WaFT workshop

on imprecise and game-theoretic probabilities

Imprecise Bernoulli processes

Jasper De Bock & Gert de Cooman

5 April 2012

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

assuming values in the set

$$\mathcal{X} = \{a, b\}$$

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

defining properties

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

! IMPLICIT ASSUMPTION!

a single Bernoulli experiment X_i has a precise and precisely known probability mass function

$$P(X_i = a) = \theta$$
 $P(X_i = b) = 1 - \theta$

with a fixed
$$\theta \in [0,1]$$

a single Bernoulli experiment X_i has a precise and precisely known probability mass function

$$P(X_i = a) = \theta$$
 $P(X_i = b) = 1 - \theta$

with a fixed $\theta \in [0,1]$

Independent

Identically Distributed

$$X_1, X_2, \dots, X_n$$

BINOMIAL DISTRIBUTION

with parameters heta and n

$$X_1, X_2, ..., X_n$$
 BINOMIAL DISTRIBUTION with parameters θ and n

BINOMIAL DISTRIBUTION

For every
$$x = (x_1, ..., x_n)$$
 in \mathcal{X}^n :

Probability of occurrence $p(x) = \theta^{n(a)}(1-\theta)^{n(b)}$

$$X_1, X_2, ..., X_n$$
 BINOMIAL DISTRIBUTION with parameters θ and n

BINOMIAL DISTRIBUTION

For every $x = (x_1, ..., x_n)$ in \mathcal{X}^n :

Probability of occurrence $p(x) = \theta^{n(a)}(1-\theta)^{n(b)}$

For every gamble (real valued map) f on \mathscr{X}^n :

Expected value

$$E(f) = Mn_n(f \mid \theta) = \sum_{x \in \mathcal{X}^n} f(x)p(x)$$

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

defining properties

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

! Introducing imprecision!

a single Bernoulli experiment X_i has a precise and precisely known probability mass function

$$P(X_i = a) = \theta$$
 $P(X_i = b) = 1 - \theta$

heta varies over an interval $[\underline{ heta}, \overline{ heta}]$

a single **Bernoulli experiment X**_i has a **precise** and **precisely known probability mass function**

$$P(X_i = a) = \theta$$
 $P(X_i = b) = 1 - \theta$

heta varies over an interval $[\underline{ heta}, \overline{ heta}]$

For a fixed $\, heta \in [0,1]$:

For every gamble f on \mathcal{X}^n :

Expected value: E(f) = Mn_n(f
$$\mid \theta \mid$$
) = $\sum_{x \in \mathcal{X}^n} f(x)p(x)$

For a fixed $\, heta \in [0,1]$:

For every gamble f on \mathcal{X}^n :

Expected value: E(f) = Mn_n(f
$$\mid \theta \mid$$
) = $\sum_{x \in \mathcal{X}^n} f(x)p(x)$

If heta varies over an interval $[\underline{ heta},\overline{ heta}]$:

For a fixed $\, heta \in [0,1]$:

For every gamble f on \mathcal{X}^n :

Expected value:
$$E(f) = Mn_n(f \mid \theta) = \sum_{x \in \mathcal{X}^n} f(x)p(x)$$

If heta varies over an interval $[\underline{ heta},\overline{ heta}]$:

Lower and upper expected value:

$$\overline{E}(f) = \max\{\operatorname{Mn}_n(f|\theta) : \theta \in [\underline{\theta}, \overline{\theta}]\}$$

$$\underline{E}(f) = \min\{\operatorname{Mn}_n(f|\theta) : \theta \in [\underline{\theta}, \overline{\theta}]\}$$

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

! dropping both assumptions!

a single **Bernoulli experiment X**_i has a **procise** and **precisely known probability mass function**

An infinite sequence of binary random variables

$$X_1, X_2, ..., X_n, ...$$

a single **Bernoulli experiment X**_i is regarded as **inherently imprecise**

We do not assume the existence of an underlying precise probability distribution

No underlying precise probability distribution!

A set \mathcal{D} of desirable gambles

We model a subject's beliefs regarding the possible outcomes Ω of an experiment by looking at the gambles he is willing to accept

No underlying precise probability distribution!

