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Abstract
We present a new approach to credal networks, which are
graphical models that generalise Bayesian nets to deal with
imprecise probabilities. Instead of applying the commonly
used notion of strong independence, we replace it by the
weaker notion of epistemic irrelevance. We show how as-
sessments of epistemic irrelevance allow us to construct a
global model out of given local uncertainty models, leading
to an intuitive expression for the so-called irrelevant nat-
ural extension of a network. In contrast with Cozman [2],
who introduced this notion in terms of credal sets, our main
results are presented using the language of sets of desirable
gambles. This has allowed us to derive a number of useful
properties of the irrelevant natural extension. It has power-
ful marginalisation properties and satisfies all graphoid
properties but symmetry, both in their direct and reverse
forms.
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1 Introduction

In his overview paper [2], Cozman discussed and compared
a number of different extensions for so-called credal net-
works, which generalise standard Bayesian networks to
allow for imprecise probability assessments.

One of these extensions is the so-called irrelevant nat-
ural extension, which captures that the non-parent non-
descendants of any variable in the network are epistemic-
ally irrelevant to that variable given the value of its parents.
Cozman argues that of all the possible extensions, this irrel-
evant natural extension is perhaps the most appealing one.
Nevertheless, it has thus far received little attention.

The present paper tries to remedy this situation by provid-
ing a firm theoretical foundation for the irrelevant natural
extension of a network, leading to, amongst other things, a
powerful marginalisation property and a proof that it satis-
fies all graphoid properties but symmetry.

The main results are stated using the theory of sets of desir-
able gambles, which we introduce in Section 2. We go on
to introduce and discuss important concepts such as direc-
ted acyclic graphs and epistemic irrelevance in Section 3,
and use these in Section 4 to show how assessments of epi-
stemic irrelevance can be combined with given local sets of
desirable gambles to construct a joint model. We call this
the irrelevant natural extension of the credal network and
prove that it is the most conservative coherent model that
extends the local models and expresses all conditional irrel-
evancies encoded in the network. In Section 5 we present
a powerful marginalisation property, and in Section 6, we
use an asymmetric version of D-separation to show that the
irrelevant natural extension satisfies all graphoid properties
except symmetry, both in their direct and reverse forms.
Finally, Section 7 establishes a connection between the sets
of desirable gambles approach to credal networks under
epistemic irrelevance that we presented in this paper, and a
similar approach using coherent lower previsions.

2 Sets of desirable gambles

Consider a variable X taking values in some non-empty and
finite set X. Beliefs about the possible values this variable
may assume can be modelled in various ways: probability
mass functions, credal sets and coherent lower previsions
are only a few of the many options. We choose to adopt a
different approach, using sets of desirable gambles. We will
model a subject’s beliefs regarding the value of a variable
X by means of his behaviour: which gambles (or bets) on
the unknown value of X would our subject strictly prefer to
the status quo (the zero gamble).

Although they are not as well known as other (imprecise)
probability models, sets of desirable gambles have definite
advantages. To begin with, they are more expressive than
both credal sets and lower previsions. For example, they
are easily able to deal with such things as conditioning on
events with probability zero, which tends to be much more
involved when using other imprecise probability models.
Secondly, they have the advantage of being operational,



meaning that there is a practical way of constructing a
model that represents the subject’s beliefs. For sets of desir-
able gambles this can be done by offering the subject certain
gambles and asking him whether or not he strictly prefers
them to the status quo. And finally, our experience tells us
that it is usually easier to construct proofs in the language
of coherent sets of desirable gambles than in other, perhaps
more familiar languages. We give a brief survey of the ba-
sics of sets of desirable gambles and refer to Refs. [7, 1, 12]
for more details and further discussion.

2.1 Desirable gambles

A gamble f is a real-valued map on X that is interpreted as
an uncertain reward. If the value of the variable X turns out
to be x, the (possibly negative) reward is f (x). A non-zero
gamble is called desirable to a subject if he strictly prefers
to zero the transaction in which (i) the actual value x of the
variable is determined, and (ii) he receives the reward f (x).
The zero gamble is therefore not considered to be desirable.

We model a subject’s beliefs regarding the possible values
X that a variable X can assume by means of a set D of
desirable gambles—some subset of the set G (X ) of all
gambles on X. For any two gambles f and g in G (X ), we
say that f ≥ g if f (x)≥ g(x) for all x in X and f > g if
both f ≥ g and f 6= g. We use G (X )>0 to denote the set
of all gambles f ∈ G (X ) for which f > 0 and G (X )≤0 to
denote the set of all gambles f ∈ G (X ) for which f ≤ 0.
As a special kind of gambles we consider indicators IA of
events A⊆X. IA is equal to 1 if the event A occurs—the
variable X assumes a value in A—and zero otherwise.

2.2 Coherence

In order to represent a rational subject’s beliefs about the
values a variable can assume, a set D ⊆ G (X ) of desirable
gambles should satisfy some rationality requirements. If
these requirements are met, we call the set D coherent. We
require that for all f , f1, f2 ∈ G (X ) and all real λ > 0:

D1. if f ≤ 0 then f /∈D ;

D2. if f > 0 then f ∈D ;

D3. if f ∈D then λ f ∈D ; [scaling]

D4. if f1, f2 ∈D then f1 + f2 ∈D . [combination]

Requirements D3 and D4 turn D into a convex cone:
posi(D) =D , where we use the positive hull operator ‘posi’
that generates the set of finite strictly positive linear com-
binations of elements of its argument set:

posi(D) :=
{ n

∑
k=1

λk fk : fk ∈D ,λk ∈ R+
0 ,n ∈ N0

}
.

