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Credal networks: basic setup
A finite
@ \ number of
S x,€X,

variables

@ Every variable X, takes values x,
in some finite non-empty set X,
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Credal networks: local uncertainty models
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K (X xP(S)) credal set

@ P ( xP(s)) lower prevision
@S set of desirable gambles

JXP(S)



Credal networks: epistemic irrelevance

K(X; xP(s)) = K(X; ‘xP UN(S))
(%, P(-lxps)) = Ps(-[xps)un(s)
@SJXP(s) ~ '@SJXP (S)UN(s)
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Credal networks: a joint model
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Credal networks using credal sets

@ Kirr ( XG)
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natural extension

The most conservative one |

K (Xs|xp(s)) = K(Xs|Xp(s)un(s) )}—

@ Introduced by Cozman (2000) under the
assumption of positive lower probability.




Credal networks using credal sets

A

irrelevant
natural extension
@ The most conservative one !
K(Xs|xp(s)) = K(Xs|xpjun(s) )}—

Introduced by Cozman (2000) under the
assumption of positive lower probability.
Description in terms of linear constraints!




Credal networks using credal sets

Kirr ( XG)

Evidence nodes

()

" |nference problems can be reduced to solving a

(potentialy large) linear program! o
\_/

" Lots of potential to derive both outer and inner
approximations



Credal networks using lower previsions
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The most conservative one |

P(-lxps)) = Ps(-[xpis)un(s) }'

Introduced for trees by de Cooman et al. (2010)
and extended to general networks by De Bock &
de Cooman (2013), without positivity assumptions.

The joint is still described by the same linear constraints!



Bayesian networks: useful properties

Evidence nodes
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Credal networks: useful properties ?

Conditional
? marginalisation
. °
properties  p_ceparated
? evidence is
o ¥ / s hot relevant
(OMRS Barren nodes

can be removed

V (Cozman 2000)

Credal networks under
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Credal networks using SDGs
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The most conservative one |

‘@SJ XP(s) — Zs] AP(s)UN(s) }

e Introduced by De Bock & de Cooman (2013)
= Simplifies coherence proofs for LPs
" (conditional) marginalisation properties
= AD-separation implies irrelevance




Credal networks: useful properties ¢
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Credal trees: efficient (linear!) algorithms

Evidence @ @ @
“Query

Single query node
(de Cooman et al. 2010)

Example:

ﬂ—. kalman filtering
\/ (Benavoli et al. 2011)
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Credal trees: efficient (linear!) algorithms

Evidence

Query nodes on

a directed path
(unpublished work)

ﬂ { Example: finding maximin
\_/ solution in imprecise Viterbi
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Credal trees: efficient (linear!) algorithms

e @ —0—0—0

Sum of gambles
(unpublished work)

ﬂ g Example: time averages in
N gueueing systems



Credal trees: efficient (linear!) algorithms

Non-negaﬁve gamb|es (In trees, the joint can be constructed

recursively by applying marginal extension
_ e and independent natural extension)

Product of gambles
(unpublished work) p
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