are far less powerful. Of course, mathematically, the result is 
stronger. However, it is not particularly useful since, for n ≥ 4, extM(X )f and extP(X )f have no simple 
characterisation (yet). It would be much more interesting if instead of having to use all of extM(X )f or 
extP(X )f , we could restrict ourselves to smaller, more tractable subsets that can be characterised easily. 
An obvious first choice would be to use the sets that are the topic of Corollaries 27 and 28, which would 
result in an intuitive generalisation to n ≥ 4 of our approximation results for n = 3. However, as we are 
about to show, this is not possible. For n ≥ 4, every universal approximating class for M(X ) must contain 
credal sets with arbitrarily high numbers of extreme points.

Proposition 41. Let X = {x1, . . . , xn} with n ≥ 4. Consider any subset A of M(X ) that consists of finitely 
generated credal sets and for which there is some m ∈ N such that every M ∈ A is the convex hull of at 
most m mass functions. Then A is not a universal approximating class for M(X ).

By translating this result into the language of coherent lower previsions, we obtain the following rather 
immediate corollary.

Corollary 42. Let X = {x1, . . . , xn} with n ≥ 4. Consider any subset A of P(X ) that consists of finitely 
generated lower previsions and for which there is some m ∈ N such that every P ∈ A is the lower envelope 
of at most m linear previsions. Then A is not a universal approximating class for P(X ).

9. Concluding remarks

The main result of this paper is that, when the possibility space X has a finite number n of elements, the 
extreme coherent lower previsions on G (X ) are either degenerate linear previsions or fully imprecise and in 
a one-to-one correspondence with Minkowski indecomposable non-empty convex compact subsets of Rn−1. 
Using this connection, we have constructed the set extP(X ) of all extreme lower previsions whenever 
possible, investigated—in a categorical sense—how many extreme lower previsions there are, and proved 
that every coherent lower previsions can be written as—in case it is finitely generated—, or approximated by, 
a finite convex combination of finitely generated extreme ones.

From a theoretical point of view, the main importance of our results is that they provide a partial answer 
to an open problem first formulated by Maaß [12,13]: within the set of all coherent lower previsions on 
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G (X ), which are the extreme ones? For possibility spaces X with two or three elements, we provide a full 
answer. For n = 2, there are only three extreme lower previsions: two degenerate linear ones and the vacuous
lower prevision. For n = 3, there are many more extreme lower previsions: three degenerate linear previsions 
and all the fully imprecise lower previsions that can be written as a lower envelope of at most three linear 
previsions. For n ≥ 4, no such simple characterisation is available. However, since we prove that in that case, 
‘most’ of the fully imprecise lower previsions are extreme, such a characterisation does not seem particularly 

relevant.
From a practical point of view, our most relevant results are those related to the approximation of 

coherent lower previsions by finite convex combinations of finitely generated extreme ones, thereby going 

beyond the ‘countably additive convex combinations’ of Maaß. However, since there are so many extreme 

lower previsions—at least for n ≥ 4—, these results are not directly applicable. A possible avenue for 
future research would therefore be to look for a subclass A of extP(X ) that (a) is sufficiently small, 
intuitive and tractable and yet (b) allows one to approximate a ‘large enough’ class S of coherent lower 
previsions by considering finite convex combinations of extreme lower previsions in A . We say ‘large enough’ 
because, due to Corollary 42, it does not seem possible to choose S = extP(X ) while still satisfying 

condition (a). Inspired by our results for n = 3, a reasonable choice for A seems to be the union of the 

degenerate linear previsions and the fully imprecise lower previsions that are the lower envelopes of at 
most n affinely independent linear previsions. It is not clear to us what the corresponding class S would 

look like—in other words, which coherent lower previsions could be approximated arbitrarily closely by 

finite convex combinations of the aforementioned class A . We leave this as an open problem.
The most important conclusion of this paper seems to be that the set of all extreme coherent lower 

previsions is simply too large and that therefore, future work should restrict attention to specific subsets 
of coherent lower previsions, and try to identify their extreme points. Two different approaches have been 

taken in the literature. We introduce them briefly and explain how our present results could help advance 

research on these topics.
The first approach is to consider some set S consisting of all coherent lower previsions on G (X ) that 

satisfy some additional property: 2-monotonicity, k-monotonicity, complete monotonicity, strong invariance 

and permutation invariance are but a few examples. For some of these sets, the extreme points have already 

been found; see [34, Chapter 10] for an overview. For example, for X with finite cardinality, the completely 

monotone coherent lower previsions are the belief functions and, as is well-known, the extreme belief func-
tions are those that are vacuous over a non-empty subset of X . For other potential properties, these extreme 

points are not yet known and, since being an element of extP(X ) ∩ S is clearly a sufficient condition for 
being an extreme point of S , the results in this paper could serve as a starting point to find them. It would 

also be interesting to investigate for which properties it is a necessary condition as well—which would make 

the connection with Minkowski indecomposability even more relevant—and, if it is, whether results similar 
to those in Sections 7 and 8 could be obtained.

The second approach is to consider lower previsions that are defined on some subset F of G (X ) rather 
than on the complete set G (X ). Such a lower prevision is said to be coherent if it is the restriction to F of 
a coherent lower prevision on G (X ). We say that a coherent lower prevision P on F is extreme if it cannot 
be written as a proper convex combination of two other coherent lower previsions on F . For finite F , 
Ref. [22] investigates the set of all extreme coherent lower previsions on F . By choosing F as the set of all 
indicator functions, one obtains coherent lower probabilities as a special case; see Ref. [23] for some work 

on extreme coherent lower probabilities. Due to the following result, the set of all extreme coherent lower 
previsions on F can be identified with a subset of extP(X ).
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Proposition 43. Consider a coherent lower prevision P on F ⊆ G (X ) and let E be its natural extension to 
G (X ).24 Then if P is extreme, E is extreme as well.

Besides providing extra evidence that the set P(X ) is indeed very large, this result serves as a tool 
that allows one to use the extreme coherent lower previsions on finite domains in Ref. [22] and the extreme 
coherent lower probabilities in Ref. [23] to construct additional examples of extreme coherent lower prevision 
on G (X ); it suffices to consider their natural extension. In order to establish an even tighter connection 
between our results and the results in Refs. [22,23], we would like for the reverse of the implication in 
Proposition 43 to hold as well: if E is extreme, then P is extreme. However, as the following example 
illustrates, this is not the case in general.

Example 1. Let X := {x1, x2, x3} and consider the coherent lower previsions P on F := {−I{x1}, −I{x2},

−I{x3}}, as defined for all f ∈ F by P (f) := −1/2. Let E be the natural extension of P to G (X ). Then 
ME consists of all probability mass functions p ∈ ΣX for which, for all i ∈ N≤3, p(xi) ≤ 1/2. This credal 
set is extreme—it is the second credal set on the bottom line of Fig. 3—and therefore, by Corollary 4, 
E is extreme as well. However, P is not extreme: P = 1/2(P 1 + P 2), where P 1 and P 2 are coherent lower 
previsions on F that are defined, for all f ∈ F , by P 1(f) := −1/3 and P 2(f) := −2/3.

Nevertheless, we believe that, under mild conditions on F , Proposition 43 can be strengthened, replacing 
the implication by an ‘if and only if’. We leave this as a possible topic for future research. It would also be 
interesting to investigate the implications of Proposition 43—or a strengthened version—when it is combined 
with the results in this paper and, in particular, to see if and how the topological results in Sections 7 and 8
can be extended to the case F �= G (X ). That too, we leave as a possible topic for future research.
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Appendix A. Additional topological results

We turn Rk into a complete metric space in the usual way, by means of the Euclidean distance δ(v, v′) :=
‖v − v′‖2 = (

∑k
i=1(vi − v′i)2)

1/2. For X = {x1, . . . , xn} with n = k + 1, the projected X -simplex KX is 
a convex subset of Rk that is furthermore closed and bounded and therefore compact with respect to δ. 
Hence, the metric δ turns KX into a compact metric space.

For X = {x1, . . . , xn} with n = k, the X -simplex ΣX can be regarded as a convex subset of Rk as well. 
It is clearly closed and bounded and therefore compact with respect to δ, so the metric δ turns ΣX into 
a compact metric space. As we already mentioned in Section 7.1, the metric d does this as well. This is due 
to the following result, which establishes that both of these metrics induce the same topology on ΣX .

Proposition 44. δ(p, p′) ≤ 2d(p, p′) ≤ √
nδ(p, p′) for all p, p′ ∈ ΣX , and therefore the metrics δ and d induce 

the same topology on ΣX .