A set \mathcal{D} of desirable gambles

Rationality criteria:

COHERENT

```
C1. if f = 0 then f \notin \mathcal{D};

C2. if f > 0 then f \in \mathcal{D};

C3. if f \in \mathcal{D} then \lambda f \in \mathcal{D} [scaling];

C4. if f_1, f_2 \in \mathcal{D} then f_1 + f_2 \in \mathcal{D} [combination].
```

$$(f > 0 \text{ iff } f \ge 0 \text{ and } f \ne 0)$$

No underlying precise probability distribution!

A coherent set \mathcal{D} of desirable gambles

Set of probability mass functions

No underlying precise probability distribution!

A coherent set \mathcal{D} of desirable gambles

Set of probability mass functions

No underlying precise probability distribution!

A coherent set \mathcal{D} of desirable gambles

Set of probability mass functions

Just a mathematical connection!

a single
Bernoulli
experiment

f(b) $\mathcal{D}_1^{\mathrm{int}}$ f(a)

A coherent set \mathcal{D}_1 of desirable gambles

Due to coherence:

$$0 \le \underline{\theta} \le \overline{\theta} \le 1$$

A coherent set \mathcal{D}_1 of desirable gambles

Due to coherence:

$$0 \times \underline{\theta} \times \overline{\theta} \times 1$$

A coherent set \mathcal{D}_1 of desirable gambles

Due to coherence:

$$0 \times \underline{\theta} \times \overline{\theta} \times 1$$

A coherent set \mathcal{D}_1 of desirable gambles

Associated set of mass functions:

$$P(X_i = a) = \theta$$

$$P(X_i = b) = 1 - \theta$$

$$heta$$
 varies over $[\underline{ heta}, \overline{ heta}]$

Single Bernoulli experiment

\mathcal{D}_{1}^{b} r_{b} r_{b}

Single Bernoulli experiment

Imprecise Bernoulli process

Single Bernoulli experiment

Imprecise Bernoulli process

Single Bernoulli experiment

Imprecise Bernoulli process

Exchangeability

```
Consider any permutation \pi of the set of indices \{1, 2, ..., n\}
For any \mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) in \mathscr{X}^n we let \pi \mathbf{x} := (\mathbf{x}_{\pi(1)}, \mathbf{x}_{\pi(2)}, ..., \mathbf{x}_{\pi(n)})
For any gamble \mathbf{f} on \mathscr{X}^n we let \pi^t \mathbf{f} := \mathbf{f} \circ \pi, so (\pi^t \mathbf{f})(\mathbf{x}) = \mathbf{f}(\pi \mathbf{x})
```

Exchangeability

Consider any permutation π of the set of indices $\{1, 2, ..., n\}$ For any $x = (x_1, x_2, ..., x_n)$ in \mathcal{X}^n we let $\pi x := (x_{\pi(1)}, x_{\pi(2)}, ..., x_{\pi(n)})$ For any gamble f on \mathcal{X}^n we let $\pi^t f := f \circ \pi$, so $(\pi^t f)(x) = f(\pi x)$

 $X_1, X_2, ..., X_n$ is assessed to be exchangeable

You are willing to exchange f for $\pi^t f$

Exchangeability

Consider any permutation π of the set of indices $\{1, 2, ..., n\}$ For any $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ in \mathscr{X}^n we let $\pi \mathbf{x} := (\mathbf{x}_{\pi(1)}, \mathbf{x}_{\pi(2)}, ..., \mathbf{x}_{\pi(n)})$ For any gamble \mathbf{f} on \mathscr{X}^n we let $\pi^t \mathbf{f} := \mathbf{f} \circ \pi$, so $(\pi^t \mathbf{f})(\mathbf{x}) = \mathbf{f}(\pi \mathbf{x})$

 $X_1, X_2, ..., X_n$ is assessed to be exchangeable

 \mathcal{D}_n is exchangeable

$$+$$
 f – π^tf is (weakly) desirable \approx f – π ^tf $\in \mathcal{D}_n$

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Family of sets \mathcal{D}_n of desirable gambles on \mathscr{X}^n

(for all $n \in \mathbb{N}_0$)

- Time consistent
- Each \mathcal{D}_n is coherent
- Each \mathcal{D}_n is exchangeable

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Family of sets \mathcal{D}_n of desirable gambles on \mathscr{X}^n

(for all $n \in \mathbb{N}_0$)

- Time consistent
- Each \mathcal{D}_n is coherent
- Each \mathcal{D}_n is exchangeable

How to impose this property?