Here R+
0 is the set of all (strictly) positive real numbers,

and N0 the set of all natural numbers (zero not included).

3 Credal networks

3.1 Directed acyclic graphs

A directed acyclic graph (DAG) is a graphical model that is
well known for its use in Bayesian networks. It consists of
a finite set of nodes (vertices), joined into a network by a
set of directed edges, each edge connecting one node with
another. Since this directed graph is assumed to be acyclic,
it is not possible to follow a sequence of edges from node
to node and end up at the same node one started out from.

We will call G the set of nodes s associated with a given
DAG. For two nodes s and t, if there is a directed edge from
s to t, we denote this as s→ t and say that s is a parent
of t and t is a child of s. A single node can have multiple
parents and multiple children. For any node s, its set of
parents is denoted by P(s) and its set of children by C(s).
If a node s has no parents, P(s) = /0, and we call s a root
node. If C(s) = /0, then we call s a leaf, or terminal node.

Two nodes s and t are said to have a path between them if
one can start from s, follow the edges of the DAG regardless
of their direction and end up in t. In other words: one can
find a sequence of nodes s = s1, . . . ,sn = t, n≥ 1, such that
for all i ∈ {1, . . . ,n− 1} either si → si+1 or si ← si+1. If
this sequence is such that si→ si+1 for all i∈ {1, . . . ,n−1}
(all edges in the path point away from s), we say that there
is a directed path from s to t and write s v t. In that case
we also say that s precedes t. If s v t and s 6= t, we say
that s strictly precedes t and write s @ t. For any node s,
we denote its set of descendants by D(s) := {t ∈ G : s@ t}
and its set of non-parent non-descendants by
N(s) := G\ (P(s)∪{s}∪D(s)). We also use the shorthand
notation PN(s) := P(s)∪N(s) = G\ ({s}∪D(s)) to refer
to the so-called non-descendants of s.

We extend these notions to subsets of G in the following
way. For any K ⊆ G, P(K) := (

⋃
s∈K P(s))\K is its set of

parents and D(K) := (
⋃

s∈K D(s))\K is its set of descend-
ants. The non-parent non-descendants of K are given by
N(K) := G\ (P(K)∪K∪D(K)) =

⋂
s∈K N(s), and we also

define PN(K) := P(K)∪N(K). This last set cannot be re-
ferred to as the non-descendants of K since P(K) and D(K)
are not necessarily disjoint.

Special subsets of G that we will consider, are the
closed ones: we call a set K ⊆ G closed if for all
s, t ∈ K and any k ∈ G such that s v k v t, it holds that
k ∈ K. For closed K ⊆ G, P(K)∩D(K) = /0 and therefore
PN(K) = G\ (K∪D(K)), which means that for closed K,
PN(K) can rightfully be referred to as the non-descendants
of K.

With any subset K of G, we can associate a so-called sub-
DAG of the DAG that is associated with G. The nodes of
this sub-DAG are the elements of K and the directed edges
of this sub-DAG are those edges in the original DAG that



s1

s3

s2

s4

s5

s7

s8

s6

s9

s10 s12

s11

s13

G = {s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13}

Figure 1: Example of a directed acyclic graph (DAG)
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Figure 2: Example of a sub-DAG

connect elements in K. For a sub-DAG that is associated
with some subset K of G, we will use similar definitions as
those for the original DAG, adding the subset K as an index.
As an example: for all k ∈ K, we denote by PK(k) the par-
ents of k in the sub-DAG that is associated with the nodes
in K. For all K ⊆ G and k ∈ K, we have PK(k) = P(k)∩K
and P(k)\PK(k) = P(k)∩P(K).

Example 1. Consider the DAG in Figure 1. For the node
s7 ∈G, we find that P(s7) = {s4,s5}, D(s7) = {s9,s10} and
N(s7) = {s1,s2,s3,s6,s8,s11,s12,s13}. For the closed sub-
set K = {s5,s7,s9,s12} ⊂ G, we have P(K) = {s3,s4,s11},
D(K) = {s8,s10,s13} and N(K) = {s1,s2,s6}. The sub-
DAG that corresponds to K is drawn in Figure 2. We find
that PK(s7) = {s5}, DK(s7) = {s9} and NK(s7) = {s12}. ♦

3.2 Variables and gambles on them

With each node s of the network, we associate a variable
Xs assuming values in some non-empty finite set Xs. We
denote by G (Xs) the set of all gambles on Xs. We extend
this notation to more complicated situations as follows.
If S is any subset of G, then we denote by XS the tuple
of variables whose components are the Xs for all s ∈ S.
This new joint variable assumes values in the finite set
XS := ×s∈SXs and the corresponding set of gambles is
denoted by G (XS). When S = /0, we let X /0 be a singleton.
The corresponding variable X/0 can then only assume this
single value, so there is no uncertainty about it. G (X /0) can
then be identified with the set R of real numbers. Generic
elements of Xs are denoted by xs or zs and similarly for
xS and zS in XS. Also, if we mention a tuple zS, then for
any t ∈ S, the corresponding element in the tuple will be
denoted by zt . We assume all variables in the network to

be logically independent, meaning that the variable XS may
assume all values in XS, for all /0⊆ S⊆ G.

