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We generalise Cozman’s (2000) concept of a credal network under X7 27
epistemic irrelevance to the case where lower (and upper) probabilities
are allowed to be zero. Our main definition is expressed in terms of
coherent lower previsions and imposes epistemic irrelevance With every node s of a finite
by means of strong coherence rather than element-wise Bayes’s rule Y , We associate a variable X; taking values in
. We also present a number of alternative representations for 6 X10 some finite, non-empty set Z;. The set of all nodes
the resulting joint model, both in terms of lower previsions and credal iIs denoted by G. For every subset S C G, the joint
sets, amongst which an intuitive characterisation of the joint credal set variable X takes values in Z5:= x,c5%Z;. For every
by means of linear constraints (1V). We then apply our method to a s € G, we denote by P(s) the set consisting of the
simple case: the independent natural extension for two binary variables X5 parent nodes of s. Similar to what is done in classi-
(V). This allows us to, for the first time, find analytical expressions for D(3) cal Bayesian networks,
the extreme points of this special type of independent product.
. For all s € G and every
X4 P(3) instantiation xp(,) € Zp(s) Of Xp(,), We require a
K (Xs|xp(s)) or, equivalently, a
N(3) Bs("xP(s)) on ¢ (%)
K(X; |XP(3)) X3
P ( - ’xP(3))
We will model a subject’s beliefs about the value
that a variable X assumes in some set 2 by means
of two different, although mathematically equivalent,
iImprecise-probabilistic methods. The approach that X, We provide the graphical structure of the network with the following interpre-
is perhaps best known is to use a K(X), X5 tation: for any node s € G, its XN (s)
defined as a closed convex subset of X 4, which to X, conditional on Xp. (In our paper, we also
IS the set containing all probability mass functions require this for subsets of N(s). We do not impose these additional assess-
on Z. The second approach is to use the associ- ments on this poster because we have recently discovered that, at least for
ated Pon ¥ (%), where Loz = 21 %X 2 the unconditional joint model, they are redundant.) Put more mathematically,
¢4 (Z") is the set of all gambles on 2 It is given by and using PN(s) as a shorthand notation for P(s) UN(s), we require that
P(f) =min{P,(f): p(X) e K(X)} forall f e 9 (%), ¥ K (Xslxpn(s)) = K (Xslxp(y)) for all s € G and xpy(5) € Zpn(s)» (1)
where P, is the expectation operator (prevision) for t the right hand side of these equations being provided by the local models
ﬂ;e prﬁbab'“:]y masls functlon.p.(X) ) The cridal 2E Xi3 In order to translate this into a property of a joint model K(X¢),
of such a coherent lower prevision is given by for every p(Xo) € K(Xg),
K(X)={peXy: (Vf€9(Z))P(f)=P(f)} (Cozman 2000). Under this assumption, K(Xs) can be condi-
thereby establishing the mathematical equivalence. X tioned by means of (applying Bayes’s rule to
12 every p(Xg) € K(Xs)), thereby making it possible to impose Eq. (1).
X4 by using an approach based on lower
previsions, replacing Eq. (1) by the equivalent statement that
Bs("xPN(s)) = Bs('le(s)) for all s € G and xpy () € Zpy(s)» (2)
where, again, the right hand side is provided by the local models (' |. Since,
and xp(;) € Zp(s), IS the solution set to a local unitary constraint Y use a different method for making the conditional models in Eq. (2) consistent
and a set of linear homogeneous inequalities of the form 15 with the joint model P.: we require them to be ~ We
Y..,c2,P(zs|xp(5)) ¥(zs) > 0, where y takes values in some (possibly in- prove that, in our particular case, this is equivalent to requiring that
finite, but often finite) set I'(s,xp(;)) € ¥ (Z;)- We show that, even
without the positivity assumption (I1), these local constraints PG (Lepy )18 = Ps(8lxp(s))]) = 0 @and Pg(ILy,  [¢ = Ps(glxp(s))]) = O
can be used to derive an intuitive characterisation of the ir- for all s € G, xpy(;) € Zpn(s) @nd g € 4(Z5). This formula is known as
relevant natural extension K™ (Xg) in terms of linear con- (GBR) and is equivalent to element-wise Bayes’s rule
straints. K" (X¢) is the solution set to the global unitary constraint if the positivity assumption is satisfied. It should therefore be clear that
and, for all s € G, xpy(5) € Zpn(s) @Nd ¥ € T'(s,xp(5)), @ linear homo- X16
geneous inequality ¥ ;e 2; ¥, e, P(XpN(s)>25:2p(s)) Y(25) 2> 0.