24 This is the pointwise smallest coherent lower prevision on G (X ) that dominates P on F , which always exists. If P is coherent—as 
is the case here—, it furthermore coincides with P on F . See Ref. [35, Section 3.1] for more information.
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Proof. Using Lemma 45, we find that for all p, p′ ∈ ΣX ,

d
(
p, p′

)
= 1

2

n∑
x=1

∣∣p(x) − p′(x)
∣∣ = 1

2
∥∥p− p′

∥∥
1 ≤ 1

2
√
n
∥∥p− p′

∥∥
2 = 1

2
√
nδ

(
p, p′

)
and

δ
(
p, p′

)
=

∥∥p− p′
∥∥

2 ≤
∥∥p− p′

∥∥
1 = 2d

(
p, p′

)
and therefore δ(p, p′) ≤ 2d(p, p′) ≤ √

nδ(p, p′). Hence, any subset of ΣX that is open with respect to any of 
these two metrics, is also open with respect to the other. Consequently, d and δ induce the same topology 
on ΣX . �
Lemma 45. For any v ∈ Rk, with k ∈ N, let ‖v‖1 :=

∑k
i=1 |vi| and ‖v‖2 := (

∑k
i=1(vi)2)

1/2. Then ‖v‖2 ≤ ‖v‖1
and ‖v‖1 ≤

√
k‖v‖2.

Proof. The first inequality is trivial. The second one follows from the Cauchy–Schwarz inequality; see for 
example [9, Theorem 6]. �

Proposition 44 is important because it implies that topological statements about (subsets of) ΣX do not 
depend on whether we use δ or d as a metric. For example, it implies that ΣX is compact, regardless of 
whether we use δ or d as a metric. Also, a sequence that converges with respect to one metric, say δ, will 
converge with respect to the other as well, say d.

A similar result holds for the topologies that are induced on KX and ΣX by their respective metrics.

Proposition 46. δ(vp, vp′) ≤ δ(p, p′) ≤ √
nδ(vp, vp′) for all p, p′ ∈ ΣX . Consequently, the topological 

space KX , as induced by the metric δ, is homeomorphic to the topological space ΣX , as induced by ei-
ther the metric δ or d. The homeomorphism that yields this result is the one that maps every v ∈ KX to 
its unique corresponding pv ∈ ΣX .

Proof. For all p, p′ ∈ ΣX , we have that

δ(vp, vp′)2 =
n−1∑
i=1

[
(vp)i − (vp′)i

]2 =
n−1∑
i=1

[
p(xi) − p′(xi)

]2 ≤
n∑

i=1

[
p(xi) − p′(xi)

]2 = δ
(
p, p′

)2
and

δ
(
p, p′

)2 =
n∑

i=1

[
p(xi) − p′(xi)

]2 =
(

n−1∑
i=1

[
p(xi) − p′(xi)

]2) +
[
p(xn) − p′(xn)

]2
= δ(vp, vp′)2 +

(
n−1∑
i=1

[
p(xi) − p′(xi)

])2

≤ nδ(vp, vp′)2,

where the final inequality holds because

(
n−1∑
i=1

[
(vp)i − (vp′)i

])2

≤
(

n−1∑
i=1

∣∣p′(xi) − p(xi)
∣∣)2

=
(
‖vp − vp′‖1

)2 ≤ (n− 1)
(
‖vp − vp′‖2

)2 = (n− 1)δ(vp, vp′)2,
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using Lemma 45 for the second inequality. Hence, we find that for all p, p′ ∈ ΣX

δ(vp, vp′) ≤ δ
(
p, p′

)
≤

√
nδ(vp, vp′). (A.1)

Now consider the function f that maps every v ∈ KX to its unique corresponding pv ∈ ΣX . Then due 
to Eq. (A.1), a sequence vi ∈ KX , i ∈ N, converges to v ∈ KX if and only if the sequence pvi ∈ ΣX , 
i ∈ N, converges to pv ∈ ΣX . Hence, both f and its inverse f−1 are continuous with respect to the 
metric δ [6, Chapter 2, Proposition 10]. Since f is clearly a bijective function as well, this means that f is 
a homeomorphism [36, Definition 7.8] between the topological space KX , as induced by the metric δ, and 
the topological space ΣX , as induced by the metric δ or, equivalently (due to Proposition 44), the metric d. 
Hence, these topological spaces are homeomorphic. �

This is the reason why, as was silently taken for granted in Section 3.3, for every credal set M—which 
is by definition compact—, the corresponding projected credal set KM is compact as well.

Next, we consider the set C k of all non-empty convex compact subsets of Rk. For C, C ′ ∈ C k, the 
Hausdorff distance between them, with respect to the Euclidean metric δ, is given by

δH
(
C,C ′) := max

{
max
v∈C

min
v′∈C′

δ
(
v, v′

)
, max
v′∈C′

min
v∈C

δ
(
v, v′

)}
. (A.2)

Since δH and δ coincide on singletons—meaning that δH({v}, {v′}) = δ(v, v′)—we will from now on denote 
both metrics by δ. The metric δ turns C k into a complete metric space [26, Theorems 1.8.2 and 1.8.5].

For X = {x1, . . . , xn} with n = k+1, K(X ), K(X ), K˜(X ) and K(X ) are subsets of C k, turning them 
into metric spaces. K(X ), K(X ) and K(X ) are furthermore bounded, closed25 and therefore also compact 
with respect to δ [26, Theorem 1.8.3]. Hence, they are compact metric spaces.

For X = {x1, . . . , xn} with n = k, M(X ), M(X ), M˜ (X ) and M(X ) can be regarded as subsets of C k

as well, allowing us to use δ to turn them into metric spaces. Alternatively, we can do this by means of the 
metric d that was introduced in Section 7.1. The following result establishes that it does not matter, since 
both metrics induce the same topology.

Proposition 47. It holds for all M , M ′ ∈ M(X ) that

δ
(
M ,M ′) ≤ 2d

(
M ,M ′) ≤ √

nδ
(
M ,M ′).

Therefore, the metrics δ and d induce the same topology on M(X ). An analogous result holds for M(X ), 
M˜ (X ) and M(X ) as well.

Proof. Since we know from Proposition 44 that δ(p, p′) ≤ 2d(p, p′) ≤ √
nδ(p, p′) for all p, p′ ∈ ΣX , it is 

easy to infer from Eq. (A.2) that δ(M , M ′) ≤ 2d(M , M ′) ≤ √
nδ(M , M ′) for all M , M ′ ∈ M(X ). Hence, 

any subset of M(X ) that is open with respect to any of these two metrics, is also open with respect to the 
other. Consequently, d and δ induce the same topology on M(X ). The proof for M(X ), M˜ (X ) and M(X )
is identical. �

On top of this, the topological spaces K(X ), K(X ), K˜(X ) and K(X ) are homeomorphic to M(X ), 
M(X ), M˜ (X ) and M(X ), respectively.

25 Boundedness follows trivially from Eq. (A.2) and the boundedness of KX . K(X ), K(X ) and K(X ) are closed because (i) they 
are subsets of Ck, which is complete and therefore closed and (ii) their defining properties are preserved under taking limits with 
respect to δ; see Eqs. (3), (4) and (5).
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Proposition 48. It holds for all M , M ′ ∈ M(X ) that

δ(KM ,KM ′) ≤ δ
(
M ,M ′) ≤ √

nδ(KM ,KM ′).

Consequently, the topological space K(X ), as induced by the metric δ, is homeomorphic to the topological 
space M(X ), as induced by either the metric δ or d. The homeomorphism that yields this result is the one 
that maps every K ∈ K(X ) to its unique corresponding MK ∈ M(X ). An analogous result holds for the 
topological spaces K(X ) and M(X ), K˜(X ) and M˜ (X ), and K(X ) and M(X ).

Proof. Since we know from Proposition 46 that δ(vp, vp′) ≤ δ(p, p′) ≤ √
nδ(vp, vp′) for all p, p′ ∈ ΣX , 

it is easy to infer from Eqs. (8) and (A.2) that, for all M , M ′ ∈ M(X ), δ(KM , KM ′) ≤ δ(M , M ′) ≤√
nδ(KM , KM ′).
Now consider the function f that maps every K ∈ K(X ) to its unique corresponding MK ∈ M(X ). 