We will use the simplifying device of identifying a
gamble fS on XS with its cylindrical extension to
XU , where S⊆U ⊆ G: the gamble fU on XU defined
by fU (xU ) := fS(xS) for all xU ∈ XU . For instance, if
K ⊆ G (XG), this allows us to consider K ∩G (XS) as
the set of those gambles in K that depend only on the
variable XS.

3.3 Modelling our beliefs about the network

Throughout, we consider sets of desirable gambles as mod-
els for a subject’s beliefs about the values that certain vari-
ables in the network may assume. One of the main con-
tributions of this paper, further on in Section 4, will be to
show how to construct a joint model for our network, being
a coherent set DG of desirable gambles on XG.

From such a joint model, one can derive both conditional
and marginal models [7, 6]. Let us start by explaining
how to condition the global model DG. Consider an event
AI ⊆XI , with I ⊆ G, and assume that we want to update
the model DG with the information that XI ∈ AI . This leads
to the following updated set of desirable gambles:

DGcAI :=
{

f ∈ G (XG\I) : IAI f ∈DG
}
,

which represents our subject’s beliefs about the value of
the variable XG\I , conditional on the observation that XI
assumes a value in AI . This definition is very intuitive,
since IAI f is the unique gamble that is called off (is equal
to zero) if XI /∈ AI and equal to f if XI ∈ AI . Since I{x /0} = 1,
the special case of conditioning on the certain variable X/0
yields no problems: it amounts to not conditioning at all.

Marginalisation too is very intuitive in the language of sets
of desirable gambles. Suppose we want to derive a marginal
model for our subject’s beliefs about the variable XO, where
O is some subset of G. This can be done by using the set
of desirable gambles that belong to DG but only depend on
the variable XO:

margO(DG) :=
{

f ∈ G (XO) : f ∈DG
}
= DG∩G (XO).

Now let I and O be disjoint subsets of G and let AI be
any subset of XI . By sequentially applying the process of
conditioning and marginalisation we can obtain conditional
marginal models for our subject’s beliefs about the value
of the variable XO, conditional on the observation that XI
assumes a value in AI :

margO(DGcAI) =
{

f ∈ G (XO) : IAI f ∈DG
}
. (1)

Conditioning and marginalisation are special cases of
Eq. (1); they can be obtained by letting O = G\ I or I = /0.
If AI is a singleton {xI}, with xI ∈XI , we will use the
shorthand notation margO(DGcxI) := margO(DGc{xI}).



Since coherence is trivially preserved under both condition-
ing and marginalisation, we find that if the joint model DG
is coherent, all the derived models will also be coherent.

3.4 Epistemic irrelevance

We now have the necessary tools to introduce one of the
most important concepts for this paper, that of epistemic
irrelevance. We describe the case of conditional irrelevance,
as the unconditional version of epistemic irrelevance can
easily be recovered as a special case.

Consider three disjoint subsets C, I, and O of G. When
a subject judges XI to be epistemically irrelevant to XO
conditional on XC, denoted as IR(I,O|C), he assumes that
if he knew the value of XC, then learning in addition which
value XI assumes in XI would not affect his beliefs about
XO. More formally put, he assumes for all xC ∈XC and
xI ∈XI that:

margO(DGcxC∪I) = margO(DGcxC).

Alternatively, a subject can make the even stronger state-
ment that he judges XI to be epistemically subset-irrelevant
to XO conditional on XC, denoted as SIR(I,O|C). In that
case, he assumes that if he knew the value of XC, then re-
ceiving the additional information that XI is an element of
any non-empty subset AI of XI would not affect his beliefs
about XO. In other words, he assumes for all xC ∈XC and
all non-empty AI ⊆XI that:

margO(DGc{xC}×AI) = margO(DGcxC).

Making a subset-irrelevance statement SIR(I,O|C) implies
the corresponding irrelevance statement IR(I,O|C). Even
stronger, it implies for all I′ ⊆ I that IR(I′,O|C). The con-
verse does not hold in general. However, as we will show
further on, credal networks under epistemic irrelevance are
a useful exception: although we define the joint model by
imposing irrelevance, it will also satisfy subset-irrelevance.
For the unconditional irrelevance case it suffices, in the
discussion above, to let C = /0. This makes sure the variable
XC has only one possible value, so conditioning on that
variable amounts to not conditioning at all.

Irrelevance and subset-irrelevance can also be extended
to cases where I, O and C are not disjoint, but I \C and
O\C are. We then call XI epistemically (subset-)irrelevant
to XO conditional on XC provided that XI\C is epistemically
(subset-)irrelevant to XO\C conditional on XC. Although
these cases are admittedly artificial, they will help us state
and prove some of the graphoid properties further on.

3.5 Local uncertainty models

We now add local uncertainty models to each of the nodes
s in our network. These local models are assumed to be
given beforehand and will be used further on in Section 4

as basic building blocks for constructing a joint model for
a given network.

If s is not a root node of the network, i.e. has a non-empty
set of parents P(s), then we have a conditional local model
for every instantiation of its parents: for each xP(s) ∈XP(s),
we have a coherent set DscxP(s)

of desirable gambles on
Xs. It represents our subject’s beliefs about the variable Xs
conditional on its parents XP(s) assuming the value xP(s).