Exchangeability

BINOMIAL DISTRIBUTION (θ and n)

E(f) = Mn_n(f |
$$\theta$$
) = $\sum_{x \in \mathcal{X}^n} f(x)p(x)$
 $\theta^{n(a)}(1-\theta)^{n(b)}$

Exchangeability

BINOMIAL DISTRIBUTION (θ and n)

Polynomial function of
$$\theta$$

p(θ) := Mn_n(f | θ) (deg(p) \leq n)

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Family of sets \mathcal{D}_n of desirable gambles on \mathscr{Z}^n (for all $n \in \mathbb{N}_0$)

Set \mathcal{H}_n of polynomial functions $(deg(p) \le n)$

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Family of sets \mathcal{D}_n of desirable gambles on \mathscr{X}^n

(for all $n \in \mathbb{N}_0$)

Set \mathcal{H}_n of polynomial functions $(deg(p) \le n)$

Set
$$\mathcal{H}_{\infty} = \bigcup_{n \in \mathbb{N}_0} \mathcal{H}_n$$
 of polynomial functions

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Family of sets \mathcal{D}_n of desirable gambles on \mathscr{X}^n

(for all $n \in \mathbb{N}_0$)

Set
$$\mathcal{H}_{\infty} = \bigcup_{n \in \mathbb{N}_0} \mathcal{H}_n$$
 of polynomial functions

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Family of sets \mathcal{D}_n of desirable gambles on \mathscr{X}^n

(for all $n \in \mathbb{N}_0$)

- Time consistent
- Each \mathcal{D}_n is coherent
- Each \mathcal{D}_n is exchangeable

Set $\mathcal{H}_{\infty} = \bigcup_{n \in \mathbb{N}_0} \mathcal{H}_n$ of polynomial functions

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Bernstein coherent:

```
B1. if p = 0 then p \notin \mathcal{H};
```

B2. if
$$p \in \mathcal{V}^+$$
, then $p \in \mathcal{H}$;

B3. if
$$p \in \mathcal{H}$$
 then $\lambda p \in \mathcal{H}$;

B4. if
$$p_1, p_2 \in \mathcal{H}$$
 then $p_1 + p_2 \in \mathcal{H}$.

Set
$$\mathcal{H}_{\infty} = \bigcup_{n \in \mathbb{N}_0} \mathcal{H}_n$$
 of polynomial functions

Exchangeability

Infinite exchangeable sequence X₁, X₂, ..., X_n, ...

Bernstein coherent:

B1. if
$$p = 0$$
 then $p \notin \mathcal{H}$.

B1. if
$$p = 0$$
 then $p \notin \mathcal{H}$.
B2. if $p \in \mathcal{V}^+$ then $p \in \mathcal{H}$;

B3. if
$$p \in \mathcal{H}$$
 then $\lambda p \in \mathcal{H}$;

B4. if
$$p_1, p_2 \in \mathcal{H}$$
 then $p_1 + p_2 \in \mathcal{H}$.

Set
$$\mathcal{H}_{\infty} = \bigcup_{n \in \mathbb{N}_0} \mathcal{H}_n$$
 of polynomial functions

Exchangeability

A coherent set \mathcal{D}_1 of desirable gambles

Exchangeability linear h₁ $h_1(\theta) > 0$ $\forall \theta \in [\underline{\theta}, \overline{\theta}]$

Set $\mathcal{H}_{\infty} = \bigcup_{n \in \mathbb{N}_0} \mathcal{H}_n$ of polynomial functions

Single Bernoulli experiment

• Epistemic independence

Imprecise Bernoulli process

Epistemic independence

Infinite sequence X₁, X₂, ..., X_n, ...

assessment of epistemic independence

Epistemic independence

Infinite sequence X₁, X₂, ..., X_n, ...

assessment of epistemic independence

Learning the value of any finite number of variables does not change our beliefs about any finite subset of the remaining, unobserved ones.