Then due to the inequalities above, a sequence Ki ∈ K(X ), i ∈ N, converges to K ∈ K(X ) if and only 
if the sequence MKi

∈ M(X ), i ∈ N, converges to MK ∈ M(X ). Hence, both f and its inverse f−1 are 
continuous with respect to the metric δ [6, Chapter 2, Proposition 10]. Since f is clearly a bijective function 
as well, this means that f is a homeomorphism [36, Definition 7.8] between the topological space K(X ), 
as induced by the metric δ, and the topological space M(X ), as induced by the metric δ or, equivalently 
(due to Proposition 47), the metric d. Hence, these topological spaces are homeomorphic. The proof for the 
topological spaces K(X ) and M(X ), K˜(X ) and M˜ (X ), and K(X ) and M(X ) is completely analogous. �

As a direct consequence, we find that M(X ), M(X ) and M(X ) are compact metric spaces.
Finally, as explained in Section 7.1, the metric d can also be used to turn sets of coherent lower previsions 

on G (X ), with X finite, into metric spaces. Important examples are the sets P(X ), P(X ), P˜(X ) and 
P(X ). The following result generalises Corollary 31 and implies, as an immediate consequence, that P(X ), 
P(X ) and P(X ) are compact metric spaces.

Proposition 49. The metric spaces M(X ) and P(X ), with d as a metric, are isometric. The bijective 
isometry that yields this result is the one that maps every M ∈ M(X ) to its unique corresponding P ∈
P(X ). Analogous results hold for the metric spaces M(X ) and P(X ), M˜ (X ) and P˜(X ), and M(X ) and 
P(X ).

Proof. As we have seen in Section 3, there is a one-to-one correspondence between credal sets and coherent 
lower previsions. By combining this with the fact that the distance d(P, P ′) between two coherent lower 
previsions P and P ′ is equal to the distance d(MP , MP ′) between their corresponding credal sets [32, 
Theorem 2], we find that the metric spaces M(X ) and P(X ), with d as their metric, are isometric. The 
proof for the other three couples of metric spaces is analogous. �

Interestingly, and perhaps rather surprisingly, for finite X , convergence of a sequence of coherent lower 
previsions with respect to d turns out to be equivalent to pointwise convergence.

Proposition 50. Consider a finite possibility space X and any coherent lower prevision P on G (X ). A se-
quence of coherent lower previsions P i ∈ P(X ), i ∈ N, converges to P with respect to the metric d if and 
only if the sequence P i(f) converges to P (f) for all f ∈ G (X ).

Proof. Since the direct implication follows trivially from Eq. (9), we only need to prove the converse impli-
cation. So consider any P ∈ P(X ) and any sequence of coherent lower previsions P i ∈ P(X ), i ∈ N, such 
that P i(f) converges to P (f) for all f ∈ G (X ). Assume ex absurdo that the sequence P i, i ∈ N, does not 
converge to P with respect to the metric d. By definition of convergence, this implies that there is some ε > 0
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for which there is an infinite number of indices i in N such that d(P, P i) > ε. Hence, we can assume without 
loss of generality that, for all i ∈ N, d(P , P i) > ε. By applying the definition of the metric d, this implies 
that there is a sequence of gambles fi ∈ G1(X ), i ∈ N, for which |P (fi) − P i(fi)| > ε for all i ∈ N. Since 
G1(X ) is a bounded subset of Rn, we can apply the Bolzano–Weierstraß theorem to find that this sequence 
has a convergent subsequence of gambles fij , j ∈ N, for which, of course, also |P (fij ) −P ij (fij )| > ε for all 
j ∈ N. Let us denote the gamble to which this subsequence converges by f . For all j ∈ N, we find that∣∣P (fij ) − P ij (fij )

∣∣ ≤ ∣∣P (fij ) − P (f)
∣∣ +

∣∣P (f) − P ij (f)
∣∣ +

∣∣P ij (f) − P ij (fij )
∣∣

≤ P
(
|fij − f |

)
+

∣∣P (f) − P ij (f)
∣∣ + P ij

(
|f − fij |

)
≤ 2 sup |fij − f | +

∣∣P (f) − P ij (f)
∣∣,

where the second and third inequality follow from coherence [35, Section 2.6.1]. The first term on the 
right-hand side converges to zero because fij converges to f , and the second term on the right-hand side 
converges to zero because, by assumption, the sequence P ij (f) converges to P (f). Hence, the left-hand side 
converges to zero as well, a contradiction. �

Inspired by this equivalence, we are led to think that the topology that is induced on P(X ) by the 
metric d is identical to the so-called topology of pointwise convergence. As we are about to show, this is 
indeed the case. However, before we do so, let us recall some properties of this topology. First of all, the sets

B(P , f, ε) :=
{
P ′ ∈ P(X ):

∣∣P (f) − P ′(f)
∣∣ < ε

}
, with P ∈ P(X ), f ∈ G (X ) and ε > 0,

constitute a sub-base for the topology of pointwise convergence [34, Section 11.1] and therefore, by definition 
of a sub-base [36, Definition 5.5],

B :=
{

m⋂
i=1

B(P i, fi, εi): m ∈ N, P i ∈ P(X ), fi ∈ G (X ) and εi > 0
}
,

is a base. Furthermore, this topology is the smallest—the weakest—topology that makes all evaluation 
functionals continuous [34, Section 11.1]. Hence, its relativisation to P(X ) is identical to the weak* topol-
ogy [35, Appendix D]. The following proposition establishes an important technical property of the topology 
of pointwise convergence.

Proposition 51. Let X be finite. Then the set P(X ), endowed with the topology of pointwise convergence, 
is a first-countable space.

Proof. By definition of a first-countable space [36, Definition 10.3], we have to show that every P ∈ P(X )
has a countable neighbourhood base. So let us fix P ∈ P(X ) and consider the set

Brat
P :=

{
m⋂
i=1

B(P , fi, εi): m ∈ N, fi ∈ QX and εi ∈ Q>0

}
,

where QX ⊂ G (X ) is the set of all rational-valued gambles on X . Since X is finite, QX is countable 
and therefore, Brat

P is countable as well. Furthermore, Brat
P is a subset of B, consisting of neighbourhoods

of P . Hence, in order to prove that Brat
P is a countable neighbourhood base for P , we are left to show 

that, for every neighbourhood N of P , there is some Brat
P ∈ Brat

P such that Brat
P ⊆ N . So consider any 

neighbourhood N of P . Then by definition of a neighbourhood, there is some open set O ∈ B such that 
P ∈ O ⊆ N . Consequently, it suffices to prove that there is some Brat

P ∈ Brat
P such that Brat

P ⊆ O.
Since O ∈ B, we know that O =

⋂m
i=1 B(P i, fi, εi), with m ∈ N and, for all i ∈ {1, . . . , m}, P i ∈ P(X ), 

fi ∈ G (X ) and εi > 0. Consider now any i ∈ {1, . . . , m}. Then since P ∈ O ⊆ B(P i, fi, εi), we have that 
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ci := |P i(fi) −P (fi)| < εi. Choose ε∗i ∈ Q>0 and δi > 0 such that ci+ε∗i +2δi < εi and choose f∗
i ∈ QX such 

that sup |f∗
i − fi| < δi (this is always possible). Consider any P ′ ∈ B(P , f∗

i , ε
∗
i ). Then |P (f∗

i ) −P ′(f∗
i )| < ε∗i

and therefore∣∣P i(fi) − P ′(fi)
∣∣ ≤ ∣∣P i(fi) − P (fi)

∣∣ +
∣∣P (fi) − P

(
f∗
i

)∣∣ +
∣∣P (

f∗
i

)
− P ′(f∗

i

)∣∣ +
∣∣P ′(f∗

i

)
− P ′(fi)

∣∣
< ci + P

(∣∣fi − f∗
i

∣∣) + ε∗i + P ′(∣∣fi − f∗
i

∣∣) ≤ ci + ε∗i + 2 sup
∣∣fi − f∗

i

∣∣ < ci + ε∗i + 2δi < εi,

where the second and third inequalities follow from coherence [35, Section 2.6.1]. Hence, we find that P ′ ∈
B(P i, fi, εi) and therefore also, since this holds for all P ′ ∈ B(P , f∗

i , ε
∗
i ), that B(P, f∗

i , ε
∗
i ) ⊆ B(P i, fi, εi). 

If we now define Brat
P :=

⋂m
i=1 B(P , f∗

i , ε
∗
i ), then as required: Brat

P ∈ Brat
P and Brat

P ⊆ O. �
By combining Propositions 50 and 51, the aforementioned claim is now easily proved.

Corollary 52. For any finite possibility space X , the topology that is induced on P(X ) by the metric d is 
identical to the topology of pointwise convergence. Analogous results hold for P(X ), P˜(X ) and P(X ) as 
well.