If s is a root node, i.e. has no parents, then our subject’s
local beliefs about the variable Xs are represented by an
unconditional local model. It should be a coherent set of
desirable gambles and will be denoted by Ds. As was ex-
plained in Section 3.3, we can also use the common generic
notation DscxP(s)

in this unconditional case, since for a root
node s, its set of parents P(s) is equal to the empty set /0.

3.6 The interpretation of the graphical model

In classical Bayesian nets, the graphical structure is taken
to represent the following assessments: for any node s,
conditional on its parent variables, the associated variable
is independent of its non-parent non-descendant variables

When generalising this interpretation to credal networks,
the classical notion of independence gets replaced by a
more general, imprecise-probabilistic notion of independ-
ence, which in the existing literature is usually chosen to
be strong independence; see Ref. [3] for an overview of
different approaches, including relevant references. Here,
we will not do so: we choose to use the weaker, asymmetric
notion of epistemic irrelevance, introduced in Section 3.4.
In the special case of precise uncertainty models, both epi-
stemic irrelevance and strong independence reduce to the
classical notion of independence and the corresponding in-
terpretations of the graphical network are equivalent to the
one used in classical Bayesian networks.

In the present context, we therefore assume that the graph-
ical structure of the network embodies the following condi-
tional irrelevance assessments, turning the network into a
credal network under epistemic irrelevance. Consider any
node s in the network, its set of parents P(s) and its set
of non-parent non-descendants N(s). Then conditional on
XP(s), XN(s) is assumed to be epistemically irrelevant to Xs:

IR(N(s),{s}|P(s)).

For a coherent set of desirable gambles DG that describes
our subject’s global beliefs about all the variables in the
network, this has the following consequences. For every
s ∈ G and all xPN(s) ∈XPN(s), DG must satisfy:

margs(DGcxPN(s)) = margs(DGcxP(s)). (2)



4 Constructing a joint model

We now show how to construct a joint model for the vari-
ables in the network, and argue that it is the most conser-
vative coherent model that extends the local models and
expresses all conditional irrelevancies encoded in the net-
work. But before we do so, let us provide some motivation.
Suppose we have a global set of desirable gambles DG,
how do we express that such a model is compatible with
the assessments encoded in the network?

4.1 Defining properties of the joint model

We will require our joint model to satisfy the following four
properties. First of all, we require that our global model
should extend the local ones. This means that the local
models derived from the global one by marginalisation
should be equal to the given local models:

G1. The joint model DG marginalises to the given local
uncertainty models: margs(DGcxP(s)) =DscxP(s)

for all
s ∈ G and xP(s) ∈XP(s).

The second requirement is that our model should reflect all
epistemic irrelevancies encoded in the graphical structure
of the network:

G2. DG satisfies all equalities that are imposed by Eq. (2).
In these equalities, the right hand side can be replaced
by DscxP(s)

due to requirement G1.

The third requirement is that our model should be coherent:

G3. DG is coherent (satisfies requirements D1–D4).

Since requirements G1–G3 do not determine a unique
global model, we impose a final requirement to ensure that
all inferences we make on the basis of our global models are
as conservative as possible, and are therefore based on no
other considerations than what is encoded in the network:

G4. DG is the smallest set of desirable gambles on XG
satisfying requirements G1–G3: it is a subset of any
other set that satisfies them.

We will now show how to construct the unique global model
DG that satisfies all of the four requirements G1–G4.

4.2 An intuitive expression for the joint model

Let us start by looking at a single given marginal model
DsczP(s)

and investigate some of its implications for the joint
model DG. Consider any node s and fix values zP(s) and
zN(s) for its parents and non-parent non-descendants. Due

to requirements G1 and G2, any gamble f ∈DsczP(s)
should

also be an element of margs(DGczPN(s)), which by defini-
tion means that I{zPN(s)} f ∈ DG. Inspired by this observa-
tion, we introduce the following set of gambles on XG:

A irr
G :=

{
I{zPN(s)} f : s ∈G, zPN(s) ∈XPN(s), f ∈DsczP(s)

}
.

It should now be clear that A irr
G must be a subset of our

joint model DG.

Proposition 1. A irr
G is a subset of any joint model DG that

satisfies requirements G1 and G2.

Since our eventual joint model should also be coherent
(satisfy requirement G3), and thus in particular should be a
convex cone, we can derive the following corollary.

Corollary 2. posi(A irr
G ) is a subset of any joint model DG

that satisfies requirements G1–G3.

We now suggest the following expression for the joint
model describing our subject’s beliefs about the variables
in the network:

D irr
G := posi(A irr

G ). (3)

We will refer to D irr
G as the irrelevant natural extension of

the local models DscxP(s)
. Since we know from Corollary 2

that it is guaranteed to be a subset of the joint model we
are looking for, we propose it as a candidate for the joint
model itself. In the next section, we set out to prove that
D irr

G is indeed the unique joint model satisfying all four
requirements G1–G4.

We would like to point out that D irr
G is a generalisation of

the so-called independent natural extension of a number of
unconditional marginal models [6, Section 7]. This special
case corresponds to a DAG that has no edges, consisting
of a finite amount of disconnected nodes [6, Section 10].
Quite a few of the results obtained further on can therefore
be regarded as generalisations of those in Ref. [6].