The properties that we impose on our network
K(Xi) K(X>) p(h1)p(t1)p(h2)P(12) PAL PA2, A3 PA4 remove psi can be satisfied by multiple coherent lower previsions
Y DAl—Ad, DBI—Ba. those for ——> * | ps), BG. on Y(Zg). Howevgr, amo.ngs’F them, there is a
] > T > wniech > F e unigue most conservative (pointwise smallest) one.
. R gm0 || pss We call it the of the net-
2i=1{h,ny 2= {hb) p(h1)p(t1)p(ha)p(t2) DB, PB2, PB3, PBA work and denote it by PI'. We show that P is the
pointwise smallest coherent lower prevision on ¢4 (Z¢)
such that for all s € G, xpy(5) € Zpn(s) @Nd g € 9 (Z5)
For the simple credal network hi,hy) Y. hi, )Y t,ho) Y tt) X )3
oove, K17 18 he Socalbd 1 o s ) ) o Pl s~ B sler)]) =0
above, & 5 IS the So-Called In- psi | p(h1)p(h2) p(h1)p(t2) p(t)p(h) p(t1)p(2) 1 .
dependent natural extension R o6 67 (h) S6)p(e) 1 We also prove the following , . |
of K(X,) and K(X»). Every K(X;), = = 0% S PRUPE MBS K'(Xg): it consists
with i € {1,2}, is fully determined ps3 P(hi)p(ha) P(h1)p(12) p(t1)p(h) p(11)p(12) ! of all probability mass function p(Xs) on 2 for which
by the lower probability p(h;) psa | 5(h1)B(hs) B(h)p(ta) p(t)p(ha) p(t)p(n) 1 for all s € G and xpy () € Zpyy(s) there are a real number
N >
‘and UE)per prObablh.t.y p(fh‘i) |Of’ par p(h1)p(h)p(h2) p(hi)p(h)p(22) p(t)P(h1)p(h2) | p(hi)p(t1)P(r2) p(h)P(22) +P (1) p(ha) A 2 0anda p(Xilxp()) € K(Xilxp(;)) such that
iZesgjr;d'g;e ILE)yroll:?)(atl.c;lI.|t_y10_ ;';) paz | p(h)p(h)p(ha) | p(h)B(h1)p(t2) p(h)p(t)B(ha) B(11)B(h)p(r2) | p(h)B(h2) + B (k) p(t2) Y pi1€ 2 PPN () Xs:2D(s5)) = Ap(Xilxp(s) )
nd B —p_(h,-l). Using thle pas | BUB(E)p (1) | p(t)p()B(Es) | p(t)Ble)p () | p()PE)B() | ple)B(m) +B(e) p(h) where we use D(s) to denote the set consisting of the
linear constraints in (IV), we pas | p(t)p(h1)p(h2) | P(h1)p(t1)p(r2) | p(t1)P(t1)P(h2)  p(t1)P(t1)p(r2) | p(t1)P(h2) +P(t1)p(t2) descendants of the node s.
h.ave derived analytical e?(presf- et p()p(ha)p(hy) B() () p(h)  plhn)B(h)p(1) | p(h)p(L)B(n)  plha)B(n) + B(ha) p(h) We Dbelieve that most of
sions forthe extreme points of = 1, v o)p(h) | p(0)B(n)p(h) | pE)p()B) | po)BE)BH) | pli)B(n) +Bl)p(h)
K|,y They can be found using
the table and diagram to the right; pes | PUh2)p(h2)P() | plh2)p(12)P (1) | p(R2)P(R2)p(t1) | P02)P(R2)p(t1) | pUR2)P(h1) + P (k) p(11) . Combined with linear programming (1V),
see our paper for more details. pea  p(L)p(h)p(h)  p(L)P(L)P(h) DP(h)p(t)p(ti) pL)P(tL)p(t) | p(t2)D(hi) +D(6)p(t) this might allow for efficient inference algorithms.