Proof. Since a first-countable space is uniquely determined by its notion of convergence [36, Corol-
lary 10.5(a)], this is a direct consequence of Propositions 50 and 51. The proof for P(X ), P˜(X ) and 
P(X ) is now immediate, since these are subspaces of P(X ). �
Appendix B. Proofs of results in the main text

Proof of Proposition 1. We show that a linear prevision can never be fully imprecise. So consider any linear 
prevision P ∈ P(X ). We have shown in Section 2.2 that it can be uniquely characterised by a mass function 
p ∈ ΣX , defined by p(xi) := P (I{xi}), i ∈ N≤n. Now assume ex absurdo that P is fully imprecise. This 
would mean for all i ∈ N≤n that P (I{xi}) = 0, implying that 

∑n
i=1 p(xi) = 0, a contradiction. �

Proof of Corollary 2. The three sets are clearly disjoint and they cover P(X ). So it suffices to prove that 
none of these sets are empty. P(X ) contains the vacuous lower prevision PV := min, P(X ) contains all 
so-called degenerate linear previsions P ◦

i , i ∈ N≤n, with probability mass functions p◦i = I{xi}, and P˜(X )
contains, for instance, the lower prevision 1

2PV + 1
2
∑n

i=1
1
nP

◦
i . �

Proof of Proposition 3. First assume that MP = λMP 1 + (1 − λ)MP 2 . Consequently, we find for all 
f ∈ G (X ) that

P (f) = min
{
Pp(f): p ∈ MP

}
= min

{
Pp(f): p = λp1 + (1 − λ)p2 with p1 ∈ MP 1 and p2 ∈ MP 2

}
= min

{
λPp1(f) + (1 − λ)Pp2(f): p1 ∈ MP 1 and p2 ∈ MP 2

}
= λmin

{
Pp1(f): p1 ∈ MP 1

}
+ (1 − λ) min

{
Pp2(f): p2 ∈ MP 2

}
= λP 1(f) + (1 − λ)P 2(f).

To prove the converse implication, assume that P = λP 1 + (1 − λ)P 2 and consider the credal set 
M ∗ := λMP 1 + (1 − λ)MP 2 . Due to the first part of this proof, we find for all f ∈ G (X ) that PM∗(f) =
λP 1(f) + (1 − λ)P 2(f), which by assumption means that PM∗(f) = P (f). Because the credal set that 
corresponds with a given lower prevision is unique, this means that MP = M ∗ = λMP 1 + (1 −λ)MP 2 . �
Proof of Proposition 6. First of all, notice that for all p, p1 and p2 in ΣX and λ ∈ [0, 1]: p = λp1 +(1 −λ)p2
if and only if vp = λvp1 + (1 −λ)vp2 . For the direct implication, assume that M = λM1 + (1 −λ)M2. Then
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KM = {vp: p ∈ M } =
{
vp: p = λp1 + (1 − λ)p2 with p1 ∈ M1 and p2 ∈ M2

}
=

{
λvp1 + (1 − λ)vp2 : p1 ∈ M1 and p2 ∈ M2

}
= λ{vp1 : p1 ∈ M1} + (1 − λ){vp2 : p2 ∈ M2} = λKM1 + (1 − λ)KM2 .

For the converse implication, assume that KM = λKM1 + (1 − λ)KM2 and introduce the credal set 
M ∗ = λM1 + (1 − λ)M2. Due to the first part of this proof, we know that KM∗ = λKM1 + (1 − λ)KM2 , 
which by assumption means that KM = KM∗ , implying that M = M ∗ = λM1 + (1 − λ)M2. �
Proof of Proposition 8. Since A is clearly non-empty, convex and compact, it suffices to show that min{vi:
v ∈ A} = 0 for all i ∈ N<n and that max{

∑n−1
i=1 vi: v ∈ A} = 1. Since A is not a singleton, we know that 

μ(A) > 0. Therefore

max
{

n−1∑
i=1

vi: v ∈ A

}
= max

{
n−1∑
i=1

1
μ(A)

[
vi −mi(A)

]
: v ∈ A

}

= 1
μ(A)

(
max

{
n−1∑
i=1

vi: v ∈ A

}
−

n−1∑
i=1

mi(A)
)

= 1

and for any i ∈ N<n

min{vi: v ∈ A} = min
{

1
μ(A)

[
vi −mi(A)

]
: v ∈ A

}
= 1

μ(A)
[
min{vi: v ∈ A} −mi(A)

]
= 0. �

Proof of Proposition 9. Consider any non-empty convex compact subset A of Rn−1 that is not a singleton, 
implying that μ(A) > 0.

Let us first assume that A is Minkowski decomposable, implying that A = A1 + A2, with A1 and A2

non-empty convex compact subsets of Rn−1 that are neither homothetic to A nor singletons. We now define 
A′

1 := 1
μ(A) [A1 − m(A)] and A′

2 := 1
μ(A)A2, which are both non-empty convex compact subsets of Rn−1. 

Neither of them is a singleton or homothetic to A, because that would contradict A1 and A2 not being 
singletons or homothetic to A. Therefore, since A = A′

1 + A′
2, A is Minkowski decomposable.

Conversely, assume that A is Minkowski decomposable and can therefore be written as a sum A′
1 + A′

2, 
with A′

1 and A′
2 non-empty convex compact subsets of Rn−1 that are neither homothetic to A nor singletons. 

Let A1 := μ(A)A′
1 +m(A) and A2 := μ(A)A′

2, which are both non-empty convex compact subsets of Rn−1. 
Neither of them is a singleton or homothetic to A, because that would contradict with A′

1 and A′
2 not being 

singletons or homothetic to A. Therefore, since A = A1 + A2, A is Minkowski decomposable. �
Proof of Theorem 10. Consider any non-empty convex compact subset A of Rn−1 that is not a singleton. 
First assume that A is Minkowski decomposable, implying that A = A1 + A2, with A1 and A2 non-empty 
convex compact subsets of Rn−1 that are neither homothetic to A nor singletons. Since A = A1 +A2 implies 
that m(A) = m(A1) + m(A2) and μ(A) = μ(A1) + μ(A2), we find that

A = 1
μ(A)

[
A−m(A)

]
= 1

μ(A1) + μ(A2)
[
A1 + A2 −m(A1) −m(A2)

]
= μ(A1)

μ(A1) + μ(A2)
1

μ(A1)
[
A1 −m(A1)

]
+ μ(A2)

μ(A1) + μ(A2)
1

μ(A2)
[
A2 −m(A2)

]
= μ(A1)

A1 + μ(A2)
A2.
μ(A1) + μ(A2) μ(A1) + μ(A2)
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If we now define λ := μ(A1)
μ(A1)+μ(A2) and choose K1 = A1 and K2 = A2, we find that A = λK1 + (1 − λ)K2. 

Since μ(A1) > 0 and μ(A2) > 0, we know that 0 < λ < 1. Also, K1 and K2 are elements of K(X ) by 
Proposition 8. It is therefore enough to prove that K1 �= K2. Assume ex absurdo that K1 = K2, implying 
that A = K1 = A1. This means that A1 is homothetic to A, a contradiction.

To prove the converse implication, assume that A can be written as a non-trivial convex combination 
λK1 + (1 − λ)K2, with K1 and K2 both elements of K(X ), K1 �= K2 and 0 < λ < 1. For the non-empty 
convex compact sets A1 := λK1 and A2 := (1 − λ)K2 we have A = A1 + A2. We are therefore done 
if we can show that A1 and A2 are neither homothetic to A, nor singletons, because this would mean 
that A is Minkowski decomposable, which in turn would imply that A is Minkowski decomposable, due to 
Proposition 9.

We only provide the proof for A1, since the one for A2 is similar. First of all, A1 cannot be a single-
ton because then so would be K1, thereby contradicting K1 ∈ K(X ) because of Corollary 7. So assume 
ex absurdo that A1 is homothetic to A, or equivalently that K1 is homothetic to A, which would mean that 
K1 = v+λ′A for some v ∈ Rn−1 and λ′ > 0. Since K1 and A are both elements of K(X ) (for A, this is due 
to Proposition 8), this is only possible if v = 0 and λ′ = 1, and therefore K1 = A. Hence A = λA+(1 −λ)K2
and therefore, by Lemma 53, K2 = A = K1, a contradiction. �
Lemma 53. Consider non-empty convex compact subsets A and B of Rn−1 and 0 < λ < 1. Then A =
λA + (1 − λ)B if and only if B = A.

Proof. If B = A, then A = λA + (1 − λ)B holds trivially because A is convex.
For the converse implication, we start by proving that B ⊆ A. Consider any b ∈ B, then we prove that 

b ∈ A. Indeed, fix any a ∈ A, then by assumption also λa +(1 −λ)b ∈ A, and therefore also λ2a +(1 −λ2)b =
λ[λa + (1 − λ)b] + (1 − λ)b ∈ A. Continuing in the same vein, we find that A contains every element of the 
sequence λka +(1 −λk)b, k ∈ N, and since A is compact and therefore closed (since Rn−1 is Hausdorff) and 
since 0 < λ < 1, the limit b of this sequence also belongs to A.