4.3 Justifying our expression for the joint model

We start by proving a number of useful properties of D irr
G .

Proposition 3. A gamble f ∈ G (XG) is an element of D irr
G

if and only if it can be written as:

f = ∑
s∈G

∑
zPN(s)∈XPN(s)

I{zPN(s)} fs,zPN(s) ,

where fs,zPN(s) ∈ DsczP(s)
∪ {0} for every s ∈ G and all

zPN(s) ∈XPN(s), and at least one of them is non-zero.

Proposition 4. G (XG)>0 is a subset of D irr
G .

These two propositions serve as a first step towards the fol-
lowing coherence result, which states that our joint model
D irr

G satisfies requirement G3.



Proposition 5. D irr
G satisfies requirement G3: it is a coher-

ent set of desirable gambles.

Our proof for this result has an interesting feature that
deserves to be borne out. The crucial step hinges on the
assumption that if the local models of our network were
precise probability mass functions, we would be able to
construct a joint probability mass function that satisfies all
irrelevancies (in that case independencies) that are encoded
in our network. Since the precise version of a credal net
under epistemic irrelevance is a classical Bayesian network,
this assumption is indeed true. What we believe is useful
about this approach, is that it can be extended to credal
networks with irrelevance assumptions that differ from the
ones we impose in the present article, as long as the as-
sumption above is satisfied. In this way, it enables us to
use existing coherence results for precise networks to prove
their counterparts for credal networks.

Next, we turn to an important factorisation result that is
essential in order to prove that our joint model extends the
local models and expresses all conditional irrelevancies
encoded in the network, and therefore satisfies G1 and G2.

Proposition 6. Fix arbitrary s ∈ G, xP(s) ∈ XP(s) and
g ∈ G (XN(s))>0. For every f ∈ G (Xs):

gI{xP(s)} f ∈D irr
G ⇔ f ∈DscxP(s)

.

Corollary 7. D irr
G satisfies requirements G1 and G2: it

holds for every s ∈ G and all xPN(s) ∈XPN(s) that

margs(D
irr
G cxPN(s)) = margs(D

irr
G cxP(s)) = DscxP(s)

.

We now have all tools necessary to formulate our first im-
portant result. It is one of the main contributions of this
paper and provides a justification for the joint model D irr

G
that was proposed in Eq. (3).

Theorem 8. The irrelevant natural extension D irr
G is the

unique set of desirable gambles on XG that satisfies all
four requirements G1–G4.

It is already apparent from Proposition 6 that the proper-
ties of the irrelevant natural extension D irr

G are not limited
to G1–G4. As a first example, Proposition 6 implies that
for any node s, conditional on its parent variables XP(s),
the non-parent non-descendant variables XN(s) are not only
epistemically irrelevant, but also subset-irrelevant to Xs.

Corollary 9. All nodes s∈G satisfy the subset-irrelevance
statement SIR(N(s),{s}|P(s)): for any xP(s) ∈XP(s) and
non-empty AN(s) ⊆XN(s), it holds that

margs(D
irr
G c{xP(s)}×AN(s)) = margs(D

irr
G cxP(s)).

In the next two sections, we establish a number of even
stronger properties of D irr

G .

5 Additional marginalisation properties

As explained in Section 3.1, a subset K of G can be associ-
ated with a so-called sub-DAG of the original DAG. Simil-
arly to what we have done for the original DAG, we can use
Eq. (3) to construct a joint model for this sub-DAG. All we
need to do is provide, for every s ∈ K and zPK(s) ∈XPK(s),
a local model DsczPK (s)

.

One particular way of providing these local models is to
derive them from the ones of the original DAG. The starting
point to do so is fixing a value xP(K) ∈XP(K) for the parent
variables of K. This provides us, for every s ∈ K, with a
value xP(s)\PK(s) ∈XP(s)\PK(s) because P(s)\PK(s)⊆ P(K).
For every s∈K and zPK(s) ∈XPK(s), we can then identify the
local model DsczPK (s)

of the sub-DAG with the local model
DsczP(s)

of the original DAG, where zP(s)\PK(s) = xP(s)\PK(s).
In other words, for every s ∈ K and zPK(s) ∈XPK(s)

DsczPK (s)
= Dsc(zPK (s),xP(s)\PK (s))

.

Example 2. Consider again the DAG in Figure 1 and the
sub-DAG in Figure 2 that corresponds to the closed subset
K = {s5,s7,s9,s12} ⊂ G. In order to provide this sub-DAG
with local models, we fix a value xP(K) ∈ XP(K). Using
Eq. (5), this provides us with unconditional local mod-
els Ds5 = Ds5cxs3

and Ds12 = Ds12cxs11
, for all zs5 ∈ Xs5 ,

a conditional local model Ds7czs5
= Ds7c(zs5 ,xs4 )

and, for all
zs7 ∈Xs7 , a conditional local model Ds9czs7

. ♦

For every K ⊆ G and all xP(K) ∈XP(K), the resulting joint
model for the sub-DAG that is associated with K is given
by

D irr
KcxP(K)

:= posi(A irr
KcxP(K)

),

where

A irr
KcxP(K)

:=
{
I{zPNK (s)} f : s ∈ K,zPNK(s) ∈XPNK(s),

f ∈Dsc(zPK (s),xP(s)\PK (s))

}
.