Epistemic independence

Infinite sequence X₁, X₂, ..., X_n, ...

assessment of epistemic independence

Epistemic independence

Infinite sequence X₁, X₂, ..., X_n, ...

assessment of epistemic independence

$$h \in \mathcal{H}_{\infty} \stackrel{\rightleftharpoons}{\bowtie} (1 - \theta) h \in \mathcal{H}_{\infty}$$

Set $\mathcal{H}_{\infty} = igcup_{n \in \mathbb{N}_0} \mathcal{H}_n$ of polynomial functions

Epistemic independence

$$h_1 \in \mathcal{H}_1 \in \mathcal{H}_\infty \Rightarrow \theta^{\mathsf{k}} (1 - \theta)^{\mathsf{l}} h_1 \in \mathcal{H}_\infty$$

$$h \in \mathcal{H}_{\infty} \stackrel{\rightleftharpoons}{\bowtie} (1 - \theta) h \in \mathcal{H}_{\infty}$$

Set $\mathcal{H}_{\infty} = igcup_{n \in \mathbb{N}_0} \mathcal{H}_n$ of polynomial functions

Epistemic independence

$$h_1 \in \mathcal{H}_1 \in \mathcal{H}_\infty \Rightarrow \theta^{\mathsf{k}} (1 - \theta)^{\mathsf{l}} h_1 \in \mathcal{H}_\infty$$

B4. if $p_1, p_2 \in \mathcal{H}$ then $p_1 + p_2 \in \mathcal{H}$

$$\Rightarrow ph_1 \in \mathcal{H}_{\infty} \ (p \in \mathcal{V}^+)$$

Epistemic independence

$$h_1 \in \mathcal{H}_1 \in \mathcal{H}_\infty \Rightarrow \theta^{\mathsf{k}} (1 - \theta)^{\mathsf{l}} h_1 \in \mathcal{H}_\infty$$

B4. if $p_1, p_2 \in \mathcal{H}$ then $p_1 + p_2 \in \mathcal{H}$

$$\Rightarrow ph_1 \in \mathcal{H}_{\infty} (p \in \mathcal{V}^+)$$

B4. if $p_1, p_2 \in \mathcal{H}$ then $p_1 + p_2 \in \mathcal{H}$

$$\Rightarrow \sum_{\mathsf{i}} p_{\mathsf{i}} h_{1,\mathsf{i}} \in \mathcal{H}_{\infty}$$

$$h(\theta) > 0$$
$$\forall \theta \in [\underline{\theta}, \overline{\theta}]$$

$$h = \sum_{\mathsf{i}} p_{\mathsf{i}} h_{1,\mathsf{i}} \in \mathcal{H}_{\infty}$$

$$h(\theta) > 0$$
 $\forall \theta \in [\underline{\theta}, \overline{\theta}]$

$$h = \sum_{\mathsf{i}} p_{\mathsf{i}} h_{1,\mathsf{i}} \in \mathcal{H}_{\infty}$$

$$\left\{ \ \mathsf{h}: egin{array}{l} \mathsf{h}(heta) > 0 \ \forall heta \in [heta, \overline{ heta}] \end{array}
ight\} \ \subseteq \ \mathcal{H}_{\infty}$$

Epistemic independence

$$\left\{ \, \mathsf{h} : \, egin{array}{l} \mathsf{h}(heta) > 0 \ \forall heta \in [\underline{ heta}, \overline{ heta}] \, \end{array}
ight\} \, \subseteq \, \mathcal{H}_{\infty}$$

Smallest epistemic independent \mathcal{H}_{∞} ?

$$h \in \mathcal{H}_{\infty} \stackrel{\triangleright}{\bowtie} h \in \mathcal{H}_{\infty}$$
 $(1-\theta)h \in \mathcal{H}_{\infty}$

Epistemic independence

$$\left\{ \mathbf{h} : \overset{\mathsf{h}(\theta) > 0}{\forall \theta \in [\underline{\theta}, \overline{\theta}]} \right\} = \mathcal{H}_{\infty}$$

Smallest epistemic independent \mathcal{H}_{∞} ?

$$h \in \mathcal{H}_{\infty} \stackrel{\triangleright}{\bowtie} h \in \mathcal{H}_{\infty}$$
 $(1-\theta)h \in \mathcal{H}_{\infty}$

Epistemic independence

$$\left\{ \mathbf{h} : \mathbf{h}(\theta) > 0 \atop \forall \theta \in [\underline{\theta}, \overline{\theta}] \right\} = \mathcal{H}_{\infty}$$

Smallest epistemic independent \mathcal{H}_{∞} ?

$$h \in \mathcal{H}_{\infty} \stackrel{\rightleftharpoons}{\bowtie} \frac{\theta h \in \mathcal{H}_{\infty}}{(1-\theta)h \in \mathcal{H}_{\infty}}$$