Next, we prove that A ⊆ B. Consider any extreme point aext of A: any point in A that cannot be written 
as a convex combination of two other points in A. Since aext ∈ A and A = λA + (1 − λ)B, we infer that 
there are a ∈ A and b ∈ B ⊆ A such that aext = λa + (1 − λ)b. Since aext is an extreme point of A and 
0 < λ < 1, the only way for this to hold is if aext = a = b and therefore aext ∈ B. Hence all extreme points 
of A belong to B, and since by Minkowski’s extreme point theorem [24, Corollary 18.5.1], the compact and 
convex set A is the convex hull of its extreme points, we see that A is included in the convex hull of B, 
which in turn is equal to B since B is convex. �
Proof of Proposition 11. Consider any partially imprecise credal set M ∈ M˜ (X ). First of all, suppose that 
it can indeed be written as a convex combination λM1 + (1 − λ)M2 of a credal set M1 ∈ M(X ) that 
contains only a single mass function p1 ∈ ΣX and a fully imprecise credal set M2 ∈ M(X ). It will then 
hold for all i ∈ N≤n that

min
{
p(xi): p ∈ M

}
= min

{
λp1(xi) + (1 − λ)p2(xi): p2 ∈ M2

}
= λp1(xi) + (1 − λ) min

{
p2(xi): p2 ∈ M2

}
= λp1(xi).

Since p1 is a mass function, this implies that

n∑
i=1

min
{
p(xi): p ∈ M

}
=

n∑
i=1

λp(xi) = λ

n∑
i=1

p(xi) = λ. (B.1)

We already know that 0 ≤ λ ≤ 1 because it is the coefficient of a convex combination but we can also show 
that λ �= 0 and λ �= 1, implying that 0 < λ < 1. Indeed, λ = 0 would mean that M = M2 is fully imprecise 
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and λ = 1 would mean that M = M1 contains only a single mass function, both contradicting M ∈ M˜ (X ), 
due to Corollary 5. Since λ > 0, we find for all i ∈ N≤n that

p1(xi) = 1
λ

min
{
p(xi): p ∈ M

}
, (B.2)

implying that the set M1 = {p1} in the convex combination above is indeed unique. Also, we derive from 
λ < 1 and M = λ{p1} + (1 − λ)M2 that

M2 = 1
1 − λ

M − λ

1 − λ
{p1} =

{
1

1 − λ
p− λ

1 − λ
p1: p ∈ M

}
, (B.3)

implying that the set M2 in the convex combination above is unique as well.
To conclude the proof, we now only need to show that λ, p1 and M2, as given by Eqs. (B.1), (B.2)

and (B.3), satisfy the following properties: 0 < λ < 1, p1 ∈ ΣX , M2 ∈ M(X ) and M = λ{p1} +(1 −λ)M2.
It is obvious that 0 ≤ λ ≤ 1, so assume ex absurdo that λ = 0. Eq. (B.1) then implies that min{p(xi):

p ∈ M } = 0 for all i ∈ N≤n, making M fully imprecise and contradicting M ∈ M˜ (X ), due to Corollary 5. 
Next, assume ex absurdo that λ = 1. Eq. (B.2) then implies for all p ∈ M and all i ∈ N≤n that p(xi) =
min{p(xi): p ∈ M }, making M a singleton and contradicting M ∈ M˜ (X ), due to Corollary 5. That 
p1 ∈ ΣX is now an immediate consequence of Eqs. (B.1) and (B.2), and M2 ∈ M(X ) holds because we 
have for all i ∈ N≤n that

min
{
p2(xi): p2 ∈ M2

}
= min

{
1

1 − λ
p(xi) −

λ

1 − λ
p1(xi): p ∈ M

}
= 1

1 − λ
min

{
p(xi): p ∈ M

}
− λ

1 − λ
p1(xi) = 0,

where the first equality follows from Eq. (B.3) and the last one from Eq. (B.2). Finally, we infer from 
Eq. (B.3) that

λ{p1} + (1 − λ)M2 =
{
λp1 + (1 − λ)p2: p2 ∈ M2

}
=

{
λp1 + (1 − λ)

(
1

1 − λ
p− λ

1 − λ
p1

)
: p ∈ M

}
= {p: p ∈ M } = M . �

Proof of Corollary 12. Since P is partially imprecise, so is MP , and we can therefore use Proposition 11
to see that MP can be uniquely written as a convex combination λM1 + (1 − λ)M2 of a credal set M1 ∈
M(X ) that contains only a single mass function p1 ∈ ΣX and a fully imprecise credal set M2 ∈ M(X ). 
In this expression, we have that 0 < λ =

∑n
i=1 min{p(xi): p ∈ M } < 1, which turns into 0 < λ =∑n

i=1 P (I{xi}) < 1 since P (I{xi}) = min{p(xi): p ∈ M } for all i ∈ N≤n. The credal set M1 = {p1}, where 
the mass function p1 is given by p1(xi) = 1

λ min{p(xi): p ∈ M } for all i ∈ N≤n, has a corresponding linear 
prevision P1. For all f ∈ G (X ), we have that

P1(f) := PM1(f) = Pp1(f) =
n∑

i=1
f(xi)p1(xi) = 1

λ

n∑
i=1

f(xi)P (I{xi}).

Similarly, the fully imprecise credal set M2 has a corresponding fully imprecise lower prevision P 2 := PM2 ∈
P(X ). By Proposition 3, MP = λM1 + (1 − λ)M2 implies that P = λP1 + (1 − λ)P 2, so we find that

P 2(f) = 1
P (f) − λ

P1(f) for all f ∈ G (X ).
1 − λ 1 − λ
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Now to prove that this decomposition is unique, consider any λ′ ∈ [0, 1], P ′
1 ∈ P(X ) and P ′

2 ∈ P(X )
such that P = λ′P ′

1 + (1 − λ′)P ′
2. By Proposition 3, this implies that MP = λ′MP ′

1
+ (1 − λ′)MP ′

2
, where 

MP ′
1

is a singleton and MP ′
2

is fully imprecise. Proposition 11 then tells us that λ′ = λ, MP ′
1

= M1 and 
MP ′

2
= M2, and therefore, due to the one-to-one correspondence between credal sets and coherent lower 

previsions, P1 = P ′
1 and P ′

2 = P 2. This shows that the decomposition is indeed unique. �
Proof of Corollary 13. This follows trivially from Proposition 11 and Corollary 12. �
Proof of Proposition 14. We start by proving that a credal set that consists of a single degenerate mass 
function is an extreme credal set. Consider i ∈ N≤n and assume ex absurdo that the credal set M = {p◦i }
is not extreme. By Lemma 54, this implies the existence of two mass functions p1, p2 ∈ ΣX and 0 < λ < 1
such that p1 �= p2 and p◦i = λp1 + (1 − λ)p2, implying that 1 = p◦i (xi) = λp1(xi) + (1 − λ)p2(xi). Since 
the probabilities p1(xi) and p2(xi) cannot exceed one, this implies that p1(xi) = p2(xi) = 1, which in turn 
implies that p1 = p2 = p◦i , a contradiction. Hence, {p◦i } is an extreme credal set.

Any mass function p ∈ ΣX can be written as a convex combination of degenerate ones: we have that 
p =

∑n
i=1 p(xi)p◦i and therefore also that {p} =

∑n
i=1 p(xi){p◦i }. If p is not degenerate then there are at 

least two i �= j such that p(xi) > 0 and p(xj) > 0, so p is a non-trivial convex combination of at least two 
mass functions and therefore {p} is not an extreme credal set. �
Lemma 54. If a credal set M = {p} ∈ M(X ), p ∈ ΣX , can be written as a non-trivial convex combination 
λM1 + (1 − λ)M2, where M1, M2 ∈ M(X ), M1 �= M2 and 0 < λ < 1, then M1 and M2 are elements 
of M(X ), and so there are p1, p2 ∈ ΣX such that M1 = {p1} and M2 = {p2}, and p1 �= p2 and p =
λp1 + (1 − λ)p2.