A question that now naturally arises is whether these joint
models for sub-DAGs can be related to the original joint
model D irr

G . It turns out that, for subsets K of G that are
closed, this is indeed the case.
Theorem 10. If K is a closed subset of G, then for any
xP(K) ∈XP(K), g ∈ G (XN(K))>0 and f ∈ G (XK):

gI{xP(K)} f ∈D irr
G ⇔ f ∈D irr

KcxP(K)
.

The proof, although complex and elaborate, is essen-
tially a simple separating hyperplane argument. We con-
sider this result to be the main technical achievement of
this paper. It is a significant generalisation of Proposi-
tion 6 [with K = {s}] and has a number of interesting con-
sequences. As a first example, it implies the following gen-
eralisations of Corollaries 7 and 9.



Corollary 11. For all closed K ⊆ G, xP(K) ∈XP(K) and
non-empty AN(K) ⊆XN(K), we have that

margK(D
irr
G c{xP(K)}×AN(K)) = D irr

KcxP(K)
.

Corollary 12. All closed sets K ⊆ G satisfy the
subset-irrelevance statement SIR(N(K),K|P(K)): for any
xP(K) ∈XP(K) and non-empty AN(K) ⊆XN(K), it holds that

margK(D
irr
G c{xP(K)}×AN(K)) = margK(D

irr
G cxP(K)).

In the next section, we will extend this subset-irrelevance
result to even more general cases.

6 AD-Separation and graphoid properties

In credal networks that are defined by means of a symmet-
rical independence concept, the notion of D-separation is a
very powerful tool [9]. For asymmetrical independence con-
cepts such as epistemic (subset-)irrelevance, D-separation
has been modified to take this asymmetry into account.
Moral [8] speaks of asymmetrical D-separation (AD-
separation) and Vantaggi [10] has introduced the very sim-
ilar L-separation criterion. Here, we choose not to use
one of these existing concepts, but to introduce a slightly
modified version of AD-separation. We do so because our
definition is weaker (more general) than both Moral’s AD-
separation and L-separation and yet has stronger properties.

Consider any path s1, . . . ,sn in G, with n≥ 1. We say that
this path is blocked by a set of nodes C ⊆ G whenever at
least one of the following four conditions holds:

B1. s1 ∈C;

B2. there is some 1 < i < n such that si→ si+1 and si ∈C;

B3. there is some 1 < i < n such that si−1 → si ← si+1,
si /∈C and D(si)∩C = /0;

B4. sn ∈C.

Now consider (not necessarily disjoint) subsets I, O and C
of G. We say that O is AD-separated from I by C, denoted
as AD(I,O|C), if every path i = s1, . . . ,sn = o, n≥ 1, from
a node i ∈ I to a node o ∈ O, is blocked by C. Our version
of AD-separation satisfies a number of useful properties.

Theorem 13. For any subsets I, O, S and C of G, the fol-
lowing properties hold:

Direct redundancy: AD(I,O|I)

Reverse redundancy: AD(I,O|O)

Direct decomposition: AD(I,O∪S|C)⇒ AD(I,O|C)

Reverse decomposition: AD(I∪S,O|C)⇒ AD(I,O|C)

Direct weak union: AD(I,O∪S|C)⇒ AD(I,O|C∪S)

Reverse weak union: AD(I∪S,O|C)⇒ AD(I,O|C∪S)

Direct contraction:

AD(I,O|C) & AD(I,S|C∪O)⇒ AD(I,O∪S|C)

Reverse contraction:

AD(I,O|C) & AD(S,O|C∪ I)⇒ AD(I∪S,O|C)

Direct intersection: if O∩S = /0, then

AD(I,O|C∪S) & AD(I,S|C∪O)⇒ AD(I,O∪S|C)

Reverse intersection: if I∩S = /0, then

AD(I,O|C∪S) & AD(S,O|C∪ I)⇒ AD(I∪S,O|C)

This result (and our proof for it) is very similar to, and
heavily inspired by, the work of Vantaggi [10, Theorem 7.1].
The main difference is that Vantaggi does not include the
two redundancy properties, since L-separation is defined
only for disjoint subsets I, O and C of G. Moral’s version of
AD-separation [8] does not require I, O and C to be disjoint,
but it does not satisfy direct redundancy, and proofs for a
number of other properties are not given [8, Theorem 4].
We therefore prefer our version of AD-separation.

Example 3. Consider the sets of nodes I = {s2,s3,s4,s11},
O = {s5,s6,s9,s13}, C = {s4,s6,s12}, Sd = {s8,s10} and
Sr = {s1} in the DAG that is depicted in Figure 1. The
direct properties in Theorem 13 are illustrated by I, O, C
and Sd and the reverse ones by I, O, C and Sr. ♦

Theorem 10 implies a very general factorisation result.

Theorem 14. If I,O,C ⊆G are such that AD(I,O|C) then
for all xC ∈XC, g ∈ G (XI\C)>0 and f ∈ G (XO\C):

gI{xC} f ∈D irr
G ⇔ I{xC} f ∈D irr

G .

This result can be combined with Theorem 13 to derive a
collection of (subset-)irrelevance statements that are ful-
filled by the irrelevant natural extension D irr

G .