Set $\mathcal{H}_{\infty} = \bigcup_{n \in \mathbb{N}_0} \mathcal{H}_n$ of polynomial functions

 \mathcal{D}_1

$$\mathcal{D}_1 \longrightarrow \mathsf{p}(\theta) := \mathsf{Mn}_\mathsf{n}(\mathsf{f} \mid \theta)$$

$$\mathcal{H}_1$$

$$\mathcal{D}_{1}$$

$$\mathcal{H}_{1}$$

$$\text{smallest epistemic independent set of polynomials}$$

$$\mathcal{H}_{\infty} = \left\{ \begin{array}{l} h(\theta) > 0 \\ \forall \theta \in [\underline{\theta}, \overline{\theta}] \end{array} \right\}$$
exchangeability

Family of sets \mathcal{D}_n of desirable gambles on \mathscr{Z}^n

Link with sensitivity analysis

$$\underline{E}(f) := \sup \{ \mu \in \mathbb{R} : f - \mu \in \mathcal{D}_n \}$$
Suppremum acceptable buying price

Link with sensitivity analysis

$$\underline{E}(f) := \sup\{\mu \in \mathbb{R} : f - \mu \in \mathcal{D}_n\}$$

$$= \sup\{\mu \in \mathbb{R} : p - \mu \in \mathcal{H}_{\infty}\}$$

$$[p(\theta) = Mn_n(f | \theta)]$$

Link with sensitivity analysis

$$\underline{E}(f) := \sup \{ \mu \in \mathbb{R} : f - \mu \in \mathcal{D}_n \}$$
$$= \sup \{ \mu \in \mathbb{R} : p - \mu \in \mathcal{H}_{\infty} \}$$

$$p - \mu \in \mathcal{H}_{\infty} \iff p(\theta) > \mu \ \forall \theta \in [\underline{\theta}, \overline{\theta}]$$

$$[p(\theta) = Mn_n(f | \theta)]$$

Link with sensitivity analysis

$$\underline{E}(f) := \sup \{ \mu \in \mathbb{R} : f - \mu \in \mathcal{D}_n \}$$

$$= \sup \{ \mu \in \mathbb{R} : p - \mu \in \mathcal{H}_{\infty} \}$$

$$= \sup \{ \mu \in \mathbb{R} : p(\theta) > \mu \ \forall \theta \in [\underline{\theta}, \overline{\theta}] \}$$

$$[p(\theta) = Mn_n(f | \theta)]$$

Link with sensitivity analysis

$$\begin{split} \underline{E}(f) &:= \sup \{ \mu \in \mathbb{R} : f - \mu \in \mathcal{D}_{n} \} \\ &= \sup \{ \mu \in \mathbb{R} : p - \mu \in \mathcal{H}_{\infty} \} \\ &= \sup \{ \mu \in \mathbb{R} : p(\theta) > \mu \,\, \forall \theta \in [\underline{\theta}, \overline{\theta}] \} \\ &= \min \{ p(\theta) : \theta \in [\underline{\theta}, \overline{\theta}] \} \end{split}$$

$$\left[p(\theta) = \mathsf{Mn}_{\mathsf{n}}(\mathsf{f} \mid \theta) \right]$$

Link with sensitivity analysis

$$\underline{E}(f) := \sup \{ \mu \in \mathbb{R} : f - \mu \in \mathcal{D}_n \}
= \sup \{ \mu \in \mathbb{R} : p - \mu \in \mathcal{H}_{\infty} \}
= \sup \{ \mu \in \mathbb{R} : p(\theta) > \mu \ \forall \theta \in [\underline{\theta}, \overline{\theta}] \}
= \min \{ p(\theta) : \theta \in [\underline{\theta}, \overline{\theta}] \}
= \min \{ \operatorname{Mn}_n(f|\theta) : \theta \in [\underline{\theta}, \overline{\theta}] \}$$

Link with sensitivity analysis

Sensitivity analysis:

$$\overline{E}(f) = \max\{\operatorname{Mn}_n(f|\theta) : \theta \in [\underline{\theta}, \overline{\theta}]\}$$

$$\underline{E}(f) = \min\{\operatorname{Mn}_n(f|\theta) : \theta \in [\underline{\theta}, \overline{\theta}]\}$$

EXCHANGEABILITY + EPISTEMIC INDEPENDENCE

SENSITIVITY ANALYSIS