Proof. Assume ex absurdo that at least one of the two credal sets M1 and M2 is not an element of M(X ), 
say M1. Consequently, M1 has at least two elements qa, qb ∈ ΣX , with qa �= qb. If we denote by p2 an 
arbitrary element of M2, then q1 := λqa + (1 − λ)p2 and q2 := λqb + (1 − λ)p2 by definition both belong 
to M = λM1 + (1 − λ)M2. But since λ > 0 and qa �= qb, we find that q1 �= q2, contradicting M ∈ M(X ). 
Therefore, M1 and M2 are indeed both elements of M(X ), meaning that there are p1, p2 ∈ ΣX such that 
M1 = {p1} and M2 = {p2}. It follows from M1 �= M2 that p1 �= p2 and from M = λM1 + (1 − λ)M2 that 
p = λp1 + (1 − λ)p2. �
Proof of Corollary 15. Due to the one-to-one correspondence between credal sets in M(X ) and linear 
previsions in P(X ), this is a trivial consequence of Propositions 3 and 14 and Corollary 4. �
Proof of Proposition 16. Consider any fully imprecise credal set M ∈ M(X ) that can be written as a non-
trivial convex combination λM1 + (1 − λ)M2, with M1, M2 ∈ M(X ), M1 �= M2 and 0 < λ < 1. Suppose 
ex absurdo that at least one of the credal sets M1 or M2 is not an element of M(X ), say M1 /∈ M(X ). 
This implies that there is some i ∈ N≤n such that min{p1(xi): p1 ∈ M1} > 0. Consequently, we find that

min
{
p(xi): p ∈ M

}
= min

{
λp1(xi) + (1 − λ)p2(xi): p1 ∈ M1 and p2 ∈ M2

}
= λmin

{
p1(xi): p1 ∈ M1

}
+ (1 − λ) min

{
p2(xi): p2 ∈ M2

}
> 0,

contradicting that M is fully imprecise. �
Proof of Corollary 17. Consider any fully imprecise lower prevision P ∈ P(X ) that can be written as 
a non-trivial convex combination λP 1 + (1 − λ)P 2, with P 1, P 2 ∈ P(X ), P 1 �= P 2 and 0 < λ < 1. Due 
to Proposition 3 and the one-to-one correspondence between credal sets and coherent lower previsions, this 
implies that MP = λMP 1 +(1 −λ)MP 2 , with MP 1 �= MP 2 . Since MP ∈ M(X ) by definition, we can apply 
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Proposition 16 to find that MP 1 and MP 2 are both fully imprecise. Therefore, their corresponding lower 
previsions P 1 and P 2 are also fully imprecise and thus elements of P(X ). �
Proof of Theorem 18. Consider any fully imprecise credal set M ∈ M(X ). To prove the direct implication, 
suppose that M can be written as a non-trivial convex combination λM1 + (1 − λ)M2, with M1, M2 ∈
M(X ), M1 �= M2 and 0 < λ < 1. We now need to prove that the projected credal set KM is Minkowski 
decomposable. To do so, we first apply Proposition 16 to find that, besides M , M1 and M2 are also elements 
of M(X ). Therefore, the projected credal sets KM , KM1 and KM2 are elements of K(X ). It follows from 
M1 �= M2 that KM1 �= KM2 and since KM ∈ K(X ), it follows by definition that KM = KM . Due to 
Proposition 6, we have that KM = λKM1 + (1 − λ)KM2 and therefore that KM = λKM1 + (1 − λ)KM2 , 
which by Theorem 10 means that KM is Minkowski decomposable, since the non-empty KM is compact 
and convex by definition and not a singleton because K(X ) and K(X ) are disjoint due to Corollary 7.

To prove the converse implication, suppose that KM is Minkowski decomposable. We now need to show 
that M can be written as a non-trivial convex combination λM1 + (1 − λ)M2, with M1, M2 ∈ M(X ), 
M1 �= M2 and 0 < λ < 1. Since KM ∈ K(X ), it is by definition not a singleton, compact and convex and, 
furthermore, KM = KM . Therefore, it follows from Theorem 10 that KM can be written as a non-trivial 
convex combination λK1 + (1 − λ)K2, with K1 and K2 both elements of K(X ), K1 �= K2 and 0 < λ < 1. 
Due to Proposition 6 and the one-to-one correspondence between credal sets and projected credal sets this 
implies that M = λMK1 + (1 − λ)MK2 , with MK1 �= MK2 . �
Proof of Corollary 19. Consider any fully imprecise lower prevision P ∈ P(X ). Due to Proposition 3 and 
the one-to-one correspondence between credal sets and coherent lower previsions, P can be written as 
a non-trivial convex combination λP 1 + (1 − λ)P 2, with P 1, P 2 ∈ P(X ), P 1 �= P 2 and 0 < λ < 1 if and 
only if MP = λMP 1 + (1 − λ)MP 2 , with MP 1 �= MP 2 . Due to Theorem 18, this in turn is the case if and 
only if KP := KMP

is Minkowski decomposable, which concludes the proof. �
Proof of Proposition 21. Assume ex absurdo that the vacuous credal set is not extreme, meaning that 
MV = λM1 + (1 − λ)M2 for some M1, M2 ∈ M(X ), M1 �= M2 and 0 < λ < 1. It now suffices to show 
for all i ∈ N≤n that p◦i ∈ M1 and p◦i ∈ M2. Using the convexity of M1 and M2 and the second part of 
Proposition 14, we will then find that M1 = MV = M2, a contradiction.

So fix any i ∈ N≤n. Since p◦i ∈ MV , we can infer from our assumption that p◦i = λp1 +(1 −λ)p2 for some 
p1 ∈ M1 and p2 ∈ M2. By definition of p◦i , we have p◦i (xi) = 1 and thus λp1(xi) + (1 − λ)p2(xi) = 1. Since, 
0 < λ < 1 and p1, p2 ∈ ΣX , the only way to achieve this is if p1 = p2 = p◦i , implying that p◦i is indeed an 
element of both M1 and M2. �
Proof of Corollary 22. Trivially from Proposition 21 and Corollary 4. �
Proof of Corollary 24. Fix a ternary possibility space X = {x1, x2, x3} and a fully imprecise credal set 
M ∈ M(X ). We know from Corollary 20 that M is extreme if and only if its projected credal set KM is 
Minkowski indecomposable, or by Theorem 23, if KM is a triangle or a line segment. Since line segments 
are degenerate triangles, we are left to prove that KM is a triangle if and only if we can find p1, p2, p3 ∈ ΣX

such that

M =
{ 3∑

i=1
λipi: (λ1, λ2, λ3) ∈ ΣX

}
,

which is trivial because projecting credal sets on KX preserves convex combinations; see for example 
Proposition 6. �
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Proof of Corollary 25. Fix a ternary possibility space X = {x1, x2, x3} and a fully imprecise lower prevision 
P ∈ P(X ). We know from Corollary 4 that P is extreme if and only if its corresponding credal set MP is, 
or by Corollary 24, if we can find p1, p2, p3 ∈ ΣX such that MP = {

∑3
i=1 λipi: (λ1, λ2, λ3) ∈ ΣX }. By 

letting P1, P2 and P3 be the linear previsions that correspond to the probability mass functions p1, p2
and p3 respectively, we infer from Eq. (1) that for all f ∈ G (X )

P (f) = min
{
Pp(f): p ∈ MP

}
= min

{ 3∑
i=1

λiPi(f): (λ1, λ2, λ3) ∈ ΣX

}
= min

i∈N≤3
Pi(f). �

Proof of Corollary 27. Consider any M ∈ M(X ) that is the convex hull of m affinely independent mass 
functions pi, i = 1, . . . , m. Note that this is only possible if m ≤ n. Then clearly, KM is the convex hull of 
the points vpi

, i = 1, . . . , m, which are affinely independent as well. Hence, KM is a simplex in Rn−1 and 
therefore, due to Theorem 26, Minkowski indecomposable. By applying Corollary 20, we find that M is an 
extreme credal set. �
Proof of Corollary 28. Consider any P ∈ P(X ) that is the lower envelope of m affinely independent linear 
previsions Pi, i = 1, . . . , m. Let pi ∈ ΣX , i = 1, . . . , m, be the unique mass functions for which Pi = Ppi

. 
Then MP is the convex hull of the mass functions pi, i = 1, . . . , m, which are affinely independent because 
the linear previsions Pi are, implying that m ≤ n. Due to Corollary 27, MP is extreme and therefore, by 
applying Corollary 4, we find that P is extreme as well. �
Proof of Proposition 30. Since M(X ) is a metric space, it suffices to show that for every M ∈ M(X ), there 
is a sequence of decomposable credal sets Mi that converges to M . Choose 0 < ε < 1 and M ∗ ∈ M(X )
such that M ∗ �= M and let, for all i ∈ N, Mi := εiM ∗ + (1 − εi)M , so the credal set Mi is clearly 
decomposable. We then find that

max
p∈M

min
pi∈Mi

d(p, pi) = max
p∈M

min
p∗∈M∗

p′∈M

d
(
p, εip∗ +

(
1 − εi

)
p′
)
≤ max

p∈M
min

p∗∈M∗
d
(
p, εip∗ +

(
1 − εi

)
p
)

= max
p∈M

min
p∗∈M∗

εid
(
p, p∗

)
= εi max

p∈M
min

p∗∈M∗
d
(
p, p∗

)
≤ εi,

and

max
pi∈Mi

min
p∈M

d(p, pi) = max
p∗∈M∗

p′∈M

min
p∈M

d
(
p, εip∗ +

(
1 − εi

)
p′
)
≤ max

p∗∈M∗

p′∈M

d
(
p′, εip∗ +

(
1 − εi

)
p′
)

= max
p∗∈M∗

p′∈M

εid
(
p′, p∗

)
= εi max

p∗∈M∗

p′∈M

d
(
p′, p∗

)
≤ εi.