Corollary 15. For any I,O,C ⊆ G such that AD(I,O|C)
we have that SIR(I,O|C) (and thus also IR(I,O|C)): for
all xC ∈XC and non-empty AI\C ⊆XI\C it holds that

margO\C(D
irr
G c{xC}×AI\C) = margO\C(D

irr
G cxC).

This family of subset-irrelevance statements satisfies all
graphoid properties except symmetry: it satisfies redund-
ancy, decomposition, weak union, contraction and intersec-
tion, both in their direct and reverse form.

We leave it to the reader to show that Theorem 14 is a gen-
eralisation of Theorem 10 and that Corollary 15 generalises
the first part of Corollary 12. In other words: for any closed
subset K of G, it holds that AD(N(K),K|P(K)).



Readers who are familiar with the work in Ref. [8] might
have noticed the similarity between Ref. [8, Theorem 5] and
the first part of Corollary 15. The main difference between
our approach and Moral’s approach [8], besides the fact that
we use a slightly different separation criterion, is that he
enforces a more stringent version of epistemic irrelevance
than we do. He calls XI epistemically irrelevant to XO if
and only if the joint model DI∪O is the so-called irrelevant
natural extension of DI and DO and refers to our concept
of irrelevance as weak epistemic irrelevance. Consequently,
if we understand his work correctly, his results are not
applicable to all directed acyclic networks. As a simple
example: his concept of irrelevance does not seem to allow
for two variables to be mutually irrelevant, except in some
degenerated uninformative cases. Therefore, it appears to
us his results cannot be applied to a network consisting of
two unconnected nodes.

As far as the second part of Corollary 15 is concerned,
some clarification is perhaps in order. We do not claim
that epistemic irrelevance satisfies the graphoid axioms
that are stated in Theorem 13. As was proven in Ref. [4],
epistemic irrelevance can violate direct contraction and
both direct and reverse intersection. In fact, we believe that
this negative result might even be one of the main reasons
why a result such as Corollary 15 has thus far not appeared
in any literature.

Indeed, in Bayesian networks, proving the counterpart
to Corollary 15—with AD-separation replaced by D-
separation and epistemic irrelevance replaced by stochastic
independence—is usually done by using the fact that
stochastic independence satisfies the graphoid axioms [9].
By applying these axioms to the independence assesse-
ments that are used to define a Bayesian network, one can
infer new independencies, namely those that correspond to
D-separations in the DAG of that network.

If one tries to mimic this approach in our context, then
since epistemic irrelevance can fail some of the graphoid
axioms, one might suspect that Corollary 15 cannot be
proven. However, it is not necessary to use the axioms:
our proof for Theorem 14—of which the the first part of
Corollary 15 is a straightforward consequence—uses only
Theorem 10 and a number of properties of AD-separation.
At no point does it invoke graphoid properties of epistemic
irrelevance. The second part of Corollary 15 is then but
a mere consequence of the first part and Theorem 13. It
states that the family of irrelevance statements that are
proven to hold in the first part, are closed under the graphoid
properties in Theorem 13.

So in order to conclude this section: epistemic irrelevance
can fail a number of graphoid axioms, which implies that
the irrelevance statements that are proven in Corollary 15 do
not necessarily hold for every joint model DG that satisfies
requirements G1–G3. However for the unique one that

also satisfies G4, being the irrelevant natural extension D irr
G

of the network, this family of irrelevance statements does
hold, the reason being that for this specific model, one can
provide a direct proof that does not invoke any graphoid
axioms of epistemic irrelevance.

7 Credal nets under epistemic irrelevance
using coherent lower previsions

Credal networks under epistemic irrelevance can also be
defined using imprecise probability concepts other than
coherent sets of desirable gambles. In this section, we de-
scribe an approach that uses coherent lower previsions, and
we show how it is related to the desirable gambles approach
of the previous sections.

7.1 Coherent lower previsions

For any subset O of G, we define a coherent lower prevision
PO as a real-valued functional on G (XO) that satisfies the
following three conditions. For all f ,g ∈ G (XO) and all
real λ ≥ 0:

C1. PO( f )≥min f ;

C2. PO(λ f ) = λPO( f ); [non-negative homogeneity]

C3. PO( f +g)≥ PO( f )+PO(g). [super-additivity]

Now consider two disjoint subsets O and I of G and sup-
pose that we have, for all xI ∈XI , a coherent lower pre-
vision PO(·|xI) on G (XO). The corresponding coherent
conditional lower prevision PO∪I(·|XI) is then a special
two-place function that is defined, for all f ∈ G (XO∪I) and
xI ∈XI , by PO∪I( f |xI) := PO( f (·,xI)|xI).

7.2 Defining a credal network

Suppose now that the local models of our credal network
under epistemic irrelevance are coherent lower previsions:
for all s ∈ G and xP(s) ∈XP(s), we have a coherent lower
prevision PscxP(s)

on G (Xs).

The irrelevance assessments that are encoded in the network
can then be expressed as follows. For all s ∈ G, I ⊆ N(s),
xP(s)∪I ∈XP(s)∪I and f ∈ G (Xs), we require that:

P{s}( f |xP(s)∪I) := PscxP(s)
( f ).

For all s ∈ G and I ⊆ N(s), the corresponding conditional
lower prevision P{s}∪P(s)∪I(·|XP(s)∪I) is then given, for all
f ∈ G (X{s}∪P(s)∪I) and xP(s)∪I ∈XP(s)∪I , by

P{s}∪P(s)∪I( f |xP(s)∪I) := PscxP(s)
( f (·,xP(s)∪I)).