Hence, d(M , Mi) ≤ εi, implying that Mi indeed converges to M . �
Proof of Corollary 31. This is a special case of Proposition 49. �
Proof of Corollary 32. Follows directly from Proposition 30 and Corollaries 4 and 31. �
Proof of Theorem 33. Since n = 3, and due to Corollary 24, extM(X ) can be identified with M(X ) ∩K 3

3 , 
where K 3

3 is the set consisting of all polytopes in C 3 that have at most 3 vertices. We know from Appendix A
that M(X ) is closed and, by applying Lemma 55 with k = m = 3, we find that K 3

3 is closed, so extM(X )
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is closed as well. Therefore, M(X ) \ extM(X ) is an open subset of M(X ) that, by Proposition 30, is dense 
in M(X ). By definition, this means that extM(X ) is a nowhere dense closed subset of M(X ). �
Lemma 55. Consider any m ∈ N, then the set K k

m of all polytopes in C k that have at most m vertices is 
a closed subset of C k.

Proof. Consider any sequence of polytopes Ki, i ∈ N, each of which is an element of K k
m , such that this 

sequence converges to some element of C k, say C. We will prove that C is an element of K k
m as well.

For any i ∈ N, since Ki has at most m vertices, it is possible to find m points vi,1, . . . , vi,m in Rk such 
that Ki is their convex hull. Since the sequence Ki, i ∈ N, converges to the compact (and therefore bounded) 
set C, the sequence vi,1, i ∈ N, is bounded, which implies that we can apply the Bolzano–Weierstraß theorem
to find a convergent subsequence vir,1, r ∈ N, that converges to some v1 ∈ Rk. Now let Kir , r ∈ N, be the 
corresponding subsequence of polytopes. Then since Ki, i ∈ N, converges to C, we have that Kir , r ∈ N, 
converges to C as well. Hence, we may assume without loss of generality that the sequence vi,1, i ∈ N, 
converges to v1 (simply replace the original sequence Ki, i ∈ N, by the subsequence Kir , r ∈ N). Next, 
we consider the sequence vi,2, i ∈ N. Again, in much the same way, we find that there is a convergent 
subsequence vi�,2, � ∈ N, that converges to some v2 ∈ Rk. The corresponding subsequences Ki� , � ∈ N, 
and vi�,1, � ∈ N, converge to C and v1, respectively. Hence, we may assume without loss of generality that 
the sequences vi,1, i ∈ N, and vi,2, i ∈ N, converge to v1 and v2, respectively (simply replace the sequence Ki, 
i ∈ N, by the subsequence Ki� , � ∈ N). By repeating this argument for every j ∈ {1, . . . , m}, we find that 
we can assume without loss of generality that, for all j ∈ {1, . . . , m}, the sequence vi,j , i ∈ N, converges to 
some vj ∈ Rk.

Now let K be the convex hull of the points vj , j ∈ {1, . . . , m}. Then since, for all j ∈ {1, . . . , m}, the 
sequence vi,j , i ∈ N, converges to vj , it is not hard to infer that the sequence Ki, i ∈ N, converges to K
or, equivalently, that C = K. Indeed, if we denote by Σm the simplex of all probability mass functions 
(λ1, . . . , λm) on {1, . . . , m}, we get for any i ∈ N that

max
v∈K

min
v′∈Ki

δ
(
v, v′

)
= max

(λ1,...,λm)∈Σm

min
(λ′

1,...,λ
′
m)∈Σm

δ

(
m∑
j=1

λjvj ,
m∑
j=1

λ′
jvi,j

)

≤ max
(λ1,...,λm)∈Σm

δ

(
m∑
j=1

λjvj ,
m∑
j=1

λjvi,j

)

≤ max
(λ1,...,λm)∈Σm

m∑
j=1

λjδ(vj , vi,j) ≤
mmax
j=1

δ(vj , vi,j),

and similarly, we also find that maxv′∈Ki
minv∈K δ(v, v′) ≤ maxm

j=1 δ(vj , vi,j), leading us to conclude that 
δ(K, Ki) ≤ maxm

j=1 δ(vj , vi,j) → 0. Hence, since K is clearly an element of K k
m , so is C. �

Proof of Corollary 34. Follows directly from Theorem 33 and Corollaries 4 and 31. �
Proof of Theorem 35. Immediate consequence of Lemma 56, Corollary 20 and Proposition 48. �
Lemma 56. For n ≥ 4, the Minkowski indecomposable elements of K(X ) constitute a dense Gδ subset.

Proof. The starting point for this proof is that for k ≥ 3, the Minkowski indecomposable non-empty convex 
compact subsets of Rk are a dense Gδ subset of C k [26, Theorem 3.2.14]. For ease of reference, we denote 
this subset by indC k. Since for n ≥ 4 and k = n − 1, the set of all Minkowski indecomposable elements of 
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K(X ) is equal to K(X ) ∩ indC k, we are left to prove that, for k ≥ 3 and n = k + 1, K(X ) ∩ indC k is 
a dense Gδ subset of K(X ).

We first prove that K(X ) ∩ind C k is Gδ. Since indC k is a Gδ subset of C k, it can be written as a countable 
intersection 

⋂∞
i=1 C k

i of open subsets C k
i of C k, and therefore K(X ) ∩ ind C k = K(X ) ∩

⋂∞
i=1 C k

i =⋂∞
i=1[K(X ) ∩ C k

i ] is a countable intersection of open subsets K(X ) ∩ C k
i of K(X ). Hence K(X ) ∩ indC k

is a Gδ subset of K(X ).
Next, we prove that K(X ) ∩ ind C k is dense in K(X ). Consider any C ∈ K(X ) and therefore also 

C ∈ C k. Then we have to prove that there is some sequence of elements of K(X ) ∩ ind C k that converges 
to C. Since indC k is a dense subset of C k, there is a sequence of Ci ∈ indC k that converges to C. Since C
is not a singleton, we can assume without loss of generality that, for all i ∈ N, Ci is not a singleton. Hence, 
after applying Lemma 57, we find that the sequence Ci converges to C as well. This concludes the proof 
since, for all i ∈ N, Ci ∈ K(X ) ∩ indC k because of Propositions 8 and 9. �
Lemma 57. Consider any K ∈ K(X ), with n = k + 1, and any sequence of non-singleton Ci ∈ C k that 
converges to K. Then Ci converges to K as well.

Proof. By assumption, limi→∞ δ(K, Ci) = 0. Since m(·) and μ(·) are continuous operators, and since 
m(K) = 0 and μ(K) = 1, this implies that limi→∞ m(Ci) = 0 and limi→∞ μ(Ci) = 1. Also, for all 
i ∈ N, μ(Ci) > 0 because by assumption, Ci is not a singleton. Hence, we can define λi := 1/μ(Ci) > 0 for 
all i ∈ N. Clearly also limi→∞ λi = 1. By definition of Ci and δ, and also recalling that δ is a metric, we 
find that

δ(K,Ci) = δ
(
K,λi

[
Ci −m(Ci)

])
≤ δ(K,λiK) + δ

(
λiK,λi

[
Ci −m(Ci)

])
≤ (1 − λi) max

v∈K
‖v‖ + λiδ

(
K,Ci −m(Ci)

)
≤ (1 − λi) max

v∈K
‖v‖ + λiδ(K,Ci) + λiδ

(
Ci, Ci −m(Ci)

)
≤ (1 − λi) max

v∈K
‖v‖ + λiδ(K,Ci) + λi

∥∥m(Ci)
∥∥,

implying that limi→∞ δ(K,Ci) = 0, so the sequence Ci converges to K. �
Proof of Corollary 36. Follows directly from Theorem 35 and Corollaries 4 and 31. �
Proof of Proposition 37. Consider any finitely generated credal set M ∈ M(X ). Then due to Proposition 11, 
it can be written as a (possibly degenerate) convex combination of a credal set M1 ∈ M(X ) that is 
a singleton and a fully imprecise credal set M2 ∈ M(X ). Clearly, M1 and M2 are both finitely generated. 
By Proposition 14 and Lemma 58, M1 and M2 can both be written as a finite convex combination of finitely 
generated extreme credal sets. Hence, M can be written as a finite convex combination of finitely generated 
extreme credal sets. �
Lemma 58. Every finitely generated fully imprecise credal set can be written as a finite convex combination 
of finitely generated fully imprecise extreme credal sets.

Proof. The starting point for this proof is that every polytope K ∈ C k that is not a singleton can be 
written as a finite sum of Minkowski indecomposable polytopes Ki ∈ C k, i ∈ {1, . . . , r} (each of which is by 
definition not a singleton) [18, Theorem 4]. Consider now any finitely generated fully imprecise credal set 
M ∈ M(X ). Then for k = n − 1, KM is a polytope in C k that is not a singleton. By combining the result 
mentioned in the beginning of this proof with Lemma 59, we find that KM can be written as a finite convex 
combination of Ki, i ∈ {1, . . . , r}, in which every Ki is a Minkowski indecomposable polytope and therefore, 
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by Propositions 8 and 9 and Eq. (6), every Ki is a Minkowski indecomposable polytope in K(X ). Applying 
Proposition 6 multiple times, we find that M = MKM can be written as a finite convex combination of 
the credal sets MKi

. This concludes the proof since, for all i ∈ {1, . . . , r}, the fact that Ki is an element of 
K(X ) that is furthermore a Minkowski indecomposable polytope implies that MKi is an element of M(X )
that is furthermore extreme (Corollary 19) and finitely generated. �
Lemma 59. Fix k ∈ N and consider any C ∈ C k that is not a singleton. If C can be written as a finite 
Minkowski sum of Ci ∈ C k, i ∈ {1, . . . , r}, each of which is not a singleton, then C can be written as a finite 
convex combination of Ci, i ∈ {1, . . . , r}.

Proof. Since C =
∑r

i=1 Ci, we find that m(C) =
∑r

i=1 m(Ci) and μ(C) =
∑r

i=1 μ(Ci). Furthermore, for 
all i ∈ {1, . . . , r}, μ(Ci) > 0 because Ci is by assumption not a singleton. Let λi := μ(Ci)/μ(C) > 0 for all 
i ∈ {1, . . . , r}, then 

∑r
i=1 λi = 1. Hence, 

∑r
i=1 λiCi is a convex combination of the Ci, i ∈ {1, . . . , r}. This 

concludes the proof since

r∑
i=1

λiCi = 1
μ(C)

r∑
i=1

[
Ci −m(Ci)

]
= 1

μ(C)

(
r∑

i=1
Ci −

r∑
i=1

m(Ci)
)

= 1
μ(C)

[
C −m(C)

]
= C. �

Proof of Corollary 38. Since finitely generated credal sets correspond to finitely generated lower previsions, 
and extreme credal sets to extreme lower previsions (see Corollary 4), this follows rather directly from 
Proposition 37 by applying Proposition 3 multiple times. �
Proof of Theorem 39. The first part of this theorem is an immediate consequence of Lemmas 60 and 58. 
The second part follows from Lemma 61. �
Lemma 60. Every fully imprecise credal set can be approximated arbitrarily closely by a finitely generated 
fully imprecise credal set.

Proof. Consider any M ∈ M(X ). Then for k = n −1, KM ∈ K(X ) is not a singleton. Due to, for instance, 
Ref. [4, Chapter IV, Theorem 2.8(d)], there is a sequence of non-singleton polytopes Ci ∈ C k, i ∈ N, that 
converges to KM . By applying Lemma 57, we find that the sequence Ci ∈ K(X ), i ∈ N, converges to KM

as well. Hence, by Proposition 48, the sequence MCi
, i ∈ N converges to MKM = M . This concludes the 

proof since, for all i ∈ N, Ci is a polytope because Ci is, and therefore MCi
is finitely generated. �

Lemma 61. For n ≥ 4, every fully imprecise credal set can be approximated arbitrarily closely by a finitely 
generated fully imprecise extreme credal set.

Proof. Consider any M ∈ M(X ). Then for k = n − 1, KM ∈ K(X ) is not a singleton. Due to, for 
instance, Ref. [4, Chapter IV, Theorem 2.8(a)], there is a sequence of simplicial polytopes Ci ∈ C k, i ∈ N, 
that converges to KM . Clearly, without loss of generalisation, we can assume that none of these Ci are 
singletons (because KM is not). By applying Lemma 57, we find that the sequence Ci ∈ K(X ), i ∈ N, 
converges to KM as well. Hence, by Proposition 48, the sequence MCi

, i ∈ N converges to MKM = M . 
This concludes the proof because, for all i ∈ N, since Ci is a simplicial polytope, Ci is also a simplicial 
and therefore Minkowski indecomposable (because k ≥ 3; see the text below Corollary 28 in Section 6.3)
polytope, implying that MCi

∈ M(X ) is extreme (by Corollary 20) and finitely generated. �
Proof of Corollary 40. Immediate consequence of Theorem 39, Proposition 3 and Corollaries 4 and 31. �
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Proof of Proposition 41. Consider any subset A of M(X ) that consists of finitely generated credal sets and 
for which there exists some m ∈ N such that every M ∈ A is the convex hull of at most m mass functions. 
Assume ex absurdo that A is a universal approximating class for M(X ).

Now let k = n − 1, implying that k ≥ 3, and let C be any Minkowski indecomposable polytope in C k

that has more than m vertices. It is always possible to construct such a polytope: for any v > k, one can 
for example construct a k-dimensional cyclic polytope with v vertices, which is always simplicial—see for 
example Ref. [8, p. 61–62]—and therefore, since k ≥ 3, Minkowski indecomposable because of Theorem 26. 
By Propositions 8 and 9, C is a Minkowski indecomposable polytope in K(X ). Clearly, since C has more 
than m vertices, C has more than m vertices as well.

Now consider the credal set MC ∈ M(X ). Since by assumption, A is a universal approximating class 
for M(X ), there is a sequence of credal sets Mi, i ∈ N, that converges to MC such that, for all i ∈ N, 
Mi is a finite convex combination of credal sets in A . By Proposition 48, the corresponding sequence KMi

, 
i ∈ N, converges to C. By Proposition 6, each element KMi

of this sequence is a finite convex combination 
of elements of K k

m , which is the set consisting of all polytopes in C k that have at most m vertices. Since C
is Minkowski indecomposable, this implies that the closure of K k

m contains a homothetic copy C ′ of C [26, 
Theorem 3.3.3]. By combining this with Lemma 55, we find that C ′ ∈ K k

m . However, since C has more 
than m vertices, C ′ has more than m vertices as well, a contradiction. �
Proof of Corollary 42. Since by Proposition 3, convex combinations are preserved when going from credal 
sets to coherent lower previsions, this follows easily from Proposition 41 and Corollary 31. �
Proof of Proposition 43. We provide a proof by contraposition. Assume that E is not extreme or, equiva-
lently, that we can find P ∗

1, P
∗
2 ∈ P(X ) such that P ∗

1 �= P ∗
2 and λP ∗

1+(1 −λ)P ∗
2 = E, with 0 < λ < 1. Let P 1

and P 2 be the restrictions to F of P ∗
1 and P ∗

2, respectively. Then P 1 and P 2 are coherent. Furthermore, 
since P is coherent, E coincides with P on F and therefore, we have that P = λP 1 + (1 − λ)P 2. In order 
to prove that P is not extreme, it suffices to show that P 1 �= P 2.

Now let E1 and E2 be the natural extensions of P 1 and P 2 to G (X ), respectively. Then since P 1 and P 2
are coherent, E1 and E2 are by definition the pointwise smallest coherent lower previsions on G (X ) that 
coincide with P 1 and P 2 on F , respectively. Similarly, E is the pointwise smallest coherent lower prevision 
on G (X ) that coincides with P on F . Assume ex absurdo that P ∗

1 �= E1. Then we infer that, for at least 
one f1 ∈ G (X ), E1(f1) < P ∗

1(f1). Consider now P ∗ := λE1 + (1 − λ)P ∗
2. Then P ∗ is a coherent lower 

prevision on G (X ). Furthermore, since E1 and P ∗
1 both coincide with P 1 on F , we find that P ∗ and E

coincide with P on F . Therefore, by definition of E, for all f ∈ G (X ), E(f) ≤ P ∗(f). However, we also 
have that

P ∗(f1) = λE1(f1) + (1 − λ)P ∗
2(f1) < λP ∗

1(f1) + (1 − λ)P ∗
2(f1) = E(f1),

a contradiction. Hence, we infer that P ∗
1 = E1. Similarly, by symmetry, we find that P ∗

2 = E2. Assume 
ex absurdo that P 1 = P 2. Then E1 = E2 and therefore also P ∗

1 = P ∗
2, a contradiction. Hence, we find that 

P 1 �= P 2 and therefore that P is an extreme coherent lower prevision on F . �
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