We will denote the set consisting of all these conditional
lower previsions as I (PscxP(s)

,s ∈ G,xP(s) ∈XP(s)).



The global model E irr
G is now defined as the smallest coher-

ent lower prevision on G (XG) that is (strongly) coherent
with this set of conditional lower previsions. We will refer
to it as the irrelevant natural extension of the local mod-
els PscxP(s)

. We will not get into the details of what strong
coherence means, but one can very roughly think of it as
requiring that the conditional lower previsions in the set
I (PscxP(s)

,s∈G,xP(s) ∈XP(s)) (i) are compatible with one
another and (ii) can be obtained by conditioning the global
model E irr

G ; see Ref. [5, Section 2.4] for more details on
strong coherence.

We know from Walley’s Finite Extension Theorem [11, The-
orem 8.1.9] that if E irr

G exists, then it is equal to the natural
extension of the collection I (PscxP(s)

,s ∈ G,xP(s) ∈XP(s))

to an unconditional lower prevision on G (XG). In that
case, by applying a derivation that is similar to the one for
[5, Eq.(10), Section 5.2], we find for all f ∈ G (XG) that

E irr
G ( f ) = sup

g{s}∪P(s)∪I
∈G (X{s}∪P(s)∪I)

{
min

zG∈XG

[
f (zG)

− ∑
s∈G,I⊆N(s)

[g{s}∪P(s)∪I(zs,zP(s)∪I)

−PsczP(s)
(g{s}∪P(s)∪I(·,zP(s)∪I))]

]}
. (4)

7.3 Connections with our approach

For every s ∈ G and xP(s) ∈XP(s), the local coherent set of
desirable gambles DscxP(s)

uniquely defines a corresponding
coherent lower prevision PscxP(s)

. For all f ∈ G (Xs)

PscxP(s)
( f ) := sup{µ ∈ R : f −µ ∈DscxP(s)

}. (5)

Conversely, every local coherent lower prevision PscxP(s)

has at least one coherent set of desirable gambles DscxP(s)

from which it can be derived by Eq. (5). These sets are how-
ever not unique since coherent sets of desirable gambles
are generally more expressive than coherent lower previ-
sions. Using any such family of corresponding local sets
of desirable gambles, we can then apply Eq. (3) to obtain
their irrelevant natural extension D irr

G . This joint set also
has a corresponding coherent lower prevision. It is denoted
as Pirr

G and given for all f ∈ G (XG) by

Pirr
G ( f ) := sup{µ ∈ R : f −µ ∈D irr

G }. (6)

The coherent lower prevision Pirr
G that is constructed in this

way from given local models PscxP(s)
might depend on the

particular choice for the sets DscxP(s)
in its construction. We

will show in Theorem 17 that such is not the case, however.

Proposition 16. Choose, for all s ∈ G and xP(s) ∈XP(s),
any coherent local set of desirable gambles DscxP(s)

on Xs

such that the given local coherent lower prevision PscxP(s)

satisfies Eq. (5). Construct the irrelevant natural exten-
sion D irr

G by applying Eq. (3) and let Pirr
G be the coherent

lower prevision on G (XG) as given by Eq. (6). Then Pirr
G is

strongly coherent with I (PscxP(s)
,s ∈ G,xP(s) ∈XP(s)).

Proposition 16 shows that it is possible to construct at least
one coherent lower prevision Pirr

G on G (XG) that is strongly
coherent with I (PscxP(s)

,s ∈ G,xP(s) ∈XP(s)), implying

that the irrelevant natural extension E irr
G is always well

defined and given by Eq. (4).

The following result now establishes the final connection
between the irrelevant natural extensions D irr

G and E irr
G that

were outlined in this paper. We show that Pirr
G is always

equal to the irrelevant natural extension E irr
G , regardless of

the local sets DscxP(s)
that are chosen to construct it.

Theorem 17. Let D irr
G be the irrelevant natural extension of

local coherent sets of desirable gambles DscxP(s)
, s ∈ G and

xP(s) ∈XP(s), as given by Eq. (3). Construct local coherent
lower previsions PscxP(s)

by applying Eq. (5) and let E irr
G be

their irrelevant natural extension, as given by Eq. (4). It
then holds for all f ∈ G (XG) that

E irr
G ( f ) = sup{µ ∈ R : f −µ ∈D irr

G }= Pirr
G ( f ).

We believe that this connection between the two approaches
can be used to translate at least some of our results for sets
of desirable gambles into the language of coherent lower
previsions. We intend to explore this further in future work.

8 Summary and conclusions

This paper has developed the notion of a credal network
under epistemic irrelevance using sets of desirable gambles.
We have proven that the resulting irrelevant natural exten-
sion of a network has a number of interesting properties. It
marginalises in an intuitive way and satisfies all graphoid
properties except symmetry. Finally, we have established
a connection with an approach to credal networks under
epistemic irrelevance that uses coherent lower previsions.

Future goals that we intend to pursue are to derive coun-
terparts to the marginalisation and graphoid properties in
this paper, expressed in terms of coherent lower previsions
rather than sets of desirable gambles. By exploiting these
properties, we would like to develop algorithms for credal
networks under epistemic irrelevance that are able to per-
form inferences in an efficient manner.
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